1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "gc_implementation/shared/liveRange.hpp"
  29 #include "gc_implementation/shared/markSweep.hpp"
  30 #include "gc_implementation/shared/spaceDecorator.hpp"
  31 #include "memory/blockOffsetTable.inline.hpp"
  32 #include "memory/defNewGeneration.hpp"
  33 #include "memory/genCollectedHeap.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/space.inline.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/oop.inline2.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/prefetch.inline.hpp"
  41 #include "runtime/orderAccess.inline.hpp"
  42 #include "runtime/safepoint.hpp"
  43 #include "utilities/copy.hpp"
  44 #include "utilities/globalDefinitions.hpp"
  45 #include "utilities/macros.hpp"
  46 
  47 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  48 
  49 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
  50                                                 HeapWord* top_obj) {
  51   if (top_obj != NULL) {
  52     if (_sp->block_is_obj(top_obj)) {
  53       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
  54         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
  55           // An arrayOop is starting on the dirty card - since we do exact
  56           // store checks for objArrays we are done.
  57         } else {
  58           // Otherwise, it is possible that the object starting on the dirty
  59           // card spans the entire card, and that the store happened on a
  60           // later card.  Figure out where the object ends.
  61           // Use the block_size() method of the space over which
  62           // the iteration is being done.  That space (e.g. CMS) may have
  63           // specific requirements on object sizes which will
  64           // be reflected in the block_size() method.
  65           top = top_obj + oop(top_obj)->size();
  66         }
  67       }
  68     } else {
  69       top = top_obj;
  70     }
  71   } else {
  72     assert(top == _sp->end(), "only case where top_obj == NULL");
  73   }
  74   return top;
  75 }
  76 
  77 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
  78                                             HeapWord* bottom,
  79                                             HeapWord* top) {
  80   // 1. Blocks may or may not be objects.
  81   // 2. Even when a block_is_obj(), it may not entirely
  82   //    occupy the block if the block quantum is larger than
  83   //    the object size.
  84   // We can and should try to optimize by calling the non-MemRegion
  85   // version of oop_iterate() for all but the extremal objects
  86   // (for which we need to call the MemRegion version of
  87   // oop_iterate()) To be done post-beta XXX
  88   for (; bottom < top; bottom += _sp->block_size(bottom)) {
  89     // As in the case of contiguous space above, we'd like to
  90     // just use the value returned by oop_iterate to increment the
  91     // current pointer; unfortunately, that won't work in CMS because
  92     // we'd need an interface change (it seems) to have the space
  93     // "adjust the object size" (for instance pad it up to its
  94     // block alignment or minimum block size restrictions. XXX
  95     if (_sp->block_is_obj(bottom) &&
  96         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
  97       oop(bottom)->oop_iterate(_cl, mr);
  98     }
  99   }
 100 }
 101 
 102 // We get called with "mr" representing the dirty region
 103 // that we want to process. Because of imprecise marking,
 104 // we may need to extend the incoming "mr" to the right,
 105 // and scan more. However, because we may already have
 106 // scanned some of that extended region, we may need to
 107 // trim its right-end back some so we do not scan what
 108 // we (or another worker thread) may already have scanned
 109 // or planning to scan.
 110 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
 111 
 112   // Some collectors need to do special things whenever their dirty
 113   // cards are processed. For instance, CMS must remember mutator updates
 114   // (i.e. dirty cards) so as to re-scan mutated objects.
 115   // Such work can be piggy-backed here on dirty card scanning, so as to make
 116   // it slightly more efficient than doing a complete non-destructive pre-scan
 117   // of the card table.
 118   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
 119   if (pCl != NULL) {
 120     pCl->do_MemRegion(mr);
 121   }
 122 
 123   HeapWord* bottom = mr.start();
 124   HeapWord* last = mr.last();
 125   HeapWord* top = mr.end();
 126   HeapWord* bottom_obj;
 127   HeapWord* top_obj;
 128 
 129   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
 130          _precision == CardTableModRefBS::Precise,
 131          "Only ones we deal with for now.");
 132 
 133   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 134          _cl->idempotent() || _last_bottom == NULL ||
 135          top <= _last_bottom,
 136          "Not decreasing");
 137   NOT_PRODUCT(_last_bottom = mr.start());
 138 
 139   bottom_obj = _sp->block_start(bottom);
 140   top_obj    = _sp->block_start(last);
 141 
 142   assert(bottom_obj <= bottom, "just checking");
 143   assert(top_obj    <= top,    "just checking");
 144 
 145   // Given what we think is the top of the memory region and
 146   // the start of the object at the top, get the actual
 147   // value of the top.
