1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/isGCActiveMark.hpp"
  41 #include "gc_interface/collectedHeap.inline.hpp"
  42 #include "memory/cardTableRS.hpp"
  43 #include "memory/collectorPolicy.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/genCollectedHeap.hpp"
  46 #include "memory/genMarkSweep.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/iterator.hpp"
  49 #include "memory/referencePolicy.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "runtime/globals_extension.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/vmThread.hpp"
  57 #include "services/memoryService.hpp"
  58 #include "services/runtimeService.hpp"
  59 
  60 // statics
  61 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  62 bool          CMSCollector::_full_gc_requested          = false;
  63 
  64 //////////////////////////////////////////////////////////////////
  65 // In support of CMS/VM thread synchronization
  66 //////////////////////////////////////////////////////////////////
  67 // We split use of the CGC_lock into 2 "levels".
  68 // The low-level locking is of the usual CGC_lock monitor. We introduce
  69 // a higher level "token" (hereafter "CMS token") built on top of the
  70 // low level monitor (hereafter "CGC lock").
  71 // The token-passing protocol gives priority to the VM thread. The
  72 // CMS-lock doesn't provide any fairness guarantees, but clients
  73 // should ensure that it is only held for very short, bounded
  74 // durations.
  75 //
  76 // When either of the CMS thread or the VM thread is involved in
  77 // collection operations during which it does not want the other
  78 // thread to interfere, it obtains the CMS token.
  79 //
  80 // If either thread tries to get the token while the other has
  81 // it, that thread waits. However, if the VM thread and CMS thread
  82 // both want the token, then the VM thread gets priority while the
  83 // CMS thread waits. This ensures, for instance, that the "concurrent"
  84 // phases of the CMS thread's work do not block out the VM thread
  85 // for long periods of time as the CMS thread continues to hog
  86 // the token. (See bug 4616232).
  87 //
  88 // The baton-passing functions are, however, controlled by the
  89 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  90 // and here the low-level CMS lock, not the high level token,
  91 // ensures mutual exclusion.
  92 //
  93 // Two important conditions that we have to satisfy:
  94 // 1. if a thread does a low-level wait on the CMS lock, then it
  95 //    relinquishes the CMS token if it were holding that token
  96 //    when it acquired the low-level CMS lock.
  97 // 2. any low-level notifications on the low-level lock
  98 //    should only be sent when a thread has relinquished the token.
  99 //
 100 // In the absence of either property, we'd have potential deadlock.
 101 //
 102 // We protect each of the CMS (concurrent and sequential) phases
 103 // with the CMS _token_, not the CMS _lock_.
 104 //
 105 // The only code protected by CMS lock is the token acquisition code
 106 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 107 // baton-passing code.
 108 //
 109 // Unfortunately, i couldn't come up with a good abstraction to factor and
 110 // hide the naked CGC_lock manipulation in the baton-passing code
 111 // further below. That's something we should try to do. Also, the proof
 112 // of correctness of this 2-level locking scheme is far from obvious,
 113 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 114 // that there may be a theoretical possibility of delay/starvation in the
 115 // low-level lock/wait/notify scheme used for the baton-passing because of
 116 // potential intereference with the priority scheme embodied in the
 117 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 118 // invocation further below and marked with "XXX 20011219YSR".
 119 // Indeed, as we note elsewhere, this may become yet more slippery
 120 // in the presence of multiple CMS and/or multiple VM threads. XXX
 121 
 122 class CMSTokenSync: public StackObj {
 123  private:
 124   bool _is_cms_thread;
 125  public:
 126   CMSTokenSync(bool is_cms_thread):
 127     _is_cms_thread(is_cms_thread) {
 128     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 129            "Incorrect argument to constructor");
 130     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 131   }
 132 
 133   ~CMSTokenSync() {
 134     assert(_is_cms_thread ?
 135              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 136              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 137           "Incorrect state");
 138     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 139   }
 140 };
 141 
 142 // Convenience class that does a CMSTokenSync, and then acquires
 143 // upto three locks.
 144 class CMSTokenSyncWithLocks: public CMSTokenSync {
 145  private:
 146   // Note: locks are acquired in textual declaration order
 147   // and released in the opposite order
 148   MutexLockerEx _locker1, _locker2, _locker3;
 149  public:
 150   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 151                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 152     CMSTokenSync(is_cms_thread),
 153     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 154     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 155     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 156   { }
 157 };
 158 
 159 
 160 // Wrapper class to temporarily disable icms during a foreground cms collection.
 161 class ICMSDisabler: public StackObj {
 162  public:
 163   // The ctor disables icms and wakes up the thread so it notices the change;
 164   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 165   // CMSIncrementalMode.
 166   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 167   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 168 };
 169 
 170 //////////////////////////////////////////////////////////////////
 171 //  Concurrent Mark-Sweep Generation /////////////////////////////
 172 //////////////////////////////////////////////////////////////////
 173 
 174 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 175 
 176 // This struct contains per-thread things necessary to support parallel
 177 // young-gen collection.
 178 class CMSParGCThreadState: public CHeapObj<mtGC> {
 179  public:
 180   CFLS_LAB lab;
 181   PromotionInfo promo;
 182 
 183   // Constructor.
 184   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 185     promo.setSpace(cfls);
 186   }
 187 };
 188 
 189 class CMSPhaseTracing: public StackObj {
 190  public:
 191   CMSPhaseTracing(bool print, const char* phase);
 192   ~CMSPhaseTracing();
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, int level,
 197      CardTableRS* ct, bool use_adaptive_freelists,
 198      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 199   CardGeneration(rs, initial_byte_size, level, ct),
 200   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 201   _debug_collection_type(Concurrent_collection_type)
 202 {
 203   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 204   HeapWord* end    = (HeapWord*) _virtual_space.high();
 205 
 206   _direct_allocated_words = 0;
 207   NOT_PRODUCT(
 208     _numObjectsPromoted = 0;
 209     _numWordsPromoted = 0;
 210     _numObjectsAllocated = 0;
 211     _numWordsAllocated = 0;
 212   )
 213 
 214   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 215                                            use_adaptive_freelists,
 216                                            dictionaryChoice);
 217   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 218   if (_cmsSpace == NULL) {
 219     vm_exit_during_initialization(
 220       "CompactibleFreeListSpace allocation failure");
 221   }
 222   _cmsSpace->_gen = this;
 223 
 224   _gc_stats = new CMSGCStats();
 225 
 226   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 227   // offsets match. The ability to tell free chunks from objects
 228   // depends on this property.
 229   debug_only(
 230     FreeChunk* junk = NULL;
 231     assert(UseCompressedKlassPointers ||
 232            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 233            "Offset of FreeChunk::_prev within FreeChunk must match"
 234            "  that of OopDesc::_klass within OopDesc");
 235   )
 236   if (CollectedHeap::use_parallel_gc_threads()) {
 237     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 238     _par_gc_thread_states =
 239       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 240     if (_par_gc_thread_states == NULL) {
 241       vm_exit_during_initialization("Could not allocate par gc structs");
 242     }
 243     for (uint i = 0; i < ParallelGCThreads; i++) {
 244       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 245       if (_par_gc_thread_states[i] == NULL) {
 246         vm_exit_during_initialization("Could not allocate par gc structs");
 247       }
 248     }
 249   } else {
 250     _par_gc_thread_states = NULL;
 251   }
 252   _incremental_collection_failed = false;
 253   // The "dilatation_factor" is the expansion that can occur on
 254   // account of the fact that the minimum object size in the CMS
 255   // generation may be larger than that in, say, a contiguous young
 256   //  generation.
 257   // Ideally, in the calculation below, we'd compute the dilatation
 258   // factor as: MinChunkSize/(promoting_gen's min object size)
 259   // Since we do not have such a general query interface for the
 260   // promoting generation, we'll instead just use the mimimum
 261   // object size (which today is a header's worth of space);
 262   // note that all arithmetic is in units of HeapWords.
 263   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 264   assert(_dilatation_factor >= 1.0, "from previous assert");
 265 }
 266 
 267 
 268 // The field "_initiating_occupancy" represents the occupancy percentage
 269 // at which we trigger a new collection cycle.  Unless explicitly specified
 270 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 271 // is calculated by:
 272 //
 273 //   Let "f" be MinHeapFreeRatio in
 274 //
 275 //    _intiating_occupancy = 100-f +
 276 //                           f * (CMSTriggerRatio/100)
 277 //   where CMSTriggerRatio is the argument "tr" below.
 278 //
 279 // That is, if we assume the heap is at its desired maximum occupancy at the
 280 // end of a collection, we let CMSTriggerRatio of the (purported) free
 281 // space be allocated before initiating a new collection cycle.
 282 //
 283 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 284   assert(io <= 100 && tr <= 100, "Check the arguments");
 285   if (io >= 0) {
 286     _initiating_occupancy = (double)io / 100.0;
 287   } else {
 288     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 289                              (double)(tr * MinHeapFreeRatio) / 100.0)
 290                             / 100.0;
 291   }
 292 }
 293 
 294 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 295   assert(collector() != NULL, "no collector");
 296   collector()->ref_processor_init();
 297 }
 298 
 299 void CMSCollector::ref_processor_init() {
 300   if (_ref_processor == NULL) {
 301     // Allocate and initialize a reference processor
 302     _ref_processor =
 303       new ReferenceProcessor(_span,                               // span
 304                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 305                              (int) ParallelGCThreads,             // mt processing degree
 306                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 307                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 308                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 309                              &_is_alive_closure,                  // closure for liveness info
 310                              false);                              // next field updates do not need write barrier
 311     // Initialize the _ref_processor field of CMSGen
 312     _cmsGen->set_ref_processor(_ref_processor);
 313 
 314   }
 315 }
 316 
 317 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 318   GenCollectedHeap* gch = GenCollectedHeap::heap();
 319   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 320     "Wrong type of heap");
 321   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 322     gch->gen_policy()->size_policy();
 323   assert(sp->is_gc_cms_adaptive_size_policy(),
 324     "Wrong type of size policy");
 325   return sp;
 326 }
 327 
 328 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 329   CMSGCAdaptivePolicyCounters* results =
 330     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 331   assert(
 332     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 333     "Wrong gc policy counter kind");
 334   return results;
 335 }
 336 
 337 
 338 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 339 
 340   const char* gen_name = "old";
 341 
 342   // Generation Counters - generation 1, 1 subspace
 343   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 344 
 345   _space_counters = new GSpaceCounters(gen_name, 0,
 346                                        _virtual_space.reserved_size(),
 347                                        this, _gen_counters);
 348 }
 349 
 350 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 351   _cms_gen(cms_gen)
 352 {
 353   assert(alpha <= 100, "bad value");
 354   _saved_alpha = alpha;
 355 
 356   // Initialize the alphas to the bootstrap value of 100.
 357   _gc0_alpha = _cms_alpha = 100;
 358 
 359   _cms_begin_time.update();
 360   _cms_end_time.update();
 361 
 362   _gc0_duration = 0.0;
 363   _gc0_period = 0.0;
 364   _gc0_promoted = 0;
 365 
 366   _cms_duration = 0.0;
 367   _cms_period = 0.0;
 368   _cms_allocated = 0;
 369 
 370   _cms_used_at_gc0_begin = 0;
 371   _cms_used_at_gc0_end = 0;
 372   _allow_duty_cycle_reduction = false;
 373   _valid_bits = 0;
 374   _icms_duty_cycle = CMSIncrementalDutyCycle;
 375 }
 376 
 377 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 378   // TBD: CR 6909490
 379   return 1.0;
 380 }
 381 
 382 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 383 }
 384 
 385 // If promotion failure handling is on use
 386 // the padded average size of the promotion for each
 387 // young generation collection.
 388 double CMSStats::time_until_cms_gen_full() const {
 389   size_t cms_free = _cms_gen->cmsSpace()->free();
 390   GenCollectedHeap* gch = GenCollectedHeap::heap();
 391   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 392                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 393   if (cms_free > expected_promotion) {
 394     // Start a cms collection if there isn't enough space to promote
 395     // for the next minor collection.  Use the padded average as
 396     // a safety factor.
 397     cms_free -= expected_promotion;
 398 
 399     // Adjust by the safety factor.
 400     double cms_free_dbl = (double)cms_free;
 401     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 402     // Apply a further correction factor which tries to adjust
 403     // for recent occurance of concurrent mode failures.
 404     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 405     cms_free_dbl = cms_free_dbl * cms_adjustment;
 406 
 407     if (PrintGCDetails && Verbose) {
 408       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 409         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 410         cms_free, expected_promotion);
 411       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 412         cms_free_dbl, cms_consumption_rate() + 1.0);
 413     }
 414     // Add 1 in case the consumption rate goes to zero.
 415     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 416   }
 417   return 0.0;
 418 }
 419 
 420 // Compare the duration of the cms collection to the
 421 // time remaining before the cms generation is empty.
 422 // Note that the time from the start of the cms collection
 423 // to the start of the cms sweep (less than the total
 424 // duration of the cms collection) can be used.  This
 425 // has been tried and some applications experienced
 426 // promotion failures early in execution.  This was
 427 // possibly because the averages were not accurate
 428 // enough at the beginning.
 429 double CMSStats::time_until_cms_start() const {
 430   // We add "gc0_period" to the "work" calculation
 431   // below because this query is done (mostly) at the
 432   // end of a scavenge, so we need to conservatively
 433   // account for that much possible delay
 434   // in the query so as to avoid concurrent mode failures
 435   // due to starting the collection just a wee bit too
 436   // late.
 437   double work = cms_duration() + gc0_period();
 438   double deadline = time_until_cms_gen_full();
 439   // If a concurrent mode failure occurred recently, we want to be
 440   // more conservative and halve our expected time_until_cms_gen_full()
 441   if (work > deadline) {
 442     if (Verbose && PrintGCDetails) {
 443       gclog_or_tty->print(
 444         " CMSCollector: collect because of anticipated promotion "
 445         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 446         gc0_period(), time_until_cms_gen_full());
 447     }
 448     return 0.0;
 449   }
 450   return work - deadline;
 451 }
 452 
 453 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 454 // amount of change to prevent wild oscillation.
 455 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 456                                               unsigned int new_duty_cycle) {
 457   assert(old_duty_cycle <= 100, "bad input value");
 458   assert(new_duty_cycle <= 100, "bad input value");
 459 
 460   // Note:  use subtraction with caution since it may underflow (values are
 461   // unsigned).  Addition is safe since we're in the range 0-100.
 462   unsigned int damped_duty_cycle = new_duty_cycle;
 463   if (new_duty_cycle < old_duty_cycle) {
 464     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 465     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 466       damped_duty_cycle = old_duty_cycle - largest_delta;
 467     }
 468   } else if (new_duty_cycle > old_duty_cycle) {
 469     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 470     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 471       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 472     }
 473   }
 474   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 475 
 476   if (CMSTraceIncrementalPacing) {
 477     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 478                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 479   }
 480   return damped_duty_cycle;
 481 }
 482 
 483 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 484   assert(CMSIncrementalPacing && valid(),
 485          "should be handled in icms_update_duty_cycle()");
 486 
 487   double cms_time_so_far = cms_timer().seconds();
 488   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 489   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 490 
 491   // Avoid division by 0.
 492   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 493   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 494 
 495   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 496   if (new_duty_cycle > _icms_duty_cycle) {
 497     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 498     if (new_duty_cycle > 2) {
 499       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 500                                                 new_duty_cycle);
 501     }
 502   } else if (_allow_duty_cycle_reduction) {
 503     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 504     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 505     // Respect the minimum duty cycle.
 506     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 507     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 508   }
 509 
 510   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 511     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 512   }
 513 
 514   _allow_duty_cycle_reduction = false;
 515   return _icms_duty_cycle;
 516 }
 517 
 518 #ifndef PRODUCT
 519 void CMSStats::print_on(outputStream *st) const {
 520   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 521   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 522                gc0_duration(), gc0_period(), gc0_promoted());
 523   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 524             cms_duration(), cms_duration_per_mb(),
 525             cms_period(), cms_allocated());
 526   st->print(",cms_since_beg=%g,cms_since_end=%g",
 527             cms_time_since_begin(), cms_time_since_end());
 528   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 529             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 530   if (CMSIncrementalMode) {
 531     st->print(",dc=%d", icms_duty_cycle());
 532   }
 533 
 534   if (valid()) {
 535     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 536               promotion_rate(), cms_allocation_rate());
 537     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 538               cms_consumption_rate(), time_until_cms_gen_full());
 539   }
 540   st->print(" ");
 541 }
 542 #endif // #ifndef PRODUCT
 543 
 544 CMSCollector::CollectorState CMSCollector::_collectorState =
 545                              CMSCollector::Idling;
 546 bool CMSCollector::_foregroundGCIsActive = false;
 547 bool CMSCollector::_foregroundGCShouldWait = false;
 548 
 549 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 550                            CardTableRS*                   ct,
 551                            ConcurrentMarkSweepPolicy*     cp):
 552   _cmsGen(cmsGen),
 553   _ct(ct),
 554   _ref_processor(NULL),    // will be set later
 555   _conc_workers(NULL),     // may be set later
 556   _abort_preclean(false),
 557   _start_sampling(false),
 558   _between_prologue_and_epilogue(false),
 559   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 560   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 561                  -1 /* lock-free */, "No_lock" /* dummy */),
 562   _modUnionClosure(&_modUnionTable),
 563   _modUnionClosurePar(&_modUnionTable),
 564   // Adjust my span to cover old (cms) gen
 565   _span(cmsGen->reserved()),
 566   // Construct the is_alive_closure with _span & markBitMap
 567   _is_alive_closure(_span, &_markBitMap),
 568   _restart_addr(NULL),
 569   _overflow_list(NULL),
 570   _stats(cmsGen),
 571   _eden_chunk_array(NULL),     // may be set in ctor body
 572   _eden_chunk_capacity(0),     // -- ditto --
 573   _eden_chunk_index(0),        // -- ditto --
 574   _survivor_plab_array(NULL),  // -- ditto --
 575   _survivor_chunk_array(NULL), // -- ditto --
 576   _survivor_chunk_capacity(0), // -- ditto --
 577   _survivor_chunk_index(0),    // -- ditto --
 578   _ser_pmc_preclean_ovflw(0),
 579   _ser_kac_preclean_ovflw(0),
 580   _ser_pmc_remark_ovflw(0),
 581   _par_pmc_remark_ovflw(0),
 582   _ser_kac_ovflw(0),
 583   _par_kac_ovflw(0),
 584 #ifndef PRODUCT
 585   _num_par_pushes(0),
 586 #endif
 587   _collection_count_start(0),
 588   _verifying(false),
 589   _icms_start_limit(NULL),
 590   _icms_stop_limit(NULL),
 591   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 592   _completed_initialization(false),
 593   _collector_policy(cp),
 594   _should_unload_classes(false),
 595   _concurrent_cycles_since_last_unload(0),
 596   _roots_scanning_options(0),
 597   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 598   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
 599 {
 600   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 601     ExplicitGCInvokesConcurrent = true;
 602   }
 603   // Now expand the span and allocate the collection support structures
 604   // (MUT, marking bit map etc.) to cover both generations subject to
 605   // collection.
 606 
 607   // For use by dirty card to oop closures.
 608   _cmsGen->cmsSpace()->set_collector(this);
 609 
 610   // Allocate MUT and marking bit map
 611   {
 612     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 613     if (!_markBitMap.allocate(_span)) {
 614       warning("Failed to allocate CMS Bit Map");
 615       return;
 616     }
 617     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 618   }
 619   {
 620     _modUnionTable.allocate(_span);
 621     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 622   }
 623 
 624   if (!_markStack.allocate(MarkStackSize)) {
 625     warning("Failed to allocate CMS Marking Stack");
 626     return;
 627   }
 628 
 629   // Support for multi-threaded concurrent phases
 630   if (CMSConcurrentMTEnabled) {
 631     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 632       // just for now
 633       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 634     }
 635     if (ConcGCThreads > 1) {
 636       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 637                                  ConcGCThreads, true);
 638       if (_conc_workers == NULL) {
 639         warning("GC/CMS: _conc_workers allocation failure: "
 640               "forcing -CMSConcurrentMTEnabled");
 641         CMSConcurrentMTEnabled = false;
 642       } else {
 643         _conc_workers->initialize_workers();
 644       }
 645     } else {
 646       CMSConcurrentMTEnabled = false;
 647     }
 648   }
 649   if (!CMSConcurrentMTEnabled) {
 650     ConcGCThreads = 0;
 651   } else {
 652     // Turn off CMSCleanOnEnter optimization temporarily for
 653     // the MT case where it's not fixed yet; see 6178663.
 654     CMSCleanOnEnter = false;
 655   }
 656   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 657          "Inconsistency");
 658 
 659   // Parallel task queues; these are shared for the
 660   // concurrent and stop-world phases of CMS, but
 661   // are not shared with parallel scavenge (ParNew).
 662   {
 663     uint i;
 664     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 665 
 666     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 667          || ParallelRefProcEnabled)
 668         && num_queues > 0) {
 669       _task_queues = new OopTaskQueueSet(num_queues);
 670       if (_task_queues == NULL) {
 671         warning("task_queues allocation failure.");
 672         return;
 673       }
 674       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 675       if (_hash_seed == NULL) {
 676         warning("_hash_seed array allocation failure");
 677         return;
 678       }
 679 
 680       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 681       for (i = 0; i < num_queues; i++) {
 682         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 683         if (q == NULL) {
 684           warning("work_queue allocation failure.");
 685           return;
 686         }
 687         _task_queues->register_queue(i, q);
 688       }
 689       for (i = 0; i < num_queues; i++) {
 690         _task_queues->queue(i)->initialize();
 691         _hash_seed[i] = 17;  // copied from ParNew
 692       }
 693     }
 694   }
 695 
 696   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 697 
 698   // Clip CMSBootstrapOccupancy between 0 and 100.
 699   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
 700                          /(double)100;
 701 
 702   _full_gcs_since_conc_gc = 0;
 703 
 704   // Now tell CMS generations the identity of their collector
 705   ConcurrentMarkSweepGeneration::set_collector(this);
 706 
 707   // Create & start a CMS thread for this CMS collector
 708   _cmsThread = ConcurrentMarkSweepThread::start(this);
 709   assert(cmsThread() != NULL, "CMS Thread should have been created");
 710   assert(cmsThread()->collector() == this,
 711          "CMS Thread should refer to this gen");
 712   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 713 
 714   // Support for parallelizing young gen rescan
 715   GenCollectedHeap* gch = GenCollectedHeap::heap();
 716   _young_gen = gch->prev_gen(_cmsGen);
 717   if (gch->supports_inline_contig_alloc()) {
 718     _top_addr = gch->top_addr();
 719     _end_addr = gch->end_addr();
 720     assert(_young_gen != NULL, "no _young_gen");
 721     _eden_chunk_index = 0;
 722     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 723     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 724     if (_eden_chunk_array == NULL) {
 725       _eden_chunk_capacity = 0;
 726       warning("GC/CMS: _eden_chunk_array allocation failure");
 727     }
 728   }
 729   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 730 
 731   // Support for parallelizing survivor space rescan
 732   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 733     const size_t max_plab_samples =
 734       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 735 
 736     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 737     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 738     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 739     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 740         || _cursor == NULL) {
 741       warning("Failed to allocate survivor plab/chunk array");
 742       if (_survivor_plab_array  != NULL) {
 743         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 744         _survivor_plab_array = NULL;
 745       }
 746       if (_survivor_chunk_array != NULL) {
 747         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 748         _survivor_chunk_array = NULL;
 749       }
 750       if (_cursor != NULL) {
 751         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 752         _cursor = NULL;
 753       }
 754     } else {
 755       _survivor_chunk_capacity = 2*max_plab_samples;
 756       for (uint i = 0; i < ParallelGCThreads; i++) {
 757         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 758         if (vec == NULL) {
 759           warning("Failed to allocate survivor plab array");
 760           for (int j = i; j > 0; j--) {
 761             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 762           }
 763           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 764           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 765           _survivor_plab_array = NULL;
 766           _survivor_chunk_array = NULL;
 767           _survivor_chunk_capacity = 0;
 768           break;
 769         } else {
 770           ChunkArray* cur =
 771             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 772                                                         max_plab_samples);
 773           assert(cur->end() == 0, "Should be 0");
 774           assert(cur->array() == vec, "Should be vec");
 775           assert(cur->capacity() == max_plab_samples, "Error");
 776         }
 777       }
 778     }
 779   }
 780   assert(   (   _survivor_plab_array  != NULL
 781              && _survivor_chunk_array != NULL)
 782          || (   _survivor_chunk_capacity == 0
 783              && _survivor_chunk_index == 0),
 784          "Error");
 785 
 786   // Choose what strong roots should be scanned depending on verification options
 787   if (!CMSClassUnloadingEnabled) {
 788     // If class unloading is disabled we want to include all classes into the root set.
 789     add_root_scanning_option(SharedHeap::SO_AllClasses);
 790   } else {
 791     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 792   }
 793 
 794   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 795   _gc_counters = new CollectorCounters("CMS", 1);
 796   _completed_initialization = true;
 797   _inter_sweep_timer.start();  // start of time
 798 }
 799 
 800 const char* ConcurrentMarkSweepGeneration::name() const {
 801   return "concurrent mark-sweep generation";
 802 }
 803 void ConcurrentMarkSweepGeneration::update_counters() {
 804   if (UsePerfData) {
 805     _space_counters->update_all();
 806     _gen_counters->update_all();
 807   }
 808 }
 809 
 810 // this is an optimized version of update_counters(). it takes the
 811 // used value as a parameter rather than computing it.
 812 //
 813 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 814   if (UsePerfData) {
 815     _space_counters->update_used(used);
 816     _space_counters->update_capacity();
 817     _gen_counters->update_all();
 818   }
 819 }
 820 
 821 void ConcurrentMarkSweepGeneration::print() const {
 822   Generation::print();
 823   cmsSpace()->print();
 824 }
 825 
 826 #ifndef PRODUCT
 827 void ConcurrentMarkSweepGeneration::print_statistics() {
 828   cmsSpace()->printFLCensus(0);
 829 }
 830 #endif
 831 
 832 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 833   GenCollectedHeap* gch = GenCollectedHeap::heap();
 834   if (PrintGCDetails) {
 835     if (Verbose) {
 836       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 837         level(), short_name(), s, used(), capacity());
 838     } else {
 839       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 840         level(), short_name(), s, used() / K, capacity() / K);
 841     }
 842   }
 843   if (Verbose) {
 844     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 845               gch->used(), gch->capacity());
 846   } else {
 847     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 848               gch->used() / K, gch->capacity() / K);
 849   }
 850 }
 851 
 852 size_t
 853 ConcurrentMarkSweepGeneration::contiguous_available() const {
 854   // dld proposes an improvement in precision here. If the committed
 855   // part of the space ends in a free block we should add that to
 856   // uncommitted size in the calculation below. Will make this
 857   // change later, staying with the approximation below for the
 858   // time being. -- ysr.
 859   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 860 }
 861 
 862 size_t
 863 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 864   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 865 }
 866 
 867 size_t ConcurrentMarkSweepGeneration::max_available() const {
 868   return free() + _virtual_space.uncommitted_size();
 869 }
 870 
 871 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 872   size_t available = max_available();
 873   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 874   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 875   if (Verbose && PrintGCDetails) {
 876     gclog_or_tty->print_cr(
 877       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 878       "max_promo("SIZE_FORMAT")",
 879       res? "":" not", available, res? ">=":"<",
 880       av_promo, max_promotion_in_bytes);
 881   }
 882   return res;
 883 }
 884 
 885 // At a promotion failure dump information on block layout in heap
 886 // (cms old generation).
 887 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 888   if (CMSDumpAtPromotionFailure) {
 889     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 890   }
 891 }
 892 
 893 CompactibleSpace*
 894 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 895   return _cmsSpace;
 896 }
 897 
 898 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 899   // Clear the promotion information.  These pointers can be adjusted
 900   // along with all the other pointers into the heap but
 901   // compaction is expected to be a rare event with
 902   // a heap using cms so don't do it without seeing the need.
 903   if (CollectedHeap::use_parallel_gc_threads()) {
 904     for (uint i = 0; i < ParallelGCThreads; i++) {
 905       _par_gc_thread_states[i]->promo.reset();
 906     }
 907   }
 908 }
 909 
 910 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 911   blk->do_space(_cmsSpace);
 912 }
 913 
 914 void ConcurrentMarkSweepGeneration::compute_new_size() {
 915   assert_locked_or_safepoint(Heap_lock);
 916 
 917   // If incremental collection failed, we just want to expand
 918   // to the limit.
 919   if (incremental_collection_failed()) {
 920     clear_incremental_collection_failed();
 921     grow_to_reserved();
 922     return;
 923   }
 924 
 925   size_t expand_bytes = 0;
 926   double free_percentage = ((double) free()) / capacity();
 927   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 928   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 929 
 930   // compute expansion delta needed for reaching desired free percentage
 931   if (free_percentage < desired_free_percentage) {
 932     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 933     assert(desired_capacity >= capacity(), "invalid expansion size");
 934     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 935   }
 936   if (expand_bytes > 0) {
 937     if (PrintGCDetails && Verbose) {
 938       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 939       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 940       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 941       gclog_or_tty->print_cr("  Desired free fraction %f",
 942         desired_free_percentage);
 943       gclog_or_tty->print_cr("  Maximum free fraction %f",
 944         maximum_free_percentage);
 945       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 946       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 947         desired_capacity/1000);
 948       int prev_level = level() - 1;
 949       if (prev_level >= 0) {
 950         size_t prev_size = 0;
 951         GenCollectedHeap* gch = GenCollectedHeap::heap();
 952         Generation* prev_gen = gch->_gens[prev_level];
 953         prev_size = prev_gen->capacity();
 954           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 955                                  prev_size/1000);
 956       }
 957       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 958         unsafe_max_alloc_nogc()/1000);
 959       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 960         contiguous_available()/1000);
 961       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 962         expand_bytes);
 963     }
 964     // safe if expansion fails
 965     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 966     if (PrintGCDetails && Verbose) {
 967       gclog_or_tty->print_cr("  Expanded free fraction %f",
 968         ((double) free()) / capacity());
 969     }
 970   }
 971 }
 972 
 973 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 974   return cmsSpace()->freelistLock();
 975 }
 976 
 977 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 978                                                   bool   tlab) {
 979   CMSSynchronousYieldRequest yr;
 980   MutexLockerEx x(freelistLock(),
 981                   Mutex::_no_safepoint_check_flag);
 982   return have_lock_and_allocate(size, tlab);
 983 }
 984 
 985 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 986                                                   bool   tlab /* ignored */) {
 987   assert_lock_strong(freelistLock());
 988   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 989   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 990   // Allocate the object live (grey) if the background collector has
 991   // started marking. This is necessary because the marker may
 992   // have passed this address and consequently this object will
 993   // not otherwise be greyed and would be incorrectly swept up.
 994   // Note that if this object contains references, the writing
 995   // of those references will dirty the card containing this object
 996   // allowing the object to be blackened (and its references scanned)
 997   // either during a preclean phase or at the final checkpoint.
 998   if (res != NULL) {
 999     // We may block here with an uninitialized object with
1000     // its mark-bit or P-bits not yet set. Such objects need
1001     // to be safely navigable by block_start().
1002     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1003     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1004     collector()->direct_allocated(res, adjustedSize);
1005     _direct_allocated_words += adjustedSize;
1006     // allocation counters
1007     NOT_PRODUCT(
1008       _numObjectsAllocated++;
1009       _numWordsAllocated += (int)adjustedSize;
1010     )
1011   }
1012   return res;
1013 }
1014 
1015 // In the case of direct allocation by mutators in a generation that
1016 // is being concurrently collected, the object must be allocated
1017 // live (grey) if the background collector has started marking.
1018 // This is necessary because the marker may
1019 // have passed this address and consequently this object will
1020 // not otherwise be greyed and would be incorrectly swept up.
1021 // Note that if this object contains references, the writing
1022 // of those references will dirty the card containing this object
1023 // allowing the object to be blackened (and its references scanned)
1024 // either during a preclean phase or at the final checkpoint.
1025 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1026   assert(_markBitMap.covers(start, size), "Out of bounds");
1027   if (_collectorState >= Marking) {
1028     MutexLockerEx y(_markBitMap.lock(),
1029                     Mutex::_no_safepoint_check_flag);
1030     // [see comments preceding SweepClosure::do_blk() below for details]
1031     //
1032     // Can the P-bits be deleted now?  JJJ
1033     //
1034     // 1. need to mark the object as live so it isn't collected
1035     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1036     // 3. need to mark the end of the object so marking, precleaning or sweeping
1037     //    can skip over uninitialized or unparsable objects. An allocated
1038     //    object is considered uninitialized for our purposes as long as
1039     //    its klass word is NULL.  All old gen objects are parsable
1040     //    as soon as they are initialized.)
1041     _markBitMap.mark(start);          // object is live
1042     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1043     _markBitMap.mark(start + size - 1);
1044                                       // mark end of object
1045   }
1046   // check that oop looks uninitialized
1047   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1048 }
1049 
1050 void CMSCollector::promoted(bool par, HeapWord* start,
1051                             bool is_obj_array, size_t obj_size) {
1052   assert(_markBitMap.covers(start), "Out of bounds");
1053   // See comment in direct_allocated() about when objects should
1054   // be allocated live.
1055   if (_collectorState >= Marking) {
1056     // we already hold the marking bit map lock, taken in
1057     // the prologue
1058     if (par) {
1059       _markBitMap.par_mark(start);
1060     } else {
1061       _markBitMap.mark(start);
1062     }
1063     // We don't need to mark the object as uninitialized (as
1064     // in direct_allocated above) because this is being done with the
1065     // world stopped and the object will be initialized by the
1066     // time the marking, precleaning or sweeping get to look at it.
1067     // But see the code for copying objects into the CMS generation,
1068     // where we need to ensure that concurrent readers of the
1069     // block offset table are able to safely navigate a block that
1070     // is in flux from being free to being allocated (and in
1071     // transition while being copied into) and subsequently
1072     // becoming a bona-fide object when the copy/promotion is complete.
1073     assert(SafepointSynchronize::is_at_safepoint(),
1074            "expect promotion only at safepoints");
1075 
1076     if (_collectorState < Sweeping) {
1077       // Mark the appropriate cards in the modUnionTable, so that
1078       // this object gets scanned before the sweep. If this is
1079       // not done, CMS generation references in the object might
1080       // not get marked.
1081       // For the case of arrays, which are otherwise precisely
1082       // marked, we need to dirty the entire array, not just its head.
1083       if (is_obj_array) {
1084         // The [par_]mark_range() method expects mr.end() below to
1085         // be aligned to the granularity of a bit's representation
1086         // in the heap. In the case of the MUT below, that's a
1087         // card size.
1088         MemRegion mr(start,
1089                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1090                         CardTableModRefBS::card_size /* bytes */));
1091         if (par) {
1092           _modUnionTable.par_mark_range(mr);
1093         } else {
1094           _modUnionTable.mark_range(mr);
1095         }
1096       } else {  // not an obj array; we can just mark the head
1097         if (par) {
1098           _modUnionTable.par_mark(start);
1099         } else {
1100           _modUnionTable.mark(start);
1101         }
1102       }
1103     }
1104   }
1105 }
1106 
1107 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1108 {
1109   size_t delta = pointer_delta(addr, space->bottom());
1110   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1111 }
1112 
1113 void CMSCollector::icms_update_allocation_limits()
1114 {
1115   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1116   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1117 
1118   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1119   if (CMSTraceIncrementalPacing) {
1120     stats().print();
1121   }
1122 
1123   assert(duty_cycle <= 100, "invalid duty cycle");
1124   if (duty_cycle != 0) {
1125     // The duty_cycle is a percentage between 0 and 100; convert to words and
1126     // then compute the offset from the endpoints of the space.
1127     size_t free_words = eden->free() / HeapWordSize;
1128     double free_words_dbl = (double)free_words;
1129     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1130     size_t offset_words = (free_words - duty_cycle_words) / 2;
1131 
1132     _icms_start_limit = eden->top() + offset_words;
1133     _icms_stop_limit = eden->end() - offset_words;
1134 
1135     // The limits may be adjusted (shifted to the right) by
1136     // CMSIncrementalOffset, to allow the application more mutator time after a
1137     // young gen gc (when all mutators were stopped) and before CMS starts and
1138     // takes away one or more cpus.
1139     if (CMSIncrementalOffset != 0) {
1140       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1141       size_t adjustment = (size_t)adjustment_dbl;
1142       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1143       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1144         _icms_start_limit += adjustment;
1145         _icms_stop_limit = tmp_stop;
1146       }
1147     }
1148   }
1149   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1150     _icms_start_limit = _icms_stop_limit = eden->end();
1151   }
1152 
1153   // Install the new start limit.
1154   eden->set_soft_end(_icms_start_limit);
1155 
1156   if (CMSTraceIncrementalMode) {
1157     gclog_or_tty->print(" icms alloc limits:  "
1158                            PTR_FORMAT "," PTR_FORMAT
1159                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1160                            _icms_start_limit, _icms_stop_limit,
1161                            percent_of_space(eden, _icms_start_limit),
1162                            percent_of_space(eden, _icms_stop_limit));
1163     if (Verbose) {
1164       gclog_or_tty->print("eden:  ");
1165       eden->print_on(gclog_or_tty);
1166     }
1167   }
1168 }
1169 
1170 // Any changes here should try to maintain the invariant
1171 // that if this method is called with _icms_start_limit
1172 // and _icms_stop_limit both NULL, then it should return NULL
1173 // and not notify the icms thread.
1174 HeapWord*
1175 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1176                                        size_t word_size)
1177 {
1178   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1179   // nop.
1180   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1181     if (top <= _icms_start_limit) {
1182       if (CMSTraceIncrementalMode) {
1183         space->print_on(gclog_or_tty);
1184         gclog_or_tty->stamp();
1185         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1186                                ", new limit=" PTR_FORMAT
1187                                " (" SIZE_FORMAT "%%)",
1188                                top, _icms_stop_limit,
1189                                percent_of_space(space, _icms_stop_limit));
1190       }
1191       ConcurrentMarkSweepThread::start_icms();
1192       assert(top < _icms_stop_limit, "Tautology");
1193       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1194         return _icms_stop_limit;
1195       }
1196 
1197       // The allocation will cross both the _start and _stop limits, so do the
1198       // stop notification also and return end().
1199       if (CMSTraceIncrementalMode) {
1200         space->print_on(gclog_or_tty);
1201         gclog_or_tty->stamp();
1202         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1203                                ", new limit=" PTR_FORMAT
1204                                " (" SIZE_FORMAT "%%)",
1205                                top, space->end(),
1206                                percent_of_space(space, space->end()));
1207       }
1208       ConcurrentMarkSweepThread::stop_icms();
1209       return space->end();
1210     }
1211 
1212     if (top <= _icms_stop_limit) {
1213       if (CMSTraceIncrementalMode) {
1214         space->print_on(gclog_or_tty);
1215         gclog_or_tty->stamp();
1216         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1217                                ", new limit=" PTR_FORMAT
1218                                " (" SIZE_FORMAT "%%)",
1219                                top, space->end(),
1220                                percent_of_space(space, space->end()));
1221       }
1222       ConcurrentMarkSweepThread::stop_icms();
1223       return space->end();
1224     }
1225 
1226     if (CMSTraceIncrementalMode) {
1227       space->print_on(gclog_or_tty);
1228       gclog_or_tty->stamp();
1229       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1230                              ", new limit=" PTR_FORMAT,
1231                              top, NULL);
1232     }
1233   }
1234 
1235   return NULL;
1236 }
1237 
1238 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1239   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1240   // allocate, copy and if necessary update promoinfo --
1241   // delegate to underlying space.
1242   assert_lock_strong(freelistLock());
1243 
1244 #ifndef PRODUCT
1245   if (Universe::heap()->promotion_should_fail()) {
1246     return NULL;
1247   }
1248 #endif  // #ifndef PRODUCT
1249 
1250   oop res = _cmsSpace->promote(obj, obj_size);
1251   if (res == NULL) {
1252     // expand and retry
1253     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1254     expand(s*HeapWordSize, MinHeapDeltaBytes,
1255       CMSExpansionCause::_satisfy_promotion);
1256     // Since there's currently no next generation, we don't try to promote
1257     // into a more senior generation.
1258     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1259                                "is made to pass on a possibly failing "
1260                                "promotion to next generation");
1261     res = _cmsSpace->promote(obj, obj_size);
1262   }
1263   if (res != NULL) {
1264     // See comment in allocate() about when objects should
1265     // be allocated live.
