1 /*
   2  * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/altHashing.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/filemap.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/dtrace.hpp"
  35 #include "utilities/hashtable.hpp"
  36 #include "utilities/hashtable.inline.hpp"
  37 #include "utilities/numberSeq.hpp"
  38 
  39 
  40 // This is a generic hashtable, designed to be used for the symbol
  41 // and string tables.
  42 //
  43 // It is implemented as an open hash table with a fixed number of buckets.
  44 //
  45 // %note:
  46 //  - HashtableEntrys are allocated in blocks to reduce the space overhead.
  47 
  48 template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry_free_list() {
  49   BasicHashtableEntry<F>* entry = NULL;
  50   if (_free_list) {
  51     entry = _free_list;
  52     _free_list = _free_list->next();
  53   }
  54   return entry;
  55 }
  56 
  57 template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry(unsigned int hashValue) {
  58   BasicHashtableEntry<F>* entry = new_entry_free_list();
  59 
  60   if (entry == NULL) {
  61     if (_first_free_entry + _entry_size >= _end_block) {
  62       int block_size = MIN2(512, MAX2((int)_table_size / 2, (int)_number_of_entries));
  63       int len = _entry_size * block_size;
  64       len = 1 << log2_intptr(len); // round down to power of 2
  65       assert(len >= _entry_size, "");
  66       _first_free_entry = NEW_C_HEAP_ARRAY2(char, len, F, CURRENT_PC);
  67       _end_block = _first_free_entry + len;
  68     }
  69     entry = (BasicHashtableEntry<F>*)_first_free_entry;
  70     _first_free_entry += _entry_size;
  71   }
  72 
  73   assert(_entry_size % HeapWordSize == 0, "");
  74   entry->set_hash(hashValue);
  75   return entry;
  76 }
  77 
  78 
  79 template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::new_entry(unsigned int hashValue, T obj) {
  80   HashtableEntry<T, F>* entry;
  81 
  82   entry = (HashtableEntry<T, F>*)BasicHashtable<F>::new_entry(hashValue);
  83   entry->set_literal(obj);
  84   return entry;
  85 }
  86 
  87 // Check to see if the hashtable is unbalanced.  The caller set a flag to
  88 // rehash at the next safepoint.  If this bucket is 60 times greater than the
  89 // expected average bucket length, it's an unbalanced hashtable.
  90 // This is somewhat an arbitrary heuristic but if one bucket gets to
  91 // rehash_count which is currently 100, there's probably something wrong.
  92 
  93 template <class T, MEMFLAGS F> bool RehashableHashtable<T, F>::check_rehash_table(int count) {
  94   assert(this->table_size() != 0, "underflow");
  95   if (count > (((double)this->number_of_entries()/(double)this->table_size())*rehash_multiple)) {
  96     // Set a flag for the next safepoint, which should be at some guaranteed
  97     // safepoint interval.
  98     return true;
  99   }
 100   return false;
 101 }
 102 
 103 template <class T, MEMFLAGS F> juint RehashableHashtable<T, F>::_seed = 0;
 104 
 105 // Create a new table and using alternate hash code, populate the new table
 106 // with the existing elements.   This can be used to change the hash code
 107 // and could in the future change the size of the table.
 108 
 109 template <class T, MEMFLAGS F> void RehashableHashtable<T, F>::move_to(RehashableHashtable<T, F>* new_table) {
 110 
 111   // Initialize the global seed for hashing.