 148   top = get_actual_top(top, top_obj);
 149 
 150   // If the previous call did some part of this region, don't redo.
 151   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
 152       _min_done != NULL &&
 153       _min_done < top) {
 154     top = _min_done;
 155   }
 156 
 157   // Top may have been reset, and in fact may be below bottom,
 158   // e.g. the dirty card region is entirely in a now free object
 159   // -- something that could happen with a concurrent sweeper.
 160   bottom = MIN2(bottom, top);
 161   MemRegion extended_mr = MemRegion(bottom, top);
 162   assert(bottom <= top &&
 163          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
 164           _min_done == NULL ||
 165           top <= _min_done),
 166          "overlap!");
 167 
 168   // Walk the region if it is not empty; otherwise there is nothing to do.
 169   if (!extended_mr.is_empty()) {
 170     walk_mem_region(extended_mr, bottom_obj, top);
 171   }
 172 
 173   // An idempotent closure might be applied in any order, so we don't
 174   // record a _min_done for it.
 175   if (!_cl->idempotent()) {
 176     _min_done = bottom;
 177   } else {
 178     assert(_min_done == _last_explicit_min_done,
 179            "Don't update _min_done for idempotent cl");
 180   }
 181 }
 182 
 183 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
 184                                           CardTableModRefBS::PrecisionStyle precision,
 185                                           HeapWord* boundary) {
 186   return new DirtyCardToOopClosure(this, cl, precision, boundary);
 187 }
 188 
 189 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
 190                                                HeapWord* top_obj) {
 191   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
 192     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
 193       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
 194         // An arrayOop is starting on the dirty card - since we do exact
 195         // store checks for objArrays we are done.
 196       } else {
 197         // Otherwise, it is possible that the object starting on the dirty
 198         // card spans the entire card, and that the store happened on a
 199         // later card.  Figure out where the object ends.
 200         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
 201           "Block size and object size mismatch");
 202         top = top_obj + oop(top_obj)->size();
 203       }
 204     }
 205   } else {
 206     top = (_sp->toContiguousSpace())->top();
 207   }
 208   return top;
 209 }
 210 
 211 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
 212                                       HeapWord* bottom,
 213                                       HeapWord* top) {
 214   // Note that this assumption won't hold if we have a concurrent
 215   // collector in this space, which may have freed up objects after
 216   // they were dirtied and before the stop-the-world GC that is
 217   // examining cards here.
 218   assert(bottom < top, "ought to be at least one obj on a dirty card.");
 219 
 220   if (_boundary != NULL) {
 221     // We have a boundary outside of which we don't want to look
 222     // at objects, so create a filtering closure around the
 223     // oop closure before walking the region.
 224     FilteringClosure filter(_boundary, _cl);
 225     walk_mem_region_with_cl(mr, bottom, top, &filter);
 226   } else {
 227     // No boundary, simply walk the heap with the oop closure.
 228     walk_mem_region_with_cl(mr, bottom, top, _cl);
 229   }
 230 
 231 }
 232 
 233 // We must replicate this so that the static type of "FilteringClosure"
 234 // (see above) is apparent at the oop_iterate calls.
 235 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
 236 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
 237                                                    HeapWord* bottom,    \
 238                                                    HeapWord* top,       \
 239                                                    ClosureType* cl) {   \
 240   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
 241   if (bottom < top) {                                                   \
 242     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
 243     while (next_obj < top) {                                            \
 244       /* Bottom lies entirely below top, so we can call the */          \
 245       /* non-memRegion version of oop_iterate below. */                 \
 246       oop(bottom)->oop_iterate(cl);                                     \
 247       bottom = next_obj;                                                \
 248       next_obj = bottom + oop(bottom)->size();                          \
 249     }                                                                   \
 250     /* Last object. */                                                  \
 251     oop(bottom)->oop_iterate(cl, mr);                                   \
 252   }                                                                     \
 253 }
 254 
 255 // (There are only two of these, rather than N, because the split is due
 256 // only to the introduction of the FilteringClosure, a local part of the
 257 // impl of this abstraction.)
