1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "nativeInst_x86.hpp"
  32 #include "oops/compiledICHolder.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "register_x86.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/signature.hpp"
  38 #include "runtime/vframeArray.hpp"
  39 #include "utilities/macros.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 
  42 
  43 // Implementation of StubAssembler
  44 
  45 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
  46   // setup registers
  47   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
  48   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
  49   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
  50   assert(args_size >= 0, "illegal args_size");
  51   bool align_stack = false;
  52 #ifdef _LP64
  53   // At a method handle call, the stack may not be properly aligned
  54   // when returning with an exception.
  55   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
  56 #endif
  57 
  58 #ifdef _LP64
  59   mov(c_rarg0, thread);
  60   set_num_rt_args(0); // Nothing on stack
  61 #else
  62   set_num_rt_args(1 + args_size);
  63 
  64   // push java thread (becomes first argument of C function)
  65   get_thread(thread);
  66   push(thread);
  67 #endif // _LP64
  68 
  69   int call_offset;
  70   if (!align_stack) {
  71     set_last_Java_frame(thread, noreg, rbp, NULL);
  72   } else {
  73     address the_pc = pc();
  74     call_offset = offset();
  75     set_last_Java_frame(thread, noreg, rbp, the_pc);
  76     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  77   }
  78 
  79   // do the call
  80   call(RuntimeAddress(entry));
  81   if (!align_stack) {
  82     call_offset = offset();
  83   }
  84   // verify callee-saved register
  85 #ifdef ASSERT
  86   guarantee(thread != rax, "change this code");
  87   push(rax);
  88   { Label L;
  89     get_thread(rax);
  90     cmpptr(thread, rax);
  91     jcc(Assembler::equal, L);
  92     int3();
  93     stop("StubAssembler::call_RT: rdi not callee saved?");
  94     bind(L);
  95   }
  96   pop(rax);
  97 #endif
  98   reset_last_Java_frame(thread, true, align_stack);
  99 
 100   // discard thread and arguments
 101   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
 102 
 103   // check for pending exceptions
 104   { Label L;
 105     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 106     jcc(Assembler::equal, L);
 107     // exception pending => remove activation and forward to exception handler
 108     movptr(rax, Address(thread, Thread::pending_exception_offset()));
 109     // make sure that the vm_results are cleared
 110     if (oop_result1->is_valid()) {
 111       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
 112     }
 113     if (metadata_result->is_valid()) {
 114       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 115     }
 116     if (frame_size() == no_frame_size) {
 117       leave();
 118       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 119     } else if (_stub_id == Runtime1::forward_exception_id) {
 120       should_not_reach_here();
 121     } else {
 122       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 123     }
 124     bind(L);
 125   }
 126   // get oop results if there are any and reset the values in the thread
 127   if (oop_result1->is_valid()) {
 128     get_vm_result(oop_result1, thread);
 129   }
 130   if (metadata_result->is_valid()) {
 131     get_vm_result_2(metadata_result, thread);
 132   }
 133   return call_offset;
 134 }
 135 
 136 
 137 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
 138 #ifdef _LP64
 139   mov(c_rarg1, arg1);
 140 #else
 141   push(arg1);
 142 #endif // _LP64
 143   return call_RT(oop_result1, metadata_result, entry, 1);
 144 }
 145 
 146 
 147 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
 148 #ifdef _LP64
 149   if (c_rarg1 == arg2) {
 150     if (c_rarg2 == arg1) {
 151       xchgq(arg1, arg2);
 152     } else {
 153       mov(c_rarg2, arg2);
 154       mov(c_rarg1, arg1);
 155     }
 156   } else {
 157     mov(c_rarg1, arg1);
 158     mov(c_rarg2, arg2);
 159   }
 160 #else
 161   push(arg2);
 162   push(arg1);
 163 #endif // _LP64
 164   return call_RT(oop_result1, metadata_result, entry, 2);
 165 }
 166 
 167 
 168 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
 169 #ifdef _LP64
 170   // if there is any conflict use the stack
 171   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
 172       arg2 == c_rarg1 || arg1 == c_rarg3 ||
 173       arg3 == c_rarg1 || arg1 == c_rarg2) {
 174     push(arg3);
 175     push(arg2);
 176     push(arg1);
 177     pop(c_rarg1);
 178     pop(c_rarg2);
 179     pop(c_rarg3);
 180   } else {
 181     mov(c_rarg1, arg1);
 182     mov(c_rarg2, arg2);
 183     mov(c_rarg3, arg3);
 184   }
 185 #else
 186   push(arg3);
 187   push(arg2);
 188   push(arg1);
 189 #endif // _LP64
 190   return call_RT(oop_result1, metadata_result, entry, 3);
 191 }
 192 
 193 
 194 // Implementation of StubFrame
 195 
 196 class StubFrame: public StackObj {
 197  private:
 198   StubAssembler* _sasm;
 199 
 200  public:
 201   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
 202   void load_argument(int offset_in_words, Register reg);
 203 
 204   ~StubFrame();
 205 };
 206 
 207 
 208 #define __ _sasm->
 209 
 210 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
 211   _sasm = sasm;
 212   __ set_info(name, must_gc_arguments);
 213   __ enter();
 214 }
 215 
 216 // load parameters that were stored with LIR_Assembler::store_parameter
 217 // Note: offsets for store_parameter and load_argument must match
 218 void StubFrame::load_argument(int offset_in_words, Register reg) {
 219   // rbp, + 0: link
 220   //     + 1: return address
 221   //     + 2: argument with offset 0
 222   //     + 3: argument with offset 1
 223   //     + 4: ...
 224 
 225   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
 226 }
 227 
 228 
 229 StubFrame::~StubFrame() {
 230   __ leave();
 231   __ ret(0);
 232 }
 233 
 234 #undef __
 235 
 236 
 237 // Implementation of Runtime1
 238 
 239 #define __ sasm->
 240 
 241 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
 242 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
 243 
 244 // Stack layout for saving/restoring  all the registers needed during a runtime
 245 // call (this includes deoptimization)
 246 // Note: note that users of this frame may well have arguments to some runtime
 247 // while these values are on the stack. These positions neglect those arguments
 248 // but the code in save_live_registers will take the argument count into
 249 // account.
 250 //
 251 #ifdef _LP64
 252   #define SLOT2(x) x,
 253   #define SLOT_PER_WORD 2
 254 #else
 255   #define SLOT2(x)
 256   #define SLOT_PER_WORD 1
 257 #endif // _LP64
 258 
 259 enum reg_save_layout {
 260   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
 261   // happen and will assert if the stack size we create is misaligned
 262 #ifdef _LP64
 263   align_dummy_0, align_dummy_1,
 264 #endif // _LP64
 265 #ifdef _WIN64
 266   // Windows always allocates space for it's argument registers (see
 267   // frame::arg_reg_save_area_bytes).
