1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.util.function.Consumer;
  29 import java.util.function.Predicate;
  30 import java.util.function.UnaryOperator;
  31 
  32 /**
  33  * Resizable-array implementation of the {@code List} interface.  Implements
  34  * all optional list operations, and permits all elements, including
  35  * {@code null}.  In addition to implementing the {@code List} interface,
  36  * this class provides methods to manipulate the size of the array that is
  37  * used internally to store the list.  (This class is roughly equivalent to
  38  * {@code Vector}, except that it is unsynchronized.)
  39  *
  40  * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
  41  * {@code iterator}, and {@code listIterator} operations run in constant
  42  * time.  The {@code add} operation runs in <i>amortized constant time</i>,
  43  * that is, adding n elements requires O(n) time.  All of the other operations
  44  * run in linear time (roughly speaking).  The constant factor is low compared
  45  * to that for the {@code LinkedList} implementation.
  46  *
  47  * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
  48  * the size of the array used to store the elements in the list.  It is always
  49  * at least as large as the list size.  As elements are added to an ArrayList,
  50  * its capacity grows automatically.  The details of the growth policy are not
  51  * specified beyond the fact that adding an element has constant amortized
  52  * time cost.
  53  *
  54  * <p>An application can increase the capacity of an {@code ArrayList} instance
  55  * before adding a large number of elements using the {@code ensureCapacity}
  56  * operation.  This may reduce the amount of incremental reallocation.
  57  *
  58  * <p><strong>Note that this implementation is not synchronized.</strong>
  59  * If multiple threads access an {@code ArrayList} instance concurrently,
  60  * and at least one of the threads modifies the list structurally, it
  61  * <i>must</i> be synchronized externally.  (A structural modification is
  62  * any operation that adds or deletes one or more elements, or explicitly
  63  * resizes the backing array; merely setting the value of an element is not
  64  * a structural modification.)  This is typically accomplished by
  65  * synchronizing on some object that naturally encapsulates the list.
  66  *
  67  * If no such object exists, the list should be "wrapped" using the
  68  * {@link Collections#synchronizedList Collections.synchronizedList}
  69  * method.  This is best done at creation time, to prevent accidental
  70  * unsynchronized access to the list:<pre>
  71  *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
  72  *
  73  * <p><a name="fail-fast">
  74  * The iterators returned by this class's {@link #iterator() iterator} and
  75  * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:</a>
  76  * if the list is structurally modified at any time after the iterator is
  77  * created, in any way except through the iterator's own
  78  * {@link ListIterator#remove() remove} or
  79  * {@link ListIterator#add(Object) add} methods, the iterator will throw a
  80  * {@link ConcurrentModificationException}.  Thus, in the face of
  81  * concurrent modification, the iterator fails quickly and cleanly, rather
  82  * than risking arbitrary, non-deterministic behavior at an undetermined
  83  * time in the future.
  84  *
  85  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  86  * as it is, generally speaking, impossible to make any hard guarantees in the
  87  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  88  * throw {@code ConcurrentModificationException} on a best-effort basis.
  89  * Therefore, it would be wrong to write a program that depended on this
  90  * exception for its correctness:  <i>the fail-fast behavior of iterators
  91  * should be used only to detect bugs.</i>
  92  *
  93  * <p>This class is a member of the
  94  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  95  * Java Collections Framework</a>.
  96  *
  97  * @param <E> the type of elements in this list
  98  *
  99  * @author  Josh Bloch
 100  * @author  Neal Gafter
 101  * @see     Collection
 102  * @see     List
 103  * @see     LinkedList
 104  * @see     Vector
 105  * @since   1.2
 106  */
 107 
 108 public class ArrayList<E> extends AbstractList<E>
 109         implements List<E>, RandomAccess, Cloneable, java.io.Serializable
 110 {
 111     private static final long serialVersionUID = 8683452581122892189L;
 112 
 113     /**
 114      * Default initial capacity.
 115      */
 116     private static final int DEFAULT_CAPACITY = 10;
 117 
 118     /**
 119      * Shared empty array instance used for empty instances.
 120      */
 121     private static final Object[] EMPTY_ELEMENTDATA = {};
 122 
 123     /**
 124      * The array buffer into which the elements of the ArrayList are stored.
 125      * The capacity of the ArrayList is the length of this array buffer. Any
 126      * empty ArrayList with elementData == EMPTY_ELEMENTDATA will be expanded to
 127      * DEFAULT_CAPACITY when the first element is added.
 128      */
 129     transient Object[] elementData; // non-private to simplify nested class access
 130 
 131     /**
 132      * The size of the ArrayList (the number of elements it contains).
 133      *
 134      * @serial
 135      */
 136     private int size;
 137 
 138     /**
 139      * Constructs an empty list with the specified initial capacity.
 140      *
 141      * @param  initialCapacity  the initial capacity of the list
 142      * @throws IllegalArgumentException if the specified initial capacity
 143      *         is negative
 144      */
 145     public ArrayList(int initialCapacity) {
 146         if (initialCapacity > 0) {
 147             this.elementData = new Object[initialCapacity];
 148         } else if (initialCapacity == 0) {
 149             this.elementData = EMPTY_ELEMENTDATA;
 150         } else {
 151             throw new IllegalArgumentException("Illegal Capacity: "+
 152                                                initialCapacity);
 153         }
 154     }
 155 
 156     /**
 157      * Constructs an empty list with an initial capacity of ten.
 158      */
 159     public ArrayList() {
 160         this.elementData = EMPTY_ELEMENTDATA;
 161     }
 162 
 163     /**
 164      * Constructs a list containing the elements of the specified
 165      * collection, in the order they are returned by the collection's
 166      * iterator.
 167      *
 168      * @param c the collection whose elements are to be placed into this list
 169      * @throws NullPointerException if the specified collection is null
 170      */
 171     public ArrayList(Collection<? extends E> c) {
 172         if (!c.isEmpty()) {
 173             elementData = c.toArray();
 174             size = elementData.length;
 175             // c.toArray might (incorrectly) not return Object[] (see 6260652)
 176             if (elementData.getClass() != Object[].class)
 177                 elementData = Arrays.copyOf(elementData, size, Object[].class);
 178         } else {
 179             this.elementData = EMPTY_ELEMENTDATA;
 180         }
 181     }
 182 
 183     /**
 184      * Trims the capacity of this {@code ArrayList} instance to be the
 185      * list's current size.  An application can use this operation to minimize
 186      * the storage of an {@code ArrayList} instance.