 112   _seed = AltHashing::compute_seed();
 113   assert(seed() != 0, "shouldn't be zero");
 114 
 115   int saved_entry_count = this->number_of_entries();
 116 
 117   // Iterate through the table and create a new entry for the new table
 118   for (int i = 0; i < new_table->table_size(); ++i) {
 119     for (HashtableEntry<T, F>* p = this->bucket(i); p != NULL; ) {
 120       HashtableEntry<T, F>* next = p->next();
 121       T string = p->literal();
 122       // Use alternate hashing algorithm on the symbol in the first table
 123       unsigned int hashValue = string->new_hash(seed());
 124       // Get a new index relative to the new table (can also change size)
 125       int index = new_table->hash_to_index(hashValue);
 126       p->set_hash(hashValue);
 127       // Keep the shared bit in the Hashtable entry to indicate that this entry
 128       // can't be deleted.   The shared bit is the LSB in the _next field so
 129       // walking the hashtable past these entries requires
 130       // BasicHashtableEntry::make_ptr() call.
 131       bool keep_shared = p->is_shared();
 132       this->unlink_entry(p);
 133       new_table->add_entry(index, p);
 134       if (keep_shared) {
 135         p->set_shared();
 136       }
 137       p = next;
 138     }
 139   }
 140   // give the new table the free list as well
 141   new_table->copy_freelist(this);
 142   assert(new_table->number_of_entries() == saved_entry_count, "lost entry on dictionary copy?");
 143 
 144   // Destroy memory used by the buckets in the hashtable.  The memory
 145   // for the elements has been used in a new table and is not
 146   // destroyed.  The memory reuse will benefit resizing the SystemDictionary
 147   // to avoid a memory allocation spike at safepoint.
 148   BasicHashtable<F>::free_buckets();
 149 }
 150 
 151 template <MEMFLAGS F> void BasicHashtable<F>::free_buckets() {
 152   if (NULL != _buckets) {
 153     // Don't delete the buckets in the shared space.  They aren't
 154     // allocated by os::malloc
 155     if (!UseSharedSpaces ||
 156         !FileMapInfo::current_info()->is_in_shared_space(_buckets)) {
 157        FREE_C_HEAP_ARRAY(HashtableBucket, _buckets, F);
 158     }
 159     _buckets = NULL;
 160   }
 161 }
 162 
 163 
 164 // Reverse the order of elements in the hash buckets.
 165 
 166 template <MEMFLAGS F> void BasicHashtable<F>::reverse() {
 167 
 168   for (int i = 0; i < _table_size; ++i) {
 169     BasicHashtableEntry<F>* new_list = NULL;
 170     BasicHashtableEntry<F>* p = bucket(i);
 171     while (p != NULL) {
 172       BasicHashtableEntry<F>* next = p->next();
 173       p->set_next(new_list);
 174       new_list = p;
 175       p = next;
 176     }
 177     *bucket_addr(i) = new_list;
 178   }
 179 }
 180 
 181 
 182 // Copy the table to the shared space.
 183 
 184 template <MEMFLAGS F> void BasicHashtable<F>::copy_table(char** top, char* end) {
 185 
 186   // Dump the hash table entries.
 187 
 188   intptr_t *plen = (intptr_t*)(*top);
 189   *top += sizeof(*plen);
 190 
 191   int i;
 192   for (i = 0; i < _table_size; ++i) {
 193     for (BasicHashtableEntry<F>** p = _buckets[i].entry_addr();
 194                               *p != NULL;
 195                                p = (*p)->next_addr()) {
 196       if (*top + entry_size() > end) {
 197         report_out_of_shared_space(SharedMiscData);
 198       }
 199       *p = (BasicHashtableEntry<F>*)memcpy(*top, *p, entry_size());
 200       *top += entry_size();
 201     }
 202   }
 203   *plen = (char*)(*top) - (char*)plen - sizeof(*plen);
 204 
 205   // Set the shared bit.
 206 
 207   for (i = 0; i < _table_size; ++i) {
 208     for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
 209       p->set_shared();
 210     }
 211   }
 212 }
 213 
 214 
 215 
 216 // Reverse the order of elements in the hash buckets.
 217 
 218 template <class T, MEMFLAGS F> void Hashtable<T, F>::reverse(void* boundary) {
 219 
 220   for (int i = 0; i < this->table_size(); ++i) {
 221     HashtableEntry<T, F>* high_list = NULL;
 222     HashtableEntry<T, F>* low_list = NULL;
 223     HashtableEntry<T, F>* last_low_entry = NULL;
 224     HashtableEntry<T, F>* p = bucket(i);
 225     while (p != NULL) {
 226       HashtableEntry<T, F>* next = p->next();
 227       if ((void*)p->literal() >= boundary) {
 228         p->set_next(high_list);
 229         high_list = p;
 230       } else {
 231         p->set_next(low_list);
 232         low_list = p;
 233         if (last_low_entry == NULL) {
 234           last_low_entry = p;
 235         }
 236       }
 237       p = next;
 238     }
 239     if (low_list != NULL) {
 240       *bucket_addr(i) = low_list;
 241       last_low_entry->set_next(high_list);
 242     } else {
 243       *bucket_addr(i) = high_list;
 244     }
 245   }
 246 }
 247 
 248 template <class T, MEMFLAGS F> int RehashableHashtable<T, F>::literal_size(Symbol *symbol) {
 249   return symbol->size() * HeapWordSize;
 250 }
 251 
 252 template <class T, MEMFLAGS F> int RehashableHashtable<T, F>::literal_size(oop oop) {
 253   // NOTE: this would over-count if (pre-JDK8) java_lang_Class::has_offset_field() is true,
 254   // and the String.value array is shared by several Strings. However, starting from JDK8,
 255   // the String.value array is not shared anymore.
 256   assert(oop != NULL && oop->klass() == SystemDictionary::String_klass(), "only strings are supported");
 257   return (oop->size() + java_lang_String::value(oop)->size()) * HeapWordSize;
 258 }
 259 
 260 // Dump footprint and bucket length statistics
 261 //
 262 // Note: if you create a new subclass of Hashtable<MyNewType, F>, you will need to
 263 // add a new function Hashtable<T, F>::literal_size(MyNewType lit)
 264 
 265 template <class T, MEMFLAGS F> void RehashableHashtable<T, F>::dump_table(outputStream* st, const char *table_name) {
 266   NumberSeq summary;
 267   int literal_bytes = 0;
 268   for (int i = 0; i < this->table_size(); ++i) {
 269     int count = 0;
 270     for (HashtableEntry<T, F>* e = this->bucket(i);
 271        e != NULL; e = e->next()) {
 272       count++;
 273       literal_bytes += literal_size(e->literal());
 274     }
 275     summary.add((double)count);
 276   }
 277   double num_buckets = summary.num();
 278   double num_entries = summary.sum();
 279 
 280   int bucket_bytes = (int)num_buckets * sizeof(HashtableBucket<F>);
 281   int entry_bytes  = (int)num_entries * sizeof(HashtableEntry<T, F>);
 282   int total_bytes = literal_bytes +  bucket_bytes + entry_bytes;
 283 
 284   double bucket_avg  = (num_buckets <= 0) ? 0 : (bucket_bytes  / num_buckets);
 285   double entry_avg   = (num_entries <= 0) ? 0 : (entry_bytes   / num_entries);
 286   double literal_avg = (num_entries <= 0) ? 0 : (literal_bytes / num_entries);
 287 
 288   st->print_cr("%s statistics:", table_name);
 289   st->print_cr("Number of buckets       : %9d = %9d bytes, avg %7.3f", (int)num_buckets, bucket_bytes,  bucket_avg);
 290   st->print_cr("Number of entries       : %9d = %9d bytes, avg %7.3f", (int)num_entries, entry_bytes,   entry_avg);
 291   st->print_cr("Number of literals      : %9d = %9d bytes, avg %7.3f", (int)num_entries, literal_bytes, literal_avg);
 292   st->print_cr("Total footprint         : %9s = %9d bytes", "", total_bytes);
 293   st->print_cr("Average bucket size     : %9.3f", summary.avg());
 294   st->print_cr("Variance of bucket size : %9.3f", summary.variance());
 295   st->print_cr("Std. dev. of bucket size: %9.3f", summary.sd());
 296   st->print_cr("Maximum bucket size     : %9d", (int)summary.maximum());
 297 }
 298 
 299 
 300 // Dump the hash table buckets.
 301 
 302 template <MEMFLAGS F> void BasicHashtable<F>::copy_buckets(char** top, char* end) {
 303   intptr_t len = _table_size * sizeof(HashtableBucket<F>);
 304   *(intptr_t*)(*top) = len;
 305   *top += sizeof(intptr_t);
 306 
 307   *(intptr_t*)(*top) = _number_of_entries;
 308   *top += sizeof(intptr_t);
 309 
 310   if (*top + len > end) {
 311     report_out_of_shared_space(SharedMiscData);
 312   }
 313   _buckets = (HashtableBucket<F>*)memcpy(*top, _buckets, len);
 314   *top += len;
 315 }
 316 
 317 
 318 #ifndef PRODUCT
 319 
 320 template <class T, MEMFLAGS F> void Hashtable<T, F>::print() {
 321   ResourceMark rm;
 322 
 323   for (int i = 0; i < BasicHashtable<F>::table_size(); i++) {
 324     HashtableEntry<T, F>* entry = bucket(i);
 325     while(entry != NULL) {
 326       tty->print("%d : ", i);
 327       entry->literal()->print();
 328       tty->cr();
 329       entry = entry->next();
 330     }
 331   }
 332 }
 333 
 334 
 335 template <MEMFLAGS F> void BasicHashtable<F>::verify() {
 336   int count = 0;
 337   for (int i = 0; i < table_size(); i++) {
 338     for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
 339       ++count;
 340     }
 341   }
 342   assert(count == number_of_entries(), "number of hashtable entries incorrect");
 343 }
 344 
 345 
 346 #endif // PRODUCT
 347 
 348 #ifdef ASSERT
 349 
 350 template <MEMFLAGS F> void BasicHashtable<F>::verify_lookup_length(double load) {
 351   if ((double)_lookup_length / (double)_lookup_count > load * 2.0) {
 352     warning("Performance bug: SystemDictionary lookup_count=%d "
 353             "lookup_length=%d average=%lf load=%f",
 354             _lookup_count, _lookup_length,
 355             (double) _lookup_length / _lookup_count, load);
 356   }
 357 }
 358 
 359 #endif
 360 
 361 
 362 // Explicitly instantiate these types
 363 template class Hashtable<ConstantPool*, mtClass>;
 364 template class RehashableHashtable<Symbol*, mtSymbol>;
 365 template class RehashableHashtable<oopDesc*, mtSymbol>;
 366 template class Hashtable<Symbol*, mtSymbol>;
 367 template class Hashtable<Klass*, mtClass>;
 368 template class Hashtable<oop, mtClass>;
 369 #if defined(CHECK_UNHANDLED_OOPS)
 370 template class Hashtable<oop, mtSymbol>;
 371 template class RehashableHashtable<oop, mtSymbol>;
 372 #endif // SOLARIS || CHECK_UNHANDLED_OOPS
 373 template class Hashtable<oopDesc*, mtSymbol>;
 374 template class Hashtable<Symbol*, mtClass>;
 375 template class HashtableEntry<Symbol*, mtSymbol>;
 376 template class HashtableEntry<Symbol*, mtClass>;
 377 template class HashtableEntry<oop, mtSymbol>;
 378 template class BasicHashtableEntry<mtSymbol>;
 379 template class BasicHashtableEntry<mtCode>;
 380 template class BasicHashtable<mtClass>;
 381 template class BasicHashtable<mtSymbol>;
 382 template class BasicHashtable<mtCode>;
 383 template class BasicHashtable<mtInternal>;