1266     assert(obj->is_oop(), "Will dereference klass pointer below");
1267     collector()->promoted(false,           // Not parallel
1268                           (HeapWord*)res, obj->is_objArray(), obj_size);
1269     // promotion counters
1270     NOT_PRODUCT(
1271       _numObjectsPromoted++;
1272       _numWordsPromoted +=
1273         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1274     )
1275   }
1276   return res;
1277 }
1278 
1279 
1280 HeapWord*
1281 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1282                                              HeapWord* top,
1283                                              size_t word_sz)
1284 {
1285   return collector()->allocation_limit_reached(space, top, word_sz);
1286 }
1287 
1288 // IMPORTANT: Notes on object size recognition in CMS.
1289 // ---------------------------------------------------
1290 // A block of storage in the CMS generation is always in
1291 // one of three states. A free block (FREE), an allocated
1292 // object (OBJECT) whose size() method reports the correct size,
1293 // and an intermediate state (TRANSIENT) in which its size cannot
1294 // be accurately determined.
1295 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1296 // -----------------------------------------------------
1297 // FREE:      klass_word & 1 == 1; mark_word holds block size
1298 //
1299 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1300 //            obj->size() computes correct size
1301 //
1302 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1303 //
1304 // STATE IDENTIFICATION: (64 bit+COOPS)
1305 // ------------------------------------
1306 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1307 //
1308 // OBJECT:    klass_word installed; klass_word != 0;
1309 //            obj->size() computes correct size
1310 //
1311 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1312 //
1313 //
1314 // STATE TRANSITION DIAGRAM
1315 //
1316 //        mut / parnew                     mut  /  parnew
1317 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1318 //  ^                                                                   |
1319 //  |------------------------ DEAD <------------------------------------|
1320 //         sweep                            mut
1321 //
1322 // While a block is in TRANSIENT state its size cannot be determined
1323 // so readers will either need to come back later or stall until
1324 // the size can be determined. Note that for the case of direct
1325 // allocation, P-bits, when available, may be used to determine the
1326 // size of an object that may not yet have been initialized.
1327 
1328 // Things to support parallel young-gen collection.
1329 oop
1330 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1331                                            oop old, markOop m,
1332                                            size_t word_sz) {
1333 #ifndef PRODUCT
1334   if (Universe::heap()->promotion_should_fail()) {
1335     return NULL;
1336   }
1337 #endif  // #ifndef PRODUCT
1338 
1339   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1340   PromotionInfo* promoInfo = &ps->promo;
1341   // if we are tracking promotions, then first ensure space for
1342   // promotion (including spooling space for saving header if necessary).
1343   // then allocate and copy, then track promoted info if needed.
1344   // When tracking (see PromotionInfo::track()), the mark word may
1345   // be displaced and in this case restoration of the mark word
1346   // occurs in the (oop_since_save_marks_)iterate phase.
1347   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1348     // Out of space for allocating spooling buffers;
1349     // try expanding and allocating spooling buffers.
1350     if (!expand_and_ensure_spooling_space(promoInfo)) {
1351       return NULL;
1352     }
1353   }
1354   assert(promoInfo->has_spooling_space(), "Control point invariant");
1355   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1356   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1357   if (obj_ptr == NULL) {
1358      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1359      if (obj_ptr == NULL) {
1360        return NULL;
1361      }
1362   }
1363   oop obj = oop(obj_ptr);
1364   OrderAccess::storestore();
1365   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1366   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1367   // IMPORTANT: See note on object initialization for CMS above.
1368   // Otherwise, copy the object.  Here we must be careful to insert the
1369   // klass pointer last, since this marks the block as an allocated object.
1370   // Except with compressed oops it's the mark word.
1371   HeapWord* old_ptr = (HeapWord*)old;
1372   // Restore the mark word copied above.
1373   obj->set_mark(m);
1374   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1375   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1376   OrderAccess::storestore();
1377 
1378   if (UseCompressedKlassPointers) {
1379     // Copy gap missed by (aligned) header size calculation below
1380     obj->set_klass_gap(old->klass_gap());
1381   }
1382   if (word_sz > (size_t)oopDesc::header_size()) {
1383     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1384                                  obj_ptr + oopDesc::header_size(),
1385                                  word_sz - oopDesc::header_size());
1386   }
1387 
1388   // Now we can track the promoted object, if necessary.  We take care
1389   // to delay the transition from uninitialized to full object
1390   // (i.e., insertion of klass pointer) until after, so that it
1391   // atomically becomes a promoted object.
1392   if (promoInfo->tracking()) {
1393     promoInfo->track((PromotedObject*)obj, old->klass());
1394   }
1395   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1396   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1397   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1398 
1399   // Finally, install the klass pointer (this should be volatile).
1400   OrderAccess::storestore();
1401   obj->set_klass(old->klass());
1402   // We should now be able to calculate the right size for this object
1403   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1404 
1405   collector()->promoted(true,          // parallel
1406                         obj_ptr, old->is_objArray(), word_sz);
1407 
1408   NOT_PRODUCT(
1409     Atomic::inc_ptr(&_numObjectsPromoted);
1410     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1411   )
1412 
1413   return obj;
1414 }
1415 
1416 void
1417 ConcurrentMarkSweepGeneration::
1418 par_promote_alloc_undo(int thread_num,
1419                        HeapWord* obj, size_t word_sz) {
1420   // CMS does not support promotion undo.
1421   ShouldNotReachHere();
1422 }
1423 
1424 void
1425 ConcurrentMarkSweepGeneration::
1426 par_promote_alloc_done(int thread_num) {
1427   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1428   ps->lab.retire(thread_num);
1429 }
1430 
1431 void
1432 ConcurrentMarkSweepGeneration::
1433 par_oop_since_save_marks_iterate_done(int thread_num) {
1434   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1435   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1436   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1437 }
1438 
1439 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1440                                                    size_t size,
1441                                                    bool   tlab)
1442 {
1443   // We allow a STW collection only if a full
1444   // collection was requested.
1445   return full || should_allocate(size, tlab); // FIX ME !!!
1446   // This and promotion failure handling are connected at the
1447   // hip and should be fixed by untying them.
1448 }
1449 
1450 bool CMSCollector::shouldConcurrentCollect() {
1451   if (_full_gc_requested) {
1452     if (Verbose && PrintGCDetails) {
1453       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1454                              " gc request (or gc_locker)");
1455     }
1456     return true;
1457   }
1458 
1459   // For debugging purposes, change the type of collection.
1460   // If the rotation is not on the concurrent collection
1461   // type, don't start a concurrent collection.
1462   NOT_PRODUCT(
1463     if (RotateCMSCollectionTypes &&
1464         (_cmsGen->debug_collection_type() !=
1465           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1466       assert(_cmsGen->debug_collection_type() !=
1467         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1468         "Bad cms collection type");
1469       return false;
1470     }
1471   )
1472 
1473   FreelistLocker x(this);
1474   // ------------------------------------------------------------------
1475   // Print out lots of information which affects the initiation of
1476   // a collection.
1477   if (PrintCMSInitiationStatistics && stats().valid()) {
1478     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1479     gclog_or_tty->stamp();
1480     gclog_or_tty->print_cr("");
1481     stats().print_on(gclog_or_tty);
1482     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1483       stats().time_until_cms_gen_full());
1484     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1485     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1486                            _cmsGen->contiguous_available());
1487     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1488     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1489     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1490     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1491     gclog_or_tty->print_cr("metadata initialized %d",
1492       MetaspaceGC::should_concurrent_collect());
1493   }
1494   // ------------------------------------------------------------------
1495 
1496   // If the estimated time to complete a cms collection (cms_duration())
1497   // is less than the estimated time remaining until the cms generation
1498   // is full, start a collection.
1499   if (!UseCMSInitiatingOccupancyOnly) {
1500     if (stats().valid()) {
1501       if (stats().time_until_cms_start() == 0.0) {
1502         return true;
1503       }
1504     } else {
1505       // We want to conservatively collect somewhat early in order
1506       // to try and "bootstrap" our CMS/promotion statistics;
1507       // this branch will not fire after the first successful CMS
1508       // collection because the stats should then be valid.
1509       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1510         if (Verbose && PrintGCDetails) {
1511           gclog_or_tty->print_cr(
1512             " CMSCollector: collect for bootstrapping statistics:"
1513             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1514             _bootstrap_occupancy);
1515         }
1516         return true;
1517       }
1518     }
1519   }
1520 
1521   // Otherwise, we start a collection cycle if
1522   // old gen want a collection cycle started. Each may use
1523   // an appropriate criterion for making this decision.
1524   // XXX We need to make sure that the gen expansion
1525   // criterion dovetails well with this. XXX NEED TO FIX THIS
1526   if (_cmsGen->should_concurrent_collect()) {
1527     if (Verbose && PrintGCDetails) {
1528       gclog_or_tty->print_cr("CMS old gen initiated");
1529     }
1530     return true;
1531   }
1532 
1533   // We start a collection if we believe an incremental collection may fail;
1534   // this is not likely to be productive in practice because it's probably too
1535   // late anyway.
1536   GenCollectedHeap* gch = GenCollectedHeap::heap();
1537   assert(gch->collector_policy()->is_two_generation_policy(),
1538          "You may want to check the correctness of the following");
1539   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1540     if (Verbose && PrintGCDetails) {
1541       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1542     }
1543     return true;
1544   }
1545 
1546   if (MetaspaceGC::should_concurrent_collect()) {
1547       if (Verbose && PrintGCDetails) {
1548       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1549       }
1550       return true;
1551     }
1552 
1553   return false;
1554 }
1555 
1556 // Clear _expansion_cause fields of constituent generations
1557 void CMSCollector::clear_expansion_cause() {
1558   _cmsGen->clear_expansion_cause();
1559 }
1560 
1561 // We should be conservative in starting a collection cycle.  To
1562 // start too eagerly runs the risk of collecting too often in the
1563 // extreme.  To collect too rarely falls back on full collections,
1564 // which works, even if not optimum in terms of concurrent work.
1565 // As a work around for too eagerly collecting, use the flag
1566 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1567 // giving the user an easily understandable way of controlling the
1568 // collections.
1569 // We want to start a new collection cycle if any of the following
1570 // conditions hold:
1571 // . our current occupancy exceeds the configured initiating occupancy
1572 //   for this generation, or
1573 // . we recently needed to expand this space and have not, since that
1574 //   expansion, done a collection of this generation, or
1575 // . the underlying space believes that it may be a good idea to initiate
1576 //   a concurrent collection (this may be based on criteria such as the
1577 //   following: the space uses linear allocation and linear allocation is
1578 //   going to fail, or there is believed to be excessive fragmentation in
1579 //   the generation, etc... or ...
1580 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1581 //   the case of the old generation; see CR 6543076):
1582 //   we may be approaching a point at which allocation requests may fail because
1583 //   we will be out of sufficient free space given allocation rate estimates.]
1584 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1585 
1586   assert_lock_strong(freelistLock());
1587   if (occupancy() > initiating_occupancy()) {
1588     if (PrintGCDetails && Verbose) {
1589       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1590         short_name(), occupancy(), initiating_occupancy());
1591     }
1592     return true;
1593   }
1594   if (UseCMSInitiatingOccupancyOnly) {
1595     return false;
1596   }
1597   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1598     if (PrintGCDetails && Verbose) {
1599       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1600         short_name());
1601     }
1602     return true;
1603   }
1604   if (_cmsSpace->should_concurrent_collect()) {
1605     if (PrintGCDetails && Verbose) {
1606       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1607         short_name());
1608     }
1609     return true;
1610   }
1611   return false;
1612 }
1613 
1614 void ConcurrentMarkSweepGeneration::collect(bool   full,
1615                                             bool   clear_all_soft_refs,
1616                                             size_t size,
1617                                             bool   tlab)
1618 {
1619   collector()->collect(full, clear_all_soft_refs, size, tlab);
1620 }
1621 
1622 void CMSCollector::collect(bool   full,
1623                            bool   clear_all_soft_refs,
1624                            size_t size,
1625                            bool   tlab)
1626 {
1627   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1628     // For debugging purposes skip the collection if the state
1629     // is not currently idle
1630     if (TraceCMSState) {
1631       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1632         Thread::current(), full, _collectorState);
1633     }
1634     return;
1635   }
1636 
1637   // The following "if" branch is present for defensive reasons.
1638   // In the current uses of this interface, it can be replaced with:
1639   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1640   // But I am not placing that assert here to allow future
1641   // generality in invoking this interface.
1642   if (GC_locker::is_active()) {
1643     // A consistency test for GC_locker
1644     assert(GC_locker::needs_gc(), "Should have been set already");
1645     // Skip this foreground collection, instead
1646     // expanding the heap if necessary.
1647     // Need the free list locks for the call to free() in compute_new_size()
1648     compute_new_size();
1649     return;
1650   }
1651   acquire_control_and_collect(full, clear_all_soft_refs);
1652   _full_gcs_since_conc_gc++;
1653 
1654 }
1655 
1656 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
1657   GenCollectedHeap* gch = GenCollectedHeap::heap();
1658   unsigned int gc_count = gch->total_full_collections();
1659   if (gc_count == full_gc_count) {
1660     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1661     _full_gc_requested = true;
1662     CGC_lock->notify();   // nudge CMS thread
1663   } else {
1664     assert(gc_count > full_gc_count, "Error: causal loop");
1665   }
1666 }
1667 
1668 
1669 // The foreground and background collectors need to coordinate in order
1670 // to make sure that they do not mutually interfere with CMS collections.
1671 // When a background collection is active,
1672 // the foreground collector may need to take over (preempt) and
1673 // synchronously complete an ongoing collection. Depending on the
1674 // frequency of the background collections and the heap usage
1675 // of the application, this preemption can be seldom or frequent.
1676 // There are only certain
1677 // points in the background collection that the "collection-baton"
1678 // can be passed to the foreground collector.
1679 //
1680 // The foreground collector will wait for the baton before
1681 // starting any part of the collection.  The foreground collector
1682 // will only wait at one location.
1683 //
1684 // The background collector will yield the baton before starting a new
1685 // phase of the collection (e.g., before initial marking, marking from roots,
1686 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1687 // of the loop which switches the phases. The background collector does some
1688 // of the phases (initial mark, final re-mark) with the world stopped.
1689 // Because of locking involved in stopping the world,
1690 // the foreground collector should not block waiting for the background
1691 // collector when it is doing a stop-the-world phase.  The background
1692 // collector will yield the baton at an additional point just before
1693 // it enters a stop-the-world phase.  Once the world is stopped, the
1694 // background collector checks the phase of the collection.  If the
1695 // phase has not changed, it proceeds with the collection.  If the
1696 // phase has changed, it skips that phase of the collection.  See
1697 // the comments on the use of the Heap_lock in collect_in_background().
1698 //
1699 // Variable used in baton passing.
1700 //   _foregroundGCIsActive - Set to true by the foreground collector when
1701 //      it wants the baton.  The foreground clears it when it has finished
1702 //      the collection.
1703 //   _foregroundGCShouldWait - Set to true by the background collector
1704 //        when it is running.  The foreground collector waits while
1705 //      _foregroundGCShouldWait is true.
1706 //  CGC_lock - monitor used to protect access to the above variables
1707 //      and to notify the foreground and background collectors.
1708 //  _collectorState - current state of the CMS collection.
1709 //
1710 // The foreground collector
1711 //   acquires the CGC_lock
1712 //   sets _foregroundGCIsActive
1713 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1714 //     various locks acquired in preparation for the collection
1715 //     are released so as not to block the background collector
1716 //     that is in the midst of a collection
1717 //   proceeds with the collection
1718 //   clears _foregroundGCIsActive
1719 //   returns
1720 //
1721 // The background collector in a loop iterating on the phases of the
1722 //      collection
1723 //   acquires the CGC_lock
1724 //   sets _foregroundGCShouldWait
1725 //   if _foregroundGCIsActive is set
1726 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1727 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1728 //     and exits the loop.
1729 //   otherwise
1730 //     proceed with that phase of the collection
1731 //     if the phase is a stop-the-world phase,
1732 //       yield the baton once more just before enqueueing
1733 //       the stop-world CMS operation (executed by the VM thread).
1734 //   returns after all phases of the collection are done
1735 //
1736 
1737 void CMSCollector::acquire_control_and_collect(bool full,
1738         bool clear_all_soft_refs) {
1739   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1740   assert(!Thread::current()->is_ConcurrentGC_thread(),
1741          "shouldn't try to acquire control from self!");
1742 
1743   // Start the protocol for acquiring control of the
1744   // collection from the background collector (aka CMS thread).
1745   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1746          "VM thread should have CMS token");
1747   // Remember the possibly interrupted state of an ongoing
1748   // concurrent collection
1749   CollectorState first_state = _collectorState;
1750 
1751   // Signal to a possibly ongoing concurrent collection that
1752   // we want to do a foreground collection.
1753   _foregroundGCIsActive = true;
1754 
1755   // Disable incremental mode during a foreground collection.
1756   ICMSDisabler icms_disabler;
1757 
1758   // release locks and wait for a notify from the background collector
1759   // releasing the locks in only necessary for phases which
1760   // do yields to improve the granularity of the collection.
1761   assert_lock_strong(bitMapLock());
1762   // We need to lock the Free list lock for the space that we are
1763   // currently collecting.
1764   assert(haveFreelistLocks(), "Must be holding free list locks");
1765   bitMapLock()->unlock();
1766   releaseFreelistLocks();
1767   {
1768     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1769     if (_foregroundGCShouldWait) {
1770       // We are going to be waiting for action for the CMS thread;
1771       // it had better not be gone (for instance at shutdown)!
1772       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1773              "CMS thread must be running");
1774       // Wait here until the background collector gives us the go-ahead
1775       ConcurrentMarkSweepThread::clear_CMS_flag(
1776         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1777       // Get a possibly blocked CMS thread going:
1778       //   Note that we set _foregroundGCIsActive true above,
1779       //   without protection of the CGC_lock.
1780       CGC_lock->notify();
1781       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1782              "Possible deadlock");
1783       while (_foregroundGCShouldWait) {
1784         // wait for notification
1785         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1786         // Possibility of delay/starvation here, since CMS token does
1787         // not know to give priority to VM thread? Actually, i think
1788         // there wouldn't be any delay/starvation, but the proof of
1789         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1790       }
1791       ConcurrentMarkSweepThread::set_CMS_flag(
1792         ConcurrentMarkSweepThread::CMS_vm_has_token);
1793     }
1794   }
1795   // The CMS_token is already held.  Get back the other locks.
1796   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1797          "VM thread should have CMS token");
1798   getFreelistLocks();
1799   bitMapLock()->lock_without_safepoint_check();
1800   if (TraceCMSState) {
1801     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1802       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1803     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1804   }
1805 
1806   // Check if we need to do a compaction, or if not, whether
1807   // we need to start the mark-sweep from scratch.
1808   bool should_compact    = false;
1809   bool should_start_over = false;
1810   decide_foreground_collection_type(clear_all_soft_refs,
1811     &should_compact, &should_start_over);
1812 
1813 NOT_PRODUCT(
1814   if (RotateCMSCollectionTypes) {
1815     if (_cmsGen->debug_collection_type() ==
1816         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1817       should_compact = true;
1818     } else if (_cmsGen->debug_collection_type() ==
1819                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1820       should_compact = false;
1821     }
1822   }
1823 )
1824 
1825   if (PrintGCDetails && first_state > Idling) {
1826     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1827     if (GCCause::is_user_requested_gc(cause) ||
1828         GCCause::is_serviceability_requested_gc(cause)) {
1829       gclog_or_tty->print(" (concurrent mode interrupted)");
1830     } else {
1831       gclog_or_tty->print(" (concurrent mode failure)");
1832     }
1833   }
1834 
1835   if (should_compact) {
1836     // If the collection is being acquired from the background
1837     // collector, there may be references on the discovered
1838     // references lists that have NULL referents (being those
1839     // that were concurrently cleared by a mutator) or
1840     // that are no longer active (having been enqueued concurrently
1841     // by the mutator).
1842     // Scrub the list of those references because Mark-Sweep-Compact
1843     // code assumes referents are not NULL and that all discovered
1844     // Reference objects are active.
1845     ref_processor()->clean_up_discovered_references();
1846 
1847     do_compaction_work(clear_all_soft_refs);
1848 
1849     // Has the GC time limit been exceeded?
1850     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1851     size_t max_eden_size = young_gen->max_capacity() -
1852                            young_gen->to()->capacity() -
1853                            young_gen->from()->capacity();
1854     GenCollectedHeap* gch = GenCollectedHeap::heap();
1855     GCCause::Cause gc_cause = gch->gc_cause();
1856     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1857                                            young_gen->eden()->used(),
1858                                            _cmsGen->max_capacity(),
1859                                            max_eden_size,
1860                                            full,
1861                                            gc_cause,
1862                                            gch->collector_policy());
1863   } else {
1864     do_mark_sweep_work(clear_all_soft_refs, first_state,
1865       should_start_over);
1866   }
1867   // Reset the expansion cause, now that we just completed
1868   // a collection cycle.
1869   clear_expansion_cause();
1870   _foregroundGCIsActive = false;
1871   return;
1872 }
1873 
1874 // Resize the tenured generation
1875 // after obtaining the free list locks for the
1876 // two generations.
1877 void CMSCollector::compute_new_size() {
1878   assert_locked_or_safepoint(Heap_lock);
1879   FreelistLocker z(this);
1880   MetaspaceGC::compute_new_size();
1881   _cmsGen->compute_new_size();
1882 }
1883 
1884 // A work method used by foreground collection to determine
1885 // what type of collection (compacting or not, continuing or fresh)
1886 // it should do.
1887 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1888 // and CMSCompactWhenClearAllSoftRefs the default in the future
1889 // and do away with the flags after a suitable period.
1890 void CMSCollector::decide_foreground_collection_type(
1891   bool clear_all_soft_refs, bool* should_compact,
1892   bool* should_start_over) {
1893   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1894   // flag is set, and we have either requested a System.gc() or
1895   // the number of full gc's since the last concurrent cycle
1896   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1897   // or if an incremental collection has failed
1898   GenCollectedHeap* gch = GenCollectedHeap::heap();
1899   assert(gch->collector_policy()->is_two_generation_policy(),
1900          "You may want to check the correctness of the following");
1901   // Inform cms gen if this was due to partial collection failing.
1902   // The CMS gen may use this fact to determine its expansion policy.
1903   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1904     assert(!_cmsGen->incremental_collection_failed(),
1905            "Should have been noticed, reacted to and cleared");
1906     _cmsGen->set_incremental_collection_failed();
1907   }
1908   *should_compact =
1909     UseCMSCompactAtFullCollection &&
1910     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1911      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1912      gch->incremental_collection_will_fail(true /* consult_young */));
1913   *should_start_over = false;
1914   if (clear_all_soft_refs && !*should_compact) {
1915     // We are about to do a last ditch collection attempt
1916     // so it would normally make sense to do a compaction
1917     // to reclaim as much space as possible.
1918     if (CMSCompactWhenClearAllSoftRefs) {
1919       // Default: The rationale is that in this case either
1920       // we are past the final marking phase, in which case
1921       // we'd have to start over, or so little has been done
1922       // that there's little point in saving that work. Compaction
1923       // appears to be the sensible choice in either case.
1924       *should_compact = true;
1925     } else {
1926       // We have been asked to clear all soft refs, but not to
1927       // compact. Make sure that we aren't past the final checkpoint
1928       // phase, for that is where we process soft refs. If we are already
1929       // past that phase, we'll need to redo the refs discovery phase and
1930       // if necessary clear soft refs that weren't previously
1931       // cleared. We do so by remembering the phase in which
1932       // we came in, and if we are past the refs processing
1933       // phase, we'll choose to just redo the mark-sweep
1934       // collection from scratch.
1935       if (_collectorState > FinalMarking) {
1936         // We are past the refs processing phase;
1937         // start over and do a fresh synchronous CMS cycle
1938         _collectorState = Resetting; // skip to reset to start new cycle
1939         reset(false /* == !asynch */);
1940         *should_start_over = true;
1941       } // else we can continue a possibly ongoing current cycle
1942     }
1943   }
1944 }
1945 
1946 // A work method used by the foreground collector to do
1947 // a mark-sweep-compact.
1948 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1949   GenCollectedHeap* gch = GenCollectedHeap::heap();
1950   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
1951   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
1952     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
1953       "collections passed to foreground collector", _full_gcs_since_conc_gc);
1954   }
1955 
1956   // Sample collection interval time and reset for collection pause.
1957   if (UseAdaptiveSizePolicy) {
1958     size_policy()->msc_collection_begin();
1959   }
1960 
1961   // Temporarily widen the span of the weak reference processing to
1962   // the entire heap.
1963   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1964   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1965   // Temporarily, clear the "is_alive_non_header" field of the
1966   // reference processor.
1967   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1968   // Temporarily make reference _processing_ single threaded (non-MT).
1969   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1970   // Temporarily make refs discovery atomic
1971   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1972   // Temporarily make reference _discovery_ single threaded (non-MT)
1973   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1974 
1975   ref_processor()->set_enqueuing_is_done(false);
1976   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
1977   ref_processor()->setup_policy(clear_all_soft_refs);
1978   // If an asynchronous collection finishes, the _modUnionTable is
1979   // all clear.  If we are assuming the collection from an asynchronous
1980   // collection, clear the _modUnionTable.
1981   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1982     "_modUnionTable should be clear if the baton was not passed");
1983   _modUnionTable.clear_all();
1984   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1985     "mod union for klasses should be clear if the baton was passed");
1986   _ct->klass_rem_set()->clear_mod_union();
1987 
1988   // We must adjust the allocation statistics being maintained
1989   // in the free list space. We do so by reading and clearing
1990   // the sweep timer and updating the block flux rate estimates below.
1991   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1992   if (_inter_sweep_timer.is_active()) {
1993     _inter_sweep_timer.stop();
1994     // Note that we do not use this sample to update the _inter_sweep_estimate.
1995     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1996                                             _inter_sweep_estimate.padded_average(),
1997                                             _intra_sweep_estimate.padded_average());
1998   }
1999 
2000   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2001     ref_processor(), clear_all_soft_refs);
2002   #ifdef ASSERT
2003     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2004     size_t free_size = cms_space->free();
2005     assert(free_size ==
2006            pointer_delta(cms_space->end(), cms_space->compaction_top())
2007            * HeapWordSize,
2008       "All the free space should be compacted into one chunk at top");
2009     assert(cms_space->dictionary()->total_chunk_size(
2010                                       debug_only(cms_space->freelistLock())) == 0 ||
2011            cms_space->totalSizeInIndexedFreeLists() == 0,
2012       "All the free space should be in a single chunk");
2013     size_t num = cms_space->totalCount();
2014     assert((free_size == 0 && num == 0) ||
2015            (free_size > 0  && (num == 1 || num == 2)),
2016          "There should be at most 2 free chunks after compaction");
2017   #endif // ASSERT
2018   _collectorState = Resetting;
2019   assert(_restart_addr == NULL,
2020          "Should have been NULL'd before baton was passed");
2021   reset(false /* == !asynch */);
2022   _cmsGen->reset_after_compaction();
2023   _concurrent_cycles_since_last_unload = 0;
2024 
2025   // Clear any data recorded in the PLAB chunk arrays.
2026   if (_survivor_plab_array != NULL) {
2027     reset_survivor_plab_arrays();
2028   }
2029 
2030   // Adjust the per-size allocation stats for the next epoch.
2031   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2032   // Restart the "inter sweep timer" for the next epoch.
2033   _inter_sweep_timer.reset();
2034   _inter_sweep_timer.start();
2035 
2036   // Sample collection pause time and reset for collection interval.
2037   if (UseAdaptiveSizePolicy) {
2038     size_policy()->msc_collection_end(gch->gc_cause());
2039   }
2040 
2041   // For a mark-sweep-compact, compute_new_size() will be called
2042   // in the heap's do_collection() method.
2043 }
2044 
2045 // A work method used by the foreground collector to do
2046 // a mark-sweep, after taking over from a possibly on-going
2047 // concurrent mark-sweep collection.
2048 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2049   CollectorState first_state, bool should_start_over) {
2050   if (PrintGC && Verbose) {
2051     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2052       "collector with count %d",
2053       _full_gcs_since_conc_gc);
2054   }
2055   switch (_collectorState) {
2056     case Idling:
2057       if (first_state == Idling || should_start_over) {
2058         // The background GC was not active, or should
2059         // restarted from scratch;  start the cycle.
2060         _collectorState = InitialMarking;
2061       }
2062       // If first_state was not Idling, then a background GC
2063       // was in progress and has now finished.  No need to do it
2064       // again.  Leave the state as Idling.
2065       break;
2066     case Precleaning:
2067       // In the foreground case don't do the precleaning since
2068       // it is not done concurrently and there is extra work
2069       // required.
2070       _collectorState = FinalMarking;
2071   }
2072   if (PrintGCDetails &&
2073       (_collectorState > Idling ||
2074        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
2075     gclog_or_tty->print(" (concurrent mode failure)");
2076   }
2077   collect_in_foreground(clear_all_soft_refs);
2078 
2079   // For a mark-sweep, compute_new_size() will be called
2080   // in the heap's do_collection() method.
2081 }
2082 
2083 
2084 void CMSCollector::getFreelistLocks() const {
2085   // Get locks for all free lists in all generations that this
2086   // collector is responsible for
2087   _cmsGen->freelistLock()->lock_without_safepoint_check();
2088 }
2089 
2090 void CMSCollector::releaseFreelistLocks() const {
2091   // Release locks for all free lists in all generations that this
2092   // collector is responsible for
2093   _cmsGen->freelistLock()->unlock();
2094 }
2095 
2096 bool CMSCollector::haveFreelistLocks() const {
2097   // Check locks for all free lists in all generations that this
2098   // collector is responsible for
2099   assert_lock_strong(_cmsGen->freelistLock());
2100   PRODUCT_ONLY(ShouldNotReachHere());
2101   return true;
2102 }
2103 
2104 // A utility class that is used by the CMS collector to
2105 // temporarily "release" the foreground collector from its
2106 // usual obligation to wait for the background collector to
2107 // complete an ongoing phase before proceeding.
2108 class ReleaseForegroundGC: public StackObj {
2109  private:
2110   CMSCollector* _c;
2111  public:
2112   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2113     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2114     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2115     // allow a potentially blocked foreground collector to proceed
2116     _c->_foregroundGCShouldWait = false;
2117     if (_c->_foregroundGCIsActive) {
2118       CGC_lock->notify();
2119     }
2120     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2121            "Possible deadlock");
2122   }
2123 
2124   ~ReleaseForegroundGC() {
2125     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2126     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2127     _c->_foregroundGCShouldWait = true;
2128   }
2129 };
2130 
2131 // There are separate collect_in_background and collect_in_foreground because of
2132 // the different locking requirements of the background collector and the
2133 // foreground collector.  There was originally an attempt to share
2134 // one "collect" method between the background collector and the foreground
2135 // collector but the if-then-else required made it cleaner to have
2136 // separate methods.
2137 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
2138   assert(Thread::current()->is_ConcurrentGC_thread(),
2139     "A CMS asynchronous collection is only allowed on a CMS thread.");
2140 
2141   GenCollectedHeap* gch = GenCollectedHeap::heap();
2142   {
2143     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2144     MutexLockerEx hl(Heap_lock, safepoint_check);
2145     FreelistLocker fll(this);
2146     MutexLockerEx x(CGC_lock, safepoint_check);
2147     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2148       // The foreground collector is active or we're
2149       // not using asynchronous collections.  Skip this
2150       // background collection.
2151       assert(!_foregroundGCShouldWait, "Should be clear");
2152       return;
2153     } else {
2154       assert(_collectorState == Idling, "Should be idling before start.");
2155       _collectorState = InitialMarking;
2156       // Reset the expansion cause, now that we are about to begin
2157       // a new cycle.
2158       clear_expansion_cause();
2159 
2160       // Clear the MetaspaceGC flag since a concurrent collection
2161       // is starting but also clear it after the collection.
2162       MetaspaceGC::set_should_concurrent_collect(false);
2163     }
2164     // Decide if we want to enable class unloading as part of the
2165     // ensuing concurrent GC cycle.
2166     update_should_unload_classes();
2167     _full_gc_requested = false;           // acks all outstanding full gc requests
2168     // Signal that we are about to start a collection
2169     gch->increment_total_full_collections();  // ... starting a collection cycle
2170     _collection_count_start = gch->total_full_collections();
2171   }
2172 
2173   // Used for PrintGCDetails
2174   size_t prev_used = 0;
2175   size_t metaspace_pre_unloading = 0;
2176   if (PrintGCDetails) {
2177     prev_used = _cmsGen->used();
2178     metaspace_pre_unloading = MetaspaceAux::used_in_bytes();
2179   }
2180 
2181   // The change of the collection state is normally done at this level;
2182   // the exceptions are phases that are executed while the world is
2183   // stopped.  For those phases the change of state is done while the
2184   // world is stopped.  For baton passing purposes this allows the
2185   // background collector to finish the phase and change state atomically.
2186   // The foreground collector cannot wait on a phase that is done
2187   // while the world is stopped because the foreground collector already
2188   // has the world stopped and would deadlock.
2189   while (_collectorState != Idling) {
2190     if (TraceCMSState) {
2191       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2192         Thread::current(), _collectorState);
2193     }
2194     // The foreground collector
2195     //   holds the Heap_lock throughout its collection.
2196     //   holds the CMS token (but not the lock)
2197     //     except while it is waiting for the background collector to yield.
2198     //
2199     // The foreground collector should be blocked (not for long)
2200     //   if the background collector is about to start a phase
2201     //   executed with world stopped.  If the background
2202     //   collector has already started such a phase, the
2203     //   foreground collector is blocked waiting for the
2204     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2205     //   are executed in the VM thread.
2206     //
2207     // The locking order is
2208     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2209     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2210     //   CMS token  (claimed in
2211     //                stop_world_and_do() -->
2212     //                  safepoint_synchronize() -->
2213     //                    CMSThread::synchronize())
2214 
2215     {
2216       // Check if the FG collector wants us to yield.
2217       CMSTokenSync x(true); // is cms thread
2218       if (waitForForegroundGC()) {
2219         // We yielded to a foreground GC, nothing more to be
2220         // done this round.
2221         assert(_foregroundGCShouldWait == false, "We set it to false in "
2222                "waitForForegroundGC()");
2223         if (TraceCMSState) {
2224           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2225             " exiting collection CMS state %d",
2226             Thread::current(), _collectorState);
2227         }
2228         return;
2229       } else {
2230         // The background collector can run but check to see if the
2231         // foreground collector has done a collection while the
2232         // background collector was waiting to get the CGC_lock
2233         // above.  If yes, break so that _foregroundGCShouldWait
2234         // is cleared before returning.
2235         if (_collectorState == Idling) {
2236           break;
2237         }
2238       }
2239     }
2240 
2241     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2242       "should be waiting");
2243 
2244     switch (_collectorState) {
2245       case InitialMarking:
2246         {
2247           ReleaseForegroundGC x(this);
2248           stats().record_cms_begin();
2249 
2250           VM_CMS_Initial_Mark initial_mark_op(this);
2251           VMThread::execute(&initial_mark_op);
2252         }
2253         // The collector state may be any legal state at this point
2254         // since the background collector may have yielded to the
2255         // foreground collector.
2256         break;
2257       case Marking:
2258         // initial marking in checkpointRootsInitialWork has been completed
2259         if (markFromRoots(true)) { // we were successful
2260           assert(_collectorState == Precleaning, "Collector state should "
2261             "have changed");
2262         } else {
2263           assert(_foregroundGCIsActive, "Internal state inconsistency");
2264         }
2265         break;
2266       case Precleaning:
2267         if (UseAdaptiveSizePolicy) {
2268           size_policy()->concurrent_precleaning_begin();
2269         }
2270         // marking from roots in markFromRoots has been completed
2271         preclean();
2272         if (UseAdaptiveSizePolicy) {
2273           size_policy()->concurrent_precleaning_end();
2274         }
2275         assert(_collectorState == AbortablePreclean ||
2276                _collectorState == FinalMarking,
2277                "Collector state should have changed");
2278         break;
2279       case AbortablePreclean:
2280         if (UseAdaptiveSizePolicy) {
2281         size_policy()->concurrent_phases_resume();
2282         }
2283         abortable_preclean();
2284         if (UseAdaptiveSizePolicy) {
2285           size_policy()->concurrent_precleaning_end();
2286         }
2287         assert(_collectorState == FinalMarking, "Collector state should "
2288           "have changed");
2289         break;
2290       case FinalMarking:
2291         {
2292           ReleaseForegroundGC x(this);
2293 
2294           VM_CMS_Final_Remark final_remark_op(this);
2295           VMThread::execute(&final_remark_op);
2296         }
2297         assert(_foregroundGCShouldWait, "block post-condition");
2298         break;
2299       case Sweeping:
2300         if (UseAdaptiveSizePolicy) {
2301           size_policy()->concurrent_sweeping_begin();
2302         }
2303         // final marking in checkpointRootsFinal has been completed
2304         sweep(true);
2305         assert(_collectorState == Resizing, "Collector state change "
2306           "to Resizing must be done under the free_list_lock");
2307         _full_gcs_since_conc_gc = 0;
2308 
2309         // Stop the timers for adaptive size policy for the concurrent phases
2310         if (UseAdaptiveSizePolicy) {
2311           size_policy()->concurrent_sweeping_end();
2312           size_policy()->concurrent_phases_end(gch->gc_cause(),
2313                                              gch->prev_gen(_cmsGen)->capacity(),
2314                                              _cmsGen->free());
2315         }
2316 
2317       case Resizing: {
2318         // Sweeping has been completed...
2319         // At this point the background collection has completed.
2320         // Don't move the call to compute_new_size() down
2321         // into code that might be executed if the background
2322         // collection was preempted.
2323         {
2324           ReleaseForegroundGC x(this);   // unblock FG collection
2325           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2326           CMSTokenSync        z(true);   // not strictly needed.
2327           if (_collectorState == Resizing) {
2328             compute_new_size();
2329             if (PrintGCDetails) {
2330               CMSPhaseTracing pt(true, "[CMS-resizing: ");
2331               gclog_or_tty->print("[%s:", cmsGen()->short_name());
2332               cmsGen()->print_heap_change(prev_used);
2333               gclog_or_tty->print("]");
2334               MetaspaceAux::print_metaspace_change(metaspace_pre_unloading);
2335               gclog_or_tty->print_cr(" ]");
2336             }
2337 
2338             _collectorState = Resetting;
2339           } else {
2340             assert(_collectorState == Idling, "The state should only change"
2341                    " because the foreground collector has finished the collection");
2342           }
2343         }
2344         break;
2345       }
2346       case Resetting:
2347         // CMS heap resizing has been completed
2348         reset(true);
2349         assert(_collectorState == Idling, "Collector state should "
2350           "have changed");
2351 
2352         MetaspaceGC::set_should_concurrent_collect(false);
2353 
2354         stats().record_cms_end();
2355         // Don't move the concurrent_phases_end() and compute_new_size()
2356         // calls to here because a preempted background collection
2357         // has it's state set to "Resetting".
2358         break;
2359       case Idling:
2360       default:
2361         ShouldNotReachHere();
2362         break;
2363     }
2364     if (TraceCMSState) {
2365       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2366         Thread::current(), _collectorState);
2367     }
2368     assert(_foregroundGCShouldWait, "block post-condition");
2369   }
2370 
2371   // Should this be in gc_epilogue?
2372   collector_policy()->counters()->update_counters();
2373 
2374   {
2375     // Clear _foregroundGCShouldWait and, in the event that the
2376     // foreground collector is waiting, notify it, before
2377     // returning.
2378     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2379     _foregroundGCShouldWait = false;
2380     if (_foregroundGCIsActive) {
2381       CGC_lock->notify();
2382     }
2383     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2384            "Possible deadlock");
2385   }
2386   if (TraceCMSState) {
2387     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2388       " exiting collection CMS state %d",
2389       Thread::current(), _collectorState);
2390   }
2391 }
2392 
2393 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
2394   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2395          "Foreground collector should be waiting, not executing");
2396   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2397     "may only be done by the VM Thread with the world stopped");
2398   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2399          "VM thread should have CMS token");
2400 
2401   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2402     true, gclog_or_tty);)
2403   if (UseAdaptiveSizePolicy) {
2404     size_policy()->ms_collection_begin();
2405   }
2406   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2407 
2408   HandleMark hm;  // Discard invalid handles created during verification
2409 
2410   if (VerifyBeforeGC &&
2411       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2412     Universe::verify();
2413   }
2414 
2415   // Snapshot the soft reference policy to be used in this collection cycle.