 187      */
 188     public void trimToSize() {
 189         modCount++;
 190         if (size < elementData.length) {
 191             elementData = Arrays.copyOf(elementData, size);
 192         }
 193     }
 194 
 195     /**
 196      * Increases the capacity of this {@code ArrayList} instance, if
 197      * necessary, to ensure that it can hold at least the number of elements
 198      * specified by the minimum capacity argument.
 199      *
 200      * @param   minCapacity   the desired minimum capacity
 201      */
 202     public void ensureCapacity(int minCapacity) {
 203         int minExpand = (elementData != EMPTY_ELEMENTDATA)
 204             // any size if real element table
 205             ? 0
 206             // larger than default for empty table. It's already supposed to be
 207             // at default size.
 208             : DEFAULT_CAPACITY;
 209 
 210         if (minCapacity > minExpand) {
 211             ensureExplicitCapacity(minCapacity);
 212         }
 213     }
 214 
 215     private void ensureCapacityInternal(int minCapacity) {
 216         if (elementData == EMPTY_ELEMENTDATA) {
 217             minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
 218         }
 219 
 220         ensureExplicitCapacity(minCapacity);
 221     }
 222 
 223     private void ensureExplicitCapacity(int minCapacity) {
 224         modCount++;
 225 
 226         // overflow-conscious code
 227         if (minCapacity - elementData.length > 0)
 228             grow(minCapacity);
 229     }
 230 
 231     /**
 232      * The maximum size of array to allocate.
 233      * Some VMs reserve some header words in an array.
 234      * Attempts to allocate larger arrays may result in
 235      * OutOfMemoryError: Requested array size exceeds VM limit
 236      */
 237     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 238 
 239     /**
 240      * Increases the capacity to ensure that it can hold at least the
 241      * number of elements specified by the minimum capacity argument.
 242      *
 243      * @param minCapacity the desired minimum capacity
 244      */
 245     private void grow(int minCapacity) {
 246         // overflow-conscious code
 247         int oldCapacity = elementData.length;
 248         int newCapacity = oldCapacity + (oldCapacity >> 1);
 249         if (newCapacity - minCapacity < 0)
 250             newCapacity = minCapacity;
 251         if (newCapacity - MAX_ARRAY_SIZE > 0)
 252             newCapacity = hugeCapacity(minCapacity);
 253         // minCapacity is usually close to size, so this is a win:
 254         elementData = Arrays.copyOf(elementData, newCapacity);
 255     }
 256 
 257     private static int hugeCapacity(int minCapacity) {
 258         if (minCapacity < 0) // overflow
 259             throw new OutOfMemoryError();
 260         return (minCapacity > MAX_ARRAY_SIZE) ?
 261             Integer.MAX_VALUE :
 262             MAX_ARRAY_SIZE;
 263     }
 264 
 265     /**
 266      * Returns the number of elements in this list.
 267      *
 268      * @return the number of elements in this list
 269      */
 270     public int size() {
 271         return size;
 272     }
 273 
 274     /**
 275      * Returns {@code true} if this list contains no elements.
 276      *
 277      * @return {@code true} if this list contains no elements
 278      */
 279     public boolean isEmpty() {
 280         return size == 0;
 281     }
 282 
 283     /**
 284      * Returns {@code true} if this list contains the specified element.
 285      * More formally, returns {@code true} if and only if this list contains
 286      * at least one element {@code e} such that
 287      * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
 288      *
 289      * @param o element whose presence in this list is to be tested
 290      * @return {@code true} if this list contains the specified element
 291      */
 292     public boolean contains(Object o) {
 293         return indexOf(o) >= 0;
 294     }
 295 
 296     /**
 297      * Returns the index of the first occurrence of the specified element
 298      * in this list, or -1 if this list does not contain the element.
 299      * More formally, returns the lowest index {@code i} such that
 300      * {@code (o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))},
 301      * or -1 if there is no such index.
 302      */
 303     public int indexOf(Object o) {
 304         if (o == null) {
 305             for (int i = 0; i < size; i++)
 306                 if (elementData[i]==null)
 307                     return i;
 308         } else {
 309             for (int i = 0; i < size; i++)
 310                 if (o.equals(elementData[i]))
 311                     return i;
 312         }
 313         return -1;
 314     }
 315 
 316     /**
 317      * Returns the index of the last occurrence of the specified element
 318      * in this list, or -1 if this list does not contain the element.
 319      * More formally, returns the highest index {@code i} such that
 320      * {@code (o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))},
 321      * or -1 if there is no such index.
 322      */
 323     public int lastIndexOf(Object o) {
 324         if (o == null) {
 325             for (int i = size-1; i >= 0; i--)
 326                 if (elementData[i]==null)
 327                     return i;
 328         } else {
 329             for (int i = size-1; i >= 0; i--)
 330                 if (o.equals(elementData[i]))
 331                     return i;
 332         }
 333         return -1;
 334     }
 335 
 336     /**
 337      * Returns a shallow copy of this {@code ArrayList} instance.  (The
 338      * elements themselves are not copied.)
 339      *
 340      * @return a clone of this {@code ArrayList} instance
 341      */
 342     public Object clone() {
 343         try {
 344             ArrayList<?> v = (ArrayList<?>) super.clone();
 345             v.elementData = Arrays.copyOf(elementData, size);
 346             v.modCount = 0;
 347             return v;
 348         } catch (CloneNotSupportedException e) {
 349             // this shouldn't happen, since we are Cloneable
 350             throw new InternalError(e);
 351         }
 352     }
 353 
 354     /**
 355      * Returns an array containing all of the elements in this list
 356      * in proper sequence (from first to last element).
 357      *
 358      * <p>The returned array will be "safe" in that no references to it are
 359      * maintained by this list.  (In other words, this method must allocate
 360      * a new array).  The caller is thus free to modify the returned array.
 361      *
 362      * <p>This method acts as bridge between array-based and collection-based
 363      * APIs.