 268   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
 269   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
 270   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
 271   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
 272 #endif // _WIN64
 273   xmm_regs_as_doubles_off,                                                                  // 32
 274   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
 275   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
 276   // fpu_state_end_off is exclusive
 277   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
 278   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
 279   extra_space_offset,                                                                       // 360
 280 #ifdef _LP64
 281   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
 282   r14_off, r14H_off,                                                                        // 368, 372
 283   r13_off, r13H_off,                                                                        // 376, 380
 284   r12_off, r12H_off,                                                                        // 384, 388
 285   r11_off, r11H_off,                                                                        // 392, 396
 286   r10_off, r10H_off,                                                                        // 400, 404
 287   r9_off, r9H_off,                                                                          // 408, 412
 288   r8_off, r8H_off,                                                                          // 416, 420
 289   rdi_off, rdiH_off,                                                                        // 424, 428
 290 #else
 291   rdi_off = extra_space_offset,
 292 #endif // _LP64
 293   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
 294   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
 295   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
 296   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
 297   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
 298   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
 299   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
 300   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
 301   return_off, SLOT2(returnH_off)                                                            // 496, 500
 302   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
 303 };
 304 
 305 
 306 
 307 // Save off registers which might be killed by calls into the runtime.
 308 // Tries to smart of about FP registers.  In particular we separate
 309 // saving and describing the FPU registers for deoptimization since we
 310 // have to save the FPU registers twice if we describe them and on P4
 311 // saving FPU registers which don't contain anything appears
 312 // expensive.  The deopt blob is the only thing which needs to
 313 // describe FPU registers.  In all other cases it should be sufficient
 314 // to simply save their current value.
 315 
 316 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
 317                                 bool save_fpu_registers = true) {
 318 
 319   // In 64bit all the args are in regs so there are no additional stack slots
 320   LP64_ONLY(num_rt_args = 0);
 321   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
 322   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
 323   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
 324 
 325   // record saved value locations in an OopMap
 326   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
 327   OopMap* map = new OopMap(frame_size_in_slots, 0);
 328   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
 329   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
 330   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
 331   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
 332   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
 333   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
 334 #ifdef _LP64
 335   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
 336   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
 337   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
 338   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
 339   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
 340   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
 341   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
 342   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
 343 
 344   // This is stupid but needed.
 345   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
 346   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
 347   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
 348   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
 349   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
 350   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
 351 
 352   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
 353   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
 354   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
 355   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
 356   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
 357   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
 358   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
 359   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
 360 #endif // _LP64
 361 
 362   if (save_fpu_registers) {
 363     if (UseSSE < 2) {
 364       int fpu_off = float_regs_as_doubles_off;
 365       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 366         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
 367         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
 368         // %%% This is really a waste but we'll keep things as they were for now
 369         if (true) {
 370           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
 371         }
 372         fpu_off += 2;
 373       }
 374       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
 375     }
 376 
 377     if (UseSSE >= 2) {
 378       int xmm_off = xmm_regs_as_doubles_off;
 379       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 380         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 381         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
 382         // %%% This is really a waste but we'll keep things as they were for now
 383         if (true) {
 384           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
 385         }
 386         xmm_off += 2;
 387       }
 388       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 389 
 390     } else if (UseSSE == 1) {
 391       int xmm_off = xmm_regs_as_doubles_off;
 392       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 393         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 394         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
 395         xmm_off += 2;
 396       }
 397       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 398     }
 399   }
 400 
 401   return map;
 402 }
 403 
 404 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
 405                                    bool save_fpu_registers = true) {
 406   __ block_comment("save_live_registers");
 407 
 408   __ pusha();         // integer registers
 409 
 410   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
 411   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
 412 
 413   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 414 
 415 #ifdef ASSERT
 416   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 417 #endif
 418 
 419   if (save_fpu_registers) {
 420     if (UseSSE < 2) {
 421       // save FPU stack
 422       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 423       __ fwait();
 424 
 425 #ifdef ASSERT
 426       Label ok;
 427       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 428       __ jccb(Assembler::equal, ok);
 429       __ stop("corrupted control word detected");
 430       __ bind(ok);
 431 #endif
 432 
 433       // Reset the control word to guard against exceptions being unmasked
 434       // since fstp_d can cause FPU stack underflow exceptions.  Write it
 435       // into the on stack copy and then reload that to make sure that the
 436       // current and future values are correct.
 437       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 438       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 439 
 440       // Save the FPU registers in de-opt-able form
 441       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 442       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 443       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 444       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 445       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 446       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 447       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 448       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 449     }
 450 
 451     if (UseSSE >= 2) {
 452       // save XMM registers
 453       // XMM registers can contain float or double values, but this is not known here,
 454       // so always save them as doubles.
 455       // note that float values are _not_ converted automatically, so for float values
 456       // the second word contains only garbage data.