2416   ref_processor()->setup_policy(clear_all_soft_refs);
2417 
2418   bool init_mark_was_synchronous = false; // until proven otherwise
2419   while (_collectorState != Idling) {
2420     if (TraceCMSState) {
2421       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2422         Thread::current(), _collectorState);
2423     }
2424     switch (_collectorState) {
2425       case InitialMarking:
2426         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2427         checkpointRootsInitial(false);
2428         assert(_collectorState == Marking, "Collector state should have changed"
2429           " within checkpointRootsInitial()");
2430         break;
2431       case Marking:
2432         // initial marking in checkpointRootsInitialWork has been completed
2433         if (VerifyDuringGC &&
2434             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2435           gclog_or_tty->print("Verify before initial mark: ");
2436           Universe::verify();
2437         }
2438         {
2439           bool res = markFromRoots(false);
2440           assert(res && _collectorState == FinalMarking, "Collector state should "
2441             "have changed");
2442           break;
2443         }
2444       case FinalMarking:
2445         if (VerifyDuringGC &&
2446             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2447           gclog_or_tty->print("Verify before re-mark: ");
2448           Universe::verify();
2449         }
2450         checkpointRootsFinal(false, clear_all_soft_refs,
2451                              init_mark_was_synchronous);
2452         assert(_collectorState == Sweeping, "Collector state should not "
2453           "have changed within checkpointRootsFinal()");
2454         break;
2455       case Sweeping:
2456         // final marking in checkpointRootsFinal has been completed
2457         if (VerifyDuringGC &&
2458             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2459           gclog_or_tty->print("Verify before sweep: ");
2460           Universe::verify();
2461         }
2462         sweep(false);
2463         assert(_collectorState == Resizing, "Incorrect state");
2464         break;
2465       case Resizing: {
2466         // Sweeping has been completed; the actual resize in this case
2467         // is done separately; nothing to be done in this state.
2468         _collectorState = Resetting;
2469         break;
2470       }
2471       case Resetting:
2472         // The heap has been resized.
2473         if (VerifyDuringGC &&
2474             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2475           gclog_or_tty->print("Verify before reset: ");
2476           Universe::verify();
2477         }
2478         reset(false);
2479         assert(_collectorState == Idling, "Collector state should "
2480           "have changed");
2481         break;
2482       case Precleaning:
2483       case AbortablePreclean:
2484         // Elide the preclean phase
2485         _collectorState = FinalMarking;
2486         break;
2487       default:
2488         ShouldNotReachHere();
2489     }
2490     if (TraceCMSState) {
2491       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2492         Thread::current(), _collectorState);
2493     }
2494   }
2495 
2496   if (UseAdaptiveSizePolicy) {
2497     GenCollectedHeap* gch = GenCollectedHeap::heap();
2498     size_policy()->ms_collection_end(gch->gc_cause());
2499   }
2500 
2501   if (VerifyAfterGC &&
2502       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2503     Universe::verify();
2504   }
2505   if (TraceCMSState) {
2506     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2507       " exiting collection CMS state %d",
2508       Thread::current(), _collectorState);
2509   }
2510 }
2511 
2512 bool CMSCollector::waitForForegroundGC() {
2513   bool res = false;
2514   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2515          "CMS thread should have CMS token");
2516   // Block the foreground collector until the
2517   // background collectors decides whether to
2518   // yield.
2519   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2520   _foregroundGCShouldWait = true;
2521   if (_foregroundGCIsActive) {
2522     // The background collector yields to the
2523     // foreground collector and returns a value
2524     // indicating that it has yielded.  The foreground
2525     // collector can proceed.
2526     res = true;
2527     _foregroundGCShouldWait = false;
2528     ConcurrentMarkSweepThread::clear_CMS_flag(
2529       ConcurrentMarkSweepThread::CMS_cms_has_token);
2530     ConcurrentMarkSweepThread::set_CMS_flag(
2531       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2532     // Get a possibly blocked foreground thread going
2533     CGC_lock->notify();
2534     if (TraceCMSState) {
2535       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2536         Thread::current(), _collectorState);
2537     }
2538     while (_foregroundGCIsActive) {
2539       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2540     }
2541     ConcurrentMarkSweepThread::set_CMS_flag(
2542       ConcurrentMarkSweepThread::CMS_cms_has_token);
2543     ConcurrentMarkSweepThread::clear_CMS_flag(
2544       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2545   }
2546   if (TraceCMSState) {
2547     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2548       Thread::current(), _collectorState);
2549   }
2550   return res;
2551 }
2552 
2553 // Because of the need to lock the free lists and other structures in
2554 // the collector, common to all the generations that the collector is
2555 // collecting, we need the gc_prologues of individual CMS generations
2556 // delegate to their collector. It may have been simpler had the
2557 // current infrastructure allowed one to call a prologue on a
2558 // collector. In the absence of that we have the generation's
2559 // prologue delegate to the collector, which delegates back
2560 // some "local" work to a worker method in the individual generations
2561 // that it's responsible for collecting, while itself doing any
2562 // work common to all generations it's responsible for. A similar
2563 // comment applies to the  gc_epilogue()'s.
2564 // The role of the varaible _between_prologue_and_epilogue is to
2565 // enforce the invocation protocol.
2566 void CMSCollector::gc_prologue(bool full) {
2567   // Call gc_prologue_work() for the CMSGen
2568   // we are responsible for.
2569 
2570   // The following locking discipline assumes that we are only called
2571   // when the world is stopped.
2572   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2573 
2574   // The CMSCollector prologue must call the gc_prologues for the
2575   // "generations" that it's responsible
2576   // for.
2577 
2578   assert(   Thread::current()->is_VM_thread()
2579          || (   CMSScavengeBeforeRemark
2580              && Thread::current()->is_ConcurrentGC_thread()),
2581          "Incorrect thread type for prologue execution");
2582 
2583   if (_between_prologue_and_epilogue) {
2584     // We have already been invoked; this is a gc_prologue delegation
2585     // from yet another CMS generation that we are responsible for, just
2586     // ignore it since all relevant work has already been done.
2587     return;
2588   }
2589 
2590   // set a bit saying prologue has been called; cleared in epilogue
2591   _between_prologue_and_epilogue = true;
2592   // Claim locks for common data structures, then call gc_prologue_work()
2593   // for each CMSGen.
2594 
2595   getFreelistLocks();   // gets free list locks on constituent spaces
2596   bitMapLock()->lock_without_safepoint_check();
2597 
2598   // Should call gc_prologue_work() for all cms gens we are responsible for
2599   bool duringMarking =    _collectorState >= Marking
2600                          && _collectorState < Sweeping;
2601 
2602   // The young collections clear the modified oops state, which tells if
2603   // there are any modified oops in the class. The remark phase also needs
2604   // that information. Tell the young collection to save the union of all
2605   // modified klasses.
2606   if (duringMarking) {
2607     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2608   }
2609 
2610   bool registerClosure = duringMarking;
2611 
2612   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2613                                                &_modUnionClosurePar
2614                                                : &_modUnionClosure;
2615   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2616 
2617   if (!full) {
2618     stats().record_gc0_begin();
2619   }
2620 }
2621 
2622 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2623   // Delegate to CMScollector which knows how to coordinate between
2624   // this and any other CMS generations that it is responsible for
2625   // collecting.
2626   collector()->gc_prologue(full);
2627 }
2628 
2629 // This is a "private" interface for use by this generation's CMSCollector.
2630 // Not to be called directly by any other entity (for instance,
2631 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2632 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2633   bool registerClosure, ModUnionClosure* modUnionClosure) {
2634   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2635   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2636     "Should be NULL");
2637   if (registerClosure) {
2638     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2639   }
2640   cmsSpace()->gc_prologue();
2641   // Clear stat counters
2642   NOT_PRODUCT(
2643     assert(_numObjectsPromoted == 0, "check");
2644     assert(_numWordsPromoted   == 0, "check");
2645     if (Verbose && PrintGC) {
2646       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2647                           SIZE_FORMAT" bytes concurrently",
2648       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2649     }
2650     _numObjectsAllocated = 0;
2651     _numWordsAllocated   = 0;
2652   )
2653 }
2654 
2655 void CMSCollector::gc_epilogue(bool full) {
2656   // The following locking discipline assumes that we are only called
2657   // when the world is stopped.
2658   assert(SafepointSynchronize::is_at_safepoint(),
2659          "world is stopped assumption");
2660 
2661   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2662   // if linear allocation blocks need to be appropriately marked to allow the
2663   // the blocks to be parsable. We also check here whether we need to nudge the
2664   // CMS collector thread to start a new cycle (if it's not already active).
2665   assert(   Thread::current()->is_VM_thread()
2666          || (   CMSScavengeBeforeRemark
2667              && Thread::current()->is_ConcurrentGC_thread()),
2668          "Incorrect thread type for epilogue execution");
2669 
2670   if (!_between_prologue_and_epilogue) {
2671     // We have already been invoked; this is a gc_epilogue delegation
2672     // from yet another CMS generation that we are responsible for, just
2673     // ignore it since all relevant work has already been done.
2674     return;
2675   }
2676   assert(haveFreelistLocks(), "must have freelist locks");
2677   assert_lock_strong(bitMapLock());
2678 
2679   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2680 
2681   _cmsGen->gc_epilogue_work(full);
2682 
2683   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2684     // in case sampling was not already enabled, enable it
2685     _start_sampling = true;
2686   }
2687   // reset _eden_chunk_array so sampling starts afresh
2688   _eden_chunk_index = 0;
2689 
2690   size_t cms_used   = _cmsGen->cmsSpace()->used();
2691 
2692   // update performance counters - this uses a special version of
2693   // update_counters() that allows the utilization to be passed as a
2694   // parameter, avoiding multiple calls to used().
2695   //
2696   _cmsGen->update_counters(cms_used);
2697 
2698   if (CMSIncrementalMode) {
2699     icms_update_allocation_limits();
2700   }
2701 
2702   bitMapLock()->unlock();
2703   releaseFreelistLocks();
2704 
2705   if (!CleanChunkPoolAsync) {
2706     Chunk::clean_chunk_pool();
2707   }
2708 
2709   _between_prologue_and_epilogue = false;  // ready for next cycle
2710 }
2711 
2712 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2713   collector()->gc_epilogue(full);
2714 
2715   // Also reset promotion tracking in par gc thread states.
2716   if (CollectedHeap::use_parallel_gc_threads()) {
2717     for (uint i = 0; i < ParallelGCThreads; i++) {
2718       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2719     }
2720   }
2721 }
2722 
2723 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2724   assert(!incremental_collection_failed(), "Should have been cleared");
2725   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2726   cmsSpace()->gc_epilogue();
2727     // Print stat counters
2728   NOT_PRODUCT(
2729     assert(_numObjectsAllocated == 0, "check");
2730     assert(_numWordsAllocated == 0, "check");
2731     if (Verbose && PrintGC) {
2732       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2733                           SIZE_FORMAT" bytes",
2734                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2735     }
2736     _numObjectsPromoted = 0;
2737     _numWordsPromoted   = 0;
2738   )
2739 
2740   if (PrintGC && Verbose) {
2741     // Call down the chain in contiguous_available needs the freelistLock
2742     // so print this out before releasing the freeListLock.
2743     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2744                         contiguous_available());
2745   }
2746 }
2747 
2748 #ifndef PRODUCT
2749 bool CMSCollector::have_cms_token() {
2750   Thread* thr = Thread::current();
2751   if (thr->is_VM_thread()) {
2752     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2753   } else if (thr->is_ConcurrentGC_thread()) {
2754     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2755   } else if (thr->is_GC_task_thread()) {
2756     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2757            ParGCRareEvent_lock->owned_by_self();
2758   }
2759   return false;
2760 }
2761 #endif
2762 
2763 // Check reachability of the given heap address in CMS generation,
2764 // treating all other generations as roots.
2765 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2766   // We could "guarantee" below, rather than assert, but i'll
2767   // leave these as "asserts" so that an adventurous debugger
2768   // could try this in the product build provided some subset of
2769   // the conditions were met, provided they were intersted in the
2770   // results and knew that the computation below wouldn't interfere
2771   // with other concurrent computations mutating the structures
2772   // being read or written.
2773   assert(SafepointSynchronize::is_at_safepoint(),
2774          "Else mutations in object graph will make answer suspect");
2775   assert(have_cms_token(), "Should hold cms token");
2776   assert(haveFreelistLocks(), "must hold free list locks");
2777   assert_lock_strong(bitMapLock());
2778 
2779   // Clear the marking bit map array before starting, but, just
2780   // for kicks, first report if the given address is already marked
2781   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2782                 _markBitMap.isMarked(addr) ? "" : " not");
2783 
2784   if (verify_after_remark()) {
2785     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2786     bool result = verification_mark_bm()->isMarked(addr);
2787     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2788                            result ? "IS" : "is NOT");
2789     return result;
2790   } else {
2791     gclog_or_tty->print_cr("Could not compute result");
2792     return false;
2793   }
2794 }
2795 
2796 ////////////////////////////////////////////////////////
2797 // CMS Verification Support
2798 ////////////////////////////////////////////////////////
2799 // Following the remark phase, the following invariant
2800 // should hold -- each object in the CMS heap which is
2801 // marked in markBitMap() should be marked in the verification_mark_bm().
2802 
2803 class VerifyMarkedClosure: public BitMapClosure {
2804   CMSBitMap* _marks;
2805   bool       _failed;
2806 
2807  public:
2808   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2809 
2810   bool do_bit(size_t offset) {
2811     HeapWord* addr = _marks->offsetToHeapWord(offset);
2812     if (!_marks->isMarked(addr)) {
2813       oop(addr)->print_on(gclog_or_tty);
2814       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2815       _failed = true;
2816     }
2817     return true;
2818   }
2819 
2820   bool failed() { return _failed; }
2821 };
2822 
2823 bool CMSCollector::verify_after_remark() {
2824   gclog_or_tty->print(" [Verifying CMS Marking... ");
2825   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2826   static bool init = false;
2827 
2828   assert(SafepointSynchronize::is_at_safepoint(),
2829          "Else mutations in object graph will make answer suspect");
2830   assert(have_cms_token(),
2831          "Else there may be mutual interference in use of "
2832          " verification data structures");
2833   assert(_collectorState > Marking && _collectorState <= Sweeping,
2834          "Else marking info checked here may be obsolete");
2835   assert(haveFreelistLocks(), "must hold free list locks");
2836   assert_lock_strong(bitMapLock());
2837 
2838 
2839   // Allocate marking bit map if not already allocated
2840   if (!init) { // first time
2841     if (!verification_mark_bm()->allocate(_span)) {
2842       return false;
2843     }
2844     init = true;
2845   }
2846 
2847   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2848 
2849   // Turn off refs discovery -- so we will be tracing through refs.
2850   // This is as intended, because by this time
2851   // GC must already have cleared any refs that need to be cleared,
2852   // and traced those that need to be marked; moreover,
2853   // the marking done here is not going to intefere in any
2854   // way with the marking information used by GC.
2855   NoRefDiscovery no_discovery(ref_processor());
2856 
2857   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2858 
2859   // Clear any marks from a previous round
2860   verification_mark_bm()->clear_all();
2861   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2862   verify_work_stacks_empty();
2863 
2864   GenCollectedHeap* gch = GenCollectedHeap::heap();
2865   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2866   // Update the saved marks which may affect the root scans.
2867   gch->save_marks();
2868 
2869   if (CMSRemarkVerifyVariant == 1) {
2870     // In this first variant of verification, we complete
2871     // all marking, then check if the new marks-verctor is
2872     // a subset of the CMS marks-vector.
2873     verify_after_remark_work_1();
2874   } else if (CMSRemarkVerifyVariant == 2) {
2875     // In this second variant of verification, we flag an error
2876     // (i.e. an object reachable in the new marks-vector not reachable
2877     // in the CMS marks-vector) immediately, also indicating the
2878     // identify of an object (A) that references the unmarked object (B) --
2879     // presumably, a mutation to A failed to be picked up by preclean/remark?
2880     verify_after_remark_work_2();
2881   } else {
2882     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2883             CMSRemarkVerifyVariant);
2884   }
2885   gclog_or_tty->print(" done] ");
2886   return true;
2887 }
2888 
2889 void CMSCollector::verify_after_remark_work_1() {
2890   ResourceMark rm;
2891   HandleMark  hm;
2892   GenCollectedHeap* gch = GenCollectedHeap::heap();
2893 
2894   // Get a clear set of claim bits for the strong roots processing to work with.
2895   ClassLoaderDataGraph::clear_claimed_marks();
2896 
2897   // Mark from roots one level into CMS
2898   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2899   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2900 
2901   gch->gen_process_strong_roots(_cmsGen->level(),
2902                                 true,   // younger gens are roots
2903                                 true,   // activate StrongRootsScope
2904                                 false,  // not scavenging
2905                                 SharedHeap::ScanningOption(roots_scanning_options()),
2906                                 &notOlder,
2907                                 true,   // walk code active on stacks
2908                                 NULL,
2909                                 NULL); // SSS: Provide correct closure
2910 
2911   // Now mark from the roots
2912   MarkFromRootsClosure markFromRootsClosure(this, _span,
2913     verification_mark_bm(), verification_mark_stack(),
2914     false /* don't yield */, true /* verifying */);
2915   assert(_restart_addr == NULL, "Expected pre-condition");
2916   verification_mark_bm()->iterate(&markFromRootsClosure);
2917   while (_restart_addr != NULL) {
2918     // Deal with stack overflow: by restarting at the indicated
2919     // address.
2920     HeapWord* ra = _restart_addr;
2921     markFromRootsClosure.reset(ra);
2922     _restart_addr = NULL;
2923     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2924   }
2925   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2926   verify_work_stacks_empty();
2927 
2928   // Marking completed -- now verify that each bit marked in
2929   // verification_mark_bm() is also marked in markBitMap(); flag all
2930   // errors by printing corresponding objects.
2931   VerifyMarkedClosure vcl(markBitMap());
2932   verification_mark_bm()->iterate(&vcl);
2933   if (vcl.failed()) {
2934     gclog_or_tty->print("Verification failed");
2935     Universe::heap()->print_on(gclog_or_tty);
2936     fatal("CMS: failed marking verification after remark");
2937   }
2938 }
2939 
2940 class VerifyKlassOopsKlassClosure : public KlassClosure {
2941   class VerifyKlassOopsClosure : public OopClosure {
2942     CMSBitMap* _bitmap;
2943    public:
2944     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2945     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2946     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2947   } _oop_closure;
2948  public:
2949   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2950   void do_klass(Klass* k) {
2951     k->oops_do(&_oop_closure);
2952   }
2953 };
2954 
2955 void CMSCollector::verify_after_remark_work_2() {
2956   ResourceMark rm;
2957   HandleMark  hm;
2958   GenCollectedHeap* gch = GenCollectedHeap::heap();
2959 
2960   // Get a clear set of claim bits for the strong roots processing to work with.
2961   ClassLoaderDataGraph::clear_claimed_marks();
2962 
2963   // Mark from roots one level into CMS
2964   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2965                                      markBitMap());
2966   CMKlassClosure klass_closure(&notOlder);
2967 
2968   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2969   gch->gen_process_strong_roots(_cmsGen->level(),
2970                                 true,   // younger gens are roots
2971                                 true,   // activate StrongRootsScope
2972                                 false,  // not scavenging
2973                                 SharedHeap::ScanningOption(roots_scanning_options()),
2974                                 &notOlder,
2975                                 true,   // walk code active on stacks
2976                                 NULL,
2977                                 &klass_closure);
2978 
2979   // Now mark from the roots
2980   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2981     verification_mark_bm(), markBitMap(), verification_mark_stack());
2982   assert(_restart_addr == NULL, "Expected pre-condition");
2983   verification_mark_bm()->iterate(&markFromRootsClosure);
2984   while (_restart_addr != NULL) {
2985     // Deal with stack overflow: by restarting at the indicated
2986     // address.
2987     HeapWord* ra = _restart_addr;
2988     markFromRootsClosure.reset(ra);
2989     _restart_addr = NULL;
2990     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2991   }
2992   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2993   verify_work_stacks_empty();
2994 
2995   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2996   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2997 
2998   // Marking completed -- now verify that each bit marked in
2999   // verification_mark_bm() is also marked in markBitMap(); flag all
3000   // errors by printing corresponding objects.
3001   VerifyMarkedClosure vcl(markBitMap());
3002   verification_mark_bm()->iterate(&vcl);
3003   assert(!vcl.failed(), "Else verification above should not have succeeded");
3004 }
3005 
3006 void ConcurrentMarkSweepGeneration::save_marks() {
3007   // delegate to CMS space
3008   cmsSpace()->save_marks();
3009   for (uint i = 0; i < ParallelGCThreads; i++) {
3010     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3011   }
3012 }
3013 
3014 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3015   return cmsSpace()->no_allocs_since_save_marks();
3016 }
3017 
3018 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3019                                                                 \
3020 void ConcurrentMarkSweepGeneration::                            \
3021 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3022   cl->set_generation(this);                                     \
3023   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3024   cl->reset_generation();                                       \
3025   save_marks();                                                 \
3026 }
3027 
3028 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3029 
3030 void
3031 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3032 {
3033   // Not currently implemented; need to do the following. -- ysr.
3034   // dld -- I think that is used for some sort of allocation profiler.  So it
3035   // really means the objects allocated by the mutator since the last
3036   // GC.  We could potentially implement this cheaply by recording only
3037   // the direct allocations in a side data structure.
3038   //
3039   // I think we probably ought not to be required to support these
3040   // iterations at any arbitrary point; I think there ought to be some
3041   // call to enable/disable allocation profiling in a generation/space,
3042   // and the iterator ought to return the objects allocated in the
3043   // gen/space since the enable call, or the last iterator call (which
3044   // will probably be at a GC.)  That way, for gens like CM&S that would
3045   // require some extra data structure to support this, we only pay the
3046   // cost when it's in use...
3047   cmsSpace()->object_iterate_since_last_GC(blk);
3048 }
3049 
3050 void
3051 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3052   cl->set_generation(this);
3053   younger_refs_in_space_iterate(_cmsSpace, cl);
3054   cl->reset_generation();
3055 }
3056 
3057 void
3058 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3059   if (freelistLock()->owned_by_self()) {
3060     Generation::oop_iterate(mr, cl);
3061   } else {
3062     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3063     Generation::oop_iterate(mr, cl);
3064   }
3065 }
3066 
3067 void
3068 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3069   if (freelistLock()->owned_by_self()) {
3070     Generation::oop_iterate(cl);
3071   } else {
3072     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3073     Generation::oop_iterate(cl);
3074   }
3075 }
3076 
3077 void
3078 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3079   if (freelistLock()->owned_by_self()) {
3080     Generation::object_iterate(cl);
3081   } else {
3082     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3083     Generation::object_iterate(cl);
3084   }
3085 }
3086 
3087 void
3088 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3089   if (freelistLock()->owned_by_self()) {
3090     Generation::safe_object_iterate(cl);
3091   } else {
3092     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3093     Generation::safe_object_iterate(cl);
3094   }
3095 }
3096 
3097 void
3098 ConcurrentMarkSweepGeneration::post_compact() {
3099 }
3100 
3101 void
3102 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3103   // Fix the linear allocation blocks to look like free blocks.
3104 
3105   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3106   // are not called when the heap is verified during universe initialization and
3107   // at vm shutdown.
3108   if (freelistLock()->owned_by_self()) {
3109     cmsSpace()->prepare_for_verify();
3110   } else {
3111     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3112     cmsSpace()->prepare_for_verify();
3113   }
3114 }
3115 
3116 void
3117 ConcurrentMarkSweepGeneration::verify() {
3118   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3119   // are not called when the heap is verified during universe initialization and
3120   // at vm shutdown.
3121   if (freelistLock()->owned_by_self()) {
3122     cmsSpace()->verify();
3123   } else {
3124     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3125     cmsSpace()->verify();
3126   }
3127 }
3128 
3129 void CMSCollector::verify() {
3130   _cmsGen->verify();
3131 }
3132 
3133 #ifndef PRODUCT
3134 bool CMSCollector::overflow_list_is_empty() const {
3135   assert(_num_par_pushes >= 0, "Inconsistency");
3136   if (_overflow_list == NULL) {
3137     assert(_num_par_pushes == 0, "Inconsistency");
3138   }
3139   return _overflow_list == NULL;
3140 }
3141 
3142 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3143 // merely consolidate assertion checks that appear to occur together frequently.
3144 void CMSCollector::verify_work_stacks_empty() const {
3145   assert(_markStack.isEmpty(), "Marking stack should be empty");
3146   assert(overflow_list_is_empty(), "Overflow list should be empty");
3147 }
3148 
3149 void CMSCollector::verify_overflow_empty() const {
3150   assert(overflow_list_is_empty(), "Overflow list should be empty");
3151   assert(no_preserved_marks(), "No preserved marks");
3152 }
3153 #endif // PRODUCT
3154 
3155 // Decide if we want to enable class unloading as part of the
3156 // ensuing concurrent GC cycle. We will collect and
3157 // unload classes if it's the case that:
3158 // (1) an explicit gc request has been made and the flag
3159 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3160 // (2) (a) class unloading is enabled at the command line, and
3161 //     (b) old gen is getting really full
3162 // NOTE: Provided there is no change in the state of the heap between
3163 // calls to this method, it should have idempotent results. Moreover,
3164 // its results should be monotonically increasing (i.e. going from 0 to 1,
3165 // but not 1 to 0) between successive calls between which the heap was
3166 // not collected. For the implementation below, it must thus rely on
3167 // the property that concurrent_cycles_since_last_unload()
3168 // will not decrease unless a collection cycle happened and that
3169 // _cmsGen->is_too_full() are
3170 // themselves also monotonic in that sense. See check_monotonicity()
3171 // below.
3172 void CMSCollector::update_should_unload_classes() {
3173   _should_unload_classes = false;
3174   // Condition 1 above
3175   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3176     _should_unload_classes = true;
3177   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3178     // Disjuncts 2.b.(i,ii,iii) above
3179     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3180                               CMSClassUnloadingMaxInterval)
3181                            || _cmsGen->is_too_full();
3182   }
3183 }
3184 
3185 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3186   bool res = should_concurrent_collect();
3187   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3188   return res;
3189 }
3190 
3191 void CMSCollector::setup_cms_unloading_and_verification_state() {
3192   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3193                              || VerifyBeforeExit;
3194   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3195 
3196   if (should_unload_classes()) {   // Should unload classes this cycle
3197     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3198     set_verifying(should_verify);    // Set verification state for this cycle
3199     return;                            // Nothing else needs to be done at this time
3200   }
3201 
3202   // Not unloading classes this cycle
3203   assert(!should_unload_classes(), "Inconsitency!");
3204   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3205     // Include symbols, strings and code cache elements to prevent their resurrection.
3206     add_root_scanning_option(rso);
3207     set_verifying(true);
3208   } else if (verifying() && !should_verify) {
3209     // We were verifying, but some verification flags got disabled.
3210     set_verifying(false);
3211     // Exclude symbols, strings and code cache elements from root scanning to
3212     // reduce IM and RM pauses.
3213     remove_root_scanning_option(rso);
3214   }
3215 }
3216 
3217 
3218 #ifndef PRODUCT
3219 HeapWord* CMSCollector::block_start(const void* p) const {
3220   const HeapWord* addr = (HeapWord*)p;
3221   if (_span.contains(p)) {
3222     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3223       return _cmsGen->cmsSpace()->block_start(p);
3224     }
3225   }
3226   return NULL;
3227 }
3228 #endif
3229 
3230 HeapWord*
3231 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3232                                                    bool   tlab,
3233                                                    bool   parallel) {
3234   CMSSynchronousYieldRequest yr;
3235   assert(!tlab, "Can't deal with TLAB allocation");
3236   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3237   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3238     CMSExpansionCause::_satisfy_allocation);
3239   if (GCExpandToAllocateDelayMillis > 0) {
3240     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3241   }
3242   return have_lock_and_allocate(word_size, tlab);
3243 }
3244 
3245 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3246 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3247 // to CardGeneration and share it...
3248 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3249   return CardGeneration::expand(bytes, expand_bytes);
3250 }
3251 
3252 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3253   CMSExpansionCause::Cause cause)
3254 {
3255 
3256   bool success = expand(bytes, expand_bytes);
3257 
3258   // remember why we expanded; this information is used
3259   // by shouldConcurrentCollect() when making decisions on whether to start
3260   // a new CMS cycle.
3261   if (success) {
3262     set_expansion_cause(cause);
3263     if (PrintGCDetails && Verbose) {
3264       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3265         CMSExpansionCause::to_string(cause));
3266     }
3267   }
3268 }
3269 
3270 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3271   HeapWord* res = NULL;
3272   MutexLocker x(ParGCRareEvent_lock);
3273   while (true) {
3274     // Expansion by some other thread might make alloc OK now:
3275     res = ps->lab.alloc(word_sz);
3276     if (res != NULL) return res;
3277     // If there's not enough expansion space available, give up.
3278     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3279       return NULL;
3280     }
3281     // Otherwise, we try expansion.
3282     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3283       CMSExpansionCause::_allocate_par_lab);
3284     // Now go around the loop and try alloc again;
3285     // A competing par_promote might beat us to the expansion space,
3286     // so we may go around the loop again if promotion fails agaion.
3287     if (GCExpandToAllocateDelayMillis > 0) {
3288       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3289     }
3290   }
3291 }
3292 
3293 
3294 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3295   PromotionInfo* promo) {
3296   MutexLocker x(ParGCRareEvent_lock);
3297   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3298   while (true) {
3299     // Expansion by some other thread might make alloc OK now:
3300     if (promo->ensure_spooling_space()) {
3301       assert(promo->has_spooling_space(),
3302              "Post-condition of successful ensure_spooling_space()");
3303       return true;
3304     }
3305     // If there's not enough expansion space available, give up.
3306     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3307       return false;
3308     }
3309     // Otherwise, we try expansion.
3310     expand(refill_size_bytes, MinHeapDeltaBytes,
3311       CMSExpansionCause::_allocate_par_spooling_space);
3312     // Now go around the loop and try alloc again;
3313     // A competing allocation might beat us to the expansion space,
3314     // so we may go around the loop again if allocation fails again.
3315     if (GCExpandToAllocateDelayMillis > 0) {
3316       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3317     }
3318   }
3319 }
3320 
3321 
3322 
3323 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3324   assert_locked_or_safepoint(Heap_lock);
3325   size_t size = ReservedSpace::page_align_size_down(bytes);
3326   if (size > 0) {
3327     shrink_by(size);
3328   }
3329 }
3330 
3331 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3332   assert_locked_or_safepoint(Heap_lock);
3333   bool result = _virtual_space.expand_by(bytes);
3334   if (result) {
3335     HeapWord* old_end = _cmsSpace->end();
3336     size_t new_word_size =
3337       heap_word_size(_virtual_space.committed_size());
3338     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3339     _bts->resize(new_word_size);  // resize the block offset shared array
3340     Universe::heap()->barrier_set()->resize_covered_region(mr);
3341     // Hmmmm... why doesn't CFLS::set_end verify locking?
3342     // This is quite ugly; FIX ME XXX
3343     _cmsSpace->assert_locked(freelistLock());
3344     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3345 
3346     // update the space and generation capacity counters
3347     if (UsePerfData) {
3348       _space_counters->update_capacity();
3349       _gen_counters->update_all();
3350     }
3351 
3352     if (Verbose && PrintGC) {
3353       size_t new_mem_size = _virtual_space.committed_size();
3354       size_t old_mem_size = new_mem_size - bytes;
3355       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3356                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3357     }
3358   }
3359   return result;
3360 }
3361 
3362 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3363   assert_locked_or_safepoint(Heap_lock);
3364   bool success = true;
3365   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3366   if (remaining_bytes > 0) {
3367     success = grow_by(remaining_bytes);
3368     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3369   }
3370   return success;
3371 }
3372 
3373 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3374   assert_locked_or_safepoint(Heap_lock);
3375   assert_lock_strong(freelistLock());
3376   // XXX Fix when compaction is implemented.
3377   warning("Shrinking of CMS not yet implemented");
3378   return;
3379 }
3380 
3381 CMSPhaseTracing::CMSPhaseTracing(bool print, const char* phase) {
3382   if (print) {
3383     gclog_or_tty->date_stamp(PrintGCDateStamps);
3384     gclog_or_tty->stamp(PrintGCTimeStamps);
3385     gclog_or_tty->print("%s", phase);
3386   }
3387 }
3388 
3389 CMSPhaseTracing::~CMSPhaseTracing() {}
3390 
3391 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3392 // phases.
3393 class CMSPhaseAccounting: public CMSPhaseTracing {
3394  public:
3395   CMSPhaseAccounting(CMSCollector *collector,
3396                      const char *phase,
3397                      bool print_cr = true);
3398   ~CMSPhaseAccounting();
3399 
3400  private:
3401   CMSCollector *_collector;
3402   const char *_phase;
3403   elapsedTimer _wallclock;
3404   bool _print_cr;
3405 
3406  public:
3407   // Not MT-safe; so do not pass around these StackObj's
3408   // where they may be accessed by other threads.
3409   jlong wallclock_millis() {
3410     assert(_wallclock.is_active(), "Wall clock should not stop");
3411     _wallclock.stop();  // to record time
3412     jlong ret = _wallclock.milliseconds();
3413     _wallclock.start(); // restart
3414     return ret;
3415   }
3416 };
3417 
3418 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3419                                        const char *phase,
3420                                        bool print_cr) :
3421     CMSPhaseTracing(PrintGCDetails, ""),
3422     _collector(collector), _phase(phase), _print_cr(print_cr) {
3423 
3424   if (PrintCMSStatistics != 0) {
3425     _collector->resetYields();
3426   }
3427   if (PrintGCDetails && PrintGCTimeStamps) {
3428     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3429       _collector->cmsGen()->short_name(), _phase);
3430   }
3431   _collector->resetTimer();
3432   _wallclock.start();
3433   _collector->startTimer();
3434 }
3435 
3436 CMSPhaseAccounting::~CMSPhaseAccounting() {
3437   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3438   _collector->stopTimer();
3439   _wallclock.stop();
3440   if (PrintGCDetails) {
3441     gclog_or_tty->date_stamp(PrintGCDateStamps);
3442     gclog_or_tty->stamp(PrintGCTimeStamps);
3443     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3444                  _collector->cmsGen()->short_name(),
3445                  _phase, _collector->timerValue(), _wallclock.seconds());
3446     if (_print_cr) {
3447       gclog_or_tty->print_cr("");
3448     }
3449     if (PrintCMSStatistics != 0) {
3450       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3451                     _collector->yields());
3452     }
3453   }
3454 }
3455 
3456 // CMS work
3457 
3458 // Checkpoint the roots into this generation from outside
3459 // this generation. [Note this initial checkpoint need only
3460 // be approximate -- we'll do a catch up phase subsequently.]
3461 void CMSCollector::checkpointRootsInitial(bool asynch) {
3462   assert(_collectorState == InitialMarking, "Wrong collector state");
3463   check_correct_thread_executing();
3464   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3465 
3466   ReferenceProcessor* rp = ref_processor();
3467   SpecializationStats::clear();
3468   assert(_restart_addr == NULL, "Control point invariant");
3469   if (asynch) {
3470     // acquire locks for subsequent manipulations
3471     MutexLockerEx x(bitMapLock(),
3472                     Mutex::_no_safepoint_check_flag);
3473     checkpointRootsInitialWork(asynch);
3474     // enable ("weak") refs discovery
3475     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3476     _collectorState = Marking;
3477   } else {
3478     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3479     // which recognizes if we are a CMS generation, and doesn't try to turn on
3480     // discovery; verify that they aren't meddling.
3481     assert(!rp->discovery_is_atomic(),
3482            "incorrect setting of discovery predicate");
3483     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3484            "ref discovery for this generation kind");
3485     // already have locks
3486     checkpointRootsInitialWork(asynch);
3487     // now enable ("weak") refs discovery
3488     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3489     _collectorState = Marking;
3490   }
3491   SpecializationStats::print();
3492 }
3493 
3494 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3495   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3496   assert(_collectorState == InitialMarking, "just checking");
3497 
3498   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3499   // precede our marking with a collection of all
3500   // younger generations to keep floating garbage to a minimum.
3501   // XXX: we won't do this for now -- it's an optimization to be done later.
3502 
3503   // already have locks
3504   assert_lock_strong(bitMapLock());
3505   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3506 
3507   // Setup the verification and class unloading state for this
3508   // CMS collection cycle.
3509   setup_cms_unloading_and_verification_state();
3510 
3511   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
3512     PrintGCDetails && Verbose, true, gclog_or_tty);)
3513   if (UseAdaptiveSizePolicy) {
3514     size_policy()->checkpoint_roots_initial_begin();
3515   }
3516 
3517   // Reset all the PLAB chunk arrays if necessary.
3518   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3519     reset_survivor_plab_arrays();
3520   }
3521 
3522   ResourceMark rm;
3523   HandleMark  hm;
3524 
3525   FalseClosure falseClosure;
3526   // In the case of a synchronous collection, we will elide the
3527   // remark step, so it's important to catch all the nmethod oops
3528   // in this step.
3529   // The final 'true' flag to gen_process_strong_roots will ensure this.
3530   // If 'async' is true, we can relax the nmethod tracing.
3531   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3532   GenCollectedHeap* gch = GenCollectedHeap::heap();
3533 
3534   verify_work_stacks_empty();
3535   verify_overflow_empty();
3536 
3537   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3538   // Update the saved marks which may affect the root scans.
3539   gch->save_marks();
3540 
3541   // weak reference processing has not started yet.
3542   ref_processor()->set_enqueuing_is_done(false);
3543 
3544   // Need to remember all newly created CLDs,
3545   // so that we can guarantee that the remark finds them.
3546   ClassLoaderDataGraph::remember_new_clds(true);
3547 
3548   // Whenever a CLD is found, it will be claimed before proceeding to mark
3549   // the klasses. The claimed marks need to be cleared before marking starts.
3550   ClassLoaderDataGraph::clear_claimed_marks();
3551 
3552   CMKlassClosure klass_closure(&notOlder);
3553   {
3554     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3555     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3556     gch->gen_process_strong_roots(_cmsGen->level(),
3557                                   true,   // younger gens are roots
3558                                   true,   // activate StrongRootsScope
3559                                   false,  // not scavenging
3560                                   SharedHeap::ScanningOption(roots_scanning_options()),
3561                                   &notOlder,
3562                                   true,   // walk all of code cache if (so & SO_CodeCache)
3563                                   NULL,
3564                                   &klass_closure);
3565   }
3566 
3567   // Clear mod-union table; it will be dirtied in the prologue of
3568   // CMS generation per each younger generation collection.
3569 
3570   assert(_modUnionTable.isAllClear(),
3571        "Was cleared in most recent final checkpoint phase"
3572        " or no bits are set in the gc_prologue before the start of the next "
3573        "subsequent marking phase.");
3574 
3575   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3576 
3577   // Save the end of the used_region of the constituent generations
3578   // to be used to limit the extent of sweep in each generation.
3579   save_sweep_limits();
3580   if (UseAdaptiveSizePolicy) {
3581     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3582   }
3583   verify_overflow_empty();
3584 }
3585 
3586 bool CMSCollector::markFromRoots(bool asynch) {
3587   // we might be tempted to assert that:
3588   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3589   //        "inconsistent argument?");
3590   // However that wouldn't be right, because it's possible that
3591   // a safepoint is indeed in progress as a younger generation
3592   // stop-the-world GC happens even as we mark in this generation.
3593   assert(_collectorState == Marking, "inconsistent state?");
3594   check_correct_thread_executing();
3595   verify_overflow_empty();
3596 
3597   bool res;
3598   if (asynch) {
3599 
3600     // Start the timers for adaptive size policy for the concurrent phases
3601     // Do it here so that the foreground MS can use the concurrent
3602     // timer since a foreground MS might has the sweep done concurrently
3603     // or STW.
3604     if (UseAdaptiveSizePolicy) {
3605       size_policy()->concurrent_marking_begin();
3606     }
3607 
3608     // Weak ref discovery note: We may be discovering weak
3609     // refs in this generation concurrent (but interleaved) with
3610     // weak ref discovery by a younger generation collector.