 258 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
 259 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
 260 
 261 DirtyCardToOopClosure*
 262 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
 263                              CardTableModRefBS::PrecisionStyle precision,
 264                              HeapWord* boundary) {
 265   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
 266 }
 267 
 268 void Space::initialize(MemRegion mr,
 269                        bool clear_space,
 270                        bool mangle_space) {
 271   HeapWord* bottom = mr.start();
 272   HeapWord* end    = mr.end();
 273   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
 274          "invalid space boundaries");
 275   set_bottom(bottom);
 276   set_end(end);
 277   if (clear_space) clear(mangle_space);
 278 }
 279 
 280 void Space::clear(bool mangle_space) {
 281   if (ZapUnusedHeapArea && mangle_space) {
 282     mangle_unused_area();
 283   }
 284 }
 285 
 286 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
 287     _concurrent_iteration_safe_limit(NULL) {
 288   _mangler = new GenSpaceMangler(this);
 289 }
 290 
 291 ContiguousSpace::~ContiguousSpace() {
 292   delete _mangler;
 293 }
 294 
 295 void ContiguousSpace::initialize(MemRegion mr,
 296                                  bool clear_space,
 297                                  bool mangle_space)
 298 {
 299   CompactibleSpace::initialize(mr, clear_space, mangle_space);
 300   set_concurrent_iteration_safe_limit(top());
 301 }
 302 
 303 void ContiguousSpace::clear(bool mangle_space) {
 304   set_top(bottom());
 305   set_saved_mark();
 306   CompactibleSpace::clear(mangle_space);
 307 }
 308 
 309 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
 310   return p >= _top;
 311 }
 312 
 313 void OffsetTableContigSpace::clear(bool mangle_space) {
 314   ContiguousSpace::clear(mangle_space);
 315   _offsets.initialize_threshold();
 316 }
 317 
 318 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 319   Space::set_bottom(new_bottom);
 320   _offsets.set_bottom(new_bottom);
 321 }
 322 
 323 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
 324   // Space should not advertise an increase in size
 325   // until after the underlying offset table has been enlarged.
 326   _offsets.resize(pointer_delta(new_end, bottom()));
 327   Space::set_end(new_end);
 328 }
 329 
 330 #ifndef PRODUCT
 331 
 332 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
 333   mangler()->set_top_for_allocations(v);
 334 }
 335 void ContiguousSpace::set_top_for_allocations() {
 336   mangler()->set_top_for_allocations(top());
 337 }
 338 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
 339   mangler()->check_mangled_unused_area(limit);
 340 }
 341 
 342 void ContiguousSpace::check_mangled_unused_area_complete() {
 343   mangler()->check_mangled_unused_area_complete();
 344 }
 345 
 346 // Mangled only the unused space that has not previously
 347 // been mangled and that has not been allocated since being
 348 // mangled.
 349 void ContiguousSpace::mangle_unused_area() {
 350   mangler()->mangle_unused_area();
 351 }
 352 void ContiguousSpace::mangle_unused_area_complete() {
 353   mangler()->mangle_unused_area_complete();
 354 }
 355 void ContiguousSpace::mangle_region(MemRegion mr) {
 356   // Although this method uses SpaceMangler::mangle_region() which
 357   // is not specific to a space, the when the ContiguousSpace version
 358   // is called, it is always with regard to a space and this
 359   // bounds checking is appropriate.
