1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
  27 
  28 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
  29 #include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
  30 #include "memory/binaryTreeDictionary.hpp"
  31 #include "memory/blockOffsetTable.inline.hpp"
  32 #include "memory/freeList.hpp"
  33 #include "memory/space.hpp"
  34 
  35 // Classes in support of keeping track of promotions into a non-Contiguous
  36 // space, in this case a CompactibleFreeListSpace.
  37 
  38 // Forward declarations
  39 class CompactibleFreeListSpace;
  40 class BlkClosure;
  41 class BlkClosureCareful;
  42 class FreeChunk;
  43 class UpwardsObjectClosure;
  44 class ObjectClosureCareful;
  45 class Klass;
  46 
  47 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
  48  public:
  49   LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
  50     _allocation_size_limit(0) {}
  51   void set(HeapWord* ptr, size_t word_size, size_t refill_size,
  52     size_t allocation_size_limit) {
  53     _ptr = ptr;
  54     _word_size = word_size;
  55     _refillSize = refill_size;
  56     _allocation_size_limit = allocation_size_limit;
  57   }
  58   HeapWord* _ptr;
  59   size_t    _word_size;
  60   size_t    _refillSize;
  61   size_t    _allocation_size_limit;  // Largest size that will be allocated
  62 
  63   void print_on(outputStream* st) const;
  64 };
  65 
  66 // Concrete subclass of CompactibleSpace that implements
  67 // a free list space, such as used in the concurrent mark sweep
  68 // generation.
  69 
  70 class CompactibleFreeListSpace: public CompactibleSpace {
  71   friend class VMStructs;
  72   friend class ConcurrentMarkSweepGeneration;
  73   friend class CMSCollector;
  74   // Local alloc buffer for promotion into this space.
  75   friend class CFLS_LAB;
  76   // Allow scan_and_* functions to call (private) overrides of the auxiliary functions on this class
  77   template <typename SpaceType>
  78   friend void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space);
  79   template <typename SpaceType>
  80   friend void CompactibleSpace::scan_and_compact(SpaceType* space);
  81   template <typename SpaceType>
  82   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
  83 
  84   // "Size" of chunks of work (executed during parallel remark phases
  85   // of CMS collection); this probably belongs in CMSCollector, although
  86   // it's cached here because it's used in
  87   // initialize_sequential_subtasks_for_rescan() which modifies
  88   // par_seq_tasks which also lives in Space. XXX
  89   const size_t _rescan_task_size;
  90   const size_t _marking_task_size;
  91 
  92   // Yet another sequential tasks done structure. This supports
  93   // CMS GC, where we have threads dynamically
  94   // claiming sub-tasks from a larger parallel task.
  95   SequentialSubTasksDone _conc_par_seq_tasks;
  96 
  97   BlockOffsetArrayNonContigSpace _bt;
  98 
  99   CMSCollector* _collector;
 100   ConcurrentMarkSweepGeneration* _gen;
 101 
 102   // Data structures for free blocks (used during allocation/sweeping)
 103 
 104   // Allocation is done linearly from two different blocks depending on
 105   // whether the request is small or large, in an effort to reduce
 106   // fragmentation. We assume that any locking for allocation is done
 107   // by the containing generation. Thus, none of the methods in this
 108   // space are re-entrant.
 109   enum SomeConstants {
 110     SmallForLinearAlloc = 16,        // size < this then use _sLAB
 111     SmallForDictionary  = 257,       // size < this then use _indexedFreeList
 112     IndexSetSize        = SmallForDictionary  // keep this odd-sized
 113   };
 114   static size_t IndexSetStart;
 115   static size_t IndexSetStride;
 116 
 117  private:
 118   enum FitStrategyOptions {
 119     FreeBlockStrategyNone = 0,
 120     FreeBlockBestFitFirst
 121   };
 122 
 123   PromotionInfo _promoInfo;
 124 
 125   // Helps to impose a global total order on freelistLock ranks;
 126   // assumes that CFLSpace's are allocated in global total order
 127   static int   _lockRank;
 128 
 129   // A lock protecting the free lists and free blocks;
 130   // mutable because of ubiquity of locking even for otherwise const methods
 131   mutable Mutex _freelistLock;
 132   // Locking verifier convenience function
 133   void assert_locked() const PRODUCT_RETURN;
 134   void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
 135 
 136   // Linear allocation blocks
 137   LinearAllocBlock _smallLinearAllocBlock;
 138 
 139   FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
 140   AFLBinaryTreeDictionary* _dictionary;    // Pointer to dictionary for large size blocks
 141 
 142   // Indexed array for small size blocks
 143   AdaptiveFreeList<FreeChunk> _indexedFreeList[IndexSetSize];
 144 
 145   // Allocation strategy
 146   bool       _fitStrategy;        // Use best fit strategy
 147   bool       _adaptive_freelists; // Use adaptive freelists
 148 
 149   // This is an address close to the largest free chunk in the heap.