3611 
3612     CMSTokenSyncWithLocks ts(true, bitMapLock());
3613     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3614     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3615     res = markFromRootsWork(asynch);
3616     if (res) {
3617       _collectorState = Precleaning;
3618     } else { // We failed and a foreground collection wants to take over
3619       assert(_foregroundGCIsActive, "internal state inconsistency");
3620       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3621       if (PrintGCDetails) {
3622         gclog_or_tty->print_cr("bailing out to foreground collection");
3623       }
3624     }
3625     if (UseAdaptiveSizePolicy) {
3626       size_policy()->concurrent_marking_end();
3627     }
3628   } else {
3629     assert(SafepointSynchronize::is_at_safepoint(),
3630            "inconsistent with asynch == false");
3631     if (UseAdaptiveSizePolicy) {
3632       size_policy()->ms_collection_marking_begin();
3633     }
3634     // already have locks
3635     res = markFromRootsWork(asynch);
3636     _collectorState = FinalMarking;
3637     if (UseAdaptiveSizePolicy) {
3638       GenCollectedHeap* gch = GenCollectedHeap::heap();
3639       size_policy()->ms_collection_marking_end(gch->gc_cause());
3640     }
3641   }
3642   verify_overflow_empty();
3643   return res;
3644 }
3645 
3646 bool CMSCollector::markFromRootsWork(bool asynch) {
3647   // iterate over marked bits in bit map, doing a full scan and mark
3648   // from these roots using the following algorithm:
3649   // . if oop is to the right of the current scan pointer,
3650   //   mark corresponding bit (we'll process it later)
3651   // . else (oop is to left of current scan pointer)
3652   //   push oop on marking stack
3653   // . drain the marking stack
3654 
3655   // Note that when we do a marking step we need to hold the
3656   // bit map lock -- recall that direct allocation (by mutators)
3657   // and promotion (by younger generation collectors) is also
3658   // marking the bit map. [the so-called allocate live policy.]
3659   // Because the implementation of bit map marking is not
3660   // robust wrt simultaneous marking of bits in the same word,
3661   // we need to make sure that there is no such interference
3662   // between concurrent such updates.
3663 
3664   // already have locks
3665   assert_lock_strong(bitMapLock());
3666 
3667   verify_work_stacks_empty();
3668   verify_overflow_empty();
3669   bool result = false;
3670   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3671     result = do_marking_mt(asynch);
3672   } else {
3673     result = do_marking_st(asynch);
3674   }
3675   return result;
3676 }
3677 
3678 // Forward decl
3679 class CMSConcMarkingTask;
3680 
3681 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3682   CMSCollector*       _collector;
3683   CMSConcMarkingTask* _task;
3684  public:
3685   virtual void yield();
3686 
3687   // "n_threads" is the number of threads to be terminated.
3688   // "queue_set" is a set of work queues of other threads.
3689   // "collector" is the CMS collector associated with this task terminator.
3690   // "yield" indicates whether we need the gang as a whole to yield.
3691   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3692     ParallelTaskTerminator(n_threads, queue_set),
3693     _collector(collector) { }
3694 
3695   void set_task(CMSConcMarkingTask* task) {
3696     _task = task;
3697   }
3698 };
3699 
3700 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3701   CMSConcMarkingTask* _task;
3702  public:
3703   bool should_exit_termination();
3704   void set_task(CMSConcMarkingTask* task) {
3705     _task = task;
3706   }
3707 };
3708 
3709 // MT Concurrent Marking Task
3710 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3711   CMSCollector* _collector;
3712   int           _n_workers;                  // requested/desired # workers
3713   bool          _asynch;
3714   bool          _result;
3715   CompactibleFreeListSpace*  _cms_space;
3716   char          _pad_front[64];   // padding to ...
3717   HeapWord*     _global_finger;   // ... avoid sharing cache line
3718   char          _pad_back[64];
3719   HeapWord*     _restart_addr;
3720 
3721   //  Exposed here for yielding support
3722   Mutex* const _bit_map_lock;
3723 
3724   // The per thread work queues, available here for stealing
3725   OopTaskQueueSet*  _task_queues;
3726 
3727   // Termination (and yielding) support
3728   CMSConcMarkingTerminator _term;
3729   CMSConcMarkingTerminatorTerminator _term_term;
3730 
3731  public:
3732   CMSConcMarkingTask(CMSCollector* collector,
3733                  CompactibleFreeListSpace* cms_space,
3734                  bool asynch,
3735                  YieldingFlexibleWorkGang* workers,
3736                  OopTaskQueueSet* task_queues):
3737     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3738     _collector(collector),
3739     _cms_space(cms_space),
3740     _asynch(asynch), _n_workers(0), _result(true),
3741     _task_queues(task_queues),
3742     _term(_n_workers, task_queues, _collector),
3743     _bit_map_lock(collector->bitMapLock())
3744   {
3745     _requested_size = _n_workers;
3746     _term.set_task(this);
3747     _term_term.set_task(this);
3748     _restart_addr = _global_finger = _cms_space->bottom();
3749   }
3750 
3751 
3752   OopTaskQueueSet* task_queues()  { return _task_queues; }
3753 
3754   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3755 
3756   HeapWord** global_finger_addr() { return &_global_finger; }
3757 
3758   CMSConcMarkingTerminator* terminator() { return &_term; }
3759 
3760   virtual void set_for_termination(int active_workers) {
3761     terminator()->reset_for_reuse(active_workers);
3762   }
3763 
3764   void work(uint worker_id);
3765   bool should_yield() {
3766     return    ConcurrentMarkSweepThread::should_yield()
3767            && !_collector->foregroundGCIsActive()
3768            && _asynch;
3769   }
3770 
3771   virtual void coordinator_yield();  // stuff done by coordinator
3772   bool result() { return _result; }
3773 
3774   void reset(HeapWord* ra) {
3775     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3776     _restart_addr = _global_finger = ra;
3777     _term.reset_for_reuse();
3778   }
3779 
3780   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3781                                            OopTaskQueue* work_q);
3782 
3783  private:
3784   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3785   void do_work_steal(int i);
3786   void bump_global_finger(HeapWord* f);
3787 };
3788 
3789 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3790   assert(_task != NULL, "Error");
3791   return _task->yielding();
3792   // Note that we do not need the disjunct || _task->should_yield() above
3793   // because we want terminating threads to yield only if the task
3794   // is already in the midst of yielding, which happens only after at least one
3795   // thread has yielded.
3796 }
3797 
3798 void CMSConcMarkingTerminator::yield() {
3799   if (_task->should_yield()) {
3800     _task->yield();
3801   } else {
3802     ParallelTaskTerminator::yield();
3803   }
3804 }
3805 
3806 ////////////////////////////////////////////////////////////////
3807 // Concurrent Marking Algorithm Sketch
3808 ////////////////////////////////////////////////////////////////
3809 // Until all tasks exhausted (both spaces):
3810 // -- claim next available chunk
3811 // -- bump global finger via CAS
3812 // -- find first object that starts in this chunk
3813 //    and start scanning bitmap from that position
3814 // -- scan marked objects for oops
3815 // -- CAS-mark target, and if successful:
3816 //    . if target oop is above global finger (volatile read)
3817 //      nothing to do
3818 //    . if target oop is in chunk and above local finger
3819 //        then nothing to do
3820 //    . else push on work-queue
3821 // -- Deal with possible overflow issues:
3822 //    . local work-queue overflow causes stuff to be pushed on
3823 //      global (common) overflow queue
3824 //    . always first empty local work queue
3825 //    . then get a batch of oops from global work queue if any
3826 //    . then do work stealing
3827 // -- When all tasks claimed (both spaces)
3828 //    and local work queue empty,
3829 //    then in a loop do:
3830 //    . check global overflow stack; steal a batch of oops and trace
3831 //    . try to steal from other threads oif GOS is empty
3832 //    . if neither is available, offer termination
3833 // -- Terminate and return result
3834 //
3835 void CMSConcMarkingTask::work(uint worker_id) {
3836   elapsedTimer _timer;
3837   ResourceMark rm;
3838   HandleMark hm;
3839 
3840   DEBUG_ONLY(_collector->verify_overflow_empty();)
3841 
3842   // Before we begin work, our work queue should be empty
3843   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3844   // Scan the bitmap covering _cms_space, tracing through grey objects.
3845   _timer.start();
3846   do_scan_and_mark(worker_id, _cms_space);
3847   _timer.stop();
3848   if (PrintCMSStatistics != 0) {
3849     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3850       worker_id, _timer.seconds());
3851       // XXX: need xxx/xxx type of notation, two timers
3852   }
3853 
3854   // ... do work stealing
3855   _timer.reset();
3856   _timer.start();
3857   do_work_steal(worker_id);
3858   _timer.stop();
3859   if (PrintCMSStatistics != 0) {
3860     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3861       worker_id, _timer.seconds());
3862       // XXX: need xxx/xxx type of notation, two timers
3863   }
3864   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3865   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3866   // Note that under the current task protocol, the
3867   // following assertion is true even of the spaces
3868   // expanded since the completion of the concurrent
3869   // marking. XXX This will likely change under a strict
3870   // ABORT semantics.
3871   // After perm removal the comparison was changed to
3872   // greater than or equal to from strictly greater than.
3873   // Before perm removal the highest address sweep would
3874   // have been at the end of perm gen but now is at the
3875   // end of the tenured gen.
3876   assert(_global_finger >=  _cms_space->end(),
3877          "All tasks have been completed");
3878   DEBUG_ONLY(_collector->verify_overflow_empty();)
3879 }
3880 
3881 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3882   HeapWord* read = _global_finger;
3883   HeapWord* cur  = read;
3884   while (f > read) {
3885     cur = read;
3886     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3887     if (cur == read) {
3888       // our cas succeeded
3889       assert(_global_finger >= f, "protocol consistency");
3890       break;
3891     }
3892   }
3893 }
3894 
3895 // This is really inefficient, and should be redone by
3896 // using (not yet available) block-read and -write interfaces to the
3897 // stack and the work_queue. XXX FIX ME !!!
3898 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3899                                                       OopTaskQueue* work_q) {
3900   // Fast lock-free check
3901   if (ovflw_stk->length() == 0) {
3902     return false;
3903   }
3904   assert(work_q->size() == 0, "Shouldn't steal");
3905   MutexLockerEx ml(ovflw_stk->par_lock(),
3906                    Mutex::_no_safepoint_check_flag);
3907   // Grab up to 1/4 the size of the work queue
3908   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3909                     (size_t)ParGCDesiredObjsFromOverflowList);
3910   num = MIN2(num, ovflw_stk->length());
3911   for (int i = (int) num; i > 0; i--) {
3912     oop cur = ovflw_stk->pop();
3913     assert(cur != NULL, "Counted wrong?");
3914     work_q->push(cur);
3915   }
3916   return num > 0;
3917 }
3918 
3919 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3920   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3921   int n_tasks = pst->n_tasks();
3922   // We allow that there may be no tasks to do here because
3923   // we are restarting after a stack overflow.
3924   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3925   uint nth_task = 0;
3926 
3927   HeapWord* aligned_start = sp->bottom();
3928   if (sp->used_region().contains(_restart_addr)) {
3929     // Align down to a card boundary for the start of 0th task
3930     // for this space.
3931     aligned_start =
3932       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3933                                  CardTableModRefBS::card_size);
3934   }
3935 
3936   size_t chunk_size = sp->marking_task_size();
3937   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3938     // Having claimed the nth task in this space,
3939     // compute the chunk that it corresponds to:
3940     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3941                                aligned_start + (nth_task+1)*chunk_size);
3942     // Try and bump the global finger via a CAS;
3943     // note that we need to do the global finger bump
3944     // _before_ taking the intersection below, because
3945     // the task corresponding to that region will be
3946     // deemed done even if the used_region() expands
3947     // because of allocation -- as it almost certainly will
3948     // during start-up while the threads yield in the
3949     // closure below.
3950     HeapWord* finger = span.end();
3951     bump_global_finger(finger);   // atomically
3952     // There are null tasks here corresponding to chunks
3953     // beyond the "top" address of the space.
3954     span = span.intersection(sp->used_region());
3955     if (!span.is_empty()) {  // Non-null task
3956       HeapWord* prev_obj;
3957       assert(!span.contains(_restart_addr) || nth_task == 0,
3958              "Inconsistency");
3959       if (nth_task == 0) {
3960         // For the 0th task, we'll not need to compute a block_start.
3961         if (span.contains(_restart_addr)) {
3962           // In the case of a restart because of stack overflow,
3963           // we might additionally skip a chunk prefix.
3964           prev_obj = _restart_addr;
3965         } else {
3966           prev_obj = span.start();
3967         }
3968       } else {
3969         // We want to skip the first object because
3970         // the protocol is to scan any object in its entirety
3971         // that _starts_ in this span; a fortiori, any
3972         // object starting in an earlier span is scanned
3973         // as part of an earlier claimed task.
3974         // Below we use the "careful" version of block_start
3975         // so we do not try to navigate uninitialized objects.
3976         prev_obj = sp->block_start_careful(span.start());
3977         // Below we use a variant of block_size that uses the
3978         // Printezis bits to avoid waiting for allocated
3979         // objects to become initialized/parsable.
3980         while (prev_obj < span.start()) {
3981           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3982           if (sz > 0) {
3983             prev_obj += sz;
3984           } else {
3985             // In this case we may end up doing a bit of redundant
3986             // scanning, but that appears unavoidable, short of
3987             // locking the free list locks; see bug 6324141.
3988             break;
3989           }
3990         }
3991       }
3992       if (prev_obj < span.end()) {
3993         MemRegion my_span = MemRegion(prev_obj, span.end());
3994         // Do the marking work within a non-empty span --
3995         // the last argument to the constructor indicates whether the
3996         // iteration should be incremental with periodic yields.
3997         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3998                                     &_collector->_markBitMap,
3999                                     work_queue(i),
4000                                     &_collector->_markStack,
4001                                     _asynch);
4002         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4003       } // else nothing to do for this task
4004     }   // else nothing to do for this task
4005   }
4006   // We'd be tempted to assert here that since there are no
4007   // more tasks left to claim in this space, the global_finger
4008   // must exceed space->top() and a fortiori space->end(). However,
4009   // that would not quite be correct because the bumping of
4010   // global_finger occurs strictly after the claiming of a task,
4011   // so by the time we reach here the global finger may not yet
4012   // have been bumped up by the thread that claimed the last
4013   // task.
4014   pst->all_tasks_completed();
4015 }
4016 
4017 class Par_ConcMarkingClosure: public CMSOopClosure {
4018  private:
4019   CMSCollector* _collector;
4020   CMSConcMarkingTask* _task;
4021   MemRegion     _span;
4022   CMSBitMap*    _bit_map;
4023   CMSMarkStack* _overflow_stack;
4024   OopTaskQueue* _work_queue;
4025  protected:
4026   DO_OOP_WORK_DEFN
4027  public:
4028   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4029                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4030     CMSOopClosure(collector->ref_processor()),
4031     _collector(collector),
4032     _task(task),
4033     _span(collector->_span),
4034     _work_queue(work_queue),
4035     _bit_map(bit_map),
4036     _overflow_stack(overflow_stack)
4037   { }
4038   virtual void do_oop(oop* p);
4039   virtual void do_oop(narrowOop* p);
4040 
4041   void trim_queue(size_t max);
4042   void handle_stack_overflow(HeapWord* lost);
4043   void do_yield_check() {
4044     if (_task->should_yield()) {
4045       _task->yield();
4046     }
4047   }
4048 };
4049 
4050 // Grey object scanning during work stealing phase --
4051 // the salient assumption here is that any references
4052 // that are in these stolen objects being scanned must
4053 // already have been initialized (else they would not have
4054 // been published), so we do not need to check for
4055 // uninitialized objects before pushing here.
4056 void Par_ConcMarkingClosure::do_oop(oop obj) {
4057   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4058   HeapWord* addr = (HeapWord*)obj;
4059   // Check if oop points into the CMS generation
4060   // and is not marked
4061   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4062     // a white object ...
4063     // If we manage to "claim" the object, by being the
4064     // first thread to mark it, then we push it on our
4065     // marking stack
4066     if (_bit_map->par_mark(addr)) {     // ... now grey
4067       // push on work queue (grey set)
4068       bool simulate_overflow = false;
4069       NOT_PRODUCT(
4070         if (CMSMarkStackOverflowALot &&
4071             _collector->simulate_overflow()) {
4072           // simulate a stack overflow
4073           simulate_overflow = true;
4074         }
4075       )
4076       if (simulate_overflow ||
4077           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4078         // stack overflow
4079         if (PrintCMSStatistics != 0) {
4080           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4081                                  SIZE_FORMAT, _overflow_stack->capacity());
4082         }
4083         // We cannot assert that the overflow stack is full because
4084         // it may have been emptied since.
4085         assert(simulate_overflow ||
4086                _work_queue->size() == _work_queue->max_elems(),
4087               "Else push should have succeeded");
4088         handle_stack_overflow(addr);
4089       }
4090     } // Else, some other thread got there first
4091     do_yield_check();
4092   }
4093 }
4094 
4095 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4096 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4097 
4098 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4099   while (_work_queue->size() > max) {
4100     oop new_oop;
4101     if (_work_queue->pop_local(new_oop)) {
4102       assert(new_oop->is_oop(), "Should be an oop");
4103       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4104       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4105       new_oop->oop_iterate(this);  // do_oop() above
4106       do_yield_check();
4107     }
4108   }
4109 }
4110 
4111 // Upon stack overflow, we discard (part of) the stack,
4112 // remembering the least address amongst those discarded
4113 // in CMSCollector's _restart_address.
4114 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4115   // We need to do this under a mutex to prevent other
4116   // workers from interfering with the work done below.
4117   MutexLockerEx ml(_overflow_stack->par_lock(),
4118                    Mutex::_no_safepoint_check_flag);
4119   // Remember the least grey address discarded
4120   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4121   _collector->lower_restart_addr(ra);
4122   _overflow_stack->reset();  // discard stack contents
4123   _overflow_stack->expand(); // expand the stack if possible
4124 }
4125 
4126 
4127 void CMSConcMarkingTask::do_work_steal(int i) {
4128   OopTaskQueue* work_q = work_queue(i);
4129   oop obj_to_scan;
4130   CMSBitMap* bm = &(_collector->_markBitMap);
4131   CMSMarkStack* ovflw = &(_collector->_markStack);
4132   int* seed = _collector->hash_seed(i);
4133   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4134   while (true) {
4135     cl.trim_queue(0);
4136     assert(work_q->size() == 0, "Should have been emptied above");
4137     if (get_work_from_overflow_stack(ovflw, work_q)) {
4138       // Can't assert below because the work obtained from the
4139       // overflow stack may already have been stolen from us.
4140       // assert(work_q->size() > 0, "Work from overflow stack");
4141       continue;
4142     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4143       assert(obj_to_scan->is_oop(), "Should be an oop");
4144       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4145       obj_to_scan->oop_iterate(&cl);
4146     } else if (terminator()->offer_termination(&_term_term)) {
4147       assert(work_q->size() == 0, "Impossible!");
4148       break;
4149     } else if (yielding() || should_yield()) {
4150       yield();
4151     }
4152   }
4153 }
4154 
4155 // This is run by the CMS (coordinator) thread.
4156 void CMSConcMarkingTask::coordinator_yield() {
4157   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4158          "CMS thread should hold CMS token");
4159   // First give up the locks, then yield, then re-lock
4160   // We should probably use a constructor/destructor idiom to
4161   // do this unlock/lock or modify the MutexUnlocker class to
4162   // serve our purpose. XXX
4163   assert_lock_strong(_bit_map_lock);
4164   _bit_map_lock->unlock();
4165   ConcurrentMarkSweepThread::desynchronize(true);
4166   ConcurrentMarkSweepThread::acknowledge_yield_request();
4167   _collector->stopTimer();
4168   if (PrintCMSStatistics != 0) {
4169     _collector->incrementYields();
4170   }
4171   _collector->icms_wait();
4172 
4173   // It is possible for whichever thread initiated the yield request
4174   // not to get a chance to wake up and take the bitmap lock between
4175   // this thread releasing it and reacquiring it. So, while the
4176   // should_yield() flag is on, let's sleep for a bit to give the
4177   // other thread a chance to wake up. The limit imposed on the number
4178   // of iterations is defensive, to avoid any unforseen circumstances
4179   // putting us into an infinite loop. Since it's always been this
4180   // (coordinator_yield()) method that was observed to cause the
4181   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4182   // which is by default non-zero. For the other seven methods that
4183   // also perform the yield operation, as are using a different
4184   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4185   // can enable the sleeping for those methods too, if necessary.
4186   // See 6442774.
4187   //
4188   // We really need to reconsider the synchronization between the GC
4189   // thread and the yield-requesting threads in the future and we
4190   // should really use wait/notify, which is the recommended
4191   // way of doing this type of interaction. Additionally, we should
4192   // consolidate the eight methods that do the yield operation and they
4193   // are almost identical into one for better maintenability and
4194   // readability. See 6445193.
4195   //
4196   // Tony 2006.06.29
4197   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4198                    ConcurrentMarkSweepThread::should_yield() &&
4199                    !CMSCollector::foregroundGCIsActive(); ++i) {
4200     os::sleep(Thread::current(), 1, false);
4201     ConcurrentMarkSweepThread::acknowledge_yield_request();
4202   }
4203 
4204   ConcurrentMarkSweepThread::synchronize(true);
4205   _bit_map_lock->lock_without_safepoint_check();
4206   _collector->startTimer();
4207 }
4208 
4209 bool CMSCollector::do_marking_mt(bool asynch) {
4210   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4211   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4212                                        conc_workers()->total_workers(),
4213                                        conc_workers()->active_workers(),
4214                                        Threads::number_of_non_daemon_threads());
4215   conc_workers()->set_active_workers(num_workers);
4216 
4217   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4218 
4219   CMSConcMarkingTask tsk(this,
4220                          cms_space,
4221                          asynch,
4222                          conc_workers(),
4223                          task_queues());
4224 
4225   // Since the actual number of workers we get may be different
4226   // from the number we requested above, do we need to do anything different
4227   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4228   // class?? XXX
4229   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4230 
4231   // Refs discovery is already non-atomic.
4232   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4233   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4234   conc_workers()->start_task(&tsk);
4235   while (tsk.yielded()) {
4236     tsk.coordinator_yield();
4237     conc_workers()->continue_task(&tsk);
4238   }
4239   // If the task was aborted, _restart_addr will be non-NULL
4240   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4241   while (_restart_addr != NULL) {
4242     // XXX For now we do not make use of ABORTED state and have not
4243     // yet implemented the right abort semantics (even in the original
4244     // single-threaded CMS case). That needs some more investigation
4245     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4246     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4247     // If _restart_addr is non-NULL, a marking stack overflow
4248     // occurred; we need to do a fresh marking iteration from the
4249     // indicated restart address.
4250     if (_foregroundGCIsActive && asynch) {
4251       // We may be running into repeated stack overflows, having
4252       // reached the limit of the stack size, while making very
4253       // slow forward progress. It may be best to bail out and
4254       // let the foreground collector do its job.
4255       // Clear _restart_addr, so that foreground GC
4256       // works from scratch. This avoids the headache of
4257       // a "rescan" which would otherwise be needed because
4258       // of the dirty mod union table & card table.
4259       _restart_addr = NULL;
4260       return false;
4261     }
4262     // Adjust the task to restart from _restart_addr
4263     tsk.reset(_restart_addr);
4264     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4265                   _restart_addr);
4266     _restart_addr = NULL;
4267     // Get the workers going again
4268     conc_workers()->start_task(&tsk);
4269     while (tsk.yielded()) {
4270       tsk.coordinator_yield();
4271       conc_workers()->continue_task(&tsk);
4272     }
4273   }
4274   assert(tsk.completed(), "Inconsistency");
4275   assert(tsk.result() == true, "Inconsistency");
4276   return true;
4277 }
4278 
4279 bool CMSCollector::do_marking_st(bool asynch) {
4280   ResourceMark rm;
4281   HandleMark   hm;
4282 
4283   // Temporarily make refs discovery single threaded (non-MT)
4284   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4285   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4286     &_markStack, CMSYield && asynch);
4287   // the last argument to iterate indicates whether the iteration
4288   // should be incremental with periodic yields.
4289   _markBitMap.iterate(&markFromRootsClosure);
4290   // If _restart_addr is non-NULL, a marking stack overflow
4291   // occurred; we need to do a fresh iteration from the
4292   // indicated restart address.
4293   while (_restart_addr != NULL) {
4294     if (_foregroundGCIsActive && asynch) {
4295       // We may be running into repeated stack overflows, having
4296       // reached the limit of the stack size, while making very
4297       // slow forward progress. It may be best to bail out and
4298       // let the foreground collector do its job.
4299       // Clear _restart_addr, so that foreground GC
4300       // works from scratch. This avoids the headache of
4301       // a "rescan" which would otherwise be needed because
4302       // of the dirty mod union table & card table.
4303       _restart_addr = NULL;
4304       return false;  // indicating failure to complete marking
4305     }
4306     // Deal with stack overflow:
4307     // we restart marking from _restart_addr
4308     HeapWord* ra = _restart_addr;
4309     markFromRootsClosure.reset(ra);
4310     _restart_addr = NULL;
4311     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4312   }
4313   return true;
4314 }
4315 
4316 void CMSCollector::preclean() {
4317   check_correct_thread_executing();
4318   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4319   verify_work_stacks_empty();
4320   verify_overflow_empty();
4321   _abort_preclean = false;
4322   if (CMSPrecleaningEnabled) {
4323     _eden_chunk_index = 0;
4324     size_t used = get_eden_used();
4325     size_t capacity = get_eden_capacity();
4326     // Don't start sampling unless we will get sufficiently
4327     // many samples.
4328     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4329                 * CMSScheduleRemarkEdenPenetration)) {
4330       _start_sampling = true;
4331     } else {
4332       _start_sampling = false;
4333     }
4334     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4335     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4336     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4337   }
4338   CMSTokenSync x(true); // is cms thread
4339   if (CMSPrecleaningEnabled) {
4340     sample_eden();
4341     _collectorState = AbortablePreclean;
4342   } else {
4343     _collectorState = FinalMarking;
4344   }
4345   verify_work_stacks_empty();
4346   verify_overflow_empty();
4347 }
4348 
4349 // Try and schedule the remark such that young gen
4350 // occupancy is CMSScheduleRemarkEdenPenetration %.
4351 void CMSCollector::abortable_preclean() {
4352   check_correct_thread_executing();
4353   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4354   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4355 
4356   // If Eden's current occupancy is below this threshold,
4357   // immediately schedule the remark; else preclean
4358   // past the next scavenge in an effort to
4359   // schedule the pause as described avove. By choosing
4360   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4361   // we will never do an actual abortable preclean cycle.
4362   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4363     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4364     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4365     // We need more smarts in the abortable preclean
4366     // loop below to deal with cases where allocation
4367     // in young gen is very very slow, and our precleaning
4368     // is running a losing race against a horde of
4369     // mutators intent on flooding us with CMS updates
4370     // (dirty cards).
4371     // One, admittedly dumb, strategy is to give up
4372     // after a certain number of abortable precleaning loops
4373     // or after a certain maximum time. We want to make
4374     // this smarter in the next iteration.
4375     // XXX FIX ME!!! YSR
4376     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4377     while (!(should_abort_preclean() ||
4378              ConcurrentMarkSweepThread::should_terminate())) {
4379       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4380       cumworkdone += workdone;
4381       loops++;
4382       // Voluntarily terminate abortable preclean phase if we have
4383       // been at it for too long.
4384       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4385           loops >= CMSMaxAbortablePrecleanLoops) {
4386         if (PrintGCDetails) {
4387           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4388         }
4389         break;
4390       }
4391       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4392         if (PrintGCDetails) {
4393           gclog_or_tty->print(" CMS: abort preclean due to time ");
4394         }
4395         break;
4396       }
4397       // If we are doing little work each iteration, we should
4398       // take a short break.
4399       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4400         // Sleep for some time, waiting for work to accumulate
4401         stopTimer();
4402         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4403         startTimer();
4404         waited++;
4405       }
4406     }
4407     if (PrintCMSStatistics > 0) {
4408       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4409                           loops, waited, cumworkdone);
4410     }
4411   }
4412   CMSTokenSync x(true); // is cms thread
4413   if (_collectorState != Idling) {
4414     assert(_collectorState == AbortablePreclean,
4415            "Spontaneous state transition?");
4416     _collectorState = FinalMarking;
4417   } // Else, a foreground collection completed this CMS cycle.
4418   return;
4419 }
4420 
4421 // Respond to an Eden sampling opportunity
4422 void CMSCollector::sample_eden() {
4423   // Make sure a young gc cannot sneak in between our
4424   // reading and recording of a sample.
4425   assert(Thread::current()->is_ConcurrentGC_thread(),
4426          "Only the cms thread may collect Eden samples");
4427   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4428          "Should collect samples while holding CMS token");
4429   if (!_start_sampling) {
4430     return;
4431   }
4432   if (_eden_chunk_array) {
4433     if (_eden_chunk_index < _eden_chunk_capacity) {
4434       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4435       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4436              "Unexpected state of Eden");
4437       // We'd like to check that what we just sampled is an oop-start address;
4438       // however, we cannot do that here since the object may not yet have been
4439       // initialized. So we'll instead do the check when we _use_ this sample
4440       // later.
4441       if (_eden_chunk_index == 0 ||
4442           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4443                          _eden_chunk_array[_eden_chunk_index-1])
4444            >= CMSSamplingGrain)) {
4445         _eden_chunk_index++;  // commit sample
4446       }
4447     }
4448   }
4449   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4450     size_t used = get_eden_used();
4451     size_t capacity = get_eden_capacity();
4452     assert(used <= capacity, "Unexpected state of Eden");
4453     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4454       _abort_preclean = true;
4455     }
4456   }
4457 }
4458 
4459 
4460 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4461   assert(_collectorState == Precleaning ||
4462          _collectorState == AbortablePreclean, "incorrect state");
4463   ResourceMark rm;
4464   HandleMark   hm;
4465 
4466   // Precleaning is currently not MT but the reference processor
4467   // may be set for MT.  Disable it temporarily here.
4468   ReferenceProcessor* rp = ref_processor();
4469   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4470 
4471   // Do one pass of scrubbing the discovered reference lists
4472   // to remove any reference objects with strongly-reachable
4473   // referents.
4474   if (clean_refs) {
4475     CMSPrecleanRefsYieldClosure yield_cl(this);
4476     assert(rp->span().equals(_span), "Spans should be equal");
4477     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4478                                    &_markStack, true /* preclean */);
4479     CMSDrainMarkingStackClosure complete_trace(this,
4480                                    _span, &_markBitMap, &_markStack,
4481                                    &keep_alive, true /* preclean */);
4482 
4483     // We don't want this step to interfere with a young
4484     // collection because we don't want to take CPU
4485     // or memory bandwidth away from the young GC threads
4486     // (which may be as many as there are CPUs).
4487     // Note that we don't need to protect ourselves from
4488     // interference with mutators because they can't
4489     // manipulate the discovered reference lists nor affect
4490     // the computed reachability of the referents, the
4491     // only properties manipulated by the precleaning
4492     // of these reference lists.
4493     stopTimer();
4494     CMSTokenSyncWithLocks x(true /* is cms thread */,
4495                             bitMapLock());
4496     startTimer();
4497     sample_eden();
4498 
4499     // The following will yield to allow foreground
4500     // collection to proceed promptly. XXX YSR:
4501     // The code in this method may need further
4502     // tweaking for better performance and some restructuring
4503     // for cleaner interfaces.
4504     rp->preclean_discovered_references(
4505           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl);
4506   }
4507 
4508   if (clean_survivor) {  // preclean the active survivor space(s)
4509     assert(_young_gen->kind() == Generation::DefNew ||
4510            _young_gen->kind() == Generation::ParNew ||
4511            _young_gen->kind() == Generation::ASParNew,
4512          "incorrect type for cast");
4513     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4514     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4515                              &_markBitMap, &_modUnionTable,
4516                              &_markStack, true /* precleaning phase */);
4517     stopTimer();
4518     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4519                              bitMapLock());
4520     startTimer();
4521     unsigned int before_count =
4522       GenCollectedHeap::heap()->total_collections();
4523     SurvivorSpacePrecleanClosure
4524       sss_cl(this, _span, &_markBitMap, &_markStack,
4525              &pam_cl, before_count, CMSYield);
4526     dng->from()->object_iterate_careful(&sss_cl);
4527     dng->to()->object_iterate_careful(&sss_cl);
4528   }
4529   MarkRefsIntoAndScanClosure
4530     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4531              &_markStack, this, CMSYield,
4532              true /* precleaning phase */);
4533   // CAUTION: The following closure has persistent state that may need to
4534   // be reset upon a decrease in the sequence of addresses it
4535   // processes.
4536   ScanMarkedObjectsAgainCarefullyClosure
4537     smoac_cl(this, _span,
4538       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4539 
4540   // Preclean dirty cards in ModUnionTable and CardTable using
4541   // appropriate convergence criterion;
4542   // repeat CMSPrecleanIter times unless we find that
4543   // we are losing.
4544   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4545   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4546          "Bad convergence multiplier");
4547   assert(CMSPrecleanThreshold >= 100,
4548          "Unreasonably low CMSPrecleanThreshold");
4549 
4550   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4551   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4552        numIter < CMSPrecleanIter;
4553        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4554     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4555     if (Verbose && PrintGCDetails) {
4556       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4557     }
4558     // Either there are very few dirty cards, so re-mark
4559     // pause will be small anyway, or our pre-cleaning isn't
4560     // that much faster than the rate at which cards are being
4561     // dirtied, so we might as well stop and re-mark since
4562     // precleaning won't improve our re-mark time by much.
4563     if (curNumCards <= CMSPrecleanThreshold ||
4564         (numIter > 0 &&
4565          (curNumCards * CMSPrecleanDenominator >
4566          lastNumCards * CMSPrecleanNumerator))) {
4567       numIter++;
4568       cumNumCards += curNumCards;
4569       break;
4570     }
4571   }
4572 
4573   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4574 
4575   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4576   cumNumCards += curNumCards;
4577   if (PrintGCDetails && PrintCMSStatistics != 0) {
4578     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4579                   curNumCards, cumNumCards, numIter);
4580   }
4581   return cumNumCards;   // as a measure of useful work done
4582 }
4583 
4584 // PRECLEANING NOTES:
4585 // Precleaning involves:
4586 // . reading the bits of the modUnionTable and clearing the set bits.
4587 // . For the cards corresponding to the set bits, we scan the
4588 //   objects on those cards. This means we need the free_list_lock
4589 //   so that we can safely iterate over the CMS space when scanning
4590 //   for oops.
4591 // . When we scan the objects, we'll be both reading and setting
4592 //   marks in the marking bit map, so we'll need the marking bit map.
4593 // . For protecting _collector_state transitions, we take the CGC_lock.
4594 //   Note that any races in the reading of of card table entries by the
4595 //   CMS thread on the one hand and the clearing of those entries by the
4596 //   VM thread or the setting of those entries by the mutator threads on the
4597 //   other are quite benign. However, for efficiency it makes sense to keep
4598 //   the VM thread from racing with the CMS thread while the latter is
4599 //   dirty card info to the modUnionTable. We therefore also use the
4600 //   CGC_lock to protect the reading of the card table and the mod union
4601 //   table by the CM thread.
4602 // . We run concurrently with mutator updates, so scanning
4603 //   needs to be done carefully  -- we should not try to scan
4604 //   potentially uninitialized objects.
4605 //
4606 // Locking strategy: While holding the CGC_lock, we scan over and
4607 // reset a maximal dirty range of the mod union / card tables, then lock
4608 // the free_list_lock and bitmap lock to do a full marking, then
4609 // release these locks; and repeat the cycle. This allows for a
4610 // certain amount of fairness in the sharing of these locks between
4611 // the CMS collector on the one hand, and the VM thread and the
4612 // mutators on the other.
4613 
4614 // NOTE: preclean_mod_union_table() and preclean_card_table()
4615 // further below are largely identical; if you need to modify
4616 // one of these methods, please check the other method too.
4617 
4618 size_t CMSCollector::preclean_mod_union_table(
4619   ConcurrentMarkSweepGeneration* gen,
4620   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4621   verify_work_stacks_empty();
4622   verify_overflow_empty();
4623 
4624   // strategy: starting with the first card, accumulate contiguous
4625   // ranges of dirty cards; clear these cards, then scan the region
4626   // covered by these cards.
4627 
4628   // Since all of the MUT is committed ahead, we can just use
4629   // that, in case the generations expand while we are precleaning.
4630   // It might also be fine to just use the committed part of the
4631   // generation, but we might potentially miss cards when the
4632   // generation is rapidly expanding while we are in the midst
4633   // of precleaning.
4634   HeapWord* startAddr = gen->reserved().start();
4635   HeapWord* endAddr   = gen->reserved().end();
4636 
4637   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4638 
4639   size_t numDirtyCards, cumNumDirtyCards;
4640   HeapWord *nextAddr, *lastAddr;
4641   for (cumNumDirtyCards = numDirtyCards = 0,
4642        nextAddr = lastAddr = startAddr;
4643        nextAddr < endAddr;
4644        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4645 
4646     ResourceMark rm;
4647     HandleMark   hm;
4648 
4649     MemRegion dirtyRegion;
4650     {
4651       stopTimer();
4652       // Potential yield point
4653       CMSTokenSync ts(true);
4654       startTimer();
4655       sample_eden();
4656       // Get dirty region starting at nextOffset (inclusive),
4657       // simultaneously clearing it.
4658       dirtyRegion =
4659         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4660       assert(dirtyRegion.start() >= nextAddr,
4661              "returned region inconsistent?");
4662     }
4663     // Remember where the next search should begin.
4664     // The returned region (if non-empty) is a right open interval,
4665     // so lastOffset is obtained from the right end of that
4666     // interval.
4667     lastAddr = dirtyRegion.end();
4668     // Should do something more transparent and less hacky XXX
4669     numDirtyCards =
4670       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4671 
4672     // We'll scan the cards in the dirty region (with periodic
4673     // yields for foreground GC as needed).
4674     if (!dirtyRegion.is_empty()) {
4675       assert(numDirtyCards > 0, "consistency check");
4676       HeapWord* stop_point = NULL;
4677       stopTimer();
4678       // Potential yield point
4679       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4680                                bitMapLock());
4681       startTimer();
4682       {
4683         verify_work_stacks_empty();
4684         verify_overflow_empty();
4685         sample_eden();
4686         stop_point =
4687           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4688       }
4689       if (stop_point != NULL) {
4690         // The careful iteration stopped early either because it found an
4691         // uninitialized object, or because we were in the midst of an
4692         // "abortable preclean", which should now be aborted. Redirty
4693         // the bits corresponding to the partially-scanned or unscanned
4694         // cards. We'll either restart at the next block boundary or
4695         // abort the preclean.
4696         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4697                "Should only be AbortablePreclean.");
4698         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4699         if (should_abort_preclean()) {
4700           break; // out of preclean loop
4701         } else {
4702           // Compute the next address at which preclean should pick up;
4703           // might need bitMapLock in order to read P-bits.
4704           lastAddr = next_card_start_after_block(stop_point);
4705         }
4706       }
4707     } else {
4708       assert(lastAddr == endAddr, "consistency check");
4709       assert(numDirtyCards == 0, "consistency check");
4710       break;
4711     }
4712   }
4713   verify_work_stacks_empty();
4714   verify_overflow_empty();
4715   return cumNumDirtyCards;
4716 }
4717 
4718 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4719 // below are largely identical; if you need to modify
4720 // one of these methods, please check the other method too.
4721 
4722 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4723   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4724   // strategy: it's similar to precleamModUnionTable above, in that
4725   // we accumulate contiguous ranges of dirty cards, mark these cards
4726   // precleaned, then scan the region covered by these cards.
4727   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4728   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4729 
4730   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4731 
4732   size_t numDirtyCards, cumNumDirtyCards;
4733   HeapWord *lastAddr, *nextAddr;
4734 
4735   for (cumNumDirtyCards = numDirtyCards = 0,
4736        nextAddr = lastAddr = startAddr;
4737        nextAddr < endAddr;
4738        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4739 
4740     ResourceMark rm;
4741     HandleMark   hm;
4742 
4743     MemRegion dirtyRegion;
4744     {
4745       // See comments in "Precleaning notes" above on why we
4746       // do this locking. XXX Could the locking overheads be
4747       // too high when dirty cards are sparse? [I don't think so.]