 360   MemRegion space_mr(bottom(), end());
 361   assert(space_mr.contains(mr), "Mangling outside space");
 362   SpaceMangler::mangle_region(mr);
 363 }
 364 #endif  // NOT_PRODUCT
 365 
 366 void CompactibleSpace::initialize(MemRegion mr,
 367                                   bool clear_space,
 368                                   bool mangle_space) {
 369   Space::initialize(mr, clear_space, mangle_space);
 370   set_compaction_top(bottom());
 371   _next_compaction_space = NULL;
 372 }
 373 
 374 void CompactibleSpace::clear(bool mangle_space) {
 375   Space::clear(mangle_space);
 376   _compaction_top = bottom();
 377 }
 378 
 379 HeapWord* CompactibleSpace::forward(oop q, size_t size,
 380                                     CompactPoint* cp, HeapWord* compact_top) {
 381   // q is alive
 382   // First check if we should switch compaction space
 383   assert(this == cp->space, "'this' should be current compaction space.");
 384   size_t compaction_max_size = pointer_delta(end(), compact_top);
 385   while (size > compaction_max_size) {
 386     // switch to next compaction space
 387     cp->space->set_compaction_top(compact_top);
 388     cp->space = cp->space->next_compaction_space();
 389     if (cp->space == NULL) {
 390       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
 391       assert(cp->gen != NULL, "compaction must succeed");
 392       cp->space = cp->gen->first_compaction_space();
 393       assert(cp->space != NULL, "generation must have a first compaction space");
 394     }
 395     compact_top = cp->space->bottom();
 396     cp->space->set_compaction_top(compact_top);
 397     cp->threshold = cp->space->initialize_threshold();
 398     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
 399   }
 400 
 401   // store the forwarding pointer into the mark word
 402   if ((HeapWord*)q != compact_top) {
 403     q->forward_to(oop(compact_top));
 404     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
 405   } else {
 406     // if the object isn't moving we can just set the mark to the default
 407     // mark and handle it specially later on.
 408     q->init_mark();
 409     assert(q->forwardee() == NULL, "should be forwarded to NULL");
 410   }
 411 
 412   compact_top += size;
 413 
 414   // we need to update the offset table so that the beginnings of objects can be
 415   // found during scavenge.  Note that we are updating the offset table based on
 416   // where the object will be once the compaction phase finishes.
 417   if (compact_top > cp->threshold)
 418     cp->threshold =
 419       cp->space->cross_threshold(compact_top - size, compact_top);
 420   return compact_top;
 421 }
 422 
 423 
 424 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
 425                                         HeapWord* q, size_t deadlength) {
 426   if (allowed_deadspace_words >= deadlength) {
 427     allowed_deadspace_words -= deadlength;
 428     CollectedHeap::fill_with_object(q, deadlength);
 429     oop(q)->set_mark(oop(q)->mark()->set_marked());
 430     assert((int) deadlength == oop(q)->size(), "bad filler object size");
 431     // Recall that we required "q == compaction_top".
 432     return true;
 433   } else {
 434     allowed_deadspace_words = 0;
 435     return false;
 436   }
 437 }
 438 
 439 #define block_is_always_obj(q) true
 440 #define obj_size(q) oop(q)->size()
 441 #define adjust_obj_size(s) s
 442 
 443 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
 444   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
 445 }
 446 
 447 // Faster object search.
 448 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
 449   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
 450 }
 451 
 452 void Space::adjust_pointers() {
 453   // adjust all the interior pointers to point at the new locations of objects
 454   // Used by MarkSweep::mark_sweep_phase3()
 455 
 456   // First check to see if there is any work to be done.
 457   if (used() == 0) {
 458     return;  // Nothing to do.
 459   }
 460 
 461   // Otherwise...
 462   HeapWord* q = bottom();
 463   HeapWord* t = end();
 464 
 465   debug_only(HeapWord* prev_q = NULL);
 466   while (q < t) {
 467     if (oop(q)->is_gc_marked()) {
 468       // q is alive
 469 
 470       // point all the oops to the new location
 471       size_t size = oop(q)->adjust_pointers();
 472 
 473       debug_only(prev_q = q);
 474 
 475       q += size;
 476     } else {
 477       // q is not a live object.  But we're not in a compactible space,
 478       // So we don't have live ranges.
 479       debug_only(prev_q = q);
 480       q += block_size(q);
 481       assert(q > prev_q, "we should be moving forward through memory");
 482     }
 483   }
 484   assert(q == t, "just checking");
 485 }
 486 
 487 void CompactibleSpace::adjust_pointers() {
 488   // Check first is there is any work to do.