 457       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
 458       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
 459       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
 460       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
 461       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
 462       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
 463       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
 464       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
 465 #ifdef _LP64
 466       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
 467       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
 468       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
 469       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
 470       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
 471       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
 472       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
 473       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
 474 #endif // _LP64
 475     } else if (UseSSE == 1) {
 476       // save XMM registers as float because double not supported without SSE2
 477       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
 478       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
 479       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
 480       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
 481       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
 482       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
 483       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
 484       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
 485     }
 486   }
 487 
 488   // FPU stack must be empty now
 489   __ verify_FPU(0, "save_live_registers");
 490 
 491   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
 492 }
 493 
 494 
 495 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
 496   if (restore_fpu_registers) {
 497     if (UseSSE >= 2) {
 498       // restore XMM registers
 499       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 500       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 501       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 502       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 503       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 504       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 505       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 506       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 507 #ifdef _LP64
 508       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
 509       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
 510       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
 511       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
 512       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
 513       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
 514       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
 515       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
 516 #endif // _LP64
 517     } else if (UseSSE == 1) {
 518       // restore XMM registers
 519       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 520       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 521       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 522       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 523       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 524       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 525       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 526       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 527     }
 528 
 529     if (UseSSE < 2) {
 530       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 531     } else {
 532       // check that FPU stack is really empty
 533       __ verify_FPU(0, "restore_live_registers");
 534     }
 535 
 536   } else {
 537     // check that FPU stack is really empty
 538     __ verify_FPU(0, "restore_live_registers");
 539   }
 540 
 541 #ifdef ASSERT
 542   {
 543     Label ok;
 544     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 545     __ jcc(Assembler::equal, ok);
 546     __ stop("bad offsets in frame");
 547     __ bind(ok);
 548   }
 549 #endif // ASSERT
 550 
 551   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 552 }
 553 
 554 
 555 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
 556   __ block_comment("restore_live_registers");
 557 
 558   restore_fpu(sasm, restore_fpu_registers);
 559   __ popa();
 560 }
 561 
 562 
 563 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
 564   __ block_comment("restore_live_registers_except_rax");
 565 
 566   restore_fpu(sasm, restore_fpu_registers);
 567 
 568 #ifdef _LP64
 569   __ movptr(r15, Address(rsp, 0));
 570   __ movptr(r14, Address(rsp, wordSize));
 571   __ movptr(r13, Address(rsp, 2 * wordSize));
 572   __ movptr(r12, Address(rsp, 3 * wordSize));
 573   __ movptr(r11, Address(rsp, 4 * wordSize));
 574   __ movptr(r10, Address(rsp, 5 * wordSize));
 575   __ movptr(r9,  Address(rsp, 6 * wordSize));
 576   __ movptr(r8,  Address(rsp, 7 * wordSize));
 577   __ movptr(rdi, Address(rsp, 8 * wordSize));
 578   __ movptr(rsi, Address(rsp, 9 * wordSize));
 579   __ movptr(rbp, Address(rsp, 10 * wordSize));
 580   // skip rsp
 581   __ movptr(rbx, Address(rsp, 12 * wordSize));
 582   __ movptr(rdx, Address(rsp, 13 * wordSize));
 583   __ movptr(rcx, Address(rsp, 14 * wordSize));
 584 
 585   __ addptr(rsp, 16 * wordSize);
 586 #else
 587 
 588   __ pop(rdi);
 589   __ pop(rsi);
 590   __ pop(rbp);
 591   __ pop(rbx); // skip this value
 592   __ pop(rbx);
 593   __ pop(rdx);
 594   __ pop(rcx);
 595   __ addptr(rsp, BytesPerWord);
 596 #endif // _LP64
 597 }
 598 
 599 
 600 void Runtime1::initialize_pd() {
 601   // nothing to do
 602 }
 603 
 604 
 605 // target: the entry point of the method that creates and posts the exception oop
 606 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
 607 
 608 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
 609   // preserve all registers
 610   int num_rt_args = has_argument ? 2 : 1;
 611   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 612 
 613   // now all registers are saved and can be used freely
 614   // verify that no old value is used accidentally
 615   __ invalidate_registers(true, true, true, true, true, true);
 616 
 617   // registers used by this stub
 618   const Register temp_reg = rbx;
 619 
 620   // load argument for exception that is passed as an argument into the stub
 621   if (has_argument) {
 622 #ifdef _LP64
 623     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
 624 #else
 625     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
 626     __ push(temp_reg);
 627 #endif // _LP64
 628   }
 629   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
 630 
 631   OopMapSet* oop_maps = new OopMapSet();
 632   oop_maps->add_gc_map(call_offset, oop_map);
 633 
 634   __ stop("should not reach here");
 635 
 636   return oop_maps;
 637 }
 638 
 639 
 640 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
 641   __ block_comment("generate_handle_exception");
 642 
 643   // incoming parameters
 644   const Register exception_oop = rax;
 645   const Register exception_pc  = rdx;
 646   // other registers used in this stub
 647   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 648 
 649   // Save registers, if required.
 650   OopMapSet* oop_maps = new OopMapSet();
 651   OopMap* oop_map = NULL;
 652   switch (id) {
 653   case forward_exception_id:
 654     // We're handling an exception in the context of a compiled frame.
 655     // The registers have been saved in the standard places.  Perform
 656     // an exception lookup in the caller and dispatch to the handler
 657     // if found.  Otherwise unwind and dispatch to the callers
 658     // exception handler.
 659     oop_map = generate_oop_map(sasm, 1 /*thread*/);
 660 
 661     // load and clear pending exception oop into RAX
 662     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 663     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 664 
 665     // load issuing PC (the return address for this stub) into rdx
 666     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
 667 
 668     // make sure that the vm_results are cleared (may be unnecessary)
 669     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
 670     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 671     break;
 672   case handle_exception_nofpu_id:
 673   case handle_exception_id:
 674     // At this point all registers MAY be live.
 675     oop_map = save_live_registers(sasm, 1 /*thread*/, id == handle_exception_nofpu_id);
 676     break;
 677   case handle_exception_from_callee_id: {
 678     // At this point all registers except exception oop (RAX) and
 679     // exception pc (RDX) are dead.
 680     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
 681     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
 682     sasm->set_frame_size(frame_size);
 683     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
 684     break;
 685   }
 686   default:  ShouldNotReachHere();
 687   }
 688 
 689 #ifdef TIERED
 690   // C2 can leave the fpu stack dirty
 691   if (UseSSE < 2) {
 692     __ empty_FPU_stack();
 693   }
 694 #endif // TIERED
 695 
 696   // verify that only rax, and rdx is valid at this time
 697   __ invalidate_registers(false, true, true, false, true, true);
 698   // verify that rax, contains a valid exception
 699   __ verify_not_null_oop(exception_oop);
 700 
 701   // load address of JavaThread object for thread-local data
 702   NOT_LP64(__ get_thread(thread);)
 703 
 704 #ifdef ASSERT
 705   // check that fields in JavaThread for exception oop and issuing pc are
 706   // empty before writing to them
 707   Label oop_empty;
 708   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
 709   __ jcc(Assembler::equal, oop_empty);
 710   __ stop("exception oop already set");
 711   __ bind(oop_empty);
 712 
 713   Label pc_empty;
 714   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 715   __ jcc(Assembler::equal, pc_empty);
 716   __ stop("exception pc already set");
 717   __ bind(pc_empty);
 718 #endif
 719 
 720   // save exception oop and issuing pc into JavaThread
 721   // (exception handler will load it from here)
 722   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
 723   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
 724 
 725   // patch throwing pc into return address (has bci & oop map)
 726   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
 727 
 728   // compute the exception handler.
 729   // the exception oop and the throwing pc are read from the fields in JavaThread
 730   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
 731   oop_maps->add_gc_map(call_offset, oop_map);
 732 
 733   // rax: handler address
 734   //      will be the deopt blob if nmethod was deoptimized while we looked up
 735   //      handler regardless of whether handler existed in the nmethod.
 736 
 737   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
 738   __ invalidate_registers(false, true, true, true, true, true);
 739 
 740   // patch the return address, this stub will directly return to the exception handler
 741   __ movptr(Address(rbp, 1*BytesPerWord), rax);
 742 
 743   switch (id) {
 744   case forward_exception_id:
 745   case handle_exception_nofpu_id:
 746   case handle_exception_id:
 747     // Restore the registers that were saved at the beginning.
 748     restore_live_registers(sasm, id == handle_exception_nofpu_id);
 749     break;
 750   case handle_exception_from_callee_id:
 751     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
 752     // since we do a leave anyway.
 753 
 754     // Pop the return address since we are possibly changing SP (restoring from BP).