4748       stopTimer();
4749       CMSTokenSync x(true); // is cms thread
4750       startTimer();
4751       sample_eden();
4752       // Get and clear dirty region from card table
4753       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4754                                     MemRegion(nextAddr, endAddr),
4755                                     true,
4756                                     CardTableModRefBS::precleaned_card_val());
4757 
4758       assert(dirtyRegion.start() >= nextAddr,
4759              "returned region inconsistent?");
4760     }
4761     lastAddr = dirtyRegion.end();
4762     numDirtyCards =
4763       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4764 
4765     if (!dirtyRegion.is_empty()) {
4766       stopTimer();
4767       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4768       startTimer();
4769       sample_eden();
4770       verify_work_stacks_empty();
4771       verify_overflow_empty();
4772       HeapWord* stop_point =
4773         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4774       if (stop_point != NULL) {
4775         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4776                "Should only be AbortablePreclean.");
4777         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4778         if (should_abort_preclean()) {
4779           break; // out of preclean loop
4780         } else {
4781           // Compute the next address at which preclean should pick up.
4782           lastAddr = next_card_start_after_block(stop_point);
4783         }
4784       }
4785     } else {
4786       break;
4787     }
4788   }
4789   verify_work_stacks_empty();
4790   verify_overflow_empty();
4791   return cumNumDirtyCards;
4792 }
4793 
4794 class PrecleanKlassClosure : public KlassClosure {
4795   CMKlassClosure _cm_klass_closure;
4796  public:
4797   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4798   void do_klass(Klass* k) {
4799     if (k->has_accumulated_modified_oops()) {
4800       k->clear_accumulated_modified_oops();
4801 
4802       _cm_klass_closure.do_klass(k);
4803     }
4804   }
4805 };
4806 
4807 // The freelist lock is needed to prevent asserts, is it really needed?
4808 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4809 
4810   cl->set_freelistLock(freelistLock);
4811 
4812   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4813 
4814   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4815   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4816   PrecleanKlassClosure preclean_klass_closure(cl);
4817   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4818 
4819   verify_work_stacks_empty();
4820   verify_overflow_empty();
4821 }
4822 
4823 void CMSCollector::checkpointRootsFinal(bool asynch,
4824   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4825   assert(_collectorState == FinalMarking, "incorrect state transition?");
4826   check_correct_thread_executing();
4827   // world is stopped at this checkpoint
4828   assert(SafepointSynchronize::is_at_safepoint(),
4829          "world should be stopped");
4830   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4831 
4832   verify_work_stacks_empty();
4833   verify_overflow_empty();
4834 
4835   SpecializationStats::clear();
4836   if (PrintGCDetails) {
4837     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4838                         _young_gen->used() / K,
4839                         _young_gen->capacity() / K);
4840   }
4841   if (asynch) {
4842     if (CMSScavengeBeforeRemark) {
4843       GenCollectedHeap* gch = GenCollectedHeap::heap();
4844       // Temporarily set flag to false, GCH->do_collection will
4845       // expect it to be false and set to true
4846       FlagSetting fl(gch->_is_gc_active, false);
4847       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
4848         PrintGCDetails && Verbose, true, gclog_or_tty);)
4849       int level = _cmsGen->level() - 1;
4850       if (level >= 0) {
4851         gch->do_collection(true,        // full (i.e. force, see below)
4852                            false,       // !clear_all_soft_refs
4853                            0,           // size
4854                            false,       // is_tlab
4855                            level        // max_level
4856                           );
4857       }
4858     }
4859     FreelistLocker x(this);
4860     MutexLockerEx y(bitMapLock(),
4861                     Mutex::_no_safepoint_check_flag);
4862     assert(!init_mark_was_synchronous, "but that's impossible!");
4863     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4864   } else {
4865     // already have all the locks
4866     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4867                              init_mark_was_synchronous);
4868   }
4869   verify_work_stacks_empty();
4870   verify_overflow_empty();
4871   SpecializationStats::print();
4872 }
4873 
4874 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4875   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4876 
4877   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
4878 
4879   assert(haveFreelistLocks(), "must have free list locks");
4880   assert_lock_strong(bitMapLock());
4881 
4882   if (UseAdaptiveSizePolicy) {
4883     size_policy()->checkpoint_roots_final_begin();
4884   }
4885 
4886   ResourceMark rm;
4887   HandleMark   hm;
4888 
4889   GenCollectedHeap* gch = GenCollectedHeap::heap();
4890 
4891   if (should_unload_classes()) {
4892     CodeCache::gc_prologue();
4893   }
4894   assert(haveFreelistLocks(), "must have free list locks");
4895   assert_lock_strong(bitMapLock());
4896 
4897   if (!init_mark_was_synchronous) {
4898     // We might assume that we need not fill TLAB's when
4899     // CMSScavengeBeforeRemark is set, because we may have just done
4900     // a scavenge which would have filled all TLAB's -- and besides
4901     // Eden would be empty. This however may not always be the case --
4902     // for instance although we asked for a scavenge, it may not have
4903     // happened because of a JNI critical section. We probably need
4904     // a policy for deciding whether we can in that case wait until
4905     // the critical section releases and then do the remark following
4906     // the scavenge, and skip it here. In the absence of that policy,
4907     // or of an indication of whether the scavenge did indeed occur,
4908     // we cannot rely on TLAB's having been filled and must do
4909     // so here just in case a scavenge did not happen.
4910     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4911     // Update the saved marks which may affect the root scans.
4912     gch->save_marks();
4913 
4914     {
4915       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4916 
4917       // Note on the role of the mod union table:
4918       // Since the marker in "markFromRoots" marks concurrently with
4919       // mutators, it is possible for some reachable objects not to have been
4920       // scanned. For instance, an only reference to an object A was
4921       // placed in object B after the marker scanned B. Unless B is rescanned,
4922       // A would be collected. Such updates to references in marked objects
4923       // are detected via the mod union table which is the set of all cards
4924       // dirtied since the first checkpoint in this GC cycle and prior to
4925       // the most recent young generation GC, minus those cleaned up by the
4926       // concurrent precleaning.
4927       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4928         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
4929         do_remark_parallel();
4930       } else {
4931         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4932                     gclog_or_tty);
4933         do_remark_non_parallel();
4934       }
4935     }
4936   } else {
4937     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
4938     // The initial mark was stop-world, so there's no rescanning to
4939     // do; go straight on to the next step below.
4940   }
4941   verify_work_stacks_empty();
4942   verify_overflow_empty();
4943 
4944   {
4945     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
4946     refProcessingWork(asynch, clear_all_soft_refs);
4947   }
4948   verify_work_stacks_empty();
4949   verify_overflow_empty();
4950 
4951   if (should_unload_classes()) {
4952     CodeCache::gc_epilogue();
4953   }
4954   JvmtiExport::gc_epilogue();
4955 
4956   // If we encountered any (marking stack / work queue) overflow
4957   // events during the current CMS cycle, take appropriate
4958   // remedial measures, where possible, so as to try and avoid
4959   // recurrence of that condition.
4960   assert(_markStack.isEmpty(), "No grey objects");
4961   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4962                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4963   if (ser_ovflw > 0) {
4964     if (PrintCMSStatistics != 0) {
4965       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4966         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4967         ", kac_preclean="SIZE_FORMAT")",
4968         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4969         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4970     }
4971     _markStack.expand();
4972     _ser_pmc_remark_ovflw = 0;
4973     _ser_pmc_preclean_ovflw = 0;
4974     _ser_kac_preclean_ovflw = 0;
4975     _ser_kac_ovflw = 0;
4976   }
4977   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4978     if (PrintCMSStatistics != 0) {
4979       gclog_or_tty->print_cr("Work queue overflow (benign) "
4980         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4981         _par_pmc_remark_ovflw, _par_kac_ovflw);
4982     }
4983     _par_pmc_remark_ovflw = 0;
4984     _par_kac_ovflw = 0;
4985   }
4986   if (PrintCMSStatistics != 0) {
4987      if (_markStack._hit_limit > 0) {
4988        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4989                               _markStack._hit_limit);
4990      }
4991      if (_markStack._failed_double > 0) {
4992        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4993                               " current capacity "SIZE_FORMAT,
4994                               _markStack._failed_double,
4995                               _markStack.capacity());
4996      }
4997   }
4998   _markStack._hit_limit = 0;
4999   _markStack._failed_double = 0;
5000 
5001   if ((VerifyAfterGC || VerifyDuringGC) &&
5002       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5003     verify_after_remark();
5004   }
5005 
5006   // Change under the freelistLocks.
5007   _collectorState = Sweeping;
5008   // Call isAllClear() under bitMapLock
5009   assert(_modUnionTable.isAllClear(),
5010       "Should be clear by end of the final marking");
5011   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5012       "Should be clear by end of the final marking");
5013   if (UseAdaptiveSizePolicy) {
5014     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5015   }
5016 }
5017 
5018 // Parallel remark task
5019 class CMSParRemarkTask: public AbstractGangTask {
5020   CMSCollector* _collector;
5021   int           _n_workers;
5022   CompactibleFreeListSpace* _cms_space;
5023 
5024   // The per-thread work queues, available here for stealing.
5025   OopTaskQueueSet*       _task_queues;
5026   ParallelTaskTerminator _term;
5027 
5028  public:
5029   // A value of 0 passed to n_workers will cause the number of
5030   // workers to be taken from the active workers in the work gang.
5031   CMSParRemarkTask(CMSCollector* collector,
5032                    CompactibleFreeListSpace* cms_space,
5033                    int n_workers, FlexibleWorkGang* workers,
5034                    OopTaskQueueSet* task_queues):
5035     AbstractGangTask("Rescan roots and grey objects in parallel"),
5036     _collector(collector),
5037     _cms_space(cms_space),
5038     _n_workers(n_workers),
5039     _task_queues(task_queues),
5040     _term(n_workers, task_queues) { }
5041 
5042   OopTaskQueueSet* task_queues() { return _task_queues; }
5043 
5044   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5045 
5046   ParallelTaskTerminator* terminator() { return &_term; }
5047   int n_workers() { return _n_workers; }
5048 
5049   void work(uint worker_id);
5050 
5051  private:
5052   // Work method in support of parallel rescan ... of young gen spaces
5053   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5054                              ContiguousSpace* space,
5055                              HeapWord** chunk_array, size_t chunk_top);
5056 
5057   // ... of  dirty cards in old space
5058   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5059                                   Par_MarkRefsIntoAndScanClosure* cl);
5060 
5061   // ... work stealing for the above
5062   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5063 };
5064 
5065 class RemarkKlassClosure : public KlassClosure {
5066   CMKlassClosure _cm_klass_closure;
5067  public:
5068   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5069   void do_klass(Klass* k) {
5070     // Check if we have modified any oops in the Klass during the concurrent marking.
5071     if (k->has_accumulated_modified_oops()) {
5072       k->clear_accumulated_modified_oops();
5073 
5074       // We could have transfered the current modified marks to the accumulated marks,
5075       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5076     } else if (k->has_modified_oops()) {
5077       // Don't clear anything, this info is needed by the next young collection.
5078     } else {
5079       // No modified oops in the Klass.
5080       return;
5081     }
5082 
5083     // The klass has modified fields, need to scan the klass.
5084     _cm_klass_closure.do_klass(k);
5085   }
5086 };
5087 
5088 // work_queue(i) is passed to the closure
5089 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5090 // also is passed to do_dirty_card_rescan_tasks() and to
5091 // do_work_steal() to select the i-th task_queue.
5092 
5093 void CMSParRemarkTask::work(uint worker_id) {
5094   elapsedTimer _timer;
5095   ResourceMark rm;
5096   HandleMark   hm;
5097 
5098   // ---------- rescan from roots --------------
5099   _timer.start();
5100   GenCollectedHeap* gch = GenCollectedHeap::heap();
5101   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5102     _collector->_span, _collector->ref_processor(),
5103     &(_collector->_markBitMap),
5104     work_queue(worker_id));
5105 
5106   // Rescan young gen roots first since these are likely
5107   // coarsely partitioned and may, on that account, constitute
5108   // the critical path; thus, it's best to start off that
5109   // work first.
5110   // ---------- young gen roots --------------
5111   {
5112     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5113     EdenSpace* eden_space = dng->eden();
5114     ContiguousSpace* from_space = dng->from();
5115     ContiguousSpace* to_space   = dng->to();
5116 
5117     HeapWord** eca = _collector->_eden_chunk_array;
5118     size_t     ect = _collector->_eden_chunk_index;
5119     HeapWord** sca = _collector->_survivor_chunk_array;
5120     size_t     sct = _collector->_survivor_chunk_index;
5121 
5122     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5123     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5124 
5125     do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0);
5126     do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct);
5127     do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect);
5128 
5129     _timer.stop();
5130     if (PrintCMSStatistics != 0) {
5131       gclog_or_tty->print_cr(
5132         "Finished young gen rescan work in %dth thread: %3.3f sec",
5133         worker_id, _timer.seconds());
5134     }
5135   }
5136 
5137   // ---------- remaining roots --------------
5138   _timer.reset();
5139   _timer.start();
5140   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5141                                 false,     // yg was scanned above
5142                                 false,     // this is parallel code
5143                                 false,     // not scavenging
5144                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5145                                 &par_mrias_cl,
5146                                 true,   // walk all of code cache if (so & SO_CodeCache)
5147                                 NULL,
5148                                 NULL);     // The dirty klasses will be handled below
5149   assert(_collector->should_unload_classes()
5150          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5151          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5152   _timer.stop();
5153   if (PrintCMSStatistics != 0) {
5154     gclog_or_tty->print_cr(
5155       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5156       worker_id, _timer.seconds());
5157   }
5158 
5159   // ---------- unhandled CLD scanning ----------
5160   if (worker_id == 0) { // Single threaded at the moment.
5161     _timer.reset();
5162     _timer.start();
5163 
5164     // Scan all new class loader data objects and new dependencies that were
5165     // introduced during concurrent marking.
5166     ResourceMark rm;
5167     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5168     for (int i = 0; i < array->length(); i++) {
5169       par_mrias_cl.do_class_loader_data(array->at(i));
5170     }
5171 
5172     // We don't need to keep track of new CLDs anymore.
5173     ClassLoaderDataGraph::remember_new_clds(false);
5174 
5175     _timer.stop();
5176     if (PrintCMSStatistics != 0) {
5177       gclog_or_tty->print_cr(
5178           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5179           worker_id, _timer.seconds());
5180     }
5181   }
5182 
5183   // ---------- dirty klass scanning ----------
5184   if (worker_id == 0) { // Single threaded at the moment.
5185     _timer.reset();
5186     _timer.start();
5187 
5188     // Scan all classes that was dirtied during the concurrent marking phase.
5189     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5190     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5191 
5192     _timer.stop();
5193     if (PrintCMSStatistics != 0) {
5194       gclog_or_tty->print_cr(
5195           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5196           worker_id, _timer.seconds());
5197     }
5198   }
5199 
5200   // We might have added oops to ClassLoaderData::_handles during the
5201   // concurrent marking phase. These oops point to newly allocated objects
5202   // that are guaranteed to be kept alive. Either by the direct allocation
5203   // code, or when the young collector processes the strong roots. Hence,
5204   // we don't have to revisit the _handles block during the remark phase.
5205 
5206   // ---------- rescan dirty cards ------------
5207   _timer.reset();
5208   _timer.start();
5209 
5210   // Do the rescan tasks for each of the two spaces
5211   // (cms_space) in turn.
5212   // "worker_id" is passed to select the task_queue for "worker_id"
5213   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5214   _timer.stop();
5215   if (PrintCMSStatistics != 0) {
5216     gclog_or_tty->print_cr(
5217       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5218       worker_id, _timer.seconds());
5219   }
5220 
5221   // ---------- steal work from other threads ...
5222   // ---------- ... and drain overflow list.
5223   _timer.reset();
5224   _timer.start();
5225   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5226   _timer.stop();
5227   if (PrintCMSStatistics != 0) {
5228     gclog_or_tty->print_cr(
5229       "Finished work stealing in %dth thread: %3.3f sec",
5230       worker_id, _timer.seconds());
5231   }
5232 }
5233 
5234 // Note that parameter "i" is not used.
5235 void
5236 CMSParRemarkTask::do_young_space_rescan(int i,
5237   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5238   HeapWord** chunk_array, size_t chunk_top) {
5239   // Until all tasks completed:
5240   // . claim an unclaimed task
5241   // . compute region boundaries corresponding to task claimed
5242   //   using chunk_array
5243   // . par_oop_iterate(cl) over that region
5244 
5245   ResourceMark rm;
5246   HandleMark   hm;
5247 
5248   SequentialSubTasksDone* pst = space->par_seq_tasks();
5249   assert(pst->valid(), "Uninitialized use?");
5250 
5251   uint nth_task = 0;
5252   uint n_tasks  = pst->n_tasks();
5253 
5254   HeapWord *start, *end;
5255   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5256     // We claimed task # nth_task; compute its boundaries.
5257     if (chunk_top == 0) {  // no samples were taken
5258       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5259       start = space->bottom();
5260       end   = space->top();
5261     } else if (nth_task == 0) {
5262       start = space->bottom();
5263       end   = chunk_array[nth_task];
5264     } else if (nth_task < (uint)chunk_top) {
5265       assert(nth_task >= 1, "Control point invariant");
5266       start = chunk_array[nth_task - 1];
5267       end   = chunk_array[nth_task];
5268     } else {
5269       assert(nth_task == (uint)chunk_top, "Control point invariant");
5270       start = chunk_array[chunk_top - 1];
5271       end   = space->top();
5272     }
5273     MemRegion mr(start, end);
5274     // Verify that mr is in space
5275     assert(mr.is_empty() || space->used_region().contains(mr),
5276            "Should be in space");
5277     // Verify that "start" is an object boundary
5278     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5279            "Should be an oop");
5280     space->par_oop_iterate(mr, cl);
5281   }
5282   pst->all_tasks_completed();
5283 }
5284 
5285 void
5286 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5287   CompactibleFreeListSpace* sp, int i,
5288   Par_MarkRefsIntoAndScanClosure* cl) {
5289   // Until all tasks completed:
5290   // . claim an unclaimed task
5291   // . compute region boundaries corresponding to task claimed
5292   // . transfer dirty bits ct->mut for that region
5293   // . apply rescanclosure to dirty mut bits for that region
5294 
5295   ResourceMark rm;
5296   HandleMark   hm;
5297 
5298   OopTaskQueue* work_q = work_queue(i);
5299   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5300   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5301   // CAUTION: This closure has state that persists across calls to
5302   // the work method dirty_range_iterate_clear() in that it has
5303   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5304   // use of that state in the imbedded UpwardsObjectClosure instance
5305   // assumes that the cards are always iterated (even if in parallel
5306   // by several threads) in monotonically increasing order per each
5307   // thread. This is true of the implementation below which picks
5308   // card ranges (chunks) in monotonically increasing order globally
5309   // and, a-fortiori, in monotonically increasing order per thread
5310   // (the latter order being a subsequence of the former).
5311   // If the work code below is ever reorganized into a more chaotic
5312   // work-partitioning form than the current "sequential tasks"
5313   // paradigm, the use of that persistent state will have to be
5314   // revisited and modified appropriately. See also related
5315   // bug 4756801 work on which should examine this code to make
5316   // sure that the changes there do not run counter to the
5317   // assumptions made here and necessary for correctness and
5318   // efficiency. Note also that this code might yield inefficient
5319   // behaviour in the case of very large objects that span one or
5320   // more work chunks. Such objects would potentially be scanned
5321   // several times redundantly. Work on 4756801 should try and
5322   // address that performance anomaly if at all possible. XXX
5323   MemRegion  full_span  = _collector->_span;
5324   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5325   MarkFromDirtyCardsClosure
5326     greyRescanClosure(_collector, full_span, // entire span of interest
5327                       sp, bm, work_q, cl);
5328 
5329   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5330   assert(pst->valid(), "Uninitialized use?");
5331   uint nth_task = 0;
5332   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5333   MemRegion span = sp->used_region();
5334   HeapWord* start_addr = span.start();
5335   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5336                                            alignment);
5337   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5338   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5339          start_addr, "Check alignment");
5340   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5341          chunk_size, "Check alignment");
5342 
5343   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5344     // Having claimed the nth_task, compute corresponding mem-region,
5345     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5346     // The alignment restriction ensures that we do not need any
5347     // synchronization with other gang-workers while setting or
5348     // clearing bits in thus chunk of the MUT.
5349     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5350                                     start_addr + (nth_task+1)*chunk_size);
5351     // The last chunk's end might be way beyond end of the
5352     // used region. In that case pull back appropriately.
5353     if (this_span.end() > end_addr) {
5354       this_span.set_end(end_addr);
5355       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5356     }
5357     // Iterate over the dirty cards covering this chunk, marking them
5358     // precleaned, and setting the corresponding bits in the mod union
5359     // table. Since we have been careful to partition at Card and MUT-word
5360     // boundaries no synchronization is needed between parallel threads.
5361     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5362                                                  &modUnionClosure);
5363 
5364     // Having transferred these marks into the modUnionTable,
5365     // rescan the marked objects on the dirty cards in the modUnionTable.
5366     // Even if this is at a synchronous collection, the initial marking
5367     // may have been done during an asynchronous collection so there
5368     // may be dirty bits in the mod-union table.
5369     _collector->_modUnionTable.dirty_range_iterate_clear(
5370                   this_span, &greyRescanClosure);
5371     _collector->_modUnionTable.verifyNoOneBitsInRange(
5372                                  this_span.start(),
5373                                  this_span.end());
5374   }
5375   pst->all_tasks_completed();  // declare that i am done
5376 }
5377 
5378 // . see if we can share work_queues with ParNew? XXX
5379 void
5380 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5381                                 int* seed) {
5382   OopTaskQueue* work_q = work_queue(i);
5383   NOT_PRODUCT(int num_steals = 0;)
5384   oop obj_to_scan;
5385   CMSBitMap* bm = &(_collector->_markBitMap);
5386 
5387   while (true) {
5388     // Completely finish any left over work from (an) earlier round(s)
5389     cl->trim_queue(0);
5390     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5391                                          (size_t)ParGCDesiredObjsFromOverflowList);
5392     // Now check if there's any work in the overflow list
5393     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5394     // only affects the number of attempts made to get work from the
5395     // overflow list and does not affect the number of workers.  Just
5396     // pass ParallelGCThreads so this behavior is unchanged.
5397     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5398                                                 work_q,
5399                                                 ParallelGCThreads)) {
5400       // found something in global overflow list;
5401       // not yet ready to go stealing work from others.
5402       // We'd like to assert(work_q->size() != 0, ...)
5403       // because we just took work from the overflow list,
5404       // but of course we can't since all of that could have
5405       // been already stolen from us.
5406       // "He giveth and He taketh away."
5407       continue;
5408     }
5409     // Verify that we have no work before we resort to stealing
5410     assert(work_q->size() == 0, "Have work, shouldn't steal");
5411     // Try to steal from other queues that have work
5412     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5413       NOT_PRODUCT(num_steals++;)
5414       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5415       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5416       // Do scanning work
5417       obj_to_scan->oop_iterate(cl);
5418       // Loop around, finish this work, and try to steal some more
5419     } else if (terminator()->offer_termination()) {
5420         break;  // nirvana from the infinite cycle
5421     }
5422   }
5423   NOT_PRODUCT(
5424     if (PrintCMSStatistics != 0) {
5425       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5426     }
5427   )
5428   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5429          "Else our work is not yet done");
5430 }
5431 
5432 // Return a thread-local PLAB recording array, as appropriate.
5433 void* CMSCollector::get_data_recorder(int thr_num) {
5434   if (_survivor_plab_array != NULL &&
5435       (CMSPLABRecordAlways ||
5436        (_collectorState > Marking && _collectorState < FinalMarking))) {
5437     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5438     ChunkArray* ca = &_survivor_plab_array[thr_num];
5439     ca->reset();   // clear it so that fresh data is recorded
5440     return (void*) ca;
5441   } else {
5442     return NULL;
5443   }
5444 }
5445 
5446 // Reset all the thread-local PLAB recording arrays
5447 void CMSCollector::reset_survivor_plab_arrays() {
5448   for (uint i = 0; i < ParallelGCThreads; i++) {
5449     _survivor_plab_array[i].reset();
5450   }
5451 }
5452 
5453 // Merge the per-thread plab arrays into the global survivor chunk
5454 // array which will provide the partitioning of the survivor space
5455 // for CMS rescan.
5456 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5457                                               int no_of_gc_threads) {
5458   assert(_survivor_plab_array  != NULL, "Error");
5459   assert(_survivor_chunk_array != NULL, "Error");
5460   assert(_collectorState == FinalMarking, "Error");
5461   for (int j = 0; j < no_of_gc_threads; j++) {
5462     _cursor[j] = 0;
5463   }
5464   HeapWord* top = surv->top();
5465   size_t i;
5466   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5467     HeapWord* min_val = top;          // Higher than any PLAB address
5468     uint      min_tid = 0;            // position of min_val this round
5469     for (int j = 0; j < no_of_gc_threads; j++) {
5470       ChunkArray* cur_sca = &_survivor_plab_array[j];
5471       if (_cursor[j] == cur_sca->end()) {
5472         continue;
5473       }
5474       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5475       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5476       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5477       if (cur_val < min_val) {
5478         min_tid = j;
5479         min_val = cur_val;
5480       } else {
5481         assert(cur_val < top, "All recorded addresses should be less");
5482       }
5483     }
5484     // At this point min_val and min_tid are respectively
5485     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5486     // and the thread (j) that witnesses that address.
5487     // We record this address in the _survivor_chunk_array[i]
5488     // and increment _cursor[min_tid] prior to the next round i.
5489     if (min_val == top) {
5490       break;
5491     }
5492     _survivor_chunk_array[i] = min_val;
5493     _cursor[min_tid]++;
5494   }
5495   // We are all done; record the size of the _survivor_chunk_array
5496   _survivor_chunk_index = i; // exclusive: [0, i)
5497   if (PrintCMSStatistics > 0) {
5498     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5499   }
5500   // Verify that we used up all the recorded entries
5501   #ifdef ASSERT
5502     size_t total = 0;
5503     for (int j = 0; j < no_of_gc_threads; j++) {
5504       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5505       total += _cursor[j];
5506     }
5507     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5508     // Check that the merged array is in sorted order
5509     if (total > 0) {
5510       for (size_t i = 0; i < total - 1; i++) {
5511         if (PrintCMSStatistics > 0) {
5512           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5513                               i, _survivor_chunk_array[i]);
5514         }
5515         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5516                "Not sorted");
5517       }
5518     }
5519   #endif // ASSERT
5520 }
5521 
5522 // Set up the space's par_seq_tasks structure for work claiming
5523 // for parallel rescan of young gen.
5524 // See ParRescanTask where this is currently used.
5525 void
5526 CMSCollector::
5527 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5528   assert(n_threads > 0, "Unexpected n_threads argument");
5529   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5530 
5531   // Eden space
5532   {
5533     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5534     assert(!pst->valid(), "Clobbering existing data?");
5535     // Each valid entry in [0, _eden_chunk_index) represents a task.
5536     size_t n_tasks = _eden_chunk_index + 1;
5537     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5538     // Sets the condition for completion of the subtask (how many threads
5539     // need to finish in order to be done).
5540     pst->set_n_threads(n_threads);
5541     pst->set_n_tasks((int)n_tasks);
5542   }
5543 
5544   // Merge the survivor plab arrays into _survivor_chunk_array
5545   if (_survivor_plab_array != NULL) {
5546     merge_survivor_plab_arrays(dng->from(), n_threads);
5547   } else {
5548     assert(_survivor_chunk_index == 0, "Error");
5549   }
5550 
5551   // To space
5552   {
5553     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5554     assert(!pst->valid(), "Clobbering existing data?");
5555     // Sets the condition for completion of the subtask (how many threads
5556     // need to finish in order to be done).
5557     pst->set_n_threads(n_threads);
5558     pst->set_n_tasks(1);
5559     assert(pst->valid(), "Error");
5560   }
5561 
5562   // From space
5563   {
5564     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5565     assert(!pst->valid(), "Clobbering existing data?");
5566     size_t n_tasks = _survivor_chunk_index + 1;
5567     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5568     // Sets the condition for completion of the subtask (how many threads
5569     // need to finish in order to be done).
5570     pst->set_n_threads(n_threads);
5571     pst->set_n_tasks((int)n_tasks);
5572     assert(pst->valid(), "Error");
5573   }
5574 }
5575 
5576 // Parallel version of remark
5577 void CMSCollector::do_remark_parallel() {
5578   GenCollectedHeap* gch = GenCollectedHeap::heap();
5579   FlexibleWorkGang* workers = gch->workers();
5580   assert(workers != NULL, "Need parallel worker threads.");
5581   // Choose to use the number of GC workers most recently set
5582   // into "active_workers".  If active_workers is not set, set it
5583   // to ParallelGCThreads.
5584   int n_workers = workers->active_workers();
5585   if (n_workers == 0) {
5586     assert(n_workers > 0, "Should have been set during scavenge");
5587     n_workers = ParallelGCThreads;
5588     workers->set_active_workers(n_workers);
5589   }
5590   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5591 
5592   CMSParRemarkTask tsk(this,
5593     cms_space,
5594     n_workers, workers, task_queues());
5595 
5596   // Set up for parallel process_strong_roots work.
5597   gch->set_par_threads(n_workers);
5598   // We won't be iterating over the cards in the card table updating
5599   // the younger_gen cards, so we shouldn't call the following else
5600   // the verification code as well as subsequent younger_refs_iterate
5601   // code would get confused. XXX
5602   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5603 
5604   // The young gen rescan work will not be done as part of
5605   // process_strong_roots (which currently doesn't knw how to
5606   // parallelize such a scan), but rather will be broken up into
5607   // a set of parallel tasks (via the sampling that the [abortable]
5608   // preclean phase did of EdenSpace, plus the [two] tasks of
5609   // scanning the [two] survivor spaces. Further fine-grain
5610   // parallelization of the scanning of the survivor spaces
5611   // themselves, and of precleaning of the younger gen itself
5612   // is deferred to the future.
5613   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5614 
5615   // The dirty card rescan work is broken up into a "sequence"
5616   // of parallel tasks (per constituent space) that are dynamically
5617   // claimed by the parallel threads.
5618   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5619 
5620   // It turns out that even when we're using 1 thread, doing the work in a
5621   // separate thread causes wide variance in run times.  We can't help this
5622   // in the multi-threaded case, but we special-case n=1 here to get
5623   // repeatable measurements of the 1-thread overhead of the parallel code.
5624   if (n_workers > 1) {
5625     // Make refs discovery MT-safe, if it isn't already: it may not
5626     // necessarily be so, since it's possible that we are doing
5627     // ST marking.
5628     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5629     GenCollectedHeap::StrongRootsScope srs(gch);
5630     workers->run_task(&tsk);
5631   } else {
5632     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5633     GenCollectedHeap::StrongRootsScope srs(gch);
5634     tsk.work(0);
5635   }
5636 
5637   gch->set_par_threads(0);  // 0 ==> non-parallel.
5638   // restore, single-threaded for now, any preserved marks
5639   // as a result of work_q overflow
5640   restore_preserved_marks_if_any();
5641 }
5642 
5643 // Non-parallel version of remark
5644 void CMSCollector::do_remark_non_parallel() {
5645   ResourceMark rm;
5646   HandleMark   hm;
5647   GenCollectedHeap* gch = GenCollectedHeap::heap();
5648   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5649 
5650   MarkRefsIntoAndScanClosure
5651     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5652              &_markStack, this,
5653              false /* should_yield */, false /* not precleaning */);
5654   MarkFromDirtyCardsClosure
5655     markFromDirtyCardsClosure(this, _span,
5656                               NULL,  // space is set further below
5657                               &_markBitMap, &_markStack, &mrias_cl);
5658   {
5659     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
5660     // Iterate over the dirty cards, setting the corresponding bits in the
5661     // mod union table.
5662     {
5663       ModUnionClosure modUnionClosure(&_modUnionTable);
5664       _ct->ct_bs()->dirty_card_iterate(
5665                       _cmsGen->used_region(),
5666                       &modUnionClosure);
5667     }
5668     // Having transferred these marks into the modUnionTable, we just need
5669     // to rescan the marked objects on the dirty cards in the modUnionTable.
5670     // The initial marking may have been done during an asynchronous
5671     // collection so there may be dirty bits in the mod-union table.
5672     const int alignment =
5673       CardTableModRefBS::card_size * BitsPerWord;
5674     {
5675       // ... First handle dirty cards in CMS gen
5676       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5677       MemRegion ur = _cmsGen->used_region();
5678       HeapWord* lb = ur.start();
5679       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5680       MemRegion cms_span(lb, ub);
5681       _modUnionTable.dirty_range_iterate_clear(cms_span,
5682                                                &markFromDirtyCardsClosure);
5683       verify_work_stacks_empty();
5684       if (PrintCMSStatistics != 0) {
5685         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5686           markFromDirtyCardsClosure.num_dirty_cards());
5687       }
5688     }
5689   }
5690   if (VerifyDuringGC &&
5691       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5692     HandleMark hm;  // Discard invalid handles created during verification
5693     Universe::verify();
5694   }
5695   {
5696     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
5697 
5698     verify_work_stacks_empty();
5699 
5700     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5701     GenCollectedHeap::StrongRootsScope srs(gch);
5702     gch->gen_process_strong_roots(_cmsGen->level(),
5703                                   true,  // younger gens as roots
5704                                   false, // use the local StrongRootsScope
5705                                   false, // not scavenging
5706                                   SharedHeap::ScanningOption(roots_scanning_options()),
5707                                   &mrias_cl,
5708                                   true,   // walk code active on stacks
5709                                   NULL,
5710                                   NULL);  // The dirty klasses will be handled below
5711 
5712     assert(should_unload_classes()
5713            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5714            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5715   }
5716 
5717   {
5718     TraceTime t("visit unhandled CLDs", PrintGCDetails, false, gclog_or_tty);
5719 
5720     verify_work_stacks_empty();
5721 
5722     // Scan all class loader data objects that might have been introduced
5723     // during concurrent marking.
5724     ResourceMark rm;
5725     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5726     for (int i = 0; i < array->length(); i++) {
5727       mrias_cl.do_class_loader_data(array->at(i));
5728     }
5729 
5730     // We don't need to keep track of new CLDs anymore.
5731     ClassLoaderDataGraph::remember_new_clds(false);
5732 
5733     verify_work_stacks_empty();
5734   }
5735 
5736   {
5737     TraceTime t("dirty klass scan", PrintGCDetails, false, gclog_or_tty);
5738 
5739     verify_work_stacks_empty();
5740 
5741     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5742     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5743 
5744     verify_work_stacks_empty();
5745   }
5746 
5747   // We might have added oops to ClassLoaderData::_handles during the
5748   // concurrent marking phase. These oops point to newly allocated objects
5749   // that are guaranteed to be kept alive. Either by the direct allocation
5750   // code, or when the young collector processes the strong roots. Hence,
5751   // we don't have to revisit the _handles block during the remark phase.
5752 
5753   verify_work_stacks_empty();
5754   // Restore evacuated mark words, if any, used for overflow list links
5755   if (!CMSOverflowEarlyRestoration) {
5756     restore_preserved_marks_if_any();
5757   }
5758   verify_overflow_empty();
5759 }
5760 
5761 ////////////////////////////////////////////////////////
5762 // Parallel Reference Processing Task Proxy Class
5763 ////////////////////////////////////////////////////////
5764 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5765   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5766   CMSCollector*          _collector;
5767   CMSBitMap*             _mark_bit_map;
5768   const MemRegion        _span;
5769   ProcessTask&           _task;
5770 
5771 public:
5772   CMSRefProcTaskProxy(ProcessTask&     task,
5773                       CMSCollector*    collector,
5774                       const MemRegion& span,
5775                       CMSBitMap*       mark_bit_map,
5776                       AbstractWorkGang* workers,
5777                       OopTaskQueueSet* task_queues):
5778     // XXX Should superclass AGTWOQ also know about AWG since it knows
5779     // about the task_queues used by the AWG? Then it could initialize
5780     // the terminator() object. See 6984287. The set_for_termination()
5781     // below is a temporary band-aid for the regression in 6984287.
5782     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5783       task_queues),
5784     _task(task),
5785     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5786   {
5787     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5788            "Inconsistency in _span");
5789     set_for_termination(workers->active_workers());
5790   }
5791 
5792   OopTaskQueueSet* task_queues() { return queues(); }
5793 
5794   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5795 
5796   void do_work_steal(int i,
5797                      CMSParDrainMarkingStackClosure* drain,
5798                      CMSParKeepAliveClosure* keep_alive,
5799                      int* seed);
5800 
5801   virtual void work(uint worker_id);
5802 };
5803 
5804 void CMSRefProcTaskProxy::work(uint worker_id) {
5805   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5806   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5807                                         _mark_bit_map,
5808                                         work_queue(worker_id));
5809   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5810                                                  _mark_bit_map,
5811                                                  work_queue(worker_id));
5812   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5813   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5814   if (_task.marks_oops_alive()) {
5815     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5816                   _collector->hash_seed(worker_id));
5817   }
5818   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5819   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5820 }
5821 
5822 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5823   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5824   EnqueueTask& _task;
5825 
5826 public:
5827   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5828     : AbstractGangTask("Enqueue reference objects in parallel"),
5829       _task(task)
5830   { }
5831 
5832   virtual void work(uint worker_id)
5833   {
5834     _task.work(worker_id);
5835   }
5836 };
5837 
5838 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5839   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5840    _span(span),
5841    _bit_map(bit_map),
5842    _work_queue(work_queue),
5843    _mark_and_push(collector, span, bit_map, work_queue),
5844    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5845                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5846 { }
5847 
5848 // . see if we can share work_queues with ParNew? XXX
5849 void CMSRefProcTaskProxy::do_work_steal(int i,
5850   CMSParDrainMarkingStackClosure* drain,
5851   CMSParKeepAliveClosure* keep_alive,
5852   int* seed) {
5853   OopTaskQueue* work_q = work_queue(i);
5854   NOT_PRODUCT(int num_steals = 0;)
5855   oop obj_to_scan;
5856 
5857   while (true) {
5858     // Completely finish any left over work from (an) earlier round(s)
5859     drain->trim_queue(0);
5860     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5861                                          (size_t)ParGCDesiredObjsFromOverflowList);
5862     // Now check if there's any work in the overflow list
5863     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5864     // only affects the number of attempts made to get work from the
5865     // overflow list and does not affect the number of workers.  Just
5866     // pass ParallelGCThreads so this behavior is unchanged.
5867     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5868                                                 work_q,
5869                                                 ParallelGCThreads)) {
5870       // Found something in global overflow list;
5871       // not yet ready to go stealing work from others.
5872       // We'd like to assert(work_q->size() != 0, ...)
5873       // because we just took work from the overflow list,
5874       // but of course we can't, since all of that might have
5875       // been already stolen from us.
5876       continue;
5877     }
5878     // Verify that we have no work before we resort to stealing
5879     assert(work_q->size() == 0, "Have work, shouldn't steal");
5880     // Try to steal from other queues that have work
5881     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5882       NOT_PRODUCT(num_steals++;)
5883       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5884       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5885       // Do scanning work
5886       obj_to_scan->oop_iterate(keep_alive);
5887       // Loop around, finish this work, and try to steal some more
5888     } else if (terminator()->offer_termination()) {
5889       break;  // nirvana from the infinite cycle
5890     }
5891   }
5892   NOT_PRODUCT(
5893     if (PrintCMSStatistics != 0) {
5894       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5895     }
5896   )
5897 }
5898 
5899 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5900 {
5901   GenCollectedHeap* gch = GenCollectedHeap::heap();
5902   FlexibleWorkGang* workers = gch->workers();
5903   assert(workers != NULL, "Need parallel worker threads.");
5904   CMSRefProcTaskProxy rp_task(task, &_collector,
5905                               _collector.ref_processor()->span(),
5906                               _collector.markBitMap(),
5907                               workers, _collector.task_queues());
5908   workers->run_task(&rp_task);
5909 }
5910 
5911 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5912 {
5913 
5914   GenCollectedHeap* gch = GenCollectedHeap::heap();
5915   FlexibleWorkGang* workers = gch->workers();
5916   assert(workers != NULL, "Need parallel worker threads.");
5917   CMSRefEnqueueTaskProxy enq_task(task);
5918   workers->run_task(&enq_task);
5919 }
5920 
5921 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5922 
5923   ResourceMark rm;
5924   HandleMark   hm;
5925 
5926   ReferenceProcessor* rp = ref_processor();
5927   assert(rp->span().equals(_span), "Spans should be equal");
5928   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5929   // Process weak references.
