1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1RootProcessor.hpp"
  52 #include "gc_implementation/g1/g1StringDedup.hpp"
  53 #include "gc_implementation/g1/g1YCTypes.hpp"
  54 #include "gc_implementation/g1/heapRegion.inline.hpp"
  55 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  56 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  57 #include "gc_implementation/g1/vm_operations_g1.hpp"
  58 #include "gc_implementation/shared/gcHeapSummary.hpp"
  59 #include "gc_implementation/shared/gcTimer.hpp"
  60 #include "gc_implementation/shared/gcTrace.hpp"
  61 #include "gc_implementation/shared/gcTraceTime.hpp"
  62 #include "gc_implementation/shared/isGCActiveMark.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/gcLocker.inline.hpp"
  65 #include "memory/generationSpec.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "memory/referenceProcessor.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "oops/oop.pcgc.inline.hpp"
  70 #include "runtime/atomic.inline.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 
  75 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  76 
  77 // turn it on so that the contents of the young list (scan-only /
  78 // to-be-collected) are printed at "strategic" points before / during
  79 // / after the collection --- this is useful for debugging
  80 #define YOUNG_LIST_VERBOSE 0
  81 // CURRENT STATUS
  82 // This file is under construction.  Search for "FIXME".
  83 
  84 // INVARIANTS/NOTES
  85 //
  86 // All allocation activity covered by the G1CollectedHeap interface is
  87 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  88 // and allocate_new_tlab, which are the "entry" points to the
  89 // allocation code from the rest of the JVM.  (Note that this does not
  90 // apply to TLAB allocation, which is not part of this interface: it
  91 // is done by clients of this interface.)
  92 
  93 // Notes on implementation of parallelism in different tasks.
  94 //
  95 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism.
  96 // The number of GC workers is passed to heap_region_par_iterate().
  97 // It does use run_task() which sets _n_workers in the task.
  98 // G1ParTask executes g1_process_roots() ->
  99 // SharedHeap::process_roots() which calls eventually to
 100 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
 101 // SequentialSubTasksDone.  SharedHeap::process_roots() also
 102 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 103 //
 104 
 105 // Local to this file.
 106 
 107 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 108   bool _concurrent;
 109 public:
 110   RefineCardTableEntryClosure() : _concurrent(true) { }
 111 
 112   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 113     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 114     // This path is executed by the concurrent refine or mutator threads,
 115     // concurrently, and so we do not care if card_ptr contains references
 116     // that point into the collection set.
 117     assert(!oops_into_cset, "should be");
 118 
 119     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 120       // Caller will actually yield.
 121       return false;
 122     }
 123     // Otherwise, we finished successfully; return true.
 124     return true;
 125   }
 126 
 127   void set_concurrent(bool b) { _concurrent = b; }
 128 };
 129 
 130 
 131 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 132  private:
 133   size_t _num_processed;
 134 
 135  public:
 136   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 137 
 138   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 139     *card_ptr = CardTableModRefBS::dirty_card_val();
 140     _num_processed++;
 141     return true;
 142   }
 143 
 144   size_t num_processed() const { return _num_processed; }
 145 };
 146 
 147 YoungList::YoungList(G1CollectedHeap* g1h) :
 148     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 149     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 150   guarantee(check_list_empty(false), "just making sure...");
 151 }
 152 
 153 void YoungList::push_region(HeapRegion *hr) {
 154   assert(!hr->is_young(), "should not already be young");
 155   assert(hr->get_next_young_region() == NULL, "cause it should!");
 156 
 157   hr->set_next_young_region(_head);
 158   _head = hr;
 159 
 160   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 161   ++_length;
 162 }
 163 
 164 void YoungList::add_survivor_region(HeapRegion* hr) {
 165   assert(hr->is_survivor(), "should be flagged as survivor region");
 166   assert(hr->get_next_young_region() == NULL, "cause it should!");
 167 
 168   hr->set_next_young_region(_survivor_head);
 169   if (_survivor_head == NULL) {
 170     _survivor_tail = hr;
 171   }
 172   _survivor_head = hr;
 173   ++_survivor_length;
 174 }
 175 
 176 void YoungList::empty_list(HeapRegion* list) {
 177   while (list != NULL) {
 178     HeapRegion* next = list->get_next_young_region();
 179     list->set_next_young_region(NULL);
 180     list->uninstall_surv_rate_group();
 181     // This is called before a Full GC and all the non-empty /
 182     // non-humongous regions at the end of the Full GC will end up as
 183     // old anyway.
 184     list->set_old();
 185     list = next;
 186   }
 187 }
 188 
 189 void YoungList::empty_list() {
 190   assert(check_list_well_formed(), "young list should be well formed");
 191 
 192   empty_list(_head);
 193   _head = NULL;
 194   _length = 0;
 195 
 196   empty_list(_survivor_head);
 197   _survivor_head = NULL;
 198   _survivor_tail = NULL;
 199   _survivor_length = 0;
 200 
 201   _last_sampled_rs_lengths = 0;
 202 
 203   assert(check_list_empty(false), "just making sure...");
 204 }
 205 
 206 bool YoungList::check_list_well_formed() {
 207   bool ret = true;
 208 
 209   uint length = 0;
 210   HeapRegion* curr = _head;
 211   HeapRegion* last = NULL;
 212   while (curr != NULL) {
 213     if (!curr->is_young()) {
 214       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 215                              "incorrectly tagged (y: %d, surv: %d)",
 216                              curr->bottom(), curr->end(),
 217                              curr->is_young(), curr->is_survivor());
 218       ret = false;
 219     }
 220     ++length;
 221     last = curr;
 222     curr = curr->get_next_young_region();
 223   }
 224   ret = ret && (length == _length);
 225 
 226   if (!ret) {
 227     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 228     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 229                            length, _length);
 230   }
 231 
 232   return ret;
 233 }
 234 
 235 bool YoungList::check_list_empty(bool check_sample) {
 236   bool ret = true;
 237 
 238   if (_length != 0) {
 239     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 240                   _length);
 241     ret = false;
 242   }
 243   if (check_sample && _last_sampled_rs_lengths != 0) {
 244     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 245     ret = false;
 246   }
 247   if (_head != NULL) {
 248     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 249     ret = false;
 250   }
 251   if (!ret) {
 252     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 253   }
 254 
 255   return ret;
 256 }
 257 
 258 void
 259 YoungList::rs_length_sampling_init() {
 260   _sampled_rs_lengths = 0;
 261   _curr               = _head;
 262 }
 263 
 264 bool
 265 YoungList::rs_length_sampling_more() {
 266   return _curr != NULL;
 267 }
 268 
 269 void
 270 YoungList::rs_length_sampling_next() {
 271   assert( _curr != NULL, "invariant" );
 272   size_t rs_length = _curr->rem_set()->occupied();
 273 
 274   _sampled_rs_lengths += rs_length;
 275 
 276   // The current region may not yet have been added to the
 277   // incremental collection set (it gets added when it is
 278   // retired as the current allocation region).
 279   if (_curr->in_collection_set()) {
 280     // Update the collection set policy information for this region
 281     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 282   }
 283 
 284   _curr = _curr->get_next_young_region();
 285   if (_curr == NULL) {
 286     _last_sampled_rs_lengths = _sampled_rs_lengths;
 287     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 288   }
 289 }
 290 
 291 void
 292 YoungList::reset_auxilary_lists() {
 293   guarantee( is_empty(), "young list should be empty" );
 294   assert(check_list_well_formed(), "young list should be well formed");
 295 
 296   // Add survivor regions to SurvRateGroup.
 297   _g1h->g1_policy()->note_start_adding_survivor_regions();
 298   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 299 
 300   int young_index_in_cset = 0;
 301   for (HeapRegion* curr = _survivor_head;
 302        curr != NULL;
 303        curr = curr->get_next_young_region()) {
 304     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 305 
 306     // The region is a non-empty survivor so let's add it to
 307     // the incremental collection set for the next evacuation
 308     // pause.
 309     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 310     young_index_in_cset += 1;
 311   }
 312   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 313   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 314 
 315   _head   = _survivor_head;
 316   _length = _survivor_length;
 317   if (_survivor_head != NULL) {
 318     assert(_survivor_tail != NULL, "cause it shouldn't be");
 319     assert(_survivor_length > 0, "invariant");
 320     _survivor_tail->set_next_young_region(NULL);
 321   }
 322 
 323   // Don't clear the survivor list handles until the start of
 324   // the next evacuation pause - we need it in order to re-tag
 325   // the survivor regions from this evacuation pause as 'young'
 326   // at the start of the next.
 327 
 328   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 329 
 330   assert(check_list_well_formed(), "young list should be well formed");
 331 }
 332 
 333 void YoungList::print() {
 334   HeapRegion* lists[] = {_head,   _survivor_head};
 335   const char* names[] = {"YOUNG", "SURVIVOR"};
 336 
 337   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 338     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 339     HeapRegion *curr = lists[list];
 340     if (curr == NULL)
 341       gclog_or_tty->print_cr("  empty");
 342     while (curr != NULL) {
 343       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 344                              HR_FORMAT_PARAMS(curr),
 345                              curr->prev_top_at_mark_start(),
 346                              curr->next_top_at_mark_start(),
 347                              curr->age_in_surv_rate_group_cond());
 348       curr = curr->get_next_young_region();
 349     }
 350   }
 351 
 352   gclog_or_tty->cr();
 353 }
 354 
 355 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 356   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 357 }
 358 
 359 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 360   // The from card cache is not the memory that is actually committed. So we cannot
 361   // take advantage of the zero_filled parameter.
 362   reset_from_card_cache(start_idx, num_regions);
 363 }
 364 
 365 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 366 {
 367   // Claim the right to put the region on the dirty cards region list
 368   // by installing a self pointer.
 369   HeapRegion* next = hr->get_next_dirty_cards_region();
 370   if (next == NULL) {
 371     HeapRegion* res = (HeapRegion*)
 372       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 373                           NULL);
 374     if (res == NULL) {
 375       HeapRegion* head;
 376       do {
 377         // Put the region to the dirty cards region list.
 378         head = _dirty_cards_region_list;
 379         next = (HeapRegion*)
 380           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 381         if (next == head) {
 382           assert(hr->get_next_dirty_cards_region() == hr,
 383                  "hr->get_next_dirty_cards_region() != hr");
 384           if (next == NULL) {
 385             // The last region in the list points to itself.
 386             hr->set_next_dirty_cards_region(hr);
 387           } else {
 388             hr->set_next_dirty_cards_region(next);
 389           }
 390         }
 391       } while (next != head);
 392     }
 393   }
 394 }
 395 
 396 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 397 {
 398   HeapRegion* head;
 399   HeapRegion* hr;
 400   do {
 401     head = _dirty_cards_region_list;
 402     if (head == NULL) {
 403       return NULL;
 404     }
 405     HeapRegion* new_head = head->get_next_dirty_cards_region();
 406     if (head == new_head) {
 407       // The last region.
 408       new_head = NULL;
 409     }
 410     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 411                                           head);
 412   } while (hr != head);
 413   assert(hr != NULL, "invariant");
 414   hr->set_next_dirty_cards_region(NULL);
 415   return hr;
 416 }
 417 
 418 #ifdef ASSERT
 419 // A region is added to the collection set as it is retired
 420 // so an address p can point to a region which will be in the
 421 // collection set but has not yet been retired.  This method
 422 // therefore is only accurate during a GC pause after all
 423 // regions have been retired.  It is used for debugging
 424 // to check if an nmethod has references to objects that can
 425 // be move during a partial collection.  Though it can be
 426 // inaccurate, it is sufficient for G1 because the conservative
 427 // implementation of is_scavengable() for G1 will indicate that
 428 // all nmethods must be scanned during a partial collection.
 429 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 430   if (p == NULL) {
 431     return false;
 432   }
 433   return heap_region_containing(p)->in_collection_set();
 434 }
 435 #endif
 436 
 437 // Returns true if the reference points to an object that
 438 // can move in an incremental collection.
 439 bool G1CollectedHeap::is_scavengable(const void* p) {
 440   HeapRegion* hr = heap_region_containing(p);
 441   return !hr->is_humongous();
 442 }
 443 
 444 // Private class members.
 445 
 446 G1CollectedHeap* G1CollectedHeap::_g1h;
 447 
 448 // Private methods.
 449 
 450 HeapRegion*
 451 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 452   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 453   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 454     if (!_secondary_free_list.is_empty()) {
 455       if (G1ConcRegionFreeingVerbose) {
 456         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 457                                "secondary_free_list has %u entries",
 458                                _secondary_free_list.length());
 459       }
 460       // It looks as if there are free regions available on the
 461       // secondary_free_list. Let's move them to the free_list and try
 462       // again to allocate from it.
 463       append_secondary_free_list();
 464 
 465       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 466              "empty we should have moved at least one entry to the free_list");
 467       HeapRegion* res = _hrm.allocate_free_region(is_old);
 468       if (G1ConcRegionFreeingVerbose) {
 469         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 470                                "allocated "HR_FORMAT" from secondary_free_list",
 471                                HR_FORMAT_PARAMS(res));
 472       }
 473       return res;
 474     }
 475 
 476     // Wait here until we get notified either when (a) there are no
 477     // more free regions coming or (b) some regions have been moved on
 478     // the secondary_free_list.
 479     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 480   }
 481 
 482   if (G1ConcRegionFreeingVerbose) {
 483     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 484                            "could not allocate from secondary_free_list");
 485   }
 486   return NULL;
 487 }
 488 
 489 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 490   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 491          "the only time we use this to allocate a humongous region is "
 492          "when we are allocating a single humongous region");
 493 
 494   HeapRegion* res;
 495   if (G1StressConcRegionFreeing) {
 496     if (!_secondary_free_list.is_empty()) {
 497       if (G1ConcRegionFreeingVerbose) {
 498         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 499                                "forced to look at the secondary_free_list");
 500       }
 501       res = new_region_try_secondary_free_list(is_old);
 502       if (res != NULL) {
 503         return res;
 504       }
 505     }
 506   }
 507 
 508   res = _hrm.allocate_free_region(is_old);
 509 
 510   if (res == NULL) {
 511     if (G1ConcRegionFreeingVerbose) {
 512       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 513                              "res == NULL, trying the secondary_free_list");
 514     }
 515     res = new_region_try_secondary_free_list(is_old);
 516   }
 517   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 518     // Currently, only attempts to allocate GC alloc regions set
 519     // do_expand to true. So, we should only reach here during a
 520     // safepoint. If this assumption changes we might have to
 521     // reconsider the use of _expand_heap_after_alloc_failure.
 522     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 523 
 524     ergo_verbose1(ErgoHeapSizing,
 525                   "attempt heap expansion",
 526                   ergo_format_reason("region allocation request failed")
 527                   ergo_format_byte("allocation request"),
 528                   word_size * HeapWordSize);
 529     if (expand(word_size * HeapWordSize)) {
 530       // Given that expand() succeeded in expanding the heap, and we
 531       // always expand the heap by an amount aligned to the heap
 532       // region size, the free list should in theory not be empty.
 533       // In either case allocate_free_region() will check for NULL.
 534       res = _hrm.allocate_free_region(is_old);
 535     } else {
 536       _expand_heap_after_alloc_failure = false;
 537     }
 538   }
 539   return res;
 540 }
 541 
 542 HeapWord*
 543 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 544                                                            uint num_regions,
 545                                                            size_t word_size,
 546                                                            AllocationContext_t context) {
 547   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 548   assert(is_humongous(word_size), "word_size should be humongous");
 549   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 550 
 551   // Index of last region in the series + 1.
 552   uint last = first + num_regions;
 553 
 554   // We need to initialize the region(s) we just discovered. This is
 555   // a bit tricky given that it can happen concurrently with
 556   // refinement threads refining cards on these regions and
 557   // potentially wanting to refine the BOT as they are scanning
 558   // those cards (this can happen shortly after a cleanup; see CR
 559   // 6991377). So we have to set up the region(s) carefully and in
 560   // a specific order.
 561 
 562   // The word size sum of all the regions we will allocate.
 563   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 564   assert(word_size <= word_size_sum, "sanity");
 565 
 566   // This will be the "starts humongous" region.
 567   HeapRegion* first_hr = region_at(first);
 568   // The header of the new object will be placed at the bottom of
 569   // the first region.
 570   HeapWord* new_obj = first_hr->bottom();
 571   // This will be the new end of the first region in the series that
 572   // should also match the end of the last region in the series.
 573   HeapWord* new_end = new_obj + word_size_sum;
 574   // This will be the new top of the first region that will reflect
 575   // this allocation.
 576   HeapWord* new_top = new_obj + word_size;
 577 
 578   // First, we need to zero the header of the space that we will be
 579   // allocating. When we update top further down, some refinement
 580   // threads might try to scan the region. By zeroing the header we
 581   // ensure that any thread that will try to scan the region will
 582   // come across the zero klass word and bail out.
 583   //
 584   // NOTE: It would not have been correct to have used
 585   // CollectedHeap::fill_with_object() and make the space look like
 586   // an int array. The thread that is doing the allocation will
 587   // later update the object header to a potentially different array
 588   // type and, for a very short period of time, the klass and length
 589   // fields will be inconsistent. This could cause a refinement
 590   // thread to calculate the object size incorrectly.
 591   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 592 
 593   // We will set up the first region as "starts humongous". This
 594   // will also update the BOT covering all the regions to reflect
 595   // that there is a single object that starts at the bottom of the
 596   // first region.
 597   first_hr->set_starts_humongous(new_top, new_end);
 598   first_hr->set_allocation_context(context);
 599   // Then, if there are any, we will set up the "continues
 600   // humongous" regions.
 601   HeapRegion* hr = NULL;
 602   for (uint i = first + 1; i < last; ++i) {
 603     hr = region_at(i);
 604     hr->set_continues_humongous(first_hr);
 605     hr->set_allocation_context(context);
 606   }
 607   // If we have "continues humongous" regions (hr != NULL), then the
 608   // end of the last one should match new_end.
 609   assert(hr == NULL || hr->end() == new_end, "sanity");
 610 
 611   // Up to this point no concurrent thread would have been able to
 612   // do any scanning on any region in this series. All the top
 613   // fields still point to bottom, so the intersection between
 614   // [bottom,top] and [card_start,card_end] will be empty. Before we
 615   // update the top fields, we'll do a storestore to make sure that
 616   // no thread sees the update to top before the zeroing of the
 617   // object header and the BOT initialization.
 618   OrderAccess::storestore();
 619 
 620   // Now that the BOT and the object header have been initialized,
 621   // we can update top of the "starts humongous" region.
 622   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 623          "new_top should be in this region");
 624   first_hr->set_top(new_top);
 625   if (_hr_printer.is_active()) {
 626     HeapWord* bottom = first_hr->bottom();
 627     HeapWord* end = first_hr->orig_end();
 628     if ((first + 1) == last) {
 629       // the series has a single humongous region
 630       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 631     } else {
 632       // the series has more than one humongous regions
 633       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 634     }
 635   }
 636 
 637   // Now, we will update the top fields of the "continues humongous"
 638   // regions. The reason we need to do this is that, otherwise,
 639   // these regions would look empty and this will confuse parts of
 640   // G1. For example, the code that looks for a consecutive number
 641   // of empty regions will consider them empty and try to
 642   // re-allocate them. We can extend is_empty() to also include
 643   // !is_continues_humongous(), but it is easier to just update the top
 644   // fields here. The way we set top for all regions (i.e., top ==
 645   // end for all regions but the last one, top == new_top for the
 646   // last one) is actually used when we will free up the humongous
 647   // region in free_humongous_region().
 648   hr = NULL;
 649   for (uint i = first + 1; i < last; ++i) {
 650     hr = region_at(i);
 651     if ((i + 1) == last) {
 652       // last continues humongous region
 653       assert(hr->bottom() < new_top && new_top <= hr->end(),
 654              "new_top should fall on this region");
 655       hr->set_top(new_top);
 656       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 657     } else {
 658       // not last one
 659       assert(new_top > hr->end(), "new_top should be above this region");
 660       hr->set_top(hr->end());
 661       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 662     }
 663   }
 664   // If we have continues humongous regions (hr != NULL), then the
 665   // end of the last one should match new_end and its top should
 666   // match new_top.
 667   assert(hr == NULL ||
 668          (hr->end() == new_end && hr->top() == new_top), "sanity");
 669   check_bitmaps("Humongous Region Allocation", first_hr);
 670 
 671   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 672   _allocator->increase_used(first_hr->used());
 673   _humongous_set.add(first_hr);
 674 
 675   return new_obj;
 676 }
 677 
 678 // If could fit into free regions w/o expansion, try.
 679 // Otherwise, if can expand, do so.
 680 // Otherwise, if using ex regions might help, try with ex given back.
 681 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 682   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 683 
 684   verify_region_sets_optional();
 685 
 686   uint first = G1_NO_HRM_INDEX;
 687   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 688 
 689   if (obj_regions == 1) {
 690     // Only one region to allocate, try to use a fast path by directly allocating
 691     // from the free lists. Do not try to expand here, we will potentially do that
 692     // later.
 693     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 694     if (hr != NULL) {
 695       first = hr->hrm_index();
 696     }
 697   } else {
 698     // We can't allocate humongous regions spanning more than one region while
 699     // cleanupComplete() is running, since some of the regions we find to be
 700     // empty might not yet be added to the free list. It is not straightforward
 701     // to know in which list they are on so that we can remove them. We only
 702     // need to do this if we need to allocate more than one region to satisfy the
 703     // current humongous allocation request. If we are only allocating one region
 704     // we use the one-region region allocation code (see above), that already
 705     // potentially waits for regions from the secondary free list.
 706     wait_while_free_regions_coming();
 707     append_secondary_free_list_if_not_empty_with_lock();
 708 
 709     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 710     // are lucky enough to find some.
 711     first = _hrm.find_contiguous_only_empty(obj_regions);
 712     if (first != G1_NO_HRM_INDEX) {
 713       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 714     }
 715   }
 716 
 717   if (first == G1_NO_HRM_INDEX) {
 718     // Policy: We could not find enough regions for the humongous object in the
 719     // free list. Look through the heap to find a mix of free and uncommitted regions.
 720     // If so, try expansion.
 721     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 722     if (first != G1_NO_HRM_INDEX) {
 723       // We found something. Make sure these regions are committed, i.e. expand
 724       // the heap. Alternatively we could do a defragmentation GC.
 725       ergo_verbose1(ErgoHeapSizing,
 726                     "attempt heap expansion",
 727                     ergo_format_reason("humongous allocation request failed")
 728                     ergo_format_byte("allocation request"),
 729                     word_size * HeapWordSize);
 730 
 731       _hrm.expand_at(first, obj_regions);
 732       g1_policy()->record_new_heap_size(num_regions());
 733 
 734 #ifdef ASSERT
 735       for (uint i = first; i < first + obj_regions; ++i) {
 736         HeapRegion* hr = region_at(i);
 737         assert(hr->is_free(), "sanity");
 738         assert(hr->is_empty(), "sanity");
 739         assert(is_on_master_free_list(hr), "sanity");
 740       }
 741 #endif
 742       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 743     } else {
 744       // Policy: Potentially trigger a defragmentation GC.
 745     }
 746   }
 747 
 748   HeapWord* result = NULL;
 749   if (first != G1_NO_HRM_INDEX) {
 750     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 751                                                        word_size, context);
 752     assert(result != NULL, "it should always return a valid result");
 753 
 754     // A successful humongous object allocation changes the used space
 755     // information of the old generation so we need to recalculate the
 756     // sizes and update the jstat counters here.
 757     g1mm()->update_sizes();
 758   }
 759 
 760   verify_region_sets_optional();
 761 
 762   return result;
 763 }
 764 
 765 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 766   assert_heap_not_locked_and_not_at_safepoint();
 767   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 768 
 769   uint dummy_gc_count_before;
 770   uint dummy_gclocker_retry_count = 0;
 771   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 772 }
 773 
 774 HeapWord*
 775 G1CollectedHeap::mem_allocate(size_t word_size,
 776                               bool*  gc_overhead_limit_was_exceeded) {
 777   assert_heap_not_locked_and_not_at_safepoint();
 778 
 779   // Loop until the allocation is satisfied, or unsatisfied after GC.
 780   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 781     uint gc_count_before;
 782 
 783     HeapWord* result = NULL;
 784     if (!is_humongous(word_size)) {
 785       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 786     } else {
 787       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 788     }
 789     if (result != NULL) {
 790       return result;
 791     }
 792 
 793     // Create the garbage collection operation...
 794     VM_G1CollectForAllocation op(gc_count_before, word_size);
 795     op.set_allocation_context(AllocationContext::current());
 796 
 797     // ...and get the VM thread to execute it.
 798     VMThread::execute(&op);
 799 
 800     if (op.prologue_succeeded() && op.pause_succeeded()) {
 801       // If the operation was successful we'll return the result even
 802       // if it is NULL. If the allocation attempt failed immediately
 803       // after a Full GC, it's unlikely we'll be able to allocate now.
 804       HeapWord* result = op.result();
 805       if (result != NULL && !is_humongous(word_size)) {
 806         // Allocations that take place on VM operations do not do any
 807         // card dirtying and we have to do it here. We only have to do
 808         // this for non-humongous allocations, though.
 809         dirty_young_block(result, word_size);
 810       }
 811       return result;
 812     } else {
 813       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 814         return NULL;
 815       }
 816       assert(op.result() == NULL,
 817              "the result should be NULL if the VM op did not succeed");
 818     }
 819 
 820     // Give a warning if we seem to be looping forever.
 821     if ((QueuedAllocationWarningCount > 0) &&
 822         (try_count % QueuedAllocationWarningCount == 0)) {
 823       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 824     }
 825   }
 826 
 827   ShouldNotReachHere();
 828   return NULL;
 829 }
 830 
 831 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 832                                                    AllocationContext_t context,
 833                                                    uint* gc_count_before_ret,
 834                                                    uint* gclocker_retry_count_ret) {
 835   // Make sure you read the note in attempt_allocation_humongous().
 836 
 837   assert_heap_not_locked_and_not_at_safepoint();
 838   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 839          "be called for humongous allocation requests");
 840 
 841   // We should only get here after the first-level allocation attempt
 842   // (attempt_allocation()) failed to allocate.