 755     __ leave();
 756     __ pop(rcx);
 757 
 758     // Restore SP from BP if the exception PC is a method handle call site.
 759     NOT_LP64(__ get_thread(thread);)
 760     __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
 761     __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
 762     __ jmp(rcx);  // jump to exception handler
 763     break;
 764   default:  ShouldNotReachHere();
 765   }
 766 
 767   return oop_maps;
 768 }
 769 
 770 
 771 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
 772   // incoming parameters
 773   const Register exception_oop = rax;
 774   // callee-saved copy of exception_oop during runtime call
 775   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
 776   // other registers used in this stub
 777   const Register exception_pc = rdx;
 778   const Register handler_addr = rbx;
 779   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 780 
 781   // verify that only rax, is valid at this time
 782   __ invalidate_registers(false, true, true, true, true, true);
 783 
 784 #ifdef ASSERT
 785   // check that fields in JavaThread for exception oop and issuing pc are empty
 786   NOT_LP64(__ get_thread(thread);)
 787   Label oop_empty;
 788   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
 789   __ jcc(Assembler::equal, oop_empty);
 790   __ stop("exception oop must be empty");
 791   __ bind(oop_empty);
 792 
 793   Label pc_empty;
 794   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 795   __ jcc(Assembler::equal, pc_empty);
 796   __ stop("exception pc must be empty");
 797   __ bind(pc_empty);
 798 #endif
 799 
 800   // clear the FPU stack in case any FPU results are left behind
 801   __ empty_FPU_stack();
 802 
 803   // save exception_oop in callee-saved register to preserve it during runtime calls
 804   __ verify_not_null_oop(exception_oop);
 805   __ movptr(exception_oop_callee_saved, exception_oop);
 806 
 807   NOT_LP64(__ get_thread(thread);)
 808   // Get return address (is on top of stack after leave).
 809   __ movptr(exception_pc, Address(rsp, 0));
 810 
 811   // search the exception handler address of the caller (using the return address)
 812   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 813   // rax: exception handler address of the caller
 814 
 815   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
 816   __ invalidate_registers(false, true, true, true, false, true);
 817 
 818   // move result of call into correct register
 819   __ movptr(handler_addr, rax);
 820 
 821   // Restore exception oop to RAX (required convention of exception handler).
 822   __ movptr(exception_oop, exception_oop_callee_saved);
 823 
 824   // verify that there is really a valid exception in rax
 825   __ verify_not_null_oop(exception_oop);
 826 
 827   // get throwing pc (= return address).
 828   // rdx has been destroyed by the call, so it must be set again
 829   // the pop is also necessary to simulate the effect of a ret(0)
 830   __ pop(exception_pc);
 831 
 832   // Restore SP from BP if the exception PC is a method handle call site.
 833   NOT_LP64(__ get_thread(thread);)
 834   __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
 835   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
 836 
 837   // continue at exception handler (return address removed)
 838   // note: do *not* remove arguments when unwinding the
 839   //       activation since the caller assumes having
 840   //       all arguments on the stack when entering the
 841   //       runtime to determine the exception handler
 842   //       (GC happens at call site with arguments!)
 843   // rax: exception oop
 844   // rdx: throwing pc
 845   // rbx: exception handler
 846   __ jmp(handler_addr);
 847 }
 848 
 849 
 850 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
 851   // use the maximum number of runtime-arguments here because it is difficult to
 852   // distinguish each RT-Call.
 853   // Note: This number affects also the RT-Call in generate_handle_exception because
 854   //       the oop-map is shared for all calls.
 855   const int num_rt_args = 2;  // thread + dummy
 856 
 857   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
 858   assert(deopt_blob != NULL, "deoptimization blob must have been created");
 859 
 860   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 861 
 862 #ifdef _LP64
 863   const Register thread = r15_thread;
 864   // No need to worry about dummy
 865   __ mov(c_rarg0, thread);
 866 #else
 867   __ push(rax); // push dummy
 868 
 869   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
 870   // push java thread (becomes first argument of C function)
 871   __ get_thread(thread);
 872   __ push(thread);
 873 #endif // _LP64
 874   __ set_last_Java_frame(thread, noreg, rbp, NULL);
 875   // do the call
 876   __ call(RuntimeAddress(target));
 877   OopMapSet* oop_maps = new OopMapSet();
 878   oop_maps->add_gc_map(__ offset(), oop_map);
 879   // verify callee-saved register
 880 #ifdef ASSERT
 881   guarantee(thread != rax, "change this code");
 882   __ push(rax);
 883   { Label L;
 884     __ get_thread(rax);
 885     __ cmpptr(thread, rax);
 886     __ jcc(Assembler::equal, L);
 887     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
 888     __ bind(L);
 889   }
 890   __ pop(rax);
 891 #endif
 892   __ reset_last_Java_frame(thread, true, false);
 893 #ifndef _LP64
 894   __ pop(rcx); // discard thread arg
 895   __ pop(rcx); // discard dummy
 896 #endif // _LP64
 897 
 898   // check for pending exceptions
 899   { Label L;
 900     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 901     __ jcc(Assembler::equal, L);
 902     // exception pending => remove activation and forward to exception handler
 903 
 904     __ testptr(rax, rax);                                   // have we deoptimized?
 905     __ jump_cc(Assembler::equal,
 906                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 907 
 908     // the deopt blob expects exceptions in the special fields of
 909     // JavaThread, so copy and clear pending exception.
 910 
 911     // load and clear pending exception
 912     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
 913     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 914 
 915     // check that there is really a valid exception
 916     __ verify_not_null_oop(rax);
 917 
 918     // load throwing pc: this is the return address of the stub
 919     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
 920 
 921 #ifdef ASSERT
 922     // check that fields in JavaThread for exception oop and issuing pc are empty
 923     Label oop_empty;
 924     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 925     __ jcc(Assembler::equal, oop_empty);
 926     __ stop("exception oop must be empty");
 927     __ bind(oop_empty);
 928 
 929     Label pc_empty;
 930     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 931     __ jcc(Assembler::equal, pc_empty);
 932     __ stop("exception pc must be empty");
 933     __ bind(pc_empty);
 934 #endif
 935 
 936     // store exception oop and throwing pc to JavaThread
 937     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
 938     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
 939 
 940     restore_live_registers(sasm);
 941 
 942     __ leave();
 943     __ addptr(rsp, BytesPerWord);  // remove return address from stack
 944 
 945     // Forward the exception directly to deopt blob. We can blow no
 946     // registers and must leave throwing pc on the stack.  A patch may
 947     // have values live in registers so the entry point with the
 948     // exception in tls.
 949     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
 950 
 951     __ bind(L);
 952   }
 953 
 954 
 955   // Runtime will return true if the nmethod has been deoptimized during
 956   // the patching process. In that case we must do a deopt reexecute instead.