 150   // It is currently assumed to be at the end of the heap.  Free
 151   // chunks with addresses greater than nearLargestChunk are coalesced
 152   // in an effort to maintain a large chunk at the end of the heap.
 153   HeapWord*  _nearLargestChunk;
 154 
 155   // Used to keep track of limit of sweep for the space
 156   HeapWord* _sweep_limit;
 157 
 158   // Used to make the young collector update the mod union table
 159   MemRegionClosure* _preconsumptionDirtyCardClosure;
 160 
 161   // Support for compacting cms
 162   HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 163   HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
 164 
 165   // Initialization helpers.
 166   void initializeIndexedFreeListArray();
 167 
 168   // Extra stuff to manage promotion parallelism.
 169 
 170   // A lock protecting the dictionary during par promotion allocation.
 171   mutable Mutex _parDictionaryAllocLock;
 172   Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
 173 
 174   // Locks protecting the exact lists during par promotion allocation.
 175   Mutex* _indexedFreeListParLocks[IndexSetSize];
 176 
 177   // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
 178   // required to be smaller than "IndexSetSize".)  If successful,
 179   // adds them to "fl", which is required to be an empty free list.
 180   // If the count of "fl" is negative, it's absolute value indicates a
 181   // number of free chunks that had been previously "borrowed" from global
 182   // list of size "word_sz", and must now be decremented.
 183   void par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
 184 
 185   // Used by par_get_chunk_of_blocks() for the chunks from the
 186   // indexed_free_lists.
 187   bool par_get_chunk_of_blocks_IFL(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
 188 
 189   // Used by par_get_chunk_of_blocks_dictionary() to get a chunk
 190   // evenly splittable into "n" "word_sz" chunks.  Returns that
 191   // evenly splittable chunk.  May split a larger chunk to get the
 192   // evenly splittable chunk.
 193   FreeChunk* get_n_way_chunk_to_split(size_t word_sz, size_t n);
 194 
 195   // Used by par_get_chunk_of_blocks() for the chunks from the
 196   // dictionary.
 197   void par_get_chunk_of_blocks_dictionary(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
 198 
 199   // Allocation helper functions
 200   // Allocate using a strategy that takes from the indexed free lists
 201   // first.  This allocation strategy assumes a companion sweeping
 202   // strategy that attempts to keep the needed number of chunks in each
 203   // indexed free lists.
 204   HeapWord* allocate_adaptive_freelists(size_t size);
 205   // Allocate from the linear allocation buffers first.  This allocation
 206   // strategy assumes maximal coalescing can maintain chunks large enough
 207   // to be used as linear allocation buffers.
 208   HeapWord* allocate_non_adaptive_freelists(size_t size);
 209 
 210   // Gets a chunk from the linear allocation block (LinAB).  If there
 211   // is not enough space in the LinAB, refills it.
 212   HeapWord*  getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
 213   HeapWord*  getChunkFromSmallLinearAllocBlock(size_t size);
 214   // Get a chunk from the space remaining in the linear allocation block.  Do
 215   // not attempt to refill if the space is not available, return NULL.  Do the
 216   // repairs on the linear allocation block as appropriate.
 217   HeapWord*  getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
 218   inline HeapWord*  getChunkFromSmallLinearAllocBlockRemainder(size_t size);
 219 
 220   // Helper function for getChunkFromIndexedFreeList.
