1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/collectorCounters.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gcTimer.hpp"
  30 #include "gc_implementation/shared/gcTraceTime.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/defNewGeneration.inline.hpp"
  34 #include "memory/gcLocker.inline.hpp"
  35 #include "memory/genCollectedHeap.hpp"
  36 #include "memory/genOopClosures.inline.hpp"
  37 #include "memory/genRemSet.hpp"
  38 #include "memory/generationSpec.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/space.inline.hpp"
  42 #include "oops/instanceRefKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/prefetch.inline.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/globalDefinitions.hpp"
  50 #include "utilities/stack.inline.hpp"
  51 
  52 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  53 
  54 //
  55 // DefNewGeneration functions.
  56 
  57 // Methods of protected closure types.
  58 
  59 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  60   assert(g->level() == 0, "Optimized for youngest gen.");
  61 }
  62 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  63   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  64 }
  65 
  66 DefNewGeneration::KeepAliveClosure::
  67 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  68   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  69   _rs = (CardTableRS*)rs;
  70 }
  71 
  72 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  73 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  74 
  75 
  76 DefNewGeneration::FastKeepAliveClosure::
  77 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  78   DefNewGeneration::KeepAliveClosure(cl) {
  79   _boundary = g->reserved().end();
  80 }
  81 
  82 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  83 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  84 
  85 DefNewGeneration::EvacuateFollowersClosure::
  86 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  87                          ScanClosure* cur, ScanClosure* older) :
  88   _gch(gch), _level(level),
  89   _scan_cur_or_nonheap(cur), _scan_older(older)
  90 {}
  91 
  92 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  93   do {
  94     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
  95                                        _scan_older);
  96   } while (!_gch->no_allocs_since_save_marks(_level));
  97 }
  98 
  99 DefNewGeneration::FastEvacuateFollowersClosure::
 100 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
 101                              DefNewGeneration* gen,
 102                              FastScanClosure* cur, FastScanClosure* older) :
 103   _gch(gch), _level(level), _gen(gen),
 104   _scan_cur_or_nonheap(cur), _scan_older(older)
 105 {}
 106 
 107 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 108   do {
 109     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 110                                        _scan_older);
 111   } while (!_gch->no_allocs_since_save_marks(_level));
 112   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 113 }
 114 
 115 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 116     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 117 {
 118   assert(_g->level() == 0, "Optimized for youngest generation");
 119   _boundary = _g->reserved().end();
 120 }
 121 
 122 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 123 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 124 
 125 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 126     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 127 {
 128   assert(_g->level() == 0, "Optimized for youngest generation");
 129   _boundary = _g->reserved().end();
 130 }
 131 
 132 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 133 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 134 
 135 void KlassScanClosure::do_klass(Klass* klass) {
 136 #ifndef PRODUCT
 137   if (TraceScavenge) {
 138     ResourceMark rm;
 139     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 140                            klass,
 141                            klass->external_name(),
 142                            klass->has_modified_oops() ? "true" : "false");
 143   }
 144 #endif
 145 
 146   // If the klass has not been dirtied we know that there's
 147   // no references into  the young gen and we can skip it.
 148   if (klass->has_modified_oops()) {
 149     if (_accumulate_modified_oops) {
 150       klass->accumulate_modified_oops();
 151     }
 152 
 153     // Clear this state since we're going to scavenge all the metadata.
 154     klass->clear_modified_oops();
 155 
 156     // Tell the closure which Klass is being scanned so that it can be dirtied
 157     // if oops are left pointing into the young gen.
 158     _scavenge_closure->set_scanned_klass(klass);
 159 
 160     klass->oops_do(_scavenge_closure);
 161 
 162     _scavenge_closure->set_scanned_klass(NULL);
 163   }
 164 }
 165 
 166 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 167   _g(g)
 168 {
 169   assert(_g->level() == 0, "Optimized for youngest generation");
 170   _boundary = _g->reserved().end();
 171 }
 172 
 173 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 174 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 175 
 176 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 177 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 178 
 179 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 180                                    KlassRemSet* klass_rem_set)
 181     : _scavenge_closure(scavenge_closure),
 182       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 183 
 184 
 185 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 186                                    size_t initial_size,
 187                                    int level,
 188                                    const char* policy)
 189   : Generation(rs, initial_size, level),
 190     _promo_failure_drain_in_progress(false),
 191     _should_allocate_from_space(false)
 192 {
 193   MemRegion cmr((HeapWord*)_virtual_space.low(),
 194                 (HeapWord*)_virtual_space.high());
 195   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 196 
 197   _eden_space = new ContiguousSpace();
 198   _from_space = new ContiguousSpace();
 199   _to_space   = new ContiguousSpace();
 200 
 201   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 202     vm_exit_during_initialization("Could not allocate a new gen space");
 203 
 204   // Compute the maximum eden and survivor space sizes. These sizes
 205   // are computed assuming the entire reserved space is committed.