 489   if (used() == 0) {
 490     return;   // Nothing to do.
 491   }
 492 
 493   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
 494 }
 495 
 496 void CompactibleSpace::compact() {
 497   SCAN_AND_COMPACT(obj_size);
 498 }
 499 
 500 void Space::print_short() const { print_short_on(tty); }
 501 
 502 void Space::print_short_on(outputStream* st) const {
 503   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
 504               (int) ((double) used() * 100 / capacity()));
 505 }
 506 
 507 void Space::print() const { print_on(tty); }
 508 
 509 void Space::print_on(outputStream* st) const {
 510   print_short_on(st);
 511   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 512                 bottom(), end());
 513 }
 514 
 515 void ContiguousSpace::print_on(outputStream* st) const {
 516   print_short_on(st);
 517   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 518                 bottom(), top(), end());
 519 }
 520 
 521 void OffsetTableContigSpace::print_on(outputStream* st) const {
 522   print_short_on(st);
 523   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 524                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 525               bottom(), top(), _offsets.threshold(), end());
 526 }
 527 
 528 void ContiguousSpace::verify() const {
 529   HeapWord* p = bottom();
 530   HeapWord* t = top();
 531   HeapWord* prev_p = NULL;
 532   while (p < t) {
 533     oop(p)->verify();
 534     prev_p = p;
 535     p += oop(p)->size();
 536   }
 537   guarantee(p == top(), "end of last object must match end of space");
 538   if (top() != end()) {
 539     guarantee(top() == block_start_const(end()-1) &&
 540               top() == block_start_const(top()),
 541               "top should be start of unallocated block, if it exists");
 542   }
 543 }
 544 
 545 void Space::oop_iterate(ExtendedOopClosure* blk) {
 546   ObjectToOopClosure blk2(blk);
 547   object_iterate(&blk2);
 548 }
 549 
 550 bool Space::obj_is_alive(const HeapWord* p) const {
 551   assert (block_is_obj(p), "The address should point to an object");
 552   return true;
 553 }
 554 
 555 #if INCLUDE_ALL_GCS
 556 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
 557                                                                             \
 558   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
 559     HeapWord* obj_addr = mr.start();                                        \
 560     HeapWord* t = mr.end();                                                 \
 561     while (obj_addr < t) {                                                  \
 562       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
 563       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
 564     }                                                                       \
 565   }
 566 
 567   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
 568 
 569 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
 570 #endif // INCLUDE_ALL_GCS
 571 
 572 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
 573   if (is_empty()) return;
 574   HeapWord* obj_addr = bottom();
 575   HeapWord* t = top();
 576   // Could call objects iterate, but this is easier.
 577   while (obj_addr < t) {
 578     obj_addr += oop(obj_addr)->oop_iterate(blk);
 579   }
 580 }
 581 
 582 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
 583   if (is_empty()) return;
 584   WaterMark bm = bottom_mark();
 585   object_iterate_from(bm, blk);
 586 }
 587 
 588 // For a ContiguousSpace object_iterate() and safe_object_iterate()
 589 // are the same.
 590 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
 591   object_iterate(blk);
 592 }
 593 
 594 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
 595   assert(mark.space() == this, "Mark does not match space");
 596   HeapWord* p = mark.point();
 597   while (p < top()) {
 598     blk->do_object(oop(p));
 599     p += oop(p)->size();
 600   }
 601 }
 602 
 603 HeapWord*
 604 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
 605   HeapWord * limit = concurrent_iteration_safe_limit();
 606   assert(limit <= top(), "sanity check");
 607   for (HeapWord* p = bottom(); p < limit;) {
 608     size_t size = blk->do_object_careful(oop(p));
 609     if (size == 0) {
 610       return p;  // failed at p
 611     } else {
 612       p += size;
 613     }
 614   }
 615   return NULL; // all done
 616 }
 617 
 618 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
 619                                                                           \
 620 void ContiguousSpace::                                                    \
 621 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
 622   HeapWord* t;                                                            \
 623   HeapWord* p = saved_mark_word();                                        \
 624   assert(p != NULL, "expected saved mark");                               \
 625                                                                           \
 626   const intx interval = PrefetchScanIntervalInBytes;                      \
 627   do {                                                                    \
 628     t = top();                                                            \
 629     while (p < t) {                                                       \
 630       Prefetch::write(p, interval);                                       \
 631       debug_only(HeapWord* prev = p);                                     \
 632       oop m = oop(p);                                                     \
 633       p += m->oop_iterate(blk);                                           \
 634     }                                                                     \
 635   } while (t < top());                                                    \
 636                                                                           \
 637   set_saved_mark_word(p);                                                 \
 638 }
 639 
 640 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
 641 
 642 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
 643 
 644 // Very general, slow implementation.