5930   rp->setup_policy(clear_all_soft_refs);
5931   verify_work_stacks_empty();
5932 
5933   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5934                                           &_markStack, false /* !preclean */);
5935   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5936                                 _span, &_markBitMap, &_markStack,
5937                                 &cmsKeepAliveClosure, false /* !preclean */);
5938   {
5939     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
5940     if (rp->processing_is_mt()) {
5941       // Set the degree of MT here.  If the discovery is done MT, there
5942       // may have been a different number of threads doing the discovery
5943       // and a different number of discovered lists may have Ref objects.
5944       // That is OK as long as the Reference lists are balanced (see
5945       // balance_all_queues() and balance_queues()).
5946       GenCollectedHeap* gch = GenCollectedHeap::heap();
5947       int active_workers = ParallelGCThreads;
5948       FlexibleWorkGang* workers = gch->workers();
5949       if (workers != NULL) {
5950         active_workers = workers->active_workers();
5951         // The expectation is that active_workers will have already
5952         // been set to a reasonable value.  If it has not been set,
5953         // investigate.
5954         assert(active_workers > 0, "Should have been set during scavenge");
5955       }
5956       rp->set_active_mt_degree(active_workers);
5957       CMSRefProcTaskExecutor task_executor(*this);
5958       rp->process_discovered_references(&_is_alive_closure,
5959                                         &cmsKeepAliveClosure,
5960                                         &cmsDrainMarkingStackClosure,
5961                                         &task_executor);
5962     } else {
5963       rp->process_discovered_references(&_is_alive_closure,
5964                                         &cmsKeepAliveClosure,
5965                                         &cmsDrainMarkingStackClosure,
5966                                         NULL);
5967     }
5968     verify_work_stacks_empty();
5969   }
5970 
5971   if (should_unload_classes()) {
5972     {
5973       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
5974 
5975       // Follow SystemDictionary roots and unload classes
5976       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5977 
5978       // Follow CodeCache roots and unload any methods marked for unloading
5979       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5980 
5981       cmsDrainMarkingStackClosure.do_void();
5982       verify_work_stacks_empty();
5983 
5984       // Update subklass/sibling/implementor links in KlassKlass descendants
5985       Klass::clean_weak_klass_links(&_is_alive_closure);
5986       // Nothing should have been pushed onto the working stacks.
5987       verify_work_stacks_empty();
5988     }
5989 
5990     {
5991       TraceTime t("scrub symbol table", PrintGCDetails, false, gclog_or_tty);
5992       // Clean up unreferenced symbols in symbol table.
5993       SymbolTable::unlink();
5994     }
5995   }
5996 
5997   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
5998   // Need to check if we really scanned the StringTable.
5999   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6000     TraceTime t("scrub string table", PrintGCDetails, false, gclog_or_tty);
6001     // Now clean up stale oops in StringTable
6002     StringTable::unlink(&_is_alive_closure);
6003   }
6004 
6005   verify_work_stacks_empty();
6006   // Restore any preserved marks as a result of mark stack or
6007   // work queue overflow
6008   restore_preserved_marks_if_any();  // done single-threaded for now
6009 
6010   rp->set_enqueuing_is_done(true);
6011   if (rp->processing_is_mt()) {
6012     rp->balance_all_queues();
6013     CMSRefProcTaskExecutor task_executor(*this);
6014     rp->enqueue_discovered_references(&task_executor);
6015   } else {
6016     rp->enqueue_discovered_references(NULL);
6017   }
6018   rp->verify_no_references_recorded();
6019   assert(!rp->discovery_enabled(), "should have been disabled");
6020 }
6021 
6022 #ifndef PRODUCT
6023 void CMSCollector::check_correct_thread_executing() {
6024   Thread* t = Thread::current();
6025   // Only the VM thread or the CMS thread should be here.
6026   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6027          "Unexpected thread type");
6028   // If this is the vm thread, the foreground process
6029   // should not be waiting.  Note that _foregroundGCIsActive is
6030   // true while the foreground collector is waiting.
6031   if (_foregroundGCShouldWait) {
6032     // We cannot be the VM thread
6033     assert(t->is_ConcurrentGC_thread(),
6034            "Should be CMS thread");
6035   } else {
6036     // We can be the CMS thread only if we are in a stop-world
6037     // phase of CMS collection.
6038     if (t->is_ConcurrentGC_thread()) {
6039       assert(_collectorState == InitialMarking ||
6040              _collectorState == FinalMarking,
6041              "Should be a stop-world phase");
6042       // The CMS thread should be holding the CMS_token.
6043       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6044              "Potential interference with concurrently "
6045              "executing VM thread");
6046     }
6047   }
6048 }
6049 #endif
6050 
6051 void CMSCollector::sweep(bool asynch) {
6052   assert(_collectorState == Sweeping, "just checking");
6053   check_correct_thread_executing();
6054   verify_work_stacks_empty();
6055   verify_overflow_empty();
6056   increment_sweep_count();
6057   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6058 
6059   _inter_sweep_timer.stop();
6060   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6061   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6062 
6063   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6064   _intra_sweep_timer.reset();
6065   _intra_sweep_timer.start();
6066   if (asynch) {
6067     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6068     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6069     // First sweep the old gen
6070     {
6071       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6072                                bitMapLock());
6073       sweepWork(_cmsGen, asynch);
6074     }
6075 
6076     // Update Universe::_heap_*_at_gc figures.
6077     // We need all the free list locks to make the abstract state
6078     // transition from Sweeping to Resetting. See detailed note
6079     // further below.
6080     {
6081       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6082       // Update heap occupancy information which is used as
6083       // input to soft ref clearing policy at the next gc.
6084       Universe::update_heap_info_at_gc();
6085       _collectorState = Resizing;
6086     }
6087   } else {
6088     // already have needed locks
6089     sweepWork(_cmsGen,  asynch);
6090     // Update heap occupancy information which is used as
6091     // input to soft ref clearing policy at the next gc.
6092     Universe::update_heap_info_at_gc();
6093     _collectorState = Resizing;
6094   }
6095   verify_work_stacks_empty();
6096   verify_overflow_empty();
6097 
6098   if (should_unload_classes()) {
6099     ClassLoaderDataGraph::purge();
6100   }
6101 
6102   _intra_sweep_timer.stop();
6103   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6104 
6105   _inter_sweep_timer.reset();
6106   _inter_sweep_timer.start();
6107 
6108   // We need to use a monotonically non-deccreasing time in ms
6109   // or we will see time-warp warnings and os::javaTimeMillis()
6110   // does not guarantee monotonicity.
6111   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6112   update_time_of_last_gc(now);
6113 
6114   // NOTE on abstract state transitions:
6115   // Mutators allocate-live and/or mark the mod-union table dirty
6116   // based on the state of the collection.  The former is done in
6117   // the interval [Marking, Sweeping] and the latter in the interval
6118   // [Marking, Sweeping).  Thus the transitions into the Marking state
6119   // and out of the Sweeping state must be synchronously visible
6120   // globally to the mutators.
6121   // The transition into the Marking state happens with the world
6122   // stopped so the mutators will globally see it.  Sweeping is
6123   // done asynchronously by the background collector so the transition
6124   // from the Sweeping state to the Resizing state must be done
6125   // under the freelistLock (as is the check for whether to
6126   // allocate-live and whether to dirty the mod-union table).
6127   assert(_collectorState == Resizing, "Change of collector state to"
6128     " Resizing must be done under the freelistLocks (plural)");
6129 
6130   // Now that sweeping has been completed, we clear
6131   // the incremental_collection_failed flag,
6132   // thus inviting a younger gen collection to promote into
6133   // this generation. If such a promotion may still fail,
6134   // the flag will be set again when a young collection is
6135   // attempted.
6136   GenCollectedHeap* gch = GenCollectedHeap::heap();
6137   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6138   gch->update_full_collections_completed(_collection_count_start);
6139 }
6140 
6141 // FIX ME!!! Looks like this belongs in CFLSpace, with
6142 // CMSGen merely delegating to it.
6143 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6144   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6145   HeapWord*  minAddr        = _cmsSpace->bottom();
6146   HeapWord*  largestAddr    =
6147     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6148   if (largestAddr == NULL) {
6149     // The dictionary appears to be empty.  In this case
6150     // try to coalesce at the end of the heap.
6151     largestAddr = _cmsSpace->end();
6152   }
6153   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6154   size_t nearLargestOffset =
6155     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6156   if (PrintFLSStatistics != 0) {
6157     gclog_or_tty->print_cr(
6158       "CMS: Large Block: " PTR_FORMAT ";"
6159       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6160       largestAddr,
6161       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6162   }
6163   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6164 }
6165 
6166 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6167   return addr >= _cmsSpace->nearLargestChunk();
6168 }
6169 
6170 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6171   return _cmsSpace->find_chunk_at_end();
6172 }
6173 
6174 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6175                                                     bool full) {
6176   // The next lower level has been collected.  Gather any statistics
6177   // that are of interest at this point.
6178   if (!full && (current_level + 1) == level()) {
6179     // Gather statistics on the young generation collection.
6180     collector()->stats().record_gc0_end(used());
6181   }
6182 }
6183 
6184 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6185   GenCollectedHeap* gch = GenCollectedHeap::heap();
6186   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6187     "Wrong type of heap");
6188   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6189     gch->gen_policy()->size_policy();
6190   assert(sp->is_gc_cms_adaptive_size_policy(),
6191     "Wrong type of size policy");
6192   return sp;
6193 }
6194 
6195 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6196   if (PrintGCDetails && Verbose) {
6197     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6198   }
6199   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6200   _debug_collection_type =
6201     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6202   if (PrintGCDetails && Verbose) {
6203     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6204   }
6205 }
6206 
6207 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6208   bool asynch) {
6209   // We iterate over the space(s) underlying this generation,
6210   // checking the mark bit map to see if the bits corresponding
6211   // to specific blocks are marked or not. Blocks that are
6212   // marked are live and are not swept up. All remaining blocks
6213   // are swept up, with coalescing on-the-fly as we sweep up
6214   // contiguous free and/or garbage blocks:
6215   // We need to ensure that the sweeper synchronizes with allocators
6216   // and stop-the-world collectors. In particular, the following
6217   // locks are used:
6218   // . CMS token: if this is held, a stop the world collection cannot occur
6219   // . freelistLock: if this is held no allocation can occur from this
6220   //                 generation by another thread
6221   // . bitMapLock: if this is held, no other thread can access or update
6222   //
6223 
6224   // Note that we need to hold the freelistLock if we use
6225   // block iterate below; else the iterator might go awry if
6226   // a mutator (or promotion) causes block contents to change
6227   // (for instance if the allocator divvies up a block).
6228   // If we hold the free list lock, for all practical purposes
6229   // young generation GC's can't occur (they'll usually need to
6230   // promote), so we might as well prevent all young generation
6231   // GC's while we do a sweeping step. For the same reason, we might
6232   // as well take the bit map lock for the entire duration
6233 
6234   // check that we hold the requisite locks
6235   assert(have_cms_token(), "Should hold cms token");
6236   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6237          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6238         "Should possess CMS token to sweep");
6239   assert_lock_strong(gen->freelistLock());
6240   assert_lock_strong(bitMapLock());
6241 
6242   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6243   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6244   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6245                                       _inter_sweep_estimate.padded_average(),
6246                                       _intra_sweep_estimate.padded_average());
6247   gen->setNearLargestChunk();
6248 
6249   {
6250     SweepClosure sweepClosure(this, gen, &_markBitMap,
6251                             CMSYield && asynch);
6252     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6253     // We need to free-up/coalesce garbage/blocks from a
6254     // co-terminal free run. This is done in the SweepClosure
6255     // destructor; so, do not remove this scope, else the
6256     // end-of-sweep-census below will be off by a little bit.
6257   }
6258   gen->cmsSpace()->sweep_completed();
6259   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6260   if (should_unload_classes()) {                // unloaded classes this cycle,
6261     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6262   } else {                                      // did not unload classes,
6263     _concurrent_cycles_since_last_unload++;     // ... increment count
6264   }
6265 }
6266 
6267 // Reset CMS data structures (for now just the marking bit map)
6268 // preparatory for the next cycle.
6269 void CMSCollector::reset(bool asynch) {
6270   GenCollectedHeap* gch = GenCollectedHeap::heap();
6271   CMSAdaptiveSizePolicy* sp = size_policy();
6272   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6273   if (asynch) {
6274     CMSTokenSyncWithLocks ts(true, bitMapLock());
6275 
6276     // If the state is not "Resetting", the foreground  thread
6277     // has done a collection and the resetting.
6278     if (_collectorState != Resetting) {
6279       assert(_collectorState == Idling, "The state should only change"
6280         " because the foreground collector has finished the collection");
6281       return;
6282     }
6283 
6284     // Clear the mark bitmap (no grey objects to start with)
6285     // for the next cycle.
6286     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6287     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6288 
6289     HeapWord* curAddr = _markBitMap.startWord();
6290     while (curAddr < _markBitMap.endWord()) {
6291       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6292       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6293       _markBitMap.clear_large_range(chunk);
6294       if (ConcurrentMarkSweepThread::should_yield() &&
6295           !foregroundGCIsActive() &&
6296           CMSYield) {
6297         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6298                "CMS thread should hold CMS token");
6299         assert_lock_strong(bitMapLock());
6300         bitMapLock()->unlock();
6301         ConcurrentMarkSweepThread::desynchronize(true);
6302         ConcurrentMarkSweepThread::acknowledge_yield_request();
6303         stopTimer();
6304         if (PrintCMSStatistics != 0) {
6305           incrementYields();
6306         }
6307         icms_wait();
6308 
6309         // See the comment in coordinator_yield()
6310         for (unsigned i = 0; i < CMSYieldSleepCount &&
6311                          ConcurrentMarkSweepThread::should_yield() &&
6312                          !CMSCollector::foregroundGCIsActive(); ++i) {
6313           os::sleep(Thread::current(), 1, false);
6314           ConcurrentMarkSweepThread::acknowledge_yield_request();
6315         }
6316 
6317         ConcurrentMarkSweepThread::synchronize(true);
6318         bitMapLock()->lock_without_safepoint_check();
6319         startTimer();
6320       }
6321       curAddr = chunk.end();
6322     }
6323     // A successful mostly concurrent collection has been done.
6324     // Because only the full (i.e., concurrent mode failure) collections
6325     // are being measured for gc overhead limits, clean the "near" flag
6326     // and count.
6327     sp->reset_gc_overhead_limit_count();
6328     _collectorState = Idling;
6329   } else {
6330     // already have the lock
6331     assert(_collectorState == Resetting, "just checking");
6332     assert_lock_strong(bitMapLock());
6333     _markBitMap.clear_all();
6334     _collectorState = Idling;
6335   }
6336 
6337   // Stop incremental mode after a cycle completes, so that any future cycles
6338   // are triggered by allocation.
6339   stop_icms();
6340 
6341   NOT_PRODUCT(
6342     if (RotateCMSCollectionTypes) {
6343       _cmsGen->rotate_debug_collection_type();
6344     }
6345   )
6346 }
6347 
6348 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6349   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6350   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6351   TraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
6352   TraceCollectorStats tcs(counters());
6353 
6354   switch (op) {
6355     case CMS_op_checkpointRootsInitial: {
6356       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6357       checkpointRootsInitial(true);       // asynch
6358       if (PrintGC) {
6359         _cmsGen->printOccupancy("initial-mark");
6360       }
6361       break;
6362     }
6363     case CMS_op_checkpointRootsFinal: {
6364       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6365       checkpointRootsFinal(true,    // asynch
6366                            false,   // !clear_all_soft_refs
6367                            false);  // !init_mark_was_synchronous
6368       if (PrintGC) {
6369         _cmsGen->printOccupancy("remark");
6370       }
6371       break;
6372     }
6373     default:
6374       fatal("No such CMS_op");
6375   }
6376 }
6377 
6378 #ifndef PRODUCT
6379 size_t const CMSCollector::skip_header_HeapWords() {
6380   return FreeChunk::header_size();
6381 }
6382 
6383 // Try and collect here conditions that should hold when
6384 // CMS thread is exiting. The idea is that the foreground GC
6385 // thread should not be blocked if it wants to terminate
6386 // the CMS thread and yet continue to run the VM for a while
6387 // after that.
6388 void CMSCollector::verify_ok_to_terminate() const {
6389   assert(Thread::current()->is_ConcurrentGC_thread(),
6390          "should be called by CMS thread");
6391   assert(!_foregroundGCShouldWait, "should be false");
6392   // We could check here that all the various low-level locks
6393   // are not held by the CMS thread, but that is overkill; see
6394   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6395   // is checked.
6396 }
6397 #endif
6398 
6399 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6400    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6401           "missing Printezis mark?");
6402   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6403   size_t size = pointer_delta(nextOneAddr + 1, addr);
6404   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6405          "alignment problem");
6406   assert(size >= 3, "Necessary for Printezis marks to work");
6407   return size;
6408 }
6409 
6410 // A variant of the above (block_size_using_printezis_bits()) except
6411 // that we return 0 if the P-bits are not yet set.
6412 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6413   if (_markBitMap.isMarked(addr + 1)) {
6414     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6415     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6416     size_t size = pointer_delta(nextOneAddr + 1, addr);
6417     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6418            "alignment problem");
6419     assert(size >= 3, "Necessary for Printezis marks to work");
6420     return size;
6421   }
6422   return 0;
6423 }
6424 
6425 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6426   size_t sz = 0;
6427   oop p = (oop)addr;
6428   if (p->klass_or_null() != NULL) {
6429     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6430   } else {
6431     sz = block_size_using_printezis_bits(addr);
6432   }
6433   assert(sz > 0, "size must be nonzero");
6434   HeapWord* next_block = addr + sz;
6435   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6436                                              CardTableModRefBS::card_size);
6437   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6438          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6439          "must be different cards");
6440   return next_card;
6441 }
6442 
6443 
6444 // CMS Bit Map Wrapper /////////////////////////////////////////
6445 
6446 // Construct a CMS bit map infrastructure, but don't create the
6447 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6448 // further below.
6449 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6450   _bm(),
6451   _shifter(shifter),
6452   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6453 {
6454   _bmStartWord = 0;
6455   _bmWordSize  = 0;
6456 }
6457 
6458 bool CMSBitMap::allocate(MemRegion mr) {
6459   _bmStartWord = mr.start();
6460   _bmWordSize  = mr.word_size();
6461   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6462                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6463   if (!brs.is_reserved()) {
6464     warning("CMS bit map allocation failure");
6465     return false;
6466   }
6467   // For now we'll just commit all of the bit map up fromt.
6468   // Later on we'll try to be more parsimonious with swap.
6469   if (!_virtual_space.initialize(brs, brs.size())) {
6470     warning("CMS bit map backing store failure");
6471     return false;
6472   }
6473   assert(_virtual_space.committed_size() == brs.size(),
6474          "didn't reserve backing store for all of CMS bit map?");
6475   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6476   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6477          _bmWordSize, "inconsistency in bit map sizing");
6478   _bm.set_size(_bmWordSize >> _shifter);
6479 
6480   // bm.clear(); // can we rely on getting zero'd memory? verify below
6481   assert(isAllClear(),
6482          "Expected zero'd memory from ReservedSpace constructor");
6483   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6484          "consistency check");
6485   return true;
6486 }
6487 
6488 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6489   HeapWord *next_addr, *end_addr, *last_addr;
6490   assert_locked();
6491   assert(covers(mr), "out-of-range error");
6492   // XXX assert that start and end are appropriately aligned
6493   for (next_addr = mr.start(), end_addr = mr.end();
6494        next_addr < end_addr; next_addr = last_addr) {
6495     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6496     last_addr = dirty_region.end();
6497     if (!dirty_region.is_empty()) {
6498       cl->do_MemRegion(dirty_region);
6499     } else {
6500       assert(last_addr == end_addr, "program logic");
6501       return;
6502     }
6503   }
6504 }
6505 
6506 #ifndef PRODUCT
6507 void CMSBitMap::assert_locked() const {
6508   CMSLockVerifier::assert_locked(lock());
6509 }
6510 
6511 bool CMSBitMap::covers(MemRegion mr) const {
6512   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6513   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6514          "size inconsistency");
6515   return (mr.start() >= _bmStartWord) &&
6516          (mr.end()   <= endWord());
6517 }
6518 
6519 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6520     return (start >= _bmStartWord && (start + size) <= endWord());
6521 }
6522 
6523 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6524   // verify that there are no 1 bits in the interval [left, right)
6525   FalseBitMapClosure falseBitMapClosure;
6526   iterate(&falseBitMapClosure, left, right);
6527 }
6528 
6529 void CMSBitMap::region_invariant(MemRegion mr)
6530 {
6531   assert_locked();
6532   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6533   assert(!mr.is_empty(), "unexpected empty region");
6534   assert(covers(mr), "mr should be covered by bit map");
6535   // convert address range into offset range
6536   size_t start_ofs = heapWordToOffset(mr.start());
6537   // Make sure that end() is appropriately aligned
6538   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6539                         (1 << (_shifter+LogHeapWordSize))),
6540          "Misaligned mr.end()");
6541   size_t end_ofs   = heapWordToOffset(mr.end());
6542   assert(end_ofs > start_ofs, "Should mark at least one bit");
6543 }
6544 
6545 #endif
6546 
6547 bool CMSMarkStack::allocate(size_t size) {
6548   // allocate a stack of the requisite depth
6549   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6550                    size * sizeof(oop)));
6551   if (!rs.is_reserved()) {
6552     warning("CMSMarkStack allocation failure");
6553     return false;
6554   }
6555   if (!_virtual_space.initialize(rs, rs.size())) {
6556     warning("CMSMarkStack backing store failure");
6557     return false;
6558   }
6559   assert(_virtual_space.committed_size() == rs.size(),
6560          "didn't reserve backing store for all of CMS stack?");
6561   _base = (oop*)(_virtual_space.low());
6562   _index = 0;
6563   _capacity = size;
6564   NOT_PRODUCT(_max_depth = 0);
6565   return true;
6566 }
6567 
6568 // XXX FIX ME !!! In the MT case we come in here holding a
6569 // leaf lock. For printing we need to take a further lock
6570 // which has lower rank. We need to recallibrate the two
6571 // lock-ranks involved in order to be able to rpint the
6572 // messages below. (Or defer the printing to the caller.
6573 // For now we take the expedient path of just disabling the
6574 // messages for the problematic case.)
6575 void CMSMarkStack::expand() {
6576   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6577   if (_capacity == MarkStackSizeMax) {
6578     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6579       // We print a warning message only once per CMS cycle.
6580       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6581     }
6582     return;
6583   }
6584   // Double capacity if possible
6585   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6586   // Do not give up existing stack until we have managed to
6587   // get the double capacity that we desired.
6588   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6589                    new_capacity * sizeof(oop)));
6590   if (rs.is_reserved()) {
6591     // Release the backing store associated with old stack
6592     _virtual_space.release();
6593     // Reinitialize virtual space for new stack
6594     if (!_virtual_space.initialize(rs, rs.size())) {
6595       fatal("Not enough swap for expanded marking stack");
6596     }
6597     _base = (oop*)(_virtual_space.low());
6598     _index = 0;
6599     _capacity = new_capacity;
6600   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6601     // Failed to double capacity, continue;
6602     // we print a detail message only once per CMS cycle.
6603     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6604             SIZE_FORMAT"K",
6605             _capacity / K, new_capacity / K);
6606   }
6607 }
6608 
6609 
6610 // Closures
6611 // XXX: there seems to be a lot of code  duplication here;
6612 // should refactor and consolidate common code.
6613 
6614 // This closure is used to mark refs into the CMS generation in
6615 // the CMS bit map. Called at the first checkpoint. This closure
6616 // assumes that we do not need to re-mark dirty cards; if the CMS
6617 // generation on which this is used is not an oldest
6618 // generation then this will lose younger_gen cards!
6619 
6620 MarkRefsIntoClosure::MarkRefsIntoClosure(
6621   MemRegion span, CMSBitMap* bitMap):
6622     _span(span),
6623     _bitMap(bitMap)
6624 {
6625     assert(_ref_processor == NULL, "deliberately left NULL");
6626     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6627 }
6628 
6629 void MarkRefsIntoClosure::do_oop(oop obj) {
6630   // if p points into _span, then mark corresponding bit in _markBitMap
6631   assert(obj->is_oop(), "expected an oop");
6632   HeapWord* addr = (HeapWord*)obj;
6633   if (_span.contains(addr)) {
6634     // this should be made more efficient
6635     _bitMap->mark(addr);
6636   }
6637 }
6638 
6639 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6640 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6641 
6642 // A variant of the above, used for CMS marking verification.
6643 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6644   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6645     _span(span),
6646     _verification_bm(verification_bm),
6647     _cms_bm(cms_bm)
6648 {
6649     assert(_ref_processor == NULL, "deliberately left NULL");
6650     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6651 }
6652 
6653 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6654   // if p points into _span, then mark corresponding bit in _markBitMap
6655   assert(obj->is_oop(), "expected an oop");
6656   HeapWord* addr = (HeapWord*)obj;
6657   if (_span.contains(addr)) {
6658     _verification_bm->mark(addr);
6659     if (!_cms_bm->isMarked(addr)) {
6660       oop(addr)->print();
6661       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6662       fatal("... aborting");
6663     }
6664   }
6665 }
6666 
6667 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6668 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6669 
6670 //////////////////////////////////////////////////
6671 // MarkRefsIntoAndScanClosure
6672 //////////////////////////////////////////////////
6673 
6674 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6675                                                        ReferenceProcessor* rp,
6676                                                        CMSBitMap* bit_map,
6677                                                        CMSBitMap* mod_union_table,
6678                                                        CMSMarkStack*  mark_stack,
6679                                                        CMSCollector* collector,
6680                                                        bool should_yield,
6681                                                        bool concurrent_precleaning):
6682   _collector(collector),
6683   _span(span),
6684   _bit_map(bit_map),
6685   _mark_stack(mark_stack),
6686   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6687                       mark_stack, concurrent_precleaning),
6688   _yield(should_yield),
6689   _concurrent_precleaning(concurrent_precleaning),
6690   _freelistLock(NULL)
6691 {
6692   _ref_processor = rp;
6693   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6694 }
6695 
6696 // This closure is used to mark refs into the CMS generation at the
6697 // second (final) checkpoint, and to scan and transitively follow
6698 // the unmarked oops. It is also used during the concurrent precleaning
6699 // phase while scanning objects on dirty cards in the CMS generation.
6700 // The marks are made in the marking bit map and the marking stack is
6701 // used for keeping the (newly) grey objects during the scan.
6702 // The parallel version (Par_...) appears further below.
6703 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6704   if (obj != NULL) {
6705     assert(obj->is_oop(), "expected an oop");
6706     HeapWord* addr = (HeapWord*)obj;
6707     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6708     assert(_collector->overflow_list_is_empty(),
6709            "overflow list should be empty");
6710     if (_span.contains(addr) &&
6711         !_bit_map->isMarked(addr)) {
6712       // mark bit map (object is now grey)
6713       _bit_map->mark(addr);
6714       // push on marking stack (stack should be empty), and drain the
6715       // stack by applying this closure to the oops in the oops popped
6716       // from the stack (i.e. blacken the grey objects)
6717       bool res = _mark_stack->push(obj);
6718       assert(res, "Should have space to push on empty stack");
6719       do {
6720         oop new_oop = _mark_stack->pop();
6721         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6722         assert(_bit_map->isMarked((HeapWord*)new_oop),
6723                "only grey objects on this stack");
6724         // iterate over the oops in this oop, marking and pushing
6725         // the ones in CMS heap (i.e. in _span).
6726         new_oop->oop_iterate(&_pushAndMarkClosure);
6727         // check if it's time to yield
6728         do_yield_check();
6729       } while (!_mark_stack->isEmpty() ||
6730                (!_concurrent_precleaning && take_from_overflow_list()));
6731         // if marking stack is empty, and we are not doing this
6732         // during precleaning, then check the overflow list
6733     }
6734     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6735     assert(_collector->overflow_list_is_empty(),
6736            "overflow list was drained above");
6737     // We could restore evacuated mark words, if any, used for
6738     // overflow list links here because the overflow list is
6739     // provably empty here. That would reduce the maximum
6740     // size requirements for preserved_{oop,mark}_stack.
6741     // But we'll just postpone it until we are all done
6742     // so we can just stream through.
6743     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6744       _collector->restore_preserved_marks_if_any();
6745       assert(_collector->no_preserved_marks(), "No preserved marks");
6746     }
6747     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6748            "All preserved marks should have been restored above");
6749   }
6750 }
6751 
6752 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6753 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6754 
6755 void MarkRefsIntoAndScanClosure::do_yield_work() {
6756   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6757          "CMS thread should hold CMS token");
6758   assert_lock_strong(_freelistLock);
6759   assert_lock_strong(_bit_map->lock());
6760   // relinquish the free_list_lock and bitMaplock()
6761   _bit_map->lock()->unlock();
6762   _freelistLock->unlock();
6763   ConcurrentMarkSweepThread::desynchronize(true);
6764   ConcurrentMarkSweepThread::acknowledge_yield_request();
6765   _collector->stopTimer();
6766   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6767   if (PrintCMSStatistics != 0) {
6768     _collector->incrementYields();
6769   }
6770   _collector->icms_wait();
6771 
6772   // See the comment in coordinator_yield()
6773   for (unsigned i = 0;
6774        i < CMSYieldSleepCount &&
6775        ConcurrentMarkSweepThread::should_yield() &&
6776        !CMSCollector::foregroundGCIsActive();
6777        ++i) {
6778     os::sleep(Thread::current(), 1, false);
6779     ConcurrentMarkSweepThread::acknowledge_yield_request();
6780   }
6781 
6782   ConcurrentMarkSweepThread::synchronize(true);
6783   _freelistLock->lock_without_safepoint_check();
6784   _bit_map->lock()->lock_without_safepoint_check();
6785   _collector->startTimer();
6786 }
6787 
6788 ///////////////////////////////////////////////////////////
6789 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6790 //                                 MarkRefsIntoAndScanClosure
6791 ///////////////////////////////////////////////////////////
6792 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6793   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6794   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6795   _span(span),
6796   _bit_map(bit_map),
6797   _work_queue(work_queue),
6798   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6799                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6800   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6801 {
6802   _ref_processor = rp;
6803   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6804 }
6805 
6806 // This closure is used to mark refs into the CMS generation at the
6807 // second (final) checkpoint, and to scan and transitively follow
6808 // the unmarked oops. The marks are made in the marking bit map and
6809 // the work_queue is used for keeping the (newly) grey objects during
6810 // the scan phase whence they are also available for stealing by parallel
6811 // threads. Since the marking bit map is shared, updates are
6812 // synchronized (via CAS).
6813 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6814   if (obj != NULL) {
6815     // Ignore mark word because this could be an already marked oop
6816     // that may be chained at the end of the overflow list.
6817     assert(obj->is_oop(true), "expected an oop");
6818     HeapWord* addr = (HeapWord*)obj;
6819     if (_span.contains(addr) &&
6820         !_bit_map->isMarked(addr)) {
6821       // mark bit map (object will become grey):
6822       // It is possible for several threads to be
6823       // trying to "claim" this object concurrently;
6824       // the unique thread that succeeds in marking the
6825       // object first will do the subsequent push on
6826       // to the work queue (or overflow list).
6827       if (_bit_map->par_mark(addr)) {
6828         // push on work_queue (which may not be empty), and trim the
6829         // queue to an appropriate length by applying this closure to
6830         // the oops in the oops popped from the stack (i.e. blacken the
6831         // grey objects)
6832         bool res = _work_queue->push(obj);
6833         assert(res, "Low water mark should be less than capacity?");
6834         trim_queue(_low_water_mark);
6835       } // Else, another thread claimed the object
6836     }
6837   }
6838 }
6839 
6840 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6841 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6842 
6843 // This closure is used to rescan the marked objects on the dirty cards
6844 // in the mod union table and the card table proper.
6845 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6846   oop p, MemRegion mr) {
6847 
6848   size_t size = 0;
6849   HeapWord* addr = (HeapWord*)p;
6850   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6851   assert(_span.contains(addr), "we are scanning the CMS generation");
6852   // check if it's time to yield
6853   if (do_yield_check()) {
6854     // We yielded for some foreground stop-world work,
6855     // and we have been asked to abort this ongoing preclean cycle.
6856     return 0;
6857   }
6858   if (_bitMap->isMarked(addr)) {
6859     // it's marked; is it potentially uninitialized?
6860     if (p->klass_or_null() != NULL) {
6861         // an initialized object; ignore mark word in verification below
6862         // since we are running concurrent with mutators
6863         assert(p->is_oop(true), "should be an oop");
6864         if (p->is_objArray()) {
6865           // objArrays are precisely marked; restrict scanning
6866           // to dirty cards only.
6867           size = CompactibleFreeListSpace::adjustObjectSize(
6868                    p->oop_iterate(_scanningClosure, mr));
6869         } else {
6870           // A non-array may have been imprecisely marked; we need
6871           // to scan object in its entirety.
6872           size = CompactibleFreeListSpace::adjustObjectSize(
6873                    p->oop_iterate(_scanningClosure));
6874         }
6875         #ifdef DEBUG
6876           size_t direct_size =
6877             CompactibleFreeListSpace::adjustObjectSize(p->size());
6878           assert(size == direct_size, "Inconsistency in size");
6879           assert(size >= 3, "Necessary for Printezis marks to work");
6880           if (!_bitMap->isMarked(addr+1)) {
6881             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6882           } else {
6883             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6884             assert(_bitMap->isMarked(addr+size-1),
6885                    "inconsistent Printezis mark");
6886           }
6887         #endif // DEBUG
6888     } else {
6889       // an unitialized object
6890       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6891       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6892       size = pointer_delta(nextOneAddr + 1, addr);
6893       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6894              "alignment problem");
6895       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6896       // will dirty the card when the klass pointer is installed in the
6897       // object (signalling the completion of initialization).
6898     }
6899   } else {
6900     // Either a not yet marked object or an uninitialized object
6901     if (p->klass_or_null() == NULL) {
6902       // An uninitialized object, skip to the next card, since
6903       // we may not be able to read its P-bits yet.
6904       assert(size == 0, "Initial value");
6905     } else {
6906       // An object not (yet) reached by marking: we merely need to
6907       // compute its size so as to go look at the next block.
6908       assert(p->is_oop(true), "should be an oop");
6909       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6910     }
6911   }
6912   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6913   return size;
6914 }
6915 
6916 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6917   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6918          "CMS thread should hold CMS token");
6919   assert_lock_strong(_freelistLock);
6920   assert_lock_strong(_bitMap->lock());
6921   // relinquish the free_list_lock and bitMaplock()
6922   _bitMap->lock()->unlock();
6923   _freelistLock->unlock();
6924   ConcurrentMarkSweepThread::desynchronize(true);
6925   ConcurrentMarkSweepThread::acknowledge_yield_request();
6926   _collector->stopTimer();
6927   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6928   if (PrintCMSStatistics != 0) {
6929     _collector->incrementYields();
6930   }
6931   _collector->icms_wait();
6932 
6933   // See the comment in coordinator_yield()
6934   for (unsigned i = 0; i < CMSYieldSleepCount &&
6935                    ConcurrentMarkSweepThread::should_yield() &&
6936                    !CMSCollector::foregroundGCIsActive(); ++i) {
6937     os::sleep(Thread::current(), 1, false);
6938     ConcurrentMarkSweepThread::acknowledge_yield_request();
6939   }
6940 
6941   ConcurrentMarkSweepThread::synchronize(true);
6942   _freelistLock->lock_without_safepoint_check();
6943   _bitMap->lock()->lock_without_safepoint_check();
6944   _collector->startTimer();
6945 }
6946 
6947 
6948 //////////////////////////////////////////////////////////////////
6949 // SurvivorSpacePrecleanClosure
6950 //////////////////////////////////////////////////////////////////
6951 // This (single-threaded) closure is used to preclean the oops in
6952 // the survivor spaces.
6953 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6954 
6955   HeapWord* addr = (HeapWord*)p;
6956   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6957   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6958   assert(p->klass_or_null() != NULL, "object should be initializd");
6959   // an initialized object; ignore mark word in verification below
6960   // since we are running concurrent with mutators
6961   assert(p->is_oop(true), "should be an oop");
6962   // Note that we do not yield while we iterate over
6963   // the interior oops of p, pushing the relevant ones
6964   // on our marking stack.
6965   size_t size = p->oop_iterate(_scanning_closure);
6966   do_yield_check();
6967   // Observe that below, we do not abandon the preclean
6968   // phase as soon as we should; rather we empty the
6969   // marking stack before returning. This is to satisfy
6970   // some existing assertions. In general, it may be a
6971   // good idea to abort immediately and complete the marking
6972   // from the grey objects at a later time.
6973   while (!_mark_stack->isEmpty()) {
6974     oop new_oop = _mark_stack->pop();
6975     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6976     assert(_bit_map->isMarked((HeapWord*)new_oop),
6977            "only grey objects on this stack");
6978     // iterate over the oops in this oop, marking and pushing
6979     // the ones in CMS heap (i.e. in _span).
6980     new_oop->oop_iterate(_scanning_closure);
6981     // check if it's time to yield
6982     do_yield_check();
6983   }
6984   unsigned int after_count =
6985     GenCollectedHeap::heap()->total_collections();
6986   bool abort = (_before_count != after_count) ||
6987                _collector->should_abort_preclean();
6988   return abort ? 0 : size;
6989 }
6990 
6991 void SurvivorSpacePrecleanClosure::do_yield_work() {
6992   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6993          "CMS thread should hold CMS token");
6994   assert_lock_strong(_bit_map->lock());
6995   // Relinquish the bit map lock
6996   _bit_map->lock()->unlock();
6997   ConcurrentMarkSweepThread::desynchronize(true);
6998   ConcurrentMarkSweepThread::acknowledge_yield_request();
6999   _collector->stopTimer();
7000   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7001   if (PrintCMSStatistics != 0) {
7002     _collector->incrementYields();
7003   }
7004   _collector->icms_wait();
7005 
7006   // See the comment in coordinator_yield()
7007   for (unsigned i = 0; i < CMSYieldSleepCount &&
7008                        ConcurrentMarkSweepThread::should_yield() &&
7009                        !CMSCollector::foregroundGCIsActive(); ++i) {
7010     os::sleep(Thread::current(), 1, false);
7011     ConcurrentMarkSweepThread::acknowledge_yield_request();
7012   }
7013 
7014   ConcurrentMarkSweepThread::synchronize(true);
7015   _bit_map->lock()->lock_without_safepoint_check();
7016   _collector->startTimer();
7017 }
7018 
7019 // This closure is used to rescan the marked objects on the dirty cards
7020 // in the mod union table and the card table proper. In the parallel
7021 // case, although the bitMap is shared, we do a single read so the
7022 // isMarked() query is "safe".
7023 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7024   // Ignore mark word because we are running concurrent with mutators
7025   assert(p->is_oop_or_null(true), "expected an oop or null");
7026   HeapWord* addr = (HeapWord*)p;
7027   assert(_span.contains(addr), "we are scanning the CMS generation");
7028   bool is_obj_array = false;
7029   #ifdef DEBUG
7030     if (!_parallel) {
7031       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7032       assert(_collector->overflow_list_is_empty(),
7033              "overflow list should be empty");
7034 
7035     }
7036   #endif // DEBUG
7037   if (_bit_map->isMarked(addr)) {
7038     // Obj arrays are precisely marked, non-arrays are not;
7039     // so we scan objArrays precisely and non-arrays in their
7040     // entirety.
7041     if (p->is_objArray()) {
7042       is_obj_array = true;
7043       if (_parallel) {
7044         p->oop_iterate(_par_scan_closure, mr);
7045       } else {
7046         p->oop_iterate(_scan_closure, mr);
7047       }
7048     } else {
7049       if (_parallel) {
7050         p->oop_iterate(_par_scan_closure);
7051       } else {
7052         p->oop_iterate(_scan_closure);
7053       }
7054     }
7055   }
7056   #ifdef DEBUG
7057     if (!_parallel) {
7058       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7059       assert(_collector->overflow_list_is_empty(),
7060              "overflow list should be empty");
7061 
7062     }
7063   #endif // DEBUG
7064   return is_obj_array;
7065 }
7066 
7067 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7068                         MemRegion span,
7069                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7070                         bool should_yield, bool verifying):
7071   _collector(collector),
7072   _span(span),
7073   _bitMap(bitMap),
7074   _mut(&collector->_modUnionTable),
7075   _markStack(markStack),
7076   _yield(should_yield),
7077   _skipBits(0)
7078 {
7079   assert(_markStack->isEmpty(), "stack should be empty");
7080   _finger = _bitMap->startWord();
7081   _threshold = _finger;
7082   assert(_collector->_restart_addr == NULL, "Sanity check");
7083   assert(_span.contains(_finger), "Out of bounds _finger?");
7084   DEBUG_ONLY(_verifying = verifying;)
7085 }
7086 
7087 void MarkFromRootsClosure::reset(HeapWord* addr) {
7088   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7089   assert(_span.contains(addr), "Out of bounds _finger?");
7090   _finger = addr;
7091   _threshold = (HeapWord*)round_to(
7092                  (intptr_t)_finger, CardTableModRefBS::card_size);
7093 }
7094 
7095 // Should revisit to see if this should be restructured for
7096 // greater efficiency.