 957 
 958   Label reexecuteEntry, cont;
 959 
 960   __ testptr(rax, rax);                                 // have we deoptimized?
 961   __ jcc(Assembler::equal, cont);                       // no
 962 
 963   // Will reexecute. Proper return address is already on the stack we just restore
 964   // registers, pop all of our frame but the return address and jump to the deopt blob
 965   restore_live_registers(sasm);
 966   __ leave();
 967   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
 968 
 969   __ bind(cont);
 970   restore_live_registers(sasm);
 971   __ leave();
 972   __ ret(0);
 973 
 974   return oop_maps;
 975 }
 976 
 977 
 978 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
 979 
 980   // for better readability
 981   const bool must_gc_arguments = true;
 982   const bool dont_gc_arguments = false;
 983 
 984   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
 985   bool save_fpu_registers = true;
 986 
 987   // stub code & info for the different stubs
 988   OopMapSet* oop_maps = NULL;
 989   switch (id) {
 990     case forward_exception_id:
 991       {
 992         oop_maps = generate_handle_exception(id, sasm);
 993         __ leave();
 994         __ ret(0);
 995       }
 996       break;
 997 
 998     case new_instance_id:
 999     case fast_new_instance_id:
1000     case fast_new_instance_init_check_id:
1001       {
1002         Register klass = rdx; // Incoming
1003         Register obj   = rax; // Result
1004 
1005         if (id == new_instance_id) {
1006           __ set_info("new_instance", dont_gc_arguments);
1007         } else if (id == fast_new_instance_id) {
1008           __ set_info("fast new_instance", dont_gc_arguments);
1009         } else {
1010           assert(id == fast_new_instance_init_check_id, "bad StubID");
1011           __ set_info("fast new_instance init check", dont_gc_arguments);
1012         }
1013 
1014         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
1015             UseTLAB && FastTLABRefill) {
1016           Label slow_path;
1017           Register obj_size = rcx;
1018           Register t1       = rbx;
1019           Register t2       = rsi;
1020           assert_different_registers(klass, obj, obj_size, t1, t2);
1021 
1022           __ push(rdi);
1023           __ push(rbx);
1024 
1025           if (id == fast_new_instance_init_check_id) {
1026             // make sure the klass is initialized
1027             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1028             __ jcc(Assembler::notEqual, slow_path);
1029           }
1030 
1031 #ifdef ASSERT
1032           // assert object can be fast path allocated
1033           {
1034             Label ok, not_ok;
1035             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1036             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1037             __ jcc(Assembler::lessEqual, not_ok);
1038             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1039             __ jcc(Assembler::zero, ok);
1040             __ bind(not_ok);
1041             __ stop("assert(can be fast path allocated)");
1042             __ should_not_reach_here();
1043             __ bind(ok);
1044           }
1045 #endif // ASSERT
1046 
1047           // if we got here then the TLAB allocation failed, so try
1048           // refilling the TLAB or allocating directly from eden.
1049           Label retry_tlab, try_eden;
1050           const Register thread =
1051             __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
1052 
1053           __ bind(retry_tlab);
1054 
1055           // get the instance size (size is postive so movl is fine for 64bit)
1056           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1057 
1058           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
1059 
1060           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1061           __ verify_oop(obj);
1062           __ pop(rbx);
1063           __ pop(rdi);
1064           __ ret(0);
1065 
1066           __ bind(try_eden);
1067           // get the instance size (size is postive so movl is fine for 64bit)
1068           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1069 
1070           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1071           __ incr_allocated_bytes(thread, obj_size, 0);
1072 
1073           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1074           __ verify_oop(obj);
1075           __ pop(rbx);
1076           __ pop(rdi);
1077           __ ret(0);
1078 
1079           __ bind(slow_path);
1080           __ pop(rbx);
1081           __ pop(rdi);
1082         }
1083 
1084         __ enter();
1085         OopMap* map = save_live_registers(sasm, 2);
1086         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1087         oop_maps = new OopMapSet();
1088         oop_maps->add_gc_map(call_offset, map);
1089         restore_live_registers_except_rax(sasm);
1090         __ verify_oop(obj);
1091         __ leave();
1092         __ ret(0);
1093 
1094         // rax,: new instance
1095       }
1096 
1097       break;
1098 
1099     case counter_overflow_id:
1100       {
1101         Register bci = rax, method = rbx;
1102         __ enter();
1103         OopMap* map = save_live_registers(sasm, 3);
1104         // Retrieve bci
1105         __ movl(bci, Address(rbp, 2*BytesPerWord));
1106         // And a pointer to the Method*
1107         __ movptr(method, Address(rbp, 3*BytesPerWord));
1108         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1109         oop_maps = new OopMapSet();
1110         oop_maps->add_gc_map(call_offset, map);
1111         restore_live_registers(sasm);
1112         __ leave();
1113         __ ret(0);
1114       }
1115       break;
1116 
1117     case new_type_array_id:
1118     case new_object_array_id:
1119       {
1120         Register length   = rbx; // Incoming
1121         Register klass    = rdx; // Incoming
1122         Register obj      = rax; // Result
1123 
1124         if (id == new_type_array_id) {
1125           __ set_info("new_type_array", dont_gc_arguments);
1126         } else {
1127           __ set_info("new_object_array", dont_gc_arguments);
1128         }
1129 
1130 #ifdef ASSERT
1131         // assert object type is really an array of the proper kind
1132         {
1133           Label ok;
1134           Register t0 = obj;
1135           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1136           __ sarl(t0, Klass::_lh_array_tag_shift);
1137           int tag = ((id == new_type_array_id)
1138                      ? Klass::_lh_array_tag_type_value
1139                      : Klass::_lh_array_tag_obj_value);
1140           __ cmpl(t0, tag);
1141           __ jcc(Assembler::equal, ok);
1142           __ stop("assert(is an array klass)");
1143           __ should_not_reach_here();
1144           __ bind(ok);
1145         }
1146 #endif // ASSERT
1147 
1148         if (UseTLAB && FastTLABRefill) {
1149           Register arr_size = rsi;
1150           Register t1       = rcx;  // must be rcx for use as shift count
1151           Register t2       = rdi;
1152           Label slow_path;
1153           assert_different_registers(length, klass, obj, arr_size, t1, t2);
1154 
1155           // check that array length is small enough for fast path.
1156           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
1157           __ jcc(Assembler::above, slow_path);
1158 
1159           // if we got here then the TLAB allocation failed, so try
1160           // refilling the TLAB or allocating directly from eden.