 843 
 844   // We will loop until a) we manage to successfully perform the
 845   // allocation or b) we successfully schedule a collection which
 846   // fails to perform the allocation. b) is the only case when we'll
 847   // return NULL.
 848   HeapWord* result = NULL;
 849   for (int try_count = 1; /* we'll return */; try_count += 1) {
 850     bool should_try_gc;
 851     uint gc_count_before;
 852 
 853     {
 854       MutexLockerEx x(Heap_lock);
 855       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 856                                                                                     false /* bot_updates */);
 857       if (result != NULL) {
 858         return result;
 859       }
 860 
 861       // If we reach here, attempt_allocation_locked() above failed to
 862       // allocate a new region. So the mutator alloc region should be NULL.
 863       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 864 
 865       if (GC_locker::is_active_and_needs_gc()) {
 866         if (g1_policy()->can_expand_young_list()) {
 867           // No need for an ergo verbose message here,
 868           // can_expand_young_list() does this when it returns true.
 869           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 870                                                                                        false /* bot_updates */);
 871           if (result != NULL) {
 872             return result;
 873           }
 874         }
 875         should_try_gc = false;
 876       } else {
 877         // The GCLocker may not be active but the GCLocker initiated
 878         // GC may not yet have been performed (GCLocker::needs_gc()
 879         // returns true). In this case we do not try this GC and
 880         // wait until the GCLocker initiated GC is performed, and
 881         // then retry the allocation.
 882         if (GC_locker::needs_gc()) {
 883           should_try_gc = false;
 884         } else {
 885           // Read the GC count while still holding the Heap_lock.
 886           gc_count_before = total_collections();
 887           should_try_gc = true;
 888         }
 889       }
 890     }
 891 
 892     if (should_try_gc) {
 893       bool succeeded;
 894       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 895                                    GCCause::_g1_inc_collection_pause);
 896       if (result != NULL) {
 897         assert(succeeded, "only way to get back a non-NULL result");
 898         return result;
 899       }
 900 
 901       if (succeeded) {
 902         // If we get here we successfully scheduled a collection which
 903         // failed to allocate. No point in trying to allocate
 904         // further. We'll just return NULL.
 905         MutexLockerEx x(Heap_lock);
 906         *gc_count_before_ret = total_collections();
 907         return NULL;
 908       }
 909     } else {
 910       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 911         MutexLockerEx x(Heap_lock);
 912         *gc_count_before_ret = total_collections();
 913         return NULL;
 914       }
 915       // The GCLocker is either active or the GCLocker initiated
 916       // GC has not yet been performed. Stall until it is and
 917       // then retry the allocation.
 918       GC_locker::stall_until_clear();
 919       (*gclocker_retry_count_ret) += 1;
 920     }
 921 
 922     // We can reach here if we were unsuccessful in scheduling a
 923     // collection (because another thread beat us to it) or if we were
 924     // stalled due to the GC locker. In either can we should retry the
 925     // allocation attempt in case another thread successfully
 926     // performed a collection and reclaimed enough space. We do the
 927     // first attempt (without holding the Heap_lock) here and the
 928     // follow-on attempt will be at the start of the next loop
 929     // iteration (after taking the Heap_lock).
 930     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 931                                                                            false /* bot_updates */);
 932     if (result != NULL) {
 933       return result;
 934     }
 935 
 936     // Give a warning if we seem to be looping forever.
 937     if ((QueuedAllocationWarningCount > 0) &&
 938         (try_count % QueuedAllocationWarningCount == 0)) {
 939       warning("G1CollectedHeap::attempt_allocation_slow() "
 940               "retries %d times", try_count);
 941     }
 942   }
 943 
 944   ShouldNotReachHere();
 945   return NULL;
 946 }
 947 
 948 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 949                                                         uint* gc_count_before_ret,
 950                                                         uint* gclocker_retry_count_ret) {
 951   // The structure of this method has a lot of similarities to
 952   // attempt_allocation_slow(). The reason these two were not merged
 953   // into a single one is that such a method would require several "if
 954   // allocation is not humongous do this, otherwise do that"
 955   // conditional paths which would obscure its flow. In fact, an early
 956   // version of this code did use a unified method which was harder to
 957   // follow and, as a result, it had subtle bugs that were hard to
 958   // track down. So keeping these two methods separate allows each to
 959   // be more readable. It will be good to keep these two in sync as
 960   // much as possible.
 961 
 962   assert_heap_not_locked_and_not_at_safepoint();
 963   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 964          "should only be called for humongous allocations");
 965 
 966   // Humongous objects can exhaust the heap quickly, so we should check if we
 967   // need to start a marking cycle at each humongous object allocation. We do
 968   // the check before we do the actual allocation. The reason for doing it
 969   // before the allocation is that we avoid having to keep track of the newly
 970   // allocated memory while we do a GC.
 971   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 972                                            word_size)) {
 973     collect(GCCause::_g1_humongous_allocation);
 974   }
 975 
 976   // We will loop until a) we manage to successfully perform the
 977   // allocation or b) we successfully schedule a collection which
 978   // fails to perform the allocation. b) is the only case when we'll
 979   // return NULL.
 980   HeapWord* result = NULL;
 981   for (int try_count = 1; /* we'll return */; try_count += 1) {
 982     bool should_try_gc;
 983     uint gc_count_before;
 984 
 985     {
 986       MutexLockerEx x(Heap_lock);
 987 
 988       // Given that humongous objects are not allocated in young
 989       // regions, we'll first try to do the allocation without doing a
 990       // collection hoping that there's enough space in the heap.
 991       result = humongous_obj_allocate(word_size, AllocationContext::current());
 992       if (result != NULL) {
 993         return result;
 994       }
 995 
 996       if (GC_locker::is_active_and_needs_gc()) {
 997         should_try_gc = false;
 998       } else {
 999          // The GCLocker may not be active but the GCLocker initiated
1000         // GC may not yet have been performed (GCLocker::needs_gc()
1001         // returns true). In this case we do not try this GC and
1002         // wait until the GCLocker initiated GC is performed, and
1003         // then retry the allocation.
1004         if (GC_locker::needs_gc()) {
1005           should_try_gc = false;
1006         } else {
1007           // Read the GC count while still holding the Heap_lock.
1008           gc_count_before = total_collections();
1009           should_try_gc = true;
1010         }
1011       }
1012     }
1013 
1014     if (should_try_gc) {
1015       // If we failed to allocate the humongous object, we should try to
1016       // do a collection pause (if we're allowed) in case it reclaims
1017       // enough space for the allocation to succeed after the pause.
1018 
1019       bool succeeded;
1020       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1021                                    GCCause::_g1_humongous_allocation);
1022       if (result != NULL) {
1023         assert(succeeded, "only way to get back a non-NULL result");
1024         return result;
1025       }
1026 
1027       if (succeeded) {
1028         // If we get here we successfully scheduled a collection which
1029         // failed to allocate. No point in trying to allocate
1030         // further. We'll just return NULL.
1031         MutexLockerEx x(Heap_lock);
1032         *gc_count_before_ret = total_collections();
1033         return NULL;
1034       }
1035     } else {
1036       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1037         MutexLockerEx x(Heap_lock);
1038         *gc_count_before_ret = total_collections();
1039         return NULL;
1040       }
1041       // The GCLocker is either active or the GCLocker initiated
1042       // GC has not yet been performed. Stall until it is and
1043       // then retry the allocation.
1044       GC_locker::stall_until_clear();
1045       (*gclocker_retry_count_ret) += 1;
1046     }
1047 
1048     // We can reach here if we were unsuccessful in scheduling a
1049     // collection (because another thread beat us to it) or if we were
1050     // stalled due to the GC locker. In either can we should retry the
1051     // allocation attempt in case another thread successfully
1052     // performed a collection and reclaimed enough space.  Give a
1053     // warning if we seem to be looping forever.
1054 
1055     if ((QueuedAllocationWarningCount > 0) &&
1056         (try_count % QueuedAllocationWarningCount == 0)) {
1057       warning("G1CollectedHeap::attempt_allocation_humongous() "
1058               "retries %d times", try_count);
1059     }
1060   }
1061 
1062   ShouldNotReachHere();
1063   return NULL;
1064 }
1065 
1066 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1067                                                            AllocationContext_t context,
1068                                                            bool expect_null_mutator_alloc_region) {
1069   assert_at_safepoint(true /* should_be_vm_thread */);
1070   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1071                                              !expect_null_mutator_alloc_region,
1072          "the current alloc region was unexpectedly found to be non-NULL");
1073 
1074   if (!is_humongous(word_size)) {
1075     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1076                                                       false /* bot_updates */);
1077   } else {
1078     HeapWord* result = humongous_obj_allocate(word_size, context);
1079     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1080       g1_policy()->set_initiate_conc_mark_if_possible();
1081     }
1082     return result;
1083   }
1084 
1085   ShouldNotReachHere();
1086 }
1087 
1088 class PostMCRemSetClearClosure: public HeapRegionClosure {
1089   G1CollectedHeap* _g1h;
1090   ModRefBarrierSet* _mr_bs;
1091 public:
1092   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1093     _g1h(g1h), _mr_bs(mr_bs) {}
1094 
1095   bool doHeapRegion(HeapRegion* r) {
1096     HeapRegionRemSet* hrrs = r->rem_set();
1097 
1098     if (r->is_continues_humongous()) {
1099       // We'll assert that the strong code root list and RSet is empty
1100       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1101       assert(hrrs->occupied() == 0, "RSet should be empty");
1102       return false;
1103     }
1104 
1105     _g1h->reset_gc_time_stamps(r);
1106     hrrs->clear();
1107     // You might think here that we could clear just the cards
1108     // corresponding to the used region.  But no: if we leave a dirty card
1109     // in a region we might allocate into, then it would prevent that card
1110     // from being enqueued, and cause it to be missed.
1111     // Re: the performance cost: we shouldn't be doing full GC anyway!
1112     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1113 
1114     return false;
1115   }
1116 };
1117 
1118 void G1CollectedHeap::clear_rsets_post_compaction() {
1119   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1120   heap_region_iterate(&rs_clear);
1121 }
1122 
1123 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1124   G1CollectedHeap*   _g1h;
1125   UpdateRSOopClosure _cl;
1126   int                _worker_i;
1127 public:
1128   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1129     _cl(g1->g1_rem_set(), worker_i),
1130     _worker_i(worker_i),
1131     _g1h(g1)
1132   { }
1133 
1134   bool doHeapRegion(HeapRegion* r) {
1135     if (!r->is_continues_humongous()) {
1136       _cl.set_from(r);
1137       r->oop_iterate(&_cl);
1138     }
1139     return false;
1140   }
1141 };
1142 
1143 class ParRebuildRSTask: public AbstractGangTask {
1144   G1CollectedHeap* _g1;
1145   HeapRegionClaimer _hrclaimer;
1146 
1147 public:
1148   ParRebuildRSTask(G1CollectedHeap* g1) :
1149       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1150 
1151   void work(uint worker_id) {
1152     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1153     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1154   }
1155 };
1156 
1157 class PostCompactionPrinterClosure: public HeapRegionClosure {
1158 private:
1159   G1HRPrinter* _hr_printer;
1160 public:
1161   bool doHeapRegion(HeapRegion* hr) {
1162     assert(!hr->is_young(), "not expecting to find young regions");
1163     if (hr->is_free()) {
1164       // We only generate output for non-empty regions.
1165     } else if (hr->is_starts_humongous()) {
1166       if (hr->region_num() == 1) {
1167         // single humongous region
1168         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1169       } else {
1170         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1171       }
1172     } else if (hr->is_continues_humongous()) {
1173       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1174     } else if (hr->is_old()) {
1175       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1176     } else {
1177       ShouldNotReachHere();
1178     }
1179     return false;
1180   }
1181 
1182   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1183     : _hr_printer(hr_printer) { }
1184 };
1185 
1186 void G1CollectedHeap::print_hrm_post_compaction() {
1187   PostCompactionPrinterClosure cl(hr_printer());
1188   heap_region_iterate(&cl);
1189 }
1190 
1191 bool G1CollectedHeap::do_collection(bool explicit_gc,
1192                                     bool clear_all_soft_refs,
1193                                     size_t word_size) {
1194   assert_at_safepoint(true /* should_be_vm_thread */);
1195 
1196   if (GC_locker::check_active_before_gc()) {
1197     return false;
1198   }
1199 
1200   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1201   gc_timer->register_gc_start();
1202 
1203   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1204   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1205 
1206   SvcGCMarker sgcm(SvcGCMarker::FULL);
1207   ResourceMark rm;
1208 
1209   print_heap_before_gc();
1210   trace_heap_before_gc(gc_tracer);
1211 
1212   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1213 
1214   verify_region_sets_optional();
1215 
1216   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1217                            collector_policy()->should_clear_all_soft_refs();
1218 
1219   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1220 
1221   {
1222     IsGCActiveMark x;
1223 
1224     // Timing
1225     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1226     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1227 
1228     {
1229       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1230       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1231       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1232 
1233       g1_policy()->record_full_collection_start();
1234 
1235       // Note: When we have a more flexible GC logging framework that
1236       // allows us to add optional attributes to a GC log record we
1237       // could consider timing and reporting how long we wait in the
1238       // following two methods.
1239       wait_while_free_regions_coming();
1240       // If we start the compaction before the CM threads finish
1241       // scanning the root regions we might trip them over as we'll
1242       // be moving objects / updating references. So let's wait until
1243       // they are done. By telling them to abort, they should complete
1244       // early.
1245       _cm->root_regions()->abort();
1246       _cm->root_regions()->wait_until_scan_finished();
1247       append_secondary_free_list_if_not_empty_with_lock();
1248 
1249       gc_prologue(true);
1250       increment_total_collections(true /* full gc */);
1251       increment_old_marking_cycles_started();
1252 
1253       assert(used() == recalculate_used(), "Should be equal");
1254 
1255       verify_before_gc();
1256 
1257       check_bitmaps("Full GC Start");
1258       pre_full_gc_dump(gc_timer);
1259 
1260       COMPILER2_PRESENT(DerivedPointerTable::clear());
1261 
1262       // Disable discovery and empty the discovered lists
1263       // for the CM ref processor.
1264       ref_processor_cm()->disable_discovery();
1265       ref_processor_cm()->abandon_partial_discovery();
1266       ref_processor_cm()->verify_no_references_recorded();
1267 
1268       // Abandon current iterations of concurrent marking and concurrent
1269       // refinement, if any are in progress. We have to do this before
1270       // wait_until_scan_finished() below.
1271       concurrent_mark()->abort();
1272 
1273       // Make sure we'll choose a new allocation region afterwards.
1274       _allocator->release_mutator_alloc_region();
1275       _allocator->abandon_gc_alloc_regions();
1276       g1_rem_set()->cleanupHRRS();
1277 
1278       // We should call this after we retire any currently active alloc
1279       // regions so that all the ALLOC / RETIRE events are generated
1280       // before the start GC event.
1281       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1282 
1283       // We may have added regions to the current incremental collection
1284       // set between the last GC or pause and now. We need to clear the
1285       // incremental collection set and then start rebuilding it afresh
1286       // after this full GC.
1287       abandon_collection_set(g1_policy()->inc_cset_head());
1288       g1_policy()->clear_incremental_cset();
1289       g1_policy()->stop_incremental_cset_building();
1290 
1291       tear_down_region_sets(false /* free_list_only */);
1292       g1_policy()->set_gcs_are_young(true);
1293 
1294       // See the comments in g1CollectedHeap.hpp and
1295       // G1CollectedHeap::ref_processing_init() about
1296       // how reference processing currently works in G1.
1297 
1298       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1299       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1300 
1301       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1302       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1303 
1304       ref_processor_stw()->enable_discovery();
1305       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1306 
1307       // Do collection work
1308       {
1309         HandleMark hm;  // Discard invalid handles created during gc
1310         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1311       }
1312 
1313       assert(num_free_regions() == 0, "we should not have added any free regions");
1314       rebuild_region_sets(false /* free_list_only */);
1315 
1316       // Enqueue any discovered reference objects that have
1317       // not been removed from the discovered lists.
1318       ref_processor_stw()->enqueue_discovered_references();
1319 
1320       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1321 
1322       MemoryService::track_memory_usage();
1323 
1324       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1325       ref_processor_stw()->verify_no_references_recorded();
1326 
1327       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1328       ClassLoaderDataGraph::purge();
1329       MetaspaceAux::verify_metrics();
1330 
1331       // Note: since we've just done a full GC, concurrent
1332       // marking is no longer active. Therefore we need not
1333       // re-enable reference discovery for the CM ref processor.
1334       // That will be done at the start of the next marking cycle.
1335       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1336       ref_processor_cm()->verify_no_references_recorded();
1337 
1338       reset_gc_time_stamp();
1339       // Since everything potentially moved, we will clear all remembered
1340       // sets, and clear all cards.  Later we will rebuild remembered
1341       // sets. We will also reset the GC time stamps of the regions.
1342       clear_rsets_post_compaction();
1343       check_gc_time_stamps();
1344 
1345       // Resize the heap if necessary.
1346       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1347 
1348       if (_hr_printer.is_active()) {
1349         // We should do this after we potentially resize the heap so
1350         // that all the COMMIT / UNCOMMIT events are generated before
1351         // the end GC event.
1352 
1353         print_hrm_post_compaction();
1354         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1355       }
1356 
1357       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1358       if (hot_card_cache->use_cache()) {
1359         hot_card_cache->reset_card_counts();
1360         hot_card_cache->reset_hot_cache();
1361       }
1362 
1363       // Rebuild remembered sets of all regions.
1364       uint n_workers =
1365         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1366                                                 workers()->active_workers(),
1367                                                 Threads::number_of_non_daemon_threads());
1368       assert(UseDynamicNumberOfGCThreads ||
1369              n_workers == workers()->total_workers(),
1370              "If not dynamic should be using all the  workers");
1371       workers()->set_active_workers(n_workers);
1372       // Set parallel threads in the heap (_n_par_threads) only
1373       // before a parallel phase and always reset it to 0 after
1374       // the phase so that the number of parallel threads does
1375       // no get carried forward to a serial phase where there
1376       // may be code that is "possibly_parallel".
1377       set_par_threads(n_workers);
1378 
1379       ParRebuildRSTask rebuild_rs_task(this);
1380       assert(UseDynamicNumberOfGCThreads ||
1381              workers()->active_workers() == workers()->total_workers(),
1382              "Unless dynamic should use total workers");
1383       // Use the most recent number of  active workers
1384       assert(workers()->active_workers() > 0,
1385              "Active workers not properly set");
1386       set_par_threads(workers()->active_workers());
1387       workers()->run_task(&rebuild_rs_task);
1388       set_par_threads(0);
1389 
1390       // Rebuild the strong code root lists for each region
1391       rebuild_strong_code_roots();
1392 
1393       if (true) { // FIXME
1394         MetaspaceGC::compute_new_size();
1395       }
1396 
1397 #ifdef TRACESPINNING
1398       ParallelTaskTerminator::print_termination_counts();
1399 #endif
1400 
1401       // Discard all rset updates
1402       JavaThread::dirty_card_queue_set().abandon_logs();
1403       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1404 
1405       _young_list->reset_sampled_info();
1406       // At this point there should be no regions in the
1407       // entire heap tagged as young.
1408       assert(check_young_list_empty(true /* check_heap */),
1409              "young list should be empty at this point");
1410 
1411       // Update the number of full collections that have been completed.
1412       increment_old_marking_cycles_completed(false /* concurrent */);
1413 
1414       _hrm.verify_optional();
1415       verify_region_sets_optional();
1416 
1417       verify_after_gc();
1418 
1419       // Clear the previous marking bitmap, if needed for bitmap verification.
1420       // Note we cannot do this when we clear the next marking bitmap in
1421       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1422       // objects marked during a full GC against the previous bitmap.
1423       // But we need to clear it before calling check_bitmaps below since
1424       // the full GC has compacted objects and updated TAMS but not updated
1425       // the prev bitmap.
1426       if (G1VerifyBitmaps) {
1427         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1428       }
1429       check_bitmaps("Full GC End");
1430 
1431       // Start a new incremental collection set for the next pause
1432       assert(g1_policy()->collection_set() == NULL, "must be");
1433       g1_policy()->start_incremental_cset_building();
1434 
1435       clear_cset_fast_test();
1436 
1437       _allocator->init_mutator_alloc_region();
1438 
1439       g1_policy()->record_full_collection_end();
1440 
1441       if (G1Log::fine()) {
1442         g1_policy()->print_heap_transition();
1443       }
1444 
1445       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1446       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1447       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1448       // before any GC notifications are raised.
1449       g1mm()->update_sizes();
1450 
1451       gc_epilogue(true);
1452     }
1453 
1454     if (G1Log::finer()) {
1455       g1_policy()->print_detailed_heap_transition(true /* full */);
1456     }
1457 
1458     print_heap_after_gc();
1459     trace_heap_after_gc(gc_tracer);
1460 
1461     post_full_gc_dump(gc_timer);
1462 
1463     gc_timer->register_gc_end();
1464     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1465   }
1466 
1467   return true;
1468 }
1469 
1470 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1471   // do_collection() will return whether it succeeded in performing
1472   // the GC. Currently, there is no facility on the
1473   // do_full_collection() API to notify the caller than the collection
1474   // did not succeed (e.g., because it was locked out by the GC
1475   // locker). So, right now, we'll ignore the return value.
1476   bool dummy = do_collection(true,                /* explicit_gc */
1477                              clear_all_soft_refs,
1478                              0                    /* word_size */);
1479 }
1480 
1481 // This code is mostly copied from TenuredGeneration.
1482 void
1483 G1CollectedHeap::
1484 resize_if_necessary_after_full_collection(size_t word_size) {
1485   // Include the current allocation, if any, and bytes that will be
1486   // pre-allocated to support collections, as "used".
1487   const size_t used_after_gc = used();
1488   const size_t capacity_after_gc = capacity();
1489   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1490 
1491   // This is enforced in arguments.cpp.
1492   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1493          "otherwise the code below doesn't make sense");
1494 
1495   // We don't have floating point command-line arguments
1496   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1497   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1498   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1499   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1500 
1501   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1502   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1503 
1504   // We have to be careful here as these two calculations can overflow
1505   // 32-bit size_t's.
1506   double used_after_gc_d = (double) used_after_gc;
1507   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1508   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1509 
1510   // Let's make sure that they are both under the max heap size, which
1511   // by default will make them fit into a size_t.
1512   double desired_capacity_upper_bound = (double) max_heap_size;
1513   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1514                                     desired_capacity_upper_bound);
1515   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1516                                     desired_capacity_upper_bound);
1517 
1518   // We can now safely turn them into size_t's.
1519   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1520   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1521 
1522   // This assert only makes sense here, before we adjust them
1523   // with respect to the min and max heap size.
1524   assert(minimum_desired_capacity <= maximum_desired_capacity,
1525          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1526                  "maximum_desired_capacity = "SIZE_FORMAT,
1527                  minimum_desired_capacity, maximum_desired_capacity));
1528 
1529   // Should not be greater than the heap max size. No need to adjust
1530   // it with respect to the heap min size as it's a lower bound (i.e.,
1531   // we'll try to make the capacity larger than it, not smaller).
1532   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1533   // Should not be less than the heap min size. No need to adjust it
1534   // with respect to the heap max size as it's an upper bound (i.e.,
1535   // we'll try to make the capacity smaller than it, not greater).
1536   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1537 
1538   if (capacity_after_gc < minimum_desired_capacity) {
1539     // Don't expand unless it's significant
1540     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1541     ergo_verbose4(ErgoHeapSizing,
1542                   "attempt heap expansion",
1543                   ergo_format_reason("capacity lower than "
1544                                      "min desired capacity after Full GC")
1545                   ergo_format_byte("capacity")
1546                   ergo_format_byte("occupancy")
1547                   ergo_format_byte_perc("min desired capacity"),
1548                   capacity_after_gc, used_after_gc,
1549                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1550     expand(expand_bytes);
1551 
1552     // No expansion, now see if we want to shrink
1553   } else if (capacity_after_gc > maximum_desired_capacity) {
1554     // Capacity too large, compute shrinking size
1555     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1556     ergo_verbose4(ErgoHeapSizing,
1557                   "attempt heap shrinking",
1558                   ergo_format_reason("capacity higher than "
1559                                      "max desired capacity after Full GC")
1560                   ergo_format_byte("capacity")
1561                   ergo_format_byte("occupancy")
1562                   ergo_format_byte_perc("max desired capacity"),
1563                   capacity_after_gc, used_after_gc,
1564                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1565     shrink(shrink_bytes);
1566   }
1567 }
1568 
1569 
1570 HeapWord*
1571 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1572                                            AllocationContext_t context,
1573                                            bool* succeeded) {
1574   assert_at_safepoint(true /* should_be_vm_thread */);
1575 
1576   *succeeded = true;
1577   // Let's attempt the allocation first.
1578   HeapWord* result =
1579     attempt_allocation_at_safepoint(word_size,
1580                                     context,
1581                                     false /* expect_null_mutator_alloc_region */);
1582   if (result != NULL) {
1583     assert(*succeeded, "sanity");
1584     return result;
1585   }
1586 
1587   // In a G1 heap, we're supposed to keep allocation from failing by
1588   // incremental pauses.  Therefore, at least for now, we'll favor
1589   // expansion over collection.  (This might change in the future if we can
1590   // do something smarter than full collection to satisfy a failed alloc.)
1591   result = expand_and_allocate(word_size, context);
1592   if (result != NULL) {
1593     assert(*succeeded, "sanity");
1594     return result;
1595   }
1596 
1597   // Expansion didn't work, we'll try to do a Full GC.
1598   bool gc_succeeded = do_collection(false, /* explicit_gc */
1599                                     false, /* clear_all_soft_refs */
1600                                     word_size);
1601   if (!gc_succeeded) {
1602     *succeeded = false;
1603     return NULL;
1604   }
1605 
1606   // Retry the allocation
1607   result = attempt_allocation_at_safepoint(word_size,
1608                                            context,
1609                                            true /* expect_null_mutator_alloc_region */);
1610   if (result != NULL) {
1611     assert(*succeeded, "sanity");
1612     return result;
1613   }
1614 
1615   // Then, try a Full GC that will collect all soft references.