 645 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
 646   assert(MemRegion(bottom(), end()).contains(p),
 647          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 648                   p, bottom(), end()));
 649   if (p >= top()) {
 650     return top();
 651   } else {
 652     HeapWord* last = bottom();
 653     HeapWord* cur = last;
 654     while (cur <= p) {
 655       last = cur;
 656       cur += oop(cur)->size();
 657     }
 658     assert(oop(last)->is_oop(),
 659            err_msg(PTR_FORMAT " should be an object start", last));
 660     return last;
 661   }
 662 }
 663 
 664 size_t ContiguousSpace::block_size(const HeapWord* p) const {
 665   assert(MemRegion(bottom(), end()).contains(p),
 666          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 667                   p, bottom(), end()));
 668   HeapWord* current_top = top();
 669   assert(p <= current_top,
 670          err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
 671                   p, current_top));
 672   assert(p == current_top || oop(p)->is_oop(),
 673          err_msg("p (" PTR_FORMAT ") is not a block start - "
 674                  "current_top: " PTR_FORMAT ", is_oop: %s",
 675                  p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
 676   if (p < current_top) {
 677     return oop(p)->size();
 678   } else {
 679     assert(p == current_top, "just checking");
 680     return pointer_delta(end(), (HeapWord*) p);
 681   }
 682 }
 683 
 684 // This version requires locking.
 685 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
 686                                                 HeapWord* const end_value) {
 687   // In G1 there are places where a GC worker can allocates into a
 688   // region using this serial allocation code without being prone to a
 689   // race with other GC workers (we ensure that no other GC worker can
 690   // access the same region at the same time). So the assert below is
 691   // too strong in the case of G1.
 692   assert(Heap_lock->owned_by_self() ||
 693          (SafepointSynchronize::is_at_safepoint() &&
 694                                (Thread::current()->is_VM_thread() || UseG1GC)),
 695          "not locked");
 696   HeapWord* obj = top();
 697   if (pointer_delta(end_value, obj) >= size) {
 698     HeapWord* new_top = obj + size;
 699     set_top(new_top);
 700     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 701     return obj;
 702   } else {
 703     return NULL;
 704   }
 705 }
 706 
 707 // This version is lock-free.
 708 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
 709                                                     HeapWord* const end_value) {
 710   do {
 711     HeapWord* obj = top();
 712     if (pointer_delta(end_value, obj) >= size) {
 713       HeapWord* new_top = obj + size;
 714       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
 715       // result can be one of two:
 716       //  the old top value: the exchange succeeded
 717       //  otherwise: the new value of the top is returned.
 718       if (result == obj) {
 719         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 720         return obj;
 721       }
 722     } else {
 723       return NULL;
 724     }
 725   } while (true);
 726 }
 727 
 728 // Requires locking.
 729 HeapWord* ContiguousSpace::allocate(size_t size) {
 730   return allocate_impl(size, end());
 731 }
 732 
 733 // Lock-free.