 221   // Replenish the indexed free list for this "size".  Do not take from an
 222   // underpopulated size.
 223   FreeChunk*  getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
 224 
 225   // Get a chunk from the indexed free list.  If the indexed free list
 226   // does not have a free chunk, try to replenish the indexed free list
 227   // then get the free chunk from the replenished indexed free list.
 228   inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
 229 
 230   // The returned chunk may be larger than requested (or null).
 231   FreeChunk* getChunkFromDictionary(size_t size);
 232   // The returned chunk is the exact size requested (or null).
 233   FreeChunk* getChunkFromDictionaryExact(size_t size);
 234 
 235   // Find a chunk in the indexed free list that is the best
 236   // fit for size "numWords".
 237   FreeChunk* bestFitSmall(size_t numWords);
 238   // For free list "fl" of chunks of size > numWords,
 239   // remove a chunk, split off a chunk of size numWords
 240   // and return it.  The split off remainder is returned to
 241   // the free lists.  The old name for getFromListGreater
 242   // was lookInListGreater.
 243   FreeChunk* getFromListGreater(AdaptiveFreeList<FreeChunk>* fl, size_t numWords);
 244   // Get a chunk in the indexed free list or dictionary,
 245   // by considering a larger chunk and splitting it.
 246   FreeChunk* getChunkFromGreater(size_t numWords);
 247   //  Verify that the given chunk is in the indexed free lists.
 248   bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
 249   // Remove the specified chunk from the indexed free lists.
 250   void       removeChunkFromIndexedFreeList(FreeChunk* fc);
 251   // Remove the specified chunk from the dictionary.
 252   void       removeChunkFromDictionary(FreeChunk* fc);
 253   // Split a free chunk into a smaller free chunk of size "new_size".
 254   // Return the smaller free chunk and return the remainder to the
 255   // free lists.
 256   FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
 257   // Add a chunk to the free lists.
 258   void       addChunkToFreeLists(HeapWord* chunk, size_t size);
 259   // Add a chunk to the free lists, preferring to suffix it
 260   // to the last free chunk at end of space if possible, and
 261   // updating the block census stats as well as block offset table.
 262   // Take any locks as appropriate if we are multithreaded.
 263   void       addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
 264   // Add a free chunk to the indexed free lists.
 265   void       returnChunkToFreeList(FreeChunk* chunk);
 266   // Add a free chunk to the dictionary.
 267   void       returnChunkToDictionary(FreeChunk* chunk);
 268 
 269   // Functions for maintaining the linear allocation buffers (LinAB).
 270   // Repairing a linear allocation block refers to operations
 271   // performed on the remainder of a LinAB after an allocation
 272   // has been made from it.
 273   void       repairLinearAllocationBlocks();
 274   void       repairLinearAllocBlock(LinearAllocBlock* blk);
 275   void       refillLinearAllocBlock(LinearAllocBlock* blk);
 276   void       refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
 277   void       refillLinearAllocBlocksIfNeeded();
 278 
 279   void       verify_objects_initialized() const;
 280 
 281   // Statistics reporting helper functions
 282   void       reportFreeListStatistics() const;
 283   void       reportIndexedFreeListStatistics() const;
 284   size_t     maxChunkSizeInIndexedFreeLists() const;
 285   size_t     numFreeBlocksInIndexedFreeLists() const;
 286   // Accessor
 287   HeapWord* unallocated_block() const {
 288     if (BlockOffsetArrayUseUnallocatedBlock) {
 289       HeapWord* ub = _bt.unallocated_block();
 290       assert(ub >= bottom() &&
 291              ub <= end(), "space invariant");
 292       return ub;
 293     } else {
 294       return end();
 295     }
 296   }
 297   void freed(HeapWord* start, size_t size) {
 298     _bt.freed(start, size);
 299   }
 300 
 301   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
 302   // See comments for CompactibleSpace for more information.