7097 bool MarkFromRootsClosure::do_bit(size_t offset) {
7098   if (_skipBits > 0) {
7099     _skipBits--;
7100     return true;
7101   }
7102   // convert offset into a HeapWord*
7103   HeapWord* addr = _bitMap->startWord() + offset;
7104   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7105          "address out of range");
7106   assert(_bitMap->isMarked(addr), "tautology");
7107   if (_bitMap->isMarked(addr+1)) {
7108     // this is an allocated but not yet initialized object
7109     assert(_skipBits == 0, "tautology");
7110     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7111     oop p = oop(addr);
7112     if (p->klass_or_null() == NULL) {
7113       DEBUG_ONLY(if (!_verifying) {)
7114         // We re-dirty the cards on which this object lies and increase
7115         // the _threshold so that we'll come back to scan this object
7116         // during the preclean or remark phase. (CMSCleanOnEnter)
7117         if (CMSCleanOnEnter) {
7118           size_t sz = _collector->block_size_using_printezis_bits(addr);
7119           HeapWord* end_card_addr   = (HeapWord*)round_to(
7120                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7121           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7122           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7123           // Bump _threshold to end_card_addr; note that
7124           // _threshold cannot possibly exceed end_card_addr, anyhow.
7125           // This prevents future clearing of the card as the scan proceeds
7126           // to the right.
7127           assert(_threshold <= end_card_addr,
7128                  "Because we are just scanning into this object");
7129           if (_threshold < end_card_addr) {
7130             _threshold = end_card_addr;
7131           }
7132           if (p->klass_or_null() != NULL) {
7133             // Redirty the range of cards...
7134             _mut->mark_range(redirty_range);
7135           } // ...else the setting of klass will dirty the card anyway.
7136         }
7137       DEBUG_ONLY(})
7138       return true;
7139     }
7140   }
7141   scanOopsInOop(addr);
7142   return true;
7143 }
7144 
7145 // We take a break if we've been at this for a while,
7146 // so as to avoid monopolizing the locks involved.
7147 void MarkFromRootsClosure::do_yield_work() {
7148   // First give up the locks, then yield, then re-lock
7149   // We should probably use a constructor/destructor idiom to
7150   // do this unlock/lock or modify the MutexUnlocker class to
7151   // serve our purpose. XXX
7152   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7153          "CMS thread should hold CMS token");
7154   assert_lock_strong(_bitMap->lock());
7155   _bitMap->lock()->unlock();
7156   ConcurrentMarkSweepThread::desynchronize(true);
7157   ConcurrentMarkSweepThread::acknowledge_yield_request();
7158   _collector->stopTimer();
7159   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7160   if (PrintCMSStatistics != 0) {
7161     _collector->incrementYields();
7162   }
7163   _collector->icms_wait();
7164 
7165   // See the comment in coordinator_yield()
7166   for (unsigned i = 0; i < CMSYieldSleepCount &&
7167                        ConcurrentMarkSweepThread::should_yield() &&
7168                        !CMSCollector::foregroundGCIsActive(); ++i) {
7169     os::sleep(Thread::current(), 1, false);
7170     ConcurrentMarkSweepThread::acknowledge_yield_request();
7171   }
7172 
7173   ConcurrentMarkSweepThread::synchronize(true);
7174   _bitMap->lock()->lock_without_safepoint_check();
7175   _collector->startTimer();
7176 }
7177 
7178 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7179   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7180   assert(_markStack->isEmpty(),
7181          "should drain stack to limit stack usage");
7182   // convert ptr to an oop preparatory to scanning
7183   oop obj = oop(ptr);
7184   // Ignore mark word in verification below, since we
7185   // may be running concurrent with mutators.
7186   assert(obj->is_oop(true), "should be an oop");
7187   assert(_finger <= ptr, "_finger runneth ahead");
7188   // advance the finger to right end of this object
7189   _finger = ptr + obj->size();
7190   assert(_finger > ptr, "we just incremented it above");
7191   // On large heaps, it may take us some time to get through
7192   // the marking phase (especially if running iCMS). During
7193   // this time it's possible that a lot of mutations have
7194   // accumulated in the card table and the mod union table --
7195   // these mutation records are redundant until we have
7196   // actually traced into the corresponding card.
7197   // Here, we check whether advancing the finger would make
7198   // us cross into a new card, and if so clear corresponding
7199   // cards in the MUT (preclean them in the card-table in the
7200   // future).
7201 
7202   DEBUG_ONLY(if (!_verifying) {)
7203     // The clean-on-enter optimization is disabled by default,
7204     // until we fix 6178663.
7205     if (CMSCleanOnEnter && (_finger > _threshold)) {
7206       // [_threshold, _finger) represents the interval
7207       // of cards to be cleared  in MUT (or precleaned in card table).
7208       // The set of cards to be cleared is all those that overlap
7209       // with the interval [_threshold, _finger); note that
7210       // _threshold is always kept card-aligned but _finger isn't
7211       // always card-aligned.
7212       HeapWord* old_threshold = _threshold;
7213       assert(old_threshold == (HeapWord*)round_to(
7214               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7215              "_threshold should always be card-aligned");
7216       _threshold = (HeapWord*)round_to(
7217                      (intptr_t)_finger, CardTableModRefBS::card_size);
7218       MemRegion mr(old_threshold, _threshold);
7219       assert(!mr.is_empty(), "Control point invariant");
7220       assert(_span.contains(mr), "Should clear within span");
7221       _mut->clear_range(mr);
7222     }
7223   DEBUG_ONLY(})
7224   // Note: the finger doesn't advance while we drain
7225   // the stack below.
7226   PushOrMarkClosure pushOrMarkClosure(_collector,
7227                                       _span, _bitMap, _markStack,
7228                                       _finger, this);
7229   bool res = _markStack->push(obj);
7230   assert(res, "Empty non-zero size stack should have space for single push");
7231   while (!_markStack->isEmpty()) {
7232     oop new_oop = _markStack->pop();
7233     // Skip verifying header mark word below because we are
7234     // running concurrent with mutators.
7235     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7236     // now scan this oop's oops
7237     new_oop->oop_iterate(&pushOrMarkClosure);
7238     do_yield_check();
7239   }
7240   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7241 }
7242 
7243 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7244                        CMSCollector* collector, MemRegion span,
7245                        CMSBitMap* bit_map,
7246                        OopTaskQueue* work_queue,
7247                        CMSMarkStack*  overflow_stack,
7248                        bool should_yield):
7249   _collector(collector),
7250   _whole_span(collector->_span),
7251   _span(span),
7252   _bit_map(bit_map),
7253   _mut(&collector->_modUnionTable),
7254   _work_queue(work_queue),
7255   _overflow_stack(overflow_stack),
7256   _yield(should_yield),
7257   _skip_bits(0),
7258   _task(task)
7259 {
7260   assert(_work_queue->size() == 0, "work_queue should be empty");
7261   _finger = span.start();
7262   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7263   assert(_span.contains(_finger), "Out of bounds _finger?");
7264 }
7265 
7266 // Should revisit to see if this should be restructured for
7267 // greater efficiency.
7268 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7269   if (_skip_bits > 0) {
7270     _skip_bits--;
7271     return true;
7272   }
7273   // convert offset into a HeapWord*
7274   HeapWord* addr = _bit_map->startWord() + offset;
7275   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7276          "address out of range");
7277   assert(_bit_map->isMarked(addr), "tautology");
7278   if (_bit_map->isMarked(addr+1)) {
7279     // this is an allocated object that might not yet be initialized
7280     assert(_skip_bits == 0, "tautology");
7281     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7282     oop p = oop(addr);
7283     if (p->klass_or_null() == NULL) {
7284       // in the case of Clean-on-Enter optimization, redirty card
7285       // and avoid clearing card by increasing  the threshold.
7286       return true;
7287     }
7288   }
7289   scan_oops_in_oop(addr);
7290   return true;
7291 }
7292 
7293 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7294   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7295   // Should we assert that our work queue is empty or
7296   // below some drain limit?
7297   assert(_work_queue->size() == 0,
7298          "should drain stack to limit stack usage");
7299   // convert ptr to an oop preparatory to scanning
7300   oop obj = oop(ptr);
7301   // Ignore mark word in verification below, since we
7302   // may be running concurrent with mutators.
7303   assert(obj->is_oop(true), "should be an oop");
7304   assert(_finger <= ptr, "_finger runneth ahead");
7305   // advance the finger to right end of this object
7306   _finger = ptr + obj->size();
7307   assert(_finger > ptr, "we just incremented it above");
7308   // On large heaps, it may take us some time to get through
7309   // the marking phase (especially if running iCMS). During
7310   // this time it's possible that a lot of mutations have
7311   // accumulated in the card table and the mod union table --
7312   // these mutation records are redundant until we have
7313   // actually traced into the corresponding card.
7314   // Here, we check whether advancing the finger would make
7315   // us cross into a new card, and if so clear corresponding
7316   // cards in the MUT (preclean them in the card-table in the
7317   // future).
7318 
7319   // The clean-on-enter optimization is disabled by default,
7320   // until we fix 6178663.
7321   if (CMSCleanOnEnter && (_finger > _threshold)) {
7322     // [_threshold, _finger) represents the interval
7323     // of cards to be cleared  in MUT (or precleaned in card table).
7324     // The set of cards to be cleared is all those that overlap
7325     // with the interval [_threshold, _finger); note that
7326     // _threshold is always kept card-aligned but _finger isn't
7327     // always card-aligned.
7328     HeapWord* old_threshold = _threshold;
7329     assert(old_threshold == (HeapWord*)round_to(
7330             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7331            "_threshold should always be card-aligned");
7332     _threshold = (HeapWord*)round_to(
7333                    (intptr_t)_finger, CardTableModRefBS::card_size);
7334     MemRegion mr(old_threshold, _threshold);
7335     assert(!mr.is_empty(), "Control point invariant");
7336     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7337     _mut->clear_range(mr);
7338   }
7339 
7340   // Note: the local finger doesn't advance while we drain
7341   // the stack below, but the global finger sure can and will.
7342   HeapWord** gfa = _task->global_finger_addr();
7343   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7344                                       _span, _bit_map,
7345                                       _work_queue,
7346                                       _overflow_stack,
7347                                       _finger,
7348                                       gfa, this);
7349   bool res = _work_queue->push(obj);   // overflow could occur here
7350   assert(res, "Will hold once we use workqueues");
7351   while (true) {
7352     oop new_oop;
7353     if (!_work_queue->pop_local(new_oop)) {
7354       // We emptied our work_queue; check if there's stuff that can
7355       // be gotten from the overflow stack.
7356       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7357             _overflow_stack, _work_queue)) {
7358         do_yield_check();
7359         continue;
7360       } else {  // done
7361         break;
7362       }
7363     }
7364     // Skip verifying header mark word below because we are
7365     // running concurrent with mutators.
7366     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7367     // now scan this oop's oops
7368     new_oop->oop_iterate(&pushOrMarkClosure);
7369     do_yield_check();
7370   }
7371   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7372 }
7373 
7374 // Yield in response to a request from VM Thread or
7375 // from mutators.
7376 void Par_MarkFromRootsClosure::do_yield_work() {
7377   assert(_task != NULL, "sanity");
7378   _task->yield();
7379 }
7380 
7381 // A variant of the above used for verifying CMS marking work.
7382 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7383                         MemRegion span,
7384                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7385                         CMSMarkStack*  mark_stack):
7386   _collector(collector),
7387   _span(span),
7388   _verification_bm(verification_bm),
7389   _cms_bm(cms_bm),
7390   _mark_stack(mark_stack),
7391   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7392                       mark_stack)
7393 {
7394   assert(_mark_stack->isEmpty(), "stack should be empty");
7395   _finger = _verification_bm->startWord();
7396   assert(_collector->_restart_addr == NULL, "Sanity check");
7397   assert(_span.contains(_finger), "Out of bounds _finger?");
7398 }
7399 
7400 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7401   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7402   assert(_span.contains(addr), "Out of bounds _finger?");
7403   _finger = addr;
7404 }
7405 
7406 // Should revisit to see if this should be restructured for
7407 // greater efficiency.
7408 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7409   // convert offset into a HeapWord*
7410   HeapWord* addr = _verification_bm->startWord() + offset;
7411   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7412          "address out of range");
7413   assert(_verification_bm->isMarked(addr), "tautology");
7414   assert(_cms_bm->isMarked(addr), "tautology");
7415 
7416   assert(_mark_stack->isEmpty(),
7417          "should drain stack to limit stack usage");
7418   // convert addr to an oop preparatory to scanning
7419   oop obj = oop(addr);
7420   assert(obj->is_oop(), "should be an oop");
7421   assert(_finger <= addr, "_finger runneth ahead");
7422   // advance the finger to right end of this object
7423   _finger = addr + obj->size();
7424   assert(_finger > addr, "we just incremented it above");
7425   // Note: the finger doesn't advance while we drain
7426   // the stack below.
7427   bool res = _mark_stack->push(obj);
7428   assert(res, "Empty non-zero size stack should have space for single push");
7429   while (!_mark_stack->isEmpty()) {
7430     oop new_oop = _mark_stack->pop();
7431     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7432     // now scan this oop's oops
7433     new_oop->oop_iterate(&_pam_verify_closure);
7434   }
7435   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7436   return true;
7437 }
7438 
7439 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7440   CMSCollector* collector, MemRegion span,
7441   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7442   CMSMarkStack*  mark_stack):
7443   CMSOopClosure(collector->ref_processor()),
7444   _collector(collector),
7445   _span(span),
7446   _verification_bm(verification_bm),
7447   _cms_bm(cms_bm),
7448   _mark_stack(mark_stack)
7449 { }
7450 
7451 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7452 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7453 
7454 // Upon stack overflow, we discard (part of) the stack,
7455 // remembering the least address amongst those discarded
7456 // in CMSCollector's _restart_address.
7457 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7458   // Remember the least grey address discarded
7459   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7460   _collector->lower_restart_addr(ra);
7461   _mark_stack->reset();  // discard stack contents
7462   _mark_stack->expand(); // expand the stack if possible
7463 }
7464 
7465 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7466   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7467   HeapWord* addr = (HeapWord*)obj;
7468   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7469     // Oop lies in _span and isn't yet grey or black
7470     _verification_bm->mark(addr);            // now grey
7471     if (!_cms_bm->isMarked(addr)) {
7472       oop(addr)->print();
7473       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7474                              addr);
7475       fatal("... aborting");
7476     }
7477 
7478     if (!_mark_stack->push(obj)) { // stack overflow
7479       if (PrintCMSStatistics != 0) {
7480         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7481                                SIZE_FORMAT, _mark_stack->capacity());
7482       }
7483       assert(_mark_stack->isFull(), "Else push should have succeeded");
7484       handle_stack_overflow(addr);
7485     }
7486     // anything including and to the right of _finger
7487     // will be scanned as we iterate over the remainder of the
7488     // bit map
7489   }
7490 }
7491 
7492 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7493                      MemRegion span,
7494                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7495                      HeapWord* finger, MarkFromRootsClosure* parent) :
7496   CMSOopClosure(collector->ref_processor()),
7497   _collector(collector),
7498   _span(span),
7499   _bitMap(bitMap),
7500   _markStack(markStack),
7501   _finger(finger),
7502   _parent(parent)
7503 { }
7504 
7505 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7506                      MemRegion span,
7507                      CMSBitMap* bit_map,
7508                      OopTaskQueue* work_queue,
7509                      CMSMarkStack*  overflow_stack,
7510                      HeapWord* finger,
7511                      HeapWord** global_finger_addr,
7512                      Par_MarkFromRootsClosure* parent) :
7513   CMSOopClosure(collector->ref_processor()),
7514   _collector(collector),
7515   _whole_span(collector->_span),
7516   _span(span),
7517   _bit_map(bit_map),
7518   _work_queue(work_queue),
7519   _overflow_stack(overflow_stack),
7520   _finger(finger),
7521   _global_finger_addr(global_finger_addr),
7522   _parent(parent)
7523 { }
7524 
7525 // Assumes thread-safe access by callers, who are
7526 // responsible for mutual exclusion.
7527 void CMSCollector::lower_restart_addr(HeapWord* low) {
7528   assert(_span.contains(low), "Out of bounds addr");
7529   if (_restart_addr == NULL) {
7530     _restart_addr = low;
7531   } else {
7532     _restart_addr = MIN2(_restart_addr, low);
7533   }
7534 }
7535 
7536 // Upon stack overflow, we discard (part of) the stack,
7537 // remembering the least address amongst those discarded
7538 // in CMSCollector's _restart_address.
7539 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7540   // Remember the least grey address discarded
7541   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7542   _collector->lower_restart_addr(ra);
7543   _markStack->reset();  // discard stack contents
7544   _markStack->expand(); // expand the stack if possible
7545 }
7546 
7547 // Upon stack overflow, we discard (part of) the stack,
7548 // remembering the least address amongst those discarded
7549 // in CMSCollector's _restart_address.
7550 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7551   // We need to do this under a mutex to prevent other
7552   // workers from interfering with the work done below.
7553   MutexLockerEx ml(_overflow_stack->par_lock(),
7554                    Mutex::_no_safepoint_check_flag);
7555   // Remember the least grey address discarded
7556   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7557   _collector->lower_restart_addr(ra);
7558   _overflow_stack->reset();  // discard stack contents
7559   _overflow_stack->expand(); // expand the stack if possible
7560 }
7561 
7562 void CMKlassClosure::do_klass(Klass* k) {
7563   assert(_oop_closure != NULL, "Not initialized?");
7564   k->oops_do(_oop_closure);
7565 }
7566 
7567 void PushOrMarkClosure::do_oop(oop obj) {
7568   // Ignore mark word because we are running concurrent with mutators.
7569   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7570   HeapWord* addr = (HeapWord*)obj;
7571   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7572     // Oop lies in _span and isn't yet grey or black
7573     _bitMap->mark(addr);            // now grey
7574     if (addr < _finger) {
7575       // the bit map iteration has already either passed, or
7576       // sampled, this bit in the bit map; we'll need to
7577       // use the marking stack to scan this oop's oops.
7578       bool simulate_overflow = false;
7579       NOT_PRODUCT(
7580         if (CMSMarkStackOverflowALot &&
7581             _collector->simulate_overflow()) {
7582           // simulate a stack overflow
7583           simulate_overflow = true;
7584         }
7585       )
7586       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7587         if (PrintCMSStatistics != 0) {
7588           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7589                                  SIZE_FORMAT, _markStack->capacity());
7590         }
7591         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7592         handle_stack_overflow(addr);
7593       }
7594     }
7595     // anything including and to the right of _finger
7596     // will be scanned as we iterate over the remainder of the
7597     // bit map
7598     do_yield_check();
7599   }
7600 }
7601 
7602 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7603 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7604 
7605 void Par_PushOrMarkClosure::do_oop(oop obj) {
7606   // Ignore mark word because we are running concurrent with mutators.
7607   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7608   HeapWord* addr = (HeapWord*)obj;
7609   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7610     // Oop lies in _span and isn't yet grey or black
7611     // We read the global_finger (volatile read) strictly after marking oop
7612     bool res = _bit_map->par_mark(addr);    // now grey
7613     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7614     // Should we push this marked oop on our stack?
7615     // -- if someone else marked it, nothing to do
7616     // -- if target oop is above global finger nothing to do
7617     // -- if target oop is in chunk and above local finger
7618     //      then nothing to do
7619     // -- else push on work queue
7620     if (   !res       // someone else marked it, they will deal with it
7621         || (addr >= *gfa)  // will be scanned in a later task
7622         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7623       return;
7624     }
7625     // the bit map iteration has already either passed, or
7626     // sampled, this bit in the bit map; we'll need to
7627     // use the marking stack to scan this oop's oops.
7628     bool simulate_overflow = false;
7629     NOT_PRODUCT(
7630       if (CMSMarkStackOverflowALot &&
7631           _collector->simulate_overflow()) {
7632         // simulate a stack overflow
7633         simulate_overflow = true;
7634       }
7635     )
7636     if (simulate_overflow ||
7637         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7638       // stack overflow
7639       if (PrintCMSStatistics != 0) {
7640         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7641                                SIZE_FORMAT, _overflow_stack->capacity());
7642       }
7643       // We cannot assert that the overflow stack is full because
7644       // it may have been emptied since.
7645       assert(simulate_overflow ||
7646              _work_queue->size() == _work_queue->max_elems(),
7647             "Else push should have succeeded");
7648       handle_stack_overflow(addr);
7649     }
7650     do_yield_check();
7651   }
7652 }
7653 
7654 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7655 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7656 
7657 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7658                                        MemRegion span,
7659                                        ReferenceProcessor* rp,
7660                                        CMSBitMap* bit_map,
7661                                        CMSBitMap* mod_union_table,
7662                                        CMSMarkStack*  mark_stack,
7663                                        bool           concurrent_precleaning):
7664   CMSOopClosure(rp),
7665   _collector(collector),
7666   _span(span),
7667   _bit_map(bit_map),
7668   _mod_union_table(mod_union_table),
7669   _mark_stack(mark_stack),
7670   _concurrent_precleaning(concurrent_precleaning)
7671 {
7672   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7673 }
7674 
7675 // Grey object rescan during pre-cleaning and second checkpoint phases --
7676 // the non-parallel version (the parallel version appears further below.)
7677 void PushAndMarkClosure::do_oop(oop obj) {
7678   // Ignore mark word verification. If during concurrent precleaning,
7679   // the object monitor may be locked. If during the checkpoint
7680   // phases, the object may already have been reached by a  different
7681   // path and may be at the end of the global overflow list (so
7682   // the mark word may be NULL).
7683   assert(obj->is_oop_or_null(true /* ignore mark word */),
7684          "expected an oop or NULL");
7685   HeapWord* addr = (HeapWord*)obj;
7686   // Check if oop points into the CMS generation
7687   // and is not marked
7688   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7689     // a white object ...
7690     _bit_map->mark(addr);         // ... now grey
7691     // push on the marking stack (grey set)
7692     bool simulate_overflow = false;
7693     NOT_PRODUCT(
7694       if (CMSMarkStackOverflowALot &&
7695           _collector->simulate_overflow()) {
7696         // simulate a stack overflow
7697         simulate_overflow = true;
7698       }
7699     )
7700     if (simulate_overflow || !_mark_stack->push(obj)) {
7701       if (_concurrent_precleaning) {
7702          // During precleaning we can just dirty the appropriate card(s)
7703          // in the mod union table, thus ensuring that the object remains
7704          // in the grey set  and continue. In the case of object arrays
7705          // we need to dirty all of the cards that the object spans,
7706          // since the rescan of object arrays will be limited to the
7707          // dirty cards.
7708          // Note that no one can be intefering with us in this action
7709          // of dirtying the mod union table, so no locking or atomics
7710          // are required.
7711          if (obj->is_objArray()) {
7712            size_t sz = obj->size();
7713            HeapWord* end_card_addr = (HeapWord*)round_to(
7714                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7715            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7716            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7717            _mod_union_table->mark_range(redirty_range);
7718          } else {
7719            _mod_union_table->mark(addr);
7720          }
7721          _collector->_ser_pmc_preclean_ovflw++;
7722       } else {
7723          // During the remark phase, we need to remember this oop
7724          // in the overflow list.
7725          _collector->push_on_overflow_list(obj);
7726          _collector->_ser_pmc_remark_ovflw++;
7727       }
7728     }
7729   }
7730 }
7731 
7732 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7733                                                MemRegion span,
7734                                                ReferenceProcessor* rp,
7735                                                CMSBitMap* bit_map,
7736                                                OopTaskQueue* work_queue):
7737   CMSOopClosure(rp),
7738   _collector(collector),
7739   _span(span),
7740   _bit_map(bit_map),
7741   _work_queue(work_queue)
7742 {
7743   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7744 }
7745 
7746 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7747 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7748 
7749 // Grey object rescan during second checkpoint phase --
7750 // the parallel version.
7751 void Par_PushAndMarkClosure::do_oop(oop obj) {
7752   // In the assert below, we ignore the mark word because
7753   // this oop may point to an already visited object that is
7754   // on the overflow stack (in which case the mark word has
7755   // been hijacked for chaining into the overflow stack --
7756   // if this is the last object in the overflow stack then
7757   // its mark word will be NULL). Because this object may
7758   // have been subsequently popped off the global overflow
7759   // stack, and the mark word possibly restored to the prototypical
7760   // value, by the time we get to examined this failing assert in
7761   // the debugger, is_oop_or_null(false) may subsequently start
7762   // to hold.
7763   assert(obj->is_oop_or_null(true),
7764          "expected an oop or NULL");
7765   HeapWord* addr = (HeapWord*)obj;
7766   // Check if oop points into the CMS generation
7767   // and is not marked
7768   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7769     // a white object ...
7770     // If we manage to "claim" the object, by being the
7771     // first thread to mark it, then we push it on our
7772     // marking stack
7773     if (_bit_map->par_mark(addr)) {     // ... now grey
7774       // push on work queue (grey set)
7775       bool simulate_overflow = false;
7776       NOT_PRODUCT(
7777         if (CMSMarkStackOverflowALot &&
7778             _collector->par_simulate_overflow()) {
7779           // simulate a stack overflow
7780           simulate_overflow = true;
7781         }
7782       )
7783       if (simulate_overflow || !_work_queue->push(obj)) {
7784         _collector->par_push_on_overflow_list(obj);
7785         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7786       }
7787     } // Else, some other thread got there first
7788   }
7789 }
7790 
7791 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7792 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7793 
7794 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7795   Mutex* bml = _collector->bitMapLock();
7796   assert_lock_strong(bml);
7797   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7798          "CMS thread should hold CMS token");
7799 
7800   bml->unlock();
7801   ConcurrentMarkSweepThread::desynchronize(true);
7802 
7803   ConcurrentMarkSweepThread::acknowledge_yield_request();
7804 
7805   _collector->stopTimer();
7806   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7807   if (PrintCMSStatistics != 0) {
7808     _collector->incrementYields();
7809   }
7810   _collector->icms_wait();
7811 
7812   // See the comment in coordinator_yield()
7813   for (unsigned i = 0; i < CMSYieldSleepCount &&
7814                        ConcurrentMarkSweepThread::should_yield() &&
7815                        !CMSCollector::foregroundGCIsActive(); ++i) {
7816     os::sleep(Thread::current(), 1, false);
7817     ConcurrentMarkSweepThread::acknowledge_yield_request();
7818   }
7819 
7820   ConcurrentMarkSweepThread::synchronize(true);
7821   bml->lock();
7822 
7823   _collector->startTimer();
7824 }
7825 
7826 bool CMSPrecleanRefsYieldClosure::should_return() {
7827   if (ConcurrentMarkSweepThread::should_yield()) {
7828     do_yield_work();
7829   }
7830   return _collector->foregroundGCIsActive();
7831 }
7832 
7833 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7834   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7835          "mr should be aligned to start at a card boundary");
7836   // We'd like to assert:
7837   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7838   //        "mr should be a range of cards");
7839   // However, that would be too strong in one case -- the last
7840   // partition ends at _unallocated_block which, in general, can be
7841   // an arbitrary boundary, not necessarily card aligned.
7842   if (PrintCMSStatistics != 0) {
7843     _num_dirty_cards +=
7844          mr.word_size()/CardTableModRefBS::card_size_in_words;
7845   }
7846   _space->object_iterate_mem(mr, &_scan_cl);
7847 }
7848 
7849 SweepClosure::SweepClosure(CMSCollector* collector,
7850                            ConcurrentMarkSweepGeneration* g,
7851                            CMSBitMap* bitMap, bool should_yield) :
7852   _collector(collector),
7853   _g(g),
7854   _sp(g->cmsSpace()),
7855   _limit(_sp->sweep_limit()),
7856   _freelistLock(_sp->freelistLock()),
7857   _bitMap(bitMap),
7858   _yield(should_yield),
7859   _inFreeRange(false),           // No free range at beginning of sweep
7860   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7861   _lastFreeRangeCoalesced(false),
7862   _freeFinger(g->used_region().start())
7863 {
7864   NOT_PRODUCT(
7865     _numObjectsFreed = 0;
7866     _numWordsFreed   = 0;
7867     _numObjectsLive = 0;
7868     _numWordsLive = 0;
7869     _numObjectsAlreadyFree = 0;
7870     _numWordsAlreadyFree = 0;
7871     _last_fc = NULL;
7872 
7873     _sp->initializeIndexedFreeListArrayReturnedBytes();
7874     _sp->dictionary()->initialize_dict_returned_bytes();
7875   )
7876   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7877          "sweep _limit out of bounds");
7878   if (CMSTraceSweeper) {
7879     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7880                         _limit);
7881   }
7882 }
7883 
7884 void SweepClosure::print_on(outputStream* st) const {
7885   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7886                 _sp->bottom(), _sp->end());
7887   tty->print_cr("_limit = " PTR_FORMAT, _limit);
7888   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
7889   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
7890   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7891                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7892 }
7893 
7894 #ifndef PRODUCT
7895 // Assertion checking only:  no useful work in product mode --
7896 // however, if any of the flags below become product flags,
7897 // you may need to review this code to see if it needs to be
7898 // enabled in product mode.
7899 SweepClosure::~SweepClosure() {
7900   assert_lock_strong(_freelistLock);
7901   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7902          "sweep _limit out of bounds");
7903   if (inFreeRange()) {
7904     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7905     print();
7906     ShouldNotReachHere();
7907   }
7908   if (Verbose && PrintGC) {
7909     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7910                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7911     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7912                            SIZE_FORMAT" bytes  "
7913       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7914       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7915       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7916     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7917                         * sizeof(HeapWord);
7918     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7919 
7920     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7921       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7922       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7923       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7924       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7925       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7926         indexListReturnedBytes);
7927       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7928         dict_returned_bytes);
7929     }
7930   }
7931   if (CMSTraceSweeper) {
7932     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7933                            _limit);
7934   }
7935 }
7936 #endif  // PRODUCT
7937 
7938 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7939     bool freeRangeInFreeLists) {
7940   if (CMSTraceSweeper) {
7941     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
7942                freeFinger, freeRangeInFreeLists);
7943   }
7944   assert(!inFreeRange(), "Trampling existing free range");
7945   set_inFreeRange(true);
7946   set_lastFreeRangeCoalesced(false);
7947 
7948   set_freeFinger(freeFinger);
7949   set_freeRangeInFreeLists(freeRangeInFreeLists);
7950   if (CMSTestInFreeList) {
7951     if (freeRangeInFreeLists) {
7952       FreeChunk* fc = (FreeChunk*) freeFinger;
7953       assert(fc->is_free(), "A chunk on the free list should be free.");
7954       assert(fc->size() > 0, "Free range should have a size");
7955       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7956     }
7957   }
7958 }
7959 
7960 // Note that the sweeper runs concurrently with mutators. Thus,
7961 // it is possible for direct allocation in this generation to happen
7962 // in the middle of the sweep. Note that the sweeper also coalesces
7963 // contiguous free blocks. Thus, unless the sweeper and the allocator
7964 // synchronize appropriately freshly allocated blocks may get swept up.
7965 // This is accomplished by the sweeper locking the free lists while
7966 // it is sweeping. Thus blocks that are determined to be free are
7967 // indeed free. There is however one additional complication:
7968 // blocks that have been allocated since the final checkpoint and
7969 // mark, will not have been marked and so would be treated as
7970 // unreachable and swept up. To prevent this, the allocator marks
7971 // the bit map when allocating during the sweep phase. This leads,
7972 // however, to a further complication -- objects may have been allocated
7973 // but not yet initialized -- in the sense that the header isn't yet
7974 // installed. The sweeper can not then determine the size of the block
7975 // in order to skip over it. To deal with this case, we use a technique
7976 // (due to Printezis) to encode such uninitialized block sizes in the
7977 // bit map. Since the bit map uses a bit per every HeapWord, but the
7978 // CMS generation has a minimum object size of 3 HeapWords, it follows
7979 // that "normal marks" won't be adjacent in the bit map (there will
7980 // always be at least two 0 bits between successive 1 bits). We make use
7981 // of these "unused" bits to represent uninitialized blocks -- the bit
7982 // corresponding to the start of the uninitialized object and the next
7983 // bit are both set. Finally, a 1 bit marks the end of the object that
7984 // started with the two consecutive 1 bits to indicate its potentially
7985 // uninitialized state.
7986 
7987 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7988   FreeChunk* fc = (FreeChunk*)addr;
7989   size_t res;
7990 
7991   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7992   // than "addr == _limit" because although _limit was a block boundary when
7993   // we started the sweep, it may no longer be one because heap expansion
7994   // may have caused us to coalesce the block ending at the address _limit
7995   // with a newly expanded chunk (this happens when _limit was set to the
7996   // previous _end of the space), so we may have stepped past _limit:
7997   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7998   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7999     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8000            "sweep _limit out of bounds");
8001     assert(addr < _sp->end(), "addr out of bounds");
8002     // Flush any free range we might be holding as a single
8003     // coalesced chunk to the appropriate free list.
8004     if (inFreeRange()) {
8005       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8006              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8007       flush_cur_free_chunk(freeFinger(),
8008                            pointer_delta(addr, freeFinger()));
8009       if (CMSTraceSweeper) {
8010         gclog_or_tty->print("Sweep: last chunk: ");
8011         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8012                    "[coalesced:"SIZE_FORMAT"]\n",
8013                    freeFinger(), pointer_delta(addr, freeFinger()),
8014                    lastFreeRangeCoalesced());
8015       }
8016     }
8017 
8018     // help the iterator loop finish
8019     return pointer_delta(_sp->end(), addr);
8020   }
8021 
8022   assert(addr < _limit, "sweep invariant");
8023   // check if we should yield
8024   do_yield_check(addr);
8025   if (fc->is_free()) {
8026     // Chunk that is already free
8027     res = fc->size();
8028     do_already_free_chunk(fc);
8029     debug_only(_sp->verifyFreeLists());
8030     // If we flush the chunk at hand in lookahead_and_flush()
8031     // and it's coalesced with a preceding chunk, then the
8032     // process of "mangling" the payload of the coalesced block
8033     // will cause erasure of the size information from the
8034     // (erstwhile) header of all the coalesced blocks but the
8035     // first, so the first disjunct in the assert will not hold
8036     // in that specific case (in which case the second disjunct
8037     // will hold).
8038     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8039            "Otherwise the size info doesn't change at this step");
8040     NOT_PRODUCT(
8041       _numObjectsAlreadyFree++;
8042       _numWordsAlreadyFree += res;
8043     )
8044     NOT_PRODUCT(_last_fc = fc;)
8045   } else if (!_bitMap->isMarked(addr)) {
8046     // Chunk is fresh garbage
8047     res = do_garbage_chunk(fc);
8048     debug_only(_sp->verifyFreeLists());
8049     NOT_PRODUCT(
8050       _numObjectsFreed++;
8051       _numWordsFreed += res;
8052     )
8053   } else {
8054     // Chunk that is alive.
8055     res = do_live_chunk(fc);
8056     debug_only(_sp->verifyFreeLists());
8057     NOT_PRODUCT(
8058         _numObjectsLive++;
8059         _numWordsLive += res;
8060     )
8061   }
8062   return res;
8063 }
8064 
8065 // For the smart allocation, record following
8066 //  split deaths - a free chunk is removed from its free list because
8067 //      it is being split into two or more chunks.
8068 //  split birth - a free chunk is being added to its free list because
8069 //      a larger free chunk has been split and resulted in this free chunk.
8070 //  coal death - a free chunk is being removed from its free list because
8071 //      it is being coalesced into a large free chunk.
8072 //  coal birth - a free chunk is being added to its free list because
8073 //      it was created when two or more free chunks where coalesced into
8074 //      this free chunk.
8075 //
8076 // These statistics are used to determine the desired number of free
8077 // chunks of a given size.  The desired number is chosen to be relative
8078 // to the end of a CMS sweep.  The desired number at the end of a sweep
8079 // is the
8080 //      count-at-end-of-previous-sweep (an amount that was enough)
8081 //              - count-at-beginning-of-current-sweep  (the excess)
8082 //              + split-births  (gains in this size during interval)
8083 //              - split-deaths  (demands on this size during interval)
8084 // where the interval is from the end of one sweep to the end of the
8085 // next.
8086 //
8087 // When sweeping the sweeper maintains an accumulated chunk which is
8088 // the chunk that is made up of chunks that have been coalesced.  That
8089 // will be termed the left-hand chunk.  A new chunk of garbage that
8090 // is being considered for coalescing will be referred to as the
8091 // right-hand chunk.
8092 //
8093 // When making a decision on whether to coalesce a right-hand chunk with
8094 // the current left-hand chunk, the current count vs. the desired count
8095 // of the left-hand chunk is considered.  Also if the right-hand chunk
8096 // is near the large chunk at the end of the heap (see
8097 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8098 // left-hand chunk is coalesced.
8099 //
8100 // When making a decision about whether to split a chunk, the desired count
8101 // vs. the current count of the candidate to be split is also considered.
8102 // If the candidate is underpopulated (currently fewer chunks than desired)
8103 // a chunk of an overpopulated (currently more chunks than desired) size may
8104 // be chosen.  The "hint" associated with a free list, if non-null, points
8105 // to a free list which may be overpopulated.
8106 //
8107 
8108 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8109   const size_t size = fc->size();
8110   // Chunks that cannot be coalesced are not in the
8111   // free lists.
8112   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8113     assert(_sp->verify_chunk_in_free_list(fc),
8114       "free chunk should be in free lists");
8115   }
8116   // a chunk that is already free, should not have been
8117   // marked in the bit map
8118   HeapWord* const addr = (HeapWord*) fc;
8119   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8120   // Verify that the bit map has no bits marked between
8121   // addr and purported end of this block.
8122   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8123 
8124   // Some chunks cannot be coalesced under any circumstances.
8125   // See the definition of cantCoalesce().
8126   if (!fc->cantCoalesce()) {
8127     // This chunk can potentially be coalesced.
8128     if (_sp->adaptive_freelists()) {
8129       // All the work is done in
8130       do_post_free_or_garbage_chunk(fc, size);
8131     } else {  // Not adaptive free lists
8132       // this is a free chunk that can potentially be coalesced by the sweeper;
8133       if (!inFreeRange()) {
8134         // if the next chunk is a free block that can't be coalesced
8135         // it doesn't make sense to remove this chunk from the free lists
8136         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8137         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8138         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8139             nextChunk->is_free()               &&     // ... which is free...
8140             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8141           // nothing to do
8142         } else {
8143           // Potentially the start of a new free range:
8144           // Don't eagerly remove it from the free lists.
8145           // No need to remove it if it will just be put
8146           // back again.  (Also from a pragmatic point of view
8147           // if it is a free block in a region that is beyond
8148           // any allocated blocks, an assertion will fail)
8149           // Remember the start of a free run.
8150           initialize_free_range(addr, true);
8151           // end - can coalesce with next chunk
8152         }
8153       } else {
8154         // the midst of a free range, we are coalescing
8155         print_free_block_coalesced(fc);
8156         if (CMSTraceSweeper) {
8157           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8158         }
8159         // remove it from the free lists
8160         _sp->removeFreeChunkFromFreeLists(fc);
8161         set_lastFreeRangeCoalesced(true);
8162         // If the chunk is being coalesced and the current free range is
8163         // in the free lists, remove the current free range so that it
8164         // will be returned to the free lists in its entirety - all
8165         // the coalesced pieces included.
8166         if (freeRangeInFreeLists()) {
8167           FreeChunk* ffc = (FreeChunk*) freeFinger();
8168           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8169             "Size of free range is inconsistent with chunk size.");
8170           if (CMSTestInFreeList) {
8171             assert(_sp->verify_chunk_in_free_list(ffc),
8172               "free range is not in free lists");
8173           }
8174           _sp->removeFreeChunkFromFreeLists(ffc);
8175           set_freeRangeInFreeLists(false);
8176         }
8177       }
8178     }
8179     // Note that if the chunk is not coalescable (the else arm
8180     // below), we unconditionally flush, without needing to do
8181     // a "lookahead," as we do below.