 206   // These values are exported as performance counters.
 207   uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 208   uintx size = _virtual_space.reserved_size();
 209   _max_survivor_size = compute_survivor_size(size, alignment);
 210   _max_eden_size = size - (2*_max_survivor_size);
 211 
 212   // allocate the performance counters
 213   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 214 
 215   // Generation counters -- generation 0, 3 subspaces
 216   _gen_counters = new GenerationCounters("new", 0, 3,
 217       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 218   _gc_counters = new CollectorCounters(policy, 0);
 219 
 220   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 221                                       _gen_counters);
 222   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 223                                       _gen_counters);
 224   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 225                                     _gen_counters);
 226 
 227   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 228   update_counters();
 229   _next_gen = NULL;
 230   _tenuring_threshold = MaxTenuringThreshold;
 231   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 232 
 233   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 234 }
 235 
 236 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 237                                                 bool clear_space,
 238                                                 bool mangle_space) {
 239   uintx alignment =
 240     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 241 
 242   // If the spaces are being cleared (only done at heap initialization
 243   // currently), the survivor spaces need not be empty.
 244   // Otherwise, no care is taken for used areas in the survivor spaces
 245   // so check.
 246   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 247     "Initialization of the survivor spaces assumes these are empty");
 248 
 249   // Compute sizes
 250   uintx size = _virtual_space.committed_size();
 251   uintx survivor_size = compute_survivor_size(size, alignment);
 252   uintx eden_size = size - (2*survivor_size);
 253   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 254 
 255   if (eden_size < minimum_eden_size) {
 256     // May happen due to 64Kb rounding, if so adjust eden size back up
 257     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 258     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 259     uintx unaligned_survivor_size =
 260       align_size_down(maximum_survivor_size, alignment);
 261     survivor_size = MAX2(unaligned_survivor_size, alignment);
 262     eden_size = size - (2*survivor_size);
 263     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 264     assert(eden_size >= minimum_eden_size, "just checking");
 265   }
 266 
 267   char *eden_start = _virtual_space.low();
 268   char *from_start = eden_start + eden_size;
 269   char *to_start   = from_start + survivor_size;
 270   char *to_end     = to_start   + survivor_size;
 271 
 272   assert(to_end == _virtual_space.high(), "just checking");
 273   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 274   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 275   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 276 
 277   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 278   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 279   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 280 
 281   // A minimum eden size implies that there is a part of eden that
 282   // is being used and that affects the initialization of any
 283   // newly formed eden.
 284   bool live_in_eden = minimum_eden_size > 0;
 285 
 286   // If not clearing the spaces, do some checking to verify that
 287   // the space are already mangled.
 288   if (!clear_space) {
 289     // Must check mangling before the spaces are reshaped.  Otherwise,
 290     // the bottom or end of one space may have moved into another
 291     // a failure of the check may not correctly indicate which space
 292     // is not properly mangled.
 293     if (ZapUnusedHeapArea) {
 294       HeapWord* limit = (HeapWord*) _virtual_space.high();
 295       eden()->check_mangled_unused_area(limit);
 296       from()->check_mangled_unused_area(limit);
 297         to()->check_mangled_unused_area(limit);
 298     }
 299   }
 300 
 301   // Reset the spaces for their new regions.
 302   eden()->initialize(edenMR,
 303                      clear_space && !live_in_eden,
 304                      SpaceDecorator::Mangle);
 305   // If clear_space and live_in_eden, we will not have cleared any
 306   // portion of eden above its top. This can cause newly
 307   // expanded space not to be mangled if using ZapUnusedHeapArea.
 308   // We explicitly do such mangling here.