1161           Label retry_tlab, try_eden;
1162           const Register thread =
1163             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
1164 
1165           __ bind(retry_tlab);
1166 
1167           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1168           // since size is positive movl does right thing on 64bit
1169           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1170           // since size is postive movl does right thing on 64bit
1171           __ movl(arr_size, length);
1172           assert(t1 == rcx, "fixed register usage");
1173           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1174           __ shrptr(t1, Klass::_lh_header_size_shift);
1175           __ andptr(t1, Klass::_lh_header_size_mask);
1176           __ addptr(arr_size, t1);
1177           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1178           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1179 
1180           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
1181 
1182           __ initialize_header(obj, klass, length, t1, t2);
1183           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1184           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1185           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1186           __ andptr(t1, Klass::_lh_header_size_mask);
1187           __ subptr(arr_size, t1);  // body length
1188           __ addptr(t1, obj);       // body start
1189           __ initialize_body(t1, arr_size, 0, t2);
1190           __ verify_oop(obj);
1191           __ ret(0);
1192 
1193           __ bind(try_eden);
1194           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1195           // since size is positive movl does right thing on 64bit
1196           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1197           // since size is postive movl does right thing on 64bit
1198           __ movl(arr_size, length);
1199           assert(t1 == rcx, "fixed register usage");
1200           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1201           __ shrptr(t1, Klass::_lh_header_size_shift);
1202           __ andptr(t1, Klass::_lh_header_size_mask);
1203           __ addptr(arr_size, t1);
1204           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1205           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1206 
1207           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1208           __ incr_allocated_bytes(thread, arr_size, 0);
1209 
1210           __ initialize_header(obj, klass, length, t1, t2);
1211           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1212           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1213           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1214           __ andptr(t1, Klass::_lh_header_size_mask);
1215           __ subptr(arr_size, t1);  // body length
1216           __ addptr(t1, obj);       // body start
1217           __ initialize_body(t1, arr_size, 0, t2);
1218           __ verify_oop(obj);
1219           __ ret(0);
1220 
1221           __ bind(slow_path);
1222         }
1223 
1224         __ enter();
1225         OopMap* map = save_live_registers(sasm, 3);
1226         int call_offset;
1227         if (id == new_type_array_id) {
1228           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1229         } else {
1230           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1231         }
1232 
1233         oop_maps = new OopMapSet();
1234         oop_maps->add_gc_map(call_offset, map);
1235         restore_live_registers_except_rax(sasm);
1236 
1237         __ verify_oop(obj);
1238         __ leave();
1239         __ ret(0);
1240 
1241         // rax,: new array
1242       }
1243       break;
1244 
1245     case new_multi_array_id:
1246       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1247         // rax,: klass
1248         // rbx,: rank
1249         // rcx: address of 1st dimension
1250         OopMap* map = save_live_registers(sasm, 4);
1251         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1252 
1253         oop_maps = new OopMapSet();
1254         oop_maps->add_gc_map(call_offset, map);
1255         restore_live_registers_except_rax(sasm);
1256 
1257         // rax,: new multi array
1258         __ verify_oop(rax);
1259       }
1260       break;
1261 
1262     case register_finalizer_id:
1263       {
1264         __ set_info("register_finalizer", dont_gc_arguments);
1265 
1266         // This is called via call_runtime so the arguments
1267         // will be place in C abi locations
1268 
1269 #ifdef _LP64
1270         __ verify_oop(c_rarg0);
1271         __ mov(rax, c_rarg0);
1272 #else
1273         // The object is passed on the stack and we haven't pushed a
1274         // frame yet so it's one work away from top of stack.
1275         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1276         __ verify_oop(rax);
1277 #endif // _LP64
1278 
1279         // load the klass and check the has finalizer flag
1280         Label register_finalizer;
1281         Register t = rsi;
1282         __ load_klass(t, rax);
1283         __ movl(t, Address(t, Klass::access_flags_offset()));
1284         __ testl(t, JVM_ACC_HAS_FINALIZER);
1285         __ jcc(Assembler::notZero, register_finalizer);
1286         __ ret(0);
1287 
1288         __ bind(register_finalizer);
1289         __ enter();
1290         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1291         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1292         oop_maps = new OopMapSet();
1293         oop_maps->add_gc_map(call_offset, oop_map);
1294 
1295         // Now restore all the live registers
1296         restore_live_registers(sasm);
1297 
1298         __ leave();
1299         __ ret(0);
1300       }
1301       break;
1302 
1303     case throw_range_check_failed_id:
1304       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1305         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1306       }
1307       break;
1308 
1309     case throw_index_exception_id:
1310       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1311         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1312       }
1313       break;
1314 
1315     case throw_div0_exception_id:
1316       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1317         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1318       }
1319       break;
1320 
1321     case throw_null_pointer_exception_id:
1322       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1323         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1324       }
1325       break;
1326 
1327     case handle_exception_nofpu_id:
1328     case handle_exception_id:
1329       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1330         oop_maps = generate_handle_exception(id, sasm);
1331       }
1332       break;
1333 
1334     case handle_exception_from_callee_id:
1335       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1336         oop_maps = generate_handle_exception(id, sasm);
1337       }
1338       break;
1339 
1340     case unwind_exception_id:
1341       { __ set_info("unwind_exception", dont_gc_arguments);
1342         // note: no stubframe since we are about to leave the current
1343         //       activation and we are calling a leaf VM function only.
1344         generate_unwind_exception(sasm);
1345       }
1346       break;
1347 
1348     case throw_array_store_exception_id:
1349       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1350         // tos + 0: link
1351         //     + 1: return address
1352         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1353       }
1354       break;
1355 
1356     case throw_class_cast_exception_id:
1357       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1358         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1359       }
1360       break;
1361 
1362     case throw_incompatible_class_change_error_id:
1363       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1364         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1365       }
1366       break;
1367 
1368     case slow_subtype_check_id:
1369       {
1370         // Typical calling sequence:
1371         // __ push(klass_RInfo);  // object klass or other subclass
1372         // __ push(sup_k_RInfo);  // array element klass or other superclass
1373         // __ call(slow_subtype_check);
1374         // Note that the subclass is pushed first, and is therefore deepest.
1375         // Previous versions of this code reversed the names 'sub' and 'super'.
1376         // This was operationally harmless but made the code unreadable.