8182     if (inFreeRange()) lookahead_and_flush(fc, size);
8183   } else {
8184     // Code path common to both original and adaptive free lists.
8185 
8186     // cant coalesce with previous block; this should be treated
8187     // as the end of a free run if any
8188     if (inFreeRange()) {
8189       // we kicked some butt; time to pick up the garbage
8190       assert(freeFinger() < addr, "freeFinger points too high");
8191       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8192     }
8193     // else, nothing to do, just continue
8194   }
8195 }
8196 
8197 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8198   // This is a chunk of garbage.  It is not in any free list.
8199   // Add it to a free list or let it possibly be coalesced into
8200   // a larger chunk.
8201   HeapWord* const addr = (HeapWord*) fc;
8202   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8203 
8204   if (_sp->adaptive_freelists()) {
8205     // Verify that the bit map has no bits marked between
8206     // addr and purported end of just dead object.
8207     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8208 
8209     do_post_free_or_garbage_chunk(fc, size);
8210   } else {
8211     if (!inFreeRange()) {
8212       // start of a new free range
8213       assert(size > 0, "A free range should have a size");
8214       initialize_free_range(addr, false);
8215     } else {
8216       // this will be swept up when we hit the end of the
8217       // free range
8218       if (CMSTraceSweeper) {
8219         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8220       }
8221       // If the chunk is being coalesced and the current free range is
8222       // in the free lists, remove the current free range so that it
8223       // will be returned to the free lists in its entirety - all
8224       // the coalesced pieces included.
8225       if (freeRangeInFreeLists()) {
8226         FreeChunk* ffc = (FreeChunk*)freeFinger();
8227         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8228           "Size of free range is inconsistent with chunk size.");
8229         if (CMSTestInFreeList) {
8230           assert(_sp->verify_chunk_in_free_list(ffc),
8231             "free range is not in free lists");
8232         }
8233         _sp->removeFreeChunkFromFreeLists(ffc);
8234         set_freeRangeInFreeLists(false);
8235       }
8236       set_lastFreeRangeCoalesced(true);
8237     }
8238     // this will be swept up when we hit the end of the free range
8239 
8240     // Verify that the bit map has no bits marked between
8241     // addr and purported end of just dead object.
8242     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8243   }
8244   assert(_limit >= addr + size,
8245          "A freshly garbage chunk can't possibly straddle over _limit");
8246   if (inFreeRange()) lookahead_and_flush(fc, size);
8247   return size;
8248 }
8249 
8250 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8251   HeapWord* addr = (HeapWord*) fc;
8252   // The sweeper has just found a live object. Return any accumulated
8253   // left hand chunk to the free lists.
8254   if (inFreeRange()) {
8255     assert(freeFinger() < addr, "freeFinger points too high");
8256     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8257   }
8258 
8259   // This object is live: we'd normally expect this to be
8260   // an oop, and like to assert the following:
8261   // assert(oop(addr)->is_oop(), "live block should be an oop");
8262   // However, as we commented above, this may be an object whose
8263   // header hasn't yet been initialized.
8264   size_t size;
8265   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8266   if (_bitMap->isMarked(addr + 1)) {
8267     // Determine the size from the bit map, rather than trying to
8268     // compute it from the object header.
8269     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8270     size = pointer_delta(nextOneAddr + 1, addr);
8271     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8272            "alignment problem");
8273 
8274 #ifdef DEBUG
8275       if (oop(addr)->klass_or_null() != NULL) {
8276         // Ignore mark word because we are running concurrent with mutators
8277         assert(oop(addr)->is_oop(true), "live block should be an oop");
8278         assert(size ==
8279                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8280                "P-mark and computed size do not agree");
8281       }
8282 #endif
8283 
8284   } else {
8285     // This should be an initialized object that's alive.
8286     assert(oop(addr)->klass_or_null() != NULL,
8287            "Should be an initialized object");
8288     // Ignore mark word because we are running concurrent with mutators
8289     assert(oop(addr)->is_oop(true), "live block should be an oop");
8290     // Verify that the bit map has no bits marked between
8291     // addr and purported end of this block.
8292     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8293     assert(size >= 3, "Necessary for Printezis marks to work");
8294     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8295     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8296   }
8297   return size;
8298 }
8299 
8300 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8301                                                  size_t chunkSize) {
8302   // do_post_free_or_garbage_chunk() should only be called in the case
8303   // of the adaptive free list allocator.
8304   const bool fcInFreeLists = fc->is_free();
8305   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8306   assert((HeapWord*)fc <= _limit, "sweep invariant");
8307   if (CMSTestInFreeList && fcInFreeLists) {
8308     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8309   }
8310 
8311   if (CMSTraceSweeper) {
8312     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8313   }
8314 
8315   HeapWord* const fc_addr = (HeapWord*) fc;
8316 
8317   bool coalesce;
8318   const size_t left  = pointer_delta(fc_addr, freeFinger());
8319   const size_t right = chunkSize;
8320   switch (FLSCoalescePolicy) {
8321     // numeric value forms a coalition aggressiveness metric
8322     case 0:  { // never coalesce
8323       coalesce = false;
8324       break;
8325     }
8326     case 1: { // coalesce if left & right chunks on overpopulated lists
8327       coalesce = _sp->coalOverPopulated(left) &&
8328                  _sp->coalOverPopulated(right);
8329       break;
8330     }
8331     case 2: { // coalesce if left chunk on overpopulated list (default)
8332       coalesce = _sp->coalOverPopulated(left);
8333       break;
8334     }
8335     case 3: { // coalesce if left OR right chunk on overpopulated list
8336       coalesce = _sp->coalOverPopulated(left) ||
8337                  _sp->coalOverPopulated(right);
8338       break;
8339     }
8340     case 4: { // always coalesce
8341       coalesce = true;
8342       break;
8343     }
8344     default:
8345      ShouldNotReachHere();
8346   }
8347 
8348   // Should the current free range be coalesced?
8349   // If the chunk is in a free range and either we decided to coalesce above
8350   // or the chunk is near the large block at the end of the heap
8351   // (isNearLargestChunk() returns true), then coalesce this chunk.
8352   const bool doCoalesce = inFreeRange()
8353                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8354   if (doCoalesce) {
8355     // Coalesce the current free range on the left with the new
8356     // chunk on the right.  If either is on a free list,
8357     // it must be removed from the list and stashed in the closure.
8358     if (freeRangeInFreeLists()) {
8359       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8360       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8361         "Size of free range is inconsistent with chunk size.");
8362       if (CMSTestInFreeList) {
8363         assert(_sp->verify_chunk_in_free_list(ffc),
8364           "Chunk is not in free lists");
8365       }
8366       _sp->coalDeath(ffc->size());
8367       _sp->removeFreeChunkFromFreeLists(ffc);
8368       set_freeRangeInFreeLists(false);
8369     }
8370     if (fcInFreeLists) {
8371       _sp->coalDeath(chunkSize);
8372       assert(fc->size() == chunkSize,
8373         "The chunk has the wrong size or is not in the free lists");
8374       _sp->removeFreeChunkFromFreeLists(fc);
8375     }
8376     set_lastFreeRangeCoalesced(true);
8377     print_free_block_coalesced(fc);
8378   } else {  // not in a free range and/or should not coalesce
8379     // Return the current free range and start a new one.
8380     if (inFreeRange()) {
8381       // In a free range but cannot coalesce with the right hand chunk.
8382       // Put the current free range into the free lists.
8383       flush_cur_free_chunk(freeFinger(),
8384                            pointer_delta(fc_addr, freeFinger()));
8385     }
8386     // Set up for new free range.  Pass along whether the right hand
8387     // chunk is in the free lists.
8388     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8389   }
8390 }
8391 
8392 // Lookahead flush:
8393 // If we are tracking a free range, and this is the last chunk that
8394 // we'll look at because its end crosses past _limit, we'll preemptively
8395 // flush it along with any free range we may be holding on to. Note that
8396 // this can be the case only for an already free or freshly garbage
8397 // chunk. If this block is an object, it can never straddle
8398 // over _limit. The "straddling" occurs when _limit is set at
8399 // the previous end of the space when this cycle started, and
8400 // a subsequent heap expansion caused the previously co-terminal
8401 // free block to be coalesced with the newly expanded portion,
8402 // thus rendering _limit a non-block-boundary making it dangerous
8403 // for the sweeper to step over and examine.
8404 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8405   assert(inFreeRange(), "Should only be called if currently in a free range.");
8406   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8407   assert(_sp->used_region().contains(eob - 1),
8408          err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8409                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8410                  _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8411   if (eob >= _limit) {
8412     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8413     if (CMSTraceSweeper) {
8414       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8415                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8416                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8417                              _limit, fc, eob, _sp->bottom(), _sp->end());
8418     }
8419     // Return the storage we are tracking back into the free lists.
8420     if (CMSTraceSweeper) {
8421       gclog_or_tty->print_cr("Flushing ... ");
8422     }
8423     assert(freeFinger() < eob, "Error");
8424     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8425   }
8426 }
8427 
8428 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8429   assert(inFreeRange(), "Should only be called if currently in a free range.");
8430   assert(size > 0,
8431     "A zero sized chunk cannot be added to the free lists.");
8432   if (!freeRangeInFreeLists()) {
8433     if (CMSTestInFreeList) {
8434       FreeChunk* fc = (FreeChunk*) chunk;
8435       fc->set_size(size);
8436       assert(!_sp->verify_chunk_in_free_list(fc),
8437         "chunk should not be in free lists yet");
8438     }
8439     if (CMSTraceSweeper) {
8440       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8441                     chunk, size);
8442     }
8443     // A new free range is going to be starting.  The current
8444     // free range has not been added to the free lists yet or
8445     // was removed so add it back.
8446     // If the current free range was coalesced, then the death
8447     // of the free range was recorded.  Record a birth now.
8448     if (lastFreeRangeCoalesced()) {
8449       _sp->coalBirth(size);
8450     }
8451     _sp->addChunkAndRepairOffsetTable(chunk, size,
8452             lastFreeRangeCoalesced());
8453   } else if (CMSTraceSweeper) {
8454     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8455   }
8456   set_inFreeRange(false);
8457   set_freeRangeInFreeLists(false);
8458 }
8459 
8460 // We take a break if we've been at this for a while,
8461 // so as to avoid monopolizing the locks involved.
8462 void SweepClosure::do_yield_work(HeapWord* addr) {
8463   // Return current free chunk being used for coalescing (if any)
8464   // to the appropriate freelist.  After yielding, the next
8465   // free block encountered will start a coalescing range of
8466   // free blocks.  If the next free block is adjacent to the
8467   // chunk just flushed, they will need to wait for the next
8468   // sweep to be coalesced.
8469   if (inFreeRange()) {
8470     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8471   }
8472 
8473   // First give up the locks, then yield, then re-lock.
8474   // We should probably use a constructor/destructor idiom to
8475   // do this unlock/lock or modify the MutexUnlocker class to
8476   // serve our purpose. XXX
8477   assert_lock_strong(_bitMap->lock());
8478   assert_lock_strong(_freelistLock);
8479   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8480          "CMS thread should hold CMS token");
8481   _bitMap->lock()->unlock();
8482   _freelistLock->unlock();
8483   ConcurrentMarkSweepThread::desynchronize(true);
8484   ConcurrentMarkSweepThread::acknowledge_yield_request();
8485   _collector->stopTimer();
8486   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8487   if (PrintCMSStatistics != 0) {
8488     _collector->incrementYields();
8489   }
8490   _collector->icms_wait();
8491 
8492   // See the comment in coordinator_yield()
8493   for (unsigned i = 0; i < CMSYieldSleepCount &&
8494                        ConcurrentMarkSweepThread::should_yield() &&
8495                        !CMSCollector::foregroundGCIsActive(); ++i) {
8496     os::sleep(Thread::current(), 1, false);
8497     ConcurrentMarkSweepThread::acknowledge_yield_request();
8498   }
8499 
8500   ConcurrentMarkSweepThread::synchronize(true);
8501   _freelistLock->lock();
8502   _bitMap->lock()->lock_without_safepoint_check();
8503   _collector->startTimer();
8504 }
8505 
8506 #ifndef PRODUCT
8507 // This is actually very useful in a product build if it can
8508 // be called from the debugger.  Compile it into the product
8509 // as needed.
8510 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8511   return debug_cms_space->verify_chunk_in_free_list(fc);
8512 }
8513 #endif
8514 
8515 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8516   if (CMSTraceSweeper) {
8517     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8518                            fc, fc->size());
8519   }
8520 }
8521 
8522 // CMSIsAliveClosure
8523 bool CMSIsAliveClosure::do_object_b(oop obj) {
8524   HeapWord* addr = (HeapWord*)obj;
8525   return addr != NULL &&
8526          (!_span.contains(addr) || _bit_map->isMarked(addr));
8527 }
8528 
8529 
8530 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8531                       MemRegion span,
8532                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8533                       bool cpc):
8534   _collector(collector),
8535   _span(span),
8536   _bit_map(bit_map),
8537   _mark_stack(mark_stack),
8538   _concurrent_precleaning(cpc) {
8539   assert(!_span.is_empty(), "Empty span could spell trouble");
8540 }
8541 
8542 
8543 // CMSKeepAliveClosure: the serial version
8544 void CMSKeepAliveClosure::do_oop(oop obj) {
8545   HeapWord* addr = (HeapWord*)obj;
8546   if (_span.contains(addr) &&
8547       !_bit_map->isMarked(addr)) {
8548     _bit_map->mark(addr);
8549     bool simulate_overflow = false;
8550     NOT_PRODUCT(
8551       if (CMSMarkStackOverflowALot &&
8552           _collector->simulate_overflow()) {
8553         // simulate a stack overflow
8554         simulate_overflow = true;
8555       }
8556     )
8557     if (simulate_overflow || !_mark_stack->push(obj)) {
8558       if (_concurrent_precleaning) {
8559         // We dirty the overflown object and let the remark
8560         // phase deal with it.
8561         assert(_collector->overflow_list_is_empty(), "Error");
8562         // In the case of object arrays, we need to dirty all of
8563         // the cards that the object spans. No locking or atomics
8564         // are needed since no one else can be mutating the mod union
8565         // table.
8566         if (obj->is_objArray()) {
8567           size_t sz = obj->size();
8568           HeapWord* end_card_addr =
8569             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8570           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8571           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8572           _collector->_modUnionTable.mark_range(redirty_range);
8573         } else {
8574           _collector->_modUnionTable.mark(addr);
8575         }
8576         _collector->_ser_kac_preclean_ovflw++;
8577       } else {
8578         _collector->push_on_overflow_list(obj);
8579         _collector->_ser_kac_ovflw++;
8580       }
8581     }
8582   }
8583 }
8584 
8585 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8586 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8587 
8588 // CMSParKeepAliveClosure: a parallel version of the above.
8589 // The work queues are private to each closure (thread),
8590 // but (may be) available for stealing by other threads.
8591 void CMSParKeepAliveClosure::do_oop(oop obj) {
8592   HeapWord* addr = (HeapWord*)obj;
8593   if (_span.contains(addr) &&
8594       !_bit_map->isMarked(addr)) {
8595     // In general, during recursive tracing, several threads
8596     // may be concurrently getting here; the first one to
8597     // "tag" it, claims it.
8598     if (_bit_map->par_mark(addr)) {
8599       bool res = _work_queue->push(obj);
8600       assert(res, "Low water mark should be much less than capacity");
8601       // Do a recursive trim in the hope that this will keep
8602       // stack usage lower, but leave some oops for potential stealers
8603       trim_queue(_low_water_mark);
8604     } // Else, another thread got there first
8605   }
8606 }
8607 
8608 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8609 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8610 
8611 void CMSParKeepAliveClosure::trim_queue(uint max) {
8612   while (_work_queue->size() > max) {
8613     oop new_oop;
8614     if (_work_queue->pop_local(new_oop)) {
8615       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8616       assert(_bit_map->isMarked((HeapWord*)new_oop),
8617              "no white objects on this stack!");
8618       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8619       // iterate over the oops in this oop, marking and pushing
8620       // the ones in CMS heap (i.e. in _span).
8621       new_oop->oop_iterate(&_mark_and_push);
8622     }
8623   }
8624 }
8625 
8626 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8627                                 CMSCollector* collector,
8628                                 MemRegion span, CMSBitMap* bit_map,
8629                                 OopTaskQueue* work_queue):
8630   _collector(collector),
8631   _span(span),
8632   _bit_map(bit_map),
8633   _work_queue(work_queue) { }
8634 
8635 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8636   HeapWord* addr = (HeapWord*)obj;
8637   if (_span.contains(addr) &&
8638       !_bit_map->isMarked(addr)) {
8639     if (_bit_map->par_mark(addr)) {
8640       bool simulate_overflow = false;
8641       NOT_PRODUCT(
8642         if (CMSMarkStackOverflowALot &&
8643             _collector->par_simulate_overflow()) {
8644           // simulate a stack overflow
8645           simulate_overflow = true;
8646         }
8647       )
8648       if (simulate_overflow || !_work_queue->push(obj)) {
8649         _collector->par_push_on_overflow_list(obj);
8650         _collector->_par_kac_ovflw++;
8651       }
8652     } // Else another thread got there already
8653   }
8654 }
8655 
8656 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8657 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8658 
8659 //////////////////////////////////////////////////////////////////
8660 //  CMSExpansionCause                /////////////////////////////
8661 //////////////////////////////////////////////////////////////////
8662 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8663   switch (cause) {
8664     case _no_expansion:
8665       return "No expansion";
8666     case _satisfy_free_ratio:
8667       return "Free ratio";
8668     case _satisfy_promotion:
8669       return "Satisfy promotion";
8670     case _satisfy_allocation:
8671       return "allocation";
8672     case _allocate_par_lab:
8673       return "Par LAB";
8674     case _allocate_par_spooling_space:
8675       return "Par Spooling Space";
8676     case _adaptive_size_policy:
8677       return "Ergonomics";
8678     default:
8679       return "unknown";
8680   }
8681 }
8682 
8683 void CMSDrainMarkingStackClosure::do_void() {
8684   // the max number to take from overflow list at a time
8685   const size_t num = _mark_stack->capacity()/4;
8686   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8687          "Overflow list should be NULL during concurrent phases");
8688   while (!_mark_stack->isEmpty() ||
8689          // if stack is empty, check the overflow list
8690          _collector->take_from_overflow_list(num, _mark_stack)) {
8691     oop obj = _mark_stack->pop();
8692     HeapWord* addr = (HeapWord*)obj;
8693     assert(_span.contains(addr), "Should be within span");
8694     assert(_bit_map->isMarked(addr), "Should be marked");
8695     assert(obj->is_oop(), "Should be an oop");
8696     obj->oop_iterate(_keep_alive);
8697   }
8698 }
8699 
8700 void CMSParDrainMarkingStackClosure::do_void() {
8701   // drain queue
8702   trim_queue(0);
8703 }
8704 
8705 // Trim our work_queue so its length is below max at return
8706 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8707   while (_work_queue->size() > max) {
8708     oop new_oop;
8709     if (_work_queue->pop_local(new_oop)) {
8710       assert(new_oop->is_oop(), "Expected an oop");
8711       assert(_bit_map->isMarked((HeapWord*)new_oop),
8712              "no white objects on this stack!");
8713       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8714       // iterate over the oops in this oop, marking and pushing
8715       // the ones in CMS heap (i.e. in _span).
8716       new_oop->oop_iterate(&_mark_and_push);
8717     }
8718   }
8719 }
8720 
8721 ////////////////////////////////////////////////////////////////////
8722 // Support for Marking Stack Overflow list handling and related code
8723 ////////////////////////////////////////////////////////////////////
8724 // Much of the following code is similar in shape and spirit to the
8725 // code used in ParNewGC. We should try and share that code
8726 // as much as possible in the future.
8727 
8728 #ifndef PRODUCT
8729 // Debugging support for CMSStackOverflowALot
8730 
8731 // It's OK to call this multi-threaded;  the worst thing
8732 // that can happen is that we'll get a bunch of closely
8733 // spaced simulated oveflows, but that's OK, in fact
8734 // probably good as it would exercise the overflow code
8735 // under contention.
8736 bool CMSCollector::simulate_overflow() {
8737   if (_overflow_counter-- <= 0) { // just being defensive
8738     _overflow_counter = CMSMarkStackOverflowInterval;
8739     return true;
8740   } else {
8741     return false;
8742   }
8743 }
8744 
8745 bool CMSCollector::par_simulate_overflow() {
8746   return simulate_overflow();
8747 }
8748 #endif
8749 
8750 // Single-threaded
8751 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8752   assert(stack->isEmpty(), "Expected precondition");
8753   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8754   size_t i = num;
8755   oop  cur = _overflow_list;
8756   const markOop proto = markOopDesc::prototype();
8757   NOT_PRODUCT(ssize_t n = 0;)
8758   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8759     next = oop(cur->mark());
8760     cur->set_mark(proto);   // until proven otherwise
8761     assert(cur->is_oop(), "Should be an oop");
8762     bool res = stack->push(cur);
8763     assert(res, "Bit off more than can chew?");
8764     NOT_PRODUCT(n++;)
8765   }
8766   _overflow_list = cur;
8767 #ifndef PRODUCT
8768   assert(_num_par_pushes >= n, "Too many pops?");
8769   _num_par_pushes -=n;
8770 #endif
8771   return !stack->isEmpty();
8772 }
8773 
8774 #define BUSY  (oop(0x1aff1aff))
8775 // (MT-safe) Get a prefix of at most "num" from the list.
8776 // The overflow list is chained through the mark word of
8777 // each object in the list. We fetch the entire list,
8778 // break off a prefix of the right size and return the
8779 // remainder. If other threads try to take objects from
8780 // the overflow list at that time, they will wait for
8781 // some time to see if data becomes available. If (and
8782 // only if) another thread places one or more object(s)
8783 // on the global list before we have returned the suffix
8784 // to the global list, we will walk down our local list
8785 // to find its end and append the global list to
8786 // our suffix before returning it. This suffix walk can
8787 // prove to be expensive (quadratic in the amount of traffic)
8788 // when there are many objects in the overflow list and
8789 // there is much producer-consumer contention on the list.
8790 // *NOTE*: The overflow list manipulation code here and
8791 // in ParNewGeneration:: are very similar in shape,
8792 // except that in the ParNew case we use the old (from/eden)
8793 // copy of the object to thread the list via its klass word.
8794 // Because of the common code, if you make any changes in
8795 // the code below, please check the ParNew version to see if
8796 // similar changes might be needed.
8797 // CR 6797058 has been filed to consolidate the common code.
8798 bool CMSCollector::par_take_from_overflow_list(size_t num,
8799                                                OopTaskQueue* work_q,
8800                                                int no_of_gc_threads) {
8801   assert(work_q->size() == 0, "First empty local work queue");
8802   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8803   if (_overflow_list == NULL) {
8804     return false;
8805   }
8806   // Grab the entire list; we'll put back a suffix
8807   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8808   Thread* tid = Thread::current();
8809   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8810   // set to ParallelGCThreads.
8811   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8812   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8813   // If the list is busy, we spin for a short while,
8814   // sleeping between attempts to get the list.
8815   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8816     os::sleep(tid, sleep_time_millis, false);
8817     if (_overflow_list == NULL) {
8818       // Nothing left to take
8819       return false;
8820     } else if (_overflow_list != BUSY) {
8821       // Try and grab the prefix
8822       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8823     }
8824   }
8825   // If the list was found to be empty, or we spun long
8826   // enough, we give up and return empty-handed. If we leave
8827   // the list in the BUSY state below, it must be the case that
8828   // some other thread holds the overflow list and will set it
8829   // to a non-BUSY state in the future.
8830   if (prefix == NULL || prefix == BUSY) {
8831      // Nothing to take or waited long enough
8832      if (prefix == NULL) {
8833        // Write back the NULL in case we overwrote it with BUSY above
8834        // and it is still the same value.
8835        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8836      }
8837      return false;
8838   }
8839   assert(prefix != NULL && prefix != BUSY, "Error");
8840   size_t i = num;
8841   oop cur = prefix;
8842   // Walk down the first "num" objects, unless we reach the end.
8843   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8844   if (cur->mark() == NULL) {
8845     // We have "num" or fewer elements in the list, so there
8846     // is nothing to return to the global list.
8847     // Write back the NULL in lieu of the BUSY we wrote
8848     // above, if it is still the same value.
8849     if (_overflow_list == BUSY) {
8850       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8851     }
8852   } else {
8853     // Chop off the suffix and rerturn it to the global list.
8854     assert(cur->mark() != BUSY, "Error");
8855     oop suffix_head = cur->mark(); // suffix will be put back on global list
8856     cur->set_mark(NULL);           // break off suffix
8857     // It's possible that the list is still in the empty(busy) state
8858     // we left it in a short while ago; in that case we may be
8859     // able to place back the suffix without incurring the cost
8860     // of a walk down the list.
8861     oop observed_overflow_list = _overflow_list;
8862     oop cur_overflow_list = observed_overflow_list;
8863     bool attached = false;
8864     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8865       observed_overflow_list =
8866         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8867       if (cur_overflow_list == observed_overflow_list) {
8868         attached = true;
8869         break;
8870       } else cur_overflow_list = observed_overflow_list;
8871     }
8872     if (!attached) {
8873       // Too bad, someone else sneaked in (at least) an element; we'll need
8874       // to do a splice. Find tail of suffix so we can prepend suffix to global
8875       // list.
8876       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8877       oop suffix_tail = cur;
8878       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8879              "Tautology");
8880       observed_overflow_list = _overflow_list;
8881       do {
8882         cur_overflow_list = observed_overflow_list;
8883         if (cur_overflow_list != BUSY) {
8884           // Do the splice ...
8885           suffix_tail->set_mark(markOop(cur_overflow_list));
8886         } else { // cur_overflow_list == BUSY
8887           suffix_tail->set_mark(NULL);
8888         }
8889         // ... and try to place spliced list back on overflow_list ...
8890         observed_overflow_list =
8891           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8892       } while (cur_overflow_list != observed_overflow_list);
8893       // ... until we have succeeded in doing so.
8894     }
8895   }
8896 
8897   // Push the prefix elements on work_q
8898   assert(prefix != NULL, "control point invariant");
8899   const markOop proto = markOopDesc::prototype();
8900   oop next;
8901   NOT_PRODUCT(ssize_t n = 0;)
8902   for (cur = prefix; cur != NULL; cur = next) {
8903     next = oop(cur->mark());
8904     cur->set_mark(proto);   // until proven otherwise
8905     assert(cur->is_oop(), "Should be an oop");
8906     bool res = work_q->push(cur);
8907     assert(res, "Bit off more than we can chew?");
8908     NOT_PRODUCT(n++;)
8909   }
8910 #ifndef PRODUCT
8911   assert(_num_par_pushes >= n, "Too many pops?");
8912   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8913 #endif
8914   return true;
8915 }
8916 
8917 // Single-threaded
8918 void CMSCollector::push_on_overflow_list(oop p) {
8919   NOT_PRODUCT(_num_par_pushes++;)
8920   assert(p->is_oop(), "Not an oop");
8921   preserve_mark_if_necessary(p);
8922   p->set_mark((markOop)_overflow_list);
8923   _overflow_list = p;
8924 }
8925 
8926 // Multi-threaded; use CAS to prepend to overflow list
8927 void CMSCollector::par_push_on_overflow_list(oop p) {
8928   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8929   assert(p->is_oop(), "Not an oop");
8930   par_preserve_mark_if_necessary(p);
8931   oop observed_overflow_list = _overflow_list;
8932   oop cur_overflow_list;
8933   do {
8934     cur_overflow_list = observed_overflow_list;
8935     if (cur_overflow_list != BUSY) {
8936       p->set_mark(markOop(cur_overflow_list));
8937     } else {
8938       p->set_mark(NULL);
8939     }
8940     observed_overflow_list =
8941       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8942   } while (cur_overflow_list != observed_overflow_list);
8943 }
8944 #undef BUSY
8945 
8946 // Single threaded
8947 // General Note on GrowableArray: pushes may silently fail
8948 // because we are (temporarily) out of C-heap for expanding
8949 // the stack. The problem is quite ubiquitous and affects
8950 // a lot of code in the JVM. The prudent thing for GrowableArray
8951 // to do (for now) is to exit with an error. However, that may
8952 // be too draconian in some cases because the caller may be
8953 // able to recover without much harm. For such cases, we
8954 // should probably introduce a "soft_push" method which returns
8955 // an indication of success or failure with the assumption that
8956 // the caller may be able to recover from a failure; code in
8957 // the VM can then be changed, incrementally, to deal with such
8958 // failures where possible, thus, incrementally hardening the VM
8959 // in such low resource situations.
8960 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8961   _preserved_oop_stack.push(p);
8962   _preserved_mark_stack.push(m);
8963   assert(m == p->mark(), "Mark word changed");
8964   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8965          "bijection");
8966 }
8967 
8968 // Single threaded
8969 void CMSCollector::preserve_mark_if_necessary(oop p) {
8970   markOop m = p->mark();
8971   if (m->must_be_preserved(p)) {
8972     preserve_mark_work(p, m);
8973   }
8974 }
8975 
8976 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8977   markOop m = p->mark();
8978   if (m->must_be_preserved(p)) {
8979     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8980     // Even though we read the mark word without holding
8981     // the lock, we are assured that it will not change
8982     // because we "own" this oop, so no other thread can
8983     // be trying to push it on the overflow list; see
8984     // the assertion in preserve_mark_work() that checks
8985     // that m == p->mark().
8986     preserve_mark_work(p, m);
8987   }
8988 }
8989 
8990 // We should be able to do this multi-threaded,
8991 // a chunk of stack being a task (this is
8992 // correct because each oop only ever appears
8993 // once in the overflow list. However, it's
8994 // not very easy to completely overlap this with
8995 // other operations, so will generally not be done
8996 // until all work's been completed. Because we
8997 // expect the preserved oop stack (set) to be small,
8998 // it's probably fine to do this single-threaded.
8999 // We can explore cleverer concurrent/overlapped/parallel
9000 // processing of preserved marks if we feel the
9001 // need for this in the future. Stack overflow should
9002 // be so rare in practice and, when it happens, its
9003 // effect on performance so great that this will
9004 // likely just be in the noise anyway.
9005 void CMSCollector::restore_preserved_marks_if_any() {
9006   assert(SafepointSynchronize::is_at_safepoint(),
9007          "world should be stopped");
9008   assert(Thread::current()->is_ConcurrentGC_thread() ||
9009          Thread::current()->is_VM_thread(),
9010          "should be single-threaded");
9011   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9012          "bijection");
9013 
9014   while (!_preserved_oop_stack.is_empty()) {
9015     oop p = _preserved_oop_stack.pop();
9016     assert(p->is_oop(), "Should be an oop");
9017     assert(_span.contains(p), "oop should be in _span");
9018     assert(p->mark() == markOopDesc::prototype(),
9019            "Set when taken from overflow list");
9020     markOop m = _preserved_mark_stack.pop();
9021     p->set_mark(m);
9022   }
9023   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9024          "stacks were cleared above");
9025 }
9026 
9027 #ifndef PRODUCT
9028 bool CMSCollector::no_preserved_marks() const {
9029   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9030 }
9031 #endif
9032 
9033 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9034 {
9035   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9036   CMSAdaptiveSizePolicy* size_policy =
9037     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9038   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9039     "Wrong type for size policy");
9040   return size_policy;
9041 }
9042 
9043 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9044                                            size_t desired_promo_size) {
9045   if (cur_promo_size < desired_promo_size) {
9046     size_t expand_bytes = desired_promo_size - cur_promo_size;
9047     if (PrintAdaptiveSizePolicy && Verbose) {
9048       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9049         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9050         expand_bytes);
9051     }
9052     expand(expand_bytes,
9053            MinHeapDeltaBytes,
9054            CMSExpansionCause::_adaptive_size_policy);
9055   } else if (desired_promo_size < cur_promo_size) {
9056     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9057     if (PrintAdaptiveSizePolicy && Verbose) {
9058       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9059         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9060         shrink_bytes);
9061     }
9062     shrink(shrink_bytes);
9063   }
9064 }
9065 
9066 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9067   GenCollectedHeap* gch = GenCollectedHeap::heap();
9068   CMSGCAdaptivePolicyCounters* counters =
9069     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9070   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9071     "Wrong kind of counters");
9072   return counters;
9073 }
9074 
9075 
9076 void ASConcurrentMarkSweepGeneration::update_counters() {
9077   if (UsePerfData) {
9078     _space_counters->update_all();
9079     _gen_counters->update_all();
9080     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9081     GenCollectedHeap* gch = GenCollectedHeap::heap();
9082     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9083     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9084       "Wrong gc statistics type");
9085     counters->update_counters(gc_stats_l);
9086   }
9087 }
9088 
9089 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9090   if (UsePerfData) {
9091     _space_counters->update_used(used);
9092     _space_counters->update_capacity();
9093     _gen_counters->update_all();
9094 
9095     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9096     GenCollectedHeap* gch = GenCollectedHeap::heap();
9097     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9098     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9099       "Wrong gc statistics type");
9100     counters->update_counters(gc_stats_l);
9101   }
9102 }
9103 
9104 // The desired expansion delta is computed so that:
9105 // . desired free percentage or greater is used
9106 void ASConcurrentMarkSweepGeneration::compute_new_size() {
9107   assert_locked_or_safepoint(Heap_lock);
9108 
9109   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9110 
9111   // If incremental collection failed, we just want to expand
9112   // to the limit.
9113   if (incremental_collection_failed()) {
9114     clear_incremental_collection_failed();
9115     grow_to_reserved();
9116     return;
9117   }
9118 
9119   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
9120 
9121   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
9122     "Wrong type of heap");
9123   int prev_level = level() - 1;
9124   assert(prev_level >= 0, "The cms generation is the lowest generation");
9125   Generation* prev_gen = gch->get_gen(prev_level);
9126   assert(prev_gen->kind() == Generation::ASParNew,
9127     "Wrong type of young generation");
9128   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
9129   size_t cur_eden = younger_gen->eden()->capacity();
9130   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
9131   size_t cur_promo = free();
9132   size_policy->compute_tenured_generation_free_space(cur_promo,
9133                                                        max_available(),
9134                                                        cur_eden);
9135   resize(cur_promo, size_policy->promo_size());
9136 
9137   // Record the new size of the space in the cms generation
9138   // that is available for promotions.  This is temporary.
9139   // It should be the desired promo size.
9140   size_policy->avg_cms_promo()->sample(free());
9141   size_policy->avg_old_live()->sample(used());
9142 
9143   if (UsePerfData) {
9144     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9145     counters->update_cms_capacity_counter(capacity());
9146   }
9147 }
9148 
9149 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9150   assert_locked_or_safepoint(Heap_lock);
9151   assert_lock_strong(freelistLock());
9152   HeapWord* old_end = _cmsSpace->end();
9153   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9154   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9155   FreeChunk* chunk_at_end = find_chunk_at_end();
9156   if (chunk_at_end == NULL) {
9157     // No room to shrink
9158     if (PrintGCDetails && Verbose) {
9159       gclog_or_tty->print_cr("No room to shrink: old_end  "
9160         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9161         " chunk_at_end  " PTR_FORMAT,
9162         old_end, unallocated_start, chunk_at_end);
9163     }
9164     return;
9165   } else {
9166 
9167     // Find the chunk at the end of the space and determine
9168     // how much it can be shrunk.
9169     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9170     size_t aligned_shrinkable_size_in_bytes =
9171       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9172     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9173       "Inconsistent chunk at end of space");
9174     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9175     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9176 
9177     // Shrink the underlying space
9178     _virtual_space.shrink_by(bytes);
9179     if (PrintGCDetails && Verbose) {
9180       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9181         " desired_bytes " SIZE_FORMAT
9182         " shrinkable_size_in_bytes " SIZE_FORMAT
9183         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9184         "  bytes  " SIZE_FORMAT,
9185         desired_bytes, shrinkable_size_in_bytes,
9186         aligned_shrinkable_size_in_bytes, bytes);
9187       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9188         "  unallocated_start  " SIZE_FORMAT,
9189         old_end, unallocated_start);
9190     }
9191 
9192     // If the space did shrink (shrinking is not guaranteed),
9193     // shrink the chunk at the end by the appropriate amount.
9194     if (((HeapWord*)_virtual_space.high()) < old_end) {
9195       size_t new_word_size =
9196         heap_word_size(_virtual_space.committed_size());
9197 
9198       // Have to remove the chunk from the dictionary because it is changing
9199       // size and might be someplace elsewhere in the dictionary.
9200 
9201       // Get the chunk at end, shrink it, and put it
9202       // back.
9203       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9204       size_t word_size_change = word_size_before - new_word_size;
9205       size_t chunk_at_end_old_size = chunk_at_end->size();
9206       assert(chunk_at_end_old_size >= word_size_change,
9207         "Shrink is too large");
9208       chunk_at_end->set_size(chunk_at_end_old_size -
9209                           word_size_change);
9210       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9211         word_size_change);
9212 
9213       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9214 
9215       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9216       _bts->resize(new_word_size);  // resize the block offset shared array
9217       Universe::heap()->barrier_set()->resize_covered_region(mr);
9218       _cmsSpace->assert_locked();
9219       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9220 
9221       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9222 
9223       // update the space and generation capacity counters
9224       if (UsePerfData) {
9225         _space_counters->update_capacity();
9226         _gen_counters->update_all();
9227       }
9228 
9229       if (Verbose && PrintGCDetails) {
9230         size_t new_mem_size = _virtual_space.committed_size();
9231         size_t old_mem_size = new_mem_size + bytes;
9232         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9233                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9234       }
9235     }
9236 
9237     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9238       "Inconsistency at end of space");
9239     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9240       "Shrinking is inconsistent");
9241     return;
9242   }
9243 }
9244 
9245 // Transfer some number of overflown objects to usual marking
9246 // stack. Return true if some objects were transferred.
9247 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9248   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9249                     (size_t)ParGCDesiredObjsFromOverflowList);
9250 
9251   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9252   assert(_collector->overflow_list_is_empty() || res,
9253          "If list is not empty, we should have taken something");
9254   assert(!res || !_mark_stack->isEmpty(),
9255          "If we took something, it should now be on our stack");
9256   return res;
9257 }
9258 
9259 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9260   size_t res = _sp->block_size_no_stall(addr, _collector);
9261   if (_sp->block_is_obj(addr)) {
9262     if (_live_bit_map->isMarked(addr)) {
9263       // It can't have been dead in a previous cycle
9264       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9265     } else {
9266       _dead_bit_map->mark(addr);      // mark the dead object
9267     }
9268   }
9269   // Could be 0, if the block size could not be computed without stalling.
9270   return res;
9271 }
9272 
9273 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9274 
9275   switch (phase) {
9276     case CMSCollector::InitialMarking:
9277       initialize(true  /* fullGC */ ,
9278                  cause /* cause of the GC */,
9279                  true  /* recordGCBeginTime */,
9280                  true  /* recordPreGCUsage */,
9281                  false /* recordPeakUsage */,
9282                  false /* recordPostGCusage */,
9283                  true  /* recordAccumulatedGCTime */,
9284                  false /* recordGCEndTime */,
9285                  false /* countCollection */  );
9286       break;
9287 
9288     case CMSCollector::FinalMarking:
9289       initialize(true  /* fullGC */ ,
9290                  cause /* cause of the GC */,
9291                  false /* recordGCBeginTime */,
9292                  false /* recordPreGCUsage */,
9293                  false /* recordPeakUsage */,
9294                  false /* recordPostGCusage */,
9295                  true  /* recordAccumulatedGCTime */,
9296                  false /* recordGCEndTime */,
9297                  false /* countCollection */  );
9298       break;
9299 
9300     case CMSCollector::Sweeping:
9301       initialize(true  /* fullGC */ ,
9302                  cause /* cause of the GC */,
9303                  false /* recordGCBeginTime */,
9304                  false /* recordPreGCUsage */,
9305                  true  /* recordPeakUsage */,
9306                  true  /* recordPostGCusage */,
9307                  false /* recordAccumulatedGCTime */,
9308                  true  /* recordGCEndTime */,
9309                  true  /* countCollection */  );
9310       break;
9311 
9312     default:
9313       ShouldNotReachHere();
9314   }
9315 }
9316