 309   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 310     eden()->mangle_unused_area();
 311   }
 312   from()->initialize(fromMR, clear_space, mangle_space);
 313   to()->initialize(toMR, clear_space, mangle_space);
 314 
 315   // Set next compaction spaces.
 316   eden()->set_next_compaction_space(from());
 317   // The to-space is normally empty before a compaction so need
 318   // not be considered.  The exception is during promotion
 319   // failure handling when to-space can contain live objects.
 320   from()->set_next_compaction_space(NULL);
 321 }
 322 
 323 void DefNewGeneration::swap_spaces() {
 324   ContiguousSpace* s = from();
 325   _from_space        = to();
 326   _to_space          = s;
 327   eden()->set_next_compaction_space(from());
 328   // The to-space is normally empty before a compaction so need
 329   // not be considered.  The exception is during promotion
 330   // failure handling when to-space can contain live objects.
 331   from()->set_next_compaction_space(NULL);
 332 
 333   if (UsePerfData) {
 334     CSpaceCounters* c = _from_counters;
 335     _from_counters = _to_counters;
 336     _to_counters = c;
 337   }
 338 }
 339 
 340 bool DefNewGeneration::expand(size_t bytes) {
 341   MutexLocker x(ExpandHeap_lock);
 342   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 343   bool success = _virtual_space.expand_by(bytes);
 344   if (success && ZapUnusedHeapArea) {
 345     // Mangle newly committed space immediately because it
 346     // can be done here more simply that after the new
 347     // spaces have been computed.
 348     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 349     MemRegion mangle_region(prev_high, new_high);
 350     SpaceMangler::mangle_region(mangle_region);
 351   }
 352 
 353   // Do not attempt an expand-to-the reserve size.  The
 354   // request should properly observe the maximum size of
 355   // the generation so an expand-to-reserve should be
 356   // unnecessary.  Also a second call to expand-to-reserve
 357   // value potentially can cause an undue expansion.
 358   // For example if the first expand fail for unknown reasons,
 359   // but the second succeeds and expands the heap to its maximum
 360   // value.
 361   if (GC_locker::is_active()) {
 362     if (PrintGC && Verbose) {
 363       gclog_or_tty->print_cr("Garbage collection disabled, "
 364         "expanded heap instead");
 365     }
 366   }
 367 
 368   return success;
 369 }
 370 
 371 
 372 void DefNewGeneration::compute_new_size() {
 373   // This is called after a gc that includes the following generation
 374   // (which is required to exist.)  So from-space will normally be empty.
 375   // Note that we check both spaces, since if scavenge failed they revert roles.
 376   // If not we bail out (otherwise we would have to relocate the objects)
 377   if (!from()->is_empty() || !to()->is_empty()) {
 378     return;
 379   }
 380 
 381   int next_level = level() + 1;
 382   GenCollectedHeap* gch = GenCollectedHeap::heap();
 383   assert(next_level < gch->_n_gens,
 384          "DefNewGeneration cannot be an oldest gen");
 385 
 386   Generation* next_gen = gch->get_gen(next_level);
 387   size_t old_size = next_gen->capacity();
 388   size_t new_size_before = _virtual_space.committed_size();
 389   size_t min_new_size = spec()->init_size();
 390   size_t max_new_size = reserved().byte_size();
 391   assert(min_new_size <= new_size_before &&
 392          new_size_before <= max_new_size,
 393          "just checking");
 394   // All space sizes must be multiples of Generation::GenGrain.
 395   size_t alignment = Generation::GenGrain;
 396 
 397   // Compute desired new generation size based on NewRatio and
 398   // NewSizeThreadIncrease
 399   size_t desired_new_size = old_size/NewRatio;
 400   int threads_count = Threads::number_of_non_daemon_threads();
 401   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 402   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 403 
 404   // Adjust new generation size
 405   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 406   assert(desired_new_size <= max_new_size, "just checking");
 407 
 408   bool changed = false;
 409   if (desired_new_size > new_size_before) {
 410     size_t change = desired_new_size - new_size_before;
 411     assert(change % alignment == 0, "just checking");
 412     if (expand(change)) {
 413        changed = true;
 414     }
 415     // If the heap failed to expand to the desired size,
 416     // "changed" will be false.  If the expansion failed
 417     // (and at this point it was expected to succeed),
 418     // ignore the failure (leaving "changed" as false).