1616   gc_succeeded = do_collection(false, /* explicit_gc */
1617                                true,  /* clear_all_soft_refs */
1618                                word_size);
1619   if (!gc_succeeded) {
1620     *succeeded = false;
1621     return NULL;
1622   }
1623 
1624   // Retry the allocation once more
1625   result = attempt_allocation_at_safepoint(word_size,
1626                                            context,
1627                                            true /* expect_null_mutator_alloc_region */);
1628   if (result != NULL) {
1629     assert(*succeeded, "sanity");
1630     return result;
1631   }
1632 
1633   assert(!collector_policy()->should_clear_all_soft_refs(),
1634          "Flag should have been handled and cleared prior to this point");
1635 
1636   // What else?  We might try synchronous finalization later.  If the total
1637   // space available is large enough for the allocation, then a more
1638   // complete compaction phase than we've tried so far might be
1639   // appropriate.
1640   assert(*succeeded, "sanity");
1641   return NULL;
1642 }
1643 
1644 // Attempting to expand the heap sufficiently
1645 // to support an allocation of the given "word_size".  If
1646 // successful, perform the allocation and return the address of the
1647 // allocated block, or else "NULL".
1648 
1649 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1650   assert_at_safepoint(true /* should_be_vm_thread */);
1651 
1652   verify_region_sets_optional();
1653 
1654   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1655   ergo_verbose1(ErgoHeapSizing,
1656                 "attempt heap expansion",
1657                 ergo_format_reason("allocation request failed")
1658                 ergo_format_byte("allocation request"),
1659                 word_size * HeapWordSize);
1660   if (expand(expand_bytes)) {
1661     _hrm.verify_optional();
1662     verify_region_sets_optional();
1663     return attempt_allocation_at_safepoint(word_size,
1664                                            context,
1665                                            false /* expect_null_mutator_alloc_region */);
1666   }
1667   return NULL;
1668 }
1669 
1670 bool G1CollectedHeap::expand(size_t expand_bytes) {
1671   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1672   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1673                                        HeapRegion::GrainBytes);
1674   ergo_verbose2(ErgoHeapSizing,
1675                 "expand the heap",
1676                 ergo_format_byte("requested expansion amount")
1677                 ergo_format_byte("attempted expansion amount"),
1678                 expand_bytes, aligned_expand_bytes);
1679 
1680   if (is_maximal_no_gc()) {
1681     ergo_verbose0(ErgoHeapSizing,
1682                       "did not expand the heap",
1683                       ergo_format_reason("heap already fully expanded"));
1684     return false;
1685   }
1686 
1687   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1688   assert(regions_to_expand > 0, "Must expand by at least one region");
1689 
1690   uint expanded_by = _hrm.expand_by(regions_to_expand);
1691 
1692   if (expanded_by > 0) {
1693     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1694     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1695     g1_policy()->record_new_heap_size(num_regions());
1696   } else {
1697     ergo_verbose0(ErgoHeapSizing,
1698                   "did not expand the heap",
1699                   ergo_format_reason("heap expansion operation failed"));
1700     // The expansion of the virtual storage space was unsuccessful.
1701     // Let's see if it was because we ran out of swap.
1702     if (G1ExitOnExpansionFailure &&
1703         _hrm.available() >= regions_to_expand) {
1704       // We had head room...
1705       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1706     }
1707   }
1708   return regions_to_expand > 0;
1709 }
1710 
1711 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1712   size_t aligned_shrink_bytes =
1713     ReservedSpace::page_align_size_down(shrink_bytes);
1714   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1715                                          HeapRegion::GrainBytes);
1716   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1717 
1718   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1719   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1720 
1721   ergo_verbose3(ErgoHeapSizing,
1722                 "shrink the heap",
1723                 ergo_format_byte("requested shrinking amount")
1724                 ergo_format_byte("aligned shrinking amount")
1725                 ergo_format_byte("attempted shrinking amount"),
1726                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1727   if (num_regions_removed > 0) {
1728     g1_policy()->record_new_heap_size(num_regions());
1729   } else {
1730     ergo_verbose0(ErgoHeapSizing,
1731                   "did not shrink the heap",
1732                   ergo_format_reason("heap shrinking operation failed"));
1733   }
1734 }
1735 
1736 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1737   verify_region_sets_optional();
1738 
1739   // We should only reach here at the end of a Full GC which means we
1740   // should not not be holding to any GC alloc regions. The method
1741   // below will make sure of that and do any remaining clean up.
1742   _allocator->abandon_gc_alloc_regions();
1743 
1744   // Instead of tearing down / rebuilding the free lists here, we
1745   // could instead use the remove_all_pending() method on free_list to
1746   // remove only the ones that we need to remove.
1747   tear_down_region_sets(true /* free_list_only */);
1748   shrink_helper(shrink_bytes);
1749   rebuild_region_sets(true /* free_list_only */);
1750 
1751   _hrm.verify_optional();
1752   verify_region_sets_optional();
1753 }
1754 
1755 // Public methods.
1756 
1757 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1758 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1759 #endif // _MSC_VER
1760 
1761 
1762 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1763   SharedHeap(policy_),
1764   _g1_policy(policy_),
1765   _dirty_card_queue_set(false),
1766   _into_cset_dirty_card_queue_set(false),
1767   _is_alive_closure_cm(this),
1768   _is_alive_closure_stw(this),
1769   _ref_processor_cm(NULL),
1770   _ref_processor_stw(NULL),
1771   _bot_shared(NULL),
1772   _evac_failure_scan_stack(NULL),
1773   _mark_in_progress(false),
1774   _cg1r(NULL),
1775   _g1mm(NULL),
1776   _refine_cte_cl(NULL),
1777   _full_collection(false),
1778   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1779   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1780   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1781   _humongous_is_live(),
1782   _has_humongous_reclaim_candidates(false),
1783   _free_regions_coming(false),
1784   _young_list(new YoungList(this)),
1785   _gc_time_stamp(0),
1786   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1787   _old_plab_stats(OldPLABSize, PLABWeight),
1788   _expand_heap_after_alloc_failure(true),
1789   _surviving_young_words(NULL),
1790   _old_marking_cycles_started(0),
1791   _old_marking_cycles_completed(0),
1792   _concurrent_cycle_started(false),
1793   _heap_summary_sent(false),
1794   _in_cset_fast_test(),
1795   _dirty_cards_region_list(NULL),
1796   _worker_cset_start_region(NULL),
1797   _worker_cset_start_region_time_stamp(NULL),
1798   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1799   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1800   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1801   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1802 
1803   _g1h = this;
1804 
1805   _allocator = G1Allocator::create_allocator(_g1h);
1806   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1807 
1808   int n_queues = MAX2((int)ParallelGCThreads, 1);
1809   _task_queues = new RefToScanQueueSet(n_queues);
1810 
1811   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1812   assert(n_rem_sets > 0, "Invariant.");
1813 
1814   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1815   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1816   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1817 
1818   for (int i = 0; i < n_queues; i++) {
1819     RefToScanQueue* q = new RefToScanQueue();
1820     q->initialize();
1821     _task_queues->register_queue(i, q);
1822     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1823   }
1824   clear_cset_start_regions();
1825 
1826   // Initialize the G1EvacuationFailureALot counters and flags.
1827   NOT_PRODUCT(reset_evacuation_should_fail();)
1828 
1829   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1830 }
1831 
1832 jint G1CollectedHeap::initialize() {
1833   CollectedHeap::pre_initialize();
1834   os::enable_vtime();
1835 
1836   G1Log::init();
1837 
1838   // Necessary to satisfy locking discipline assertions.
1839 
1840   MutexLocker x(Heap_lock);
1841 
1842   // We have to initialize the printer before committing the heap, as
1843   // it will be used then.
1844   _hr_printer.set_active(G1PrintHeapRegions);
1845 
1846   // While there are no constraints in the GC code that HeapWordSize
1847   // be any particular value, there are multiple other areas in the
1848   // system which believe this to be true (e.g. oop->object_size in some
1849   // cases incorrectly returns the size in wordSize units rather than
1850   // HeapWordSize).
1851   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1852 
1853   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1854   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1855   size_t heap_alignment = collector_policy()->heap_alignment();
1856 
1857   // Ensure that the sizes are properly aligned.
1858   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1859   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1860   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1861 
1862   _refine_cte_cl = new RefineCardTableEntryClosure();
1863 
1864   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1865 
1866   // Reserve the maximum.
1867 
1868   // When compressed oops are enabled, the preferred heap base
1869   // is calculated by subtracting the requested size from the
1870   // 32Gb boundary and using the result as the base address for
1871   // heap reservation. If the requested size is not aligned to
1872   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1873   // into the ReservedHeapSpace constructor) then the actual
1874   // base of the reserved heap may end up differing from the
1875   // address that was requested (i.e. the preferred heap base).
1876   // If this happens then we could end up using a non-optimal
1877   // compressed oops mode.
1878 
1879   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1880                                                  heap_alignment);
1881 
1882   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1883 
1884   // Create the barrier set for the entire reserved region.
1885   G1SATBCardTableLoggingModRefBS* bs
1886     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1887   bs->initialize();
1888   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1889   set_barrier_set(bs);
1890 
1891   // Also create a G1 rem set.
1892   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1893 
1894   // Carve out the G1 part of the heap.
1895 
1896   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1897   G1RegionToSpaceMapper* heap_storage =
1898     G1RegionToSpaceMapper::create_mapper(g1_rs,
1899                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1900                                          HeapRegion::GrainBytes,
1901                                          1,
1902                                          mtJavaHeap);
1903   heap_storage->set_mapping_changed_listener(&_listener);
1904 
1905   // Reserve space for the block offset table. We do not support automatic uncommit
1906   // for the card table at this time. BOT only.
1907   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1908   G1RegionToSpaceMapper* bot_storage =
1909     G1RegionToSpaceMapper::create_mapper(bot_rs,
1910                                          os::vm_page_size(),
1911                                          HeapRegion::GrainBytes,
1912                                          G1BlockOffsetSharedArray::N_bytes,
1913                                          mtGC);
1914 
1915   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1916   G1RegionToSpaceMapper* cardtable_storage =
1917     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1918                                          os::vm_page_size(),
1919                                          HeapRegion::GrainBytes,
1920                                          G1BlockOffsetSharedArray::N_bytes,
1921                                          mtGC);
1922 
1923   // Reserve space for the card counts table.
1924   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1925   G1RegionToSpaceMapper* card_counts_storage =
1926     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1927                                          os::vm_page_size(),
1928                                          HeapRegion::GrainBytes,
1929                                          G1BlockOffsetSharedArray::N_bytes,
1930                                          mtGC);
1931 
1932   // Reserve space for prev and next bitmap.
1933   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1934 
1935   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1936   G1RegionToSpaceMapper* prev_bitmap_storage =
1937     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1938                                          os::vm_page_size(),
1939                                          HeapRegion::GrainBytes,
1940                                          CMBitMap::mark_distance(),
1941                                          mtGC);
1942 
1943   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1944   G1RegionToSpaceMapper* next_bitmap_storage =
1945     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1946                                          os::vm_page_size(),
1947                                          HeapRegion::GrainBytes,
1948                                          CMBitMap::mark_distance(),
1949                                          mtGC);
1950 
1951   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1952   g1_barrier_set()->initialize(cardtable_storage);
1953    // Do later initialization work for concurrent refinement.
1954   _cg1r->init(card_counts_storage);
1955 
1956   // 6843694 - ensure that the maximum region index can fit
1957   // in the remembered set structures.
1958   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1959   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1960 
1961   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1962   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1963   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1964             "too many cards per region");
1965 
1966   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1967 
1968   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1969 
1970   _g1h = this;
1971 
1972   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1973   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1974 
1975   // Create the ConcurrentMark data structure and thread.
1976   // (Must do this late, so that "max_regions" is defined.)
1977   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1978   if (_cm == NULL || !_cm->completed_initialization()) {
1979     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1980     return JNI_ENOMEM;
1981   }
1982   _cmThread = _cm->cmThread();
1983 
1984   // Initialize the from_card cache structure of HeapRegionRemSet.
1985   HeapRegionRemSet::init_heap(max_regions());
1986 
1987   // Now expand into the initial heap size.
1988   if (!expand(init_byte_size)) {
1989     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1990     return JNI_ENOMEM;
1991   }
1992 
1993   // Perform any initialization actions delegated to the policy.
1994   g1_policy()->init();
1995 
1996   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1997                                                SATB_Q_FL_lock,
1998                                                G1SATBProcessCompletedThreshold,
1999                                                Shared_SATB_Q_lock);
2000 
2001   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2002                                                 DirtyCardQ_CBL_mon,
2003                                                 DirtyCardQ_FL_lock,
2004                                                 concurrent_g1_refine()->yellow_zone(),
2005                                                 concurrent_g1_refine()->red_zone(),
2006                                                 Shared_DirtyCardQ_lock);
2007 
2008   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2009                                     DirtyCardQ_CBL_mon,
2010                                     DirtyCardQ_FL_lock,
2011                                     -1, // never trigger processing
2012                                     -1, // no limit on length
2013                                     Shared_DirtyCardQ_lock,
2014                                     &JavaThread::dirty_card_queue_set());
2015 
2016   // Initialize the card queue set used to hold cards containing
2017   // references into the collection set.
2018   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2019                                              DirtyCardQ_CBL_mon,
2020                                              DirtyCardQ_FL_lock,
2021                                              -1, // never trigger processing
2022                                              -1, // no limit on length
2023                                              Shared_DirtyCardQ_lock,
2024                                              &JavaThread::dirty_card_queue_set());
2025 
2026   // In case we're keeping closure specialization stats, initialize those
2027   // counts and that mechanism.
2028   SpecializationStats::clear();
2029 
2030   // Here we allocate the dummy HeapRegion that is required by the
2031   // G1AllocRegion class.
2032   HeapRegion* dummy_region = _hrm.get_dummy_region();
2033 
2034   // We'll re-use the same region whether the alloc region will
2035   // require BOT updates or not and, if it doesn't, then a non-young
2036   // region will complain that it cannot support allocations without
2037   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2038   dummy_region->set_eden();
2039   // Make sure it's full.
2040   dummy_region->set_top(dummy_region->end());
2041   G1AllocRegion::setup(this, dummy_region);
2042 
2043   _allocator->init_mutator_alloc_region();
2044 
2045   // Do create of the monitoring and management support so that
2046   // values in the heap have been properly initialized.
2047   _g1mm = new G1MonitoringSupport(this);
2048 
2049   G1StringDedup::initialize();
2050 
2051   return JNI_OK;
2052 }
2053 
2054 void G1CollectedHeap::stop() {
2055   // Stop all concurrent threads. We do this to make sure these threads
2056   // do not continue to execute and access resources (e.g. gclog_or_tty)
2057   // that are destroyed during shutdown.
2058   _cg1r->stop();
2059   _cmThread->stop();
2060   if (G1StringDedup::is_enabled()) {
2061     G1StringDedup::stop();
2062   }
2063 }
2064 
2065 void G1CollectedHeap::clear_humongous_is_live_table() {
2066   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2067   _humongous_is_live.clear();
2068 }
2069 
2070 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2071   return HeapRegion::max_region_size();
2072 }
2073 
2074 void G1CollectedHeap::ref_processing_init() {
2075   // Reference processing in G1 currently works as follows:
2076   //
2077   // * There are two reference processor instances. One is
2078   //   used to record and process discovered references
2079   //   during concurrent marking; the other is used to
2080   //   record and process references during STW pauses
2081   //   (both full and incremental).
2082   // * Both ref processors need to 'span' the entire heap as
2083   //   the regions in the collection set may be dotted around.
2084   //
2085   // * For the concurrent marking ref processor:
2086   //   * Reference discovery is enabled at initial marking.
2087   //   * Reference discovery is disabled and the discovered
2088   //     references processed etc during remarking.
2089   //   * Reference discovery is MT (see below).
2090   //   * Reference discovery requires a barrier (see below).
2091   //   * Reference processing may or may not be MT
2092   //     (depending on the value of ParallelRefProcEnabled
2093   //     and ParallelGCThreads).
2094   //   * A full GC disables reference discovery by the CM
2095   //     ref processor and abandons any entries on it's
2096   //     discovered lists.
2097   //
2098   // * For the STW processor:
2099   //   * Non MT discovery is enabled at the start of a full GC.
2100   //   * Processing and enqueueing during a full GC is non-MT.
2101   //   * During a full GC, references are processed after marking.
2102   //
2103   //   * Discovery (may or may not be MT) is enabled at the start
2104   //     of an incremental evacuation pause.
2105   //   * References are processed near the end of a STW evacuation pause.
2106   //   * For both types of GC:
2107   //     * Discovery is atomic - i.e. not concurrent.
2108   //     * Reference discovery will not need a barrier.
2109 
2110   SharedHeap::ref_processing_init();
2111   MemRegion mr = reserved_region();
2112 
2113   // Concurrent Mark ref processor
2114   _ref_processor_cm =
2115     new ReferenceProcessor(mr,    // span
2116                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2117                                 // mt processing
2118                            (int) ParallelGCThreads,
2119                                 // degree of mt processing
2120                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2121                                 // mt discovery
2122                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2123                                 // degree of mt discovery
2124                            false,
2125                                 // Reference discovery is not atomic
2126                            &_is_alive_closure_cm);
2127                                 // is alive closure
2128                                 // (for efficiency/performance)
2129 
2130   // STW ref processor
2131   _ref_processor_stw =
2132     new ReferenceProcessor(mr,    // span
2133                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2134                                 // mt processing
2135                            MAX2((int)ParallelGCThreads, 1),
2136                                 // degree of mt processing
2137                            (ParallelGCThreads > 1),
2138                                 // mt discovery
2139                            MAX2((int)ParallelGCThreads, 1),
2140                                 // degree of mt discovery
2141                            true,
2142                                 // Reference discovery is atomic
2143                            &_is_alive_closure_stw);
2144                                 // is alive closure
2145                                 // (for efficiency/performance)
2146 }
2147 
2148 size_t G1CollectedHeap::capacity() const {
2149   return _hrm.length() * HeapRegion::GrainBytes;
2150 }
2151 
2152 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2153   assert(!hr->is_continues_humongous(), "pre-condition");
2154   hr->reset_gc_time_stamp();
2155   if (hr->is_starts_humongous()) {
2156     uint first_index = hr->hrm_index() + 1;
2157     uint last_index = hr->last_hc_index();
2158     for (uint i = first_index; i < last_index; i += 1) {
2159       HeapRegion* chr = region_at(i);
2160       assert(chr->is_continues_humongous(), "sanity");
2161       chr->reset_gc_time_stamp();
2162     }
2163   }
2164 }
2165 
2166 #ifndef PRODUCT
2167 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2168 private:
2169   unsigned _gc_time_stamp;
2170   bool _failures;
2171 
2172 public:
2173   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2174     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2175 
2176   virtual bool doHeapRegion(HeapRegion* hr) {
2177     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2178     if (_gc_time_stamp != region_gc_time_stamp) {
2179       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2180                              "expected %d", HR_FORMAT_PARAMS(hr),
2181                              region_gc_time_stamp, _gc_time_stamp);
2182       _failures = true;
2183     }
2184     return false;
2185   }
2186 
2187   bool failures() { return _failures; }
2188 };
2189 
2190 void G1CollectedHeap::check_gc_time_stamps() {
2191   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2192   heap_region_iterate(&cl);
2193   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2194 }
2195 #endif // PRODUCT
2196 
2197 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2198                                                  DirtyCardQueue* into_cset_dcq,
2199                                                  bool concurrent,
2200                                                  uint worker_i) {
2201   // Clean cards in the hot card cache
2202   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2203   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2204 
2205   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2206   size_t n_completed_buffers = 0;
2207   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2208     n_completed_buffers++;
2209   }
2210   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2211   dcqs.clear_n_completed_buffers();
2212   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2213 }
2214 
2215 
2216 // Computes the sum of the storage used by the various regions.
2217 size_t G1CollectedHeap::used() const {
2218   return _allocator->used();
2219 }
2220 
2221 size_t G1CollectedHeap::used_unlocked() const {
2222   return _allocator->used_unlocked();
2223 }
2224 
2225 class SumUsedClosure: public HeapRegionClosure {
2226   size_t _used;
2227 public:
2228   SumUsedClosure() : _used(0) {}
2229   bool doHeapRegion(HeapRegion* r) {
2230     if (!r->is_continues_humongous()) {
2231       _used += r->used();
2232     }
2233     return false;
2234   }
2235   size_t result() { return _used; }
2236 };
2237 
2238 size_t G1CollectedHeap::recalculate_used() const {
2239   double recalculate_used_start = os::elapsedTime();
2240 
2241   SumUsedClosure blk;
2242   heap_region_iterate(&blk);
2243 
2244   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2245   return blk.result();
2246 }
2247 
2248 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2249   switch (cause) {
2250     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2251     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2252     case GCCause::_g1_humongous_allocation: return true;
2253     case GCCause::_update_allocation_context_stats_inc: return true;
2254     case GCCause::_wb_conc_mark:            return true;
2255     default:                                return false;
2256   }
2257 }
2258 
2259 #ifndef PRODUCT
2260 void G1CollectedHeap::allocate_dummy_regions() {
2261   // Let's fill up most of the region
2262   size_t word_size = HeapRegion::GrainWords - 1024;
2263   // And as a result the region we'll allocate will be humongous.
2264   guarantee(is_humongous(word_size), "sanity");
2265 
2266   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2267     // Let's use the existing mechanism for the allocation
2268     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2269                                                  AllocationContext::system());
2270     if (dummy_obj != NULL) {
2271       MemRegion mr(dummy_obj, word_size);
2272       CollectedHeap::fill_with_object(mr);
2273     } else {
2274       // If we can't allocate once, we probably cannot allocate
2275       // again. Let's get out of the loop.
2276       break;
2277     }
2278   }
2279 }
2280 #endif // !PRODUCT
2281 
2282 void G1CollectedHeap::increment_old_marking_cycles_started() {
2283   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2284     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2285     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2286     _old_marking_cycles_started, _old_marking_cycles_completed));
2287 
2288   _old_marking_cycles_started++;
2289 }
2290 
2291 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2292   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2293 
2294   // We assume that if concurrent == true, then the caller is a
2295   // concurrent thread that was joined the Suspendible Thread
2296   // Set. If there's ever a cheap way to check this, we should add an
2297   // assert here.
2298 
2299   // Given that this method is called at the end of a Full GC or of a
2300   // concurrent cycle, and those can be nested (i.e., a Full GC can
2301   // interrupt a concurrent cycle), the number of full collections
2302   // completed should be either one (in the case where there was no
2303   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2304   // behind the number of full collections started.
2305 
2306   // This is the case for the inner caller, i.e. a Full GC.
2307   assert(concurrent ||
2308          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2309          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2310          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2311                  "is inconsistent with _old_marking_cycles_completed = %u",
2312                  _old_marking_cycles_started, _old_marking_cycles_completed));
2313 
2314   // This is the case for the outer caller, i.e. the concurrent cycle.
2315   assert(!concurrent ||
2316          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2317          err_msg("for outer caller (concurrent cycle): "
2318                  "_old_marking_cycles_started = %u "
2319                  "is inconsistent with _old_marking_cycles_completed = %u",
2320                  _old_marking_cycles_started, _old_marking_cycles_completed));
2321 
2322   _old_marking_cycles_completed += 1;
2323 
2324   // We need to clear the "in_progress" flag in the CM thread before
2325   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2326   // is set) so that if a waiter requests another System.gc() it doesn't
2327   // incorrectly see that a marking cycle is still in progress.
2328   if (concurrent) {
2329     _cmThread->clear_in_progress();
2330   }
2331 
2332   // This notify_all() will ensure that a thread that called
2333   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2334   // and it's waiting for a full GC to finish will be woken up. It is
2335   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2336   FullGCCount_lock->notify_all();
2337 }
2338 
2339 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2340   _concurrent_cycle_started = true;
2341   _gc_timer_cm->register_gc_start(start_time);
2342 
2343   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2344   trace_heap_before_gc(_gc_tracer_cm);
2345 }
2346 
2347 void G1CollectedHeap::register_concurrent_cycle_end() {
2348   if (_concurrent_cycle_started) {
2349     if (_cm->has_aborted()) {
2350       _gc_tracer_cm->report_concurrent_mode_failure();
2351     }
2352 
2353     _gc_timer_cm->register_gc_end();
2354     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2355 
2356     // Clear state variables to prepare for the next concurrent cycle.
2357     _concurrent_cycle_started = false;
2358     _heap_summary_sent = false;
2359   }
2360 }
2361 
2362 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2363   if (_concurrent_cycle_started) {
2364     // This function can be called when:
2365     //  the cleanup pause is run
2366     //  the concurrent cycle is aborted before the cleanup pause.
2367     //  the concurrent cycle is aborted after the cleanup pause,
2368     //   but before the concurrent cycle end has been registered.
2369     // Make sure that we only send the heap information once.
2370     if (!_heap_summary_sent) {
2371       trace_heap_after_gc(_gc_tracer_cm);
2372       _heap_summary_sent = true;
2373     }
2374   }
2375 }
2376 
2377 G1YCType G1CollectedHeap::yc_type() {
2378   bool is_young = g1_policy()->gcs_are_young();
2379   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2380   bool is_during_mark = mark_in_progress();
2381 
2382   if (is_initial_mark) {
2383     return InitialMark;
2384   } else if (is_during_mark) {
2385     return DuringMark;
2386   } else if (is_young) {
2387     return Normal;
2388   } else {
2389     return Mixed;
2390   }
2391 }
2392 
2393 void G1CollectedHeap::collect(GCCause::Cause cause) {
2394   assert_heap_not_locked();
2395 
2396   uint gc_count_before;
2397   uint old_marking_count_before;
2398   uint full_gc_count_before;
2399   bool retry_gc;
2400 
2401   do {
2402     retry_gc = false;
2403 
2404     {
2405       MutexLocker ml(Heap_lock);
2406 
2407       // Read the GC count while holding the Heap_lock
2408       gc_count_before = total_collections();
2409       full_gc_count_before = total_full_collections();
2410       old_marking_count_before = _old_marking_cycles_started;
2411     }
2412 
2413     if (should_do_concurrent_full_gc(cause)) {
2414       // Schedule an initial-mark evacuation pause that will start a
2415       // concurrent cycle. We're setting word_size to 0 which means that
2416       // we are not requesting a post-GC allocation.