 364      *
 365      * @return an array containing all of the elements in this list in
 366      *         proper sequence
 367      */
 368     public Object[] toArray() {
 369         return Arrays.copyOf(elementData, size);
 370     }
 371 
 372     /**
 373      * Returns an array containing all of the elements in this list in proper
 374      * sequence (from first to last element); the runtime type of the returned
 375      * array is that of the specified array.  If the list fits in the
 376      * specified array, it is returned therein.  Otherwise, a new array is
 377      * allocated with the runtime type of the specified array and the size of
 378      * this list.
 379      *
 380      * <p>If the list fits in the specified array with room to spare
 381      * (i.e., the array has more elements than the list), the element in
 382      * the array immediately following the end of the collection is set to
 383      * {@code null}.  (This is useful in determining the length of the
 384      * list <i>only</i> if the caller knows that the list does not contain
 385      * any null elements.)
 386      *
 387      * @param a the array into which the elements of the list are to
 388      *          be stored, if it is big enough; otherwise, a new array of the
 389      *          same runtime type is allocated for this purpose.
 390      * @return an array containing the elements of the list
 391      * @throws ArrayStoreException if the runtime type of the specified array
 392      *         is not a supertype of the runtime type of every element in
 393      *         this list
 394      * @throws NullPointerException if the specified array is null
 395      */
 396     @SuppressWarnings("unchecked")
 397     public <T> T[] toArray(T[] a) {
 398         if (a.length < size)
 399             // Make a new array of a's runtime type, but my contents:
 400             return (T[]) Arrays.copyOf(elementData, size, a.getClass());
 401         System.arraycopy(elementData, 0, a, 0, size);
 402         if (a.length > size)
 403             a[size] = null;
 404         return a;
 405     }
 406 
 407     // Positional Access Operations
 408 
 409     @SuppressWarnings("unchecked")
 410     E elementData(int index) {
 411         return (E) elementData[index];
 412     }
 413 
 414     /**
 415      * Returns the element at the specified position in this list.
 416      *
 417      * @param  index index of the element to return
 418      * @return the element at the specified position in this list
 419      * @throws IndexOutOfBoundsException {@inheritDoc}
 420      */
 421     public E get(int index) {
 422         rangeCheck(index);
 423 
 424         return elementData(index);
 425     }
 426 
 427     /**
 428      * Replaces the element at the specified position in this list with
 429      * the specified element.
 430      *
 431      * @param index index of the element to replace
 432      * @param element element to be stored at the specified position
 433      * @return the element previously at the specified position
 434      * @throws IndexOutOfBoundsException {@inheritDoc}
 435      */
 436     public E set(int index, E element) {
 437         rangeCheck(index);
 438 
 439         E oldValue = elementData(index);
 440         elementData[index] = element;
 441         return oldValue;
 442     }
 443 
 444     /**
 445      * Appends the specified element to the end of this list.
 446      *
 447      * @param e element to be appended to this list
 448      * @return {@code true} (as specified by {@link Collection#add})
 449      */
 450     public boolean add(E e) {
 451         ensureCapacityInternal(size + 1);  // Increments modCount!!
 452         elementData[size++] = e;
 453         return true;
 454     }
 455 
 456     /**
 457      * Inserts the specified element at the specified position in this
 458      * list. Shifts the element currently at that position (if any) and
 459      * any subsequent elements to the right (adds one to their indices).
 460      *
 461      * @param index index at which the specified element is to be inserted
 462      * @param element element to be inserted
 463      * @throws IndexOutOfBoundsException {@inheritDoc}
 464      */
 465     public void add(int index, E element) {
 466         rangeCheckForAdd(index);
 467 
 468         ensureCapacityInternal(size + 1);  // Increments modCount!!
 469         System.arraycopy(elementData, index, elementData, index + 1,
 470                          size - index);
 471         elementData[index] = element;
 472         size++;
 473     }
 474 
 475     /**
 476      * Removes the element at the specified position in this list.
 477      * Shifts any subsequent elements to the left (subtracts one from their
 478      * indices).
 479      *
 480      * @param index the index of the element to be removed
 481      * @return the element that was removed from the list
 482      * @throws IndexOutOfBoundsException {@inheritDoc}
 483      */
 484     public E remove(int index) {
 485         rangeCheck(index);
 486 
 487         modCount++;
 488         E oldValue = elementData(index);
 489 
 490         int numMoved = size - index - 1;
 491         if (numMoved > 0)
 492             System.arraycopy(elementData, index+1, elementData, index,
 493                              numMoved);
 494         elementData[--size] = null; // clear to let GC do its work
 495 
 496         return oldValue;
 497     }
 498 
 499     /**
 500      * Removes the first occurrence of the specified element from this list,
 501      * if it is present.  If the list does not contain the element, it is
 502      * unchanged.  More formally, removes the element with the lowest index
 503      * {@code i} such that
 504      * {@code (o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))}
 505      * (if such an element exists).  Returns {@code true} if this list
 506      * contained the specified element (or equivalently, if this list
 507      * changed as a result of the call).
 508      *
 509      * @param o element to be removed from this list, if present
 510      * @return {@code true} if this list contained the specified element
 511      */
 512     public boolean remove(Object o) {
 513         if (o == null) {
 514             for (int index = 0; index < size; index++)
 515                 if (elementData[index] == null) {
 516                     fastRemove(index);
 517                     return true;
 518                 }
 519         } else {
 520             for (int index = 0; index < size; index++)
 521                 if (o.equals(elementData[index])) {
 522                     fastRemove(index);
 523                     return true;
 524                 }
 525         }
 526         return false;
 527     }
 528 
 529     /*
 530      * Private remove method that skips bounds checking and does not
 531      * return the value removed.
 532      */
 533     private void fastRemove(int index) {
 534         modCount++;
 535         int numMoved = size - index - 1;
 536         if (numMoved > 0)
 537             System.arraycopy(elementData, index+1, elementData, index,
 538                              numMoved);
 539         elementData[--size] = null; // clear to let GC do its work
 540     }
 541 
 542     /**
 543      * Removes all of the elements from this list.  The list will
 544      * be empty after this call returns.