 303   inline HeapWord* scan_limit() const {
 304     return end();
 305   }
 306 
 307   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 308     return CompactibleFreeListSpace::block_is_obj(addr); // Avoid virtual call
 309   }
 310 
 311   inline size_t scanned_block_size(const HeapWord* addr) const {
 312     return CompactibleFreeListSpace::block_size(addr); // Avoid virtual call
 313   }
 314 
 315   inline size_t adjust_obj_size(size_t size) const {
 316     return adjustObjectSize(size);
 317   }
 318 
 319   inline size_t obj_size(const HeapWord* addr) const {
 320     return adjustObjectSize(oop(addr)->size());
 321   }
 322 
 323  protected:
 324   // Reset the indexed free list to its initial empty condition.
 325   void resetIndexedFreeListArray();
 326   // Reset to an initial state with a single free block described
 327   // by the MemRegion parameter.
 328   void reset(MemRegion mr);
 329   // Return the total number of words in the indexed free lists.
 330   size_t     totalSizeInIndexedFreeLists() const;
 331 
 332  public:
 333   // Constructor
 334   CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
 335                            bool use_adaptive_freelists,
 336                            FreeBlockDictionary<FreeChunk>::DictionaryChoice);
 337   // Accessors
 338   bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
 339   FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
 340   HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
 341   void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
 342 
 343   // Set CMS global values.
 344   static void set_cms_values();
 345 
 346   // Return the free chunk at the end of the space.  If no such
 347   // chunk exists, return NULL.
 348   FreeChunk* find_chunk_at_end();
 349 
 350   bool adaptive_freelists() const { return _adaptive_freelists; }
 351 
 352   void set_collector(CMSCollector* collector) { _collector = collector; }
 353 
 354   // Support for parallelization of rescan and marking.
 355   const size_t rescan_task_size()  const { return _rescan_task_size;  }
 356   const size_t marking_task_size() const { return _marking_task_size; }
 357   SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
 358   void initialize_sequential_subtasks_for_rescan(int n_threads);
 359   void initialize_sequential_subtasks_for_marking(int n_threads,
 360          HeapWord* low = NULL);
 361 
 362   virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
 363     return _preconsumptionDirtyCardClosure;
 364   }
 365 
 366   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
 367     _preconsumptionDirtyCardClosure = cl;
 368   }
 369 
 370   // Space enquiries
 371   size_t used() const;
 372   size_t free() const;
 373   size_t max_alloc_in_words() const;
 374   // XXX: should have a less conservative used_region() than that of
 375   // Space; we could consider keeping track of highest allocated
 376   // address and correcting that at each sweep, as the sweeper
 377   // goes through the entire allocated part of the generation. We
 378   // could also use that information to keep the sweeper from
 379   // sweeping more than is necessary. The allocator and sweeper will
 380   // of course need to synchronize on this, since the sweeper will
 381   // try to bump down the address and the allocator will try to bump it up.
 382   // For now, however, we'll just use the default used_region()
 383   // which overestimates the region by returning the entire
 384   // committed region (this is safe, but inefficient).
 385 
 386   // Returns a subregion of the space containing all the objects in
 387   // the space.
 388   MemRegion used_region() const {
 389     return MemRegion(bottom(),
 390                      BlockOffsetArrayUseUnallocatedBlock ?
 391                      unallocated_block() : end());
 392   }
 393 
 394   virtual bool is_free_block(const HeapWord* p) const;
 395 
 396   // Resizing support
 397   void set_end(HeapWord* value);  // override
 398 
 399   // Mutual exclusion support
 400   Mutex* freelistLock() const { return &_freelistLock; }
 401 
 402   // Iteration support
 403   void oop_iterate(ExtendedOopClosure* cl);
 404 
 405   void object_iterate(ObjectClosure* blk);
 406   // Apply the closure to each object in the space whose references
 407   // point to objects in the heap.  The usage of CompactibleFreeListSpace
 408   // by the ConcurrentMarkSweepGeneration for concurrent GC's allows
 409   // objects in the space with references to objects that are no longer
 410   // valid.  For example, an object may reference another object
 411   // that has already been sweep up (collected).  This method uses
 412   // obj_is_alive() to determine whether it is safe to iterate of
 413   // an object.
 414   void safe_object_iterate(ObjectClosure* blk);
 415 
 416   // Iterate over all objects that intersect with mr, calling "cl->do_object"
 417   // on each.  There is an exception to this: if this closure has already
 418   // been invoked on an object, it may skip such objects in some cases.  This is
 419   // Most likely to happen in an "upwards" (ascending address) iteration of
 420   // MemRegions.