 419   }
 420   if (desired_new_size < new_size_before && eden()->is_empty()) {
 421     // bail out of shrinking if objects in eden
 422     size_t change = new_size_before - desired_new_size;
 423     assert(change % alignment == 0, "just checking");
 424     _virtual_space.shrink_by(change);
 425     changed = true;
 426   }
 427   if (changed) {
 428     // The spaces have already been mangled at this point but
 429     // may not have been cleared (set top = bottom) and should be.
 430     // Mangling was done when the heap was being expanded.
 431     compute_space_boundaries(eden()->used(),
 432                              SpaceDecorator::Clear,
 433                              SpaceDecorator::DontMangle);
 434     MemRegion cmr((HeapWord*)_virtual_space.low(),
 435                   (HeapWord*)_virtual_space.high());
 436     Universe::heap()->barrier_set()->resize_covered_region(cmr);
 437     if (Verbose && PrintGC) {
 438       size_t new_size_after  = _virtual_space.committed_size();
 439       size_t eden_size_after = eden()->capacity();
 440       size_t survivor_size_after = from()->capacity();
 441       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 442         SIZE_FORMAT "K [eden="
 443         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 444         new_size_before/K, new_size_after/K,
 445         eden_size_after/K, survivor_size_after/K);
 446       if (WizardMode) {
 447         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 448           thread_increase_size/K, threads_count);
 449       }
 450       gclog_or_tty->cr();
 451     }
 452   }
 453 }
 454 
 455 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
 456   assert(false, "NYI -- are you sure you want to call this?");
 457 }
 458 
 459 
 460 size_t DefNewGeneration::capacity() const {
 461   return eden()->capacity()
 462        + from()->capacity();  // to() is only used during scavenge
 463 }
 464 
 465 
 466 size_t DefNewGeneration::used() const {
 467   return eden()->used()
 468        + from()->used();      // to() is only used during scavenge
 469 }
 470 
 471 
 472 size_t DefNewGeneration::free() const {
 473   return eden()->free()
 474        + from()->free();      // to() is only used during scavenge
 475 }
 476 
 477 size_t DefNewGeneration::max_capacity() const {
 478   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 479   const size_t reserved_bytes = reserved().byte_size();
 480   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 481 }
 482 
 483 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 484   return eden()->free();
 485 }
 486 
 487 size_t DefNewGeneration::capacity_before_gc() const {
 488   return eden()->capacity();
 489 }
 490 
 491 size_t DefNewGeneration::contiguous_available() const {
 492   return eden()->free();
 493 }
 494 
 495 
 496 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 497 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 498 
 499 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 500   eden()->object_iterate(blk);
 501   from()->object_iterate(blk);
 502 }
 503 
 504 
 505 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 506                                      bool usedOnly) {
 507   blk->do_space(eden());
 508   blk->do_space(from());
 509   blk->do_space(to());
 510 }
 511 
 512 // The last collection bailed out, we are running out of heap space,
 513 // so we try to allocate the from-space, too.
 514 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 515   HeapWord* result = NULL;
 516   if (Verbose && PrintGCDetails) {
 517     gclog_or_tty->print("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):"
 518                         "  will_fail: %s"
 519                         "  heap_lock: %s"
 520                         "  free: " SIZE_FORMAT,
 521                         size,
 522                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 523                           "true" : "false",
 524                         Heap_lock->is_locked() ? "locked" : "unlocked",
 525                         from()->free());
 526   }
 527   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 528     if (Heap_lock->owned_by_self() ||
 529         (SafepointSynchronize::is_at_safepoint() &&
 530          Thread::current()->is_VM_thread())) {
 531       // If the Heap_lock is not locked by this thread, this will be called
 532       // again later with the Heap_lock held.
 533       result = from()->allocate(size);
 534     } else if (PrintGC && Verbose) {
 535       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 536     }
 537   } else if (PrintGC && Verbose) {
 538     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 539   }
 540   if (PrintGC && Verbose) {
 541     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 542   }
 543   return result;
 544 }
 545 
 546 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 547                                                 bool   is_tlab,
 548                                                 bool   parallel) {
 549   // We don't attempt to expand the young generation (but perhaps we should.)