 545      */
 546     public void clear() {
 547         modCount++;
 548 
 549         // clear to let GC do its work
 550         for (int i = 0; i < size; i++)
 551             elementData[i] = null;
 552 
 553         size = 0;
 554     }
 555 
 556     /**
 557      * Appends all of the elements in the specified collection to the end of
 558      * this list, in the order that they are returned by the
 559      * specified collection's Iterator.  The behavior of this operation is
 560      * undefined if the specified collection is modified while the operation
 561      * is in progress.  (This implies that the behavior of this call is
 562      * undefined if the specified collection is this list, and this
 563      * list is nonempty.)
 564      *
 565      * @param c collection containing elements to be added to this list
 566      * @return {@code true} if this list changed as a result of the call
 567      * @throws NullPointerException if the specified collection is null
 568      */
 569     public boolean addAll(Collection<? extends E> c) {
 570         Object[] a = c.toArray();
 571         int numNew = a.length;
 572         ensureCapacityInternal(size + numNew);  // Increments modCount
 573         System.arraycopy(a, 0, elementData, size, numNew);
 574         size += numNew;
 575         return numNew != 0;
 576     }
 577 
 578     /**
 579      * Inserts all of the elements in the specified collection into this
 580      * list, starting at the specified position.  Shifts the element
 581      * currently at that position (if any) and any subsequent elements to
 582      * the right (increases their indices).  The new elements will appear
 583      * in the list in the order that they are returned by the
 584      * specified collection's iterator.
 585      *
 586      * @param index index at which to insert the first element from the
 587      *              specified collection
 588      * @param c collection containing elements to be added to this list
 589      * @return {@code true} if this list changed as a result of the call
 590      * @throws IndexOutOfBoundsException {@inheritDoc}
 591      * @throws NullPointerException if the specified collection is null
 592      */
 593     public boolean addAll(int index, Collection<? extends E> c) {
 594         rangeCheckForAdd(index);
 595 
 596         Object[] a = c.toArray();
 597         int numNew = a.length;
 598         ensureCapacityInternal(size + numNew);  // Increments modCount
 599 
 600         int numMoved = size - index;
 601         if (numMoved > 0)
 602             System.arraycopy(elementData, index, elementData, index + numNew,
 603                              numMoved);
 604 
 605         System.arraycopy(a, 0, elementData, index, numNew);
 606         size += numNew;
 607         return numNew != 0;
 608     }
 609 
 610     /**
 611      * Removes from this list all of the elements whose index is between
 612      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
 613      * Shifts any succeeding elements to the left (reduces their index).
 614      * This call shortens the list by {@code (toIndex - fromIndex)} elements.
 615      * (If {@code toIndex==fromIndex}, this operation has no effect.)
 616      *
 617      * @throws IndexOutOfBoundsException if {@code fromIndex} or
 618      *         {@code toIndex} is out of range
 619      *         ({@code fromIndex < 0 ||
 620      *          fromIndex >= size() ||
 621      *          toIndex > size() ||
 622      *          toIndex < fromIndex})
 623      */
 624     protected void removeRange(int fromIndex, int toIndex) {
 625         modCount++;
 626         int numMoved = size - toIndex;
 627         System.arraycopy(elementData, toIndex, elementData, fromIndex,
 628                          numMoved);
 629 
 630         // clear to let GC do its work
 631         int newSize = size - (toIndex-fromIndex);
 632         for (int i = newSize; i < size; i++) {
 633             elementData[i] = null;
 634         }
 635         size = newSize;
 636     }
 637 
 638     /**
 639      * Checks if the given index is in range.  If not, throws an appropriate
 640      * runtime exception.  This method does *not* check if the index is
 641      * negative: It is always used immediately prior to an array access,
 642      * which throws an ArrayIndexOutOfBoundsException if index is negative.
 643      */
 644     private void rangeCheck(int index) {
 645         if (index >= size)
 646             throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
 647     }
 648 
 649     /**
 650      * A version of rangeCheck used by add and addAll.
 651      */
 652     private void rangeCheckForAdd(int index) {
 653         if (index > size || index < 0)
 654             throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
 655     }
 656 
 657     /**
 658      * Constructs an IndexOutOfBoundsException detail message.
 659      * Of the many possible refactorings of the error handling code,
 660      * this "outlining" performs best with both server and client VMs.
 661      */
 662     private String outOfBoundsMsg(int index) {
 663         return "Index: "+index+", Size: "+size;
 664     }
 665 
 666     /**
 667      * Removes from this list all of its elements that are contained in the
 668      * specified collection.
 669      *
 670      * @param c collection containing elements to be removed from this list
 671      * @return {@code true} if this list changed as a result of the call
 672      * @throws ClassCastException if the class of an element of this list
 673      *         is incompatible with the specified collection
 674      * (<a href="Collection.html#optional-restrictions">optional</a>)
 675      * @throws NullPointerException if this list contains a null element and the
 676      *         specified collection does not permit null elements
 677      * (<a href="Collection.html#optional-restrictions">optional</a>),
 678      *         or if the specified collection is null
 679      * @see Collection#contains(Object)
 680      */
 681     public boolean removeAll(Collection<?> c) {
 682         Objects.requireNonNull(c);
 683         return batchRemove(c, false);
 684     }
 685 
 686     /**
 687      * Retains only the elements in this list that are contained in the
 688      * specified collection.  In other words, removes from this list all
 689      * of its elements that are not contained in the specified collection.
 690      *
 691      * @param c collection containing elements to be retained in this list
 692      * @return {@code true} if this list changed as a result of the call
 693      * @throws ClassCastException if the class of an element of this list
 694      *         is incompatible with the specified collection
 695      * (<a href="Collection.html#optional-restrictions">optional</a>)
 696      * @throws NullPointerException if this list contains a null element and the
 697      *         specified collection does not permit null elements
 698      * (<a href="Collection.html#optional-restrictions">optional</a>),
 699      *         or if the specified collection is null
 700      * @see Collection#contains(Object)
 701      */
 702     public boolean retainAll(Collection<?> c) {
 703         Objects.requireNonNull(c);
 704         return batchRemove(c, true);
 705     }
 706 
 707     private boolean batchRemove(Collection<?> c, boolean complement) {
 708         final Object[] elementData = this.elementData;
 709         int r = 0, w = 0;
 710         boolean modified = false;
 711         try {
 712             for (; r < size; r++)
 713                 if (c.contains(elementData[r]) == complement)
 714                     elementData[w++] = elementData[r];
 715         } finally {
 716             // Preserve behavioral compatibility with AbstractCollection,
 717             // even if c.contains() throws.