1377         enum layout {
1378           rax_off, SLOT2(raxH_off)
1379           rcx_off, SLOT2(rcxH_off)
1380           rsi_off, SLOT2(rsiH_off)
1381           rdi_off, SLOT2(rdiH_off)
1382           // saved_rbp_off, SLOT2(saved_rbpH_off)
1383           return_off, SLOT2(returnH_off)
1384           sup_k_off, SLOT2(sup_kH_off)
1385           klass_off, SLOT2(superH_off)
1386           framesize,
1387           result_off = klass_off  // deepest argument is also the return value
1388         };
1389 
1390         __ set_info("slow_subtype_check", dont_gc_arguments);
1391         __ push(rdi);
1392         __ push(rsi);
1393         __ push(rcx);
1394         __ push(rax);
1395 
1396         // This is called by pushing args and not with C abi
1397         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1398         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1399 
1400         Label miss;
1401         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1402 
1403         // fallthrough on success:
1404         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1405         __ pop(rax);
1406         __ pop(rcx);
1407         __ pop(rsi);
1408         __ pop(rdi);
1409         __ ret(0);
1410 
1411         __ bind(miss);
1412         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1413         __ pop(rax);
1414         __ pop(rcx);
1415         __ pop(rsi);
1416         __ pop(rdi);
1417         __ ret(0);
1418       }
1419       break;
1420 
1421     case monitorenter_nofpu_id:
1422       save_fpu_registers = false;
1423       // fall through
1424     case monitorenter_id:
1425       {
1426         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1427         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1428 
1429         // Called with store_parameter and not C abi
1430 
1431         f.load_argument(1, rax); // rax,: object
1432         f.load_argument(0, rbx); // rbx,: lock address
1433 
1434         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1435 
1436         oop_maps = new OopMapSet();
1437         oop_maps->add_gc_map(call_offset, map);
1438         restore_live_registers(sasm, save_fpu_registers);
1439       }
1440       break;
1441 
1442     case monitorexit_nofpu_id:
1443       save_fpu_registers = false;
1444       // fall through
1445     case monitorexit_id:
1446       {
1447         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1448         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1449 
1450         // Called with store_parameter and not C abi
1451 
1452         f.load_argument(0, rax); // rax,: lock address
1453 
1454         // note: really a leaf routine but must setup last java sp
1455         //       => use call_RT for now (speed can be improved by
1456         //       doing last java sp setup manually)
1457         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1458 
1459         oop_maps = new OopMapSet();
1460         oop_maps->add_gc_map(call_offset, map);
1461         restore_live_registers(sasm, save_fpu_registers);
1462       }
1463       break;
1464 
1465     case deoptimize_id:
1466       {
1467         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1468         const int num_rt_args = 1;  // thread
1469         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1470         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize));
1471         oop_maps = new OopMapSet();
1472         oop_maps->add_gc_map(call_offset, oop_map);
1473         restore_live_registers(sasm);
1474         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1475         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1476         __ leave();
1477         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1478       }
1479       break;
1480 
1481     case access_field_patching_id:
1482       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1483         // we should set up register map
1484         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1485       }
1486       break;
1487 
1488     case load_klass_patching_id:
1489       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1490         // we should set up register map
1491         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1492       }
1493       break;
1494 
1495     case load_mirror_patching_id:
1496       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1497         // we should set up register map
1498         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1499       }
1500       break;
1501 
1502     case load_appendix_patching_id:
1503       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1504         // we should set up register map
1505         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1506       }
1507       break;
1508 
1509     case dtrace_object_alloc_id:
1510       { // rax,: object
1511         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1512         // we can't gc here so skip the oopmap but make sure that all
1513         // the live registers get saved.
1514         save_live_registers(sasm, 1);
1515 
1516         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1517         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1518         NOT_LP64(__ pop(rax));
1519 
1520         restore_live_registers(sasm);
1521       }
1522       break;
1523 
1524     case fpu2long_stub_id:
1525       {
1526         // rax, and rdx are destroyed, but should be free since the result is returned there
1527         // preserve rsi,ecx
1528         __ push(rsi);
1529         __ push(rcx);
1530         LP64_ONLY(__ push(rdx);)
1531 
1532         // check for NaN
1533         Label return0, do_return, return_min_jlong, do_convert;
1534 
1535         Address value_high_word(rsp, wordSize + 4);
1536         Address value_low_word(rsp, wordSize);
1537         Address result_high_word(rsp, 3*wordSize + 4);
1538         Address result_low_word(rsp, 3*wordSize);
1539 
1540         __ subptr(rsp, 32);                    // more than enough on 32bit
1541         __ fst_d(value_low_word);
1542         __ movl(rax, value_high_word);
1543         __ andl(rax, 0x7ff00000);
1544         __ cmpl(rax, 0x7ff00000);
1545         __ jcc(Assembler::notEqual, do_convert);
1546         __ movl(rax, value_high_word);
1547         __ andl(rax, 0xfffff);
1548         __ orl(rax, value_low_word);
1549         __ jcc(Assembler::notZero, return0);
1550 
1551         __ bind(do_convert);
1552         __ fnstcw(Address(rsp, 0));
1553         __ movzwl(rax, Address(rsp, 0));
1554         __ orl(rax, 0xc00);
1555         __ movw(Address(rsp, 2), rax);
1556         __ fldcw(Address(rsp, 2));
1557         __ fwait();
1558         __ fistp_d(result_low_word);
1559         __ fldcw(Address(rsp, 0));
1560         __ fwait();
1561         // This gets the entire long in rax on 64bit
1562         __ movptr(rax, result_low_word);
1563         // testing of high bits
1564         __ movl(rdx, result_high_word);
1565         __ mov(rcx, rax);
1566         // What the heck is the point of the next instruction???
1567         __ xorl(rcx, 0x0);
1568         __ movl(rsi, 0x80000000);
1569         __ xorl(rsi, rdx);
1570         __ orl(rcx, rsi);
1571         __ jcc(Assembler::notEqual, do_return);
1572         __ fldz();
1573         __ fcomp_d(value_low_word);
1574         __ fnstsw_ax();
1575 #ifdef _LP64
1576         __ testl(rax, 0x4100);  // ZF & CF == 0
1577         __ jcc(Assembler::equal, return_min_jlong);
1578 #else
1579         __ sahf();
1580         __ jcc(Assembler::above, return_min_jlong);
1581 #endif // _LP64
1582         // return max_jlong
1583 #ifndef _LP64
1584         __ movl(rdx, 0x7fffffff);
1585         __ movl(rax, 0xffffffff);
1586 #else
1587         __ mov64(rax, CONST64(0x7fffffffffffffff));
1588 #endif // _LP64
1589         __ jmp(do_return);
1590 
1591         __ bind(return_min_jlong);
1592 #ifndef _LP64
1593         __ movl(rdx, 0x80000000);
1594         __ xorl(rax, rax);
1595 #else
1596         __ mov64(rax, CONST64(0x8000000000000000));
1597 #endif // _LP64
1598         __ jmp(do_return);
1599 
1600         __ bind(return0);
1601         __ fpop();
1602 #ifndef _LP64
1603         __ xorptr(rdx,rdx);
1604         __ xorptr(rax,rax);
1605 #else
1606         __ xorptr(rax, rax);
1607 #endif // _LP64
1608 
1609         __ bind(do_return);
1610         __ addptr(rsp, 32);
1611         LP64_ONLY(__ pop(rdx);)
1612         __ pop(rcx);
1613         __ pop(rsi);
1614         __ ret(0);
1615       }
1616       break;
1617 
1618 #if INCLUDE_ALL_GCS
1619     case g1_pre_barrier_slow_id:
1620       {
1621         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1622         // arg0 : previous value of memory
1623 
1624         BarrierSet* bs = Universe::heap()->barrier_set();
1625         if (bs->kind() != BarrierSet::G1SATBCTLogging) {
1626           __ movptr(rax, (int)id);
1627           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1628           __ should_not_reach_here();
1629           break;
1630         }
1631         __ push(rax);
1632         __ push(rdx);
1633 
1634         const Register pre_val = rax;
1635         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1636         const Register tmp = rdx;
1637 
1638         NOT_LP64(__ get_thread(thread);)
1639 
1640         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1641                                              PtrQueue::byte_offset_of_active()));
1642 
1643         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1644                                              PtrQueue::byte_offset_of_index()));
1645         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1646                                         PtrQueue::byte_offset_of_buf()));
1647 
1648 
1649         Label done;
1650         Label runtime;
1651 
1652         // Can we store original value in the thread's buffer?