 421   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
 422 
 423   // Requires that "mr" be entirely within the space.
 424   // Apply "cl->do_object" to all objects that intersect with "mr".
 425   // If the iteration encounters an unparseable portion of the region,
 426   // terminate the iteration and return the address of the start of the
 427   // subregion that isn't done.  Return of "NULL" indicates that the
 428   // iteration completed.
 429   HeapWord* object_iterate_careful_m(MemRegion mr,
 430                                      ObjectClosureCareful* cl);
 431 
 432   // Override: provides a DCTO_CL specific to this kind of space.
 433   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 434                                      CardTableModRefBS::PrecisionStyle precision,
 435                                      HeapWord* boundary);
 436 
 437   void blk_iterate(BlkClosure* cl);
 438   void blk_iterate_careful(BlkClosureCareful* cl);
 439   HeapWord* block_start_const(const void* p) const;
 440   HeapWord* block_start_careful(const void* p) const;
 441   size_t block_size(const HeapWord* p) const;
 442   size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
 443   bool block_is_obj(const HeapWord* p) const;
 444   bool obj_is_alive(const HeapWord* p) const;
 445   size_t block_size_nopar(const HeapWord* p) const;
 446   bool block_is_obj_nopar(const HeapWord* p) const;
 447 
 448   // Iteration support for promotion
 449   void save_marks();
 450   bool no_allocs_since_save_marks();
 451 
 452   // Iteration support for sweeping
 453   void save_sweep_limit() {
 454     _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
 455                    unallocated_block() : end();
 456     if (CMSTraceSweeper) {
 457       gclog_or_tty->print_cr(">>>>> Saving sweep limit " PTR_FORMAT
 458                              "  for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
 459                              p2i(_sweep_limit), p2i(bottom()), p2i(end()));
 460     }
 461   }
 462   NOT_PRODUCT(
 463     void clear_sweep_limit() { _sweep_limit = NULL; }
 464   )
 465   HeapWord* sweep_limit() { return _sweep_limit; }
 466 
 467   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 468   // promoted into this generation since the most recent save_marks() call.
 469   // Fields in objects allocated by applications of the closure
 470   // *are* included in the iteration. Thus, when the iteration completes
 471   // there should be no further such objects remaining.
 472   #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 473     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 474   ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
 475   #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
 476 
 477   // Allocation support
 478   HeapWord* allocate(size_t size);
 479   HeapWord* par_allocate(size_t size);
 480 
 481   oop       promote(oop obj, size_t obj_size);
 482   void      gc_prologue();
 483   void      gc_epilogue();
 484 
 485   // This call is used by a containing CMS generation / collector
 486   // to inform the CFLS space that a sweep has been completed
 487   // and that the space can do any related house-keeping functions.
 488   void      sweep_completed();
 489 
 490   // For an object in this space, the mark-word's two
 491   // LSB's having the value [11] indicates that it has been
 492   // promoted since the most recent call to save_marks() on
 493   // this generation and has not subsequently been iterated
 494   // over (using oop_since_save_marks_iterate() above).
 495   // This property holds only for single-threaded collections,
 496   // and is typically used for Cheney scans; for MT scavenges,
 497   // the property holds for all objects promoted during that
 498   // scavenge for the duration of the scavenge and is used
 499   // by card-scanning to avoid scanning objects (being) promoted
 500   // during that scavenge.
 501   bool obj_allocated_since_save_marks(const oop obj) const {
 502     assert(is_in_reserved(obj), "Wrong space?");
 503     return ((PromotedObject*)obj)->hasPromotedMark();
 504   }
 505 
 506   // A worst-case estimate of the space required (in HeapWords) to expand the
 507   // heap when promoting an obj of size obj_size.
 508   size_t expansionSpaceRequired(size_t obj_size) const;
 509 
 510   FreeChunk* allocateScratch(size_t size);
 511 
 512   // Returns true if either the small or large linear allocation buffer is empty.