 718             if (r != size) {
 719                 System.arraycopy(elementData, r,
 720                                  elementData, w,
 721                                  size - r);
 722                 w += size - r;
 723             }
 724             if (w != size) {
 725                 // clear to let GC do its work
 726                 for (int i = w; i < size; i++)
 727                     elementData[i] = null;
 728                 modCount += size - w;
 729                 size = w;
 730                 modified = true;
 731             }
 732         }
 733         return modified;
 734     }
 735 
 736     /**
 737      * Save the state of the {@code ArrayList} instance to a stream (that
 738      * is, serialize it).
 739      *
 740      * @serialData The length of the array backing the {@code ArrayList}
 741      *             instance is emitted (int), followed by all of its elements
 742      *             (each an {@code Object}) in the proper order.
 743      */
 744     private void writeObject(java.io.ObjectOutputStream s)
 745         throws java.io.IOException{
 746         // Write out element count, and any hidden stuff
 747         int expectedModCount = modCount;
 748         s.defaultWriteObject();
 749 
 750         // Write out size as capacity for behavioural compatibility with clone()
 751         s.writeInt(size);
 752 
 753         // Write out all elements in the proper order.
 754         for (int i=0; i<size; i++) {
 755             s.writeObject(elementData[i]);
 756         }
 757 
 758         if (modCount != expectedModCount) {
 759             throw new ConcurrentModificationException();
 760         }
 761     }
 762 
 763     /**
 764      * Reconstitute the {@code ArrayList} instance from a stream (that is,
 765      * deserialize it).
 766      */
 767     private void readObject(java.io.ObjectInputStream s)
 768         throws java.io.IOException, ClassNotFoundException {
 769         elementData = EMPTY_ELEMENTDATA;
 770 
 771         // Read in size, and any hidden stuff
 772         s.defaultReadObject();
 773 
 774         // Read in capacity
 775         s.readInt(); // ignored
 776 
 777         if (size > 0) {
 778             // be like clone(), allocate array based upon size not capacity
 779             ensureCapacityInternal(size);
 780 
 781             Object[] a = elementData;
 782             // Read in all elements in the proper order.
 783             for (int i=0; i<size; i++) {
 784                 a[i] = s.readObject();
 785             }
 786         }
 787     }
 788 
 789     /**
 790      * Returns a list iterator over the elements in this list (in proper
 791      * sequence), starting at the specified position in the list.
 792      * The specified index indicates the first element that would be
 793      * returned by an initial call to {@link ListIterator#next next}.
 794      * An initial call to {@link ListIterator#previous previous} would
 795      * return the element with the specified index minus one.
 796      *
 797      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 798      *
 799      * @throws IndexOutOfBoundsException {@inheritDoc}
 800      */
 801     public ListIterator<E> listIterator(int index) {
 802         if (index < 0 || index > size)
 803             throw new IndexOutOfBoundsException("Index: "+index);
 804         return new ListItr(index);
 805     }
 806 
 807     /**
 808      * Returns a list iterator over the elements in this list (in proper
 809      * sequence).
 810      *
 811      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 812      *
 813      * @see #listIterator(int)
 814      */
 815     public ListIterator<E> listIterator() {
 816         return new ListItr(0);
 817     }
 818 
 819     /**
 820      * Returns an iterator over the elements in this list in proper sequence.
 821      *
 822      * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 823      *
 824      * @return an iterator over the elements in this list in proper sequence
 825      */
 826     public Iterator<E> iterator() {
 827         return new Itr();
 828     }
 829 
 830     /**
 831      * An optimized version of AbstractList.Itr
 832      */
 833     private class Itr implements Iterator<E> {
 834         int cursor;       // index of next element to return
 835         int lastRet = -1; // index of last element returned; -1 if no such
 836         int expectedModCount = modCount;
 837 
 838         public boolean hasNext() {
 839             return cursor != size;
 840         }
 841 
 842         @SuppressWarnings("unchecked")
 843         public E next() {
 844             checkForComodification();
 845             int i = cursor;
 846             if (i >= size)
 847                 throw new NoSuchElementException();
 848             Object[] elementData = ArrayList.this.elementData;
 849             if (i >= elementData.length)
 850                 throw new ConcurrentModificationException();
 851             cursor = i + 1;
 852             return (E) elementData[lastRet = i];
 853         }
 854 
 855         public void remove() {
 856             if (lastRet < 0)
 857                 throw new IllegalStateException();
 858             checkForComodification();
 859 
 860             try {
 861                 ArrayList.this.remove(lastRet);
 862                 cursor = lastRet;
 863                 lastRet = -1;
 864                 expectedModCount = modCount;
 865             } catch (IndexOutOfBoundsException ex) {
 866                 throw new ConcurrentModificationException();
 867             }
 868         }
 869 
 870         @Override
 871         @SuppressWarnings("unchecked")
 872         public void forEachRemaining(Consumer<? super E> consumer) {
 873             Objects.requireNonNull(consumer);
 874             final int size = ArrayList.this.size;
 875             int i = cursor;
 876             if (i >= size) {
 877                 return;
 878             }
 879             final Object[] elementData = ArrayList.this.elementData;
 880             if (i >= elementData.length) {
 881                 throw new ConcurrentModificationException();
 882             }
 883             while (i != size && modCount == expectedModCount) {
 884                 consumer.accept((E) elementData[i++]);
 885             }
 886             // update once at end of iteration to reduce heap write traffic
 887             cursor = i;
 888             lastRet = i - 1;
 889             checkForComodification();
 890         }
 891 
 892         final void checkForComodification() {
 893             if (modCount != expectedModCount)
 894                 throw new ConcurrentModificationException();
 895         }
 896     }
 897 
 898     /**
 899      * An optimized version of AbstractList.ListItr
 900      */
 901     private class ListItr extends Itr implements ListIterator<E> {
 902         ListItr(int index) {
 903             super();
 904             cursor = index;
 905         }
 906 
 907         public boolean hasPrevious() {
 908             return cursor != 0;
 909         }
 910 
 911         public int nextIndex() {
 912             return cursor;
 913         }
 914 
 915         public int previousIndex() {
 916             return cursor - 1;
 917         }
 918 
 919         @SuppressWarnings("unchecked")
 920         public E previous() {
 921             checkForComodification();
 922             int i = cursor - 1;
 923             if (i < 0)
 924                 throw new NoSuchElementException();
 925             Object[] elementData = ArrayList.this.elementData;
 926             if (i >= elementData.length)
 927                 throw new ConcurrentModificationException();
 928             cursor = i;
 929             return (E) elementData[lastRet = i];
 930         }
 931 
 932         public void set(E e) {
 933             if (lastRet < 0)
 934                 throw new IllegalStateException();
 935             checkForComodification();
 936 
 937             try {
 938                 ArrayList.this.set(lastRet, e);
 939             } catch (IndexOutOfBoundsException ex) {
 940                 throw new ConcurrentModificationException();
 941             }
 942         }
 943 
 944         public void add(E e) {
 945             checkForComodification();
 946 
 947             try {
 948                 int i = cursor;
 949                 ArrayList.this.add(i, e);
 950                 cursor = i + 1;
 951                 lastRet = -1;
 952                 expectedModCount = modCount;
 953             } catch (IndexOutOfBoundsException ex) {
 954                 throw new ConcurrentModificationException();
 955             }
 956         }
 957     }
 958 
 959     /**
 960      * Returns a view of the portion of this list between the specified
 961      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
 962      * {@code fromIndex} and {@code toIndex} are equal, the returned list is
 963      * empty.)  The returned list is backed by this list, so non-structural
 964      * changes in the returned list are reflected in this list, and vice-versa.