 550   return allocate(size, is_tlab);
 551 }
 552 
 553 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 554   // Set the desired survivor size to half the real survivor space
 555   _tenuring_threshold =
 556     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 557 }
 558 
 559 void DefNewGeneration::collect(bool   full,
 560                                bool   clear_all_soft_refs,
 561                                size_t size,
 562                                bool   is_tlab) {
 563   assert(full || size > 0, "otherwise we don't want to collect");
 564 
 565   GenCollectedHeap* gch = GenCollectedHeap::heap();
 566 
 567   _gc_timer->register_gc_start();
 568   DefNewTracer gc_tracer;
 569   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 570 
 571   _next_gen = gch->next_gen(this);
 572 
 573   // If the next generation is too full to accommodate promotion
 574   // from this generation, pass on collection; let the next generation
 575   // do it.
 576   if (!collection_attempt_is_safe()) {
 577     if (Verbose && PrintGCDetails) {
 578       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 579     }
 580     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 581     return;
 582   }
 583   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 584 
 585   init_assuming_no_promotion_failure();
 586 
 587   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 588   // Capture heap used before collection (for printing).
 589   size_t gch_prev_used = gch->used();
 590 
 591   gch->trace_heap_before_gc(&gc_tracer);
 592 
 593   SpecializationStats::clear();
 594 
 595   // These can be shared for all code paths
 596   IsAliveClosure is_alive(this);
 597   ScanWeakRefClosure scan_weak_ref(this);
 598 
 599   age_table()->clear();
 600   to()->clear(SpaceDecorator::Mangle);
 601 
 602   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 603 
 604   assert(gch->no_allocs_since_save_marks(0),
 605          "save marks have not been newly set.");
 606 
 607   // Not very pretty.
 608   CollectorPolicy* cp = gch->collector_policy();
 609 
 610   FastScanClosure fsc_with_no_gc_barrier(this, false);
 611   FastScanClosure fsc_with_gc_barrier(this, true);
 612 
 613   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 614                                       gch->rem_set()->klass_rem_set());
 615   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 616                                            &fsc_with_no_gc_barrier,
 617                                            false);
 618 
 619   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 620   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 621                                                   &fsc_with_no_gc_barrier,
 622                                                   &fsc_with_gc_barrier);
 623 
 624   assert(gch->no_allocs_since_save_marks(0),
 625          "save marks have not been newly set.");
 626 
 627   gch->gen_process_roots(_level,
 628                          true,  // Process younger gens, if any,
 629                                 // as strong roots.
 630                          true,  // activate StrongRootsScope
 631                          GenCollectedHeap::SO_ScavengeCodeCache,
 632                          GenCollectedHeap::StrongAndWeakRoots,
 633                          &fsc_with_no_gc_barrier,
 634                          &fsc_with_gc_barrier,
 635                          &cld_scan_closure);
 636 
 637   // "evacuate followers".
 638   evacuate_followers.do_void();
 639 
 640   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 641   ReferenceProcessor* rp = ref_processor();
 642   rp->setup_policy(clear_all_soft_refs);
 643   const ReferenceProcessorStats& stats =
 644   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 645                                     NULL, _gc_timer, gc_tracer.gc_id());
 646   gc_tracer.report_gc_reference_stats(stats);
 647 
 648   if (!_promotion_failed) {
 649     // Swap the survivor spaces.
 650     eden()->clear(SpaceDecorator::Mangle);
 651     from()->clear(SpaceDecorator::Mangle);
 652     if (ZapUnusedHeapArea) {
 653       // This is now done here because of the piece-meal mangling which
 654       // can check for valid mangling at intermediate points in the
 655       // collection(s).  When a minor collection fails to collect
 656       // sufficient space resizing of the young generation can occur
 657       // an redistribute the spaces in the young generation.  Mangle
 658       // here so that unzapped regions don't get distributed to
 659       // other spaces.
 660       to()->mangle_unused_area();
 661     }
 662     swap_spaces();
 663 
 664     assert(to()->is_empty(), "to space should be empty now");
 665 
 666     adjust_desired_tenuring_threshold();
 667 
 668     // A successful scavenge should restart the GC time limit count which is
 669     // for full GC's.
 670     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 671     size_policy->reset_gc_overhead_limit_count();
 672     assert(!gch->incremental_collection_failed(), "Should be clear");
 673   } else {
 674     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 675     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 676 
 677     remove_forwarding_pointers();
 678     if (PrintGCDetails) {
 679       gclog_or_tty->print(" (promotion failed) ");
 680     }
 681     // Add to-space to the list of space to compact
 682     // when a promotion failure has occurred.  In that
 683     // case there can be live objects in to-space
 684     // as a result of a partial evacuation of eden
 685     // and from-space.