2417       VM_G1IncCollectionPause op(gc_count_before,
2418                                  0,     /* word_size */
2419                                  true,  /* should_initiate_conc_mark */
2420                                  g1_policy()->max_pause_time_ms(),
2421                                  cause);
2422       op.set_allocation_context(AllocationContext::current());
2423 
2424       VMThread::execute(&op);
2425       if (!op.pause_succeeded()) {
2426         if (old_marking_count_before == _old_marking_cycles_started) {
2427           retry_gc = op.should_retry_gc();
2428         } else {
2429           // A Full GC happened while we were trying to schedule the
2430           // initial-mark GC. No point in starting a new cycle given
2431           // that the whole heap was collected anyway.
2432         }
2433 
2434         if (retry_gc) {
2435           if (GC_locker::is_active_and_needs_gc()) {
2436             GC_locker::stall_until_clear();
2437           }
2438         }
2439       }
2440     } else {
2441       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2442           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2443 
2444         // Schedule a standard evacuation pause. We're setting word_size
2445         // to 0 which means that we are not requesting a post-GC allocation.
2446         VM_G1IncCollectionPause op(gc_count_before,
2447                                    0,     /* word_size */
2448                                    false, /* should_initiate_conc_mark */
2449                                    g1_policy()->max_pause_time_ms(),
2450                                    cause);
2451         VMThread::execute(&op);
2452       } else {
2453         // Schedule a Full GC.
2454         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2455         VMThread::execute(&op);
2456       }
2457     }
2458   } while (retry_gc);
2459 }
2460 
2461 bool G1CollectedHeap::is_in(const void* p) const {
2462   if (_hrm.reserved().contains(p)) {
2463     // Given that we know that p is in the reserved space,
2464     // heap_region_containing_raw() should successfully
2465     // return the containing region.
2466     HeapRegion* hr = heap_region_containing_raw(p);
2467     return hr->is_in(p);
2468   } else {
2469     return false;
2470   }
2471 }
2472 
2473 #ifdef ASSERT
2474 bool G1CollectedHeap::is_in_exact(const void* p) const {
2475   bool contains = reserved_region().contains(p);
2476   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2477   if (contains && available) {
2478     return true;
2479   } else {
2480     return false;
2481   }
2482 }
2483 #endif
2484 
2485 // Iteration functions.
2486 
2487 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2488 
2489 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2490   ExtendedOopClosure* _cl;
2491 public:
2492   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2493   bool doHeapRegion(HeapRegion* r) {
2494     if (!r->is_continues_humongous()) {
2495       r->oop_iterate(_cl);
2496     }
2497     return false;
2498   }
2499 };
2500 
2501 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2502   IterateOopClosureRegionClosure blk(cl);
2503   heap_region_iterate(&blk);
2504 }
2505 
2506 // Iterates an ObjectClosure over all objects within a HeapRegion.
2507 
2508 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2509   ObjectClosure* _cl;
2510 public:
2511   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2512   bool doHeapRegion(HeapRegion* r) {
2513     if (!r->is_continues_humongous()) {
2514       r->object_iterate(_cl);
2515     }
2516     return false;
2517   }
2518 };
2519 
2520 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2521   IterateObjectClosureRegionClosure blk(cl);
2522   heap_region_iterate(&blk);
2523 }
2524 
2525 // Calls a SpaceClosure on a HeapRegion.
2526 
2527 class SpaceClosureRegionClosure: public HeapRegionClosure {
2528   SpaceClosure* _cl;
2529 public:
2530   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2531   bool doHeapRegion(HeapRegion* r) {
2532     _cl->do_space(r);
2533     return false;
2534   }
2535 };
2536 
2537 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2538   SpaceClosureRegionClosure blk(cl);
2539   heap_region_iterate(&blk);
2540 }
2541 
2542 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2543   _hrm.iterate(cl);
2544 }
2545 
2546 void
2547 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2548                                          uint worker_id,
2549                                          HeapRegionClaimer *hrclaimer,
2550                                          bool concurrent) const {
2551   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2552 }
2553 
2554 // Clear the cached CSet starting regions and (more importantly)
2555 // the time stamps. Called when we reset the GC time stamp.
2556 void G1CollectedHeap::clear_cset_start_regions() {
2557   assert(_worker_cset_start_region != NULL, "sanity");
2558   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2559 
2560   int n_queues = MAX2((int)ParallelGCThreads, 1);
2561   for (int i = 0; i < n_queues; i++) {
2562     _worker_cset_start_region[i] = NULL;
2563     _worker_cset_start_region_time_stamp[i] = 0;
2564   }
2565 }
2566 
2567 // Given the id of a worker, obtain or calculate a suitable
2568 // starting region for iterating over the current collection set.
2569 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2570   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2571 
2572   HeapRegion* result = NULL;
2573   unsigned gc_time_stamp = get_gc_time_stamp();
2574 
2575   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2576     // Cached starting region for current worker was set
2577     // during the current pause - so it's valid.
2578     // Note: the cached starting heap region may be NULL
2579     // (when the collection set is empty).
2580     result = _worker_cset_start_region[worker_i];
2581     assert(result == NULL || result->in_collection_set(), "sanity");
2582     return result;
2583   }
2584 
2585   // The cached entry was not valid so let's calculate
2586   // a suitable starting heap region for this worker.
2587 
2588   // We want the parallel threads to start their collection
2589   // set iteration at different collection set regions to
2590   // avoid contention.
2591   // If we have:
2592   //          n collection set regions
2593   //          p threads
2594   // Then thread t will start at region floor ((t * n) / p)
2595 
2596   result = g1_policy()->collection_set();
2597   uint cs_size = g1_policy()->cset_region_length();
2598   uint active_workers = workers()->active_workers();
2599   assert(UseDynamicNumberOfGCThreads ||
2600            active_workers == workers()->total_workers(),
2601            "Unless dynamic should use total workers");
2602 
2603   uint end_ind   = (cs_size * worker_i) / active_workers;
2604   uint start_ind = 0;
2605 
2606   if (worker_i > 0 &&
2607       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2608     // Previous workers starting region is valid
2609     // so let's iterate from there
2610     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2611     result = _worker_cset_start_region[worker_i - 1];
2612   }
2613 
2614   for (uint i = start_ind; i < end_ind; i++) {
2615     result = result->next_in_collection_set();
2616   }
2617 
2618   // Note: the calculated starting heap region may be NULL
2619   // (when the collection set is empty).
2620   assert(result == NULL || result->in_collection_set(), "sanity");
2621   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2622          "should be updated only once per pause");
2623   _worker_cset_start_region[worker_i] = result;
2624   OrderAccess::storestore();
2625   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2626   return result;
2627 }
2628 
2629 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2630   HeapRegion* r = g1_policy()->collection_set();
2631   while (r != NULL) {
2632     HeapRegion* next = r->next_in_collection_set();
2633     if (cl->doHeapRegion(r)) {
2634       cl->incomplete();
2635       return;
2636     }
2637     r = next;
2638   }
2639 }
2640 
2641 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2642                                                   HeapRegionClosure *cl) {
2643   if (r == NULL) {
2644     // The CSet is empty so there's nothing to do.
2645     return;
2646   }
2647 
2648   assert(r->in_collection_set(),
2649          "Start region must be a member of the collection set.");
2650   HeapRegion* cur = r;
2651   while (cur != NULL) {
2652     HeapRegion* next = cur->next_in_collection_set();
2653     if (cl->doHeapRegion(cur) && false) {
2654       cl->incomplete();
2655       return;
2656     }
2657     cur = next;
2658   }
2659   cur = g1_policy()->collection_set();
2660   while (cur != r) {
2661     HeapRegion* next = cur->next_in_collection_set();
2662     if (cl->doHeapRegion(cur) && false) {
2663       cl->incomplete();
2664       return;
2665     }
2666     cur = next;
2667   }
2668 }
2669 
2670 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2671   HeapRegion* result = _hrm.next_region_in_heap(from);
2672   while (result != NULL && result->is_humongous()) {
2673     result = _hrm.next_region_in_heap(result);
2674   }
2675   return result;
2676 }
2677 
2678 Space* G1CollectedHeap::space_containing(const void* addr) const {
2679   return heap_region_containing(addr);
2680 }
2681 
2682 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2683   Space* sp = space_containing(addr);
2684   return sp->block_start(addr);
2685 }
2686 
2687 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2688   Space* sp = space_containing(addr);
2689   return sp->block_size(addr);
2690 }
2691 
2692 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2693   Space* sp = space_containing(addr);
2694   return sp->block_is_obj(addr);
2695 }
2696 
2697 bool G1CollectedHeap::supports_tlab_allocation() const {
2698   return true;
2699 }
2700 
2701 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2702   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2703 }
2704 
2705 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2706   return young_list()->eden_used_bytes();
2707 }
2708 
2709 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2710 // must be smaller than the humongous object limit.
2711 size_t G1CollectedHeap::max_tlab_size() const {
2712   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2713 }
2714 
2715 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2716   // Return the remaining space in the cur alloc region, but not less than
2717   // the min TLAB size.
2718 
2719   // Also, this value can be at most the humongous object threshold,
2720   // since we can't allow tlabs to grow big enough to accommodate
2721   // humongous objects.
2722 
2723   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2724   size_t max_tlab = max_tlab_size() * wordSize;
2725   if (hr == NULL) {
2726     return max_tlab;
2727   } else {
2728     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2729   }
2730 }
2731 
2732 size_t G1CollectedHeap::max_capacity() const {
2733   return _hrm.reserved().byte_size();
2734 }
2735 
2736 jlong G1CollectedHeap::millis_since_last_gc() {
2737   // assert(false, "NYI");
2738   return 0;
2739 }
2740 
2741 void G1CollectedHeap::prepare_for_verify() {
2742   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2743     ensure_parsability(false);
2744   }
2745   g1_rem_set()->prepare_for_verify();
2746 }
2747 
2748 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2749                                               VerifyOption vo) {
2750   switch (vo) {
2751   case VerifyOption_G1UsePrevMarking:
2752     return hr->obj_allocated_since_prev_marking(obj);
2753   case VerifyOption_G1UseNextMarking:
2754     return hr->obj_allocated_since_next_marking(obj);
2755   case VerifyOption_G1UseMarkWord:
2756     return false;
2757   default:
2758     ShouldNotReachHere();
2759   }
2760   return false; // keep some compilers happy
2761 }
2762 
2763 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2764   switch (vo) {
2765   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2766   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2767   case VerifyOption_G1UseMarkWord:    return NULL;
2768   default:                            ShouldNotReachHere();
2769   }
2770   return NULL; // keep some compilers happy
2771 }
2772 
2773 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2774   switch (vo) {
2775   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2776   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2777   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2778   default:                            ShouldNotReachHere();
2779   }
2780   return false; // keep some compilers happy
2781 }
2782 
2783 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2784   switch (vo) {
2785   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2786   case VerifyOption_G1UseNextMarking: return "NTAMS";
2787   case VerifyOption_G1UseMarkWord:    return "NONE";
2788   default:                            ShouldNotReachHere();
2789   }
2790   return NULL; // keep some compilers happy
2791 }
2792 
2793 class VerifyRootsClosure: public OopClosure {
2794 private:
2795   G1CollectedHeap* _g1h;
2796   VerifyOption     _vo;
2797   bool             _failures;
2798 public:
2799   // _vo == UsePrevMarking -> use "prev" marking information,
2800   // _vo == UseNextMarking -> use "next" marking information,
2801   // _vo == UseMarkWord    -> use mark word from object header.
2802   VerifyRootsClosure(VerifyOption vo) :
2803     _g1h(G1CollectedHeap::heap()),
2804     _vo(vo),
2805     _failures(false) { }
2806 
2807   bool failures() { return _failures; }
2808 
2809   template <class T> void do_oop_nv(T* p) {
2810     T heap_oop = oopDesc::load_heap_oop(p);
2811     if (!oopDesc::is_null(heap_oop)) {
2812       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2813       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2814         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2815                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2816         if (_vo == VerifyOption_G1UseMarkWord) {
2817           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2818         }
2819         obj->print_on(gclog_or_tty);
2820         _failures = true;
2821       }
2822     }
2823   }
2824 
2825   void do_oop(oop* p)       { do_oop_nv(p); }
2826   void do_oop(narrowOop* p) { do_oop_nv(p); }
2827 };
2828 
2829 class G1VerifyCodeRootOopClosure: public OopClosure {
2830   G1CollectedHeap* _g1h;
2831   OopClosure* _root_cl;
2832   nmethod* _nm;
2833   VerifyOption _vo;
2834   bool _failures;
2835 
2836   template <class T> void do_oop_work(T* p) {
2837     // First verify that this root is live
2838     _root_cl->do_oop(p);
2839 
2840     if (!G1VerifyHeapRegionCodeRoots) {
2841       // We're not verifying the code roots attached to heap region.
2842       return;
2843     }
2844 
2845     // Don't check the code roots during marking verification in a full GC
2846     if (_vo == VerifyOption_G1UseMarkWord) {
2847       return;
2848     }
2849 
2850     // Now verify that the current nmethod (which contains p) is
2851     // in the code root list of the heap region containing the
2852     // object referenced by p.
2853 
2854     T heap_oop = oopDesc::load_heap_oop(p);
2855     if (!oopDesc::is_null(heap_oop)) {
2856       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2857 
2858       // Now fetch the region containing the object
2859       HeapRegion* hr = _g1h->heap_region_containing(obj);
2860       HeapRegionRemSet* hrrs = hr->rem_set();
2861       // Verify that the strong code root list for this region
2862       // contains the nmethod
2863       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2864         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2865                               "from nmethod "PTR_FORMAT" not in strong "
2866                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2867                               p, _nm, hr->bottom(), hr->end());
2868         _failures = true;
2869       }
2870     }
2871   }
2872 
2873 public:
2874   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2875     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2876 
2877   void do_oop(oop* p) { do_oop_work(p); }
2878   void do_oop(narrowOop* p) { do_oop_work(p); }
2879 
2880   void set_nmethod(nmethod* nm) { _nm = nm; }
2881   bool failures() { return _failures; }
2882 };
2883 
2884 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2885   G1VerifyCodeRootOopClosure* _oop_cl;
2886 
2887 public:
2888   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2889     _oop_cl(oop_cl) {}
2890 
2891   void do_code_blob(CodeBlob* cb) {
2892     nmethod* nm = cb->as_nmethod_or_null();
2893     if (nm != NULL) {
2894       _oop_cl->set_nmethod(nm);
2895       nm->oops_do(_oop_cl);
2896     }
2897   }
2898 };
2899 
2900 class YoungRefCounterClosure : public OopClosure {
2901   G1CollectedHeap* _g1h;
2902   int              _count;
2903  public:
2904   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2905   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2906   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2907 
2908   int count() { return _count; }
2909   void reset_count() { _count = 0; };
2910 };
2911 
2912 class VerifyKlassClosure: public KlassClosure {
2913   YoungRefCounterClosure _young_ref_counter_closure;
2914   OopClosure *_oop_closure;
2915  public:
2916   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2917   void do_klass(Klass* k) {
2918     k->oops_do(_oop_closure);
2919 
2920     _young_ref_counter_closure.reset_count();
2921     k->oops_do(&_young_ref_counter_closure);
2922     if (_young_ref_counter_closure.count() > 0) {
2923       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2924     }
2925   }
2926 };
2927 
2928 class VerifyLivenessOopClosure: public OopClosure {
2929   G1CollectedHeap* _g1h;
2930   VerifyOption _vo;
2931 public:
2932   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2933     _g1h(g1h), _vo(vo)
2934   { }
2935   void do_oop(narrowOop *p) { do_oop_work(p); }
2936   void do_oop(      oop *p) { do_oop_work(p); }
2937 
2938   template <class T> void do_oop_work(T *p) {
2939     oop obj = oopDesc::load_decode_heap_oop(p);
2940     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2941               "Dead object referenced by a not dead object");
2942   }
2943 };
2944 
2945 class VerifyObjsInRegionClosure: public ObjectClosure {
2946 private:
2947   G1CollectedHeap* _g1h;
2948   size_t _live_bytes;
2949   HeapRegion *_hr;
2950   VerifyOption _vo;
2951 public:
2952   // _vo == UsePrevMarking -> use "prev" marking information,
2953   // _vo == UseNextMarking -> use "next" marking information,
2954   // _vo == UseMarkWord    -> use mark word from object header.
2955   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2956     : _live_bytes(0), _hr(hr), _vo(vo) {
2957     _g1h = G1CollectedHeap::heap();
2958   }
2959   void do_object(oop o) {
2960     VerifyLivenessOopClosure isLive(_g1h, _vo);
2961     assert(o != NULL, "Huh?");
2962     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2963       // If the object is alive according to the mark word,
2964       // then verify that the marking information agrees.
2965       // Note we can't verify the contra-positive of the
2966       // above: if the object is dead (according to the mark
2967       // word), it may not be marked, or may have been marked
2968       // but has since became dead, or may have been allocated
2969       // since the last marking.
2970       if (_vo == VerifyOption_G1UseMarkWord) {
2971         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2972       }
2973 
2974       o->oop_iterate_no_header(&isLive);
2975       if (!_hr->obj_allocated_since_prev_marking(o)) {
2976         size_t obj_size = o->size();    // Make sure we don't overflow
2977         _live_bytes += (obj_size * HeapWordSize);
2978       }
2979     }
2980   }
2981   size_t live_bytes() { return _live_bytes; }
2982 };
2983 
2984 class PrintObjsInRegionClosure : public ObjectClosure {
2985   HeapRegion *_hr;
2986   G1CollectedHeap *_g1;
2987 public:
2988   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2989     _g1 = G1CollectedHeap::heap();
2990   };
2991 
2992   void do_object(oop o) {
2993     if (o != NULL) {
2994       HeapWord *start = (HeapWord *) o;
2995       size_t word_sz = o->size();
2996       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2997                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2998                           (void*) o, word_sz,
2999                           _g1->isMarkedPrev(o),
3000                           _g1->isMarkedNext(o),
3001                           _hr->obj_allocated_since_prev_marking(o));
3002       HeapWord *end = start + word_sz;
3003       HeapWord *cur;
3004       int *val;
3005       for (cur = start; cur < end; cur++) {
3006         val = (int *) cur;
3007         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3008       }
3009     }
3010   }
3011 };
3012 
3013 class VerifyRegionClosure: public HeapRegionClosure {
3014 private:
3015   bool             _par;
3016   VerifyOption     _vo;
3017   bool             _failures;
3018 public:
3019   // _vo == UsePrevMarking -> use "prev" marking information,
3020   // _vo == UseNextMarking -> use "next" marking information,
3021   // _vo == UseMarkWord    -> use mark word from object header.
3022   VerifyRegionClosure(bool par, VerifyOption vo)
3023     : _par(par),
3024       _vo(vo),
3025       _failures(false) {}
3026 
3027   bool failures() {
3028     return _failures;
3029   }
3030 
3031   bool doHeapRegion(HeapRegion* r) {
3032     if (!r->is_continues_humongous()) {
3033       bool failures = false;
3034       r->verify(_vo, &failures);
3035       if (failures) {
3036         _failures = true;
3037       } else {
3038         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3039         r->object_iterate(&not_dead_yet_cl);
3040         if (_vo != VerifyOption_G1UseNextMarking) {
3041           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3042             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3043                                    "max_live_bytes "SIZE_FORMAT" "
3044                                    "< calculated "SIZE_FORMAT,
3045                                    r->bottom(), r->end(),
3046                                    r->max_live_bytes(),
3047                                  not_dead_yet_cl.live_bytes());
3048             _failures = true;
3049           }
3050         } else {
3051           // When vo == UseNextMarking we cannot currently do a sanity
3052           // check on the live bytes as the calculation has not been
3053           // finalized yet.
3054         }
3055       }
3056     }
3057     return false; // stop the region iteration if we hit a failure
3058   }
3059 };
3060 
3061 // This is the task used for parallel verification of the heap regions
3062 
3063 class G1ParVerifyTask: public AbstractGangTask {
3064 private:
3065   G1CollectedHeap*  _g1h;
3066   VerifyOption      _vo;
3067   bool              _failures;
3068   HeapRegionClaimer _hrclaimer;
3069 
3070 public:
3071   // _vo == UsePrevMarking -> use "prev" marking information,
3072   // _vo == UseNextMarking -> use "next" marking information,
3073   // _vo == UseMarkWord    -> use mark word from object header.
3074   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3075       AbstractGangTask("Parallel verify task"),
3076       _g1h(g1h),
3077       _vo(vo),
3078       _failures(false),
3079       _hrclaimer(g1h->workers()->active_workers()) {}
3080 
3081   bool failures() {
3082     return _failures;
3083   }
3084 
3085   void work(uint worker_id) {
3086     HandleMark hm;
3087     VerifyRegionClosure blk(true, _vo);
3088     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3089     if (blk.failures()) {
3090       _failures = true;
3091     }
3092   }
3093 };
3094 
3095 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3096   if (SafepointSynchronize::is_at_safepoint()) {
3097     assert(Thread::current()->is_VM_thread(),
3098            "Expected to be executed serially by the VM thread at this point");
3099 
3100     if (!silent) { gclog_or_tty->print("Roots "); }
3101     VerifyRootsClosure rootsCl(vo);
3102     VerifyKlassClosure klassCl(this, &rootsCl);
3103     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3104 
3105     // We apply the relevant closures to all the oops in the
3106     // system dictionary, class loader data graph, the string table
3107     // and the nmethods in the code cache.
3108     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3109     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3110 
3111     G1RootProcessor root_processor(this, false /* trace_metadata */);
3112     root_processor.process_all_roots(&rootsCl,
3113                                      &cldCl,
3114                                      &blobsCl);
3115 
3116     bool failures = rootsCl.failures() || codeRootsCl.failures();
3117 
3118     if (vo != VerifyOption_G1UseMarkWord) {
3119       // If we're verifying during a full GC then the region sets
3120       // will have been torn down at the start of the GC. Therefore
3121       // verifying the region sets will fail. So we only verify
3122       // the region sets when not in a full GC.
3123       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3124       verify_region_sets();
3125     }
3126 
3127     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3128     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3129 
3130       G1ParVerifyTask task(this, vo);
3131       assert(UseDynamicNumberOfGCThreads ||
3132         workers()->active_workers() == workers()->total_workers(),
3133         "If not dynamic should be using all the workers");
3134       int n_workers = workers()->active_workers();
3135       set_par_threads(n_workers);
3136       workers()->run_task(&task);
3137       set_par_threads(0);
3138       if (task.failures()) {
3139         failures = true;
3140       }
3141 
3142     } else {
3143       VerifyRegionClosure blk(false, vo);
3144       heap_region_iterate(&blk);
3145       if (blk.failures()) {
3146         failures = true;
3147       }
3148     }
3149 
3150     if (G1StringDedup::is_enabled()) {
3151       if (!silent) gclog_or_tty->print("StrDedup ");
3152       G1StringDedup::verify();
3153     }
3154 
3155     if (failures) {
3156       gclog_or_tty->print_cr("Heap:");
3157       // It helps to have the per-region information in the output to
3158       // help us track down what went wrong. This is why we call
3159       // print_extended_on() instead of print_on().
3160       print_extended_on(gclog_or_tty);
3161       gclog_or_tty->cr();
3162 #ifndef PRODUCT
3163       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3164         concurrent_mark()->print_reachable("at-verification-failure",
3165                                            vo, false /* all */);
3166       }
3167 #endif
3168       gclog_or_tty->flush();
3169     }
3170     guarantee(!failures, "there should not have been any failures");
3171   } else {
3172     if (!silent) {
3173       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3174       if (G1StringDedup::is_enabled()) {
3175         gclog_or_tty->print(", StrDedup");
3176       }
3177       gclog_or_tty->print(") ");
3178     }
3179   }
3180 }
3181 
3182 void G1CollectedHeap::verify(bool silent) {
3183   verify(silent, VerifyOption_G1UsePrevMarking);
3184 }
3185 
3186 double G1CollectedHeap::verify(bool guard, const char* msg) {
3187   double verify_time_ms = 0.0;
3188 
3189   if (guard && total_collections() >= VerifyGCStartAt) {
3190     double verify_start = os::elapsedTime();
3191     HandleMark hm;  // Discard invalid handles created during verification
3192     prepare_for_verify();
3193     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3194     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3195   }
3196 
3197   return verify_time_ms;
3198 }
3199 
3200 void G1CollectedHeap::verify_before_gc() {
3201   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3202   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3203 }
3204 
3205 void G1CollectedHeap::verify_after_gc() {
3206   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3207   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3208 }
3209 
3210 class PrintRegionClosure: public HeapRegionClosure {
3211   outputStream* _st;
3212 public:
3213   PrintRegionClosure(outputStream* st) : _st(st) {}
3214   bool doHeapRegion(HeapRegion* r) {
3215     r->print_on(_st);
3216     return false;
3217   }
3218 };
3219 
3220 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3221                                        const HeapRegion* hr,
3222                                        const VerifyOption vo) const {
3223   switch (vo) {
3224   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3225   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3226   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3227   default:                            ShouldNotReachHere();
3228   }
3229   return false; // keep some compilers happy
3230 }
3231 
3232 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3233                                        const VerifyOption vo) const {
3234   switch (vo) {
3235   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3236   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3237   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3238   default:                            ShouldNotReachHere();
3239   }
3240   return false; // keep some compilers happy
3241 }
3242 
3243 void G1CollectedHeap::print_on(outputStream* st) const {
3244   st->print(" %-20s", "garbage-first heap");
3245   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3246             capacity()/K, used_unlocked()/K);
3247   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3248             _hrm.reserved().start(),
3249             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3250             _hrm.reserved().end());
3251   st->cr();
3252   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3253   uint young_regions = _young_list->length();
3254   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3255             (size_t) young_regions * HeapRegion::GrainBytes / K);
3256   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3257   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3258             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3259   st->cr();
3260   MetaspaceAux::print_on(st);
3261 }
3262 
3263 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3264   print_on(st);
3265 
3266   // Print the per-region information.