 965      * The returned list supports all of the optional list operations.
 966      *
 967      * <p>This method eliminates the need for explicit range operations (of
 968      * the sort that commonly exist for arrays).  Any operation that expects
 969      * a list can be used as a range operation by passing a subList view
 970      * instead of a whole list.  For example, the following idiom
 971      * removes a range of elements from a list:
 972      * <pre>
 973      *      list.subList(from, to).clear();
 974      * </pre>
 975      * Similar idioms may be constructed for {@link #indexOf(Object)} and
 976      * {@link #lastIndexOf(Object)}, and all of the algorithms in the
 977      * {@link Collections} class can be applied to a subList.
 978      *
 979      * <p>The semantics of the list returned by this method become undefined if
 980      * the backing list (i.e., this list) is <i>structurally modified</i> in
 981      * any way other than via the returned list.  (Structural modifications are
 982      * those that change the size of this list, or otherwise perturb it in such
 983      * a fashion that iterations in progress may yield incorrect results.)
 984      *
 985      * @throws IndexOutOfBoundsException {@inheritDoc}
 986      * @throws IllegalArgumentException {@inheritDoc}
 987      */
 988     public List<E> subList(int fromIndex, int toIndex) {
 989         subListRangeCheck(fromIndex, toIndex, size);
 990         return new SubList(this, 0, fromIndex, toIndex);
 991     }
 992 
 993     static void subListRangeCheck(int fromIndex, int toIndex, int size) {
 994         if (fromIndex < 0)
 995             throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
 996         if (toIndex > size)
 997             throw new IndexOutOfBoundsException("toIndex = " + toIndex);
 998         if (fromIndex > toIndex)
 999             throw new IllegalArgumentException("fromIndex(" + fromIndex +
1000                                                ") > toIndex(" + toIndex + ")");
1001     }
1002 
1003     private class SubList extends AbstractList<E> implements RandomAccess {
1004         private final AbstractList<E> parent;
1005         private final int parentOffset;
1006         private final int offset;
1007         int size;
1008 
1009         SubList(AbstractList<E> parent,
1010                 int offset, int fromIndex, int toIndex) {
1011             this.parent = parent;
1012             this.parentOffset = fromIndex;
1013             this.offset = offset + fromIndex;
1014             this.size = toIndex - fromIndex;
1015             this.modCount = ArrayList.this.modCount;
1016         }
1017 
1018         public E set(int index, E e) {
1019             rangeCheck(index);
1020             checkForComodification();
1021             E oldValue = ArrayList.this.elementData(offset + index);
1022             ArrayList.this.elementData[offset + index] = e;
1023             return oldValue;
1024         }
1025 
1026         public E get(int index) {
1027             rangeCheck(index);
1028             checkForComodification();
1029             return ArrayList.this.elementData(offset + index);
1030         }
1031 
1032         public int size() {
1033             checkForComodification();
1034             return this.size;
1035         }
1036 
1037         public void add(int index, E e) {
1038             rangeCheckForAdd(index);
1039             checkForComodification();
1040             parent.add(parentOffset + index, e);
1041             this.modCount = parent.modCount;
1042             this.size++;
1043         }
1044 
1045         public E remove(int index) {
1046             rangeCheck(index);
1047             checkForComodification();
1048             E result = parent.remove(parentOffset + index);
1049             this.modCount = parent.modCount;
1050             this.size--;
1051             return result;
1052         }
1053 
1054         protected void removeRange(int fromIndex, int toIndex) {
1055             checkForComodification();
1056             parent.removeRange(parentOffset + fromIndex,
1057                                parentOffset + toIndex);
1058             this.modCount = parent.modCount;
1059             this.size -= toIndex - fromIndex;
1060         }
1061 
1062         public boolean addAll(Collection<? extends E> c) {
1063             return addAll(this.size, c);
1064         }
1065 
1066         public boolean addAll(int index, Collection<? extends E> c) {
1067             rangeCheckForAdd(index);
1068             int cSize = c.size();
1069             if (cSize==0)
1070                 return false;
1071 
1072             checkForComodification();
1073             parent.addAll(parentOffset + index, c);
1074             this.modCount = parent.modCount;
1075             this.size += cSize;
1076             return true;
1077         }
1078 
1079         public Iterator<E> iterator() {
1080             return listIterator();
1081         }
1082 
1083         public ListIterator<E> listIterator(final int index) {
1084             checkForComodification();
1085             rangeCheckForAdd(index);
1086             final int offset = this.offset;
1087 
1088             return new ListIterator<E>() {
1089                 int cursor = index;
1090                 int lastRet = -1;
1091                 int expectedModCount = ArrayList.this.modCount;
1092 
1093                 public boolean hasNext() {
1094                     return cursor != SubList.this.size;
1095                 }
1096 
1097                 @SuppressWarnings("unchecked")
1098                 public E next() {
1099                     checkForComodification();
1100                     int i = cursor;
1101                     if (i >= SubList.this.size)
1102                         throw new NoSuchElementException();
1103                     Object[] elementData = ArrayList.this.elementData;
1104                     if (offset + i >= elementData.length)
1105                         throw new ConcurrentModificationException();
1106                     cursor = i + 1;
1107                     return (E) elementData[offset + (lastRet = i)];
1108                 }
1109 
1110                 public boolean hasPrevious() {