 686     swap_spaces();   // For uniformity wrt ParNewGeneration.
 687     from()->set_next_compaction_space(to());
 688     gch->set_incremental_collection_failed();
 689 
 690     // Inform the next generation that a promotion failure occurred.
 691     _next_gen->promotion_failure_occurred();
 692     gc_tracer.report_promotion_failed(_promotion_failed_info);
 693 
 694     // Reset the PromotionFailureALot counters.
 695     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 696   }
 697   if (PrintGC && !PrintGCDetails) {
 698     gch->print_heap_change(gch_prev_used);
 699   }
 700   // set new iteration safe limit for the survivor spaces
 701   from()->set_concurrent_iteration_safe_limit(from()->top());
 702   to()->set_concurrent_iteration_safe_limit(to()->top());
 703   SpecializationStats::print();
 704 
 705   // We need to use a monotonically non-decreasing time in ms
 706   // or we will see time-warp warnings and os::javaTimeMillis()
 707   // does not guarantee monotonicity.
 708   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 709   update_time_of_last_gc(now);
 710 
 711   gch->trace_heap_after_gc(&gc_tracer);
 712   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 713 
 714   _gc_timer->register_gc_end();
 715 
 716   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 717 }
 718 
 719 class RemoveForwardPointerClosure: public ObjectClosure {
 720 public:
 721   void do_object(oop obj) {
 722     obj->init_mark();
 723   }
 724 };
 725 
 726 void DefNewGeneration::init_assuming_no_promotion_failure() {
 727   _promotion_failed = false;
 728   _promotion_failed_info.reset();
 729   from()->set_next_compaction_space(NULL);
 730 }
 731 
 732 void DefNewGeneration::remove_forwarding_pointers() {
 733   RemoveForwardPointerClosure rspc;
 734   eden()->object_iterate(&rspc);
 735   from()->object_iterate(&rspc);
 736 
 737   // Now restore saved marks, if any.
 738   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 739          "should be the same");
 740   while (!_objs_with_preserved_marks.is_empty()) {
 741     oop obj   = _objs_with_preserved_marks.pop();
 742     markOop m = _preserved_marks_of_objs.pop();
 743     obj->set_mark(m);
 744   }
 745   _objs_with_preserved_marks.clear(true);
 746   _preserved_marks_of_objs.clear(true);
 747 }
 748 
 749 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 750   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 751          "Oversaving!");
 752   _objs_with_preserved_marks.push(obj);
 753   _preserved_marks_of_objs.push(m);
 754 }
 755 
 756 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 757   if (m->must_be_preserved_for_promotion_failure(obj)) {
 758     preserve_mark(obj, m);
 759   }
 760 }
 761 
 762 void DefNewGeneration::handle_promotion_failure(oop old) {
 763   if (PrintPromotionFailure && !_promotion_failed) {
 764     gclog_or_tty->print(" (promotion failure size = %d) ",
 765                         old->size());
 766   }
 767   _promotion_failed = true;
 768   _promotion_failed_info.register_copy_failure(old->size());
 769   preserve_mark_if_necessary(old, old->mark());
 770   // forward to self
 771   old->forward_to(old);
 772 
 773   _promo_failure_scan_stack.push(old);
 774 
 775   if (!_promo_failure_drain_in_progress) {
 776     // prevent recursion in copy_to_survivor_space()
 777     _promo_failure_drain_in_progress = true;
 778     drain_promo_failure_scan_stack();
 779     _promo_failure_drain_in_progress = false;
 780   }
 781 }
 782 
 783 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 784   assert(is_in_reserved(old) && !old->is_forwarded(),
 785          "shouldn't be scavenging this oop");
 786   size_t s = old->size();
 787   oop obj = NULL;
 788 
 789   // Try allocating obj in to-space (unless too old)
 790   if (old->age() < tenuring_threshold()) {
 791     obj = (oop) to()->allocate_aligned(s);
 792   }
 793 
 794   // Otherwise try allocating obj tenured
 795   if (obj == NULL) {
 796     obj = _next_gen->promote(old, s);
 797     if (obj == NULL) {
 798       handle_promotion_failure(old);
 799       return old;
 800     }
 801   } else {
 802     // Prefetch beyond obj
 803     const intx interval = PrefetchCopyIntervalInBytes;
 804     Prefetch::write(obj, interval);
 805 
 806     // Copy obj
 807     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 808 
 809     // Increment age if obj still in new generation
 810     obj->incr_age();
 811     age_table()->add(obj, s);
 812   }
 813 
 814   // Done, insert forward pointer to obj in this header
 815   old->forward_to(obj);
 816 
 817   return obj;
 818 }
 819 
 820 void DefNewGeneration::drain_promo_failure_scan_stack() {
 821   while (!_promo_failure_scan_stack.is_empty()) {
 822      oop obj = _promo_failure_scan_stack.pop();
 823      obj->oop_iterate(_promo_failure_scan_stack_closure);
