/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; import java.io.*; /** * Hash table based implementation of the Map interface. This * implementation provides all of the optional map operations, and permits * null values and the null key. (The HashMap * class is roughly equivalent to Hashtable, except that it is * unsynchronized and permits nulls.) This class makes no guarantees as to * the order of the map; in particular, it does not guarantee that the order * will remain constant over time. * *

This implementation provides constant-time performance for the basic * operations (get and put), assuming the hash function * disperses the elements properly among the buckets. Iteration over * collection views requires time proportional to the "capacity" of the * HashMap instance (the number of buckets) plus its size (the number * of key-value mappings). Thus, it's very important not to set the initial * capacity too high (or the load factor too low) if iteration performance is * important. * *

An instance of HashMap has two parameters that affect its * performance: initial capacity and load factor. The * capacity is the number of buckets in the hash table, and the initial * capacity is simply the capacity at the time the hash table is created. The * load factor is a measure of how full the hash table is allowed to * get before its capacity is automatically increased. When the number of * entries in the hash table exceeds the product of the load factor and the * current capacity, the hash table is rehashed (that is, internal data * structures are rebuilt) so that the hash table has approximately twice the * number of buckets. * *

As a general rule, the default load factor (.75) offers a good tradeoff * between time and space costs. Higher values decrease the space overhead * but increase the lookup cost (reflected in most of the operations of the * HashMap class, including get and put). The * expected number of entries in the map and its load factor should be taken * into account when setting its initial capacity, so as to minimize the * number of rehash operations. If the initial capacity is greater * than the maximum number of entries divided by the load factor, no * rehash operations will ever occur. * *

If many mappings are to be stored in a HashMap instance, * creating it with a sufficiently large capacity will allow the mappings to * be stored more efficiently than letting it perform automatic rehashing as * needed to grow the table. * *

Note that this implementation is not synchronized. * If multiple threads access a hash map concurrently, and at least one of * the threads modifies the map structurally, it must be * synchronized externally. (A structural modification is any operation * that adds or deletes one or more mappings; merely changing the value * associated with a key that an instance already contains is not a * structural modification.) This is typically accomplished by * synchronizing on some object that naturally encapsulates the map. * * If no such object exists, the map should be "wrapped" using the * {@link Collections#synchronizedMap Collections.synchronizedMap} * method. This is best done at creation time, to prevent accidental * unsynchronized access to the map:

 *   Map m = Collections.synchronizedMap(new HashMap(...));
* *

The iterators returned by all of this class's "collection view methods" * are fail-fast: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * remove method, the iterator will throw a * {@link ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw ConcurrentModificationException on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class is a member of the * * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Doug Lea * @author Josh Bloch * @author Arthur van Hoff * @author Neal Gafter * @see Object#hashCode() * @see Collection * @see Map * @see TreeMap * @see Hashtable * @since 1.2 */ public class HashMap extends AbstractMap implements Map, Cloneable, Serializable { /** * The default initial capacity - MUST be a power of two. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The table, resized as necessary. Length MUST Always be a power of two. */ transient Entry[] table; /** * The number of key-value mappings contained in this map. */ transient int size; /** * The next size value at which to resize (capacity * load factor). * @serial */ int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient int modCount; private static class Holder { /** * */ private static final sun.misc.Unsafe UNSAFE; /** * Offset of "final" hashmask field we must set in * readObject() method. */ private static final long HASHMASK_OFFSET; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); HASHMASK_OFFSET = UNSAFE.objectFieldOffset( HashMap.class.getDeclaredField("hashMask")); } catch (NoSuchFieldException | SecurityException e) { throw new InternalError("Failed to record hashMask offset", e); } } } /** * A random mask value that is used for hashcode values associated with this * instance to make hash collisions harder to find. */ transient final int hashMask = sun.misc.Hashing.makeHashMask(this); /** * Constructs an empty HashMap with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // Find a power of 2 >= initialCapacity int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1); table = new Entry[capacity]; init(); } /** * Constructs an empty HashMap with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty HashMap with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); } /** * Constructs a new HashMap with the same mappings as the * specified Map. The HashMap is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified Map. * * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public HashMap(Map m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); putAllForCreate(m); } // internal utilities /** * Initialization hook for subclasses. This method is called * in all constructors and pseudo-constructors (clone, readObject) * after HashMap has been initialized but before any entries have * been inserted. (In the absence of this method, readObject would * require explicit knowledge of subclasses.) */ void init() { } /** * Retrieve object hash code and applies a supplemental hash function to the * result hash, which defends against poor quality hash functions. This is * critical because HashMap uses power-of-two length hash tables, that * otherwise encounter collisions for hashCodes that do not differ * in lower bits. */ final int hash(Object k) { int h = hashMask; if ((0 != h) && (k instanceof String)) { return h ^ ((String)k).hash32(); } h ^= k.hashCode(); // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); h ^= (h >>> 7) ^ (h >>> 4); return h; } /** * Returns index for hash code h. */ static int indexFor(int h, int length) { return h & (length-1); } /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map */ public int size() { return size; } /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings */ public boolean isEmpty() { return size == 0; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * *

A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ @SuppressWarnings("unchecked") public V get(Object key) { Entry entry = getEntry(key); return null == entry ? null : entry.getValue(); } /** * Offloaded version of get() to look up null keys. Null keys map * to index 0. This null case is split out into separate methods * for the sake of performance in the two most commonly used * operations (get and put), but incorporated with conditionals in * others. */ private Object getForNullKey() { for (Entry e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } /** * Returns true if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return true if this map contains a mapping for the specified * key. */ public boolean containsKey(Object key) { return getEntry(key) != null; } /** * Returns the entry associated with the specified key in the * HashMap. Returns null if the HashMap contains no mapping * for the key. */ @SuppressWarnings("unchecked") final Entry getEntry(Object key) { int hash = (key == null) ? 0 : hash(key); for (Entry e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return (Entry)e; } return null; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public V put(K key, V value) { if (key == null) return putForNullKey(value); int hash = hash(key); int i = indexFor(hash, table.length); @SuppressWarnings("unchecked") Entry e = (Entry)table[i]; for(; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); return null; } /** * Offloaded version of put for null keys */ private V putForNullKey(V value) { @SuppressWarnings("unchecked") Entry e = (Entry)table[0]; for(; e != null; e = e.next) { if (e.key == null) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); return null; } /** * This method is used instead of put by constructors and * pseudoconstructors (clone, readObject). It does not resize the table, * check for comodification, etc. It calls createEntry rather than * addEntry. */ private void putForCreate(K key, V value) { int hash = null == key ? 0 : hash(key); int i = indexFor(hash, table.length); /** * Look for preexisting entry for key. This will never happen for * clone or deserialize. It will only happen for construction if the * input Map is a sorted map whose ordering is inconsistent w/ equals. */ for (@SuppressWarnings("unchecked") Entry e = (Entry)table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.value = value; return; } } createEntry(hash, key, value, i); } private void putAllForCreate(Map m) { for (Map.Entry e : m.entrySet()) putForCreate(e.getKey(), e.getValue()); } /** * Rehashes the contents of this map into a new array with a * larger capacity. This method is called automatically when the * number of keys in this map reaches its threshold. * * If current capacity is MAXIMUM_CAPACITY, this method does not * resize the map, but sets threshold to Integer.MAX_VALUE. * This has the effect of preventing future calls. * * @param newCapacity the new capacity, MUST be a power of two; * must be greater than current capacity unless current * capacity is MAXIMUM_CAPACITY (in which case value * is irrelevant). */ void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1); } /** * Transfers all entries from current table to newTable. */ @SuppressWarnings("unchecked") void transfer(Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0; j < src.length; j++ ) { Entry e = (Entry) src[j]; while(null != e) { Entry next = e.next; int i = indexFor(e.hash, newCapacity); e.next = (Entry) newTable[i]; newTable[i] = e; e = next; } } Arrays.fill(table, null); } /** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. * * @param m mappings to be stored in this map * @throws NullPointerException if the specified map is null */ public void putAll(Map m) { int numKeysToBeAdded = m.size(); if (numKeysToBeAdded == 0) return; /* * Expand the map if the map if the number of mappings to be added * is greater than or equal to threshold. This is conservative; the * obvious condition is (m.size() + size) >= threshold, but this * condition could result in a map with twice the appropriate capacity, * if the keys to be added overlap with the keys already in this map. * By using the conservative calculation, we subject ourself * to at most one extra resize. */ if (numKeysToBeAdded > threshold) { int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); if (targetCapacity > MAXIMUM_CAPACITY) targetCapacity = MAXIMUM_CAPACITY; int newCapacity = table.length; while (newCapacity < targetCapacity) newCapacity <<= 1; if (newCapacity > table.length) resize(newCapacity); } for (Map.Entry e : m.entrySet()) put(e.getKey(), e.getValue()); } /** * Removes the mapping for the specified key from this map if present. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public V remove(Object key) { Entry e = removeEntryForKey(key); return (e == null ? null : e.value); } /** * Removes and returns the entry associated with the specified key * in the HashMap. Returns null if the HashMap contains no mapping * for this key. */ final Entry removeEntryForKey(Object key) { int hash = (key == null) ? 0 : hash(key); int i = indexFor(hash, table.length); @SuppressWarnings("unchecked") Entry prev = (Entry)table[i]; Entry e = prev; while (e != null) { Entry next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Special version of remove for EntrySet using {@code Map.Entry.equals()} * for matching. */ final Entry removeMapping(Object o) { if (!(o instanceof Map.Entry)) return null; Map.Entry entry = (Map.Entry) o; Object key = entry.getKey(); int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); @SuppressWarnings("unchecked") Entry prev = (Entry)table[i]; Entry e = prev; while (e != null) { Entry next = e.next; if (e.hash == hash && e.equals(entry)) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; e.recordRemoval(this); return e; } prev = e; e = next; } return e; } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ public void clear() { modCount++; Entry[] tab = table; for (int i = 0; i < tab.length; i++) tab[i] = null; size = 0; } /** * Returns true if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested * @return true if this map maps one or more keys to the * specified value */ public boolean containsValue(Object value) { if (value == null) return containsNullValue(); Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (value.equals(e.value)) return true; return false; } /** * Special-case code for containsValue with null argument */ private boolean containsNullValue() { Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value == null) return true; return false; } /** * Returns a shallow copy of this HashMap instance: the keys and * values themselves are not cloned. * * @return a shallow copy of this map */ @SuppressWarnings("unchecked") public Object clone() { HashMap result = null; try { result = (HashMap)super.clone(); } catch (CloneNotSupportedException e) { // assert false; } result.table = new Entry[table.length]; result.entrySet = null; result.modCount = 0; result.size = 0; result.init(); result.putAllForCreate(this); return result; } static class Entry implements Map.Entry { final K key; V value; Entry next; final int hash; /** * Creates new entry. */ Entry(int h, K k, V v, Entry n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } /** * This method is invoked whenever the value in an entry is * overwritten by an invocation of put(k,v) for a key k that's already * in the HashMap. */ void recordAccess(HashMap m) { } /** * This method is invoked whenever the entry is * removed from the table. */ void recordRemoval(HashMap m) { } } /** * Adds a new entry with the specified key, value and hash code to * the specified bucket. It is the responsibility of this * method to resize the table if appropriate. * * Subclass overrides this to alter the behavior of put method. */ void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = hash(key); bucketIndex = indexFor(hash, table.length); } createEntry(hash, key, value, bucketIndex); } /** * Like addEntry except that this version is used when creating entries * as part of Map construction or "pseudo-construction" (cloning, * deserialization). This version needn't worry about resizing the table. * * Subclass overrides this to alter the behavior of HashMap(Map), * clone, and readObject. */ void createEntry(int hash, K key, V value, int bucketIndex) { @SuppressWarnings("unchecked") Entry e = (Entry)table[bucketIndex]; table[bucketIndex] = new Entry<>(hash, key, value, e); size++; } private abstract class HashIterator implements Iterator { Entry next; // next entry to return int expectedModCount; // For fast-fail int index; // current slot Entry current; // current entry HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } } public final boolean hasNext() { return next != null; } @SuppressWarnings("unchecked") final Entry nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry e = next; if (e == null) throw new NoSuchElementException(); if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } current = e; return (Entry)e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } private final class ValueIterator extends HashIterator { public V next() { return nextEntry().value; } } private final class KeyIterator extends HashIterator { public K next() { return nextEntry().getKey(); } } private final class EntryIterator extends HashIterator> { public Map.Entry next() { return nextEntry(); } } // Subclass overrides these to alter behavior of views' iterator() method Iterator newKeyIterator() { return new KeyIterator(); } Iterator newValueIterator() { return new ValueIterator(); } Iterator> newEntryIterator() { return new EntryIterator(); } // Views private transient Set> entrySet = null; /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * Iterator.remove, Set.remove, * removeAll, retainAll, and clear * operations. It does not support the add or addAll * operations. */ public Set keySet() { Set ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } private final class KeySet extends AbstractSet { public Iterator iterator() { return newKeyIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return HashMap.this.removeEntryForKey(o) != null; } public void clear() { HashMap.this.clear(); } } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own remove operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll and clear operations. It does not * support the add or addAll operations. */ public Collection values() { Collection vs = values; return (vs != null ? vs : (values = new Values())); } private final class Values extends AbstractCollection { public Iterator iterator() { return newValueIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsValue(o); } public void clear() { HashMap.this.clear(); } } /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own remove operation, or through the * setValue operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Set.remove, removeAll, retainAll and * clear operations. It does not support the * add or addAll operations. * * @return a set view of the mappings contained in this map */ public Set> entrySet() { return entrySet0(); } private Set> entrySet0() { Set> es = entrySet; return es != null ? es : (entrySet = new EntrySet()); } private final class EntrySet extends AbstractSet> { public Iterator> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry) o; Entry candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } public boolean remove(Object o) { return removeMapping(o) != null; } public int size() { return size; } public void clear() { HashMap.this.clear(); } } /** * Save the state of the HashMap instance to a stream (i.e., * serialize it). * * @serialData The capacity of the HashMap (the length of the * bucket array) is emitted (int), followed by the * size (an int, the number of key-value * mappings), followed by the key (Object) and value (Object) * for each key-value mapping. The key-value mappings are * emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { Iterator> i = (size > 0) ? entrySet0().iterator() : null; // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); // Write out number of buckets s.writeInt(table.length); // Write out size (number of Mappings) s.writeInt(size); // Write out keys and values (alternating) if (size > 0) { for(Map.Entry e : entrySet0()) { s.writeObject(e.getKey()); s.writeObject(e.getValue()); } } } private static final long serialVersionUID = 362498820763181265L; /** * Reconstitute the {@code HashMap} instance from a stream (i.e., * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold (ignored), loadfactor, and any hidden stuff s.defaultReadObject(); if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new InvalidObjectException("Illegal load factor: " + loadFactor); // set hashMask Holder.UNSAFE.putIntVolatile(this, Holder.HASHMASK_OFFSET, sun.misc.Hashing.makeHashMask(this)); // Read in number of buckets and allocate the bucket array; s.readInt(); // ignored // Read number of mappings int mappings = s.readInt(); if (mappings < 0) throw new InvalidObjectException("Illegal mappings count: " + mappings); int initialCapacity = (int) Math.min( // capacity chosen by number of mappings // and desired load (if >= 0.25) mappings * Math.min(1 / loadFactor, 4.0f), // we have limits... HashMap.MAXIMUM_CAPACITY); int capacity = 1; // find smallest power of two which holds all mappings while (capacity < initialCapacity) { capacity <<= 1; } table = new Entry[capacity]; threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1); init(); // Give subclass a chance to do its thing. // Read the keys and values, and put the mappings in the HashMap for (int i=0; i