1111                     return cursor != 0;
1112                 }
1113 
1114                 @SuppressWarnings("unchecked")
1115                 public E previous() {
1116                     checkForComodification();
1117                     int i = cursor - 1;
1118                     if (i < 0)
1119                         throw new NoSuchElementException();
1120                     Object[] elementData = ArrayList.this.elementData;
1121                     if (offset + i >= elementData.length)
1122                         throw new ConcurrentModificationException();
1123                     cursor = i;
1124                     return (E) elementData[offset + (lastRet = i)];
1125                 }
1126 
1127                 @SuppressWarnings("unchecked")
1128                 public void forEachRemaining(Consumer<? super E> consumer) {
1129                     Objects.requireNonNull(consumer);
1130                     final int size = SubList.this.size;
1131                     int i = cursor;
1132                     if (i >= size) {
1133                         return;
1134                     }
1135                     final Object[] elementData = ArrayList.this.elementData;
1136                     if (offset + i >= elementData.length) {
1137                         throw new ConcurrentModificationException();
1138                     }
1139                     while (i != size && modCount == expectedModCount) {
1140                         consumer.accept((E) elementData[offset + (i++)]);
1141                     }
1142                     // update once at end of iteration to reduce heap write traffic
1143                     lastRet = cursor = i;
1144                     checkForComodification();
1145                 }
1146 
1147                 public int nextIndex() {
1148                     return cursor;
1149                 }
1150 
1151                 public int previousIndex() {
1152                     return cursor - 1;
1153                 }
1154 
1155                 public void remove() {
1156                     if (lastRet < 0)
1157                         throw new IllegalStateException();
1158                     checkForComodification();
1159 
1160                     try {
1161                         SubList.this.remove(lastRet);
1162                         cursor = lastRet;
1163                         lastRet = -1;
1164                         expectedModCount = ArrayList.this.modCount;
1165                     } catch (IndexOutOfBoundsException ex) {
1166                         throw new ConcurrentModificationException();
1167                     }
1168                 }
1169 
1170                 public void set(E e) {
1171                     if (lastRet < 0)
1172                         throw new IllegalStateException();
1173                     checkForComodification();
1174 
1175                     try {
1176                         ArrayList.this.set(offset + lastRet, e);
1177                     } catch (IndexOutOfBoundsException ex) {
1178                         throw new ConcurrentModificationException();
1179                     }
1180                 }
1181 
1182                 public void add(E e) {
1183                     checkForComodification();
1184 
1185                     try {
1186                         int i = cursor;
1187                         SubList.this.add(i, e);
1188                         cursor = i + 1;
1189                         lastRet = -1;
1190                         expectedModCount = ArrayList.this.modCount;
1191                     } catch (IndexOutOfBoundsException ex) {
1192                         throw new ConcurrentModificationException();
1193                     }
1194                 }
1195 
1196                 final void checkForComodification() {
1197                     if (expectedModCount != ArrayList.this.modCount)
1198                         throw new ConcurrentModificationException();
1199                 }
1200             };
1201         }
1202 
1203         public List<E> subList(int fromIndex, int toIndex) {
1204             subListRangeCheck(fromIndex, toIndex, size);
1205             return new SubList(this, offset, fromIndex, toIndex);
1206         }
1207 
1208         private void rangeCheck(int index) {
1209             if (index < 0 || index >= this.size)
1210                 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1211         }
1212 
1213         private void rangeCheckForAdd(int index) {
1214             if (index < 0 || index > this.size)
1215                 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1216         }
1217 
1218         private String outOfBoundsMsg(int index) {
1219             return "Index: "+index+", Size: "+this.size;
1220         }
1221 
1222         private void checkForComodification() {
1223             if (ArrayList.this.modCount != this.modCount)
1224                 throw new ConcurrentModificationException();
1225         }
1226 
1227         public Spliterator<E> spliterator() {
1228             checkForComodification();
1229             return new ArrayListSpliterator<>(ArrayList.this, offset,
1230                                               offset + this.size, this.modCount);
1231         }
1232     }
1233 
1234     @Override
1235     public void forEach(Consumer<? super E> action) {
1236         Objects.requireNonNull(action);
1237         final int expectedModCount = modCount;
1238         @SuppressWarnings("unchecked")
1239         final E[] elementData = (E[]) this.elementData;
1240         final int size = this.size;
1241         for (int i=0; modCount == expectedModCount && i < size; i++) {
1242             action.accept(elementData[i]);
1243         }
1244         if (modCount != expectedModCount) {
1245             throw new ConcurrentModificationException();
1246         }
1247     }
1248 
1249     /**
1250      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1251      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1252      * list.
1253      *
1254      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1255      * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1256      * Overriding implementations should document the reporting of additional
1257      * characteristic values.
1258      *
1259      * @return a {@code Spliterator} over the elements in this list
1260      * @since 1.8
1261      */
1262     @Override
1263     public Spliterator<E> spliterator() {
1264         return new ArrayListSpliterator<>(this, 0, -1, 0);
1265     }
1266 
1267     /** Index-based split-by-two, lazily initialized Spliterator */
1268     static final class ArrayListSpliterator<E> implements Spliterator<E> {
1269 
1270         /*
1271          * If ArrayLists were immutable, or structurally immutable (no
1272          * adds, removes, etc), we could implement their spliterators
1273          * with Arrays.spliterator. Instead we detect as much
1274          * interference during traversal as practical without
1275          * sacrificing much performance. We rely primarily on
1276          * modCounts. These are not guaranteed to detect concurrency
1277          * violations, and are sometimes overly conservative about
1278          * within-thread interference, but detect enough problems to
1279          * be worthwhile in practice. To carry this out, we (1) lazily
1280          * initialize fence and expectedModCount until the latest
1281          * point that we need to commit to the state we are checking
1282          * against; thus improving precision.  (This doesn't apply to
1283          * SubLists, that create spliterators with current non-lazy
1284          * values).  (2) We perform only a single
1285          * ConcurrentModificationException check at the end of forEach
1286          * (the most performance-sensitive method). When using forEach
1287          * (as opposed to iterators), we can normally only detect
1288          * interference after actions, not before. Further
1289          * CME-triggering checks apply to all other possible
1290          * violations of assumptions for example null or too-small
1291          * elementData array given its size(), that could only have
1292          * occurred due to interference.  This allows the inner loop
1293          * of forEach to run without any further checks, and
1294          * simplifies lambda-resolution. While this does entail a
1295          * number of checks, note that in the common case of
1296          * list.stream().forEach(a), no checks or other computation
1297          * occur anywhere other than inside forEach itself.  The other
1298          * less-often-used methods cannot take advantage of most of
1299          * these streamlinings.
1300          */
1301 
1302         private final ArrayList<E> list;
1303         private int index; // current index, modified on advance/split
1304         private int fence; // -1 until used; then one past last index
1305         private int expectedModCount; // initialized when fence set
1306 
1307         /** Create new spliterator covering the given  range */
1308         ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1309                              int expectedModCount) {
1310             this.list = list; // OK if null unless traversed
1311             this.index = origin;
1312             this.fence = fence;
1313             this.expectedModCount = expectedModCount;
1314         }
1315 
1316         private int getFence() { // initialize fence to size on first use
1317             int hi; // (a specialized variant appears in method forEach)
1318             ArrayList<E> lst;
1319             if ((hi = fence) < 0) {
1320                 if ((lst = list) == null)
1321                     hi = fence = 0;
1322                 else {
1323                     expectedModCount = lst.modCount;
1324                     hi = fence = lst.size;
1325                 }
1326             }
1327             return hi;
1328         }
1329 
1330         public ArrayListSpliterator<E> trySplit() {
1331             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1332             return (lo >= mid) ? null : // divide range in half unless too small
1333                 new ArrayListSpliterator<>(list, lo, index = mid,
1334                                            expectedModCount);
1335         }
1336 
1337         public boolean tryAdvance(Consumer<? super E> action) {
1338             if (action == null)
1339                 throw new NullPointerException();
1340             int hi = getFence(), i = index;
1341             if (i < hi) {
1342                 index = i + 1;
1343                 @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1344                 action.accept(e);
1345                 if (list.modCount != expectedModCount)
1346                     throw new ConcurrentModificationException();
1347                 return true;
1348             }
1349             return false;
1350         }
1351 
1352         public void forEachRemaining(Consumer<? super E> action) {
1353             int i, hi, mc; // hoist accesses and checks from loop
1354             ArrayList<E> lst; Object[] a;
1355             if (action == null)
1356                 throw new NullPointerException();
1357             if ((lst = list) != null && (a = lst.elementData) != null) {
1358                 if ((hi = fence) < 0) {
1359                     mc = lst.modCount;
1360                     hi = lst.size;
1361                 }
1362                 else
1363                     mc = expectedModCount;
1364                 if ((i = index) >= 0 && (index = hi) <= a.length) {
1365                     for (; i < hi; ++i) {
1366                         @SuppressWarnings("unchecked") E e = (E) a[i];
1367                         action.accept(e);
1368                     }
1369                     if (lst.modCount == mc)
1370                         return;
1371                 }
1372             }
1373             throw new ConcurrentModificationException();
1374         }
1375 
1376         public long estimateSize() {
1377             return (long) (getFence() - index);
1378         }
1379 
1380         public int characteristics() {
1381             return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1382         }
1383     }
1384 
1385     @Override
1386     public boolean removeIf(Predicate<? super E> filter) {
1387         Objects.requireNonNull(filter);
1388         // figure out which elements are to be removed
1389         // any exception thrown from the filter predicate at this stage
1390         // will leave the collection unmodified
1391         int removeCount = 0;
1392         final BitSet removeSet = new BitSet(size);
1393         final int expectedModCount = modCount;
1394         final int size = this.size;
1395         for (int i=0; modCount == expectedModCount && i < size; i++) {
1396             @SuppressWarnings("unchecked")
1397             final E element = (E) elementData[i];
1398             if (filter.test(element)) {
1399                 removeSet.set(i);
1400                 removeCount++;
1401             }
1402         }
1403         if (modCount != expectedModCount) {
1404             throw new ConcurrentModificationException();
1405         }
1406 
1407         // shift surviving elements left over the spaces left by removed elements
1408         final boolean anyToRemove = removeCount > 0;
1409         if (anyToRemove) {
1410             final int newSize = size - removeCount;
1411             for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
1412                 i = removeSet.nextClearBit(i);
1413                 elementData[j] = elementData[i];
1414             }
1415             for (int k=newSize; k < size; k++) {
1416                 elementData[k] = null;  // Let gc do its work
1417             }
1418             this.size = newSize;
1419             if (modCount != expectedModCount) {
1420                 throw new ConcurrentModificationException();
1421             }
1422             modCount++;
1423         }
1424 
1425         return anyToRemove;
1426     }
1427 
1428     @Override
1429     @SuppressWarnings("unchecked")
1430     public void replaceAll(UnaryOperator<E> operator) {
1431         Objects.requireNonNull(operator);
1432         final int expectedModCount = modCount;
1433         final int size = this.size;
1434         for (int i=0; modCount == expectedModCount && i < size; i++) {
1435             elementData[i] = operator.apply((E) elementData[i]);
1436         }
1437         if (modCount != expectedModCount) {
1438             throw new ConcurrentModificationException();
1439         }
1440         modCount++;
1441     }
1442 
1443     @Override
1444     @SuppressWarnings("unchecked")
1445     public void sort(Comparator<? super E> c) {
1446         final int expectedModCount = modCount;
1447         Arrays.sort((E[]) elementData, 0, size, c);
1448         if (modCount != expectedModCount) {
1449             throw new ConcurrentModificationException();
1450         }
1451         modCount++;
1452     }
1453 }