 824   }
 825 }
 826 
 827 void DefNewGeneration::save_marks() {
 828   eden()->set_saved_mark();
 829   to()->set_saved_mark();
 830   from()->set_saved_mark();
 831 }
 832 
 833 
 834 void DefNewGeneration::reset_saved_marks() {
 835   eden()->reset_saved_mark();
 836   to()->reset_saved_mark();
 837   from()->reset_saved_mark();
 838 }
 839 
 840 
 841 bool DefNewGeneration::no_allocs_since_save_marks() {
 842   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 843   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 844   return to()->saved_mark_at_top();
 845 }
 846 
 847 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 848                                                                 \
 849 void DefNewGeneration::                                         \
 850 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 851   cl->set_generation(this);                                     \
 852   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 853   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 854   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 855   cl->reset_generation();                                       \
 856   save_marks();                                                 \
 857 }
 858 
 859 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 860 
 861 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 862 
 863 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 864                                          size_t max_alloc_words) {
 865   if (requestor == this || _promotion_failed) return;
 866   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 867 
 868   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 869   if (to_space->top() > to_space->bottom()) {
 870     trace("to_space not empty when contribute_scratch called");
 871   }
 872   */
 873 
 874   ContiguousSpace* to_space = to();
 875   assert(to_space->end() >= to_space->top(), "pointers out of order");
 876   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 877   if (free_words >= MinFreeScratchWords) {
 878     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 879     sb->num_words = free_words;
 880     sb->next = list;
 881     list = sb;
 882   }
 883 }
 884 
 885 void DefNewGeneration::reset_scratch() {
 886   // If contributing scratch in to_space, mangle all of
 887   // to_space if ZapUnusedHeapArea.  This is needed because
 888   // top is not maintained while using to-space as scratch.
 889   if (ZapUnusedHeapArea) {
 890     to()->mangle_unused_area_complete();
 891   }
 892 }
 893 
 894 bool DefNewGeneration::collection_attempt_is_safe() {
 895   if (!to()->is_empty()) {
 896     if (Verbose && PrintGCDetails) {
 897       gclog_or_tty->print(" :: to is not empty :: ");
 898     }
 899     return false;
 900   }
 901   if (_next_gen == NULL) {
 902     GenCollectedHeap* gch = GenCollectedHeap::heap();
 903     _next_gen = gch->next_gen(this);
 904   }
 905   return _next_gen->promotion_attempt_is_safe(used());
 906 }
 907 
 908 void DefNewGeneration::gc_epilogue(bool full) {
 909   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 910 
 911   assert(!GC_locker::is_active(), "We should not be executing here");
 912   // Check if the heap is approaching full after a collection has
 913   // been done.  Generally the young generation is empty at
 914   // a minimum at the end of a collection.  If it is not, then
 915   // the heap is approaching full.
 916   GenCollectedHeap* gch = GenCollectedHeap::heap();
 917   if (full) {
 918     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 919     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 920       if (Verbose && PrintGCDetails) {
 921         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 922                             GCCause::to_string(gch->gc_cause()));
 923       }
 924       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 925       set_should_allocate_from_space(); // we seem to be running out of space
 926     } else {
 927       if (Verbose && PrintGCDetails) {
 928         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 929                             GCCause::to_string(gch->gc_cause()));
 930       }
 931       gch->clear_incremental_collection_failed(); // We just did a full collection
 932       clear_should_allocate_from_space(); // if set
 933     }
 934   } else {
 935 #ifdef ASSERT
 936     // It is possible that incremental_collection_failed() == true
 937     // here, because an attempted scavenge did not succeed. The policy
 938     // is normally expected to cause a full collection which should
 939     // clear that condition, so we should not be here twice in a row
 940     // with incremental_collection_failed() == true without having done
 941     // a full collection in between.
 942     if (!seen_incremental_collection_failed &&
 943         gch->incremental_collection_failed()) {
 944       if (Verbose && PrintGCDetails) {
 945         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 946                             GCCause::to_string(gch->gc_cause()));
 947       }
 948       seen_incremental_collection_failed = true;
 949     } else if (seen_incremental_collection_failed) {
 950       if (Verbose && PrintGCDetails) {
 951         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 952                             GCCause::to_string(gch->gc_cause()));
 953       }
 954       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 955              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 956              !gch->incremental_collection_failed(),
 957              "Twice in a row");
 958       seen_incremental_collection_failed = false;
 959     }
 960 #endif // ASSERT
 961   }
 962 
 963   if (ZapUnusedHeapArea) {
 964     eden()->check_mangled_unused_area_complete();
 965     from()->check_mangled_unused_area_complete();
 966     to()->check_mangled_unused_area_complete();
 967   }
 968 
 969   if (!CleanChunkPoolAsync) {
 970     Chunk::clean_chunk_pool();
 971   }
 972 
 973   // update the generation and space performance counters
 974   update_counters();
 975   gch->collector_policy()->counters()->update_counters();
 976 }
 977 
 978 void DefNewGeneration::record_spaces_top() {
 979   assert(ZapUnusedHeapArea, "Not mangling unused space");
 980   eden()->set_top_for_allocations();
 981   to()->set_top_for_allocations();
 982   from()->set_top_for_allocations();
 983 }
 984 
 985 void DefNewGeneration::ref_processor_init() {
 986   Generation::ref_processor_init();
 987 }
 988 
 989 
 990 void DefNewGeneration::update_counters() {
 991   if (UsePerfData) {
 992     _eden_counters->update_all();
 993     _from_counters->update_all();
 994     _to_counters->update_all();
 995     _gen_counters->update_all();
 996   }
 997 }
 998 
 999 void DefNewGeneration::verify() {
1000   eden()->verify();
1001   from()->verify();
1002     to()->verify();
1003 }
1004 
1005 void DefNewGeneration::print_on(outputStream* st) const {
1006   Generation::print_on(st);
1007   st->print("  eden");
1008   eden()->print_on(st);
1009   st->print("  from");
1010   from()->print_on(st);
1011   st->print("  to  ");
1012   to()->print_on(st);
1013 }
1014 
1015 
1016 const char* DefNewGeneration::name() const {
1017   return "def new generation";
1018 }
1019 
1020 // Moved from inline file as they are not called inline
1021 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1022   return eden();
1023 }
1024 
1025 HeapWord* DefNewGeneration::allocate(size_t word_size,
1026                                      bool is_tlab) {
1027   // This is the slow-path allocation for the DefNewGeneration.
1028   // Most allocations are fast-path in compiled code.
1029   // We try to allocate from the eden.  If that works, we are happy.
1030   // Note that since DefNewGeneration supports lock-free allocation, we
1031   // have to use it here, as well.
1032   HeapWord* result = eden()->par_allocate(word_size);
1033   if (result != NULL) {
1034     if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1035       _next_gen->sample_eden_chunk();
1036     }
1037   } else {
1038     // If the eden is full and the last collection bailed out, we are running
1039     // out of heap space, and we try to allocate the from-space, too.
1040     // allocate_from_space can't be inlined because that would introduce a
1041     // circular dependency at compile time.
1042     result = allocate_from_space(word_size);
1043   }
1044   return result;
1045 }
1046 
1047 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1048                                          bool is_tlab) {
1049   HeapWord* res = eden()->par_allocate(word_size);
1050   if (CMSEdenChunksRecordAlways && _next_gen != NULL) {
1051     _next_gen->sample_eden_chunk();
1052   }
1053   return res;
1054 }
1055 
1056 size_t DefNewGeneration::tlab_capacity() const {
1057   return eden()->capacity();
1058 }
1059 
1060 size_t DefNewGeneration::tlab_used() const {
1061   return eden()->used();
1062 }
1063 
1064 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1065   return unsafe_max_alloc_nogc();
1066 }