1653 
1654 #ifdef _LP64
1655         __ movslq(tmp, queue_index);
1656         __ cmpq(tmp, 0);
1657 #else
1658         __ cmpl(queue_index, 0);
1659 #endif
1660         __ jcc(Assembler::equal, runtime);
1661 #ifdef _LP64
1662         __ subq(tmp, wordSize);
1663         __ movl(queue_index, tmp);
1664         __ addq(tmp, buffer);
1665 #else
1666         __ subl(queue_index, wordSize);
1667         __ movl(tmp, buffer);
1668         __ addl(tmp, queue_index);
1669 #endif
1670 
1671         // prev_val (rax)
1672         f.load_argument(0, pre_val);
1673         __ movptr(Address(tmp, 0), pre_val);
1674         __ jmp(done);
1675 
1676         __ bind(runtime);
1677         __ push(rcx);
1678 #ifdef _LP64
1679         __ push(r8);
1680         __ push(r9);
1681         __ push(r10);
1682         __ push(r11);
1683 #  ifndef _WIN64
1684         __ push(rdi);
1685         __ push(rsi);
1686 #  endif
1687 #endif
1688         // load the pre-value
1689         f.load_argument(0, rcx);
1690         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1691 #ifdef _LP64
1692 #  ifndef _WIN64
1693         __ pop(rsi);
1694         __ pop(rdi);
1695 #  endif
1696         __ pop(r11);
1697         __ pop(r10);
1698         __ pop(r9);
1699         __ pop(r8);
1700 #endif
1701         __ pop(rcx);
1702         __ bind(done);
1703 
1704         __ pop(rdx);
1705         __ pop(rax);
1706       }
1707       break;
1708 
1709     case g1_post_barrier_slow_id:
1710       {
1711         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1712 
1713 
1714         // arg0: store_address
1715         Address store_addr(rbp, 2*BytesPerWord);
1716 
1717         BarrierSet* bs = Universe::heap()->barrier_set();
1718         CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1719         Label done;
1720         Label runtime;
1721 
1722         // At this point we know new_value is non-NULL and the new_value crosses regsion.
1723         // Must check to see if card is already dirty
1724 
1725         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1726 
1727         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1728                                              PtrQueue::byte_offset_of_index()));
1729         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1730                                         PtrQueue::byte_offset_of_buf()));
1731 
1732         __ push(rax);
1733         __ push(rcx);
1734 
1735         NOT_LP64(__ get_thread(thread);)
1736         ExternalAddress cardtable((address)ct->byte_map_base);
1737         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1738 
1739         const Register card_addr = rcx;
1740 #ifdef _LP64
1741         const Register tmp = rscratch1;
1742         f.load_argument(0, card_addr);
1743         __ shrq(card_addr, CardTableModRefBS::card_shift);
1744         __ lea(tmp, cardtable);
1745         // get the address of the card
1746         __ addq(card_addr, tmp);
1747 #else
1748         const Register card_index = rcx;
1749         f.load_argument(0, card_index);
1750         __ shrl(card_index, CardTableModRefBS::card_shift);
1751 
1752         Address index(noreg, card_index, Address::times_1);
1753         __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
1754 #endif
1755 
1756         __ cmpb(Address(card_addr, 0), 0);
1757         __ jcc(Assembler::equal, done);
1758 
1759         // storing region crossing non-NULL, card is clean.
1760         // dirty card and log.
1761 
1762         __ movb(Address(card_addr, 0), 0);
1763 
1764         __ cmpl(queue_index, 0);
1765         __ jcc(Assembler::equal, runtime);
1766         __ subl(queue_index, wordSize);
1767 
1768         const Register buffer_addr = rbx;
1769         __ push(rbx);
1770 
1771         __ movptr(buffer_addr, buffer);
1772 
1773 #ifdef _LP64
1774         __ movslq(rscratch1, queue_index);
1775         __ addptr(buffer_addr, rscratch1);
1776 #else
1777         __ addptr(buffer_addr, queue_index);
1778 #endif
1779         __ movptr(Address(buffer_addr, 0), card_addr);
1780 
1781         __ pop(rbx);
1782         __ jmp(done);
1783 
1784         __ bind(runtime);
1785         __ push(rdx);
1786 #ifdef _LP64
1787         __ push(r8);
1788         __ push(r9);
1789         __ push(r10);
1790         __ push(r11);
1791 #  ifndef _WIN64
1792         __ push(rdi);
1793         __ push(rsi);
1794 #  endif
1795 #endif
1796         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1797 #ifdef _LP64
1798 #  ifndef _WIN64
1799         __ pop(rsi);
1800         __ pop(rdi);
1801 #  endif
1802         __ pop(r11);
1803         __ pop(r10);
1804         __ pop(r9);
1805         __ pop(r8);
1806 #endif
1807         __ pop(rdx);
1808         __ bind(done);
1809 
1810         __ pop(rcx);
1811         __ pop(rax);
1812 
1813       }
1814       break;
1815 #endif // INCLUDE_ALL_GCS
1816 
1817     case predicate_failed_trap_id:
1818       {
1819         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1820 
1821         OopMap* map = save_live_registers(sasm, 1);
1822 
1823         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1824         oop_maps = new OopMapSet();
1825         oop_maps->add_gc_map(call_offset, map);
1826         restore_live_registers(sasm);
1827         __ leave();
1828         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1829         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1830 
1831         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1832       }
1833       break;
1834 
1835     default:
1836       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1837         __ movptr(rax, (int)id);
1838         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1839         __ should_not_reach_here();
1840       }
1841       break;
1842   }
1843   return oop_maps;
1844 }
1845 
1846 #undef __
1847 
1848 const char *Runtime1::pd_name_for_address(address entry) {
1849   return "<unknown function>";
1850 }