 513   bool       linearAllocationWouldFail() const;
 514 
 515   // Adjust the chunk for the minimum size.  This version is called in
 516   // most cases in CompactibleFreeListSpace methods.
 517   inline static size_t adjustObjectSize(size_t size) {
 518     return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
 519   }
 520   // This is a virtual version of adjustObjectSize() that is called
 521   // only occasionally when the compaction space changes and the type
 522   // of the new compaction space is is only known to be CompactibleSpace.
 523   size_t adjust_object_size_v(size_t size) const {
 524     return adjustObjectSize(size);
 525   }
 526   // Minimum size of a free block.
 527   virtual size_t minimum_free_block_size() const { return MinChunkSize; }
 528   void      removeFreeChunkFromFreeLists(FreeChunk* chunk);
 529   void      addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
 530               bool coalesced);
 531 
 532   // Support for decisions regarding concurrent collection policy.
 533   bool should_concurrent_collect() const;
 534 
 535   // Support for compaction.
 536   void prepare_for_compaction(CompactPoint* cp);
 537   void adjust_pointers();
 538   void compact();
 539   // Reset the space to reflect the fact that a compaction of the
 540   // space has been done.
 541   virtual void reset_after_compaction();
 542 
 543   // Debugging support.
 544   void print()                            const;
 545   void print_on(outputStream* st)         const;
 546   void prepare_for_verify();
 547   void verify()                           const;
 548   void verifyFreeLists()                  const PRODUCT_RETURN;
 549   void verifyIndexedFreeLists()           const;
 550   void verifyIndexedFreeList(size_t size) const;
 551   // Verify that the given chunk is in the free lists:
 552   // i.e. either the binary tree dictionary, the indexed free lists
 553   // or the linear allocation block.
 554   bool verify_chunk_in_free_list(FreeChunk* fc) const;
 555   // Verify that the given chunk is the linear allocation block.
 556   bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
 557   // Do some basic checks on the the free lists.
 558   void check_free_list_consistency()      const PRODUCT_RETURN;
 559 
 560   // Printing support
 561   void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
 562   void print_indexed_free_lists(outputStream* st) const;
 563   void print_dictionary_free_lists(outputStream* st) const;
 564   void print_promo_info_blocks(outputStream* st) const;
 565 
 566   NOT_PRODUCT (
 567     void initializeIndexedFreeListArrayReturnedBytes();
 568     size_t sumIndexedFreeListArrayReturnedBytes();
 569     // Return the total number of chunks in the indexed free lists.
 570     size_t totalCountInIndexedFreeLists() const;
 571     // Return the total number of chunks in the space.
 572     size_t totalCount();
 573   )
 574 
 575   // The census consists of counts of the quantities such as
 576   // the current count of the free chunks, number of chunks
 577   // created as a result of the split of a larger chunk or
 578   // coalescing of smaller chucks, etc.  The counts in the
 579   // census is used to make decisions on splitting and
 580   // coalescing of chunks during the sweep of garbage.
 581 
 582   // Print the statistics for the free lists.
 583   void printFLCensus(size_t sweep_count) const;
 584 
 585   // Statistics functions
 586   // Initialize census for lists before the sweep.
 587   void beginSweepFLCensus(float inter_sweep_current,
 588                           float inter_sweep_estimate,
 589                           float intra_sweep_estimate);
 590   // Set the surplus for each of the free lists.
 591   void setFLSurplus();
 592   // Set the hint for each of the free lists.
 593   void setFLHints();
 594   // Clear the census for each of the free lists.
 595   void clearFLCensus();
 596   // Perform functions for the census after the end of the sweep.
 597   void endSweepFLCensus(size_t sweep_count);
 598   // Return true if the count of free chunks is greater
 599   // than the desired number of free chunks.
 600   bool coalOverPopulated(size_t size);
 601 
 602 // Record (for each size):
 603 //
 604 //   split-births = #chunks added due to splits in (prev-sweep-end,
 605 //      this-sweep-start)
 606 //   split-deaths = #chunks removed for splits in (prev-sweep-end,
 607 //      this-sweep-start)
 608 //   num-curr     = #chunks at start of this sweep
 609 //   num-prev     = #chunks at end of previous sweep
 610 //
 611 // The above are quantities that are measured. Now define:
 612 //
 613 //   num-desired := num-prev + split-births - split-deaths - num-curr
 614 //
 615 // Roughly, num-prev + split-births is the supply,
 616 // split-deaths is demand due to other sizes
 617 // and num-curr is what we have left.