 734 HeapWord* ContiguousSpace::par_allocate(size_t size) {
 735   return par_allocate_impl(size, end());
 736 }
 737 
 738 void ContiguousSpace::allocate_temporary_filler(int factor) {
 739   // allocate temporary type array decreasing free size with factor 'factor'
 740   assert(factor >= 0, "just checking");
 741   size_t size = pointer_delta(end(), top());
 742 
 743   // if space is full, return
 744   if (size == 0) return;
 745 
 746   if (factor > 0) {
 747     size -= size/factor;
 748   }
 749   size = align_object_size(size);
 750 
 751   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
 752   if (size >= (size_t)align_object_size(array_header_size)) {
 753     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
 754     // allocate uninitialized int array
 755     typeArrayOop t = (typeArrayOop) allocate(size);
 756     assert(t != NULL, "allocation should succeed");
 757     t->set_mark(markOopDesc::prototype());
 758     t->set_klass(Universe::intArrayKlassObj());
 759     t->set_length((int)length);
 760   } else {
 761     assert(size == CollectedHeap::min_fill_size(),
 762            "size for smallest fake object doesn't match");
 763     instanceOop obj = (instanceOop) allocate(size);
 764     obj->set_mark(markOopDesc::prototype());
 765     obj->set_klass_gap(0);
 766     obj->set_klass(SystemDictionary::Object_klass());
 767   }
 768 }
 769 
 770 void EdenSpace::clear(bool mangle_space) {
 771   ContiguousSpace::clear(mangle_space);
 772   set_soft_end(end());
 773 }
 774 
 775 // Requires locking.
 776 HeapWord* EdenSpace::allocate(size_t size) {
 777   return allocate_impl(size, soft_end());
 778 }
 779 
 780 // Lock-free.
 781 HeapWord* EdenSpace::par_allocate(size_t size) {
 782   return par_allocate_impl(size, soft_end());
 783 }
 784 
 785 HeapWord* ConcEdenSpace::par_allocate(size_t size)
 786 {
 787   do {
 788     // The invariant is top() should be read before end() because
 789     // top() can't be greater than end(), so if an update of _soft_end
 790     // occurs between 'end_val = end();' and 'top_val = top();' top()
 791     // also can grow up to the new end() and the condition
 792     // 'top_val > end_val' is true. To ensure the loading order
 793     // OrderAccess::loadload() is required after top() read.
 794     HeapWord* obj = top();
 795     OrderAccess::loadload();
 796     if (pointer_delta(*soft_end_addr(), obj) >= size) {
 797       HeapWord* new_top = obj + size;
 798       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
 799       // result can be one of two:
 800       //  the old top value: the exchange succeeded
 801       //  otherwise: the new value of the top is returned.
 802       if (result == obj) {
 803         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 804         return obj;
 805       }
 806     } else {
 807       return NULL;
 808     }
 809   } while (true);
 810 }
 811 
 812 
 813 HeapWord* OffsetTableContigSpace::initialize_threshold() {
 814   return _offsets.initialize_threshold();
 815 }
 816 
 817 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
 818   _offsets.alloc_block(start, end);
 819   return _offsets.threshold();
 820 }
 821 
 822 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 823                                                MemRegion mr) :
 824   _offsets(sharedOffsetArray, mr),
 825   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
 826 {
 827   _offsets.set_contig_space(this);
 828   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 829 }
 830 
 831 #define OBJ_SAMPLE_INTERVAL 0
 832 #define BLOCK_SAMPLE_INTERVAL 100
 833 
 834 void OffsetTableContigSpace::verify() const {
 835   HeapWord* p = bottom();
 836   HeapWord* prev_p = NULL;
 837   int objs = 0;
 838   int blocks = 0;
 839 
 840   if (VerifyObjectStartArray) {
 841     _offsets.verify();
 842   }
 843 
 844   while (p < top()) {
 845     size_t size = oop(p)->size();
 846     // For a sampling of objects in the space, find it using the
 847     // block offset table.
 848     if (blocks == BLOCK_SAMPLE_INTERVAL) {
 849       guarantee(p == block_start_const(p + (size/2)),
 850                 "check offset computation");
 851       blocks = 0;
 852     } else {
 853       blocks++;
 854     }
 855 
 856     if (objs == OBJ_SAMPLE_INTERVAL) {
 857       oop(p)->verify();
 858       objs = 0;
 859     } else {
 860       objs++;
 861     }
 862     prev_p = p;
 863     p += size;
 864   }
 865   guarantee(p == top(), "end of last object must match end of space");
 866 }
 867 
 868 
 869 size_t TenuredSpace::allowed_dead_ratio() const {
 870   return MarkSweepDeadRatio;
 871 }