3267   st->cr();
3268   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3269                "HS=humongous(starts), HC=humongous(continues), "
3270                "CS=collection set, F=free, TS=gc time stamp, "
3271                "PTAMS=previous top-at-mark-start, "
3272                "NTAMS=next top-at-mark-start)");
3273   PrintRegionClosure blk(st);
3274   heap_region_iterate(&blk);
3275 }
3276 
3277 void G1CollectedHeap::print_on_error(outputStream* st) const {
3278   this->CollectedHeap::print_on_error(st);
3279 
3280   if (_cm != NULL) {
3281     st->cr();
3282     _cm->print_on_error(st);
3283   }
3284 }
3285 
3286 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3287   workers()->print_worker_threads_on(st);
3288   _cmThread->print_on(st);
3289   st->cr();
3290   _cm->print_worker_threads_on(st);
3291   _cg1r->print_worker_threads_on(st);
3292   if (G1StringDedup::is_enabled()) {
3293     G1StringDedup::print_worker_threads_on(st);
3294   }
3295 }
3296 
3297 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3298   workers()->threads_do(tc);
3299   tc->do_thread(_cmThread);
3300   _cg1r->threads_do(tc);
3301   if (G1StringDedup::is_enabled()) {
3302     G1StringDedup::threads_do(tc);
3303   }
3304 }
3305 
3306 void G1CollectedHeap::print_tracing_info() const {
3307   // We'll overload this to mean "trace GC pause statistics."
3308   if (TraceYoungGenTime || TraceOldGenTime) {
3309     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3310     // to that.
3311     g1_policy()->print_tracing_info();
3312   }
3313   if (G1SummarizeRSetStats) {
3314     g1_rem_set()->print_summary_info();
3315   }
3316   if (G1SummarizeConcMark) {
3317     concurrent_mark()->print_summary_info();
3318   }
3319   g1_policy()->print_yg_surv_rate_info();
3320   SpecializationStats::print();
3321 }
3322 
3323 #ifndef PRODUCT
3324 // Helpful for debugging RSet issues.
3325 
3326 class PrintRSetsClosure : public HeapRegionClosure {
3327 private:
3328   const char* _msg;
3329   size_t _occupied_sum;
3330 
3331 public:
3332   bool doHeapRegion(HeapRegion* r) {
3333     HeapRegionRemSet* hrrs = r->rem_set();
3334     size_t occupied = hrrs->occupied();
3335     _occupied_sum += occupied;
3336 
3337     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3338                            HR_FORMAT_PARAMS(r));
3339     if (occupied == 0) {
3340       gclog_or_tty->print_cr("  RSet is empty");
3341     } else {
3342       hrrs->print();
3343     }
3344     gclog_or_tty->print_cr("----------");
3345     return false;
3346   }
3347 
3348   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3349     gclog_or_tty->cr();
3350     gclog_or_tty->print_cr("========================================");
3351     gclog_or_tty->print_cr("%s", msg);
3352     gclog_or_tty->cr();
3353   }
3354 
3355   ~PrintRSetsClosure() {
3356     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3357     gclog_or_tty->print_cr("========================================");
3358     gclog_or_tty->cr();
3359   }
3360 };
3361 
3362 void G1CollectedHeap::print_cset_rsets() {
3363   PrintRSetsClosure cl("Printing CSet RSets");
3364   collection_set_iterate(&cl);
3365 }
3366 
3367 void G1CollectedHeap::print_all_rsets() {
3368   PrintRSetsClosure cl("Printing All RSets");;
3369   heap_region_iterate(&cl);
3370 }
3371 #endif // PRODUCT
3372 
3373 G1CollectedHeap* G1CollectedHeap::heap() {
3374   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3375          "not a garbage-first heap");
3376   return _g1h;
3377 }
3378 
3379 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3380   // always_do_update_barrier = false;
3381   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3382   // Fill TLAB's and such
3383   accumulate_statistics_all_tlabs();
3384   ensure_parsability(true);
3385 
3386   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3387       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3388     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3389   }
3390 }
3391 
3392 void G1CollectedHeap::gc_epilogue(bool full) {
3393 
3394   if (G1SummarizeRSetStats &&
3395       (G1SummarizeRSetStatsPeriod > 0) &&
3396       // we are at the end of the GC. Total collections has already been increased.
3397       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3398     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3399   }
3400 
3401   // FIXME: what is this about?
3402   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3403   // is set.
3404   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3405                         "derived pointer present"));
3406   // always_do_update_barrier = true;
3407 
3408   resize_all_tlabs();
3409   allocation_context_stats().update(full);
3410 
3411   // We have just completed a GC. Update the soft reference
3412   // policy with the new heap occupancy
3413   Universe::update_heap_info_at_gc();
3414 }
3415 
3416 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3417                                                uint gc_count_before,
3418                                                bool* succeeded,
3419                                                GCCause::Cause gc_cause) {
3420   assert_heap_not_locked_and_not_at_safepoint();
3421   g1_policy()->record_stop_world_start();
3422   VM_G1IncCollectionPause op(gc_count_before,
3423                              word_size,
3424                              false, /* should_initiate_conc_mark */
3425                              g1_policy()->max_pause_time_ms(),
3426                              gc_cause);
3427 
3428   op.set_allocation_context(AllocationContext::current());
3429   VMThread::execute(&op);
3430 
3431   HeapWord* result = op.result();
3432   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3433   assert(result == NULL || ret_succeeded,
3434          "the result should be NULL if the VM did not succeed");
3435   *succeeded = ret_succeeded;
3436 
3437   assert_heap_not_locked();
3438   return result;
3439 }
3440 
3441 void
3442 G1CollectedHeap::doConcurrentMark() {
3443   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3444   if (!_cmThread->in_progress()) {
3445     _cmThread->set_started();
3446     CGC_lock->notify();
3447   }
3448 }
3449 
3450 size_t G1CollectedHeap::pending_card_num() {
3451   size_t extra_cards = 0;
3452   JavaThread *curr = Threads::first();
3453   while (curr != NULL) {
3454     DirtyCardQueue& dcq = curr->dirty_card_queue();
3455     extra_cards += dcq.size();
3456     curr = curr->next();
3457   }
3458   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3459   size_t buffer_size = dcqs.buffer_size();
3460   size_t buffer_num = dcqs.completed_buffers_num();
3461 
3462   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3463   // in bytes - not the number of 'entries'. We need to convert
3464   // into a number of cards.
3465   return (buffer_size * buffer_num + extra_cards) / oopSize;
3466 }
3467 
3468 size_t G1CollectedHeap::cards_scanned() {
3469   return g1_rem_set()->cardsScanned();
3470 }
3471 
3472 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3473   HeapRegion* region = region_at(index);
3474   assert(region->is_starts_humongous(), "Must start a humongous object");
3475   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3476 }
3477 
3478 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3479  private:
3480   size_t _total_humongous;
3481   size_t _candidate_humongous;
3482 
3483   DirtyCardQueue _dcq;
3484 
3485   bool humongous_region_is_candidate(uint index) {
3486     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3487     assert(region->is_starts_humongous(), "Must start a humongous object");
3488     HeapRegionRemSet* const rset = region->rem_set();
3489     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3490     return !oop(region->bottom())->is_objArray() &&
3491            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3492             (!allow_stale_refs && rset->is_empty()));
3493   }
3494 
3495  public:
3496   RegisterHumongousWithInCSetFastTestClosure()
3497   : _total_humongous(0),
3498     _candidate_humongous(0),
3499     _dcq(&JavaThread::dirty_card_queue_set()) {
3500   }
3501 
3502   virtual bool doHeapRegion(HeapRegion* r) {
3503     if (!r->is_starts_humongous()) {
3504       return false;
3505     }
3506     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3507 
3508     uint region_idx = r->hrm_index();
3509     bool is_candidate = humongous_region_is_candidate(region_idx);
3510     // Is_candidate already filters out humongous object with large remembered sets.
3511     // If we have a humongous object with a few remembered sets, we simply flush these
3512     // remembered set entries into the DCQS. That will result in automatic
3513     // re-evaluation of their remembered set entries during the following evacuation
3514     // phase.
3515     if (is_candidate) {
3516       if (!r->rem_set()->is_empty()) {
3517         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3518                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3519         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3520         HeapRegionRemSetIterator hrrs(r->rem_set());
3521         size_t card_index;
3522         while (hrrs.has_next(card_index)) {
3523           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3524           // The remembered set might contain references to already freed
3525           // regions. Filter out such entries to avoid failing card table
3526           // verification.
3527           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3528             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3529               *card_ptr = CardTableModRefBS::dirty_card_val();
3530               _dcq.enqueue(card_ptr);
3531             }
3532           }
3533         }
3534         r->rem_set()->clear_locked();
3535       }
3536       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3537       g1h->register_humongous_region_with_cset(region_idx);
3538       _candidate_humongous++;
3539     }
3540     _total_humongous++;
3541 
3542     return false;
3543   }
3544 
3545   size_t total_humongous() const { return _total_humongous; }
3546   size_t candidate_humongous() const { return _candidate_humongous; }
3547 
3548   void flush_rem_set_entries() { _dcq.flush(); }
3549 };
3550 
3551 void G1CollectedHeap::register_humongous_regions_with_cset() {
3552   if (!G1EagerReclaimHumongousObjects) {
3553     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3554     return;
3555   }
3556   double time = os::elapsed_counter();
3557 
3558   RegisterHumongousWithInCSetFastTestClosure cl;
3559   heap_region_iterate(&cl);
3560 
3561   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3562   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3563                                                                   cl.total_humongous(),
3564                                                                   cl.candidate_humongous());
3565   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3566 
3567   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3568     clear_humongous_is_live_table();
3569   }
3570 
3571   // Finally flush all remembered set entries to re-check into the global DCQS.
3572   cl.flush_rem_set_entries();
3573 }
3574 
3575 void
3576 G1CollectedHeap::setup_surviving_young_words() {
3577   assert(_surviving_young_words == NULL, "pre-condition");
3578   uint array_length = g1_policy()->young_cset_region_length();
3579   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3580   if (_surviving_young_words == NULL) {
3581     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3582                           "Not enough space for young surv words summary.");
3583   }
3584   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3585 #ifdef ASSERT
3586   for (uint i = 0;  i < array_length; ++i) {
3587     assert( _surviving_young_words[i] == 0, "memset above" );
3588   }
3589 #endif // !ASSERT
3590 }
3591 
3592 void
3593 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3594   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3595   uint array_length = g1_policy()->young_cset_region_length();
3596   for (uint i = 0; i < array_length; ++i) {
3597     _surviving_young_words[i] += surv_young_words[i];
3598   }
3599 }
3600 
3601 void
3602 G1CollectedHeap::cleanup_surviving_young_words() {
3603   guarantee( _surviving_young_words != NULL, "pre-condition" );
3604   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3605   _surviving_young_words = NULL;
3606 }
3607 
3608 #ifdef ASSERT
3609 class VerifyCSetClosure: public HeapRegionClosure {
3610 public:
3611   bool doHeapRegion(HeapRegion* hr) {
3612     // Here we check that the CSet region's RSet is ready for parallel
3613     // iteration. The fields that we'll verify are only manipulated
3614     // when the region is part of a CSet and is collected. Afterwards,
3615     // we reset these fields when we clear the region's RSet (when the
3616     // region is freed) so they are ready when the region is
3617     // re-allocated. The only exception to this is if there's an
3618     // evacuation failure and instead of freeing the region we leave
3619     // it in the heap. In that case, we reset these fields during
3620     // evacuation failure handling.
3621     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3622 
3623     // Here's a good place to add any other checks we'd like to
3624     // perform on CSet regions.
3625     return false;
3626   }
3627 };
3628 #endif // ASSERT
3629 
3630 #if TASKQUEUE_STATS
3631 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3632   st->print_raw_cr("GC Task Stats");
3633   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3634   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3635 }
3636 
3637 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3638   print_taskqueue_stats_hdr(st);
3639 
3640   TaskQueueStats totals;
3641   const int n = workers()->total_workers();
3642   for (int i = 0; i < n; ++i) {
3643     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3644     totals += task_queue(i)->stats;
3645   }
3646   st->print_raw("tot "); totals.print(st); st->cr();
3647 
3648   DEBUG_ONLY(totals.verify());
3649 }
3650 
3651 void G1CollectedHeap::reset_taskqueue_stats() {
3652   const int n = workers()->total_workers();
3653   for (int i = 0; i < n; ++i) {
3654     task_queue(i)->stats.reset();
3655   }
3656 }
3657 #endif // TASKQUEUE_STATS
3658 
3659 void G1CollectedHeap::log_gc_header() {
3660   if (!G1Log::fine()) {
3661     return;
3662   }
3663 
3664   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3665 
3666   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3667     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3668     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3669 
3670   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3671 }
3672 
3673 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3674   if (!G1Log::fine()) {
3675     return;
3676   }
3677 
3678   if (G1Log::finer()) {
3679     if (evacuation_failed()) {
3680       gclog_or_tty->print(" (to-space exhausted)");
3681     }
3682     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3683     g1_policy()->phase_times()->note_gc_end();
3684     g1_policy()->phase_times()->print(pause_time_sec);
3685     g1_policy()->print_detailed_heap_transition();
3686   } else {
3687     if (evacuation_failed()) {
3688       gclog_or_tty->print("--");
3689     }
3690     g1_policy()->print_heap_transition();
3691     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3692   }
3693   gclog_or_tty->flush();
3694 }
3695 
3696 bool
3697 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3698   assert_at_safepoint(true /* should_be_vm_thread */);
3699   guarantee(!is_gc_active(), "collection is not reentrant");
3700 
3701   if (GC_locker::check_active_before_gc()) {
3702     return false;
3703   }
3704 
3705   _gc_timer_stw->register_gc_start();
3706 
3707   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3708 
3709   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3710   ResourceMark rm;
3711 
3712   print_heap_before_gc();
3713   trace_heap_before_gc(_gc_tracer_stw);
3714 
3715   verify_region_sets_optional();
3716   verify_dirty_young_regions();
3717 
3718   // This call will decide whether this pause is an initial-mark
3719   // pause. If it is, during_initial_mark_pause() will return true
3720   // for the duration of this pause.
3721   g1_policy()->decide_on_conc_mark_initiation();
3722 
3723   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3724   assert(!g1_policy()->during_initial_mark_pause() ||
3725           g1_policy()->gcs_are_young(), "sanity");
3726 
3727   // We also do not allow mixed GCs during marking.
3728   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3729 
3730   // Record whether this pause is an initial mark. When the current
3731   // thread has completed its logging output and it's safe to signal
3732   // the CM thread, the flag's value in the policy has been reset.
3733   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3734 
3735   // Inner scope for scope based logging, timers, and stats collection
3736   {
3737     EvacuationInfo evacuation_info;
3738 
3739     if (g1_policy()->during_initial_mark_pause()) {
3740       // We are about to start a marking cycle, so we increment the
3741       // full collection counter.
3742       increment_old_marking_cycles_started();
3743       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3744     }
3745 
3746     _gc_tracer_stw->report_yc_type(yc_type());
3747 
3748     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3749 
3750     uint active_workers = workers()->active_workers();
3751     double pause_start_sec = os::elapsedTime();
3752     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3753     log_gc_header();
3754 
3755     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3756     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3757 
3758     // If the secondary_free_list is not empty, append it to the
3759     // free_list. No need to wait for the cleanup operation to finish;
3760     // the region allocation code will check the secondary_free_list
3761     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3762     // set, skip this step so that the region allocation code has to
3763     // get entries from the secondary_free_list.
3764     if (!G1StressConcRegionFreeing) {
3765       append_secondary_free_list_if_not_empty_with_lock();
3766     }
3767 
3768     assert(check_young_list_well_formed(), "young list should be well formed");
3769 
3770     // Don't dynamically change the number of GC threads this early.  A value of
3771     // 0 is used to indicate serial work.  When parallel work is done,
3772     // it will be set.
3773 
3774     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3775       IsGCActiveMark x;
3776 
3777       gc_prologue(false);
3778       increment_total_collections(false /* full gc */);
3779       increment_gc_time_stamp();
3780 
3781       verify_before_gc();
3782 
3783       check_bitmaps("GC Start");
3784 
3785       COMPILER2_PRESENT(DerivedPointerTable::clear());
3786 
3787       // Please see comment in g1CollectedHeap.hpp and
3788       // G1CollectedHeap::ref_processing_init() to see how
3789       // reference processing currently works in G1.
3790 
3791       // Enable discovery in the STW reference processor
3792       ref_processor_stw()->enable_discovery();
3793 
3794       {
3795         // We want to temporarily turn off discovery by the
3796         // CM ref processor, if necessary, and turn it back on
3797         // on again later if we do. Using a scoped
3798         // NoRefDiscovery object will do this.
3799         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3800 
3801         // Forget the current alloc region (we might even choose it to be part
3802         // of the collection set!).
3803         _allocator->release_mutator_alloc_region();
3804 
3805         // We should call this after we retire the mutator alloc
3806         // region(s) so that all the ALLOC / RETIRE events are generated
3807         // before the start GC event.
3808         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3809 
3810         // This timing is only used by the ergonomics to handle our pause target.
3811         // It is unclear why this should not include the full pause. We will
3812         // investigate this in CR 7178365.
3813         //
3814         // Preserving the old comment here if that helps the investigation:
3815         //
3816         // The elapsed time induced by the start time below deliberately elides
3817         // the possible verification above.
3818         double sample_start_time_sec = os::elapsedTime();
3819 
3820 #if YOUNG_LIST_VERBOSE
3821         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3822         _young_list->print();
3823         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3824 #endif // YOUNG_LIST_VERBOSE
3825 
3826         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3827 
3828         double scan_wait_start = os::elapsedTime();
3829         // We have to wait until the CM threads finish scanning the
3830         // root regions as it's the only way to ensure that all the
3831         // objects on them have been correctly scanned before we start
3832         // moving them during the GC.
3833         bool waited = _cm->root_regions()->wait_until_scan_finished();
3834         double wait_time_ms = 0.0;
3835         if (waited) {
3836           double scan_wait_end = os::elapsedTime();
3837           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3838         }
3839         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3840 
3841 #if YOUNG_LIST_VERBOSE
3842         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3843         _young_list->print();
3844 #endif // YOUNG_LIST_VERBOSE
3845 
3846         if (g1_policy()->during_initial_mark_pause()) {
3847           concurrent_mark()->checkpointRootsInitialPre();
3848         }
3849 
3850 #if YOUNG_LIST_VERBOSE
3851         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3852         _young_list->print();
3853         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3854 #endif // YOUNG_LIST_VERBOSE
3855 
3856         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3857 
3858         register_humongous_regions_with_cset();
3859 
3860         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3861 
3862         _cm->note_start_of_gc();
3863         // We should not verify the per-thread SATB buffers given that
3864         // we have not filtered them yet (we'll do so during the
3865         // GC). We also call this after finalize_cset() to
3866         // ensure that the CSet has been finalized.
3867         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3868                                  true  /* verify_enqueued_buffers */,
3869                                  false /* verify_thread_buffers */,
3870                                  true  /* verify_fingers */);
3871 
3872         if (_hr_printer.is_active()) {
3873           HeapRegion* hr = g1_policy()->collection_set();
3874           while (hr != NULL) {
3875             _hr_printer.cset(hr);
3876             hr = hr->next_in_collection_set();
3877           }
3878         }
3879 
3880 #ifdef ASSERT
3881         VerifyCSetClosure cl;
3882         collection_set_iterate(&cl);
3883 #endif // ASSERT
3884 
3885         setup_surviving_young_words();
3886 
3887         // Initialize the GC alloc regions.
3888         _allocator->init_gc_alloc_regions(evacuation_info);
3889 
3890         // Actually do the work...
3891         evacuate_collection_set(evacuation_info);
3892 
3893         // We do this to mainly verify the per-thread SATB buffers
3894         // (which have been filtered by now) since we didn't verify
3895         // them earlier. No point in re-checking the stacks / enqueued
3896         // buffers given that the CSet has not changed since last time
3897         // we checked.
3898         _cm->verify_no_cset_oops(false /* verify_stacks */,
3899                                  false /* verify_enqueued_buffers */,
3900                                  true  /* verify_thread_buffers */,
3901                                  true  /* verify_fingers */);
3902 
3903         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3904 
3905         eagerly_reclaim_humongous_regions();
3906 
3907         g1_policy()->clear_collection_set();
3908 
3909         cleanup_surviving_young_words();
3910 
3911         // Start a new incremental collection set for the next pause.
3912         g1_policy()->start_incremental_cset_building();
3913 
3914         clear_cset_fast_test();
3915 
3916         _young_list->reset_sampled_info();
3917 
3918         // Don't check the whole heap at this point as the
3919         // GC alloc regions from this pause have been tagged
3920         // as survivors and moved on to the survivor list.
3921         // Survivor regions will fail the !is_young() check.
3922         assert(check_young_list_empty(false /* check_heap */),
3923           "young list should be empty");
3924 
3925 #if YOUNG_LIST_VERBOSE
3926         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3927         _young_list->print();
3928 #endif // YOUNG_LIST_VERBOSE
3929 
3930         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3931                                              _young_list->first_survivor_region(),
3932                                              _young_list->last_survivor_region());
3933 
3934         _young_list->reset_auxilary_lists();
3935 
3936         if (evacuation_failed()) {
3937           _allocator->set_used(recalculate_used());
3938           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3939           for (uint i = 0; i < n_queues; i++) {
3940             if (_evacuation_failed_info_array[i].has_failed()) {
3941               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3942             }
3943           }
3944         } else {
3945           // The "used" of the the collection set have already been subtracted
3946           // when they were freed.  Add in the bytes evacuated.
3947           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3948         }
3949 
3950         if (g1_policy()->during_initial_mark_pause()) {
3951           // We have to do this before we notify the CM threads that
3952           // they can start working to make sure that all the
3953           // appropriate initialization is done on the CM object.
3954           concurrent_mark()->checkpointRootsInitialPost();
3955           set_marking_started();
3956           // Note that we don't actually trigger the CM thread at
3957           // this point. We do that later when we're sure that
3958           // the current thread has completed its logging output.
3959         }
3960 
3961         allocate_dummy_regions();
3962 
3963 #if YOUNG_LIST_VERBOSE
3964         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3965         _young_list->print();
3966         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3967 #endif // YOUNG_LIST_VERBOSE
3968 
3969         _allocator->init_mutator_alloc_region();
3970 
3971         {
3972           size_t expand_bytes = g1_policy()->expansion_amount();
3973           if (expand_bytes > 0) {
3974             size_t bytes_before = capacity();
3975             // No need for an ergo verbose message here,
3976             // expansion_amount() does this when it returns a value > 0.
3977             if (!expand(expand_bytes)) {
3978               // We failed to expand the heap. Cannot do anything about it.
3979             }
3980           }
3981         }
3982 
3983         // We redo the verification but now wrt to the new CSet which
3984         // has just got initialized after the previous CSet was freed.
3985         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3986                                  true  /* verify_enqueued_buffers */,
3987                                  true  /* verify_thread_buffers */,
3988                                  true  /* verify_fingers */);
3989         _cm->note_end_of_gc();
3990 
3991         // This timing is only used by the ergonomics to handle our pause target.
3992         // It is unclear why this should not include the full pause. We will
3993         // investigate this in CR 7178365.
3994         double sample_end_time_sec = os::elapsedTime();
3995         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3996         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3997 
3998         MemoryService::track_memory_usage();
3999 
4000         // In prepare_for_verify() below we'll need to scan the deferred
4001         // update buffers to bring the RSets up-to-date if
4002         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4003         // the update buffers we'll probably need to scan cards on the
4004         // regions we just allocated to (i.e., the GC alloc
4005         // regions). However, during the last GC we called
4006         // set_saved_mark() on all the GC alloc regions, so card
4007         // scanning might skip the [saved_mark_word()...top()] area of
4008         // those regions (i.e., the area we allocated objects into
4009         // during the last GC). But it shouldn't. Given that
4010         // saved_mark_word() is conditional on whether the GC time stamp
4011         // on the region is current or not, by incrementing the GC time
4012         // stamp here we invalidate all the GC time stamps on all the
4013         // regions and saved_mark_word() will simply return top() for
4014         // all the regions. This is a nicer way of ensuring this rather
4015         // than iterating over the regions and fixing them. In fact, the
4016         // GC time stamp increment here also ensures that
4017         // saved_mark_word() will return top() between pauses, i.e.,
4018         // during concurrent refinement. So we don't need the
4019         // is_gc_active() check to decided which top to use when
4020         // scanning cards (see CR 7039627).
4021         increment_gc_time_stamp();
4022 
4023         verify_after_gc();
4024         check_bitmaps("GC End");
4025 
4026         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4027         ref_processor_stw()->verify_no_references_recorded();
4028 
4029         // CM reference discovery will be re-enabled if necessary.
4030       }
4031 
4032       // We should do this after we potentially expand the heap so
4033       // that all the COMMIT events are generated before the end GC
4034       // event, and after we retire the GC alloc regions so that all
4035       // RETIRE events are generated before the end GC event.
4036       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4037 
4038 #ifdef TRACESPINNING
4039       ParallelTaskTerminator::print_termination_counts();
4040 #endif
4041 
4042       gc_epilogue(false);
4043     }
4044 
4045     // Print the remainder of the GC log output.
4046     log_gc_footer(os::elapsedTime() - pause_start_sec);
4047 
4048     // It is not yet to safe to tell the concurrent mark to
4049     // start as we have some optional output below. We don't want the
4050     // output from the concurrent mark thread interfering with this
4051     // logging output either.
4052 
4053     _hrm.verify_optional();
4054     verify_region_sets_optional();
4055 
4056     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4057     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4058 
4059     print_heap_after_gc();
4060     trace_heap_after_gc(_gc_tracer_stw);
4061 
4062     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4063     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4064     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4065     // before any GC notifications are raised.
4066     g1mm()->update_sizes();
4067 
4068     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4069     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4070     _gc_timer_stw->register_gc_end();
4071     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4072   }
4073   // It should now be safe to tell the concurrent mark thread to start
4074   // without its logging output interfering with the logging output
4075   // that came from the pause.
4076 
4077   if (should_start_conc_mark) {
4078     // CAUTION: after the doConcurrentMark() call below,
4079     // the concurrent marking thread(s) could be running
4080     // concurrently with us. Make sure that anything after
4081     // this point does not assume that we are the only GC thread
4082     // running. Note: of course, the actual marking work will
4083     // not start until the safepoint itself is released in
4084     // SuspendibleThreadSet::desynchronize().
4085     doConcurrentMark();
4086   }
4087 
4088   return true;
4089 }
4090 
4091 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4092   _drain_in_progress = false;
4093   set_evac_failure_closure(cl);
4094   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4095 }
4096 
4097 void G1CollectedHeap::finalize_for_evac_failure() {
4098   assert(_evac_failure_scan_stack != NULL &&
4099          _evac_failure_scan_stack->length() == 0,
4100          "Postcondition");
4101   assert(!_drain_in_progress, "Postcondition");
4102   delete _evac_failure_scan_stack;
4103   _evac_failure_scan_stack = NULL;
4104 }
4105 
4106 void G1CollectedHeap::remove_self_forwarding_pointers() {
4107   double remove_self_forwards_start = os::elapsedTime();
4108 
4109   set_par_threads();
4110   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4111   workers()->run_task(&rsfp_task);
4112   set_par_threads(0);
4113 
4114   // Now restore saved marks, if any.
4115   assert(_objs_with_preserved_marks.size() ==
4116             _preserved_marks_of_objs.size(), "Both or none.");
4117   while (!_objs_with_preserved_marks.is_empty()) {
4118     oop obj = _objs_with_preserved_marks.pop();
4119     markOop m = _preserved_marks_of_objs.pop();
4120     obj->set_mark(m);
4121   }
4122   _objs_with_preserved_marks.clear(true);
4123   _preserved_marks_of_objs.clear(true);
4124 
4125   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4126 }
4127 
4128 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4129   _evac_failure_scan_stack->push(obj);
4130 }
4131 
4132 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4133   assert(_evac_failure_scan_stack != NULL, "precondition");
4134 
4135   while (_evac_failure_scan_stack->length() > 0) {
4136      oop obj = _evac_failure_scan_stack->pop();
4137      _evac_failure_closure->set_region(heap_region_containing(obj));
4138      obj->oop_iterate_backwards(_evac_failure_closure);
4139   }
4140 }
4141 
4142 oop
4143 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4144                                                oop old) {
4145   assert(obj_in_cs(old),
4146          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4147                  (HeapWord*) old));
4148   markOop m = old->mark();
4149   oop forward_ptr = old->forward_to_atomic(old);
4150   if (forward_ptr == NULL) {
4151     // Forward-to-self succeeded.
4152     assert(_par_scan_state != NULL, "par scan state");
4153     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4154     uint queue_num = _par_scan_state->queue_num();
4155 
4156     _evacuation_failed = true;
4157     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4158     if (_evac_failure_closure != cl) {
4159       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4160       assert(!_drain_in_progress,
4161              "Should only be true while someone holds the lock.");
4162       // Set the global evac-failure closure to the current thread's.
4163       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4164       set_evac_failure_closure(cl);
4165       // Now do the common part.
4166       handle_evacuation_failure_common(old, m);
4167       // Reset to NULL.
4168       set_evac_failure_closure(NULL);
4169     } else {
4170       // The lock is already held, and this is recursive.
4171       assert(_drain_in_progress, "This should only be the recursive case.");
4172       handle_evacuation_failure_common(old, m);
4173     }
4174     return old;
4175   } else {
4176     // Forward-to-self failed. Either someone else managed to allocate
4177     // space for this object (old != forward_ptr) or they beat us in
4178     // self-forwarding it (old == forward_ptr).
4179     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4180            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4181                    "should not be in the CSet",
4182                    (HeapWord*) old, (HeapWord*) forward_ptr));
4183     return forward_ptr;
4184   }
4185 }
4186 
4187 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4188   preserve_mark_if_necessary(old, m);
4189 
4190   HeapRegion* r = heap_region_containing(old);
4191   if (!r->evacuation_failed()) {
4192     r->set_evacuation_failed(true);
4193     _hr_printer.evac_failure(r);
4194   }
4195 
4196   push_on_evac_failure_scan_stack(old);
4197 
4198   if (!_drain_in_progress) {
4199     // prevent recursion in copy_to_survivor_space()
4200     _drain_in_progress = true;
4201     drain_evac_failure_scan_stack();
4202     _drain_in_progress = false;
4203   }
4204 }
4205 
4206 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4207   assert(evacuation_failed(), "Oversaving!");
4208   // We want to call the "for_promotion_failure" version only in the
4209   // case of a promotion failure.
4210   if (m->must_be_preserved_for_promotion_failure(obj)) {
4211     _objs_with_preserved_marks.push(obj);
4212     _preserved_marks_of_objs.push(m);
4213   }
4214 }
4215 
4216 void G1ParCopyHelper::mark_object(oop obj) {
4217   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4218 
4219   // We know that the object is not moving so it's safe to read its size.
4220   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4221 }
4222 
4223 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4224   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4225   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4226   assert(from_obj != to_obj, "should not be self-forwarded");
4227 
4228   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4229   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4230 
4231   // The object might be in the process of being copied by another
4232   // worker so we cannot trust that its to-space image is
4233   // well-formed. So we have to read its size from its from-space
4234   // image which we know should not be changing.
4235   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4236 }
4237 
4238 template <class T>
4239 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4240   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4241     _scanned_klass->record_modified_oops();
4242   }
4243 }
4244 
4245 template <G1Barrier barrier, G1Mark do_mark_object>
4246 template <class T>
4247 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4248   T heap_oop = oopDesc::load_heap_oop(p);
4249 
4250   if (oopDesc::is_null(heap_oop)) {
4251     return;
4252   }
4253 
4254   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4255 
4256   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4257 
4258   const InCSetState state = _g1->in_cset_state(obj);
4259   if (state.is_in_cset()) {
4260     oop forwardee;
4261     markOop m = obj->mark();
4262     if (m->is_marked()) {
4263       forwardee = (oop) m->decode_pointer();
4264     } else {
4265       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4266     }
4267     assert(forwardee != NULL, "forwardee should not be NULL");
4268     oopDesc::encode_store_heap_oop(p, forwardee);
4269     if (do_mark_object != G1MarkNone && forwardee != obj) {
4270       // If the object is self-forwarded we don't need to explicitly
4271       // mark it, the evacuation failure protocol will do so.
4272       mark_forwarded_object(obj, forwardee);
4273     }
4274 
4275     if (barrier == G1BarrierKlass) {
4276       do_klass_barrier(p, forwardee);
4277     }
4278   } else {
4279     if (state.is_humongous()) {
4280       _g1->set_humongous_is_live(obj);
4281     }
4282     // The object is not in collection set. If we're a root scanning
4283     // closure during an initial mark pause then attempt to mark the object.
4284     if (do_mark_object == G1MarkFromRoot) {
4285       mark_object(obj);
4286     }
4287   }
4288 
4289   if (barrier == G1BarrierEvac) {
4290     _par_scan_state->update_rs(_from, p, _worker_id);
4291   }
4292 }
4293 
4294 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4295 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4296 
4297 class G1ParEvacuateFollowersClosure : public VoidClosure {
4298 protected:
4299   G1CollectedHeap*              _g1h;
4300   G1ParScanThreadState*         _par_scan_state;
4301   RefToScanQueueSet*            _queues;
4302   ParallelTaskTerminator*       _terminator;
4303 
4304   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4305   RefToScanQueueSet*      queues()         { return _queues; }
4306   ParallelTaskTerminator* terminator()     { return _terminator; }
4307 
4308 public:
4309   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4310                                 G1ParScanThreadState* par_scan_state,
4311                                 RefToScanQueueSet* queues,
4312                                 ParallelTaskTerminator* terminator)
4313     : _g1h(g1h), _par_scan_state(par_scan_state),
4314       _queues(queues), _terminator(terminator) {}
4315 
4316   void do_void();
4317 
4318 private:
4319   inline bool offer_termination();
4320 };
4321 
4322 bool G1ParEvacuateFollowersClosure::offer_termination() {
4323   G1ParScanThreadState* const pss = par_scan_state();
4324   pss->start_term_time();
4325   const bool res = terminator()->offer_termination();
4326   pss->end_term_time();
4327   return res;
4328 }
4329 
4330 void G1ParEvacuateFollowersClosure::do_void() {
4331   G1ParScanThreadState* const pss = par_scan_state();
4332   pss->trim_queue();
4333   do {
4334     pss->steal_and_trim_queue(queues());
4335   } while (!offer_termination());
4336 }
4337 
4338 class G1KlassScanClosure : public KlassClosure {
4339  G1ParCopyHelper* _closure;
4340  bool             _process_only_dirty;
4341  int              _count;
4342  public:
4343   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4344       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4345   void do_klass(Klass* klass) {
4346     // If the klass has not been dirtied we know that there's
4347     // no references into  the young gen and we can skip it.
4348    if (!_process_only_dirty || klass->has_modified_oops()) {
4349       // Clean the klass since we're going to scavenge all the metadata.
4350       klass->clear_modified_oops();
4351 
4352       // Tell the closure that this klass is the Klass to scavenge
4353       // and is the one to dirty if oops are left pointing into the young gen.
4354       _closure->set_scanned_klass(klass);
4355 
4356       klass->oops_do(_closure);
4357 
4358       _closure->set_scanned_klass(NULL);
4359     }
4360     _count++;
4361   }
4362 };
4363 
4364 class G1ParTask : public AbstractGangTask {
4365 protected:
4366   G1CollectedHeap*       _g1h;
4367   RefToScanQueueSet      *_queues;
4368   G1RootProcessor*       _root_processor;
4369   ParallelTaskTerminator _terminator;
4370   uint _n_workers;
4371 
4372   Mutex _stats_lock;
4373   Mutex* stats_lock() { return &_stats_lock; }
4374 
4375 public:
4376   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4377     : AbstractGangTask("G1 collection"),
4378       _g1h(g1h),
4379       _queues(task_queues),
4380       _root_processor(root_processor),
4381       _terminator(0, _queues),
4382       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4383   {}
4384 
4385   RefToScanQueueSet* queues() { return _queues; }
4386 
4387   RefToScanQueue *work_queue(int i) {
4388     return queues()->queue(i);
4389   }
4390 
4391   ParallelTaskTerminator* terminator() { return &_terminator; }
4392 
4393   virtual void set_for_termination(int active_workers) {
4394     _root_processor->set_num_workers(active_workers);
4395     terminator()->reset_for_reuse(active_workers);
4396     _n_workers = active_workers;
4397   }
4398 
4399   // Helps out with CLD processing.
4400   //
4401   // During InitialMark we need to:
4402   // 1) Scavenge all CLDs for the young GC.
4403   // 2) Mark all objects directly reachable from strong CLDs.
4404   template <G1Mark do_mark_object>
4405   class G1CLDClosure : public CLDClosure {
4406     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4407     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4408     G1KlassScanClosure                                _klass_in_cld_closure;
4409     bool                                              _claim;
4410 
4411    public:
4412     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4413                  bool only_young, bool claim)
4414         : _oop_closure(oop_closure),
4415           _oop_in_klass_closure(oop_closure->g1(),
4416                                 oop_closure->pss(),
4417                                 oop_closure->rp()),
4418           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4419           _claim(claim) {
4420 
4421     }
4422 
4423     void do_cld(ClassLoaderData* cld) {
4424       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4425     }
4426   };
4427 
4428   void work(uint worker_id) {
4429     if (worker_id >= _n_workers) return;  // no work needed this round
4430 
4431     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4432 
4433     {
4434       ResourceMark rm;
4435       HandleMark   hm;
4436 
4437       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4438 
4439       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4440       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4441 
4442       pss.set_evac_failure_closure(&evac_failure_cl);
4443 
4444       bool only_young = _g1h->g1_policy()->gcs_are_young();
4445 
4446       // Non-IM young GC.
4447       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4448       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4449                                                                                only_young, // Only process dirty klasses.
4450                                                                                false);     // No need to claim CLDs.
4451       // IM young GC.
4452       //    Strong roots closures.
4453       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4454       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4455                                                                                false, // Process all klasses.
4456                                                                                true); // Need to claim CLDs.
4457       //    Weak roots closures.
4458       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4459       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4460                                                                                     false, // Process all klasses.
4461                                                                                     true); // Need to claim CLDs.
4462 
4463       OopClosure* strong_root_cl;
4464       OopClosure* weak_root_cl;
4465       CLDClosure* strong_cld_cl;
4466       CLDClosure* weak_cld_cl;
4467 
4468       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4469         // We also need to mark copied objects.
4470         strong_root_cl = &scan_mark_root_cl;
4471         strong_cld_cl  = &scan_mark_cld_cl;
4472         if (ClassUnloadingWithConcurrentMark) {
4473           weak_root_cl = &scan_mark_weak_root_cl;
4474           weak_cld_cl  = &scan_mark_weak_cld_cl;
4475         } else {
4476           weak_root_cl = &scan_mark_root_cl;
4477           weak_cld_cl  = &scan_mark_cld_cl;
4478         }
4479       } else {
4480         strong_root_cl = &scan_only_root_cl;
4481         weak_root_cl   = &scan_only_root_cl;
4482         strong_cld_cl  = &scan_only_cld_cl;
4483         weak_cld_cl    = &scan_only_cld_cl;
4484       }
4485 
4486       pss.start_strong_roots();
4487 
4488       _root_processor->evacuate_roots(strong_root_cl,
4489                                      weak_root_cl,
4490                                      strong_cld_cl,
4491                                      weak_cld_cl,
4492                                      worker_id);
4493 
4494       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4495       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4496                                            weak_root_cl,
4497                                            worker_id);
4498       pss.end_strong_roots();
4499 
4500       {
4501         double start = os::elapsedTime();
4502         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4503         evac.do_void();
4504         double elapsed_sec = os::elapsedTime() - start;
4505         double term_sec = pss.term_time();
4506         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4507         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4508         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4509       }
4510       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4511       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4512 
4513       if (PrintTerminationStats) {
4514         MutexLocker x(stats_lock());
4515         pss.print_termination_stats(worker_id);
4516       }
4517 
4518       assert(pss.queue_is_empty(), "should be empty");
4519 
4520       // Close the inner scope so that the ResourceMark and HandleMark
4521       // destructors are executed here and are included as part of the
4522       // "GC Worker Time".
4523     }
4524     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4525   }
4526 };
4527 
4528 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4529 private:
4530   BoolObjectClosure* _is_alive;
4531   int _initial_string_table_size;
4532   int _initial_symbol_table_size;
4533 
4534   bool  _process_strings;
4535   int _strings_processed;
4536   int _strings_removed;
4537 
4538   bool  _process_symbols;
4539   int _symbols_processed;
4540   int _symbols_removed;
4541 
4542 public:
4543   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4544     AbstractGangTask("String/Symbol Unlinking"),
4545     _is_alive(is_alive),
4546     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4547     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4548 
4549     _initial_string_table_size = StringTable::the_table()->table_size();
4550     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4551     if (process_strings) {
4552       StringTable::clear_parallel_claimed_index();
4553     }
4554     if (process_symbols) {
4555       SymbolTable::clear_parallel_claimed_index();
4556     }
4557   }
4558 
4559   ~G1StringSymbolTableUnlinkTask() {
4560     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4561               err_msg("claim value %d after unlink less than initial string table size %d",
4562                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4563     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4564               err_msg("claim value %d after unlink less than initial symbol table size %d",
4565                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4566 
4567     if (G1TraceStringSymbolTableScrubbing) {
4568       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4569                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4570                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4571                              strings_processed(), strings_removed(),
4572                              symbols_processed(), symbols_removed());
4573     }
4574   }
4575 
4576   void work(uint worker_id) {
4577     int strings_processed = 0;
4578     int strings_removed = 0;
4579     int symbols_processed = 0;
4580     int symbols_removed = 0;
4581     if (_process_strings) {
4582       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4583       Atomic::add(strings_processed, &_strings_processed);
4584       Atomic::add(strings_removed, &_strings_removed);
4585     }
4586     if (_process_symbols) {
4587       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4588       Atomic::add(symbols_processed, &_symbols_processed);
4589       Atomic::add(symbols_removed, &_symbols_removed);
4590     }
4591   }
4592 
4593   size_t strings_processed() const { return (size_t)_strings_processed; }
4594   size_t strings_removed()   const { return (size_t)_strings_removed; }
4595 
4596   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4597   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4598 };
4599 
4600 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4601 private:
4602   static Monitor* _lock;
4603 
4604   BoolObjectClosure* const _is_alive;
4605   const bool               _unloading_occurred;
4606   const uint               _num_workers;
4607 
4608   // Variables used to claim nmethods.
4609   nmethod* _first_nmethod;
4610   volatile nmethod* _claimed_nmethod;
4611 
4612   // The list of nmethods that need to be processed by the second pass.
4613   volatile nmethod* _postponed_list;
4614   volatile uint     _num_entered_barrier;
4615 
4616  public:
4617   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4618       _is_alive(is_alive),
4619       _unloading_occurred(unloading_occurred),
4620       _num_workers(num_workers),
4621       _first_nmethod(NULL),
4622       _claimed_nmethod(NULL),
4623       _postponed_list(NULL),
4624       _num_entered_barrier(0)
4625   {
4626     nmethod::increase_unloading_clock();
4627     // Get first alive nmethod
4628     NMethodIterator iter = NMethodIterator();
4629     if(iter.next_alive()) {
4630       _first_nmethod = iter.method();
4631     }
4632     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4633   }
4634 
4635   ~G1CodeCacheUnloadingTask() {
4636     CodeCache::verify_clean_inline_caches();
4637 
4638     CodeCache::set_needs_cache_clean(false);
4639     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4640 
4641     CodeCache::verify_icholder_relocations();
4642   }
4643 
4644  private:
4645   void add_to_postponed_list(nmethod* nm) {
4646       nmethod* old;
4647       do {
4648         old = (nmethod*)_postponed_list;
4649         nm->set_unloading_next(old);
4650       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4651   }
4652 
4653   void clean_nmethod(nmethod* nm) {
4654     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4655 
4656     if (postponed) {
4657       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4658       add_to_postponed_list(nm);
4659     }
4660 
4661     // Mark that this thread has been cleaned/unloaded.
4662     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4663     nm->set_unloading_clock(nmethod::global_unloading_clock());
4664   }
4665 
4666   void clean_nmethod_postponed(nmethod* nm) {
4667     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4668   }
4669 
4670   static const int MaxClaimNmethods = 16;
4671 
4672   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4673     nmethod* first;
4674     NMethodIterator last;
4675 
4676     do {
4677       *num_claimed_nmethods = 0;
4678 
4679       first = (nmethod*)_claimed_nmethod;
4680       last = NMethodIterator(first);
4681 
4682       if (first != NULL) {
4683 
4684         for (int i = 0; i < MaxClaimNmethods; i++) {
4685           if (!last.next_alive()) {
4686             break;
4687           }
4688           claimed_nmethods[i] = last.method();
4689           (*num_claimed_nmethods)++;
4690         }
4691       }
4692 
4693     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4694   }
4695 
4696   nmethod* claim_postponed_nmethod() {
4697     nmethod* claim;
4698     nmethod* next;
4699 
4700     do {
4701       claim = (nmethod*)_postponed_list;
4702       if (claim == NULL) {
4703         return NULL;
4704       }
4705 
4706       next = claim->unloading_next();
4707 
4708     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4709 
4710     return claim;
4711   }
4712 
4713  public:
4714   // Mark that we're done with the first pass of nmethod cleaning.
4715   void barrier_mark(uint worker_id) {
4716     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4717     _num_entered_barrier++;
4718     if (_num_entered_barrier == _num_workers) {
4719       ml.notify_all();
4720     }
4721   }
4722 
4723   // See if we have to wait for the other workers to
4724   // finish their first-pass nmethod cleaning work.
4725   void barrier_wait(uint worker_id) {
4726     if (_num_entered_barrier < _num_workers) {
4727       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4728       while (_num_entered_barrier < _num_workers) {
4729           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4730       }
4731     }
4732   }
4733 
4734   // Cleaning and unloading of nmethods. Some work has to be postponed
4735   // to the second pass, when we know which nmethods survive.
4736   void work_first_pass(uint worker_id) {
4737     // The first nmethods is claimed by the first worker.
4738     if (worker_id == 0 && _first_nmethod != NULL) {
4739       clean_nmethod(_first_nmethod);
4740       _first_nmethod = NULL;
4741     }
4742 
4743     int num_claimed_nmethods;
4744     nmethod* claimed_nmethods[MaxClaimNmethods];
4745 
4746     while (true) {
4747       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4748 
4749       if (num_claimed_nmethods == 0) {
4750         break;
4751       }
4752 
4753       for (int i = 0; i < num_claimed_nmethods; i++) {
4754         clean_nmethod(claimed_nmethods[i]);
4755       }
4756     }
4757 
4758     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
4759     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
4760     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
4761   }
4762 
4763   void work_second_pass(uint worker_id) {
4764     nmethod* nm;
4765     // Take care of postponed nmethods.
4766     while ((nm = claim_postponed_nmethod()) != NULL) {
4767       clean_nmethod_postponed(nm);
4768     }
4769   }
4770 };
4771 
4772 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4773 
4774 class G1KlassCleaningTask : public StackObj {
4775   BoolObjectClosure*                      _is_alive;
4776   volatile jint                           _clean_klass_tree_claimed;
4777   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4778 
4779  public:
4780   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4781       _is_alive(is_alive),
4782       _clean_klass_tree_claimed(0),
4783       _klass_iterator() {
4784   }
4785 
4786  private:
4787   bool claim_clean_klass_tree_task() {
4788     if (_clean_klass_tree_claimed) {
4789       return false;
4790     }
4791 
4792     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4793   }
4794 
4795   InstanceKlass* claim_next_klass() {
4796     Klass* klass;
4797     do {
4798       klass =_klass_iterator.next_klass();
4799     } while (klass != NULL && !klass->oop_is_instance());
4800 
4801     return (InstanceKlass*)klass;
4802   }
4803 
4804 public:
4805 
4806   void clean_klass(InstanceKlass* ik) {
4807     ik->clean_implementors_list(_is_alive);
4808     ik->clean_method_data(_is_alive);
4809 
4810     // G1 specific cleanup work that has
4811     // been moved here to be done in parallel.
4812     ik->clean_dependent_nmethods();
4813     if (JvmtiExport::has_redefined_a_class()) {
4814       InstanceKlass::purge_previous_versions(ik);
4815     }
4816   }
4817 
4818   void work() {
4819     ResourceMark rm;
4820 
4821     // One worker will clean the subklass/sibling klass tree.
4822     if (claim_clean_klass_tree_task()) {
4823       Klass::clean_subklass_tree(_is_alive);
4824     }
4825 
4826     // All workers will help cleaning the classes,
4827     InstanceKlass* klass;
4828     while ((klass = claim_next_klass()) != NULL) {
4829       clean_klass(klass);
4830     }
4831   }
4832 };
4833 
4834 // To minimize the remark pause times, the tasks below are done in parallel.
4835 class G1ParallelCleaningTask : public AbstractGangTask {
4836 private:
4837   G1StringSymbolTableUnlinkTask _string_symbol_task;
4838   G1CodeCacheUnloadingTask      _code_cache_task;
4839   G1KlassCleaningTask           _klass_cleaning_task;
4840 
4841 public:
4842   // The constructor is run in the VMThread.
4843   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4844       AbstractGangTask("Parallel Cleaning"),
4845       _string_symbol_task(is_alive, process_strings, process_symbols),
4846       _code_cache_task(num_workers, is_alive, unloading_occurred),
4847       _klass_cleaning_task(is_alive) {
4848   }
4849 
4850   void pre_work_verification() {
4851     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
4852   }
4853 
4854   void post_work_verification() {
4855     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
4856   }
4857 
4858   // The parallel work done by all worker threads.
4859   void work(uint worker_id) {
4860     pre_work_verification();
4861 
4862     // Do first pass of code cache cleaning.
4863     _code_cache_task.work_first_pass(worker_id);
4864 
4865     // Let the threads mark that the first pass is done.
4866     _code_cache_task.barrier_mark(worker_id);
4867 
4868     // Clean the Strings and Symbols.
4869     _string_symbol_task.work(worker_id);
4870 
4871     // Wait for all workers to finish the first code cache cleaning pass.
4872     _code_cache_task.barrier_wait(worker_id);
4873 
4874     // Do the second code cache cleaning work, which realize on
4875     // the liveness information gathered during the first pass.
4876     _code_cache_task.work_second_pass(worker_id);
4877 
4878     // Clean all klasses that were not unloaded.
4879     _klass_cleaning_task.work();
4880 
4881     post_work_verification();
4882   }
4883 };
4884 
4885 
4886 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4887                                         bool process_strings,
4888                                         bool process_symbols,
4889                                         bool class_unloading_occurred) {
4890   uint n_workers = workers()->active_workers();
4891 
4892   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4893                                         n_workers, class_unloading_occurred);
4894   set_par_threads(n_workers);
4895   workers()->run_task(&g1_unlink_task);
4896   set_par_threads(0);
4897 }
4898 
4899 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4900                                                      bool process_strings, bool process_symbols) {
4901   {
4902     uint n_workers = _g1h->workers()->active_workers();
4903     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4904     set_par_threads(n_workers);
4905     workers()->run_task(&g1_unlink_task);
4906     set_par_threads(0);
4907   }
4908 
4909   if (G1StringDedup::is_enabled()) {
4910     G1StringDedup::unlink(is_alive);
4911   }
4912 }
4913 
4914 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4915  private:
4916   DirtyCardQueueSet* _queue;
4917  public:
4918   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4919 
4920   virtual void work(uint worker_id) {
4921     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4922     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4923 
4924     RedirtyLoggedCardTableEntryClosure cl;
4925     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4926 
4927     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4928   }
4929 };
4930 
4931 void G1CollectedHeap::redirty_logged_cards() {
4932   double redirty_logged_cards_start = os::elapsedTime();
4933 
4934   uint n_workers = _g1h->workers()->active_workers();
4935 
4936   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4937   dirty_card_queue_set().reset_for_par_iteration();
4938   set_par_threads(n_workers);
4939   workers()->run_task(&redirty_task);
4940   set_par_threads(0);
4941 
4942   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4943   dcq.merge_bufferlists(&dirty_card_queue_set());
4944   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4945 
4946   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4947 }
4948 
4949 // Weak Reference Processing support
4950 
4951 // An always "is_alive" closure that is used to preserve referents.
4952 // If the object is non-null then it's alive.  Used in the preservation
4953 // of referent objects that are pointed to by reference objects
4954 // discovered by the CM ref processor.
4955 class G1AlwaysAliveClosure: public BoolObjectClosure {
4956   G1CollectedHeap* _g1;
4957 public:
4958   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4959   bool do_object_b(oop p) {
4960     if (p != NULL) {
4961       return true;
4962     }
4963     return false;
4964   }
4965 };
4966 
4967 bool G1STWIsAliveClosure::do_object_b(oop p) {
4968   // An object is reachable if it is outside the collection set,
4969   // or is inside and copied.
4970   return !_g1->obj_in_cs(p) || p->is_forwarded();
4971 }
4972 
4973 // Non Copying Keep Alive closure
4974 class G1KeepAliveClosure: public OopClosure {
4975   G1CollectedHeap* _g1;
4976 public:
4977   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4978   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4979   void do_oop(oop* p) {
4980     oop obj = *p;
4981     assert(obj != NULL, "the caller should have filtered out NULL values");
4982 
4983     const InCSetState cset_state = _g1->in_cset_state(obj);
4984     if (!cset_state.is_in_cset_or_humongous()) {
4985       return;
4986     }
4987     if (cset_state.is_in_cset()) {
4988       assert( obj->is_forwarded(), "invariant" );
4989       *p = obj->forwardee();
4990     } else {
4991       assert(!obj->is_forwarded(), "invariant" );
4992       assert(cset_state.is_humongous(),
4993              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4994       _g1->set_humongous_is_live(obj);
4995     }
4996   }
4997 };
4998 
4999 // Copying Keep Alive closure - can be called from both
5000 // serial and parallel code as long as different worker
5001 // threads utilize different G1ParScanThreadState instances
5002 // and different queues.
5003 
5004 class G1CopyingKeepAliveClosure: public OopClosure {
5005   G1CollectedHeap*         _g1h;
5006   OopClosure*              _copy_non_heap_obj_cl;
5007   G1ParScanThreadState*    _par_scan_state;
5008 
5009 public:
5010   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5011                             OopClosure* non_heap_obj_cl,
5012                             G1ParScanThreadState* pss):
5013     _g1h(g1h),
5014     _copy_non_heap_obj_cl(non_heap_obj_cl),
5015     _par_scan_state(pss)
5016   {}
5017 
5018   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5019   virtual void do_oop(      oop* p) { do_oop_work(p); }
5020 
5021   template <class T> void do_oop_work(T* p) {
5022     oop obj = oopDesc::load_decode_heap_oop(p);
5023 
5024     if (_g1h->is_in_cset_or_humongous(obj)) {
5025       // If the referent object has been forwarded (either copied
5026       // to a new location or to itself in the event of an
5027       // evacuation failure) then we need to update the reference
5028       // field and, if both reference and referent are in the G1
5029       // heap, update the RSet for the referent.
5030       //
5031       // If the referent has not been forwarded then we have to keep
5032       // it alive by policy. Therefore we have copy the referent.
5033       //
5034       // If the reference field is in the G1 heap then we can push
5035       // on the PSS queue. When the queue is drained (after each
5036       // phase of reference processing) the object and it's followers
5037       // will be copied, the reference field set to point to the
5038       // new location, and the RSet updated. Otherwise we need to
5039       // use the the non-heap or metadata closures directly to copy
5040       // the referent object and update the pointer, while avoiding
5041       // updating the RSet.
5042 
5043       if (_g1h->is_in_g1_reserved(p)) {
5044         _par_scan_state->push_on_queue(p);
5045       } else {
5046         assert(!Metaspace::contains((const void*)p),
5047                err_msg("Unexpectedly found a pointer from metadata: "
5048                               PTR_FORMAT, p));
5049         _copy_non_heap_obj_cl->do_oop(p);
5050       }
5051     }
5052   }
5053 };
5054 
5055 // Serial drain queue closure. Called as the 'complete_gc'
5056 // closure for each discovered list in some of the
5057 // reference processing phases.
5058 
5059 class G1STWDrainQueueClosure: public VoidClosure {
5060 protected:
5061   G1CollectedHeap* _g1h;
5062   G1ParScanThreadState* _par_scan_state;
5063 
5064   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5065 
5066 public:
5067   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5068     _g1h(g1h),
5069     _par_scan_state(pss)
5070   { }
5071 
5072   void do_void() {
5073     G1ParScanThreadState* const pss = par_scan_state();
5074     pss->trim_queue();
5075   }
5076 };
5077 
5078 // Parallel Reference Processing closures
5079 
5080 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5081 // processing during G1 evacuation pauses.
5082 
5083 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5084 private:
5085   G1CollectedHeap*   _g1h;
5086   RefToScanQueueSet* _queues;
5087   FlexibleWorkGang*  _workers;
5088   int                _active_workers;
5089 
5090 public:
5091   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5092                         FlexibleWorkGang* workers,
5093                         RefToScanQueueSet *task_queues,
5094                         int n_workers) :
5095     _g1h(g1h),
5096     _queues(task_queues),
5097     _workers(workers),
5098     _active_workers(n_workers)
5099   {
5100     assert(n_workers > 0, "shouldn't call this otherwise");
5101   }
5102 
5103   // Executes the given task using concurrent marking worker threads.
5104   virtual void execute(ProcessTask& task);
5105   virtual void execute(EnqueueTask& task);
5106 };
5107 
5108 // Gang task for possibly parallel reference processing
5109 
5110 class G1STWRefProcTaskProxy: public AbstractGangTask {
5111   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5112   ProcessTask&     _proc_task;
5113   G1CollectedHeap* _g1h;
5114   RefToScanQueueSet *_task_queues;
5115   ParallelTaskTerminator* _terminator;
5116 
5117 public:
5118   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5119                      G1CollectedHeap* g1h,
5120                      RefToScanQueueSet *task_queues,
5121                      ParallelTaskTerminator* terminator) :
5122     AbstractGangTask("Process reference objects in parallel"),
5123     _proc_task(proc_task),
5124     _g1h(g1h),
5125     _task_queues(task_queues),
5126     _terminator(terminator)
5127   {}
5128 
5129   virtual void work(uint worker_id) {
5130     // The reference processing task executed by a single worker.
5131     ResourceMark rm;
5132     HandleMark   hm;
5133 
5134     G1STWIsAliveClosure is_alive(_g1h);
5135 
5136     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5137     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5138 
5139     pss.set_evac_failure_closure(&evac_failure_cl);
5140 
5141     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5142 
5143     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5144 
5145     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5146 
5147     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5148       // We also need to mark copied objects.
5149       copy_non_heap_cl = &copy_mark_non_heap_cl;
5150     }
5151 
5152     // Keep alive closure.
5153     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5154 
5155     // Complete GC closure
5156     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5157 
5158     // Call the reference processing task's work routine.
5159     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5160 
5161     // Note we cannot assert that the refs array is empty here as not all
5162     // of the processing tasks (specifically phase2 - pp2_work) execute
5163     // the complete_gc closure (which ordinarily would drain the queue) so
5164     // the queue may not be empty.
5165   }
5166 };
5167 
5168 // Driver routine for parallel reference processing.
5169 // Creates an instance of the ref processing gang
5170 // task and has the worker threads execute it.
5171 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5172   assert(_workers != NULL, "Need parallel worker threads.");
5173 
5174   ParallelTaskTerminator terminator(_active_workers, _queues);
5175   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5176 
5177   _g1h->set_par_threads(_active_workers);
5178   _workers->run_task(&proc_task_proxy);
5179   _g1h->set_par_threads(0);
5180 }
5181 
5182 // Gang task for parallel reference enqueueing.
5183 
5184 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5185   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5186   EnqueueTask& _enq_task;
5187 
5188 public:
5189   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5190     AbstractGangTask("Enqueue reference objects in parallel"),
5191     _enq_task(enq_task)
5192   { }
5193 
5194   virtual void work(uint worker_id) {
5195     _enq_task.work(worker_id);
5196   }
5197 };
5198 
5199 // Driver routine for parallel reference enqueueing.
5200 // Creates an instance of the ref enqueueing gang
5201 // task and has the worker threads execute it.
5202 
5203 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5204   assert(_workers != NULL, "Need parallel worker threads.");
5205 
5206   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5207 
5208   _g1h->set_par_threads(_active_workers);
5209   _workers->run_task(&enq_task_proxy);
5210   _g1h->set_par_threads(0);
5211 }
5212 
5213 // End of weak reference support closures
5214 
5215 // Abstract task used to preserve (i.e. copy) any referent objects
5216 // that are in the collection set and are pointed to by reference
5217 // objects discovered by the CM ref processor.
5218 
5219 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5220 protected:
5221   G1CollectedHeap* _g1h;
5222   RefToScanQueueSet      *_queues;
5223   ParallelTaskTerminator _terminator;
5224   uint _n_workers;
5225 
5226 public:
5227   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5228     AbstractGangTask("ParPreserveCMReferents"),
5229     _g1h(g1h),
5230     _queues(task_queues),
5231     _terminator(workers, _queues),
5232     _n_workers(workers)
5233   { }
5234 
5235   void work(uint worker_id) {
5236     ResourceMark rm;
5237     HandleMark   hm;
5238 
5239     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5240     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5241 
5242     pss.set_evac_failure_closure(&evac_failure_cl);
5243 
5244     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5245 
5246     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5247 
5248     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5249 
5250     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5251 
5252     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5253       // We also need to mark copied objects.
5254       copy_non_heap_cl = &copy_mark_non_heap_cl;
5255     }
5256 
5257     // Is alive closure
5258     G1AlwaysAliveClosure always_alive(_g1h);
5259 
5260     // Copying keep alive closure. Applied to referent objects that need
5261     // to be copied.
5262     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5263 
5264     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5265 
5266     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5267     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5268 
5269     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5270     // So this must be true - but assert just in case someone decides to
5271     // change the worker ids.
5272     assert(0 <= worker_id && worker_id < limit, "sanity");
5273     assert(!rp->discovery_is_atomic(), "check this code");
5274 
5275     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5276     for (uint idx = worker_id; idx < limit; idx += stride) {
5277       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5278 
5279       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5280       while (iter.has_next()) {
5281         // Since discovery is not atomic for the CM ref processor, we
5282         // can see some null referent objects.
5283         iter.load_ptrs(DEBUG_ONLY(true));
5284         oop ref = iter.obj();
5285 
5286         // This will filter nulls.
5287         if (iter.is_referent_alive()) {
5288           iter.make_referent_alive();
5289         }
5290         iter.move_to_next();
5291       }
5292     }
5293 
5294     // Drain the queue - which may cause stealing
5295     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5296     drain_queue.do_void();
5297     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5298     assert(pss.queue_is_empty(), "should be");
5299   }
5300 };
5301 
5302 // Weak Reference processing during an evacuation pause (part 1).
5303 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5304   double ref_proc_start = os::elapsedTime();
5305 
5306   ReferenceProcessor* rp = _ref_processor_stw;
5307   assert(rp->discovery_enabled(), "should have been enabled");
5308 
5309   // Any reference objects, in the collection set, that were 'discovered'
5310   // by the CM ref processor should have already been copied (either by
5311   // applying the external root copy closure to the discovered lists, or
5312   // by following an RSet entry).
5313   //
5314   // But some of the referents, that are in the collection set, that these
5315   // reference objects point to may not have been copied: the STW ref
5316   // processor would have seen that the reference object had already
5317   // been 'discovered' and would have skipped discovering the reference,
5318   // but would not have treated the reference object as a regular oop.
5319   // As a result the copy closure would not have been applied to the
5320   // referent object.
5321   //
5322   // We need to explicitly copy these referent objects - the references
5323   // will be processed at the end of remarking.
5324   //
5325   // We also need to do this copying before we process the reference
5326   // objects discovered by the STW ref processor in case one of these
5327   // referents points to another object which is also referenced by an
5328   // object discovered by the STW ref processor.
5329 
5330   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5331 
5332   set_par_threads(no_of_gc_workers);
5333   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5334                                                  no_of_gc_workers,
5335                                                  _task_queues);
5336 
5337   workers()->run_task(&keep_cm_referents);
5338 
5339   set_par_threads(0);
5340 
5341   // Closure to test whether a referent is alive.
5342   G1STWIsAliveClosure is_alive(this);
5343 
5344   // Even when parallel reference processing is enabled, the processing
5345   // of JNI refs is serial and performed serially by the current thread
5346   // rather than by a worker. The following PSS will be used for processing
5347   // JNI refs.
5348 
5349   // Use only a single queue for this PSS.
5350   G1ParScanThreadState            pss(this, 0, NULL);
5351 
5352   // We do not embed a reference processor in the copying/scanning
5353   // closures while we're actually processing the discovered
5354   // reference objects.
5355   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5356 
5357   pss.set_evac_failure_closure(&evac_failure_cl);
5358 
5359   assert(pss.queue_is_empty(), "pre-condition");
5360 
5361   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5362 
5363   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5364 
5365   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5366 
5367   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5368     // We also need to mark copied objects.
5369     copy_non_heap_cl = &copy_mark_non_heap_cl;
5370   }
5371 
5372   // Keep alive closure.
5373   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5374 
5375   // Serial Complete GC closure
5376   G1STWDrainQueueClosure drain_queue(this, &pss);
5377 
5378   // Setup the soft refs policy...
5379   rp->setup_policy(false);
5380 
5381   ReferenceProcessorStats stats;
5382   if (!rp->processing_is_mt()) {
5383     // Serial reference processing...
5384     stats = rp->process_discovered_references(&is_alive,
5385                                               &keep_alive,
5386                                               &drain_queue,
5387                                               NULL,
5388                                               _gc_timer_stw,
5389                                               _gc_tracer_stw->gc_id());
5390   } else {
5391     // Parallel reference processing
5392     assert(rp->num_q() == no_of_gc_workers, "sanity");
5393     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5394 
5395     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5396     stats = rp->process_discovered_references(&is_alive,
5397                                               &keep_alive,
5398                                               &drain_queue,
5399                                               &par_task_executor,
5400                                               _gc_timer_stw,
5401                                               _gc_tracer_stw->gc_id());
5402   }
5403 
5404   _gc_tracer_stw->report_gc_reference_stats(stats);
5405 
5406   // We have completed copying any necessary live referent objects.
5407   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5408 
5409   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5410   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5411 }
5412 
5413 // Weak Reference processing during an evacuation pause (part 2).
5414 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5415   double ref_enq_start = os::elapsedTime();
5416 
5417   ReferenceProcessor* rp = _ref_processor_stw;
5418   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5419 
5420   // Now enqueue any remaining on the discovered lists on to
5421   // the pending list.
5422   if (!rp->processing_is_mt()) {
5423     // Serial reference processing...
5424     rp->enqueue_discovered_references();
5425   } else {
5426     // Parallel reference enqueueing
5427 
5428     assert(no_of_gc_workers == workers()->active_workers(),
5429            "Need to reset active workers");
5430     assert(rp->num_q() == no_of_gc_workers, "sanity");
5431     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5432 
5433     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5434     rp->enqueue_discovered_references(&par_task_executor);
5435   }
5436 
5437   rp->verify_no_references_recorded();
5438   assert(!rp->discovery_enabled(), "should have been disabled");
5439 
5440   // FIXME
5441   // CM's reference processing also cleans up the string and symbol tables.
5442   // Should we do that here also? We could, but it is a serial operation
5443   // and could significantly increase the pause time.
5444 
5445   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5446   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5447 }
5448 
5449 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5450   _expand_heap_after_alloc_failure = true;
5451   _evacuation_failed = false;
5452 
5453   // Should G1EvacuationFailureALot be in effect for this GC?
5454   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5455 
5456   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5457 
5458   // Disable the hot card cache.
5459   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5460   hot_card_cache->reset_hot_cache_claimed_index();
5461   hot_card_cache->set_use_cache(false);
5462 
5463   uint n_workers;
5464   n_workers =
5465     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5466                                    workers()->active_workers(),
5467                                    Threads::number_of_non_daemon_threads());
5468   assert(UseDynamicNumberOfGCThreads ||
5469          n_workers == workers()->total_workers(),
5470          "If not dynamic should be using all the  workers");
5471   workers()->set_active_workers(n_workers);
5472   set_par_threads(n_workers);
5473 
5474 
5475   init_for_evac_failure(NULL);
5476 
5477   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5478   double start_par_time_sec = os::elapsedTime();
5479   double end_par_time_sec;
5480 
5481   {
5482     const bool during_im = g1_policy()->during_initial_mark_pause();
5483     const bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
5484 
5485     G1RootProcessor root_processor(this, trace_metadata);
5486     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5487     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5488     if (during_im) {
5489       ClassLoaderDataGraph::clear_claimed_marks();
5490     }
5491 
5492      // The individual threads will set their evac-failure closures.
5493      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5494      // These tasks use ShareHeap::_process_strong_tasks
5495      assert(UseDynamicNumberOfGCThreads ||
5496             workers()->active_workers() == workers()->total_workers(),
5497             "If not dynamic should be using all the  workers");
5498     workers()->run_task(&g1_par_task);
5499     end_par_time_sec = os::elapsedTime();
5500 
5501     // Closing the inner scope will execute the destructor
5502     // for the StrongRootsScope object. We record the current
5503     // elapsed time before closing the scope so that time
5504     // taken for the SRS destructor is NOT included in the
5505     // reported parallel time.
5506   }
5507 
5508   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5509 
5510   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5511   phase_times->record_par_time(par_time_ms);
5512 
5513   double code_root_fixup_time_ms =
5514         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5515   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5516 
5517   set_par_threads(0);
5518 
5519   // Process any discovered reference objects - we have
5520   // to do this _before_ we retire the GC alloc regions
5521   // as we may have to copy some 'reachable' referent
5522   // objects (and their reachable sub-graphs) that were
5523   // not copied during the pause.
5524   process_discovered_references(n_workers);
5525 
5526   if (G1StringDedup::is_enabled()) {
5527     double fixup_start = os::elapsedTime();
5528 
5529     G1STWIsAliveClosure is_alive(this);
5530     G1KeepAliveClosure keep_alive(this);
5531     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5532 
5533     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5534     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5535   }
5536 
5537   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5538   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5539 
5540   // Reset and re-enable the hot card cache.
5541   // Note the counts for the cards in the regions in the
5542   // collection set are reset when the collection set is freed.
5543   hot_card_cache->reset_hot_cache();
5544   hot_card_cache->set_use_cache(true);
5545 
5546   purge_code_root_memory();
5547 
5548   finalize_for_evac_failure();
5549 
5550   if (evacuation_failed()) {
5551     remove_self_forwarding_pointers();
5552 
5553     // Reset the G1EvacuationFailureALot counters and flags
5554     // Note: the values are reset only when an actual
5555     // evacuation failure occurs.
5556     NOT_PRODUCT(reset_evacuation_should_fail();)
5557   }
5558 
5559   // Enqueue any remaining references remaining on the STW
5560   // reference processor's discovered lists. We need to do
5561   // this after the card table is cleaned (and verified) as
5562   // the act of enqueueing entries on to the pending list
5563   // will log these updates (and dirty their associated
5564   // cards). We need these updates logged to update any
5565   // RSets.
5566   enqueue_discovered_references(n_workers);
5567 
5568   redirty_logged_cards();
5569   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5570 }
5571 
5572 void G1CollectedHeap::free_region(HeapRegion* hr,
5573                                   FreeRegionList* free_list,
5574                                   bool par,
5575                                   bool locked) {
5576   assert(!hr->is_free(), "the region should not be free");
5577   assert(!hr->is_empty(), "the region should not be empty");
5578   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5579   assert(free_list != NULL, "pre-condition");
5580 
5581   if (G1VerifyBitmaps) {
5582     MemRegion mr(hr->bottom(), hr->end());
5583     concurrent_mark()->clearRangePrevBitmap(mr);
5584   }
5585 
5586   // Clear the card counts for this region.
5587   // Note: we only need to do this if the region is not young
5588   // (since we don't refine cards in young regions).
5589   if (!hr->is_young()) {
5590     _cg1r->hot_card_cache()->reset_card_counts(hr);
5591   }
5592   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5593   free_list->add_ordered(hr);
5594 }
5595 
5596 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5597                                      FreeRegionList* free_list,
5598                                      bool par) {
5599   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5600   assert(free_list != NULL, "pre-condition");
5601 
5602   size_t hr_capacity = hr->capacity();
5603   // We need to read this before we make the region non-humongous,
5604   // otherwise the information will be gone.
5605   uint last_index = hr->last_hc_index();
5606   hr->clear_humongous();
5607   free_region(hr, free_list, par);
5608 
5609   uint i = hr->hrm_index() + 1;
5610   while (i < last_index) {
5611     HeapRegion* curr_hr = region_at(i);
5612     assert(curr_hr->is_continues_humongous(), "invariant");
5613     curr_hr->clear_humongous();
5614     free_region(curr_hr, free_list, par);
5615     i += 1;
5616   }
5617 }
5618 
5619 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5620                                        const HeapRegionSetCount& humongous_regions_removed) {
5621   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5622     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5623     _old_set.bulk_remove(old_regions_removed);
5624     _humongous_set.bulk_remove(humongous_regions_removed);
5625   }
5626 
5627 }
5628 
5629 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5630   assert(list != NULL, "list can't be null");
5631   if (!list->is_empty()) {
5632     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5633     _hrm.insert_list_into_free_list(list);
5634   }
5635 }
5636 
5637 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5638   _allocator->decrease_used(bytes);
5639 }
5640 
5641 class G1ParCleanupCTTask : public AbstractGangTask {
5642   G1SATBCardTableModRefBS* _ct_bs;
5643   G1CollectedHeap* _g1h;
5644   HeapRegion* volatile _su_head;
5645 public:
5646   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5647                      G1CollectedHeap* g1h) :
5648     AbstractGangTask("G1 Par Cleanup CT Task"),
5649     _ct_bs(ct_bs), _g1h(g1h) { }
5650 
5651   void work(uint worker_id) {
5652     HeapRegion* r;
5653     while (r = _g1h->pop_dirty_cards_region()) {
5654       clear_cards(r);
5655     }
5656   }
5657 
5658   void clear_cards(HeapRegion* r) {
5659     // Cards of the survivors should have already been dirtied.
5660     if (!r->is_survivor()) {
5661       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5662     }
5663   }
5664 };
5665 
5666 #ifndef PRODUCT
5667 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5668   G1CollectedHeap* _g1h;
5669   G1SATBCardTableModRefBS* _ct_bs;
5670 public:
5671   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5672     : _g1h(g1h), _ct_bs(ct_bs) { }
5673   virtual bool doHeapRegion(HeapRegion* r) {
5674     if (r->is_survivor()) {
5675       _g1h->verify_dirty_region(r);
5676     } else {
5677       _g1h->verify_not_dirty_region(r);
5678     }
5679     return false;
5680   }
5681 };
5682 
5683 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5684   // All of the region should be clean.
5685   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5686   MemRegion mr(hr->bottom(), hr->end());
5687   ct_bs->verify_not_dirty_region(mr);
5688 }
5689 
5690 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5691   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5692   // dirty allocated blocks as they allocate them. The thread that
5693   // retires each region and replaces it with a new one will do a
5694   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5695   // not dirty that area (one less thing to have to do while holding
5696   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5697   // is dirty.
5698   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5699   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5700   if (hr->is_young()) {
5701     ct_bs->verify_g1_young_region(mr);
5702   } else {
5703     ct_bs->verify_dirty_region(mr);
5704   }
5705 }
5706 
5707 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5708   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5709   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5710     verify_dirty_region(hr);
5711   }
5712 }
5713 
5714 void G1CollectedHeap::verify_dirty_young_regions() {
5715   verify_dirty_young_list(_young_list->first_region());
5716 }
5717 
5718 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5719                                                HeapWord* tams, HeapWord* end) {
5720   guarantee(tams <= end,
5721             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5722   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5723   if (result < end) {
5724     gclog_or_tty->cr();
5725     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5726                            bitmap_name, result);
5727     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5728                            bitmap_name, tams, end);
5729     return false;
5730   }
5731   return true;
5732 }
5733 
5734 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5735   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5736   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5737 
5738   HeapWord* bottom = hr->bottom();
5739   HeapWord* ptams  = hr->prev_top_at_mark_start();
5740   HeapWord* ntams  = hr->next_top_at_mark_start();
5741   HeapWord* end    = hr->end();
5742 
5743   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5744 
5745   bool res_n = true;
5746   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5747   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5748   // if we happen to be in that state.
5749   if (mark_in_progress() || !_cmThread->in_progress()) {
5750     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5751   }
5752   if (!res_p || !res_n) {
5753     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5754                            HR_FORMAT_PARAMS(hr));
5755     gclog_or_tty->print_cr("#### Caller: %s", caller);
5756     return false;
5757   }
5758   return true;
5759 }
5760 
5761 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5762   if (!G1VerifyBitmaps) return;
5763 
5764   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5765 }
5766 
5767 class G1VerifyBitmapClosure : public HeapRegionClosure {
5768 private:
5769   const char* _caller;
5770   G1CollectedHeap* _g1h;
5771   bool _failures;
5772 
5773 public:
5774   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5775     _caller(caller), _g1h(g1h), _failures(false) { }
5776 
5777   bool failures() { return _failures; }
5778 
5779   virtual bool doHeapRegion(HeapRegion* hr) {
5780     if (hr->is_continues_humongous()) return false;
5781 
5782     bool result = _g1h->verify_bitmaps(_caller, hr);
5783     if (!result) {
5784       _failures = true;
5785     }
5786     return false;
5787   }
5788 };
5789 
5790 void G1CollectedHeap::check_bitmaps(const char* caller) {
5791   if (!G1VerifyBitmaps) return;
5792 
5793   G1VerifyBitmapClosure cl(caller, this);
5794   heap_region_iterate(&cl);
5795   guarantee(!cl.failures(), "bitmap verification");
5796 }
5797 
5798 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5799  private:
5800   bool _failures;
5801  public:
5802   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5803 
5804   virtual bool doHeapRegion(HeapRegion* hr) {
5805     uint i = hr->hrm_index();
5806     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5807     if (hr->is_humongous()) {
5808       if (hr->in_collection_set()) {
5809         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5810         _failures = true;
5811         return true;
5812       }
5813       if (cset_state.is_in_cset()) {
5814         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5815         _failures = true;
5816         return true;
5817       }
5818       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5819         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5820         _failures = true;
5821         return true;
5822       }
5823     } else {
5824       if (cset_state.is_humongous()) {
5825         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5826         _failures = true;
5827         return true;
5828       }
5829       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5830         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5831                                hr->in_collection_set(), cset_state.value(), i);
5832         _failures = true;
5833         return true;
5834       }
5835       if (cset_state.is_in_cset()) {
5836         if (hr->is_young() != (cset_state.is_young())) {
5837           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5838                                  hr->is_young(), cset_state.value(), i);
5839           _failures = true;
5840           return true;
5841         }
5842         if (hr->is_old() != (cset_state.is_old())) {
5843           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5844                                  hr->is_old(), cset_state.value(), i);
5845           _failures = true;
5846           return true;
5847         }
5848       }
5849     }
5850     return false;
5851   }
5852 
5853   bool failures() const { return _failures; }
5854 };
5855 
5856 bool G1CollectedHeap::check_cset_fast_test() {
5857   G1CheckCSetFastTableClosure cl;
5858   _hrm.iterate(&cl);
5859   return !cl.failures();
5860 }
5861 #endif // PRODUCT
5862 
5863 void G1CollectedHeap::cleanUpCardTable() {
5864   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5865   double start = os::elapsedTime();
5866 
5867   {
5868     // Iterate over the dirty cards region list.
5869     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5870 
5871     set_par_threads();
5872     workers()->run_task(&cleanup_task);
5873     set_par_threads(0);
5874 #ifndef PRODUCT
5875     if (G1VerifyCTCleanup || VerifyAfterGC) {
5876       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5877       heap_region_iterate(&cleanup_verifier);
5878     }
5879 #endif
5880   }
5881 
5882   double elapsed = os::elapsedTime() - start;
5883   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5884 }
5885 
5886 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5887   size_t pre_used = 0;
5888   FreeRegionList local_free_list("Local List for CSet Freeing");
5889 
5890   double young_time_ms     = 0.0;
5891   double non_young_time_ms = 0.0;
5892 
5893   // Since the collection set is a superset of the the young list,
5894   // all we need to do to clear the young list is clear its
5895   // head and length, and unlink any young regions in the code below
5896   _young_list->clear();
5897 
5898   G1CollectorPolicy* policy = g1_policy();
5899 
5900   double start_sec = os::elapsedTime();
5901   bool non_young = true;
5902 
5903   HeapRegion* cur = cs_head;
5904   int age_bound = -1;
5905   size_t rs_lengths = 0;
5906 
5907   while (cur != NULL) {
5908     assert(!is_on_master_free_list(cur), "sanity");
5909     if (non_young) {
5910       if (cur->is_young()) {
5911         double end_sec = os::elapsedTime();
5912         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5913         non_young_time_ms += elapsed_ms;
5914 
5915         start_sec = os::elapsedTime();
5916         non_young = false;
5917       }
5918     } else {
5919       if (!cur->is_young()) {
5920         double end_sec = os::elapsedTime();
5921         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5922         young_time_ms += elapsed_ms;
5923 
5924         start_sec = os::elapsedTime();
5925         non_young = true;
5926       }
5927     }
5928 
5929     rs_lengths += cur->rem_set()->occupied_locked();
5930 
5931     HeapRegion* next = cur->next_in_collection_set();
5932     assert(cur->in_collection_set(), "bad CS");
5933     cur->set_next_in_collection_set(NULL);
5934     clear_in_cset(cur);
5935 
5936     if (cur->is_young()) {
5937       int index = cur->young_index_in_cset();
5938       assert(index != -1, "invariant");
5939       assert((uint) index < policy->young_cset_region_length(), "invariant");
5940       size_t words_survived = _surviving_young_words[index];
5941       cur->record_surv_words_in_group(words_survived);
5942 
5943       // At this point the we have 'popped' cur from the collection set
5944       // (linked via next_in_collection_set()) but it is still in the
5945       // young list (linked via next_young_region()). Clear the
5946       // _next_young_region field.
5947       cur->set_next_young_region(NULL);
5948     } else {
5949       int index = cur->young_index_in_cset();
5950       assert(index == -1, "invariant");
5951     }
5952 
5953     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5954             (!cur->is_young() && cur->young_index_in_cset() == -1),
5955             "invariant" );
5956 
5957     if (!cur->evacuation_failed()) {
5958       MemRegion used_mr = cur->used_region();
5959 
5960       // And the region is empty.
5961       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5962       pre_used += cur->used();
5963       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5964     } else {
5965       cur->uninstall_surv_rate_group();
5966       if (cur->is_young()) {
5967         cur->set_young_index_in_cset(-1);
5968       }
5969       cur->set_evacuation_failed(false);
5970       // The region is now considered to be old.
5971       cur->set_old();
5972       _old_set.add(cur);
5973       evacuation_info.increment_collectionset_used_after(cur->used());
5974     }
5975     cur = next;
5976   }
5977 
5978   evacuation_info.set_regions_freed(local_free_list.length());
5979   policy->record_max_rs_lengths(rs_lengths);
5980   policy->cset_regions_freed();
5981 
5982   double end_sec = os::elapsedTime();
5983   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5984 
5985   if (non_young) {
5986     non_young_time_ms += elapsed_ms;
5987   } else {
5988     young_time_ms += elapsed_ms;
5989   }
5990 
5991   prepend_to_freelist(&local_free_list);
5992   decrement_summary_bytes(pre_used);
5993   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5994   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5995 }
5996 
5997 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5998  private:
5999   FreeRegionList* _free_region_list;
6000   HeapRegionSet* _proxy_set;
6001   HeapRegionSetCount _humongous_regions_removed;
6002   size_t _freed_bytes;
6003  public:
6004 
6005   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6006     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6007   }
6008 
6009   virtual bool doHeapRegion(HeapRegion* r) {
6010     if (!r->is_starts_humongous()) {
6011       return false;
6012     }
6013 
6014     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6015 
6016     oop obj = (oop)r->bottom();
6017     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6018 
6019     // The following checks whether the humongous object is live are sufficient.
6020     // The main additional check (in addition to having a reference from the roots
6021     // or the young gen) is whether the humongous object has a remembered set entry.
6022     //
6023     // A humongous object cannot be live if there is no remembered set for it
6024     // because:
6025     // - there can be no references from within humongous starts regions referencing
6026     // the object because we never allocate other objects into them.
6027     // (I.e. there are no intra-region references that may be missed by the
6028     // remembered set)
6029     // - as soon there is a remembered set entry to the humongous starts region
6030     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6031     // until the end of a concurrent mark.
6032     //
6033     // It is not required to check whether the object has been found dead by marking
6034     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6035     // all objects allocated during that time are considered live.
6036     // SATB marking is even more conservative than the remembered set.
6037     // So if at this point in the collection there is no remembered set entry,
6038     // nobody has a reference to it.
6039     // At the start of collection we flush all refinement logs, and remembered sets
6040     // are completely up-to-date wrt to references to the humongous object.
6041     //
6042     // Other implementation considerations:
6043     // - never consider object arrays at this time because they would pose
6044     // considerable effort for cleaning up the the remembered sets. This is
6045     // required because stale remembered sets might reference locations that
6046     // are currently allocated into.
6047     uint region_idx = r->hrm_index();
6048     if (g1h->humongous_is_live(region_idx) ||
6049         g1h->humongous_region_is_always_live(region_idx)) {
6050 
6051       if (G1TraceEagerReclaimHumongousObjects) {
6052         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6053                                region_idx,
6054                                obj->size()*HeapWordSize,
6055                                r->bottom(),
6056                                r->region_num(),
6057                                r->rem_set()->occupied(),
6058                                r->rem_set()->strong_code_roots_list_length(),
6059                                next_bitmap->isMarked(r->bottom()),
6060                                g1h->humongous_is_live(region_idx),
6061                                obj->is_objArray()
6062                               );
6063       }
6064 
6065       return false;
6066     }
6067 
6068     guarantee(!obj->is_objArray(),
6069               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6070                       r->bottom()));
6071 
6072     if (G1TraceEagerReclaimHumongousObjects) {
6073       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6074                              region_idx,
6075                              obj->size()*HeapWordSize,
6076                              r->bottom(),
6077                              r->region_num(),
6078                              r->rem_set()->occupied(),
6079                              r->rem_set()->strong_code_roots_list_length(),
6080                              next_bitmap->isMarked(r->bottom()),
6081                              g1h->humongous_is_live(region_idx),
6082                              obj->is_objArray()
6083                             );
6084     }
6085     // Need to clear mark bit of the humongous object if already set.
6086     if (next_bitmap->isMarked(r->bottom())) {
6087       next_bitmap->clear(r->bottom());
6088     }
6089     _freed_bytes += r->used();
6090     r->set_containing_set(NULL);
6091     _humongous_regions_removed.increment(1u, r->capacity());
6092     g1h->free_humongous_region(r, _free_region_list, false);
6093 
6094     return false;
6095   }
6096 
6097   HeapRegionSetCount& humongous_free_count() {
6098     return _humongous_regions_removed;
6099   }
6100 
6101   size_t bytes_freed() const {
6102     return _freed_bytes;
6103   }
6104 
6105   size_t humongous_reclaimed() const {
6106     return _humongous_regions_removed.length();
6107   }
6108 };
6109 
6110 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6111   assert_at_safepoint(true);
6112 
6113   if (!G1EagerReclaimHumongousObjects ||
6114       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6115     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6116     return;
6117   }
6118 
6119   double start_time = os::elapsedTime();
6120 
6121   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6122 
6123   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6124   heap_region_iterate(&cl);
6125 
6126   HeapRegionSetCount empty_set;
6127   remove_from_old_sets(empty_set, cl.humongous_free_count());
6128 
6129   G1HRPrinter* hr_printer = _g1h->hr_printer();
6130   if (hr_printer->is_active()) {
6131     FreeRegionListIterator iter(&local_cleanup_list);
6132     while (iter.more_available()) {
6133       HeapRegion* hr = iter.get_next();
6134       hr_printer->cleanup(hr);
6135     }
6136   }
6137 
6138   prepend_to_freelist(&local_cleanup_list);
6139   decrement_summary_bytes(cl.bytes_freed());
6140 
6141   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6142                                                                     cl.humongous_reclaimed());
6143 }
6144 
6145 // This routine is similar to the above but does not record
6146 // any policy statistics or update free lists; we are abandoning
6147 // the current incremental collection set in preparation of a
6148 // full collection. After the full GC we will start to build up
6149 // the incremental collection set again.
6150 // This is only called when we're doing a full collection
6151 // and is immediately followed by the tearing down of the young list.
6152 
6153 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6154   HeapRegion* cur = cs_head;
6155 
6156   while (cur != NULL) {
6157     HeapRegion* next = cur->next_in_collection_set();
6158     assert(cur->in_collection_set(), "bad CS");
6159     cur->set_next_in_collection_set(NULL);
6160     clear_in_cset(cur);
6161     cur->set_young_index_in_cset(-1);
6162     cur = next;
6163   }
6164 }
6165 
6166 void G1CollectedHeap::set_free_regions_coming() {
6167   if (G1ConcRegionFreeingVerbose) {
6168     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6169                            "setting free regions coming");
6170   }
6171 
6172   assert(!free_regions_coming(), "pre-condition");
6173   _free_regions_coming = true;
6174 }
6175 
6176 void G1CollectedHeap::reset_free_regions_coming() {
6177   assert(free_regions_coming(), "pre-condition");
6178 
6179   {
6180     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6181     _free_regions_coming = false;
6182     SecondaryFreeList_lock->notify_all();
6183   }
6184 
6185   if (G1ConcRegionFreeingVerbose) {
6186     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6187                            "reset free regions coming");
6188   }
6189 }
6190 
6191 void G1CollectedHeap::wait_while_free_regions_coming() {
6192   // Most of the time we won't have to wait, so let's do a quick test
6193   // first before we take the lock.
6194   if (!free_regions_coming()) {
6195     return;
6196   }
6197 
6198   if (G1ConcRegionFreeingVerbose) {
6199     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6200                            "waiting for free regions");
6201   }
6202 
6203   {
6204     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6205     while (free_regions_coming()) {
6206       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6207     }
6208   }
6209 
6210   if (G1ConcRegionFreeingVerbose) {
6211     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6212                            "done waiting for free regions");
6213   }
6214 }
6215 
6216 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6217   assert(heap_lock_held_for_gc(),
6218               "the heap lock should already be held by or for this thread");
6219   _young_list->push_region(hr);
6220 }
6221 
6222 class NoYoungRegionsClosure: public HeapRegionClosure {
6223 private:
6224   bool _success;
6225 public:
6226   NoYoungRegionsClosure() : _success(true) { }
6227   bool doHeapRegion(HeapRegion* r) {
6228     if (r->is_young()) {
6229       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6230                              r->bottom(), r->end());
6231       _success = false;
6232     }
6233     return false;
6234   }
6235   bool success() { return _success; }
6236 };
6237 
6238 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6239   bool ret = _young_list->check_list_empty(check_sample);
6240 
6241   if (check_heap) {
6242     NoYoungRegionsClosure closure;
6243     heap_region_iterate(&closure);
6244     ret = ret && closure.success();
6245   }
6246 
6247   return ret;
6248 }
6249 
6250 class TearDownRegionSetsClosure : public HeapRegionClosure {
6251 private:
6252   HeapRegionSet *_old_set;
6253 
6254 public:
6255   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6256 
6257   bool doHeapRegion(HeapRegion* r) {
6258     if (r->is_old()) {
6259       _old_set->remove(r);
6260     } else {
6261       // We ignore free regions, we'll empty the free list afterwards.
6262       // We ignore young regions, we'll empty the young list afterwards.
6263       // We ignore humongous regions, we're not tearing down the
6264       // humongous regions set.
6265       assert(r->is_free() || r->is_young() || r->is_humongous(),
6266              "it cannot be another type");
6267     }
6268     return false;
6269   }
6270 
6271   ~TearDownRegionSetsClosure() {
6272     assert(_old_set->is_empty(), "post-condition");
6273   }
6274 };
6275 
6276 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6277   assert_at_safepoint(true /* should_be_vm_thread */);
6278 
6279   if (!free_list_only) {
6280     TearDownRegionSetsClosure cl(&_old_set);
6281     heap_region_iterate(&cl);
6282 
6283     // Note that emptying the _young_list is postponed and instead done as
6284     // the first step when rebuilding the regions sets again. The reason for
6285     // this is that during a full GC string deduplication needs to know if
6286     // a collected region was young or old when the full GC was initiated.
6287   }
6288   _hrm.remove_all_free_regions();
6289 }
6290 
6291 class RebuildRegionSetsClosure : public HeapRegionClosure {
6292 private:
6293   bool            _free_list_only;
6294   HeapRegionSet*   _old_set;
6295   HeapRegionManager*   _hrm;
6296   size_t          _total_used;
6297 
6298 public:
6299   RebuildRegionSetsClosure(bool free_list_only,
6300                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6301     _free_list_only(free_list_only),
6302     _old_set(old_set), _hrm(hrm), _total_used(0) {
6303     assert(_hrm->num_free_regions() == 0, "pre-condition");
6304     if (!free_list_only) {
6305       assert(_old_set->is_empty(), "pre-condition");
6306     }
6307   }
6308 
6309   bool doHeapRegion(HeapRegion* r) {
6310     if (r->is_continues_humongous()) {
6311       return false;
6312     }
6313 
6314     if (r->is_empty()) {
6315       // Add free regions to the free list
6316       r->set_free();
6317       r->set_allocation_context(AllocationContext::system());
6318       _hrm->insert_into_free_list(r);
6319     } else if (!_free_list_only) {
6320       assert(!r->is_young(), "we should not come across young regions");
6321 
6322       if (r->is_humongous()) {
6323         // We ignore humongous regions, we left the humongous set unchanged
6324       } else {
6325         // Objects that were compacted would have ended up on regions
6326         // that were previously old or free.
6327         assert(r->is_free() || r->is_old(), "invariant");
6328         // We now consider them old, so register as such.
6329         r->set_old();
6330         _old_set->add(r);
6331       }
6332       _total_used += r->used();
6333     }
6334 
6335     return false;
6336   }
6337 
6338   size_t total_used() {
6339     return _total_used;
6340   }
6341 };
6342 
6343 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6344   assert_at_safepoint(true /* should_be_vm_thread */);
6345 
6346   if (!free_list_only) {
6347     _young_list->empty_list();
6348   }
6349 
6350   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6351   heap_region_iterate(&cl);
6352 
6353   if (!free_list_only) {
6354     _allocator->set_used(cl.total_used());
6355   }
6356   assert(_allocator->used_unlocked() == recalculate_used(),
6357          err_msg("inconsistent _allocator->used_unlocked(), "
6358                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6359                  _allocator->used_unlocked(), recalculate_used()));
6360 }
6361 
6362 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6363   _refine_cte_cl->set_concurrent(concurrent);
6364 }
6365 
6366 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6367   HeapRegion* hr = heap_region_containing(p);
6368   return hr->is_in(p);
6369 }
6370 
6371 // Methods for the mutator alloc region
6372 
6373 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6374                                                       bool force) {
6375   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6376   assert(!force || g1_policy()->can_expand_young_list(),
6377          "if force is true we should be able to expand the young list");
6378   bool young_list_full = g1_policy()->is_young_list_full();
6379   if (force || !young_list_full) {
6380     HeapRegion* new_alloc_region = new_region(word_size,
6381                                               false /* is_old */,
6382                                               false /* do_expand */);
6383     if (new_alloc_region != NULL) {
6384       set_region_short_lived_locked(new_alloc_region);
6385       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6386       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6387       return new_alloc_region;
6388     }
6389   }
6390   return NULL;
6391 }
6392 
6393 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6394                                                   size_t allocated_bytes) {
6395   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6396   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6397 
6398   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6399   _allocator->increase_used(allocated_bytes);
6400   _hr_printer.retire(alloc_region);
6401   // We update the eden sizes here, when the region is retired,
6402   // instead of when it's allocated, since this is the point that its
6403   // used space has been recored in _summary_bytes_used.
6404   g1mm()->update_eden_size();
6405 }
6406 
6407 void G1CollectedHeap::set_par_threads() {
6408   // Don't change the number of workers.  Use the value previously set
6409   // in the workgroup.
6410   uint n_workers = workers()->active_workers();
6411   assert(UseDynamicNumberOfGCThreads ||
6412            n_workers == workers()->total_workers(),
6413       "Otherwise should be using the total number of workers");
6414   if (n_workers == 0) {
6415     assert(false, "Should have been set in prior evacuation pause.");
6416     n_workers = ParallelGCThreads;
6417     workers()->set_active_workers(n_workers);
6418   }
6419   set_par_threads(n_workers);
6420 }
6421 
6422 // Methods for the GC alloc regions
6423 
6424 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6425                                                  uint count,
6426                                                  InCSetState dest) {
6427   assert(FreeList_lock->owned_by_self(), "pre-condition");
6428 
6429   if (count < g1_policy()->max_regions(dest)) {
6430     const bool is_survivor = (dest.is_young());
6431     HeapRegion* new_alloc_region = new_region(word_size,
6432                                               !is_survivor,
6433                                               true /* do_expand */);
6434     if (new_alloc_region != NULL) {
6435       // We really only need to do this for old regions given that we
6436       // should never scan survivors. But it doesn't hurt to do it
6437       // for survivors too.
6438       new_alloc_region->record_timestamp();
6439       if (is_survivor) {
6440         new_alloc_region->set_survivor();
6441         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6442         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6443       } else {
6444         new_alloc_region->set_old();
6445         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6446         check_bitmaps("Old Region Allocation", new_alloc_region);
6447       }
6448       bool during_im = g1_policy()->during_initial_mark_pause();
6449       new_alloc_region->note_start_of_copying(during_im);
6450       return new_alloc_region;
6451     }
6452   }
6453   return NULL;
6454 }
6455 
6456 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6457                                              size_t allocated_bytes,
6458                                              InCSetState dest) {
6459   bool during_im = g1_policy()->during_initial_mark_pause();
6460   alloc_region->note_end_of_copying(during_im);
6461   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6462   if (dest.is_young()) {
6463     young_list()->add_survivor_region(alloc_region);
6464   } else {
6465     _old_set.add(alloc_region);
6466   }
6467   _hr_printer.retire(alloc_region);
6468 }
6469 
6470 // Heap region set verification
6471 
6472 class VerifyRegionListsClosure : public HeapRegionClosure {
6473 private:
6474   HeapRegionSet*   _old_set;
6475   HeapRegionSet*   _humongous_set;
6476   HeapRegionManager*   _hrm;
6477 
6478 public:
6479   HeapRegionSetCount _old_count;
6480   HeapRegionSetCount _humongous_count;
6481   HeapRegionSetCount _free_count;
6482 
6483   VerifyRegionListsClosure(HeapRegionSet* old_set,
6484                            HeapRegionSet* humongous_set,
6485                            HeapRegionManager* hrm) :
6486     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6487     _old_count(), _humongous_count(), _free_count(){ }
6488 
6489   bool doHeapRegion(HeapRegion* hr) {
6490     if (hr->is_continues_humongous()) {
6491       return false;
6492     }
6493 
6494     if (hr->is_young()) {
6495       // TODO
6496     } else if (hr->is_starts_humongous()) {
6497       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6498       _humongous_count.increment(1u, hr->capacity());
6499     } else if (hr->is_empty()) {
6500       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6501       _free_count.increment(1u, hr->capacity());
6502     } else if (hr->is_old()) {
6503       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6504       _old_count.increment(1u, hr->capacity());
6505     } else {
6506       ShouldNotReachHere();
6507     }
6508     return false;
6509   }
6510 
6511   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6512     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6513     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6514         old_set->total_capacity_bytes(), _old_count.capacity()));
6515 
6516     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6517     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6518         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6519 
6520     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6521     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6522         free_list->total_capacity_bytes(), _free_count.capacity()));
6523   }
6524 };
6525 
6526 void G1CollectedHeap::verify_region_sets() {
6527   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6528 
6529   // First, check the explicit lists.
6530   _hrm.verify();
6531   {
6532     // Given that a concurrent operation might be adding regions to
6533     // the secondary free list we have to take the lock before
6534     // verifying it.
6535     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6536     _secondary_free_list.verify_list();
6537   }
6538 
6539   // If a concurrent region freeing operation is in progress it will
6540   // be difficult to correctly attributed any free regions we come
6541   // across to the correct free list given that they might belong to
6542   // one of several (free_list, secondary_free_list, any local lists,
6543   // etc.). So, if that's the case we will skip the rest of the
6544   // verification operation. Alternatively, waiting for the concurrent
6545   // operation to complete will have a non-trivial effect on the GC's
6546   // operation (no concurrent operation will last longer than the
6547   // interval between two calls to verification) and it might hide
6548   // any issues that we would like to catch during testing.
6549   if (free_regions_coming()) {
6550     return;
6551   }
6552 
6553   // Make sure we append the secondary_free_list on the free_list so
6554   // that all free regions we will come across can be safely
6555   // attributed to the free_list.
6556   append_secondary_free_list_if_not_empty_with_lock();
6557 
6558   // Finally, make sure that the region accounting in the lists is
6559   // consistent with what we see in the heap.
6560 
6561   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6562   heap_region_iterate(&cl);
6563   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6564 }
6565 
6566 // Optimized nmethod scanning
6567 
6568 class RegisterNMethodOopClosure: public OopClosure {
6569   G1CollectedHeap* _g1h;
6570   nmethod* _nm;
6571 
6572   template <class T> void do_oop_work(T* p) {
6573     T heap_oop = oopDesc::load_heap_oop(p);
6574     if (!oopDesc::is_null(heap_oop)) {
6575       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6576       HeapRegion* hr = _g1h->heap_region_containing(obj);
6577       assert(!hr->is_continues_humongous(),
6578              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6579                      " starting at "HR_FORMAT,
6580                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6581 
6582       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6583       hr->add_strong_code_root_locked(_nm);
6584     }
6585   }
6586 
6587 public:
6588   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6589     _g1h(g1h), _nm(nm) {}
6590 
6591   void do_oop(oop* p)       { do_oop_work(p); }
6592   void do_oop(narrowOop* p) { do_oop_work(p); }
6593 };
6594 
6595 class UnregisterNMethodOopClosure: public OopClosure {
6596   G1CollectedHeap* _g1h;
6597   nmethod* _nm;
6598 
6599   template <class T> void do_oop_work(T* p) {
6600     T heap_oop = oopDesc::load_heap_oop(p);
6601     if (!oopDesc::is_null(heap_oop)) {
6602       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6603       HeapRegion* hr = _g1h->heap_region_containing(obj);
6604       assert(!hr->is_continues_humongous(),
6605              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6606                      " starting at "HR_FORMAT,
6607                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6608 
6609       hr->remove_strong_code_root(_nm);
6610     }
6611   }
6612 
6613 public:
6614   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6615     _g1h(g1h), _nm(nm) {}
6616 
6617   void do_oop(oop* p)       { do_oop_work(p); }
6618   void do_oop(narrowOop* p) { do_oop_work(p); }
6619 };
6620 
6621 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6622   CollectedHeap::register_nmethod(nm);
6623 
6624   guarantee(nm != NULL, "sanity");
6625   RegisterNMethodOopClosure reg_cl(this, nm);
6626   nm->oops_do(&reg_cl);
6627 }
6628 
6629 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6630   CollectedHeap::unregister_nmethod(nm);
6631 
6632   guarantee(nm != NULL, "sanity");
6633   UnregisterNMethodOopClosure reg_cl(this, nm);
6634   nm->oops_do(&reg_cl, true);
6635 }
6636 
6637 void G1CollectedHeap::purge_code_root_memory() {
6638   double purge_start = os::elapsedTime();
6639   G1CodeRootSet::purge();
6640   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6641   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6642 }
6643 
6644 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6645   G1CollectedHeap* _g1h;
6646 
6647 public:
6648   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6649     _g1h(g1h) {}
6650 
6651   void do_code_blob(CodeBlob* cb) {
6652     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6653     if (nm == NULL) {
6654       return;
6655     }
6656 
6657     if (ScavengeRootsInCode) {
6658       _g1h->register_nmethod(nm);
6659     }
6660   }
6661 };
6662 
6663 void G1CollectedHeap::rebuild_strong_code_roots() {
6664   RebuildStrongCodeRootClosure blob_cl(this);
6665   CodeCache::blobs_do(&blob_cl);
6666 }