 618 //
 619 // Thus, num-desired is roughly speaking the "legitimate demand"
 620 // for blocks of this size and what we are striving to reach at the
 621 // end of the current sweep.
 622 //
 623 // For a given list, let num-len be its current population.
 624 // Define, for a free list of a given size:
 625 //
 626 //   coal-overpopulated := num-len >= num-desired * coal-surplus
 627 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
 628 // coalescing -- we do not coalesce unless we think that the current
 629 // supply has exceeded the estimated demand by more than 5%).
 630 //
 631 // For the set of sizes in the binary tree, which is neither dense nor
 632 // closed, it may be the case that for a particular size we have never
 633 // had, or do not now have, or did not have at the previous sweep,
 634 // chunks of that size. We need to extend the definition of
 635 // coal-overpopulated to such sizes as well:
 636 //
 637 //   For a chunk in/not in the binary tree, extend coal-overpopulated
 638 //   defined above to include all sizes as follows:
 639 //
 640 //   . a size that is non-existent is coal-overpopulated
 641 //   . a size that has a num-desired <= 0 as defined above is
 642 //     coal-overpopulated.
 643 //
 644 // Also define, for a chunk heap-offset C and mountain heap-offset M:
 645 //
 646 //   close-to-mountain := C >= 0.99 * M
 647 //
 648 // Now, the coalescing strategy is:
 649 //
 650 //    Coalesce left-hand chunk with right-hand chunk if and
 651 //    only if:
 652 //
 653 //      EITHER
 654 //        . left-hand chunk is of a size that is coal-overpopulated
 655 //      OR
 656 //        . right-hand chunk is close-to-mountain
 657   void smallCoalBirth(size_t size);
 658   void smallCoalDeath(size_t size);
 659   void coalBirth(size_t size);
 660   void coalDeath(size_t size);
 661   void smallSplitBirth(size_t size);
 662   void smallSplitDeath(size_t size);
 663   void split_birth(size_t size);
 664   void splitDeath(size_t size);
 665   void split(size_t from, size_t to1);
 666 
 667   double flsFrag() const;
 668 };
 669 
 670 // A parallel-GC-thread-local allocation buffer for allocation into a
 671 // CompactibleFreeListSpace.
 672 class CFLS_LAB : public CHeapObj<mtGC> {
 673   // The space that this buffer allocates into.
 674   CompactibleFreeListSpace* _cfls;
 675 
 676   // Our local free lists.
 677   AdaptiveFreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
 678 
 679   // Initialized from a command-line arg.
 680 
 681   // Allocation statistics in support of dynamic adjustment of
 682   // #blocks to claim per get_from_global_pool() call below.
 683   static AdaptiveWeightedAverage
 684                  _blocks_to_claim  [CompactibleFreeListSpace::IndexSetSize];
 685   static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
 686   static uint   _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
 687   size_t        _num_blocks        [CompactibleFreeListSpace::IndexSetSize];
 688 
 689   // Internal work method
 690   void get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl);
 691 
 692 public:
 693   CFLS_LAB(CompactibleFreeListSpace* cfls);
 694 
 695   // Allocate and return a block of the given size, or else return NULL.
 696   HeapWord* alloc(size_t word_sz);
 697 
 698   // Return any unused portions of the buffer to the global pool.
 699   void retire(int tid);
 700 
 701   // Dynamic OldPLABSize sizing
 702   static void compute_desired_plab_size();
 703   // When the settings are modified from default static initialization
 704   static void modify_initialization(size_t n, unsigned wt);
 705 };
 706 
 707 size_t PromotionInfo::refillSize() const {
 708   const size_t CMSSpoolBlockSize = 256;
 709   const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
 710                                    * CMSSpoolBlockSize);
 711   return CompactibleFreeListSpace::adjustObjectSize(sz);
 712 }
 713 
 714 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP