1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardGeneration.inline.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.inline.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/atomic.inline.hpp"
  60 #include "runtime/globals_extension.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/orderAccess.inline.hpp"
  64 #include "runtime/vmThread.hpp"
  65 #include "services/memoryService.hpp"
  66 #include "services/runtimeService.hpp"
  67 
  68 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  69 
  70 // statics
  71 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  72 bool CMSCollector::_full_gc_requested = false;
  73 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  74 
  75 //////////////////////////////////////////////////////////////////
  76 // In support of CMS/VM thread synchronization
  77 //////////////////////////////////////////////////////////////////
  78 // We split use of the CGC_lock into 2 "levels".
  79 // The low-level locking is of the usual CGC_lock monitor. We introduce
  80 // a higher level "token" (hereafter "CMS token") built on top of the
  81 // low level monitor (hereafter "CGC lock").
  82 // The token-passing protocol gives priority to the VM thread. The
  83 // CMS-lock doesn't provide any fairness guarantees, but clients
  84 // should ensure that it is only held for very short, bounded
  85 // durations.
  86 //
  87 // When either of the CMS thread or the VM thread is involved in
  88 // collection operations during which it does not want the other
  89 // thread to interfere, it obtains the CMS token.
  90 //
  91 // If either thread tries to get the token while the other has
  92 // it, that thread waits. However, if the VM thread and CMS thread
  93 // both want the token, then the VM thread gets priority while the
  94 // CMS thread waits. This ensures, for instance, that the "concurrent"
  95 // phases of the CMS thread's work do not block out the VM thread
  96 // for long periods of time as the CMS thread continues to hog
  97 // the token. (See bug 4616232).
  98 //
  99 // The baton-passing functions are, however, controlled by the
 100 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 101 // and here the low-level CMS lock, not the high level token,
 102 // ensures mutual exclusion.
 103 //
 104 // Two important conditions that we have to satisfy:
 105 // 1. if a thread does a low-level wait on the CMS lock, then it
 106 //    relinquishes the CMS token if it were holding that token
 107 //    when it acquired the low-level CMS lock.
 108 // 2. any low-level notifications on the low-level lock
 109 //    should only be sent when a thread has relinquished the token.
 110 //
 111 // In the absence of either property, we'd have potential deadlock.
 112 //
 113 // We protect each of the CMS (concurrent and sequential) phases
 114 // with the CMS _token_, not the CMS _lock_.
 115 //
 116 // The only code protected by CMS lock is the token acquisition code
 117 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 118 // baton-passing code.
 119 //
 120 // Unfortunately, i couldn't come up with a good abstraction to factor and
 121 // hide the naked CGC_lock manipulation in the baton-passing code
 122 // further below. That's something we should try to do. Also, the proof
 123 // of correctness of this 2-level locking scheme is far from obvious,
 124 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 125 // that there may be a theoretical possibility of delay/starvation in the
 126 // low-level lock/wait/notify scheme used for the baton-passing because of
 127 // potential interference with the priority scheme embodied in the
 128 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 129 // invocation further below and marked with "XXX 20011219YSR".
 130 // Indeed, as we note elsewhere, this may become yet more slippery
 131 // in the presence of multiple CMS and/or multiple VM threads. XXX
 132 
 133 class CMSTokenSync: public StackObj {
 134  private:
 135   bool _is_cms_thread;
 136  public:
 137   CMSTokenSync(bool is_cms_thread):
 138     _is_cms_thread(is_cms_thread) {
 139     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 140            "Incorrect argument to constructor");
 141     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 142   }
 143 
 144   ~CMSTokenSync() {
 145     assert(_is_cms_thread ?
 146              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 147              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 148           "Incorrect state");
 149     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 150   }
 151 };
 152 
 153 // Convenience class that does a CMSTokenSync, and then acquires
 154 // upto three locks.
 155 class CMSTokenSyncWithLocks: public CMSTokenSync {
 156  private:
 157   // Note: locks are acquired in textual declaration order
 158   // and released in the opposite order
 159   MutexLockerEx _locker1, _locker2, _locker3;
 160  public:
 161   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 162                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 163     CMSTokenSync(is_cms_thread),
 164     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 165     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 166     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 167   { }
 168 };
 169 
 170 
 171 //////////////////////////////////////////////////////////////////
 172 //  Concurrent Mark-Sweep Generation /////////////////////////////
 173 //////////////////////////////////////////////////////////////////
 174 
 175 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 176 
 177 // This struct contains per-thread things necessary to support parallel
 178 // young-gen collection.
 179 class CMSParGCThreadState: public CHeapObj<mtGC> {
 180  public:
 181   CFLS_LAB lab;
 182   PromotionInfo promo;
 183 
 184   // Constructor.
 185   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 186     promo.setSpace(cfls);
 187   }
 188 };
 189 
 190 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 191      ReservedSpace rs, size_t initial_byte_size, int level,
 192      CardTableRS* ct, bool use_adaptive_freelists,
 193      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 194   CardGeneration(rs, initial_byte_size, level, ct),
 195   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 196   _did_compact(false)
 197 {
 198   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 199   HeapWord* end    = (HeapWord*) _virtual_space.high();
 200 
 201   _direct_allocated_words = 0;
 202   NOT_PRODUCT(
 203     _numObjectsPromoted = 0;
 204     _numWordsPromoted = 0;
 205     _numObjectsAllocated = 0;
 206     _numWordsAllocated = 0;
 207   )
 208 
 209   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 210                                            use_adaptive_freelists,
 211                                            dictionaryChoice);
 212   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 213   if (_cmsSpace == NULL) {
 214     vm_exit_during_initialization(
 215       "CompactibleFreeListSpace allocation failure");
 216   }
 217   _cmsSpace->_gen = this;
 218 
 219   _gc_stats = new CMSGCStats();
 220 
 221   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 222   // offsets match. The ability to tell free chunks from objects
 223   // depends on this property.
 224   debug_only(
 225     FreeChunk* junk = NULL;
 226     assert(UseCompressedClassPointers ||
 227            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 228            "Offset of FreeChunk::_prev within FreeChunk must match"
 229            "  that of OopDesc::_klass within OopDesc");
 230   )
 231   if (CollectedHeap::use_parallel_gc_threads()) {
 232     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 233     _par_gc_thread_states =
 234       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 235     if (_par_gc_thread_states == NULL) {
 236       vm_exit_during_initialization("Could not allocate par gc structs");
 237     }
 238     for (uint i = 0; i < ParallelGCThreads; i++) {
 239       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 240       if (_par_gc_thread_states[i] == NULL) {
 241         vm_exit_during_initialization("Could not allocate par gc structs");
 242       }
 243     }
 244   } else {
 245     _par_gc_thread_states = NULL;
 246   }
 247   _incremental_collection_failed = false;
 248   // The "dilatation_factor" is the expansion that can occur on
 249   // account of the fact that the minimum object size in the CMS
 250   // generation may be larger than that in, say, a contiguous young
 251   //  generation.
 252   // Ideally, in the calculation below, we'd compute the dilatation
 253   // factor as: MinChunkSize/(promoting_gen's min object size)
 254   // Since we do not have such a general query interface for the
 255   // promoting generation, we'll instead just use the minimum
 256   // object size (which today is a header's worth of space);
 257   // note that all arithmetic is in units of HeapWords.
 258   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 259   assert(_dilatation_factor >= 1.0, "from previous assert");
 260 }
 261 
 262 
 263 // The field "_initiating_occupancy" represents the occupancy percentage
 264 // at which we trigger a new collection cycle.  Unless explicitly specified
 265 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 266 // is calculated by:
 267 //
 268 //   Let "f" be MinHeapFreeRatio in
 269 //
 270 //    _initiating_occupancy = 100-f +
 271 //                           f * (CMSTriggerRatio/100)
 272 //   where CMSTriggerRatio is the argument "tr" below.
 273 //
 274 // That is, if we assume the heap is at its desired maximum occupancy at the
 275 // end of a collection, we let CMSTriggerRatio of the (purported) free
 276 // space be allocated before initiating a new collection cycle.
 277 //
 278 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 279   assert(io <= 100 && tr <= 100, "Check the arguments");
 280   if (io >= 0) {
 281     _initiating_occupancy = (double)io / 100.0;
 282   } else {
 283     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 284                              (double)(tr * MinHeapFreeRatio) / 100.0)
 285                             / 100.0;
 286   }
 287 }
 288 
 289 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 290   assert(collector() != NULL, "no collector");
 291   collector()->ref_processor_init();
 292 }
 293 
 294 void CMSCollector::ref_processor_init() {
 295   if (_ref_processor == NULL) {
 296     // Allocate and initialize a reference processor
 297     _ref_processor =
 298       new ReferenceProcessor(_span,                               // span
 299                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 300                              (int) ParallelGCThreads,             // mt processing degree
 301                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 302                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 303                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 304                              &_is_alive_closure);                 // closure for liveness info
 305     // Initialize the _ref_processor field of CMSGen
 306     _cmsGen->set_ref_processor(_ref_processor);
 307 
 308   }
 309 }
 310 
 311 AdaptiveSizePolicy* CMSCollector::size_policy() {
 312   GenCollectedHeap* gch = GenCollectedHeap::heap();
 313   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 314     "Wrong type of heap");
 315   return gch->gen_policy()->size_policy();
 316 }
 317 
 318 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 319 
 320   const char* gen_name = "old";
 321   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 322 
 323   // Generation Counters - generation 1, 1 subspace
 324   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 325       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 326 
 327   _space_counters = new GSpaceCounters(gen_name, 0,
 328                                        _virtual_space.reserved_size(),
 329                                        this, _gen_counters);
 330 }
 331 
 332 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 333   _cms_gen(cms_gen)
 334 {
 335   assert(alpha <= 100, "bad value");
 336   _saved_alpha = alpha;
 337 
 338   // Initialize the alphas to the bootstrap value of 100.
 339   _gc0_alpha = _cms_alpha = 100;
 340 
 341   _cms_begin_time.update();
 342   _cms_end_time.update();
 343 
 344   _gc0_duration = 0.0;
 345   _gc0_period = 0.0;
 346   _gc0_promoted = 0;
 347 
 348   _cms_duration = 0.0;
 349   _cms_period = 0.0;
 350   _cms_allocated = 0;
 351 
 352   _cms_used_at_gc0_begin = 0;
 353   _cms_used_at_gc0_end = 0;
 354   _allow_duty_cycle_reduction = false;
 355   _valid_bits = 0;
 356 }
 357 
 358 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 359   // TBD: CR 6909490
 360   return 1.0;
 361 }
 362 
 363 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 364 }
 365 
 366 // If promotion failure handling is on use
 367 // the padded average size of the promotion for each
 368 // young generation collection.
 369 double CMSStats::time_until_cms_gen_full() const {
 370   size_t cms_free = _cms_gen->cmsSpace()->free();
 371   GenCollectedHeap* gch = GenCollectedHeap::heap();
 372   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 373                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 374   if (cms_free > expected_promotion) {
 375     // Start a cms collection if there isn't enough space to promote
 376     // for the next minor collection.  Use the padded average as
 377     // a safety factor.
 378     cms_free -= expected_promotion;
 379 
 380     // Adjust by the safety factor.
 381     double cms_free_dbl = (double)cms_free;
 382     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 383     // Apply a further correction factor which tries to adjust
 384     // for recent occurance of concurrent mode failures.
 385     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 386     cms_free_dbl = cms_free_dbl * cms_adjustment;
 387 
 388     if (PrintGCDetails && Verbose) {
 389       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 390         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 391         cms_free, expected_promotion);
 392       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 393         cms_free_dbl, cms_consumption_rate() + 1.0);
 394     }
 395     // Add 1 in case the consumption rate goes to zero.
 396     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 397   }
 398   return 0.0;
 399 }
 400 
 401 // Compare the duration of the cms collection to the
 402 // time remaining before the cms generation is empty.
 403 // Note that the time from the start of the cms collection
 404 // to the start of the cms sweep (less than the total
 405 // duration of the cms collection) can be used.  This
 406 // has been tried and some applications experienced
 407 // promotion failures early in execution.  This was
 408 // possibly because the averages were not accurate
 409 // enough at the beginning.
 410 double CMSStats::time_until_cms_start() const {
 411   // We add "gc0_period" to the "work" calculation
 412   // below because this query is done (mostly) at the
 413   // end of a scavenge, so we need to conservatively
 414   // account for that much possible delay
 415   // in the query so as to avoid concurrent mode failures
 416   // due to starting the collection just a wee bit too
 417   // late.
 418   double work = cms_duration() + gc0_period();
 419   double deadline = time_until_cms_gen_full();
 420   // If a concurrent mode failure occurred recently, we want to be
 421   // more conservative and halve our expected time_until_cms_gen_full()
 422   if (work > deadline) {
 423     if (Verbose && PrintGCDetails) {
 424       gclog_or_tty->print(
 425         " CMSCollector: collect because of anticipated promotion "
 426         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 427         gc0_period(), time_until_cms_gen_full());
 428     }
 429     return 0.0;
 430   }
 431   return work - deadline;
 432 }
 433 
 434 #ifndef PRODUCT
 435 void CMSStats::print_on(outputStream *st) const {
 436   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 437   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 438                gc0_duration(), gc0_period(), gc0_promoted());
 439   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 440             cms_duration(), cms_period(), cms_allocated());
 441   st->print(",cms_since_beg=%g,cms_since_end=%g",
 442             cms_time_since_begin(), cms_time_since_end());
 443   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 444             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 445 
 446   if (valid()) {
 447     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 448               promotion_rate(), cms_allocation_rate());
 449     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 450               cms_consumption_rate(), time_until_cms_gen_full());
 451   }
 452   st->print(" ");
 453 }
 454 #endif // #ifndef PRODUCT
 455 
 456 CMSCollector::CollectorState CMSCollector::_collectorState =
 457                              CMSCollector::Idling;
 458 bool CMSCollector::_foregroundGCIsActive = false;
 459 bool CMSCollector::_foregroundGCShouldWait = false;
 460 
 461 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 462                            CardTableRS*                   ct,
 463                            ConcurrentMarkSweepPolicy*     cp):
 464   _cmsGen(cmsGen),
 465   _ct(ct),
 466   _ref_processor(NULL),    // will be set later
 467   _conc_workers(NULL),     // may be set later
 468   _abort_preclean(false),
 469   _start_sampling(false),
 470   _between_prologue_and_epilogue(false),
 471   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 472   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 473                  -1 /* lock-free */, "No_lock" /* dummy */),
 474   _modUnionClosure(&_modUnionTable),
 475   _modUnionClosurePar(&_modUnionTable),
 476   // Adjust my span to cover old (cms) gen
 477   _span(cmsGen->reserved()),
 478   // Construct the is_alive_closure with _span & markBitMap
 479   _is_alive_closure(_span, &_markBitMap),
 480   _restart_addr(NULL),
 481   _overflow_list(NULL),
 482   _stats(cmsGen),
 483   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 484                              //verify that this lock should be acquired with safepoint check.
 485                              Monitor::_safepoint_check_sometimes)),
 486   _eden_chunk_array(NULL),     // may be set in ctor body
 487   _eden_chunk_capacity(0),     // -- ditto --
 488   _eden_chunk_index(0),        // -- ditto --
 489   _survivor_plab_array(NULL),  // -- ditto --
 490   _survivor_chunk_array(NULL), // -- ditto --
 491   _survivor_chunk_capacity(0), // -- ditto --
 492   _survivor_chunk_index(0),    // -- ditto --
 493   _ser_pmc_preclean_ovflw(0),
 494   _ser_kac_preclean_ovflw(0),
 495   _ser_pmc_remark_ovflw(0),
 496   _par_pmc_remark_ovflw(0),
 497   _ser_kac_ovflw(0),
 498   _par_kac_ovflw(0),
 499 #ifndef PRODUCT
 500   _num_par_pushes(0),
 501 #endif
 502   _collection_count_start(0),
 503   _verifying(false),
 504   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 505   _completed_initialization(false),
 506   _collector_policy(cp),
 507   _should_unload_classes(CMSClassUnloadingEnabled),
 508   _concurrent_cycles_since_last_unload(0),
 509   _roots_scanning_options(SharedHeap::SO_None),
 510   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 511   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 512   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 513   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 514   _cms_start_registered(false)
 515 {
 516   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 517     ExplicitGCInvokesConcurrent = true;
 518   }
 519   // Now expand the span and allocate the collection support structures
 520   // (MUT, marking bit map etc.) to cover both generations subject to
 521   // collection.
 522 
 523   // For use by dirty card to oop closures.
 524   _cmsGen->cmsSpace()->set_collector(this);
 525 
 526   // Allocate MUT and marking bit map
 527   {
 528     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 529     if (!_markBitMap.allocate(_span)) {
 530       warning("Failed to allocate CMS Bit Map");
 531       return;
 532     }
 533     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 534   }
 535   {
 536     _modUnionTable.allocate(_span);
 537     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 538   }
 539 
 540   if (!_markStack.allocate(MarkStackSize)) {
 541     warning("Failed to allocate CMS Marking Stack");
 542     return;
 543   }
 544 
 545   // Support for multi-threaded concurrent phases
 546   if (CMSConcurrentMTEnabled) {
 547     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 548       // just for now
 549       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 550     }
 551     if (ConcGCThreads > 1) {
 552       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 553                                  ConcGCThreads, true);
 554       if (_conc_workers == NULL) {
 555         warning("GC/CMS: _conc_workers allocation failure: "
 556               "forcing -CMSConcurrentMTEnabled");
 557         CMSConcurrentMTEnabled = false;
 558       } else {
 559         _conc_workers->initialize_workers();
 560       }
 561     } else {
 562       CMSConcurrentMTEnabled = false;
 563     }
 564   }
 565   if (!CMSConcurrentMTEnabled) {
 566     ConcGCThreads = 0;
 567   } else {
 568     // Turn off CMSCleanOnEnter optimization temporarily for
 569     // the MT case where it's not fixed yet; see 6178663.
 570     CMSCleanOnEnter = false;
 571   }
 572   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 573          "Inconsistency");
 574 
 575   // Parallel task queues; these are shared for the
 576   // concurrent and stop-world phases of CMS, but
 577   // are not shared with parallel scavenge (ParNew).
 578   {
 579     uint i;
 580     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 581 
 582     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 583          || ParallelRefProcEnabled)
 584         && num_queues > 0) {
 585       _task_queues = new OopTaskQueueSet(num_queues);
 586       if (_task_queues == NULL) {
 587         warning("task_queues allocation failure.");
 588         return;
 589       }
 590       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 591       if (_hash_seed == NULL) {
 592         warning("_hash_seed array allocation failure");
 593         return;
 594       }
 595 
 596       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 597       for (i = 0; i < num_queues; i++) {
 598         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 599         if (q == NULL) {
 600           warning("work_queue allocation failure.");
 601           return;
 602         }
 603         _task_queues->register_queue(i, q);
 604       }
 605       for (i = 0; i < num_queues; i++) {
 606         _task_queues->queue(i)->initialize();
 607         _hash_seed[i] = 17;  // copied from ParNew
 608       }
 609     }
 610   }
 611 
 612   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 613 
 614   // Clip CMSBootstrapOccupancy between 0 and 100.
 615   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 616 
 617   // Now tell CMS generations the identity of their collector
 618   ConcurrentMarkSweepGeneration::set_collector(this);
 619 
 620   // Create & start a CMS thread for this CMS collector
 621   _cmsThread = ConcurrentMarkSweepThread::start(this);
 622   assert(cmsThread() != NULL, "CMS Thread should have been created");
 623   assert(cmsThread()->collector() == this,
 624          "CMS Thread should refer to this gen");
 625   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 626 
 627   // Support for parallelizing young gen rescan
 628   GenCollectedHeap* gch = GenCollectedHeap::heap();
 629   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 630   _young_gen = (ParNewGeneration*)gch->young_gen();
 631   if (gch->supports_inline_contig_alloc()) {
 632     _top_addr = gch->top_addr();
 633     _end_addr = gch->end_addr();
 634     assert(_young_gen != NULL, "no _young_gen");
 635     _eden_chunk_index = 0;
 636     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 637     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 638     if (_eden_chunk_array == NULL) {
 639       _eden_chunk_capacity = 0;
 640       warning("GC/CMS: _eden_chunk_array allocation failure");
 641     }
 642   }
 643   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 644 
 645   // Support for parallelizing survivor space rescan
 646   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 647     const size_t max_plab_samples =
 648       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 649 
 650     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 651     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 652     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 653     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 654         || _cursor == NULL) {
 655       warning("Failed to allocate survivor plab/chunk array");
 656       if (_survivor_plab_array  != NULL) {
 657         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 658         _survivor_plab_array = NULL;
 659       }
 660       if (_survivor_chunk_array != NULL) {
 661         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 662         _survivor_chunk_array = NULL;
 663       }
 664       if (_cursor != NULL) {
 665         FREE_C_HEAP_ARRAY(size_t, _cursor);
 666         _cursor = NULL;
 667       }
 668     } else {
 669       _survivor_chunk_capacity = 2*max_plab_samples;
 670       for (uint i = 0; i < ParallelGCThreads; i++) {
 671         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 672         if (vec == NULL) {
 673           warning("Failed to allocate survivor plab array");
 674           for (int j = i; j > 0; j--) {
 675             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
 676           }
 677           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
 678           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
 679           _survivor_plab_array = NULL;
 680           _survivor_chunk_array = NULL;
 681           _survivor_chunk_capacity = 0;
 682           break;
 683         } else {
 684           ChunkArray* cur =
 685             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 686                                                         max_plab_samples);
 687           assert(cur->end() == 0, "Should be 0");
 688           assert(cur->array() == vec, "Should be vec");
 689           assert(cur->capacity() == max_plab_samples, "Error");
 690         }
 691       }
 692     }
 693   }
 694   assert(   (   _survivor_plab_array  != NULL
 695              && _survivor_chunk_array != NULL)
 696          || (   _survivor_chunk_capacity == 0
 697              && _survivor_chunk_index == 0),
 698          "Error");
 699 
 700   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 701   _gc_counters = new CollectorCounters("CMS", 1);
 702   _completed_initialization = true;
 703   _inter_sweep_timer.start();  // start of time
 704 }
 705 
 706 size_t CMSCollector::plab_sample_minimum_size() {
 707   // The default value of MinTLABSize is 2k, but there is
 708   // no way to get the default value if the flag has been overridden.
 709   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 710 }
 711 
 712 const char* ConcurrentMarkSweepGeneration::name() const {
 713   return "concurrent mark-sweep generation";
 714 }
 715 void ConcurrentMarkSweepGeneration::update_counters() {
 716   if (UsePerfData) {
 717     _space_counters->update_all();
 718     _gen_counters->update_all();
 719   }
 720 }
 721 
 722 // this is an optimized version of update_counters(). it takes the
 723 // used value as a parameter rather than computing it.
 724 //
 725 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 726   if (UsePerfData) {
 727     _space_counters->update_used(used);
 728     _space_counters->update_capacity();
 729     _gen_counters->update_all();
 730   }
 731 }
 732 
 733 void ConcurrentMarkSweepGeneration::print() const {
 734   Generation::print();
 735   cmsSpace()->print();
 736 }
 737 
 738 #ifndef PRODUCT
 739 void ConcurrentMarkSweepGeneration::print_statistics() {
 740   cmsSpace()->printFLCensus(0);
 741 }
 742 #endif
 743 
 744 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 745   GenCollectedHeap* gch = GenCollectedHeap::heap();
 746   if (PrintGCDetails) {
 747     if (Verbose) {
 748       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 749         level(), short_name(), s, used(), capacity());
 750     } else {
 751       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 752         level(), short_name(), s, used() / K, capacity() / K);
 753     }
 754   }
 755   if (Verbose) {
 756     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 757               gch->used(), gch->capacity());
 758   } else {
 759     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 760               gch->used() / K, gch->capacity() / K);
 761   }
 762 }
 763 
 764 size_t
 765 ConcurrentMarkSweepGeneration::contiguous_available() const {
 766   // dld proposes an improvement in precision here. If the committed
 767   // part of the space ends in a free block we should add that to
 768   // uncommitted size in the calculation below. Will make this
 769   // change later, staying with the approximation below for the
 770   // time being. -- ysr.
 771   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 772 }
 773 
 774 size_t
 775 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 776   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 777 }
 778 
 779 size_t ConcurrentMarkSweepGeneration::max_available() const {
 780   return free() + _virtual_space.uncommitted_size();
 781 }
 782 
 783 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 784   size_t available = max_available();
 785   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 786   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 787   if (Verbose && PrintGCDetails) {
 788     gclog_or_tty->print_cr(
 789       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 790       "max_promo("SIZE_FORMAT")",
 791       res? "":" not", available, res? ">=":"<",
 792       av_promo, max_promotion_in_bytes);
 793   }
 794   return res;
 795 }
 796 
 797 // At a promotion failure dump information on block layout in heap
 798 // (cms old generation).
 799 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 800   if (CMSDumpAtPromotionFailure) {
 801     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 802   }
 803 }
 804 
 805 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 806   // Clear the promotion information.  These pointers can be adjusted
 807   // along with all the other pointers into the heap but
 808   // compaction is expected to be a rare event with
 809   // a heap using cms so don't do it without seeing the need.
 810   for (uint i = 0; i < ParallelGCThreads; i++) {
 811     _par_gc_thread_states[i]->promo.reset();
 812   }
 813 }
 814 
 815 void ConcurrentMarkSweepGeneration::compute_new_size() {
 816   assert_locked_or_safepoint(Heap_lock);
 817 
 818   // If incremental collection failed, we just want to expand
 819   // to the limit.
 820   if (incremental_collection_failed()) {
 821     clear_incremental_collection_failed();
 822     grow_to_reserved();
 823     return;
 824   }
 825 
 826   // The heap has been compacted but not reset yet.
 827   // Any metric such as free() or used() will be incorrect.
 828 
 829   CardGeneration::compute_new_size();
 830 
 831   // Reset again after a possible resizing
 832   if (did_compact()) {
 833     cmsSpace()->reset_after_compaction();
 834   }
 835 }
 836 
 837 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 838   assert_locked_or_safepoint(Heap_lock);
 839 
 840   // If incremental collection failed, we just want to expand
 841   // to the limit.
 842   if (incremental_collection_failed()) {
 843     clear_incremental_collection_failed();
 844     grow_to_reserved();
 845     return;
 846   }
 847 
 848   double free_percentage = ((double) free()) / capacity();
 849   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 850   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 851 
 852   // compute expansion delta needed for reaching desired free percentage
 853   if (free_percentage < desired_free_percentage) {
 854     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 855     assert(desired_capacity >= capacity(), "invalid expansion size");
 856     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 857     if (PrintGCDetails && Verbose) {
 858       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 859       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 860       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 861       gclog_or_tty->print_cr("  Desired free fraction %f",
 862         desired_free_percentage);
 863       gclog_or_tty->print_cr("  Maximum free fraction %f",
 864         maximum_free_percentage);
 865       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 866       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 867         desired_capacity/1000);
 868       int prev_level = level() - 1;
 869       if (prev_level >= 0) {
 870         size_t prev_size = 0;
 871         GenCollectedHeap* gch = GenCollectedHeap::heap();
 872         Generation* prev_gen = gch->young_gen();
 873         prev_size = prev_gen->capacity();
 874           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 875                                  prev_size/1000);
 876       }
 877       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 878         unsafe_max_alloc_nogc()/1000);
 879       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 880         contiguous_available()/1000);
 881       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 882         expand_bytes);
 883     }
 884     // safe if expansion fails
 885     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 886     if (PrintGCDetails && Verbose) {
 887       gclog_or_tty->print_cr("  Expanded free fraction %f",
 888         ((double) free()) / capacity());
 889     }
 890   } else {
 891     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 892     assert(desired_capacity <= capacity(), "invalid expansion size");
 893     size_t shrink_bytes = capacity() - desired_capacity;
 894     // Don't shrink unless the delta is greater than the minimum shrink we want
 895     if (shrink_bytes >= MinHeapDeltaBytes) {
 896       shrink_free_list_by(shrink_bytes);
 897     }
 898   }
 899 }
 900 
 901 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 902   return cmsSpace()->freelistLock();
 903 }
 904 
 905 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 906                                                   bool   tlab) {
 907   CMSSynchronousYieldRequest yr;
 908   MutexLockerEx x(freelistLock(),
 909                   Mutex::_no_safepoint_check_flag);
 910   return have_lock_and_allocate(size, tlab);
 911 }
 912 
 913 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 914                                                   bool   tlab /* ignored */) {
 915   assert_lock_strong(freelistLock());
 916   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 917   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 918   // Allocate the object live (grey) if the background collector has
 919   // started marking. This is necessary because the marker may
 920   // have passed this address and consequently this object will
 921   // not otherwise be greyed and would be incorrectly swept up.
 922   // Note that if this object contains references, the writing
 923   // of those references will dirty the card containing this object
 924   // allowing the object to be blackened (and its references scanned)
 925   // either during a preclean phase or at the final checkpoint.
 926   if (res != NULL) {
 927     // We may block here with an uninitialized object with
 928     // its mark-bit or P-bits not yet set. Such objects need
 929     // to be safely navigable by block_start().
 930     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 931     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 932     collector()->direct_allocated(res, adjustedSize);
 933     _direct_allocated_words += adjustedSize;
 934     // allocation counters
 935     NOT_PRODUCT(
 936       _numObjectsAllocated++;
 937       _numWordsAllocated += (int)adjustedSize;
 938     )
 939   }
 940   return res;
 941 }
 942 
 943 // In the case of direct allocation by mutators in a generation that
 944 // is being concurrently collected, the object must be allocated
 945 // live (grey) if the background collector has started marking.
 946 // This is necessary because the marker may
 947 // have passed this address and consequently this object will
 948 // not otherwise be greyed and would be incorrectly swept up.
 949 // Note that if this object contains references, the writing
 950 // of those references will dirty the card containing this object
 951 // allowing the object to be blackened (and its references scanned)
 952 // either during a preclean phase or at the final checkpoint.
 953 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 954   assert(_markBitMap.covers(start, size), "Out of bounds");
 955   if (_collectorState >= Marking) {
 956     MutexLockerEx y(_markBitMap.lock(),
 957                     Mutex::_no_safepoint_check_flag);
 958     // [see comments preceding SweepClosure::do_blk() below for details]
 959     //
 960     // Can the P-bits be deleted now?  JJJ
 961     //
 962     // 1. need to mark the object as live so it isn't collected
 963     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 964     // 3. need to mark the end of the object so marking, precleaning or sweeping
 965     //    can skip over uninitialized or unparsable objects. An allocated
 966     //    object is considered uninitialized for our purposes as long as
 967     //    its klass word is NULL.  All old gen objects are parsable
 968     //    as soon as they are initialized.)
 969     _markBitMap.mark(start);          // object is live
 970     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 971     _markBitMap.mark(start + size - 1);
 972                                       // mark end of object
 973   }
 974   // check that oop looks uninitialized
 975   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 976 }
 977 
 978 void CMSCollector::promoted(bool par, HeapWord* start,
 979                             bool is_obj_array, size_t obj_size) {
 980   assert(_markBitMap.covers(start), "Out of bounds");
 981   // See comment in direct_allocated() about when objects should
 982   // be allocated live.
 983   if (_collectorState >= Marking) {
 984     // we already hold the marking bit map lock, taken in
 985     // the prologue
 986     if (par) {
 987       _markBitMap.par_mark(start);
 988     } else {
 989       _markBitMap.mark(start);
 990     }
 991     // We don't need to mark the object as uninitialized (as
 992     // in direct_allocated above) because this is being done with the
 993     // world stopped and the object will be initialized by the
 994     // time the marking, precleaning or sweeping get to look at it.
 995     // But see the code for copying objects into the CMS generation,
 996     // where we need to ensure that concurrent readers of the
 997     // block offset table are able to safely navigate a block that
 998     // is in flux from being free to being allocated (and in
 999     // transition while being copied into) and subsequently
1000     // becoming a bona-fide object when the copy/promotion is complete.
1001     assert(SafepointSynchronize::is_at_safepoint(),
1002            "expect promotion only at safepoints");
1003 
1004     if (_collectorState < Sweeping) {
1005       // Mark the appropriate cards in the modUnionTable, so that
1006       // this object gets scanned before the sweep. If this is
1007       // not done, CMS generation references in the object might
1008       // not get marked.
1009       // For the case of arrays, which are otherwise precisely
1010       // marked, we need to dirty the entire array, not just its head.
1011       if (is_obj_array) {
1012         // The [par_]mark_range() method expects mr.end() below to
1013         // be aligned to the granularity of a bit's representation
1014         // in the heap. In the case of the MUT below, that's a
1015         // card size.
1016         MemRegion mr(start,
1017                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1018                         CardTableModRefBS::card_size /* bytes */));
1019         if (par) {
1020           _modUnionTable.par_mark_range(mr);
1021         } else {
1022           _modUnionTable.mark_range(mr);
1023         }
1024       } else {  // not an obj array; we can just mark the head
1025         if (par) {
1026           _modUnionTable.par_mark(start);
1027         } else {
1028           _modUnionTable.mark(start);
1029         }
1030       }
1031     }
1032   }
1033 }
1034 
1035 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1036   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1037   // allocate, copy and if necessary update promoinfo --
1038   // delegate to underlying space.
1039   assert_lock_strong(freelistLock());
1040 
1041 #ifndef PRODUCT
1042   if (Universe::heap()->promotion_should_fail()) {
1043     return NULL;
1044   }
1045 #endif  // #ifndef PRODUCT
1046 
1047   oop res = _cmsSpace->promote(obj, obj_size);
1048   if (res == NULL) {
1049     // expand and retry
1050     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1051     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
1052     // Since this is the old generation, we don't try to promote
1053     // into a more senior generation.
1054     res = _cmsSpace->promote(obj, obj_size);
1055   }
1056   if (res != NULL) {
1057     // See comment in allocate() about when objects should
1058     // be allocated live.
1059     assert(obj->is_oop(), "Will dereference klass pointer below");
1060     collector()->promoted(false,           // Not parallel
1061                           (HeapWord*)res, obj->is_objArray(), obj_size);
1062     // promotion counters
1063     NOT_PRODUCT(
1064       _numObjectsPromoted++;
1065       _numWordsPromoted +=
1066         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1067     )
1068   }
1069   return res;
1070 }
1071 
1072 
1073 // IMPORTANT: Notes on object size recognition in CMS.
1074 // ---------------------------------------------------
1075 // A block of storage in the CMS generation is always in
1076 // one of three states. A free block (FREE), an allocated
1077 // object (OBJECT) whose size() method reports the correct size,
1078 // and an intermediate state (TRANSIENT) in which its size cannot
1079 // be accurately determined.
1080 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1081 // -----------------------------------------------------
1082 // FREE:      klass_word & 1 == 1; mark_word holds block size
1083 //
1084 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1085 //            obj->size() computes correct size
1086 //
1087 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1088 //
1089 // STATE IDENTIFICATION: (64 bit+COOPS)
1090 // ------------------------------------
1091 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1092 //
1093 // OBJECT:    klass_word installed; klass_word != 0;
1094 //            obj->size() computes correct size
1095 //
1096 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1097 //
1098 //
1099 // STATE TRANSITION DIAGRAM
1100 //
1101 //        mut / parnew                     mut  /  parnew
1102 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1103 //  ^                                                                   |
1104 //  |------------------------ DEAD <------------------------------------|
1105 //         sweep                            mut
1106 //
1107 // While a block is in TRANSIENT state its size cannot be determined
1108 // so readers will either need to come back later or stall until
1109 // the size can be determined. Note that for the case of direct
1110 // allocation, P-bits, when available, may be used to determine the
1111 // size of an object that may not yet have been initialized.
1112 
1113 // Things to support parallel young-gen collection.
1114 oop
1115 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1116                                            oop old, markOop m,
1117                                            size_t word_sz) {
1118 #ifndef PRODUCT
1119   if (Universe::heap()->promotion_should_fail()) {
1120     return NULL;
1121   }
1122 #endif  // #ifndef PRODUCT
1123 
1124   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1125   PromotionInfo* promoInfo = &ps->promo;
1126   // if we are tracking promotions, then first ensure space for
1127   // promotion (including spooling space for saving header if necessary).
1128   // then allocate and copy, then track promoted info if needed.
1129   // When tracking (see PromotionInfo::track()), the mark word may
1130   // be displaced and in this case restoration of the mark word
1131   // occurs in the (oop_since_save_marks_)iterate phase.
1132   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1133     // Out of space for allocating spooling buffers;
1134     // try expanding and allocating spooling buffers.
1135     if (!expand_and_ensure_spooling_space(promoInfo)) {
1136       return NULL;
1137     }
1138   }
1139   assert(promoInfo->has_spooling_space(), "Control point invariant");
1140   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1141   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1142   if (obj_ptr == NULL) {
1143      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1144      if (obj_ptr == NULL) {
1145        return NULL;
1146      }
1147   }
1148   oop obj = oop(obj_ptr);
1149   OrderAccess::storestore();
1150   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1151   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1152   // IMPORTANT: See note on object initialization for CMS above.
1153   // Otherwise, copy the object.  Here we must be careful to insert the
1154   // klass pointer last, since this marks the block as an allocated object.
1155   // Except with compressed oops it's the mark word.
1156   HeapWord* old_ptr = (HeapWord*)old;
1157   // Restore the mark word copied above.
1158   obj->set_mark(m);
1159   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1160   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1161   OrderAccess::storestore();
1162 
1163   if (UseCompressedClassPointers) {
1164     // Copy gap missed by (aligned) header size calculation below
1165     obj->set_klass_gap(old->klass_gap());
1166   }
1167   if (word_sz > (size_t)oopDesc::header_size()) {
1168     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1169                                  obj_ptr + oopDesc::header_size(),
1170                                  word_sz - oopDesc::header_size());
1171   }
1172 
1173   // Now we can track the promoted object, if necessary.  We take care
1174   // to delay the transition from uninitialized to full object
1175   // (i.e., insertion of klass pointer) until after, so that it
1176   // atomically becomes a promoted object.
1177   if (promoInfo->tracking()) {
1178     promoInfo->track((PromotedObject*)obj, old->klass());
1179   }
1180   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1181   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1182   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1183 
1184   // Finally, install the klass pointer (this should be volatile).
1185   OrderAccess::storestore();
1186   obj->set_klass(old->klass());
1187   // We should now be able to calculate the right size for this object
1188   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1189 
1190   collector()->promoted(true,          // parallel
1191                         obj_ptr, old->is_objArray(), word_sz);
1192 
1193   NOT_PRODUCT(
1194     Atomic::inc_ptr(&_numObjectsPromoted);
1195     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1196   )
1197 
1198   return obj;
1199 }
1200 
1201 void
1202 ConcurrentMarkSweepGeneration::
1203 par_promote_alloc_done(int thread_num) {
1204   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1205   ps->lab.retire(thread_num);
1206 }
1207 
1208 void
1209 ConcurrentMarkSweepGeneration::
1210 par_oop_since_save_marks_iterate_done(int thread_num) {
1211   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1212   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1213   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1214 }
1215 
1216 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1217                                                    size_t size,
1218                                                    bool   tlab)
1219 {
1220   // We allow a STW collection only if a full
1221   // collection was requested.
1222   return full || should_allocate(size, tlab); // FIX ME !!!
1223   // This and promotion failure handling are connected at the
1224   // hip and should be fixed by untying them.
1225 }
1226 
1227 bool CMSCollector::shouldConcurrentCollect() {
1228   if (_full_gc_requested) {
1229     if (Verbose && PrintGCDetails) {
1230       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1231                              " gc request (or gc_locker)");
1232     }
1233     return true;
1234   }
1235 
1236   FreelistLocker x(this);
1237   // ------------------------------------------------------------------
1238   // Print out lots of information which affects the initiation of
1239   // a collection.
1240   if (PrintCMSInitiationStatistics && stats().valid()) {
1241     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1242     gclog_or_tty->stamp();
1243     gclog_or_tty->cr();
1244     stats().print_on(gclog_or_tty);
1245     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1246       stats().time_until_cms_gen_full());
1247     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1248     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1249                            _cmsGen->contiguous_available());
1250     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1251     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1252     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1253     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1254     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1255     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1256     gclog_or_tty->print_cr("metadata initialized %d",
1257       MetaspaceGC::should_concurrent_collect());
1258   }
1259   // ------------------------------------------------------------------
1260 
1261   // If the estimated time to complete a cms collection (cms_duration())
1262   // is less than the estimated time remaining until the cms generation
1263   // is full, start a collection.
1264   if (!UseCMSInitiatingOccupancyOnly) {
1265     if (stats().valid()) {
1266       if (stats().time_until_cms_start() == 0.0) {
1267         return true;
1268       }
1269     } else {
1270       // We want to conservatively collect somewhat early in order
1271       // to try and "bootstrap" our CMS/promotion statistics;
1272       // this branch will not fire after the first successful CMS
1273       // collection because the stats should then be valid.
1274       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1275         if (Verbose && PrintGCDetails) {
1276           gclog_or_tty->print_cr(
1277             " CMSCollector: collect for bootstrapping statistics:"
1278             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1279             _bootstrap_occupancy);
1280         }
1281         return true;
1282       }
1283     }
1284   }
1285 
1286   // Otherwise, we start a collection cycle if
1287   // old gen want a collection cycle started. Each may use
1288   // an appropriate criterion for making this decision.
1289   // XXX We need to make sure that the gen expansion
1290   // criterion dovetails well with this. XXX NEED TO FIX THIS
1291   if (_cmsGen->should_concurrent_collect()) {
1292     if (Verbose && PrintGCDetails) {
1293       gclog_or_tty->print_cr("CMS old gen initiated");
1294     }
1295     return true;
1296   }
1297 
1298   // We start a collection if we believe an incremental collection may fail;
1299   // this is not likely to be productive in practice because it's probably too
1300   // late anyway.
1301   GenCollectedHeap* gch = GenCollectedHeap::heap();
1302   assert(gch->collector_policy()->is_generation_policy(),
1303          "You may want to check the correctness of the following");
1304   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1305     if (Verbose && PrintGCDetails) {
1306       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1307     }
1308     return true;
1309   }
1310 
1311   if (MetaspaceGC::should_concurrent_collect()) {
1312     if (Verbose && PrintGCDetails) {
1313       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1314     }
1315     return true;
1316   }
1317 
1318   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1319   if (CMSTriggerInterval >= 0) {
1320     if (CMSTriggerInterval == 0) {
1321       // Trigger always
1322       return true;
1323     }
1324 
1325     // Check the CMS time since begin (we do not check the stats validity
1326     // as we want to be able to trigger the first CMS cycle as well)
1327     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1328       if (Verbose && PrintGCDetails) {
1329         if (stats().valid()) {
1330           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1331                                  stats().cms_time_since_begin());
1332         } else {
1333           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1334         }
1335       }
1336       return true;
1337     }
1338   }
1339 
1340   return false;
1341 }
1342 
1343 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1344 
1345 // Clear _expansion_cause fields of constituent generations
1346 void CMSCollector::clear_expansion_cause() {
1347   _cmsGen->clear_expansion_cause();
1348 }
1349 
1350 // We should be conservative in starting a collection cycle.  To
1351 // start too eagerly runs the risk of collecting too often in the
1352 // extreme.  To collect too rarely falls back on full collections,
1353 // which works, even if not optimum in terms of concurrent work.
1354 // As a work around for too eagerly collecting, use the flag
1355 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1356 // giving the user an easily understandable way of controlling the
1357 // collections.
1358 // We want to start a new collection cycle if any of the following
1359 // conditions hold:
1360 // . our current occupancy exceeds the configured initiating occupancy
1361 //   for this generation, or
1362 // . we recently needed to expand this space and have not, since that
1363 //   expansion, done a collection of this generation, or
1364 // . the underlying space believes that it may be a good idea to initiate
1365 //   a concurrent collection (this may be based on criteria such as the
1366 //   following: the space uses linear allocation and linear allocation is
1367 //   going to fail, or there is believed to be excessive fragmentation in
1368 //   the generation, etc... or ...
1369 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1370 //   the case of the old generation; see CR 6543076):
1371 //   we may be approaching a point at which allocation requests may fail because
1372 //   we will be out of sufficient free space given allocation rate estimates.]
1373 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1374 
1375   assert_lock_strong(freelistLock());
1376   if (occupancy() > initiating_occupancy()) {
1377     if (PrintGCDetails && Verbose) {
1378       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1379         short_name(), occupancy(), initiating_occupancy());
1380     }
1381     return true;
1382   }
1383   if (UseCMSInitiatingOccupancyOnly) {
1384     return false;
1385   }
1386   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1387     if (PrintGCDetails && Verbose) {
1388       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1389         short_name());
1390     }
1391     return true;
1392   }
1393   if (_cmsSpace->should_concurrent_collect()) {
1394     if (PrintGCDetails && Verbose) {
1395       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1396         short_name());
1397     }
1398     return true;
1399   }
1400   return false;
1401 }
1402 
1403 void ConcurrentMarkSweepGeneration::collect(bool   full,
1404                                             bool   clear_all_soft_refs,
1405                                             size_t size,
1406                                             bool   tlab)
1407 {
1408   collector()->collect(full, clear_all_soft_refs, size, tlab);
1409 }
1410 
1411 void CMSCollector::collect(bool   full,
1412                            bool   clear_all_soft_refs,
1413                            size_t size,
1414                            bool   tlab)
1415 {
1416   // The following "if" branch is present for defensive reasons.
1417   // In the current uses of this interface, it can be replaced with:
1418   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1419   // But I am not placing that assert here to allow future
1420   // generality in invoking this interface.
1421   if (GC_locker::is_active()) {
1422     // A consistency test for GC_locker
1423     assert(GC_locker::needs_gc(), "Should have been set already");
1424     // Skip this foreground collection, instead
1425     // expanding the heap if necessary.
1426     // Need the free list locks for the call to free() in compute_new_size()
1427     compute_new_size();
1428     return;
1429   }
1430   acquire_control_and_collect(full, clear_all_soft_refs);
1431 }
1432 
1433 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1434   GenCollectedHeap* gch = GenCollectedHeap::heap();
1435   unsigned int gc_count = gch->total_full_collections();
1436   if (gc_count == full_gc_count) {
1437     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1438     _full_gc_requested = true;
1439     _full_gc_cause = cause;
1440     CGC_lock->notify();   // nudge CMS thread
1441   } else {
1442     assert(gc_count > full_gc_count, "Error: causal loop");
1443   }
1444 }
1445 
1446 bool CMSCollector::is_external_interruption() {
1447   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1448   return GCCause::is_user_requested_gc(cause) ||
1449          GCCause::is_serviceability_requested_gc(cause);
1450 }
1451 
1452 void CMSCollector::report_concurrent_mode_interruption() {
1453   if (is_external_interruption()) {
1454     if (PrintGCDetails) {
1455       gclog_or_tty->print(" (concurrent mode interrupted)");
1456     }
1457   } else {
1458     if (PrintGCDetails) {
1459       gclog_or_tty->print(" (concurrent mode failure)");
1460     }
1461     _gc_tracer_cm->report_concurrent_mode_failure();
1462   }
1463 }
1464 
1465 
1466 // The foreground and background collectors need to coordinate in order
1467 // to make sure that they do not mutually interfere with CMS collections.
1468 // When a background collection is active,
1469 // the foreground collector may need to take over (preempt) and
1470 // synchronously complete an ongoing collection. Depending on the
1471 // frequency of the background collections and the heap usage
1472 // of the application, this preemption can be seldom or frequent.
1473 // There are only certain
1474 // points in the background collection that the "collection-baton"
1475 // can be passed to the foreground collector.
1476 //
1477 // The foreground collector will wait for the baton before
1478 // starting any part of the collection.  The foreground collector
1479 // will only wait at one location.
1480 //
1481 // The background collector will yield the baton before starting a new
1482 // phase of the collection (e.g., before initial marking, marking from roots,
1483 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1484 // of the loop which switches the phases. The background collector does some
1485 // of the phases (initial mark, final re-mark) with the world stopped.
1486 // Because of locking involved in stopping the world,
1487 // the foreground collector should not block waiting for the background
1488 // collector when it is doing a stop-the-world phase.  The background
1489 // collector will yield the baton at an additional point just before
1490 // it enters a stop-the-world phase.  Once the world is stopped, the
1491 // background collector checks the phase of the collection.  If the
1492 // phase has not changed, it proceeds with the collection.  If the
1493 // phase has changed, it skips that phase of the collection.  See
1494 // the comments on the use of the Heap_lock in collect_in_background().
1495 //
1496 // Variable used in baton passing.
1497 //   _foregroundGCIsActive - Set to true by the foreground collector when
1498 //      it wants the baton.  The foreground clears it when it has finished
1499 //      the collection.
1500 //   _foregroundGCShouldWait - Set to true by the background collector
1501 //        when it is running.  The foreground collector waits while
1502 //      _foregroundGCShouldWait is true.
1503 //  CGC_lock - monitor used to protect access to the above variables
1504 //      and to notify the foreground and background collectors.
1505 //  _collectorState - current state of the CMS collection.
1506 //
1507 // The foreground collector
1508 //   acquires the CGC_lock
1509 //   sets _foregroundGCIsActive
1510 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1511 //     various locks acquired in preparation for the collection
1512 //     are released so as not to block the background collector
1513 //     that is in the midst of a collection
1514 //   proceeds with the collection
1515 //   clears _foregroundGCIsActive
1516 //   returns
1517 //
1518 // The background collector in a loop iterating on the phases of the
1519 //      collection
1520 //   acquires the CGC_lock
1521 //   sets _foregroundGCShouldWait
1522 //   if _foregroundGCIsActive is set
1523 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1524 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1525 //     and exits the loop.
1526 //   otherwise
1527 //     proceed with that phase of the collection
1528 //     if the phase is a stop-the-world phase,
1529 //       yield the baton once more just before enqueueing
1530 //       the stop-world CMS operation (executed by the VM thread).
1531 //   returns after all phases of the collection are done
1532 //
1533 
1534 void CMSCollector::acquire_control_and_collect(bool full,
1535         bool clear_all_soft_refs) {
1536   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1537   assert(!Thread::current()->is_ConcurrentGC_thread(),
1538          "shouldn't try to acquire control from self!");
1539 
1540   // Start the protocol for acquiring control of the
1541   // collection from the background collector (aka CMS thread).
1542   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1543          "VM thread should have CMS token");
1544   // Remember the possibly interrupted state of an ongoing
1545   // concurrent collection
1546   CollectorState first_state = _collectorState;
1547 
1548   // Signal to a possibly ongoing concurrent collection that
1549   // we want to do a foreground collection.
1550   _foregroundGCIsActive = true;
1551 
1552   // release locks and wait for a notify from the background collector
1553   // releasing the locks in only necessary for phases which
1554   // do yields to improve the granularity of the collection.
1555   assert_lock_strong(bitMapLock());
1556   // We need to lock the Free list lock for the space that we are
1557   // currently collecting.
1558   assert(haveFreelistLocks(), "Must be holding free list locks");
1559   bitMapLock()->unlock();
1560   releaseFreelistLocks();
1561   {
1562     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1563     if (_foregroundGCShouldWait) {
1564       // We are going to be waiting for action for the CMS thread;
1565       // it had better not be gone (for instance at shutdown)!
1566       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1567              "CMS thread must be running");
1568       // Wait here until the background collector gives us the go-ahead
1569       ConcurrentMarkSweepThread::clear_CMS_flag(
1570         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1571       // Get a possibly blocked CMS thread going:
1572       //   Note that we set _foregroundGCIsActive true above,
1573       //   without protection of the CGC_lock.
1574       CGC_lock->notify();
1575       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1576              "Possible deadlock");
1577       while (_foregroundGCShouldWait) {
1578         // wait for notification
1579         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1580         // Possibility of delay/starvation here, since CMS token does
1581         // not know to give priority to VM thread? Actually, i think
1582         // there wouldn't be any delay/starvation, but the proof of
1583         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1584       }
1585       ConcurrentMarkSweepThread::set_CMS_flag(
1586         ConcurrentMarkSweepThread::CMS_vm_has_token);
1587     }
1588   }
1589   // The CMS_token is already held.  Get back the other locks.
1590   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1591          "VM thread should have CMS token");
1592   getFreelistLocks();
1593   bitMapLock()->lock_without_safepoint_check();
1594   if (TraceCMSState) {
1595     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1596       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1597     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1598   }
1599 
1600   // Inform cms gen if this was due to partial collection failing.
1601   // The CMS gen may use this fact to determine its expansion policy.
1602   GenCollectedHeap* gch = GenCollectedHeap::heap();
1603   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1604     assert(!_cmsGen->incremental_collection_failed(),
1605            "Should have been noticed, reacted to and cleared");
1606     _cmsGen->set_incremental_collection_failed();
1607   }
1608 
1609   if (first_state > Idling) {
1610     report_concurrent_mode_interruption();
1611   }
1612 
1613   set_did_compact(true);
1614 
1615   // If the collection is being acquired from the background
1616   // collector, there may be references on the discovered
1617   // references lists.  Abandon those references, since some
1618   // of them may have become unreachable after concurrent
1619   // discovery; the STW compacting collector will redo discovery
1620   // more precisely, without being subject to floating garbage.
1621   // Leaving otherwise unreachable references in the discovered
1622   // lists would require special handling.
1623   ref_processor()->disable_discovery();
1624   ref_processor()->abandon_partial_discovery();
1625   ref_processor()->verify_no_references_recorded();
1626 
1627   if (first_state > Idling) {
1628     save_heap_summary();
1629   }
1630 
1631   do_compaction_work(clear_all_soft_refs);
1632 
1633   // Has the GC time limit been exceeded?
1634   size_t max_eden_size = _young_gen->max_capacity() -
1635                          _young_gen->to()->capacity() -
1636                          _young_gen->from()->capacity();
1637   GCCause::Cause gc_cause = gch->gc_cause();
1638   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1639                                          _young_gen->eden()->used(),
1640                                          _cmsGen->max_capacity(),
1641                                          max_eden_size,
1642                                          full,
1643                                          gc_cause,
1644                                          gch->collector_policy());
1645 
1646   // Reset the expansion cause, now that we just completed
1647   // a collection cycle.
1648   clear_expansion_cause();
1649   _foregroundGCIsActive = false;
1650   return;
1651 }
1652 
1653 // Resize the tenured generation
1654 // after obtaining the free list locks for the
1655 // two generations.
1656 void CMSCollector::compute_new_size() {
1657   assert_locked_or_safepoint(Heap_lock);
1658   FreelistLocker z(this);
1659   MetaspaceGC::compute_new_size();
1660   _cmsGen->compute_new_size_free_list();
1661 }
1662 
1663 // A work method used by the foreground collector to do
1664 // a mark-sweep-compact.
1665 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1666   GenCollectedHeap* gch = GenCollectedHeap::heap();
1667 
1668   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1669   gc_timer->register_gc_start();
1670 
1671   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1672   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1673 
1674   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1675 
1676   // Temporarily widen the span of the weak reference processing to
1677   // the entire heap.
1678   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1679   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1680   // Temporarily, clear the "is_alive_non_header" field of the
1681   // reference processor.
1682   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1683   // Temporarily make reference _processing_ single threaded (non-MT).
1684   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1685   // Temporarily make refs discovery atomic
1686   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1687   // Temporarily make reference _discovery_ single threaded (non-MT)
1688   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1689 
1690   ref_processor()->set_enqueuing_is_done(false);
1691   ref_processor()->enable_discovery();
1692   ref_processor()->setup_policy(clear_all_soft_refs);
1693   // If an asynchronous collection finishes, the _modUnionTable is
1694   // all clear.  If we are assuming the collection from an asynchronous
1695   // collection, clear the _modUnionTable.
1696   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1697     "_modUnionTable should be clear if the baton was not passed");
1698   _modUnionTable.clear_all();
1699   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1700     "mod union for klasses should be clear if the baton was passed");
1701   _ct->klass_rem_set()->clear_mod_union();
1702 
1703   // We must adjust the allocation statistics being maintained
1704   // in the free list space. We do so by reading and clearing
1705   // the sweep timer and updating the block flux rate estimates below.
1706   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1707   if (_inter_sweep_timer.is_active()) {
1708     _inter_sweep_timer.stop();
1709     // Note that we do not use this sample to update the _inter_sweep_estimate.
1710     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1711                                             _inter_sweep_estimate.padded_average(),
1712                                             _intra_sweep_estimate.padded_average());
1713   }
1714 
1715   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
1716     ref_processor(), clear_all_soft_refs);
1717   #ifdef ASSERT
1718     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1719     size_t free_size = cms_space->free();
1720     assert(free_size ==
1721            pointer_delta(cms_space->end(), cms_space->compaction_top())
1722            * HeapWordSize,
1723       "All the free space should be compacted into one chunk at top");
1724     assert(cms_space->dictionary()->total_chunk_size(
1725                                       debug_only(cms_space->freelistLock())) == 0 ||
1726            cms_space->totalSizeInIndexedFreeLists() == 0,
1727       "All the free space should be in a single chunk");
1728     size_t num = cms_space->totalCount();
1729     assert((free_size == 0 && num == 0) ||
1730            (free_size > 0  && (num == 1 || num == 2)),
1731          "There should be at most 2 free chunks after compaction");
1732   #endif // ASSERT
1733   _collectorState = Resetting;
1734   assert(_restart_addr == NULL,
1735          "Should have been NULL'd before baton was passed");
1736   reset(false /* == !concurrent */);
1737   _cmsGen->reset_after_compaction();
1738   _concurrent_cycles_since_last_unload = 0;
1739 
1740   // Clear any data recorded in the PLAB chunk arrays.
1741   if (_survivor_plab_array != NULL) {
1742     reset_survivor_plab_arrays();
1743   }
1744 
1745   // Adjust the per-size allocation stats for the next epoch.
1746   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1747   // Restart the "inter sweep timer" for the next epoch.
1748   _inter_sweep_timer.reset();
1749   _inter_sweep_timer.start();
1750 
1751   gc_timer->register_gc_end();
1752 
1753   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1754 
1755   // For a mark-sweep-compact, compute_new_size() will be called
1756   // in the heap's do_collection() method.
1757 }
1758 
1759 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1760   ContiguousSpace* eden_space = _young_gen->eden();
1761   ContiguousSpace* from_space = _young_gen->from();
1762   ContiguousSpace* to_space   = _young_gen->to();
1763   // Eden
1764   if (_eden_chunk_array != NULL) {
1765     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1766                            eden_space->bottom(), eden_space->top(),
1767                            eden_space->end(), eden_space->capacity());
1768     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1769                            "_eden_chunk_capacity=" SIZE_FORMAT,
1770                            _eden_chunk_index, _eden_chunk_capacity);
1771     for (size_t i = 0; i < _eden_chunk_index; i++) {
1772       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1773                              i, _eden_chunk_array[i]);
1774     }
1775   }
1776   // Survivor
1777   if (_survivor_chunk_array != NULL) {
1778     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1779                            from_space->bottom(), from_space->top(),
1780                            from_space->end(), from_space->capacity());
1781     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1782                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1783                            _survivor_chunk_index, _survivor_chunk_capacity);
1784     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1785       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1786                              i, _survivor_chunk_array[i]);
1787     }
1788   }
1789 }
1790 
1791 void CMSCollector::getFreelistLocks() const {
1792   // Get locks for all free lists in all generations that this
1793   // collector is responsible for
1794   _cmsGen->freelistLock()->lock_without_safepoint_check();
1795 }
1796 
1797 void CMSCollector::releaseFreelistLocks() const {
1798   // Release locks for all free lists in all generations that this
1799   // collector is responsible for
1800   _cmsGen->freelistLock()->unlock();
1801 }
1802 
1803 bool CMSCollector::haveFreelistLocks() const {
1804   // Check locks for all free lists in all generations that this
1805   // collector is responsible for
1806   assert_lock_strong(_cmsGen->freelistLock());
1807   PRODUCT_ONLY(ShouldNotReachHere());
1808   return true;
1809 }
1810 
1811 // A utility class that is used by the CMS collector to
1812 // temporarily "release" the foreground collector from its
1813 // usual obligation to wait for the background collector to
1814 // complete an ongoing phase before proceeding.
1815 class ReleaseForegroundGC: public StackObj {
1816  private:
1817   CMSCollector* _c;
1818  public:
1819   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1820     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1821     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1822     // allow a potentially blocked foreground collector to proceed
1823     _c->_foregroundGCShouldWait = false;
1824     if (_c->_foregroundGCIsActive) {
1825       CGC_lock->notify();
1826     }
1827     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1828            "Possible deadlock");
1829   }
1830 
1831   ~ReleaseForegroundGC() {
1832     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1833     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1834     _c->_foregroundGCShouldWait = true;
1835   }
1836 };
1837 
1838 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1839   assert(Thread::current()->is_ConcurrentGC_thread(),
1840     "A CMS asynchronous collection is only allowed on a CMS thread.");
1841 
1842   GenCollectedHeap* gch = GenCollectedHeap::heap();
1843   {
1844     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1845     MutexLockerEx hl(Heap_lock, safepoint_check);
1846     FreelistLocker fll(this);
1847     MutexLockerEx x(CGC_lock, safepoint_check);
1848     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1849       // The foreground collector is active or we're
1850       // not using asynchronous collections.  Skip this
1851       // background collection.
1852       assert(!_foregroundGCShouldWait, "Should be clear");
1853       return;
1854     } else {
1855       assert(_collectorState == Idling, "Should be idling before start.");
1856       _collectorState = InitialMarking;
1857       register_gc_start(cause);
1858       // Reset the expansion cause, now that we are about to begin
1859       // a new cycle.
1860       clear_expansion_cause();
1861 
1862       // Clear the MetaspaceGC flag since a concurrent collection
1863       // is starting but also clear it after the collection.
1864       MetaspaceGC::set_should_concurrent_collect(false);
1865     }
1866     // Decide if we want to enable class unloading as part of the
1867     // ensuing concurrent GC cycle.
1868     update_should_unload_classes();
1869     _full_gc_requested = false;           // acks all outstanding full gc requests
1870     _full_gc_cause = GCCause::_no_gc;
1871     // Signal that we are about to start a collection
1872     gch->increment_total_full_collections();  // ... starting a collection cycle
1873     _collection_count_start = gch->total_full_collections();
1874   }
1875 
1876   // Used for PrintGC
1877   size_t prev_used;
1878   if (PrintGC && Verbose) {
1879     prev_used = _cmsGen->used();
1880   }
1881 
1882   // The change of the collection state is normally done at this level;
1883   // the exceptions are phases that are executed while the world is
1884   // stopped.  For those phases the change of state is done while the
1885   // world is stopped.  For baton passing purposes this allows the
1886   // background collector to finish the phase and change state atomically.
1887   // The foreground collector cannot wait on a phase that is done
1888   // while the world is stopped because the foreground collector already
1889   // has the world stopped and would deadlock.
1890   while (_collectorState != Idling) {
1891     if (TraceCMSState) {
1892       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1893         Thread::current(), _collectorState);
1894     }
1895     // The foreground collector
1896     //   holds the Heap_lock throughout its collection.
1897     //   holds the CMS token (but not the lock)
1898     //     except while it is waiting for the background collector to yield.
1899     //
1900     // The foreground collector should be blocked (not for long)
1901     //   if the background collector is about to start a phase
1902     //   executed with world stopped.  If the background
1903     //   collector has already started such a phase, the
1904     //   foreground collector is blocked waiting for the
1905     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1906     //   are executed in the VM thread.
1907     //
1908     // The locking order is
1909     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1910     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1911     //   CMS token  (claimed in
1912     //                stop_world_and_do() -->
1913     //                  safepoint_synchronize() -->
1914     //                    CMSThread::synchronize())
1915 
1916     {
1917       // Check if the FG collector wants us to yield.
1918       CMSTokenSync x(true); // is cms thread
1919       if (waitForForegroundGC()) {
1920         // We yielded to a foreground GC, nothing more to be
1921         // done this round.
1922         assert(_foregroundGCShouldWait == false, "We set it to false in "
1923                "waitForForegroundGC()");
1924         if (TraceCMSState) {
1925           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1926             " exiting collection CMS state %d",
1927             Thread::current(), _collectorState);
1928         }
1929         return;
1930       } else {
1931         // The background collector can run but check to see if the
1932         // foreground collector has done a collection while the
1933         // background collector was waiting to get the CGC_lock
1934         // above.  If yes, break so that _foregroundGCShouldWait
1935         // is cleared before returning.
1936         if (_collectorState == Idling) {
1937           break;
1938         }
1939       }
1940     }
1941 
1942     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1943       "should be waiting");
1944 
1945     switch (_collectorState) {
1946       case InitialMarking:
1947         {
1948           ReleaseForegroundGC x(this);
1949           stats().record_cms_begin();
1950           VM_CMS_Initial_Mark initial_mark_op(this);
1951           VMThread::execute(&initial_mark_op);
1952         }
1953         // The collector state may be any legal state at this point
1954         // since the background collector may have yielded to the
1955         // foreground collector.
1956         break;
1957       case Marking:
1958         // initial marking in checkpointRootsInitialWork has been completed
1959         if (markFromRoots()) { // we were successful
1960           assert(_collectorState == Precleaning, "Collector state should "
1961             "have changed");
1962         } else {
1963           assert(_foregroundGCIsActive, "Internal state inconsistency");
1964         }
1965         break;
1966       case Precleaning:
1967         // marking from roots in markFromRoots has been completed
1968         preclean();
1969         assert(_collectorState == AbortablePreclean ||
1970                _collectorState == FinalMarking,
1971                "Collector state should have changed");
1972         break;
1973       case AbortablePreclean:
1974         abortable_preclean();
1975         assert(_collectorState == FinalMarking, "Collector state should "
1976           "have changed");
1977         break;
1978       case FinalMarking:
1979         {
1980           ReleaseForegroundGC x(this);
1981 
1982           VM_CMS_Final_Remark final_remark_op(this);
1983           VMThread::execute(&final_remark_op);
1984         }
1985         assert(_foregroundGCShouldWait, "block post-condition");
1986         break;
1987       case Sweeping:
1988         // final marking in checkpointRootsFinal has been completed
1989         sweep();
1990         assert(_collectorState == Resizing, "Collector state change "
1991           "to Resizing must be done under the free_list_lock");
1992 
1993       case Resizing: {
1994         // Sweeping has been completed...
1995         // At this point the background collection has completed.
1996         // Don't move the call to compute_new_size() down
1997         // into code that might be executed if the background
1998         // collection was preempted.
1999         {
2000           ReleaseForegroundGC x(this);   // unblock FG collection
2001           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2002           CMSTokenSync        z(true);   // not strictly needed.
2003           if (_collectorState == Resizing) {
2004             compute_new_size();
2005             save_heap_summary();
2006             _collectorState = Resetting;
2007           } else {
2008             assert(_collectorState == Idling, "The state should only change"
2009                    " because the foreground collector has finished the collection");
2010           }
2011         }
2012         break;
2013       }
2014       case Resetting:
2015         // CMS heap resizing has been completed
2016         reset(true);
2017         assert(_collectorState == Idling, "Collector state should "
2018           "have changed");
2019 
2020         MetaspaceGC::set_should_concurrent_collect(false);
2021 
2022         stats().record_cms_end();
2023         // Don't move the concurrent_phases_end() and compute_new_size()
2024         // calls to here because a preempted background collection
2025         // has it's state set to "Resetting".
2026         break;
2027       case Idling:
2028       default:
2029         ShouldNotReachHere();
2030         break;
2031     }
2032     if (TraceCMSState) {
2033       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2034         Thread::current(), _collectorState);
2035     }
2036     assert(_foregroundGCShouldWait, "block post-condition");
2037   }
2038 
2039   // Should this be in gc_epilogue?
2040   collector_policy()->counters()->update_counters();
2041 
2042   {
2043     // Clear _foregroundGCShouldWait and, in the event that the
2044     // foreground collector is waiting, notify it, before
2045     // returning.
2046     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2047     _foregroundGCShouldWait = false;
2048     if (_foregroundGCIsActive) {
2049       CGC_lock->notify();
2050     }
2051     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2052            "Possible deadlock");
2053   }
2054   if (TraceCMSState) {
2055     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2056       " exiting collection CMS state %d",
2057       Thread::current(), _collectorState);
2058   }
2059   if (PrintGC && Verbose) {
2060     _cmsGen->print_heap_change(prev_used);
2061   }
2062 }
2063 
2064 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2065   _cms_start_registered = true;
2066   _gc_timer_cm->register_gc_start();
2067   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2068 }
2069 
2070 void CMSCollector::register_gc_end() {
2071   if (_cms_start_registered) {
2072     report_heap_summary(GCWhen::AfterGC);
2073 
2074     _gc_timer_cm->register_gc_end();
2075     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2076     _cms_start_registered = false;
2077   }
2078 }
2079 
2080 void CMSCollector::save_heap_summary() {
2081   GenCollectedHeap* gch = GenCollectedHeap::heap();
2082   _last_heap_summary = gch->create_heap_summary();
2083   _last_metaspace_summary = gch->create_metaspace_summary();
2084 }
2085 
2086 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2087   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2088   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2089 }
2090 
2091 bool CMSCollector::waitForForegroundGC() {
2092   bool res = false;
2093   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2094          "CMS thread should have CMS token");
2095   // Block the foreground collector until the
2096   // background collectors decides whether to
2097   // yield.
2098   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2099   _foregroundGCShouldWait = true;
2100   if (_foregroundGCIsActive) {
2101     // The background collector yields to the
2102     // foreground collector and returns a value
2103     // indicating that it has yielded.  The foreground
2104     // collector can proceed.
2105     res = true;
2106     _foregroundGCShouldWait = false;
2107     ConcurrentMarkSweepThread::clear_CMS_flag(
2108       ConcurrentMarkSweepThread::CMS_cms_has_token);
2109     ConcurrentMarkSweepThread::set_CMS_flag(
2110       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2111     // Get a possibly blocked foreground thread going
2112     CGC_lock->notify();
2113     if (TraceCMSState) {
2114       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2115         Thread::current(), _collectorState);
2116     }
2117     while (_foregroundGCIsActive) {
2118       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2119     }
2120     ConcurrentMarkSweepThread::set_CMS_flag(
2121       ConcurrentMarkSweepThread::CMS_cms_has_token);
2122     ConcurrentMarkSweepThread::clear_CMS_flag(
2123       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2124   }
2125   if (TraceCMSState) {
2126     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2127       Thread::current(), _collectorState);
2128   }
2129   return res;
2130 }
2131 
2132 // Because of the need to lock the free lists and other structures in
2133 // the collector, common to all the generations that the collector is
2134 // collecting, we need the gc_prologues of individual CMS generations
2135 // delegate to their collector. It may have been simpler had the
2136 // current infrastructure allowed one to call a prologue on a
2137 // collector. In the absence of that we have the generation's
2138 // prologue delegate to the collector, which delegates back
2139 // some "local" work to a worker method in the individual generations
2140 // that it's responsible for collecting, while itself doing any
2141 // work common to all generations it's responsible for. A similar
2142 // comment applies to the  gc_epilogue()'s.
2143 // The role of the variable _between_prologue_and_epilogue is to
2144 // enforce the invocation protocol.
2145 void CMSCollector::gc_prologue(bool full) {
2146   // Call gc_prologue_work() for the CMSGen
2147   // we are responsible for.
2148 
2149   // The following locking discipline assumes that we are only called
2150   // when the world is stopped.
2151   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2152 
2153   // The CMSCollector prologue must call the gc_prologues for the
2154   // "generations" that it's responsible
2155   // for.
2156 
2157   assert(   Thread::current()->is_VM_thread()
2158          || (   CMSScavengeBeforeRemark
2159              && Thread::current()->is_ConcurrentGC_thread()),
2160          "Incorrect thread type for prologue execution");
2161 
2162   if (_between_prologue_and_epilogue) {
2163     // We have already been invoked; this is a gc_prologue delegation
2164     // from yet another CMS generation that we are responsible for, just
2165     // ignore it since all relevant work has already been done.
2166     return;
2167   }
2168 
2169   // set a bit saying prologue has been called; cleared in epilogue
2170   _between_prologue_and_epilogue = true;
2171   // Claim locks for common data structures, then call gc_prologue_work()
2172   // for each CMSGen.
2173 
2174   getFreelistLocks();   // gets free list locks on constituent spaces
2175   bitMapLock()->lock_without_safepoint_check();
2176 
2177   // Should call gc_prologue_work() for all cms gens we are responsible for
2178   bool duringMarking =    _collectorState >= Marking
2179                          && _collectorState < Sweeping;
2180 
2181   // The young collections clear the modified oops state, which tells if
2182   // there are any modified oops in the class. The remark phase also needs
2183   // that information. Tell the young collection to save the union of all
2184   // modified klasses.
2185   if (duringMarking) {
2186     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2187   }
2188 
2189   bool registerClosure = duringMarking;
2190 
2191   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2192                                                &_modUnionClosurePar
2193                                                : &_modUnionClosure;
2194   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2195 
2196   if (!full) {
2197     stats().record_gc0_begin();
2198   }
2199 }
2200 
2201 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2202 
2203   _capacity_at_prologue = capacity();
2204   _used_at_prologue = used();
2205 
2206   // Delegate to CMScollector which knows how to coordinate between
2207   // this and any other CMS generations that it is responsible for
2208   // collecting.
2209   collector()->gc_prologue(full);
2210 }
2211 
2212 // This is a "private" interface for use by this generation's CMSCollector.
2213 // Not to be called directly by any other entity (for instance,
2214 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2215 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2216   bool registerClosure, ModUnionClosure* modUnionClosure) {
2217   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2218   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2219     "Should be NULL");
2220   if (registerClosure) {
2221     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2222   }
2223   cmsSpace()->gc_prologue();
2224   // Clear stat counters
2225   NOT_PRODUCT(
2226     assert(_numObjectsPromoted == 0, "check");
2227     assert(_numWordsPromoted   == 0, "check");
2228     if (Verbose && PrintGC) {
2229       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2230                           SIZE_FORMAT" bytes concurrently",
2231       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2232     }
2233     _numObjectsAllocated = 0;
2234     _numWordsAllocated   = 0;
2235   )
2236 }
2237 
2238 void CMSCollector::gc_epilogue(bool full) {
2239   // The following locking discipline assumes that we are only called
2240   // when the world is stopped.
2241   assert(SafepointSynchronize::is_at_safepoint(),
2242          "world is stopped assumption");
2243 
2244   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2245   // if linear allocation blocks need to be appropriately marked to allow the
2246   // the blocks to be parsable. We also check here whether we need to nudge the
2247   // CMS collector thread to start a new cycle (if it's not already active).
2248   assert(   Thread::current()->is_VM_thread()
2249          || (   CMSScavengeBeforeRemark
2250              && Thread::current()->is_ConcurrentGC_thread()),
2251          "Incorrect thread type for epilogue execution");
2252 
2253   if (!_between_prologue_and_epilogue) {
2254     // We have already been invoked; this is a gc_epilogue delegation
2255     // from yet another CMS generation that we are responsible for, just
2256     // ignore it since all relevant work has already been done.
2257     return;
2258   }
2259   assert(haveFreelistLocks(), "must have freelist locks");
2260   assert_lock_strong(bitMapLock());
2261 
2262   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2263 
2264   _cmsGen->gc_epilogue_work(full);
2265 
2266   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2267     // in case sampling was not already enabled, enable it
2268     _start_sampling = true;
2269   }
2270   // reset _eden_chunk_array so sampling starts afresh
2271   _eden_chunk_index = 0;
2272 
2273   size_t cms_used   = _cmsGen->cmsSpace()->used();
2274 
2275   // update performance counters - this uses a special version of
2276   // update_counters() that allows the utilization to be passed as a
2277   // parameter, avoiding multiple calls to used().
2278   //
2279   _cmsGen->update_counters(cms_used);
2280 
2281   bitMapLock()->unlock();
2282   releaseFreelistLocks();
2283 
2284   if (!CleanChunkPoolAsync) {
2285     Chunk::clean_chunk_pool();
2286   }
2287 
2288   set_did_compact(false);
2289   _between_prologue_and_epilogue = false;  // ready for next cycle
2290 }
2291 
2292 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2293   collector()->gc_epilogue(full);
2294 
2295   // Also reset promotion tracking in par gc thread states.
2296   for (uint i = 0; i < ParallelGCThreads; i++) {
2297     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2298   }
2299 }
2300 
2301 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2302   assert(!incremental_collection_failed(), "Should have been cleared");
2303   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2304   cmsSpace()->gc_epilogue();
2305     // Print stat counters
2306   NOT_PRODUCT(
2307     assert(_numObjectsAllocated == 0, "check");
2308     assert(_numWordsAllocated == 0, "check");
2309     if (Verbose && PrintGC) {
2310       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2311                           SIZE_FORMAT" bytes",
2312                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2313     }
2314     _numObjectsPromoted = 0;
2315     _numWordsPromoted   = 0;
2316   )
2317 
2318   if (PrintGC && Verbose) {
2319     // Call down the chain in contiguous_available needs the freelistLock
2320     // so print this out before releasing the freeListLock.
2321     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2322                         contiguous_available());
2323   }
2324 }
2325 
2326 #ifndef PRODUCT
2327 bool CMSCollector::have_cms_token() {
2328   Thread* thr = Thread::current();
2329   if (thr->is_VM_thread()) {
2330     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2331   } else if (thr->is_ConcurrentGC_thread()) {
2332     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2333   } else if (thr->is_GC_task_thread()) {
2334     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2335            ParGCRareEvent_lock->owned_by_self();
2336   }
2337   return false;
2338 }
2339 #endif
2340 
2341 // Check reachability of the given heap address in CMS generation,
2342 // treating all other generations as roots.
2343 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2344   // We could "guarantee" below, rather than assert, but I'll
2345   // leave these as "asserts" so that an adventurous debugger
2346   // could try this in the product build provided some subset of
2347   // the conditions were met, provided they were interested in the
2348   // results and knew that the computation below wouldn't interfere
2349   // with other concurrent computations mutating the structures
2350   // being read or written.
2351   assert(SafepointSynchronize::is_at_safepoint(),
2352          "Else mutations in object graph will make answer suspect");
2353   assert(have_cms_token(), "Should hold cms token");
2354   assert(haveFreelistLocks(), "must hold free list locks");
2355   assert_lock_strong(bitMapLock());
2356 
2357   // Clear the marking bit map array before starting, but, just
2358   // for kicks, first report if the given address is already marked
2359   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", addr,
2360                 _markBitMap.isMarked(addr) ? "" : " not");
2361 
2362   if (verify_after_remark()) {
2363     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2364     bool result = verification_mark_bm()->isMarked(addr);
2365     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", addr,
2366                            result ? "IS" : "is NOT");
2367     return result;
2368   } else {
2369     gclog_or_tty->print_cr("Could not compute result");
2370     return false;
2371   }
2372 }
2373 
2374 
2375 void
2376 CMSCollector::print_on_error(outputStream* st) {
2377   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2378   if (collector != NULL) {
2379     CMSBitMap* bitmap = &collector->_markBitMap;
2380     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2381     bitmap->print_on_error(st, " Bits: ");
2382 
2383     st->cr();
2384 
2385     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2386     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2387     mut_bitmap->print_on_error(st, " Bits: ");
2388   }
2389 }
2390 
2391 ////////////////////////////////////////////////////////
2392 // CMS Verification Support
2393 ////////////////////////////////////////////////////////
2394 // Following the remark phase, the following invariant
2395 // should hold -- each object in the CMS heap which is
2396 // marked in markBitMap() should be marked in the verification_mark_bm().
2397 
2398 class VerifyMarkedClosure: public BitMapClosure {
2399   CMSBitMap* _marks;
2400   bool       _failed;
2401 
2402  public:
2403   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2404 
2405   bool do_bit(size_t offset) {
2406     HeapWord* addr = _marks->offsetToHeapWord(offset);
2407     if (!_marks->isMarked(addr)) {
2408       oop(addr)->print_on(gclog_or_tty);
2409       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2410       _failed = true;
2411     }
2412     return true;
2413   }
2414 
2415   bool failed() { return _failed; }
2416 };
2417 
2418 bool CMSCollector::verify_after_remark(bool silent) {
2419   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2420   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2421   static bool init = false;
2422 
2423   assert(SafepointSynchronize::is_at_safepoint(),
2424          "Else mutations in object graph will make answer suspect");
2425   assert(have_cms_token(),
2426          "Else there may be mutual interference in use of "
2427          " verification data structures");
2428   assert(_collectorState > Marking && _collectorState <= Sweeping,
2429          "Else marking info checked here may be obsolete");
2430   assert(haveFreelistLocks(), "must hold free list locks");
2431   assert_lock_strong(bitMapLock());
2432 
2433 
2434   // Allocate marking bit map if not already allocated
2435   if (!init) { // first time
2436     if (!verification_mark_bm()->allocate(_span)) {
2437       return false;
2438     }
2439     init = true;
2440   }
2441 
2442   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2443 
2444   // Turn off refs discovery -- so we will be tracing through refs.
2445   // This is as intended, because by this time
2446   // GC must already have cleared any refs that need to be cleared,
2447   // and traced those that need to be marked; moreover,
2448   // the marking done here is not going to interfere in any
2449   // way with the marking information used by GC.
2450   NoRefDiscovery no_discovery(ref_processor());
2451 
2452   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2453 
2454   // Clear any marks from a previous round
2455   verification_mark_bm()->clear_all();
2456   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2457   verify_work_stacks_empty();
2458 
2459   GenCollectedHeap* gch = GenCollectedHeap::heap();
2460   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2461   // Update the saved marks which may affect the root scans.
2462   gch->save_marks();
2463 
2464   if (CMSRemarkVerifyVariant == 1) {
2465     // In this first variant of verification, we complete
2466     // all marking, then check if the new marks-vector is
2467     // a subset of the CMS marks-vector.
2468     verify_after_remark_work_1();
2469   } else if (CMSRemarkVerifyVariant == 2) {
2470     // In this second variant of verification, we flag an error
2471     // (i.e. an object reachable in the new marks-vector not reachable
2472     // in the CMS marks-vector) immediately, also indicating the
2473     // identify of an object (A) that references the unmarked object (B) --
2474     // presumably, a mutation to A failed to be picked up by preclean/remark?
2475     verify_after_remark_work_2();
2476   } else {
2477     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2478             CMSRemarkVerifyVariant);
2479   }
2480   if (!silent) gclog_or_tty->print(" done] ");
2481   return true;
2482 }
2483 
2484 void CMSCollector::verify_after_remark_work_1() {
2485   ResourceMark rm;
2486   HandleMark  hm;
2487   GenCollectedHeap* gch = GenCollectedHeap::heap();
2488 
2489   // Get a clear set of claim bits for the roots processing to work with.
2490   ClassLoaderDataGraph::clear_claimed_marks();
2491 
2492   // Mark from roots one level into CMS
2493   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2494   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2495 
2496   gch->gen_process_roots(_cmsGen->level(),
2497                          true,   // younger gens are roots
2498                          true,   // activate StrongRootsScope
2499                          SharedHeap::ScanningOption(roots_scanning_options()),
2500                          should_unload_classes(),
2501                          &notOlder,
2502                          NULL,
2503                          NULL);  // SSS: Provide correct closure
2504 
2505   // Now mark from the roots
2506   MarkFromRootsClosure markFromRootsClosure(this, _span,
2507     verification_mark_bm(), verification_mark_stack(),
2508     false /* don't yield */, true /* verifying */);
2509   assert(_restart_addr == NULL, "Expected pre-condition");
2510   verification_mark_bm()->iterate(&markFromRootsClosure);
2511   while (_restart_addr != NULL) {
2512     // Deal with stack overflow: by restarting at the indicated
2513     // address.
2514     HeapWord* ra = _restart_addr;
2515     markFromRootsClosure.reset(ra);
2516     _restart_addr = NULL;
2517     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2518   }
2519   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2520   verify_work_stacks_empty();
2521 
2522   // Marking completed -- now verify that each bit marked in
2523   // verification_mark_bm() is also marked in markBitMap(); flag all
2524   // errors by printing corresponding objects.
2525   VerifyMarkedClosure vcl(markBitMap());
2526   verification_mark_bm()->iterate(&vcl);
2527   if (vcl.failed()) {
2528     gclog_or_tty->print("Verification failed");
2529     Universe::heap()->print_on(gclog_or_tty);
2530     fatal("CMS: failed marking verification after remark");
2531   }
2532 }
2533 
2534 class VerifyKlassOopsKlassClosure : public KlassClosure {
2535   class VerifyKlassOopsClosure : public OopClosure {
2536     CMSBitMap* _bitmap;
2537    public:
2538     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2539     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2540     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2541   } _oop_closure;
2542  public:
2543   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2544   void do_klass(Klass* k) {
2545     k->oops_do(&_oop_closure);
2546   }
2547 };
2548 
2549 void CMSCollector::verify_after_remark_work_2() {
2550   ResourceMark rm;
2551   HandleMark  hm;
2552   GenCollectedHeap* gch = GenCollectedHeap::heap();
2553 
2554   // Get a clear set of claim bits for the roots processing to work with.
2555   ClassLoaderDataGraph::clear_claimed_marks();
2556 
2557   // Mark from roots one level into CMS
2558   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2559                                      markBitMap());
2560   CLDToOopClosure cld_closure(&notOlder, true);
2561 
2562   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2563 
2564   gch->gen_process_roots(_cmsGen->level(),
2565                          true,   // younger gens are roots
2566                          true,   // activate StrongRootsScope
2567                          SharedHeap::ScanningOption(roots_scanning_options()),
2568                          should_unload_classes(),
2569                          &notOlder,
2570                          NULL,
2571                          &cld_closure);
2572 
2573   // Now mark from the roots
2574   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2575     verification_mark_bm(), markBitMap(), verification_mark_stack());
2576   assert(_restart_addr == NULL, "Expected pre-condition");
2577   verification_mark_bm()->iterate(&markFromRootsClosure);
2578   while (_restart_addr != NULL) {
2579     // Deal with stack overflow: by restarting at the indicated
2580     // address.
2581     HeapWord* ra = _restart_addr;
2582     markFromRootsClosure.reset(ra);
2583     _restart_addr = NULL;
2584     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2585   }
2586   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2587   verify_work_stacks_empty();
2588 
2589   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2590   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2591 
2592   // Marking completed -- now verify that each bit marked in
2593   // verification_mark_bm() is also marked in markBitMap(); flag all
2594   // errors by printing corresponding objects.
2595   VerifyMarkedClosure vcl(markBitMap());
2596   verification_mark_bm()->iterate(&vcl);
2597   assert(!vcl.failed(), "Else verification above should not have succeeded");
2598 }
2599 
2600 void ConcurrentMarkSweepGeneration::save_marks() {
2601   // delegate to CMS space
2602   cmsSpace()->save_marks();
2603   for (uint i = 0; i < ParallelGCThreads; i++) {
2604     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2605   }
2606 }
2607 
2608 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2609   return cmsSpace()->no_allocs_since_save_marks();
2610 }
2611 
2612 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2613                                                                 \
2614 void ConcurrentMarkSweepGeneration::                            \
2615 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2616   cl->set_generation(this);                                     \
2617   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2618   cl->reset_generation();                                       \
2619   save_marks();                                                 \
2620 }
2621 
2622 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2623 
2624 void
2625 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2626   if (freelistLock()->owned_by_self()) {
2627     Generation::oop_iterate(cl);
2628   } else {
2629     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2630     Generation::oop_iterate(cl);
2631   }
2632 }
2633 
2634 void
2635 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2636   if (freelistLock()->owned_by_self()) {
2637     Generation::object_iterate(cl);
2638   } else {
2639     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2640     Generation::object_iterate(cl);
2641   }
2642 }
2643 
2644 void
2645 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2646   if (freelistLock()->owned_by_self()) {
2647     Generation::safe_object_iterate(cl);
2648   } else {
2649     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2650     Generation::safe_object_iterate(cl);
2651   }
2652 }
2653 
2654 void
2655 ConcurrentMarkSweepGeneration::post_compact() {
2656 }
2657 
2658 void
2659 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2660   // Fix the linear allocation blocks to look like free blocks.
2661 
2662   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2663   // are not called when the heap is verified during universe initialization and
2664   // at vm shutdown.
2665   if (freelistLock()->owned_by_self()) {
2666     cmsSpace()->prepare_for_verify();
2667   } else {
2668     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2669     cmsSpace()->prepare_for_verify();
2670   }
2671 }
2672 
2673 void
2674 ConcurrentMarkSweepGeneration::verify() {
2675   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2676   // are not called when the heap is verified during universe initialization and
2677   // at vm shutdown.
2678   if (freelistLock()->owned_by_self()) {
2679     cmsSpace()->verify();
2680   } else {
2681     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2682     cmsSpace()->verify();
2683   }
2684 }
2685 
2686 void CMSCollector::verify() {
2687   _cmsGen->verify();
2688 }
2689 
2690 #ifndef PRODUCT
2691 bool CMSCollector::overflow_list_is_empty() const {
2692   assert(_num_par_pushes >= 0, "Inconsistency");
2693   if (_overflow_list == NULL) {
2694     assert(_num_par_pushes == 0, "Inconsistency");
2695   }
2696   return _overflow_list == NULL;
2697 }
2698 
2699 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2700 // merely consolidate assertion checks that appear to occur together frequently.
2701 void CMSCollector::verify_work_stacks_empty() const {
2702   assert(_markStack.isEmpty(), "Marking stack should be empty");
2703   assert(overflow_list_is_empty(), "Overflow list should be empty");
2704 }
2705 
2706 void CMSCollector::verify_overflow_empty() const {
2707   assert(overflow_list_is_empty(), "Overflow list should be empty");
2708   assert(no_preserved_marks(), "No preserved marks");
2709 }
2710 #endif // PRODUCT
2711 
2712 // Decide if we want to enable class unloading as part of the
2713 // ensuing concurrent GC cycle. We will collect and
2714 // unload classes if it's the case that:
2715 // (1) an explicit gc request has been made and the flag
2716 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2717 // (2) (a) class unloading is enabled at the command line, and
2718 //     (b) old gen is getting really full
2719 // NOTE: Provided there is no change in the state of the heap between
2720 // calls to this method, it should have idempotent results. Moreover,
2721 // its results should be monotonically increasing (i.e. going from 0 to 1,
2722 // but not 1 to 0) between successive calls between which the heap was
2723 // not collected. For the implementation below, it must thus rely on
2724 // the property that concurrent_cycles_since_last_unload()
2725 // will not decrease unless a collection cycle happened and that
2726 // _cmsGen->is_too_full() are
2727 // themselves also monotonic in that sense. See check_monotonicity()
2728 // below.
2729 void CMSCollector::update_should_unload_classes() {
2730   _should_unload_classes = false;
2731   // Condition 1 above
2732   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2733     _should_unload_classes = true;
2734   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2735     // Disjuncts 2.b.(i,ii,iii) above
2736     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2737                               CMSClassUnloadingMaxInterval)
2738                            || _cmsGen->is_too_full();
2739   }
2740 }
2741 
2742 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2743   bool res = should_concurrent_collect();
2744   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2745   return res;
2746 }
2747 
2748 void CMSCollector::setup_cms_unloading_and_verification_state() {
2749   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2750                              || VerifyBeforeExit;
2751   const  int  rso           =   SharedHeap::SO_AllCodeCache;
2752 
2753   // We set the proper root for this CMS cycle here.
2754   if (should_unload_classes()) {   // Should unload classes this cycle
2755     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2756     set_verifying(should_verify);    // Set verification state for this cycle
2757     return;                            // Nothing else needs to be done at this time
2758   }
2759 
2760   // Not unloading classes this cycle
2761   assert(!should_unload_classes(), "Inconsistency!");
2762 
2763   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2764     // Include symbols, strings and code cache elements to prevent their resurrection.
2765     add_root_scanning_option(rso);
2766     set_verifying(true);
2767   } else if (verifying() && !should_verify) {
2768     // We were verifying, but some verification flags got disabled.
2769     set_verifying(false);
2770     // Exclude symbols, strings and code cache elements from root scanning to
2771     // reduce IM and RM pauses.
2772     remove_root_scanning_option(rso);
2773   }
2774 }
2775 
2776 
2777 #ifndef PRODUCT
2778 HeapWord* CMSCollector::block_start(const void* p) const {
2779   const HeapWord* addr = (HeapWord*)p;
2780   if (_span.contains(p)) {
2781     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2782       return _cmsGen->cmsSpace()->block_start(p);
2783     }
2784   }
2785   return NULL;
2786 }
2787 #endif
2788 
2789 HeapWord*
2790 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2791                                                    bool   tlab,
2792                                                    bool   parallel) {
2793   CMSSynchronousYieldRequest yr;
2794   assert(!tlab, "Can't deal with TLAB allocation");
2795   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2796   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2797   if (GCExpandToAllocateDelayMillis > 0) {
2798     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2799   }
2800   return have_lock_and_allocate(word_size, tlab);
2801 }
2802 
2803 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2804     size_t bytes,
2805     size_t expand_bytes,
2806     CMSExpansionCause::Cause cause)
2807 {
2808 
2809   bool success = expand(bytes, expand_bytes);
2810 
2811   // remember why we expanded; this information is used
2812   // by shouldConcurrentCollect() when making decisions on whether to start
2813   // a new CMS cycle.
2814   if (success) {
2815     set_expansion_cause(cause);
2816     if (PrintGCDetails && Verbose) {
2817       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2818         CMSExpansionCause::to_string(cause));
2819     }
2820   }
2821 }
2822 
2823 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2824   HeapWord* res = NULL;
2825   MutexLocker x(ParGCRareEvent_lock);
2826   while (true) {
2827     // Expansion by some other thread might make alloc OK now:
2828     res = ps->lab.alloc(word_sz);
2829     if (res != NULL) return res;
2830     // If there's not enough expansion space available, give up.
2831     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2832       return NULL;
2833     }
2834     // Otherwise, we try expansion.
2835     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2836     // Now go around the loop and try alloc again;
2837     // A competing par_promote might beat us to the expansion space,
2838     // so we may go around the loop again if promotion fails again.
2839     if (GCExpandToAllocateDelayMillis > 0) {
2840       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2841     }
2842   }
2843 }
2844 
2845 
2846 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2847   PromotionInfo* promo) {
2848   MutexLocker x(ParGCRareEvent_lock);
2849   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2850   while (true) {
2851     // Expansion by some other thread might make alloc OK now:
2852     if (promo->ensure_spooling_space()) {
2853       assert(promo->has_spooling_space(),
2854              "Post-condition of successful ensure_spooling_space()");
2855       return true;
2856     }
2857     // If there's not enough expansion space available, give up.
2858     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2859       return false;
2860     }
2861     // Otherwise, we try expansion.
2862     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2863     // Now go around the loop and try alloc again;
2864     // A competing allocation might beat us to the expansion space,
2865     // so we may go around the loop again if allocation fails again.
2866     if (GCExpandToAllocateDelayMillis > 0) {
2867       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2868     }
2869   }
2870 }
2871 
2872 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2873   // Only shrink if a compaction was done so that all the free space
2874   // in the generation is in a contiguous block at the end.
2875   if (did_compact()) {
2876     CardGeneration::shrink(bytes);
2877   }
2878 }
2879 
2880 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2881   assert_locked_or_safepoint(Heap_lock);
2882 }
2883 
2884 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2885   assert_locked_or_safepoint(Heap_lock);
2886   assert_lock_strong(freelistLock());
2887   if (PrintGCDetails && Verbose) {
2888     warning("Shrinking of CMS not yet implemented");
2889   }
2890   return;
2891 }
2892 
2893 
2894 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2895 // phases.
2896 class CMSPhaseAccounting: public StackObj {
2897  public:
2898   CMSPhaseAccounting(CMSCollector *collector,
2899                      const char *phase,
2900                      const GCId gc_id,
2901                      bool print_cr = true);
2902   ~CMSPhaseAccounting();
2903 
2904  private:
2905   CMSCollector *_collector;
2906   const char *_phase;
2907   elapsedTimer _wallclock;
2908   bool _print_cr;
2909   const GCId _gc_id;
2910 
2911  public:
2912   // Not MT-safe; so do not pass around these StackObj's
2913   // where they may be accessed by other threads.
2914   jlong wallclock_millis() {
2915     assert(_wallclock.is_active(), "Wall clock should not stop");
2916     _wallclock.stop();  // to record time
2917     jlong ret = _wallclock.milliseconds();
2918     _wallclock.start(); // restart
2919     return ret;
2920   }
2921 };
2922 
2923 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2924                                        const char *phase,
2925                                        const GCId gc_id,
2926                                        bool print_cr) :
2927   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2928 
2929   if (PrintCMSStatistics != 0) {
2930     _collector->resetYields();
2931   }
2932   if (PrintGCDetails) {
2933     gclog_or_tty->gclog_stamp(_gc_id);
2934     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2935       _collector->cmsGen()->short_name(), _phase);
2936   }
2937   _collector->resetTimer();
2938   _wallclock.start();
2939   _collector->startTimer();
2940 }
2941 
2942 CMSPhaseAccounting::~CMSPhaseAccounting() {
2943   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2944   _collector->stopTimer();
2945   _wallclock.stop();
2946   if (PrintGCDetails) {
2947     gclog_or_tty->gclog_stamp(_gc_id);
2948     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2949                  _collector->cmsGen()->short_name(),
2950                  _phase, _collector->timerValue(), _wallclock.seconds());
2951     if (_print_cr) {
2952       gclog_or_tty->cr();
2953     }
2954     if (PrintCMSStatistics != 0) {
2955       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2956                     _collector->yields());
2957     }
2958   }
2959 }
2960 
2961 // CMS work
2962 
2963 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2964 class CMSParMarkTask : public AbstractGangTask {
2965  protected:
2966   CMSCollector*     _collector;
2967   int               _n_workers;
2968   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
2969       AbstractGangTask(name),
2970       _collector(collector),
2971       _n_workers(n_workers) {}
2972   // Work method in support of parallel rescan ... of young gen spaces
2973   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2974                              ContiguousSpace* space,
2975                              HeapWord** chunk_array, size_t chunk_top);
2976   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2977 };
2978 
2979 // Parallel initial mark task
2980 class CMSParInitialMarkTask: public CMSParMarkTask {
2981  public:
2982   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
2983       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
2984                      collector, n_workers) {}
2985   void work(uint worker_id);
2986 };
2987 
2988 // Checkpoint the roots into this generation from outside
2989 // this generation. [Note this initial checkpoint need only
2990 // be approximate -- we'll do a catch up phase subsequently.]
2991 void CMSCollector::checkpointRootsInitial() {
2992   assert(_collectorState == InitialMarking, "Wrong collector state");
2993   check_correct_thread_executing();
2994   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2995 
2996   save_heap_summary();
2997   report_heap_summary(GCWhen::BeforeGC);
2998 
2999   ReferenceProcessor* rp = ref_processor();
3000   assert(_restart_addr == NULL, "Control point invariant");
3001   {
3002     // acquire locks for subsequent manipulations
3003     MutexLockerEx x(bitMapLock(),
3004                     Mutex::_no_safepoint_check_flag);
3005     checkpointRootsInitialWork();
3006     // enable ("weak") refs discovery
3007     rp->enable_discovery();
3008     _collectorState = Marking;
3009   }
3010 }
3011 
3012 void CMSCollector::checkpointRootsInitialWork() {
3013   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3014   assert(_collectorState == InitialMarking, "just checking");
3015 
3016   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3017   // precede our marking with a collection of all
3018   // younger generations to keep floating garbage to a minimum.
3019   // XXX: we won't do this for now -- it's an optimization to be done later.
3020 
3021   // already have locks
3022   assert_lock_strong(bitMapLock());
3023   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3024 
3025   // Setup the verification and class unloading state for this
3026   // CMS collection cycle.
3027   setup_cms_unloading_and_verification_state();
3028 
3029   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3030     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
3031 
3032   // Reset all the PLAB chunk arrays if necessary.
3033   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3034     reset_survivor_plab_arrays();
3035   }
3036 
3037   ResourceMark rm;
3038   HandleMark  hm;
3039 
3040   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3041   GenCollectedHeap* gch = GenCollectedHeap::heap();
3042 
3043   verify_work_stacks_empty();
3044   verify_overflow_empty();
3045 
3046   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3047   // Update the saved marks which may affect the root scans.
3048   gch->save_marks();
3049 
3050   // weak reference processing has not started yet.
3051   ref_processor()->set_enqueuing_is_done(false);
3052 
3053   // Need to remember all newly created CLDs,
3054   // so that we can guarantee that the remark finds them.
3055   ClassLoaderDataGraph::remember_new_clds(true);
3056 
3057   // Whenever a CLD is found, it will be claimed before proceeding to mark
3058   // the klasses. The claimed marks need to be cleared before marking starts.
3059   ClassLoaderDataGraph::clear_claimed_marks();
3060 
3061   if (CMSPrintEdenSurvivorChunks) {
3062     print_eden_and_survivor_chunk_arrays();
3063   }
3064 
3065   {
3066     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3067     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3068       // The parallel version.
3069       FlexibleWorkGang* workers = gch->workers();
3070       assert(workers != NULL, "Need parallel worker threads.");
3071       int n_workers = workers->active_workers();
3072       CMSParInitialMarkTask tsk(this, n_workers);
3073       gch->set_par_threads(n_workers);
3074       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3075       if (n_workers > 1) {
3076         GenCollectedHeap::StrongRootsScope srs(gch);
3077         workers->run_task(&tsk);
3078       } else {
3079         GenCollectedHeap::StrongRootsScope srs(gch);
3080         tsk.work(0);
3081       }
3082       gch->set_par_threads(0);
3083     } else {
3084       // The serial version.
3085       CLDToOopClosure cld_closure(&notOlder, true);
3086       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3087       gch->gen_process_roots(_cmsGen->level(),
3088                              true,   // younger gens are roots
3089                              true,   // activate StrongRootsScope
3090                              SharedHeap::ScanningOption(roots_scanning_options()),
3091                              should_unload_classes(),
3092                              &notOlder,
3093                              NULL,
3094                              &cld_closure);
3095     }
3096   }
3097 
3098   // Clear mod-union table; it will be dirtied in the prologue of
3099   // CMS generation per each younger generation collection.
3100 
3101   assert(_modUnionTable.isAllClear(),
3102        "Was cleared in most recent final checkpoint phase"
3103        " or no bits are set in the gc_prologue before the start of the next "
3104        "subsequent marking phase.");
3105 
3106   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3107 
3108   // Save the end of the used_region of the constituent generations
3109   // to be used to limit the extent of sweep in each generation.
3110   save_sweep_limits();
3111   verify_overflow_empty();
3112 }
3113 
3114 bool CMSCollector::markFromRoots() {
3115   // we might be tempted to assert that:
3116   // assert(!SafepointSynchronize::is_at_safepoint(),
3117   //        "inconsistent argument?");
3118   // However that wouldn't be right, because it's possible that
3119   // a safepoint is indeed in progress as a younger generation
3120   // stop-the-world GC happens even as we mark in this generation.
3121   assert(_collectorState == Marking, "inconsistent state?");
3122   check_correct_thread_executing();
3123   verify_overflow_empty();
3124 
3125   // Weak ref discovery note: We may be discovering weak
3126   // refs in this generation concurrent (but interleaved) with
3127   // weak ref discovery by a younger generation collector.
3128 
3129   CMSTokenSyncWithLocks ts(true, bitMapLock());
3130   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3131   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3132   bool res = markFromRootsWork();
3133   if (res) {
3134     _collectorState = Precleaning;
3135   } else { // We failed and a foreground collection wants to take over
3136     assert(_foregroundGCIsActive, "internal state inconsistency");
3137     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3138     if (PrintGCDetails) {
3139       gclog_or_tty->print_cr("bailing out to foreground collection");
3140     }
3141   }
3142   verify_overflow_empty();
3143   return res;
3144 }
3145 
3146 bool CMSCollector::markFromRootsWork() {
3147   // iterate over marked bits in bit map, doing a full scan and mark
3148   // from these roots using the following algorithm:
3149   // . if oop is to the right of the current scan pointer,
3150   //   mark corresponding bit (we'll process it later)
3151   // . else (oop is to left of current scan pointer)
3152   //   push oop on marking stack
3153   // . drain the marking stack
3154 
3155   // Note that when we do a marking step we need to hold the
3156   // bit map lock -- recall that direct allocation (by mutators)
3157   // and promotion (by younger generation collectors) is also
3158   // marking the bit map. [the so-called allocate live policy.]
3159   // Because the implementation of bit map marking is not
3160   // robust wrt simultaneous marking of bits in the same word,
3161   // we need to make sure that there is no such interference
3162   // between concurrent such updates.
3163 
3164   // already have locks
3165   assert_lock_strong(bitMapLock());
3166 
3167   verify_work_stacks_empty();
3168   verify_overflow_empty();
3169   bool result = false;
3170   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3171     result = do_marking_mt();
3172   } else {
3173     result = do_marking_st();
3174   }
3175   return result;
3176 }
3177 
3178 // Forward decl
3179 class CMSConcMarkingTask;
3180 
3181 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3182   CMSCollector*       _collector;
3183   CMSConcMarkingTask* _task;
3184  public:
3185   virtual void yield();
3186 
3187   // "n_threads" is the number of threads to be terminated.
3188   // "queue_set" is a set of work queues of other threads.
3189   // "collector" is the CMS collector associated with this task terminator.
3190   // "yield" indicates whether we need the gang as a whole to yield.
3191   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3192     ParallelTaskTerminator(n_threads, queue_set),
3193     _collector(collector) { }
3194 
3195   void set_task(CMSConcMarkingTask* task) {
3196     _task = task;
3197   }
3198 };
3199 
3200 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3201   CMSConcMarkingTask* _task;
3202  public:
3203   bool should_exit_termination();
3204   void set_task(CMSConcMarkingTask* task) {
3205     _task = task;
3206   }
3207 };
3208 
3209 // MT Concurrent Marking Task
3210 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3211   CMSCollector* _collector;
3212   int           _n_workers;                  // requested/desired # workers
3213   bool          _result;
3214   CompactibleFreeListSpace*  _cms_space;
3215   char          _pad_front[64];   // padding to ...
3216   HeapWord*     _global_finger;   // ... avoid sharing cache line
3217   char          _pad_back[64];
3218   HeapWord*     _restart_addr;
3219 
3220   //  Exposed here for yielding support
3221   Mutex* const _bit_map_lock;
3222 
3223   // The per thread work queues, available here for stealing
3224   OopTaskQueueSet*  _task_queues;
3225 
3226   // Termination (and yielding) support
3227   CMSConcMarkingTerminator _term;
3228   CMSConcMarkingTerminatorTerminator _term_term;
3229 
3230  public:
3231   CMSConcMarkingTask(CMSCollector* collector,
3232                  CompactibleFreeListSpace* cms_space,
3233                  YieldingFlexibleWorkGang* workers,
3234                  OopTaskQueueSet* task_queues):
3235     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3236     _collector(collector),
3237     _cms_space(cms_space),
3238     _n_workers(0), _result(true),
3239     _task_queues(task_queues),
3240     _term(_n_workers, task_queues, _collector),
3241     _bit_map_lock(collector->bitMapLock())
3242   {
3243     _requested_size = _n_workers;
3244     _term.set_task(this);
3245     _term_term.set_task(this);
3246     _restart_addr = _global_finger = _cms_space->bottom();
3247   }
3248 
3249 
3250   OopTaskQueueSet* task_queues()  { return _task_queues; }
3251 
3252   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3253 
3254   HeapWord** global_finger_addr() { return &_global_finger; }
3255 
3256   CMSConcMarkingTerminator* terminator() { return &_term; }
3257 
3258   virtual void set_for_termination(int active_workers) {
3259     terminator()->reset_for_reuse(active_workers);
3260   }
3261 
3262   void work(uint worker_id);
3263   bool should_yield() {
3264     return    ConcurrentMarkSweepThread::should_yield()
3265            && !_collector->foregroundGCIsActive();
3266   }
3267 
3268   virtual void coordinator_yield();  // stuff done by coordinator
3269   bool result() { return _result; }
3270 
3271   void reset(HeapWord* ra) {
3272     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3273     _restart_addr = _global_finger = ra;
3274     _term.reset_for_reuse();
3275   }
3276 
3277   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3278                                            OopTaskQueue* work_q);
3279 
3280  private:
3281   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3282   void do_work_steal(int i);
3283   void bump_global_finger(HeapWord* f);
3284 };
3285 
3286 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3287   assert(_task != NULL, "Error");
3288   return _task->yielding();
3289   // Note that we do not need the disjunct || _task->should_yield() above
3290   // because we want terminating threads to yield only if the task
3291   // is already in the midst of yielding, which happens only after at least one
3292   // thread has yielded.
3293 }
3294 
3295 void CMSConcMarkingTerminator::yield() {
3296   if (_task->should_yield()) {
3297     _task->yield();
3298   } else {
3299     ParallelTaskTerminator::yield();
3300   }
3301 }
3302 
3303 ////////////////////////////////////////////////////////////////
3304 // Concurrent Marking Algorithm Sketch
3305 ////////////////////////////////////////////////////////////////
3306 // Until all tasks exhausted (both spaces):
3307 // -- claim next available chunk
3308 // -- bump global finger via CAS
3309 // -- find first object that starts in this chunk
3310 //    and start scanning bitmap from that position
3311 // -- scan marked objects for oops
3312 // -- CAS-mark target, and if successful:
3313 //    . if target oop is above global finger (volatile read)
3314 //      nothing to do
3315 //    . if target oop is in chunk and above local finger
3316 //        then nothing to do
3317 //    . else push on work-queue
3318 // -- Deal with possible overflow issues:
3319 //    . local work-queue overflow causes stuff to be pushed on
3320 //      global (common) overflow queue
3321 //    . always first empty local work queue
3322 //    . then get a batch of oops from global work queue if any
3323 //    . then do work stealing
3324 // -- When all tasks claimed (both spaces)
3325 //    and local work queue empty,
3326 //    then in a loop do:
3327 //    . check global overflow stack; steal a batch of oops and trace
3328 //    . try to steal from other threads oif GOS is empty
3329 //    . if neither is available, offer termination
3330 // -- Terminate and return result
3331 //
3332 void CMSConcMarkingTask::work(uint worker_id) {
3333   elapsedTimer _timer;
3334   ResourceMark rm;
3335   HandleMark hm;
3336 
3337   DEBUG_ONLY(_collector->verify_overflow_empty();)
3338 
3339   // Before we begin work, our work queue should be empty
3340   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3341   // Scan the bitmap covering _cms_space, tracing through grey objects.
3342   _timer.start();
3343   do_scan_and_mark(worker_id, _cms_space);
3344   _timer.stop();
3345   if (PrintCMSStatistics != 0) {
3346     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3347       worker_id, _timer.seconds());
3348       // XXX: need xxx/xxx type of notation, two timers
3349   }
3350 
3351   // ... do work stealing
3352   _timer.reset();
3353   _timer.start();
3354   do_work_steal(worker_id);
3355   _timer.stop();
3356   if (PrintCMSStatistics != 0) {
3357     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3358       worker_id, _timer.seconds());
3359       // XXX: need xxx/xxx type of notation, two timers
3360   }
3361   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3362   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3363   // Note that under the current task protocol, the
3364   // following assertion is true even of the spaces
3365   // expanded since the completion of the concurrent
3366   // marking. XXX This will likely change under a strict
3367   // ABORT semantics.
3368   // After perm removal the comparison was changed to
3369   // greater than or equal to from strictly greater than.
3370   // Before perm removal the highest address sweep would
3371   // have been at the end of perm gen but now is at the
3372   // end of the tenured gen.
3373   assert(_global_finger >=  _cms_space->end(),
3374          "All tasks have been completed");
3375   DEBUG_ONLY(_collector->verify_overflow_empty();)
3376 }
3377 
3378 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3379   HeapWord* read = _global_finger;
3380   HeapWord* cur  = read;
3381   while (f > read) {
3382     cur = read;
3383     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3384     if (cur == read) {
3385       // our cas succeeded
3386       assert(_global_finger >= f, "protocol consistency");
3387       break;
3388     }
3389   }
3390 }
3391 
3392 // This is really inefficient, and should be redone by
3393 // using (not yet available) block-read and -write interfaces to the
3394 // stack and the work_queue. XXX FIX ME !!!
3395 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3396                                                       OopTaskQueue* work_q) {
3397   // Fast lock-free check
3398   if (ovflw_stk->length() == 0) {
3399     return false;
3400   }
3401   assert(work_q->size() == 0, "Shouldn't steal");
3402   MutexLockerEx ml(ovflw_stk->par_lock(),
3403                    Mutex::_no_safepoint_check_flag);
3404   // Grab up to 1/4 the size of the work queue
3405   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3406                     (size_t)ParGCDesiredObjsFromOverflowList);
3407   num = MIN2(num, ovflw_stk->length());
3408   for (int i = (int) num; i > 0; i--) {
3409     oop cur = ovflw_stk->pop();
3410     assert(cur != NULL, "Counted wrong?");
3411     work_q->push(cur);
3412   }
3413   return num > 0;
3414 }
3415 
3416 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3417   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3418   int n_tasks = pst->n_tasks();
3419   // We allow that there may be no tasks to do here because
3420   // we are restarting after a stack overflow.
3421   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3422   uint nth_task = 0;
3423 
3424   HeapWord* aligned_start = sp->bottom();
3425   if (sp->used_region().contains(_restart_addr)) {
3426     // Align down to a card boundary for the start of 0th task
3427     // for this space.
3428     aligned_start =
3429       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3430                                  CardTableModRefBS::card_size);
3431   }
3432 
3433   size_t chunk_size = sp->marking_task_size();
3434   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3435     // Having claimed the nth task in this space,
3436     // compute the chunk that it corresponds to:
3437     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3438                                aligned_start + (nth_task+1)*chunk_size);
3439     // Try and bump the global finger via a CAS;
3440     // note that we need to do the global finger bump
3441     // _before_ taking the intersection below, because
3442     // the task corresponding to that region will be
3443     // deemed done even if the used_region() expands
3444     // because of allocation -- as it almost certainly will
3445     // during start-up while the threads yield in the
3446     // closure below.
3447     HeapWord* finger = span.end();
3448     bump_global_finger(finger);   // atomically
3449     // There are null tasks here corresponding to chunks
3450     // beyond the "top" address of the space.
3451     span = span.intersection(sp->used_region());
3452     if (!span.is_empty()) {  // Non-null task
3453       HeapWord* prev_obj;
3454       assert(!span.contains(_restart_addr) || nth_task == 0,
3455              "Inconsistency");
3456       if (nth_task == 0) {
3457         // For the 0th task, we'll not need to compute a block_start.
3458         if (span.contains(_restart_addr)) {
3459           // In the case of a restart because of stack overflow,
3460           // we might additionally skip a chunk prefix.
3461           prev_obj = _restart_addr;
3462         } else {
3463           prev_obj = span.start();
3464         }
3465       } else {
3466         // We want to skip the first object because
3467         // the protocol is to scan any object in its entirety
3468         // that _starts_ in this span; a fortiori, any
3469         // object starting in an earlier span is scanned
3470         // as part of an earlier claimed task.
3471         // Below we use the "careful" version of block_start
3472         // so we do not try to navigate uninitialized objects.
3473         prev_obj = sp->block_start_careful(span.start());
3474         // Below we use a variant of block_size that uses the
3475         // Printezis bits to avoid waiting for allocated
3476         // objects to become initialized/parsable.
3477         while (prev_obj < span.start()) {
3478           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3479           if (sz > 0) {
3480             prev_obj += sz;
3481           } else {
3482             // In this case we may end up doing a bit of redundant
3483             // scanning, but that appears unavoidable, short of
3484             // locking the free list locks; see bug 6324141.
3485             break;
3486           }
3487         }
3488       }
3489       if (prev_obj < span.end()) {
3490         MemRegion my_span = MemRegion(prev_obj, span.end());
3491         // Do the marking work within a non-empty span --
3492         // the last argument to the constructor indicates whether the
3493         // iteration should be incremental with periodic yields.
3494         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3495                                     &_collector->_markBitMap,
3496                                     work_queue(i),
3497                                     &_collector->_markStack);
3498         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3499       } // else nothing to do for this task
3500     }   // else nothing to do for this task
3501   }
3502   // We'd be tempted to assert here that since there are no
3503   // more tasks left to claim in this space, the global_finger
3504   // must exceed space->top() and a fortiori space->end(). However,
3505   // that would not quite be correct because the bumping of
3506   // global_finger occurs strictly after the claiming of a task,
3507   // so by the time we reach here the global finger may not yet
3508   // have been bumped up by the thread that claimed the last
3509   // task.
3510   pst->all_tasks_completed();
3511 }
3512 
3513 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3514  private:
3515   CMSCollector* _collector;
3516   CMSConcMarkingTask* _task;
3517   MemRegion     _span;
3518   CMSBitMap*    _bit_map;
3519   CMSMarkStack* _overflow_stack;
3520   OopTaskQueue* _work_queue;
3521  protected:
3522   DO_OOP_WORK_DEFN
3523  public:
3524   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3525                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3526     MetadataAwareOopClosure(collector->ref_processor()),
3527     _collector(collector),
3528     _task(task),
3529     _span(collector->_span),
3530     _work_queue(work_queue),
3531     _bit_map(bit_map),
3532     _overflow_stack(overflow_stack)
3533   { }
3534   virtual void do_oop(oop* p);
3535   virtual void do_oop(narrowOop* p);
3536 
3537   void trim_queue(size_t max);
3538   void handle_stack_overflow(HeapWord* lost);
3539   void do_yield_check() {
3540     if (_task->should_yield()) {
3541       _task->yield();
3542     }
3543   }
3544 };
3545 
3546 // Grey object scanning during work stealing phase --
3547 // the salient assumption here is that any references
3548 // that are in these stolen objects being scanned must
3549 // already have been initialized (else they would not have
3550 // been published), so we do not need to check for
3551 // uninitialized objects before pushing here.
3552 void Par_ConcMarkingClosure::do_oop(oop obj) {
3553   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3554   HeapWord* addr = (HeapWord*)obj;
3555   // Check if oop points into the CMS generation
3556   // and is not marked
3557   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3558     // a white object ...
3559     // If we manage to "claim" the object, by being the
3560     // first thread to mark it, then we push it on our
3561     // marking stack
3562     if (_bit_map->par_mark(addr)) {     // ... now grey
3563       // push on work queue (grey set)
3564       bool simulate_overflow = false;
3565       NOT_PRODUCT(
3566         if (CMSMarkStackOverflowALot &&
3567             _collector->simulate_overflow()) {
3568           // simulate a stack overflow
3569           simulate_overflow = true;
3570         }
3571       )
3572       if (simulate_overflow ||
3573           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3574         // stack overflow
3575         if (PrintCMSStatistics != 0) {
3576           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3577                                  SIZE_FORMAT, _overflow_stack->capacity());
3578         }
3579         // We cannot assert that the overflow stack is full because
3580         // it may have been emptied since.
3581         assert(simulate_overflow ||
3582                _work_queue->size() == _work_queue->max_elems(),
3583               "Else push should have succeeded");
3584         handle_stack_overflow(addr);
3585       }
3586     } // Else, some other thread got there first
3587     do_yield_check();
3588   }
3589 }
3590 
3591 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3592 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3593 
3594 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3595   while (_work_queue->size() > max) {
3596     oop new_oop;
3597     if (_work_queue->pop_local(new_oop)) {
3598       assert(new_oop->is_oop(), "Should be an oop");
3599       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3600       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3601       new_oop->oop_iterate(this);  // do_oop() above
3602       do_yield_check();
3603     }
3604   }
3605 }
3606 
3607 // Upon stack overflow, we discard (part of) the stack,
3608 // remembering the least address amongst those discarded
3609 // in CMSCollector's _restart_address.
3610 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3611   // We need to do this under a mutex to prevent other
3612   // workers from interfering with the work done below.
3613   MutexLockerEx ml(_overflow_stack->par_lock(),
3614                    Mutex::_no_safepoint_check_flag);
3615   // Remember the least grey address discarded
3616   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3617   _collector->lower_restart_addr(ra);
3618   _overflow_stack->reset();  // discard stack contents
3619   _overflow_stack->expand(); // expand the stack if possible
3620 }
3621 
3622 
3623 void CMSConcMarkingTask::do_work_steal(int i) {
3624   OopTaskQueue* work_q = work_queue(i);
3625   oop obj_to_scan;
3626   CMSBitMap* bm = &(_collector->_markBitMap);
3627   CMSMarkStack* ovflw = &(_collector->_markStack);
3628   int* seed = _collector->hash_seed(i);
3629   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3630   while (true) {
3631     cl.trim_queue(0);
3632     assert(work_q->size() == 0, "Should have been emptied above");
3633     if (get_work_from_overflow_stack(ovflw, work_q)) {
3634       // Can't assert below because the work obtained from the
3635       // overflow stack may already have been stolen from us.
3636       // assert(work_q->size() > 0, "Work from overflow stack");
3637       continue;
3638     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3639       assert(obj_to_scan->is_oop(), "Should be an oop");
3640       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3641       obj_to_scan->oop_iterate(&cl);
3642     } else if (terminator()->offer_termination(&_term_term)) {
3643       assert(work_q->size() == 0, "Impossible!");
3644       break;
3645     } else if (yielding() || should_yield()) {
3646       yield();
3647     }
3648   }
3649 }
3650 
3651 // This is run by the CMS (coordinator) thread.
3652 void CMSConcMarkingTask::coordinator_yield() {
3653   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3654          "CMS thread should hold CMS token");
3655   // First give up the locks, then yield, then re-lock
3656   // We should probably use a constructor/destructor idiom to
3657   // do this unlock/lock or modify the MutexUnlocker class to
3658   // serve our purpose. XXX
3659   assert_lock_strong(_bit_map_lock);
3660   _bit_map_lock->unlock();
3661   ConcurrentMarkSweepThread::desynchronize(true);
3662   _collector->stopTimer();
3663   if (PrintCMSStatistics != 0) {
3664     _collector->incrementYields();
3665   }
3666 
3667   // It is possible for whichever thread initiated the yield request
3668   // not to get a chance to wake up and take the bitmap lock between
3669   // this thread releasing it and reacquiring it. So, while the
3670   // should_yield() flag is on, let's sleep for a bit to give the
3671   // other thread a chance to wake up. The limit imposed on the number
3672   // of iterations is defensive, to avoid any unforseen circumstances
3673   // putting us into an infinite loop. Since it's always been this
3674   // (coordinator_yield()) method that was observed to cause the
3675   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3676   // which is by default non-zero. For the other seven methods that
3677   // also perform the yield operation, as are using a different
3678   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3679   // can enable the sleeping for those methods too, if necessary.
3680   // See 6442774.
3681   //
3682   // We really need to reconsider the synchronization between the GC
3683   // thread and the yield-requesting threads in the future and we
3684   // should really use wait/notify, which is the recommended
3685   // way of doing this type of interaction. Additionally, we should
3686   // consolidate the eight methods that do the yield operation and they
3687   // are almost identical into one for better maintainability and
3688   // readability. See 6445193.
3689   //
3690   // Tony 2006.06.29
3691   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3692                    ConcurrentMarkSweepThread::should_yield() &&
3693                    !CMSCollector::foregroundGCIsActive(); ++i) {
3694     os::sleep(Thread::current(), 1, false);
3695   }
3696 
3697   ConcurrentMarkSweepThread::synchronize(true);
3698   _bit_map_lock->lock_without_safepoint_check();
3699   _collector->startTimer();
3700 }
3701 
3702 bool CMSCollector::do_marking_mt() {
3703   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3704   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
3705                                        conc_workers()->total_workers(),
3706                                        conc_workers()->active_workers(),
3707                                        Threads::number_of_non_daemon_threads());
3708   conc_workers()->set_active_workers(num_workers);
3709 
3710   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3711 
3712   CMSConcMarkingTask tsk(this,
3713                          cms_space,
3714                          conc_workers(),
3715                          task_queues());
3716 
3717   // Since the actual number of workers we get may be different
3718   // from the number we requested above, do we need to do anything different
3719   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3720   // class?? XXX
3721   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3722 
3723   // Refs discovery is already non-atomic.
3724   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3725   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3726   conc_workers()->start_task(&tsk);
3727   while (tsk.yielded()) {
3728     tsk.coordinator_yield();
3729     conc_workers()->continue_task(&tsk);
3730   }
3731   // If the task was aborted, _restart_addr will be non-NULL
3732   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3733   while (_restart_addr != NULL) {
3734     // XXX For now we do not make use of ABORTED state and have not
3735     // yet implemented the right abort semantics (even in the original
3736     // single-threaded CMS case). That needs some more investigation
3737     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3738     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3739     // If _restart_addr is non-NULL, a marking stack overflow
3740     // occurred; we need to do a fresh marking iteration from the
3741     // indicated restart address.
3742     if (_foregroundGCIsActive) {
3743       // We may be running into repeated stack overflows, having
3744       // reached the limit of the stack size, while making very
3745       // slow forward progress. It may be best to bail out and
3746       // let the foreground collector do its job.
3747       // Clear _restart_addr, so that foreground GC
3748       // works from scratch. This avoids the headache of
3749       // a "rescan" which would otherwise be needed because
3750       // of the dirty mod union table & card table.
3751       _restart_addr = NULL;
3752       return false;
3753     }
3754     // Adjust the task to restart from _restart_addr
3755     tsk.reset(_restart_addr);
3756     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3757                   _restart_addr);
3758     _restart_addr = NULL;
3759     // Get the workers going again
3760     conc_workers()->start_task(&tsk);
3761     while (tsk.yielded()) {
3762       tsk.coordinator_yield();
3763       conc_workers()->continue_task(&tsk);
3764     }
3765   }
3766   assert(tsk.completed(), "Inconsistency");
3767   assert(tsk.result() == true, "Inconsistency");
3768   return true;
3769 }
3770 
3771 bool CMSCollector::do_marking_st() {
3772   ResourceMark rm;
3773   HandleMark   hm;
3774 
3775   // Temporarily make refs discovery single threaded (non-MT)
3776   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3777   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3778     &_markStack, CMSYield);
3779   // the last argument to iterate indicates whether the iteration
3780   // should be incremental with periodic yields.
3781   _markBitMap.iterate(&markFromRootsClosure);
3782   // If _restart_addr is non-NULL, a marking stack overflow
3783   // occurred; we need to do a fresh iteration from the
3784   // indicated restart address.
3785   while (_restart_addr != NULL) {
3786     if (_foregroundGCIsActive) {
3787       // We may be running into repeated stack overflows, having
3788       // reached the limit of the stack size, while making very
3789       // slow forward progress. It may be best to bail out and
3790       // let the foreground collector do its job.
3791       // Clear _restart_addr, so that foreground GC
3792       // works from scratch. This avoids the headache of
3793       // a "rescan" which would otherwise be needed because
3794       // of the dirty mod union table & card table.
3795       _restart_addr = NULL;
3796       return false;  // indicating failure to complete marking
3797     }
3798     // Deal with stack overflow:
3799     // we restart marking from _restart_addr
3800     HeapWord* ra = _restart_addr;
3801     markFromRootsClosure.reset(ra);
3802     _restart_addr = NULL;
3803     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3804   }
3805   return true;
3806 }
3807 
3808 void CMSCollector::preclean() {
3809   check_correct_thread_executing();
3810   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3811   verify_work_stacks_empty();
3812   verify_overflow_empty();
3813   _abort_preclean = false;
3814   if (CMSPrecleaningEnabled) {
3815     if (!CMSEdenChunksRecordAlways) {
3816       _eden_chunk_index = 0;
3817     }
3818     size_t used = get_eden_used();
3819     size_t capacity = get_eden_capacity();
3820     // Don't start sampling unless we will get sufficiently
3821     // many samples.
3822     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3823                 * CMSScheduleRemarkEdenPenetration)) {
3824       _start_sampling = true;
3825     } else {
3826       _start_sampling = false;
3827     }
3828     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3829     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3830     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3831   }
3832   CMSTokenSync x(true); // is cms thread
3833   if (CMSPrecleaningEnabled) {
3834     sample_eden();
3835     _collectorState = AbortablePreclean;
3836   } else {
3837     _collectorState = FinalMarking;
3838   }
3839   verify_work_stacks_empty();
3840   verify_overflow_empty();
3841 }
3842 
3843 // Try and schedule the remark such that young gen
3844 // occupancy is CMSScheduleRemarkEdenPenetration %.
3845 void CMSCollector::abortable_preclean() {
3846   check_correct_thread_executing();
3847   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3848   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3849 
3850   // If Eden's current occupancy is below this threshold,
3851   // immediately schedule the remark; else preclean
3852   // past the next scavenge in an effort to
3853   // schedule the pause as described above. By choosing
3854   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3855   // we will never do an actual abortable preclean cycle.
3856   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3857     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3858     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3859     // We need more smarts in the abortable preclean
3860     // loop below to deal with cases where allocation
3861     // in young gen is very very slow, and our precleaning
3862     // is running a losing race against a horde of
3863     // mutators intent on flooding us with CMS updates
3864     // (dirty cards).
3865     // One, admittedly dumb, strategy is to give up
3866     // after a certain number of abortable precleaning loops
3867     // or after a certain maximum time. We want to make
3868     // this smarter in the next iteration.
3869     // XXX FIX ME!!! YSR
3870     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3871     while (!(should_abort_preclean() ||
3872              ConcurrentMarkSweepThread::should_terminate())) {
3873       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3874       cumworkdone += workdone;
3875       loops++;
3876       // Voluntarily terminate abortable preclean phase if we have
3877       // been at it for too long.
3878       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3879           loops >= CMSMaxAbortablePrecleanLoops) {
3880         if (PrintGCDetails) {
3881           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3882         }
3883         break;
3884       }
3885       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3886         if (PrintGCDetails) {
3887           gclog_or_tty->print(" CMS: abort preclean due to time ");
3888         }
3889         break;
3890       }
3891       // If we are doing little work each iteration, we should
3892       // take a short break.
3893       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3894         // Sleep for some time, waiting for work to accumulate
3895         stopTimer();
3896         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3897         startTimer();
3898         waited++;
3899       }
3900     }
3901     if (PrintCMSStatistics > 0) {
3902       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3903                           loops, waited, cumworkdone);
3904     }
3905   }
3906   CMSTokenSync x(true); // is cms thread
3907   if (_collectorState != Idling) {
3908     assert(_collectorState == AbortablePreclean,
3909            "Spontaneous state transition?");
3910     _collectorState = FinalMarking;
3911   } // Else, a foreground collection completed this CMS cycle.
3912   return;
3913 }
3914 
3915 // Respond to an Eden sampling opportunity
3916 void CMSCollector::sample_eden() {
3917   // Make sure a young gc cannot sneak in between our
3918   // reading and recording of a sample.
3919   assert(Thread::current()->is_ConcurrentGC_thread(),
3920          "Only the cms thread may collect Eden samples");
3921   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3922          "Should collect samples while holding CMS token");
3923   if (!_start_sampling) {
3924     return;
3925   }
3926   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3927   // is populated by the young generation.
3928   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3929     if (_eden_chunk_index < _eden_chunk_capacity) {
3930       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3931       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3932              "Unexpected state of Eden");
3933       // We'd like to check that what we just sampled is an oop-start address;
3934       // however, we cannot do that here since the object may not yet have been
3935       // initialized. So we'll instead do the check when we _use_ this sample
3936       // later.
3937       if (_eden_chunk_index == 0 ||
3938           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3939                          _eden_chunk_array[_eden_chunk_index-1])
3940            >= CMSSamplingGrain)) {
3941         _eden_chunk_index++;  // commit sample
3942       }
3943     }
3944   }
3945   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3946     size_t used = get_eden_used();
3947     size_t capacity = get_eden_capacity();
3948     assert(used <= capacity, "Unexpected state of Eden");
3949     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3950       _abort_preclean = true;
3951     }
3952   }
3953 }
3954 
3955 
3956 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3957   assert(_collectorState == Precleaning ||
3958          _collectorState == AbortablePreclean, "incorrect state");
3959   ResourceMark rm;
3960   HandleMark   hm;
3961 
3962   // Precleaning is currently not MT but the reference processor
3963   // may be set for MT.  Disable it temporarily here.
3964   ReferenceProcessor* rp = ref_processor();
3965   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3966 
3967   // Do one pass of scrubbing the discovered reference lists
3968   // to remove any reference objects with strongly-reachable
3969   // referents.
3970   if (clean_refs) {
3971     CMSPrecleanRefsYieldClosure yield_cl(this);
3972     assert(rp->span().equals(_span), "Spans should be equal");
3973     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3974                                    &_markStack, true /* preclean */);
3975     CMSDrainMarkingStackClosure complete_trace(this,
3976                                    _span, &_markBitMap, &_markStack,
3977                                    &keep_alive, true /* preclean */);
3978 
3979     // We don't want this step to interfere with a young
3980     // collection because we don't want to take CPU
3981     // or memory bandwidth away from the young GC threads
3982     // (which may be as many as there are CPUs).
3983     // Note that we don't need to protect ourselves from
3984     // interference with mutators because they can't
3985     // manipulate the discovered reference lists nor affect
3986     // the computed reachability of the referents, the
3987     // only properties manipulated by the precleaning
3988     // of these reference lists.
3989     stopTimer();
3990     CMSTokenSyncWithLocks x(true /* is cms thread */,
3991                             bitMapLock());
3992     startTimer();
3993     sample_eden();
3994 
3995     // The following will yield to allow foreground
3996     // collection to proceed promptly. XXX YSR:
3997     // The code in this method may need further
3998     // tweaking for better performance and some restructuring
3999     // for cleaner interfaces.
4000     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4001     rp->preclean_discovered_references(
4002           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4003           gc_timer, _gc_tracer_cm->gc_id());
4004   }
4005 
4006   if (clean_survivor) {  // preclean the active survivor space(s)
4007     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4008                              &_markBitMap, &_modUnionTable,
4009                              &_markStack, true /* precleaning phase */);
4010     stopTimer();
4011     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4012                              bitMapLock());
4013     startTimer();
4014     unsigned int before_count =
4015       GenCollectedHeap::heap()->total_collections();
4016     SurvivorSpacePrecleanClosure
4017       sss_cl(this, _span, &_markBitMap, &_markStack,
4018              &pam_cl, before_count, CMSYield);
4019     _young_gen->from()->object_iterate_careful(&sss_cl);
4020     _young_gen->to()->object_iterate_careful(&sss_cl);
4021   }
4022   MarkRefsIntoAndScanClosure
4023     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4024              &_markStack, this, CMSYield,
4025              true /* precleaning phase */);
4026   // CAUTION: The following closure has persistent state that may need to
4027   // be reset upon a decrease in the sequence of addresses it
4028   // processes.
4029   ScanMarkedObjectsAgainCarefullyClosure
4030     smoac_cl(this, _span,
4031       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4032 
4033   // Preclean dirty cards in ModUnionTable and CardTable using
4034   // appropriate convergence criterion;
4035   // repeat CMSPrecleanIter times unless we find that
4036   // we are losing.
4037   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4038   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4039          "Bad convergence multiplier");
4040   assert(CMSPrecleanThreshold >= 100,
4041          "Unreasonably low CMSPrecleanThreshold");
4042 
4043   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4044   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4045        numIter < CMSPrecleanIter;
4046        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4047     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4048     if (Verbose && PrintGCDetails) {
4049       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
4050     }
4051     // Either there are very few dirty cards, so re-mark
4052     // pause will be small anyway, or our pre-cleaning isn't
4053     // that much faster than the rate at which cards are being
4054     // dirtied, so we might as well stop and re-mark since
4055     // precleaning won't improve our re-mark time by much.
4056     if (curNumCards <= CMSPrecleanThreshold ||
4057         (numIter > 0 &&
4058          (curNumCards * CMSPrecleanDenominator >
4059          lastNumCards * CMSPrecleanNumerator))) {
4060       numIter++;
4061       cumNumCards += curNumCards;
4062       break;
4063     }
4064   }
4065 
4066   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4067 
4068   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4069   cumNumCards += curNumCards;
4070   if (PrintGCDetails && PrintCMSStatistics != 0) {
4071     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4072                   curNumCards, cumNumCards, numIter);
4073   }
4074   return cumNumCards;   // as a measure of useful work done
4075 }
4076 
4077 // PRECLEANING NOTES:
4078 // Precleaning involves:
4079 // . reading the bits of the modUnionTable and clearing the set bits.
4080 // . For the cards corresponding to the set bits, we scan the
4081 //   objects on those cards. This means we need the free_list_lock
4082 //   so that we can safely iterate over the CMS space when scanning
4083 //   for oops.
4084 // . When we scan the objects, we'll be both reading and setting
4085 //   marks in the marking bit map, so we'll need the marking bit map.
4086 // . For protecting _collector_state transitions, we take the CGC_lock.
4087 //   Note that any races in the reading of of card table entries by the
4088 //   CMS thread on the one hand and the clearing of those entries by the
4089 //   VM thread or the setting of those entries by the mutator threads on the
4090 //   other are quite benign. However, for efficiency it makes sense to keep
4091 //   the VM thread from racing with the CMS thread while the latter is
4092 //   dirty card info to the modUnionTable. We therefore also use the
4093 //   CGC_lock to protect the reading of the card table and the mod union
4094 //   table by the CM thread.
4095 // . We run concurrently with mutator updates, so scanning
4096 //   needs to be done carefully  -- we should not try to scan
4097 //   potentially uninitialized objects.
4098 //
4099 // Locking strategy: While holding the CGC_lock, we scan over and
4100 // reset a maximal dirty range of the mod union / card tables, then lock
4101 // the free_list_lock and bitmap lock to do a full marking, then
4102 // release these locks; and repeat the cycle. This allows for a
4103 // certain amount of fairness in the sharing of these locks between
4104 // the CMS collector on the one hand, and the VM thread and the
4105 // mutators on the other.
4106 
4107 // NOTE: preclean_mod_union_table() and preclean_card_table()
4108 // further below are largely identical; if you need to modify
4109 // one of these methods, please check the other method too.
4110 
4111 size_t CMSCollector::preclean_mod_union_table(
4112   ConcurrentMarkSweepGeneration* gen,
4113   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4114   verify_work_stacks_empty();
4115   verify_overflow_empty();
4116 
4117   // strategy: starting with the first card, accumulate contiguous
4118   // ranges of dirty cards; clear these cards, then scan the region
4119   // covered by these cards.
4120 
4121   // Since all of the MUT is committed ahead, we can just use
4122   // that, in case the generations expand while we are precleaning.
4123   // It might also be fine to just use the committed part of the
4124   // generation, but we might potentially miss cards when the
4125   // generation is rapidly expanding while we are in the midst
4126   // of precleaning.
4127   HeapWord* startAddr = gen->reserved().start();
4128   HeapWord* endAddr   = gen->reserved().end();
4129 
4130   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4131 
4132   size_t numDirtyCards, cumNumDirtyCards;
4133   HeapWord *nextAddr, *lastAddr;
4134   for (cumNumDirtyCards = numDirtyCards = 0,
4135        nextAddr = lastAddr = startAddr;
4136        nextAddr < endAddr;
4137        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4138 
4139     ResourceMark rm;
4140     HandleMark   hm;
4141 
4142     MemRegion dirtyRegion;
4143     {
4144       stopTimer();
4145       // Potential yield point
4146       CMSTokenSync ts(true);
4147       startTimer();
4148       sample_eden();
4149       // Get dirty region starting at nextOffset (inclusive),
4150       // simultaneously clearing it.
4151       dirtyRegion =
4152         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4153       assert(dirtyRegion.start() >= nextAddr,
4154              "returned region inconsistent?");
4155     }
4156     // Remember where the next search should begin.
4157     // The returned region (if non-empty) is a right open interval,
4158     // so lastOffset is obtained from the right end of that
4159     // interval.
4160     lastAddr = dirtyRegion.end();
4161     // Should do something more transparent and less hacky XXX
4162     numDirtyCards =
4163       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4164 
4165     // We'll scan the cards in the dirty region (with periodic
4166     // yields for foreground GC as needed).
4167     if (!dirtyRegion.is_empty()) {
4168       assert(numDirtyCards > 0, "consistency check");
4169       HeapWord* stop_point = NULL;
4170       stopTimer();
4171       // Potential yield point
4172       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4173                                bitMapLock());
4174       startTimer();
4175       {
4176         verify_work_stacks_empty();
4177         verify_overflow_empty();
4178         sample_eden();
4179         stop_point =
4180           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4181       }
4182       if (stop_point != NULL) {
4183         // The careful iteration stopped early either because it found an
4184         // uninitialized object, or because we were in the midst of an
4185         // "abortable preclean", which should now be aborted. Redirty
4186         // the bits corresponding to the partially-scanned or unscanned
4187         // cards. We'll either restart at the next block boundary or
4188         // abort the preclean.
4189         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4190                "Should only be AbortablePreclean.");
4191         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4192         if (should_abort_preclean()) {
4193           break; // out of preclean loop
4194         } else {
4195           // Compute the next address at which preclean should pick up;
4196           // might need bitMapLock in order to read P-bits.
4197           lastAddr = next_card_start_after_block(stop_point);
4198         }
4199       }
4200     } else {
4201       assert(lastAddr == endAddr, "consistency check");
4202       assert(numDirtyCards == 0, "consistency check");
4203       break;
4204     }
4205   }
4206   verify_work_stacks_empty();
4207   verify_overflow_empty();
4208   return cumNumDirtyCards;
4209 }
4210 
4211 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4212 // below are largely identical; if you need to modify
4213 // one of these methods, please check the other method too.
4214 
4215 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4216   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4217   // strategy: it's similar to precleamModUnionTable above, in that
4218   // we accumulate contiguous ranges of dirty cards, mark these cards
4219   // precleaned, then scan the region covered by these cards.
4220   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4221   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4222 
4223   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4224 
4225   size_t numDirtyCards, cumNumDirtyCards;
4226   HeapWord *lastAddr, *nextAddr;
4227 
4228   for (cumNumDirtyCards = numDirtyCards = 0,
4229        nextAddr = lastAddr = startAddr;
4230        nextAddr < endAddr;
4231        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4232 
4233     ResourceMark rm;
4234     HandleMark   hm;
4235 
4236     MemRegion dirtyRegion;
4237     {
4238       // See comments in "Precleaning notes" above on why we
4239       // do this locking. XXX Could the locking overheads be
4240       // too high when dirty cards are sparse? [I don't think so.]
4241       stopTimer();
4242       CMSTokenSync x(true); // is cms thread
4243       startTimer();
4244       sample_eden();
4245       // Get and clear dirty region from card table
4246       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4247                                     MemRegion(nextAddr, endAddr),
4248                                     true,
4249                                     CardTableModRefBS::precleaned_card_val());
4250 
4251       assert(dirtyRegion.start() >= nextAddr,
4252              "returned region inconsistent?");
4253     }
4254     lastAddr = dirtyRegion.end();
4255     numDirtyCards =
4256       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4257 
4258     if (!dirtyRegion.is_empty()) {
4259       stopTimer();
4260       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4261       startTimer();
4262       sample_eden();
4263       verify_work_stacks_empty();
4264       verify_overflow_empty();
4265       HeapWord* stop_point =
4266         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4267       if (stop_point != NULL) {
4268         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4269                "Should only be AbortablePreclean.");
4270         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4271         if (should_abort_preclean()) {
4272           break; // out of preclean loop
4273         } else {
4274           // Compute the next address at which preclean should pick up.
4275           lastAddr = next_card_start_after_block(stop_point);
4276         }
4277       }
4278     } else {
4279       break;
4280     }
4281   }
4282   verify_work_stacks_empty();
4283   verify_overflow_empty();
4284   return cumNumDirtyCards;
4285 }
4286 
4287 class PrecleanKlassClosure : public KlassClosure {
4288   KlassToOopClosure _cm_klass_closure;
4289  public:
4290   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4291   void do_klass(Klass* k) {
4292     if (k->has_accumulated_modified_oops()) {
4293       k->clear_accumulated_modified_oops();
4294 
4295       _cm_klass_closure.do_klass(k);
4296     }
4297   }
4298 };
4299 
4300 // The freelist lock is needed to prevent asserts, is it really needed?
4301 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4302 
4303   cl->set_freelistLock(freelistLock);
4304 
4305   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4306 
4307   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4308   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4309   PrecleanKlassClosure preclean_klass_closure(cl);
4310   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4311 
4312   verify_work_stacks_empty();
4313   verify_overflow_empty();
4314 }
4315 
4316 void CMSCollector::checkpointRootsFinal() {
4317   assert(_collectorState == FinalMarking, "incorrect state transition?");
4318   check_correct_thread_executing();
4319   // world is stopped at this checkpoint
4320   assert(SafepointSynchronize::is_at_safepoint(),
4321          "world should be stopped");
4322   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4323 
4324   verify_work_stacks_empty();
4325   verify_overflow_empty();
4326 
4327   if (PrintGCDetails) {
4328     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4329                         _young_gen->used() / K,
4330                         _young_gen->capacity() / K);
4331   }
4332   {
4333     if (CMSScavengeBeforeRemark) {
4334       GenCollectedHeap* gch = GenCollectedHeap::heap();
4335       // Temporarily set flag to false, GCH->do_collection will
4336       // expect it to be false and set to true
4337       FlagSetting fl(gch->_is_gc_active, false);
4338       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4339         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4340       int level = _cmsGen->level() - 1;
4341       if (level >= 0) {
4342         gch->do_collection(true,        // full (i.e. force, see below)
4343                            false,       // !clear_all_soft_refs
4344                            0,           // size
4345                            false,       // is_tlab
4346                            level        // max_level
4347                           );
4348       }
4349     }
4350     FreelistLocker x(this);
4351     MutexLockerEx y(bitMapLock(),
4352                     Mutex::_no_safepoint_check_flag);
4353     checkpointRootsFinalWork();
4354   }
4355   verify_work_stacks_empty();
4356   verify_overflow_empty();
4357 }
4358 
4359 void CMSCollector::checkpointRootsFinalWork() {
4360   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4361 
4362   assert(haveFreelistLocks(), "must have free list locks");
4363   assert_lock_strong(bitMapLock());
4364 
4365   ResourceMark rm;
4366   HandleMark   hm;
4367 
4368   GenCollectedHeap* gch = GenCollectedHeap::heap();
4369 
4370   if (should_unload_classes()) {
4371     CodeCache::gc_prologue();
4372   }
4373   assert(haveFreelistLocks(), "must have free list locks");
4374   assert_lock_strong(bitMapLock());
4375 
4376   // We might assume that we need not fill TLAB's when
4377   // CMSScavengeBeforeRemark is set, because we may have just done
4378   // a scavenge which would have filled all TLAB's -- and besides
4379   // Eden would be empty. This however may not always be the case --
4380   // for instance although we asked for a scavenge, it may not have
4381   // happened because of a JNI critical section. We probably need
4382   // a policy for deciding whether we can in that case wait until
4383   // the critical section releases and then do the remark following
4384   // the scavenge, and skip it here. In the absence of that policy,
4385   // or of an indication of whether the scavenge did indeed occur,
4386   // we cannot rely on TLAB's having been filled and must do
4387   // so here just in case a scavenge did not happen.
4388   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4389   // Update the saved marks which may affect the root scans.
4390   gch->save_marks();
4391 
4392   if (CMSPrintEdenSurvivorChunks) {
4393     print_eden_and_survivor_chunk_arrays();
4394   }
4395 
4396   {
4397     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4398 
4399     // Note on the role of the mod union table:
4400     // Since the marker in "markFromRoots" marks concurrently with
4401     // mutators, it is possible for some reachable objects not to have been
4402     // scanned. For instance, an only reference to an object A was
4403     // placed in object B after the marker scanned B. Unless B is rescanned,
4404     // A would be collected. Such updates to references in marked objects
4405     // are detected via the mod union table which is the set of all cards
4406     // dirtied since the first checkpoint in this GC cycle and prior to
4407     // the most recent young generation GC, minus those cleaned up by the
4408     // concurrent precleaning.
4409     if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4410       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4411       do_remark_parallel();
4412     } else {
4413       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4414                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4415       do_remark_non_parallel();
4416     }
4417   }
4418   verify_work_stacks_empty();
4419   verify_overflow_empty();
4420 
4421   {
4422     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4423     refProcessingWork();
4424   }
4425   verify_work_stacks_empty();
4426   verify_overflow_empty();
4427 
4428   if (should_unload_classes()) {
4429     CodeCache::gc_epilogue();
4430   }
4431   JvmtiExport::gc_epilogue();
4432 
4433   // If we encountered any (marking stack / work queue) overflow
4434   // events during the current CMS cycle, take appropriate
4435   // remedial measures, where possible, so as to try and avoid
4436   // recurrence of that condition.
4437   assert(_markStack.isEmpty(), "No grey objects");
4438   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4439                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4440   if (ser_ovflw > 0) {
4441     if (PrintCMSStatistics != 0) {
4442       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4443         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4444         ", kac_preclean="SIZE_FORMAT")",
4445         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4446         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4447     }
4448     _markStack.expand();
4449     _ser_pmc_remark_ovflw = 0;
4450     _ser_pmc_preclean_ovflw = 0;
4451     _ser_kac_preclean_ovflw = 0;
4452     _ser_kac_ovflw = 0;
4453   }
4454   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4455     if (PrintCMSStatistics != 0) {
4456       gclog_or_tty->print_cr("Work queue overflow (benign) "
4457         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4458         _par_pmc_remark_ovflw, _par_kac_ovflw);
4459     }
4460     _par_pmc_remark_ovflw = 0;
4461     _par_kac_ovflw = 0;
4462   }
4463   if (PrintCMSStatistics != 0) {
4464      if (_markStack._hit_limit > 0) {
4465        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4466                               _markStack._hit_limit);
4467      }
4468      if (_markStack._failed_double > 0) {
4469        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4470                               " current capacity "SIZE_FORMAT,
4471                               _markStack._failed_double,
4472                               _markStack.capacity());
4473      }
4474   }
4475   _markStack._hit_limit = 0;
4476   _markStack._failed_double = 0;
4477 
4478   if ((VerifyAfterGC || VerifyDuringGC) &&
4479       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4480     verify_after_remark();
4481   }
4482 
4483   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4484 
4485   // Change under the freelistLocks.
4486   _collectorState = Sweeping;
4487   // Call isAllClear() under bitMapLock
4488   assert(_modUnionTable.isAllClear(),
4489       "Should be clear by end of the final marking");
4490   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4491       "Should be clear by end of the final marking");
4492 }
4493 
4494 void CMSParInitialMarkTask::work(uint worker_id) {
4495   elapsedTimer _timer;
4496   ResourceMark rm;
4497   HandleMark   hm;
4498 
4499   // ---------- scan from roots --------------
4500   _timer.start();
4501   GenCollectedHeap* gch = GenCollectedHeap::heap();
4502   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4503 
4504   // ---------- young gen roots --------------
4505   {
4506     work_on_young_gen_roots(worker_id, &par_mri_cl);
4507     _timer.stop();
4508     if (PrintCMSStatistics != 0) {
4509       gclog_or_tty->print_cr(
4510         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4511         worker_id, _timer.seconds());
4512     }
4513   }
4514 
4515   // ---------- remaining roots --------------
4516   _timer.reset();
4517   _timer.start();
4518 
4519   CLDToOopClosure cld_closure(&par_mri_cl, true);
4520 
4521   gch->gen_process_roots(_collector->_cmsGen->level(),
4522                          false,     // yg was scanned above
4523                          false,     // this is parallel code
4524                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4525                          _collector->should_unload_classes(),
4526                          &par_mri_cl,
4527                          NULL,
4528                          &cld_closure);
4529   assert(_collector->should_unload_classes()
4530          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
4531          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4532   _timer.stop();
4533   if (PrintCMSStatistics != 0) {
4534     gclog_or_tty->print_cr(
4535       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4536       worker_id, _timer.seconds());
4537   }
4538 }
4539 
4540 // Parallel remark task
4541 class CMSParRemarkTask: public CMSParMarkTask {
4542   CompactibleFreeListSpace* _cms_space;
4543 
4544   // The per-thread work queues, available here for stealing.
4545   OopTaskQueueSet*       _task_queues;
4546   ParallelTaskTerminator _term;
4547 
4548  public:
4549   // A value of 0 passed to n_workers will cause the number of
4550   // workers to be taken from the active workers in the work gang.
4551   CMSParRemarkTask(CMSCollector* collector,
4552                    CompactibleFreeListSpace* cms_space,
4553                    int n_workers, FlexibleWorkGang* workers,
4554                    OopTaskQueueSet* task_queues):
4555     CMSParMarkTask("Rescan roots and grey objects in parallel",
4556                    collector, n_workers),
4557     _cms_space(cms_space),
4558     _task_queues(task_queues),
4559     _term(n_workers, task_queues) { }
4560 
4561   OopTaskQueueSet* task_queues() { return _task_queues; }
4562 
4563   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4564 
4565   ParallelTaskTerminator* terminator() { return &_term; }
4566   int n_workers() { return _n_workers; }
4567 
4568   void work(uint worker_id);
4569 
4570  private:
4571   // ... of  dirty cards in old space
4572   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4573                                   Par_MarkRefsIntoAndScanClosure* cl);
4574 
4575   // ... work stealing for the above
4576   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4577 };
4578 
4579 class RemarkKlassClosure : public KlassClosure {
4580   KlassToOopClosure _cm_klass_closure;
4581  public:
4582   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4583   void do_klass(Klass* k) {
4584     // Check if we have modified any oops in the Klass during the concurrent marking.
4585     if (k->has_accumulated_modified_oops()) {
4586       k->clear_accumulated_modified_oops();
4587 
4588       // We could have transfered the current modified marks to the accumulated marks,
4589       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4590     } else if (k->has_modified_oops()) {
4591       // Don't clear anything, this info is needed by the next young collection.
4592     } else {
4593       // No modified oops in the Klass.
4594       return;
4595     }
4596 
4597     // The klass has modified fields, need to scan the klass.
4598     _cm_klass_closure.do_klass(k);
4599   }
4600 };
4601 
4602 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4603   ParNewGeneration* young_gen = _collector->_young_gen;
4604   ContiguousSpace* eden_space = young_gen->eden();
4605   ContiguousSpace* from_space = young_gen->from();
4606   ContiguousSpace* to_space   = young_gen->to();
4607 
4608   HeapWord** eca = _collector->_eden_chunk_array;
4609   size_t     ect = _collector->_eden_chunk_index;
4610   HeapWord** sca = _collector->_survivor_chunk_array;
4611   size_t     sct = _collector->_survivor_chunk_index;
4612 
4613   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4614   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4615 
4616   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4617   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4618   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4619 }
4620 
4621 // work_queue(i) is passed to the closure
4622 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4623 // also is passed to do_dirty_card_rescan_tasks() and to
4624 // do_work_steal() to select the i-th task_queue.
4625 
4626 void CMSParRemarkTask::work(uint worker_id) {
4627   elapsedTimer _timer;
4628   ResourceMark rm;
4629   HandleMark   hm;
4630 
4631   // ---------- rescan from roots --------------
4632   _timer.start();
4633   GenCollectedHeap* gch = GenCollectedHeap::heap();
4634   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4635     _collector->_span, _collector->ref_processor(),
4636     &(_collector->_markBitMap),
4637     work_queue(worker_id));
4638 
4639   // Rescan young gen roots first since these are likely
4640   // coarsely partitioned and may, on that account, constitute
4641   // the critical path; thus, it's best to start off that
4642   // work first.
4643   // ---------- young gen roots --------------
4644   {
4645     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4646     _timer.stop();
4647     if (PrintCMSStatistics != 0) {
4648       gclog_or_tty->print_cr(
4649         "Finished young gen rescan work in %dth thread: %3.3f sec",
4650         worker_id, _timer.seconds());
4651     }
4652   }
4653 
4654   // ---------- remaining roots --------------
4655   _timer.reset();
4656   _timer.start();
4657   gch->gen_process_roots(_collector->_cmsGen->level(),
4658                          false,     // yg was scanned above
4659                          false,     // this is parallel code
4660                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4661                          _collector->should_unload_classes(),
4662                          &par_mrias_cl,
4663                          NULL,
4664                          NULL);     // The dirty klasses will be handled below
4665 
4666   assert(_collector->should_unload_classes()
4667          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
4668          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4669   _timer.stop();
4670   if (PrintCMSStatistics != 0) {
4671     gclog_or_tty->print_cr(
4672       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4673       worker_id, _timer.seconds());
4674   }
4675 
4676   // ---------- unhandled CLD scanning ----------
4677   if (worker_id == 0) { // Single threaded at the moment.
4678     _timer.reset();
4679     _timer.start();
4680 
4681     // Scan all new class loader data objects and new dependencies that were
4682     // introduced during concurrent marking.
4683     ResourceMark rm;
4684     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4685     for (int i = 0; i < array->length(); i++) {
4686       par_mrias_cl.do_class_loader_data(array->at(i));
4687     }
4688 
4689     // We don't need to keep track of new CLDs anymore.
4690     ClassLoaderDataGraph::remember_new_clds(false);
4691 
4692     _timer.stop();
4693     if (PrintCMSStatistics != 0) {
4694       gclog_or_tty->print_cr(
4695           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4696           worker_id, _timer.seconds());
4697     }
4698   }
4699 
4700   // ---------- dirty klass scanning ----------
4701   if (worker_id == 0) { // Single threaded at the moment.
4702     _timer.reset();
4703     _timer.start();
4704 
4705     // Scan all classes that was dirtied during the concurrent marking phase.
4706     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4707     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4708 
4709     _timer.stop();
4710     if (PrintCMSStatistics != 0) {
4711       gclog_or_tty->print_cr(
4712           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4713           worker_id, _timer.seconds());
4714     }
4715   }
4716 
4717   // We might have added oops to ClassLoaderData::_handles during the
4718   // concurrent marking phase. These oops point to newly allocated objects
4719   // that are guaranteed to be kept alive. Either by the direct allocation
4720   // code, or when the young collector processes the roots. Hence,
4721   // we don't have to revisit the _handles block during the remark phase.
4722 
4723   // ---------- rescan dirty cards ------------
4724   _timer.reset();
4725   _timer.start();
4726 
4727   // Do the rescan tasks for each of the two spaces
4728   // (cms_space) in turn.
4729   // "worker_id" is passed to select the task_queue for "worker_id"
4730   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4731   _timer.stop();
4732   if (PrintCMSStatistics != 0) {
4733     gclog_or_tty->print_cr(
4734       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4735       worker_id, _timer.seconds());
4736   }
4737 
4738   // ---------- steal work from other threads ...
4739   // ---------- ... and drain overflow list.
4740   _timer.reset();
4741   _timer.start();
4742   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4743   _timer.stop();
4744   if (PrintCMSStatistics != 0) {
4745     gclog_or_tty->print_cr(
4746       "Finished work stealing in %dth thread: %3.3f sec",
4747       worker_id, _timer.seconds());
4748   }
4749 }
4750 
4751 // Note that parameter "i" is not used.
4752 void
4753 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4754   OopsInGenClosure* cl, ContiguousSpace* space,
4755   HeapWord** chunk_array, size_t chunk_top) {
4756   // Until all tasks completed:
4757   // . claim an unclaimed task
4758   // . compute region boundaries corresponding to task claimed
4759   //   using chunk_array
4760   // . par_oop_iterate(cl) over that region
4761 
4762   ResourceMark rm;
4763   HandleMark   hm;
4764 
4765   SequentialSubTasksDone* pst = space->par_seq_tasks();
4766 
4767   uint nth_task = 0;
4768   uint n_tasks  = pst->n_tasks();
4769 
4770   if (n_tasks > 0) {
4771     assert(pst->valid(), "Uninitialized use?");
4772     HeapWord *start, *end;
4773     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4774       // We claimed task # nth_task; compute its boundaries.
4775       if (chunk_top == 0) {  // no samples were taken
4776         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4777         start = space->bottom();
4778         end   = space->top();
4779       } else if (nth_task == 0) {
4780         start = space->bottom();
4781         end   = chunk_array[nth_task];
4782       } else if (nth_task < (uint)chunk_top) {
4783         assert(nth_task >= 1, "Control point invariant");
4784         start = chunk_array[nth_task - 1];
4785         end   = chunk_array[nth_task];
4786       } else {
4787         assert(nth_task == (uint)chunk_top, "Control point invariant");
4788         start = chunk_array[chunk_top - 1];
4789         end   = space->top();
4790       }
4791       MemRegion mr(start, end);
4792       // Verify that mr is in space
4793       assert(mr.is_empty() || space->used_region().contains(mr),
4794              "Should be in space");
4795       // Verify that "start" is an object boundary
4796       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4797              "Should be an oop");
4798       space->par_oop_iterate(mr, cl);
4799     }
4800     pst->all_tasks_completed();
4801   }
4802 }
4803 
4804 void
4805 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4806   CompactibleFreeListSpace* sp, int i,
4807   Par_MarkRefsIntoAndScanClosure* cl) {
4808   // Until all tasks completed:
4809   // . claim an unclaimed task
4810   // . compute region boundaries corresponding to task claimed
4811   // . transfer dirty bits ct->mut for that region
4812   // . apply rescanclosure to dirty mut bits for that region
4813 
4814   ResourceMark rm;
4815   HandleMark   hm;
4816 
4817   OopTaskQueue* work_q = work_queue(i);
4818   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4819   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4820   // CAUTION: This closure has state that persists across calls to
4821   // the work method dirty_range_iterate_clear() in that it has
4822   // embedded in it a (subtype of) UpwardsObjectClosure. The
4823   // use of that state in the embedded UpwardsObjectClosure instance
4824   // assumes that the cards are always iterated (even if in parallel
4825   // by several threads) in monotonically increasing order per each
4826   // thread. This is true of the implementation below which picks
4827   // card ranges (chunks) in monotonically increasing order globally
4828   // and, a-fortiori, in monotonically increasing order per thread
4829   // (the latter order being a subsequence of the former).
4830   // If the work code below is ever reorganized into a more chaotic
4831   // work-partitioning form than the current "sequential tasks"
4832   // paradigm, the use of that persistent state will have to be
4833   // revisited and modified appropriately. See also related
4834   // bug 4756801 work on which should examine this code to make
4835   // sure that the changes there do not run counter to the
4836   // assumptions made here and necessary for correctness and
4837   // efficiency. Note also that this code might yield inefficient
4838   // behavior in the case of very large objects that span one or
4839   // more work chunks. Such objects would potentially be scanned
4840   // several times redundantly. Work on 4756801 should try and
4841   // address that performance anomaly if at all possible. XXX
4842   MemRegion  full_span  = _collector->_span;
4843   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4844   MarkFromDirtyCardsClosure
4845     greyRescanClosure(_collector, full_span, // entire span of interest
4846                       sp, bm, work_q, cl);
4847 
4848   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4849   assert(pst->valid(), "Uninitialized use?");
4850   uint nth_task = 0;
4851   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4852   MemRegion span = sp->used_region();
4853   HeapWord* start_addr = span.start();
4854   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4855                                            alignment);
4856   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4857   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4858          start_addr, "Check alignment");
4859   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4860          chunk_size, "Check alignment");
4861 
4862   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4863     // Having claimed the nth_task, compute corresponding mem-region,
4864     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4865     // The alignment restriction ensures that we do not need any
4866     // synchronization with other gang-workers while setting or
4867     // clearing bits in thus chunk of the MUT.
4868     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4869                                     start_addr + (nth_task+1)*chunk_size);
4870     // The last chunk's end might be way beyond end of the
4871     // used region. In that case pull back appropriately.
4872     if (this_span.end() > end_addr) {
4873       this_span.set_end(end_addr);
4874       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4875     }
4876     // Iterate over the dirty cards covering this chunk, marking them
4877     // precleaned, and setting the corresponding bits in the mod union
4878     // table. Since we have been careful to partition at Card and MUT-word
4879     // boundaries no synchronization is needed between parallel threads.
4880     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4881                                                  &modUnionClosure);
4882 
4883     // Having transferred these marks into the modUnionTable,
4884     // rescan the marked objects on the dirty cards in the modUnionTable.
4885     // Even if this is at a synchronous collection, the initial marking
4886     // may have been done during an asynchronous collection so there
4887     // may be dirty bits in the mod-union table.
4888     _collector->_modUnionTable.dirty_range_iterate_clear(
4889                   this_span, &greyRescanClosure);
4890     _collector->_modUnionTable.verifyNoOneBitsInRange(
4891                                  this_span.start(),
4892                                  this_span.end());
4893   }
4894   pst->all_tasks_completed();  // declare that i am done
4895 }
4896 
4897 // . see if we can share work_queues with ParNew? XXX
4898 void
4899 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4900                                 int* seed) {
4901   OopTaskQueue* work_q = work_queue(i);
4902   NOT_PRODUCT(int num_steals = 0;)
4903   oop obj_to_scan;
4904   CMSBitMap* bm = &(_collector->_markBitMap);
4905 
4906   while (true) {
4907     // Completely finish any left over work from (an) earlier round(s)
4908     cl->trim_queue(0);
4909     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4910                                          (size_t)ParGCDesiredObjsFromOverflowList);
4911     // Now check if there's any work in the overflow list
4912     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4913     // only affects the number of attempts made to get work from the
4914     // overflow list and does not affect the number of workers.  Just
4915     // pass ParallelGCThreads so this behavior is unchanged.
4916     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4917                                                 work_q,
4918                                                 ParallelGCThreads)) {
4919       // found something in global overflow list;
4920       // not yet ready to go stealing work from others.
4921       // We'd like to assert(work_q->size() != 0, ...)
4922       // because we just took work from the overflow list,
4923       // but of course we can't since all of that could have
4924       // been already stolen from us.
4925       // "He giveth and He taketh away."
4926       continue;
4927     }
4928     // Verify that we have no work before we resort to stealing
4929     assert(work_q->size() == 0, "Have work, shouldn't steal");
4930     // Try to steal from other queues that have work
4931     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4932       NOT_PRODUCT(num_steals++;)
4933       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4934       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4935       // Do scanning work
4936       obj_to_scan->oop_iterate(cl);
4937       // Loop around, finish this work, and try to steal some more
4938     } else if (terminator()->offer_termination()) {
4939         break;  // nirvana from the infinite cycle
4940     }
4941   }
4942   NOT_PRODUCT(
4943     if (PrintCMSStatistics != 0) {
4944       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4945     }
4946   )
4947   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4948          "Else our work is not yet done");
4949 }
4950 
4951 // Record object boundaries in _eden_chunk_array by sampling the eden
4952 // top in the slow-path eden object allocation code path and record
4953 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4954 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4955 // sampling in sample_eden() that activates during the part of the
4956 // preclean phase.
4957 void CMSCollector::sample_eden_chunk() {
4958   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4959     if (_eden_chunk_lock->try_lock()) {
4960       // Record a sample. This is the critical section. The contents
4961       // of the _eden_chunk_array have to be non-decreasing in the
4962       // address order.
4963       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4964       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4965              "Unexpected state of Eden");
4966       if (_eden_chunk_index == 0 ||
4967           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4968            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4969                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4970         _eden_chunk_index++;  // commit sample
4971       }
4972       _eden_chunk_lock->unlock();
4973     }
4974   }
4975 }
4976 
4977 // Return a thread-local PLAB recording array, as appropriate.
4978 void* CMSCollector::get_data_recorder(int thr_num) {
4979   if (_survivor_plab_array != NULL &&
4980       (CMSPLABRecordAlways ||
4981        (_collectorState > Marking && _collectorState < FinalMarking))) {
4982     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4983     ChunkArray* ca = &_survivor_plab_array[thr_num];
4984     ca->reset();   // clear it so that fresh data is recorded
4985     return (void*) ca;
4986   } else {
4987     return NULL;
4988   }
4989 }
4990 
4991 // Reset all the thread-local PLAB recording arrays
4992 void CMSCollector::reset_survivor_plab_arrays() {
4993   for (uint i = 0; i < ParallelGCThreads; i++) {
4994     _survivor_plab_array[i].reset();
4995   }
4996 }
4997 
4998 // Merge the per-thread plab arrays into the global survivor chunk
4999 // array which will provide the partitioning of the survivor space
5000 // for CMS initial scan and rescan.
5001 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5002                                               int no_of_gc_threads) {
5003   assert(_survivor_plab_array  != NULL, "Error");
5004   assert(_survivor_chunk_array != NULL, "Error");
5005   assert(_collectorState == FinalMarking ||
5006          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5007   for (int j = 0; j < no_of_gc_threads; j++) {
5008     _cursor[j] = 0;
5009   }
5010   HeapWord* top = surv->top();
5011   size_t i;
5012   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5013     HeapWord* min_val = top;          // Higher than any PLAB address
5014     uint      min_tid = 0;            // position of min_val this round
5015     for (int j = 0; j < no_of_gc_threads; j++) {
5016       ChunkArray* cur_sca = &_survivor_plab_array[j];
5017       if (_cursor[j] == cur_sca->end()) {
5018         continue;
5019       }
5020       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5021       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5022       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5023       if (cur_val < min_val) {
5024         min_tid = j;
5025         min_val = cur_val;
5026       } else {
5027         assert(cur_val < top, "All recorded addresses should be less");
5028       }
5029     }
5030     // At this point min_val and min_tid are respectively
5031     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5032     // and the thread (j) that witnesses that address.
5033     // We record this address in the _survivor_chunk_array[i]
5034     // and increment _cursor[min_tid] prior to the next round i.
5035     if (min_val == top) {
5036       break;
5037     }
5038     _survivor_chunk_array[i] = min_val;
5039     _cursor[min_tid]++;
5040   }
5041   // We are all done; record the size of the _survivor_chunk_array
5042   _survivor_chunk_index = i; // exclusive: [0, i)
5043   if (PrintCMSStatistics > 0) {
5044     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5045   }
5046   // Verify that we used up all the recorded entries
5047   #ifdef ASSERT
5048     size_t total = 0;
5049     for (int j = 0; j < no_of_gc_threads; j++) {
5050       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5051       total += _cursor[j];
5052     }
5053     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5054     // Check that the merged array is in sorted order
5055     if (total > 0) {
5056       for (size_t i = 0; i < total - 1; i++) {
5057         if (PrintCMSStatistics > 0) {
5058           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5059                               i, _survivor_chunk_array[i]);
5060         }
5061         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5062                "Not sorted");
5063       }
5064     }
5065   #endif // ASSERT
5066 }
5067 
5068 // Set up the space's par_seq_tasks structure for work claiming
5069 // for parallel initial scan and rescan of young gen.
5070 // See ParRescanTask where this is currently used.
5071 void
5072 CMSCollector::
5073 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5074   assert(n_threads > 0, "Unexpected n_threads argument");
5075 
5076   // Eden space
5077   if (!_young_gen->eden()->is_empty()) {
5078     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5079     assert(!pst->valid(), "Clobbering existing data?");
5080     // Each valid entry in [0, _eden_chunk_index) represents a task.
5081     size_t n_tasks = _eden_chunk_index + 1;
5082     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5083     // Sets the condition for completion of the subtask (how many threads
5084     // need to finish in order to be done).
5085     pst->set_n_threads(n_threads);
5086     pst->set_n_tasks((int)n_tasks);
5087   }
5088 
5089   // Merge the survivor plab arrays into _survivor_chunk_array
5090   if (_survivor_plab_array != NULL) {
5091     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5092   } else {
5093     assert(_survivor_chunk_index == 0, "Error");
5094   }
5095 
5096   // To space
5097   {
5098     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5099     assert(!pst->valid(), "Clobbering existing data?");
5100     // Sets the condition for completion of the subtask (how many threads
5101     // need to finish in order to be done).
5102     pst->set_n_threads(n_threads);
5103     pst->set_n_tasks(1);
5104     assert(pst->valid(), "Error");
5105   }
5106 
5107   // From space
5108   {
5109     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5110     assert(!pst->valid(), "Clobbering existing data?");
5111     size_t n_tasks = _survivor_chunk_index + 1;
5112     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5113     // Sets the condition for completion of the subtask (how many threads
5114     // need to finish in order to be done).
5115     pst->set_n_threads(n_threads);
5116     pst->set_n_tasks((int)n_tasks);
5117     assert(pst->valid(), "Error");
5118   }
5119 }
5120 
5121 // Parallel version of remark
5122 void CMSCollector::do_remark_parallel() {
5123   GenCollectedHeap* gch = GenCollectedHeap::heap();
5124   FlexibleWorkGang* workers = gch->workers();
5125   assert(workers != NULL, "Need parallel worker threads.");
5126   // Choose to use the number of GC workers most recently set
5127   // into "active_workers".  If active_workers is not set, set it
5128   // to ParallelGCThreads.
5129   int n_workers = workers->active_workers();
5130   if (n_workers == 0) {
5131     assert(n_workers > 0, "Should have been set during scavenge");
5132     n_workers = ParallelGCThreads;
5133     workers->set_active_workers(n_workers);
5134   }
5135   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5136 
5137   CMSParRemarkTask tsk(this,
5138     cms_space,
5139     n_workers, workers, task_queues());
5140 
5141   // Set up for parallel process_roots work.
5142   gch->set_par_threads(n_workers);
5143   // We won't be iterating over the cards in the card table updating
5144   // the younger_gen cards, so we shouldn't call the following else
5145   // the verification code as well as subsequent younger_refs_iterate
5146   // code would get confused. XXX
5147   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5148 
5149   // The young gen rescan work will not be done as part of
5150   // process_roots (which currently doesn't know how to
5151   // parallelize such a scan), but rather will be broken up into
5152   // a set of parallel tasks (via the sampling that the [abortable]
5153   // preclean phase did of eden, plus the [two] tasks of
5154   // scanning the [two] survivor spaces. Further fine-grain
5155   // parallelization of the scanning of the survivor spaces
5156   // themselves, and of precleaning of the younger gen itself
5157   // is deferred to the future.
5158   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5159 
5160   // The dirty card rescan work is broken up into a "sequence"
5161   // of parallel tasks (per constituent space) that are dynamically
5162   // claimed by the parallel threads.
5163   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5164 
5165   // It turns out that even when we're using 1 thread, doing the work in a
5166   // separate thread causes wide variance in run times.  We can't help this
5167   // in the multi-threaded case, but we special-case n=1 here to get
5168   // repeatable measurements of the 1-thread overhead of the parallel code.
5169   if (n_workers > 1) {
5170     // Make refs discovery MT-safe, if it isn't already: it may not
5171     // necessarily be so, since it's possible that we are doing
5172     // ST marking.
5173     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5174     GenCollectedHeap::StrongRootsScope srs(gch);
5175     workers->run_task(&tsk);
5176   } else {
5177     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5178     GenCollectedHeap::StrongRootsScope srs(gch);
5179     tsk.work(0);
5180   }
5181 
5182   gch->set_par_threads(0);  // 0 ==> non-parallel.
5183   // restore, single-threaded for now, any preserved marks
5184   // as a result of work_q overflow
5185   restore_preserved_marks_if_any();
5186 }
5187 
5188 // Non-parallel version of remark
5189 void CMSCollector::do_remark_non_parallel() {
5190   ResourceMark rm;
5191   HandleMark   hm;
5192   GenCollectedHeap* gch = GenCollectedHeap::heap();
5193   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5194 
5195   MarkRefsIntoAndScanClosure
5196     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5197              &_markStack, this,
5198              false /* should_yield */, false /* not precleaning */);
5199   MarkFromDirtyCardsClosure
5200     markFromDirtyCardsClosure(this, _span,
5201                               NULL,  // space is set further below
5202                               &_markBitMap, &_markStack, &mrias_cl);
5203   {
5204     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5205     // Iterate over the dirty cards, setting the corresponding bits in the
5206     // mod union table.
5207     {
5208       ModUnionClosure modUnionClosure(&_modUnionTable);
5209       _ct->ct_bs()->dirty_card_iterate(
5210                       _cmsGen->used_region(),
5211                       &modUnionClosure);
5212     }
5213     // Having transferred these marks into the modUnionTable, we just need
5214     // to rescan the marked objects on the dirty cards in the modUnionTable.
5215     // The initial marking may have been done during an asynchronous
5216     // collection so there may be dirty bits in the mod-union table.
5217     const int alignment =
5218       CardTableModRefBS::card_size * BitsPerWord;
5219     {
5220       // ... First handle dirty cards in CMS gen
5221       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5222       MemRegion ur = _cmsGen->used_region();
5223       HeapWord* lb = ur.start();
5224       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5225       MemRegion cms_span(lb, ub);
5226       _modUnionTable.dirty_range_iterate_clear(cms_span,
5227                                                &markFromDirtyCardsClosure);
5228       verify_work_stacks_empty();
5229       if (PrintCMSStatistics != 0) {
5230         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5231           markFromDirtyCardsClosure.num_dirty_cards());
5232       }
5233     }
5234   }
5235   if (VerifyDuringGC &&
5236       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5237     HandleMark hm;  // Discard invalid handles created during verification
5238     Universe::verify();
5239   }
5240   {
5241     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5242 
5243     verify_work_stacks_empty();
5244 
5245     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5246     GenCollectedHeap::StrongRootsScope srs(gch);
5247 
5248     gch->gen_process_roots(_cmsGen->level(),
5249                            true,  // younger gens as roots
5250                            false, // use the local StrongRootsScope
5251                            SharedHeap::ScanningOption(roots_scanning_options()),
5252                            should_unload_classes(),
5253                            &mrias_cl,
5254                            NULL,
5255                            NULL); // The dirty klasses will be handled below
5256 
5257     assert(should_unload_classes()
5258            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5259            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5260   }
5261 
5262   {
5263     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5264 
5265     verify_work_stacks_empty();
5266 
5267     // Scan all class loader data objects that might have been introduced
5268     // during concurrent marking.
5269     ResourceMark rm;
5270     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5271     for (int i = 0; i < array->length(); i++) {
5272       mrias_cl.do_class_loader_data(array->at(i));
5273     }
5274 
5275     // We don't need to keep track of new CLDs anymore.
5276     ClassLoaderDataGraph::remember_new_clds(false);
5277 
5278     verify_work_stacks_empty();
5279   }
5280 
5281   {
5282     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5283 
5284     verify_work_stacks_empty();
5285 
5286     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5287     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5288 
5289     verify_work_stacks_empty();
5290   }
5291 
5292   // We might have added oops to ClassLoaderData::_handles during the
5293   // concurrent marking phase. These oops point to newly allocated objects
5294   // that are guaranteed to be kept alive. Either by the direct allocation
5295   // code, or when the young collector processes the roots. Hence,
5296   // we don't have to revisit the _handles block during the remark phase.
5297 
5298   verify_work_stacks_empty();
5299   // Restore evacuated mark words, if any, used for overflow list links
5300   if (!CMSOverflowEarlyRestoration) {
5301     restore_preserved_marks_if_any();
5302   }
5303   verify_overflow_empty();
5304 }
5305 
5306 ////////////////////////////////////////////////////////
5307 // Parallel Reference Processing Task Proxy Class
5308 ////////////////////////////////////////////////////////
5309 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5310   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5311   CMSCollector*          _collector;
5312   CMSBitMap*             _mark_bit_map;
5313   const MemRegion        _span;
5314   ProcessTask&           _task;
5315 
5316 public:
5317   CMSRefProcTaskProxy(ProcessTask&     task,
5318                       CMSCollector*    collector,
5319                       const MemRegion& span,
5320                       CMSBitMap*       mark_bit_map,
5321                       AbstractWorkGang* workers,
5322                       OopTaskQueueSet* task_queues):
5323     // XXX Should superclass AGTWOQ also know about AWG since it knows
5324     // about the task_queues used by the AWG? Then it could initialize
5325     // the terminator() object. See 6984287. The set_for_termination()
5326     // below is a temporary band-aid for the regression in 6984287.
5327     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5328       task_queues),
5329     _task(task),
5330     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5331   {
5332     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5333            "Inconsistency in _span");
5334     set_for_termination(workers->active_workers());
5335   }
5336 
5337   OopTaskQueueSet* task_queues() { return queues(); }
5338 
5339   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5340 
5341   void do_work_steal(int i,
5342                      CMSParDrainMarkingStackClosure* drain,
5343                      CMSParKeepAliveClosure* keep_alive,
5344                      int* seed);
5345 
5346   virtual void work(uint worker_id);
5347 };
5348 
5349 void CMSRefProcTaskProxy::work(uint worker_id) {
5350   ResourceMark rm;
5351   HandleMark hm;
5352   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5353   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5354                                         _mark_bit_map,
5355                                         work_queue(worker_id));
5356   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5357                                                  _mark_bit_map,
5358                                                  work_queue(worker_id));
5359   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5360   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5361   if (_task.marks_oops_alive()) {
5362     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5363                   _collector->hash_seed(worker_id));
5364   }
5365   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5366   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5367 }
5368 
5369 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5370   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5371   EnqueueTask& _task;
5372 
5373 public:
5374   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5375     : AbstractGangTask("Enqueue reference objects in parallel"),
5376       _task(task)
5377   { }
5378 
5379   virtual void work(uint worker_id)
5380   {
5381     _task.work(worker_id);
5382   }
5383 };
5384 
5385 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5386   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5387    _span(span),
5388    _bit_map(bit_map),
5389    _work_queue(work_queue),
5390    _mark_and_push(collector, span, bit_map, work_queue),
5391    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5392                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5393 { }
5394 
5395 // . see if we can share work_queues with ParNew? XXX
5396 void CMSRefProcTaskProxy::do_work_steal(int i,
5397   CMSParDrainMarkingStackClosure* drain,
5398   CMSParKeepAliveClosure* keep_alive,
5399   int* seed) {
5400   OopTaskQueue* work_q = work_queue(i);
5401   NOT_PRODUCT(int num_steals = 0;)
5402   oop obj_to_scan;
5403 
5404   while (true) {
5405     // Completely finish any left over work from (an) earlier round(s)
5406     drain->trim_queue(0);
5407     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5408                                          (size_t)ParGCDesiredObjsFromOverflowList);
5409     // Now check if there's any work in the overflow list
5410     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5411     // only affects the number of attempts made to get work from the
5412     // overflow list and does not affect the number of workers.  Just
5413     // pass ParallelGCThreads so this behavior is unchanged.
5414     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5415                                                 work_q,
5416                                                 ParallelGCThreads)) {
5417       // Found something in global overflow list;
5418       // not yet ready to go stealing work from others.
5419       // We'd like to assert(work_q->size() != 0, ...)
5420       // because we just took work from the overflow list,
5421       // but of course we can't, since all of that might have
5422       // been already stolen from us.
5423       continue;
5424     }
5425     // Verify that we have no work before we resort to stealing
5426     assert(work_q->size() == 0, "Have work, shouldn't steal");
5427     // Try to steal from other queues that have work
5428     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5429       NOT_PRODUCT(num_steals++;)
5430       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5431       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5432       // Do scanning work
5433       obj_to_scan->oop_iterate(keep_alive);
5434       // Loop around, finish this work, and try to steal some more
5435     } else if (terminator()->offer_termination()) {
5436       break;  // nirvana from the infinite cycle
5437     }
5438   }
5439   NOT_PRODUCT(
5440     if (PrintCMSStatistics != 0) {
5441       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5442     }
5443   )
5444 }
5445 
5446 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5447 {
5448   GenCollectedHeap* gch = GenCollectedHeap::heap();
5449   FlexibleWorkGang* workers = gch->workers();
5450   assert(workers != NULL, "Need parallel worker threads.");
5451   CMSRefProcTaskProxy rp_task(task, &_collector,
5452                               _collector.ref_processor()->span(),
5453                               _collector.markBitMap(),
5454                               workers, _collector.task_queues());
5455   workers->run_task(&rp_task);
5456 }
5457 
5458 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5459 {
5460 
5461   GenCollectedHeap* gch = GenCollectedHeap::heap();
5462   FlexibleWorkGang* workers = gch->workers();
5463   assert(workers != NULL, "Need parallel worker threads.");
5464   CMSRefEnqueueTaskProxy enq_task(task);
5465   workers->run_task(&enq_task);
5466 }
5467 
5468 void CMSCollector::refProcessingWork() {
5469   ResourceMark rm;
5470   HandleMark   hm;
5471 
5472   ReferenceProcessor* rp = ref_processor();
5473   assert(rp->span().equals(_span), "Spans should be equal");
5474   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5475   // Process weak references.
5476   rp->setup_policy(false);
5477   verify_work_stacks_empty();
5478 
5479   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5480                                           &_markStack, false /* !preclean */);
5481   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5482                                 _span, &_markBitMap, &_markStack,
5483                                 &cmsKeepAliveClosure, false /* !preclean */);
5484   {
5485     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5486 
5487     ReferenceProcessorStats stats;
5488     if (rp->processing_is_mt()) {
5489       // Set the degree of MT here.  If the discovery is done MT, there
5490       // may have been a different number of threads doing the discovery
5491       // and a different number of discovered lists may have Ref objects.
5492       // That is OK as long as the Reference lists are balanced (see
5493       // balance_all_queues() and balance_queues()).
5494       GenCollectedHeap* gch = GenCollectedHeap::heap();
5495       int active_workers = ParallelGCThreads;
5496       FlexibleWorkGang* workers = gch->workers();
5497       if (workers != NULL) {
5498         active_workers = workers->active_workers();
5499         // The expectation is that active_workers will have already
5500         // been set to a reasonable value.  If it has not been set,
5501         // investigate.
5502         assert(active_workers > 0, "Should have been set during scavenge");
5503       }
5504       rp->set_active_mt_degree(active_workers);
5505       CMSRefProcTaskExecutor task_executor(*this);
5506       stats = rp->process_discovered_references(&_is_alive_closure,
5507                                         &cmsKeepAliveClosure,
5508                                         &cmsDrainMarkingStackClosure,
5509                                         &task_executor,
5510                                         _gc_timer_cm,
5511                                         _gc_tracer_cm->gc_id());
5512     } else {
5513       stats = rp->process_discovered_references(&_is_alive_closure,
5514                                         &cmsKeepAliveClosure,
5515                                         &cmsDrainMarkingStackClosure,
5516                                         NULL,
5517                                         _gc_timer_cm,
5518                                         _gc_tracer_cm->gc_id());
5519     }
5520     _gc_tracer_cm->report_gc_reference_stats(stats);
5521 
5522   }
5523 
5524   // This is the point where the entire marking should have completed.
5525   verify_work_stacks_empty();
5526 
5527   if (should_unload_classes()) {
5528     {
5529       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5530 
5531       // Unload classes and purge the SystemDictionary.
5532       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5533 
5534       // Unload nmethods.
5535       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5536 
5537       // Prune dead klasses from subklass/sibling/implementor lists.
5538       Klass::clean_weak_klass_links(&_is_alive_closure);
5539     }
5540 
5541     {
5542       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5543       // Clean up unreferenced symbols in symbol table.
5544       SymbolTable::unlink();
5545     }
5546 
5547     {
5548       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5549       // Delete entries for dead interned strings.
5550       StringTable::unlink(&_is_alive_closure);
5551     }
5552   }
5553 
5554 
5555   // Restore any preserved marks as a result of mark stack or
5556   // work queue overflow
5557   restore_preserved_marks_if_any();  // done single-threaded for now
5558 
5559   rp->set_enqueuing_is_done(true);
5560   if (rp->processing_is_mt()) {
5561     rp->balance_all_queues();
5562     CMSRefProcTaskExecutor task_executor(*this);
5563     rp->enqueue_discovered_references(&task_executor);
5564   } else {
5565     rp->enqueue_discovered_references(NULL);
5566   }
5567   rp->verify_no_references_recorded();
5568   assert(!rp->discovery_enabled(), "should have been disabled");
5569 }
5570 
5571 #ifndef PRODUCT
5572 void CMSCollector::check_correct_thread_executing() {
5573   Thread* t = Thread::current();
5574   // Only the VM thread or the CMS thread should be here.
5575   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5576          "Unexpected thread type");
5577   // If this is the vm thread, the foreground process
5578   // should not be waiting.  Note that _foregroundGCIsActive is
5579   // true while the foreground collector is waiting.
5580   if (_foregroundGCShouldWait) {
5581     // We cannot be the VM thread
5582     assert(t->is_ConcurrentGC_thread(),
5583            "Should be CMS thread");
5584   } else {
5585     // We can be the CMS thread only if we are in a stop-world
5586     // phase of CMS collection.
5587     if (t->is_ConcurrentGC_thread()) {
5588       assert(_collectorState == InitialMarking ||
5589              _collectorState == FinalMarking,
5590              "Should be a stop-world phase");
5591       // The CMS thread should be holding the CMS_token.
5592       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5593              "Potential interference with concurrently "
5594              "executing VM thread");
5595     }
5596   }
5597 }
5598 #endif
5599 
5600 void CMSCollector::sweep() {
5601   assert(_collectorState == Sweeping, "just checking");
5602   check_correct_thread_executing();
5603   verify_work_stacks_empty();
5604   verify_overflow_empty();
5605   increment_sweep_count();
5606   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5607 
5608   _inter_sweep_timer.stop();
5609   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5610 
5611   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5612   _intra_sweep_timer.reset();
5613   _intra_sweep_timer.start();
5614   {
5615     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5616     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5617     // First sweep the old gen
5618     {
5619       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5620                                bitMapLock());
5621       sweepWork(_cmsGen);
5622     }
5623 
5624     // Update Universe::_heap_*_at_gc figures.
5625     // We need all the free list locks to make the abstract state
5626     // transition from Sweeping to Resetting. See detailed note
5627     // further below.
5628     {
5629       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5630       // Update heap occupancy information which is used as
5631       // input to soft ref clearing policy at the next gc.
5632       Universe::update_heap_info_at_gc();
5633       _collectorState = Resizing;
5634     }
5635   }
5636   verify_work_stacks_empty();
5637   verify_overflow_empty();
5638 
5639   if (should_unload_classes()) {
5640     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5641     // requires that the virtual spaces are stable and not deleted.
5642     ClassLoaderDataGraph::set_should_purge(true);
5643   }
5644 
5645   _intra_sweep_timer.stop();
5646   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5647 
5648   _inter_sweep_timer.reset();
5649   _inter_sweep_timer.start();
5650 
5651   // We need to use a monotonically non-decreasing time in ms
5652   // or we will see time-warp warnings and os::javaTimeMillis()
5653   // does not guarantee monotonicity.
5654   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5655   update_time_of_last_gc(now);
5656 
5657   // NOTE on abstract state transitions:
5658   // Mutators allocate-live and/or mark the mod-union table dirty
5659   // based on the state of the collection.  The former is done in
5660   // the interval [Marking, Sweeping] and the latter in the interval
5661   // [Marking, Sweeping).  Thus the transitions into the Marking state
5662   // and out of the Sweeping state must be synchronously visible
5663   // globally to the mutators.
5664   // The transition into the Marking state happens with the world
5665   // stopped so the mutators will globally see it.  Sweeping is
5666   // done asynchronously by the background collector so the transition
5667   // from the Sweeping state to the Resizing state must be done
5668   // under the freelistLock (as is the check for whether to
5669   // allocate-live and whether to dirty the mod-union table).
5670   assert(_collectorState == Resizing, "Change of collector state to"
5671     " Resizing must be done under the freelistLocks (plural)");
5672 
5673   // Now that sweeping has been completed, we clear
5674   // the incremental_collection_failed flag,
5675   // thus inviting a younger gen collection to promote into
5676   // this generation. If such a promotion may still fail,
5677   // the flag will be set again when a young collection is
5678   // attempted.
5679   GenCollectedHeap* gch = GenCollectedHeap::heap();
5680   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5681   gch->update_full_collections_completed(_collection_count_start);
5682 }
5683 
5684 // FIX ME!!! Looks like this belongs in CFLSpace, with
5685 // CMSGen merely delegating to it.
5686 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5687   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5688   HeapWord*  minAddr        = _cmsSpace->bottom();
5689   HeapWord*  largestAddr    =
5690     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5691   if (largestAddr == NULL) {
5692     // The dictionary appears to be empty.  In this case
5693     // try to coalesce at the end of the heap.
5694     largestAddr = _cmsSpace->end();
5695   }
5696   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5697   size_t nearLargestOffset =
5698     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5699   if (PrintFLSStatistics != 0) {
5700     gclog_or_tty->print_cr(
5701       "CMS: Large Block: " PTR_FORMAT ";"
5702       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5703       largestAddr,
5704       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
5705   }
5706   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5707 }
5708 
5709 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5710   return addr >= _cmsSpace->nearLargestChunk();
5711 }
5712 
5713 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5714   return _cmsSpace->find_chunk_at_end();
5715 }
5716 
5717 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
5718                                                     bool full) {
5719   // The next lower level has been collected.  Gather any statistics
5720   // that are of interest at this point.
5721   if (!full && (current_level + 1) == level()) {
5722     // Gather statistics on the young generation collection.
5723     collector()->stats().record_gc0_end(used());
5724   }
5725 }
5726 
5727 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5728   // We iterate over the space(s) underlying this generation,
5729   // checking the mark bit map to see if the bits corresponding
5730   // to specific blocks are marked or not. Blocks that are
5731   // marked are live and are not swept up. All remaining blocks
5732   // are swept up, with coalescing on-the-fly as we sweep up
5733   // contiguous free and/or garbage blocks:
5734   // We need to ensure that the sweeper synchronizes with allocators
5735   // and stop-the-world collectors. In particular, the following
5736   // locks are used:
5737   // . CMS token: if this is held, a stop the world collection cannot occur
5738   // . freelistLock: if this is held no allocation can occur from this
5739   //                 generation by another thread
5740   // . bitMapLock: if this is held, no other thread can access or update
5741   //
5742 
5743   // Note that we need to hold the freelistLock if we use
5744   // block iterate below; else the iterator might go awry if
5745   // a mutator (or promotion) causes block contents to change
5746   // (for instance if the allocator divvies up a block).
5747   // If we hold the free list lock, for all practical purposes
5748   // young generation GC's can't occur (they'll usually need to
5749   // promote), so we might as well prevent all young generation
5750   // GC's while we do a sweeping step. For the same reason, we might
5751   // as well take the bit map lock for the entire duration
5752 
5753   // check that we hold the requisite locks
5754   assert(have_cms_token(), "Should hold cms token");
5755   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5756   assert_lock_strong(gen->freelistLock());
5757   assert_lock_strong(bitMapLock());
5758 
5759   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5760   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5761   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5762                                       _inter_sweep_estimate.padded_average(),
5763                                       _intra_sweep_estimate.padded_average());
5764   gen->setNearLargestChunk();
5765 
5766   {
5767     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5768     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5769     // We need to free-up/coalesce garbage/blocks from a
5770     // co-terminal free run. This is done in the SweepClosure
5771     // destructor; so, do not remove this scope, else the
5772     // end-of-sweep-census below will be off by a little bit.
5773   }
5774   gen->cmsSpace()->sweep_completed();
5775   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5776   if (should_unload_classes()) {                // unloaded classes this cycle,
5777     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5778   } else {                                      // did not unload classes,
5779     _concurrent_cycles_since_last_unload++;     // ... increment count
5780   }
5781 }
5782 
5783 // Reset CMS data structures (for now just the marking bit map)
5784 // preparatory for the next cycle.
5785 void CMSCollector::reset(bool concurrent) {
5786   if (concurrent) {
5787     CMSTokenSyncWithLocks ts(true, bitMapLock());
5788 
5789     // If the state is not "Resetting", the foreground  thread
5790     // has done a collection and the resetting.
5791     if (_collectorState != Resetting) {
5792       assert(_collectorState == Idling, "The state should only change"
5793         " because the foreground collector has finished the collection");
5794       return;
5795     }
5796 
5797     // Clear the mark bitmap (no grey objects to start with)
5798     // for the next cycle.
5799     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5800     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5801 
5802     HeapWord* curAddr = _markBitMap.startWord();
5803     while (curAddr < _markBitMap.endWord()) {
5804       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5805       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5806       _markBitMap.clear_large_range(chunk);
5807       if (ConcurrentMarkSweepThread::should_yield() &&
5808           !foregroundGCIsActive() &&
5809           CMSYield) {
5810         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5811                "CMS thread should hold CMS token");
5812         assert_lock_strong(bitMapLock());
5813         bitMapLock()->unlock();
5814         ConcurrentMarkSweepThread::desynchronize(true);
5815         stopTimer();
5816         if (PrintCMSStatistics != 0) {
5817           incrementYields();
5818         }
5819 
5820         // See the comment in coordinator_yield()
5821         for (unsigned i = 0; i < CMSYieldSleepCount &&
5822                          ConcurrentMarkSweepThread::should_yield() &&
5823                          !CMSCollector::foregroundGCIsActive(); ++i) {
5824           os::sleep(Thread::current(), 1, false);
5825         }
5826 
5827         ConcurrentMarkSweepThread::synchronize(true);
5828         bitMapLock()->lock_without_safepoint_check();
5829         startTimer();
5830       }
5831       curAddr = chunk.end();
5832     }
5833     // A successful mostly concurrent collection has been done.
5834     // Because only the full (i.e., concurrent mode failure) collections
5835     // are being measured for gc overhead limits, clean the "near" flag
5836     // and count.
5837     size_policy()->reset_gc_overhead_limit_count();
5838     _collectorState = Idling;
5839   } else {
5840     // already have the lock
5841     assert(_collectorState == Resetting, "just checking");
5842     assert_lock_strong(bitMapLock());
5843     _markBitMap.clear_all();
5844     _collectorState = Idling;
5845   }
5846 
5847   register_gc_end();
5848 }
5849 
5850 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5851   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5852   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5853   TraceCollectorStats tcs(counters());
5854 
5855   switch (op) {
5856     case CMS_op_checkpointRootsInitial: {
5857       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5858       checkpointRootsInitial();
5859       if (PrintGC) {
5860         _cmsGen->printOccupancy("initial-mark");
5861       }
5862       break;
5863     }
5864     case CMS_op_checkpointRootsFinal: {
5865       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5866       checkpointRootsFinal();
5867       if (PrintGC) {
5868         _cmsGen->printOccupancy("remark");
5869       }
5870       break;
5871     }
5872     default:
5873       fatal("No such CMS_op");
5874   }
5875 }
5876 
5877 #ifndef PRODUCT
5878 size_t const CMSCollector::skip_header_HeapWords() {
5879   return FreeChunk::header_size();
5880 }
5881 
5882 // Try and collect here conditions that should hold when
5883 // CMS thread is exiting. The idea is that the foreground GC
5884 // thread should not be blocked if it wants to terminate
5885 // the CMS thread and yet continue to run the VM for a while
5886 // after that.
5887 void CMSCollector::verify_ok_to_terminate() const {
5888   assert(Thread::current()->is_ConcurrentGC_thread(),
5889          "should be called by CMS thread");
5890   assert(!_foregroundGCShouldWait, "should be false");
5891   // We could check here that all the various low-level locks
5892   // are not held by the CMS thread, but that is overkill; see
5893   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5894   // is checked.
5895 }
5896 #endif
5897 
5898 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5899    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5900           "missing Printezis mark?");
5901   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5902   size_t size = pointer_delta(nextOneAddr + 1, addr);
5903   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5904          "alignment problem");
5905   assert(size >= 3, "Necessary for Printezis marks to work");
5906   return size;
5907 }
5908 
5909 // A variant of the above (block_size_using_printezis_bits()) except
5910 // that we return 0 if the P-bits are not yet set.
5911 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5912   if (_markBitMap.isMarked(addr + 1)) {
5913     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5914     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5915     size_t size = pointer_delta(nextOneAddr + 1, addr);
5916     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5917            "alignment problem");
5918     assert(size >= 3, "Necessary for Printezis marks to work");
5919     return size;
5920   }
5921   return 0;
5922 }
5923 
5924 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5925   size_t sz = 0;
5926   oop p = (oop)addr;
5927   if (p->klass_or_null() != NULL) {
5928     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5929   } else {
5930     sz = block_size_using_printezis_bits(addr);
5931   }
5932   assert(sz > 0, "size must be nonzero");
5933   HeapWord* next_block = addr + sz;
5934   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5935                                              CardTableModRefBS::card_size);
5936   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5937          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5938          "must be different cards");
5939   return next_card;
5940 }
5941 
5942 
5943 // CMS Bit Map Wrapper /////////////////////////////////////////
5944 
5945 // Construct a CMS bit map infrastructure, but don't create the
5946 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5947 // further below.
5948 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5949   _bm(),
5950   _shifter(shifter),
5951   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5952                                     Monitor::_safepoint_check_sometimes) : NULL)
5953 {
5954   _bmStartWord = 0;
5955   _bmWordSize  = 0;
5956 }
5957 
5958 bool CMSBitMap::allocate(MemRegion mr) {
5959   _bmStartWord = mr.start();
5960   _bmWordSize  = mr.word_size();
5961   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5962                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5963   if (!brs.is_reserved()) {
5964     warning("CMS bit map allocation failure");
5965     return false;
5966   }
5967   // For now we'll just commit all of the bit map up front.
5968   // Later on we'll try to be more parsimonious with swap.
5969   if (!_virtual_space.initialize(brs, brs.size())) {
5970     warning("CMS bit map backing store failure");
5971     return false;
5972   }
5973   assert(_virtual_space.committed_size() == brs.size(),
5974          "didn't reserve backing store for all of CMS bit map?");
5975   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5976   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5977          _bmWordSize, "inconsistency in bit map sizing");
5978   _bm.set_size(_bmWordSize >> _shifter);
5979 
5980   // bm.clear(); // can we rely on getting zero'd memory? verify below
5981   assert(isAllClear(),
5982          "Expected zero'd memory from ReservedSpace constructor");
5983   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5984          "consistency check");
5985   return true;
5986 }
5987 
5988 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5989   HeapWord *next_addr, *end_addr, *last_addr;
5990   assert_locked();
5991   assert(covers(mr), "out-of-range error");
5992   // XXX assert that start and end are appropriately aligned
5993   for (next_addr = mr.start(), end_addr = mr.end();
5994        next_addr < end_addr; next_addr = last_addr) {
5995     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5996     last_addr = dirty_region.end();
5997     if (!dirty_region.is_empty()) {
5998       cl->do_MemRegion(dirty_region);
5999     } else {
6000       assert(last_addr == end_addr, "program logic");
6001       return;
6002     }
6003   }
6004 }
6005 
6006 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6007   _bm.print_on_error(st, prefix);
6008 }
6009 
6010 #ifndef PRODUCT
6011 void CMSBitMap::assert_locked() const {
6012   CMSLockVerifier::assert_locked(lock());
6013 }
6014 
6015 bool CMSBitMap::covers(MemRegion mr) const {
6016   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6017   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6018          "size inconsistency");
6019   return (mr.start() >= _bmStartWord) &&
6020          (mr.end()   <= endWord());
6021 }
6022 
6023 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6024     return (start >= _bmStartWord && (start + size) <= endWord());
6025 }
6026 
6027 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6028   // verify that there are no 1 bits in the interval [left, right)
6029   FalseBitMapClosure falseBitMapClosure;
6030   iterate(&falseBitMapClosure, left, right);
6031 }
6032 
6033 void CMSBitMap::region_invariant(MemRegion mr)
6034 {
6035   assert_locked();
6036   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6037   assert(!mr.is_empty(), "unexpected empty region");
6038   assert(covers(mr), "mr should be covered by bit map");
6039   // convert address range into offset range
6040   size_t start_ofs = heapWordToOffset(mr.start());
6041   // Make sure that end() is appropriately aligned
6042   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6043                         (1 << (_shifter+LogHeapWordSize))),
6044          "Misaligned mr.end()");
6045   size_t end_ofs   = heapWordToOffset(mr.end());
6046   assert(end_ofs > start_ofs, "Should mark at least one bit");
6047 }
6048 
6049 #endif
6050 
6051 bool CMSMarkStack::allocate(size_t size) {
6052   // allocate a stack of the requisite depth
6053   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6054                    size * sizeof(oop)));
6055   if (!rs.is_reserved()) {
6056     warning("CMSMarkStack allocation failure");
6057     return false;
6058   }
6059   if (!_virtual_space.initialize(rs, rs.size())) {
6060     warning("CMSMarkStack backing store failure");
6061     return false;
6062   }
6063   assert(_virtual_space.committed_size() == rs.size(),
6064          "didn't reserve backing store for all of CMS stack?");
6065   _base = (oop*)(_virtual_space.low());
6066   _index = 0;
6067   _capacity = size;
6068   NOT_PRODUCT(_max_depth = 0);
6069   return true;
6070 }
6071 
6072 // XXX FIX ME !!! In the MT case we come in here holding a
6073 // leaf lock. For printing we need to take a further lock
6074 // which has lower rank. We need to recalibrate the two
6075 // lock-ranks involved in order to be able to print the
6076 // messages below. (Or defer the printing to the caller.
6077 // For now we take the expedient path of just disabling the
6078 // messages for the problematic case.)
6079 void CMSMarkStack::expand() {
6080   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6081   if (_capacity == MarkStackSizeMax) {
6082     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6083       // We print a warning message only once per CMS cycle.
6084       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6085     }
6086     return;
6087   }
6088   // Double capacity if possible
6089   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6090   // Do not give up existing stack until we have managed to
6091   // get the double capacity that we desired.
6092   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6093                    new_capacity * sizeof(oop)));
6094   if (rs.is_reserved()) {
6095     // Release the backing store associated with old stack
6096     _virtual_space.release();
6097     // Reinitialize virtual space for new stack
6098     if (!_virtual_space.initialize(rs, rs.size())) {
6099       fatal("Not enough swap for expanded marking stack");
6100     }
6101     _base = (oop*)(_virtual_space.low());
6102     _index = 0;
6103     _capacity = new_capacity;
6104   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6105     // Failed to double capacity, continue;
6106     // we print a detail message only once per CMS cycle.
6107     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6108             SIZE_FORMAT"K",
6109             _capacity / K, new_capacity / K);
6110   }
6111 }
6112 
6113 
6114 // Closures
6115 // XXX: there seems to be a lot of code  duplication here;
6116 // should refactor and consolidate common code.
6117 
6118 // This closure is used to mark refs into the CMS generation in
6119 // the CMS bit map. Called at the first checkpoint. This closure
6120 // assumes that we do not need to re-mark dirty cards; if the CMS
6121 // generation on which this is used is not an oldest
6122 // generation then this will lose younger_gen cards!
6123 
6124 MarkRefsIntoClosure::MarkRefsIntoClosure(
6125   MemRegion span, CMSBitMap* bitMap):
6126     _span(span),
6127     _bitMap(bitMap)
6128 {
6129     assert(_ref_processor == NULL, "deliberately left NULL");
6130     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6131 }
6132 
6133 void MarkRefsIntoClosure::do_oop(oop obj) {
6134   // if p points into _span, then mark corresponding bit in _markBitMap
6135   assert(obj->is_oop(), "expected an oop");
6136   HeapWord* addr = (HeapWord*)obj;
6137   if (_span.contains(addr)) {
6138     // this should be made more efficient
6139     _bitMap->mark(addr);
6140   }
6141 }
6142 
6143 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6144 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6145 
6146 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6147   MemRegion span, CMSBitMap* bitMap):
6148     _span(span),
6149     _bitMap(bitMap)
6150 {
6151     assert(_ref_processor == NULL, "deliberately left NULL");
6152     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6153 }
6154 
6155 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6156   // if p points into _span, then mark corresponding bit in _markBitMap
6157   assert(obj->is_oop(), "expected an oop");
6158   HeapWord* addr = (HeapWord*)obj;
6159   if (_span.contains(addr)) {
6160     // this should be made more efficient
6161     _bitMap->par_mark(addr);
6162   }
6163 }
6164 
6165 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6166 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6167 
6168 // A variant of the above, used for CMS marking verification.
6169 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6170   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6171     _span(span),
6172     _verification_bm(verification_bm),
6173     _cms_bm(cms_bm)
6174 {
6175     assert(_ref_processor == NULL, "deliberately left NULL");
6176     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6177 }
6178 
6179 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6180   // if p points into _span, then mark corresponding bit in _markBitMap
6181   assert(obj->is_oop(), "expected an oop");
6182   HeapWord* addr = (HeapWord*)obj;
6183   if (_span.contains(addr)) {
6184     _verification_bm->mark(addr);
6185     if (!_cms_bm->isMarked(addr)) {
6186       oop(addr)->print();
6187       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6188       fatal("... aborting");
6189     }
6190   }
6191 }
6192 
6193 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6194 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6195 
6196 //////////////////////////////////////////////////
6197 // MarkRefsIntoAndScanClosure
6198 //////////////////////////////////////////////////
6199 
6200 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6201                                                        ReferenceProcessor* rp,
6202                                                        CMSBitMap* bit_map,
6203                                                        CMSBitMap* mod_union_table,
6204                                                        CMSMarkStack*  mark_stack,
6205                                                        CMSCollector* collector,
6206                                                        bool should_yield,
6207                                                        bool concurrent_precleaning):
6208   _collector(collector),
6209   _span(span),
6210   _bit_map(bit_map),
6211   _mark_stack(mark_stack),
6212   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6213                       mark_stack, concurrent_precleaning),
6214   _yield(should_yield),
6215   _concurrent_precleaning(concurrent_precleaning),
6216   _freelistLock(NULL)
6217 {
6218   _ref_processor = rp;
6219   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6220 }
6221 
6222 // This closure is used to mark refs into the CMS generation at the
6223 // second (final) checkpoint, and to scan and transitively follow
6224 // the unmarked oops. It is also used during the concurrent precleaning
6225 // phase while scanning objects on dirty cards in the CMS generation.
6226 // The marks are made in the marking bit map and the marking stack is
6227 // used for keeping the (newly) grey objects during the scan.
6228 // The parallel version (Par_...) appears further below.
6229 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6230   if (obj != NULL) {
6231     assert(obj->is_oop(), "expected an oop");
6232     HeapWord* addr = (HeapWord*)obj;
6233     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6234     assert(_collector->overflow_list_is_empty(),
6235            "overflow list should be empty");
6236     if (_span.contains(addr) &&
6237         !_bit_map->isMarked(addr)) {
6238       // mark bit map (object is now grey)
6239       _bit_map->mark(addr);
6240       // push on marking stack (stack should be empty), and drain the
6241       // stack by applying this closure to the oops in the oops popped
6242       // from the stack (i.e. blacken the grey objects)
6243       bool res = _mark_stack->push(obj);
6244       assert(res, "Should have space to push on empty stack");
6245       do {
6246         oop new_oop = _mark_stack->pop();
6247         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6248         assert(_bit_map->isMarked((HeapWord*)new_oop),
6249                "only grey objects on this stack");
6250         // iterate over the oops in this oop, marking and pushing
6251         // the ones in CMS heap (i.e. in _span).
6252         new_oop->oop_iterate(&_pushAndMarkClosure);
6253         // check if it's time to yield
6254         do_yield_check();
6255       } while (!_mark_stack->isEmpty() ||
6256                (!_concurrent_precleaning && take_from_overflow_list()));
6257         // if marking stack is empty, and we are not doing this
6258         // during precleaning, then check the overflow list
6259     }
6260     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6261     assert(_collector->overflow_list_is_empty(),
6262            "overflow list was drained above");
6263     // We could restore evacuated mark words, if any, used for
6264     // overflow list links here because the overflow list is
6265     // provably empty here. That would reduce the maximum
6266     // size requirements for preserved_{oop,mark}_stack.
6267     // But we'll just postpone it until we are all done
6268     // so we can just stream through.
6269     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6270       _collector->restore_preserved_marks_if_any();
6271       assert(_collector->no_preserved_marks(), "No preserved marks");
6272     }
6273     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6274            "All preserved marks should have been restored above");
6275   }
6276 }
6277 
6278 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6279 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6280 
6281 void MarkRefsIntoAndScanClosure::do_yield_work() {
6282   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6283          "CMS thread should hold CMS token");
6284   assert_lock_strong(_freelistLock);
6285   assert_lock_strong(_bit_map->lock());
6286   // relinquish the free_list_lock and bitMaplock()
6287   _bit_map->lock()->unlock();
6288   _freelistLock->unlock();
6289   ConcurrentMarkSweepThread::desynchronize(true);
6290   _collector->stopTimer();
6291   if (PrintCMSStatistics != 0) {
6292     _collector->incrementYields();
6293   }
6294 
6295   // See the comment in coordinator_yield()
6296   for (unsigned i = 0;
6297        i < CMSYieldSleepCount &&
6298        ConcurrentMarkSweepThread::should_yield() &&
6299        !CMSCollector::foregroundGCIsActive();
6300        ++i) {
6301     os::sleep(Thread::current(), 1, false);
6302   }
6303 
6304   ConcurrentMarkSweepThread::synchronize(true);
6305   _freelistLock->lock_without_safepoint_check();
6306   _bit_map->lock()->lock_without_safepoint_check();
6307   _collector->startTimer();
6308 }
6309 
6310 ///////////////////////////////////////////////////////////
6311 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6312 //                                 MarkRefsIntoAndScanClosure
6313 ///////////////////////////////////////////////////////////
6314 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6315   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6316   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6317   _span(span),
6318   _bit_map(bit_map),
6319   _work_queue(work_queue),
6320   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6321                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6322   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6323 {
6324   _ref_processor = rp;
6325   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6326 }
6327 
6328 // This closure is used to mark refs into the CMS generation at the
6329 // second (final) checkpoint, and to scan and transitively follow
6330 // the unmarked oops. The marks are made in the marking bit map and
6331 // the work_queue is used for keeping the (newly) grey objects during
6332 // the scan phase whence they are also available for stealing by parallel
6333 // threads. Since the marking bit map is shared, updates are
6334 // synchronized (via CAS).
6335 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6336   if (obj != NULL) {
6337     // Ignore mark word because this could be an already marked oop
6338     // that may be chained at the end of the overflow list.
6339     assert(obj->is_oop(true), "expected an oop");
6340     HeapWord* addr = (HeapWord*)obj;
6341     if (_span.contains(addr) &&
6342         !_bit_map->isMarked(addr)) {
6343       // mark bit map (object will become grey):
6344       // It is possible for several threads to be
6345       // trying to "claim" this object concurrently;
6346       // the unique thread that succeeds in marking the
6347       // object first will do the subsequent push on
6348       // to the work queue (or overflow list).
6349       if (_bit_map->par_mark(addr)) {
6350         // push on work_queue (which may not be empty), and trim the
6351         // queue to an appropriate length by applying this closure to
6352         // the oops in the oops popped from the stack (i.e. blacken the
6353         // grey objects)
6354         bool res = _work_queue->push(obj);
6355         assert(res, "Low water mark should be less than capacity?");
6356         trim_queue(_low_water_mark);
6357       } // Else, another thread claimed the object
6358     }
6359   }
6360 }
6361 
6362 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6363 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6364 
6365 // This closure is used to rescan the marked objects on the dirty cards
6366 // in the mod union table and the card table proper.
6367 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6368   oop p, MemRegion mr) {
6369 
6370   size_t size = 0;
6371   HeapWord* addr = (HeapWord*)p;
6372   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6373   assert(_span.contains(addr), "we are scanning the CMS generation");
6374   // check if it's time to yield
6375   if (do_yield_check()) {
6376     // We yielded for some foreground stop-world work,
6377     // and we have been asked to abort this ongoing preclean cycle.
6378     return 0;
6379   }
6380   if (_bitMap->isMarked(addr)) {
6381     // it's marked; is it potentially uninitialized?
6382     if (p->klass_or_null() != NULL) {
6383         // an initialized object; ignore mark word in verification below
6384         // since we are running concurrent with mutators
6385         assert(p->is_oop(true), "should be an oop");
6386         if (p->is_objArray()) {
6387           // objArrays are precisely marked; restrict scanning
6388           // to dirty cards only.
6389           size = CompactibleFreeListSpace::adjustObjectSize(
6390                    p->oop_iterate(_scanningClosure, mr));
6391         } else {
6392           // A non-array may have been imprecisely marked; we need
6393           // to scan object in its entirety.
6394           size = CompactibleFreeListSpace::adjustObjectSize(
6395                    p->oop_iterate(_scanningClosure));
6396         }
6397         #ifdef ASSERT
6398           size_t direct_size =
6399             CompactibleFreeListSpace::adjustObjectSize(p->size());
6400           assert(size == direct_size, "Inconsistency in size");
6401           assert(size >= 3, "Necessary for Printezis marks to work");
6402           if (!_bitMap->isMarked(addr+1)) {
6403             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6404           } else {
6405             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6406             assert(_bitMap->isMarked(addr+size-1),
6407                    "inconsistent Printezis mark");
6408           }
6409         #endif // ASSERT
6410     } else {
6411       // An uninitialized object.
6412       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6413       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6414       size = pointer_delta(nextOneAddr + 1, addr);
6415       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6416              "alignment problem");
6417       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6418       // will dirty the card when the klass pointer is installed in the
6419       // object (signaling the completion of initialization).
6420     }
6421   } else {
6422     // Either a not yet marked object or an uninitialized object
6423     if (p->klass_or_null() == NULL) {
6424       // An uninitialized object, skip to the next card, since
6425       // we may not be able to read its P-bits yet.
6426       assert(size == 0, "Initial value");
6427     } else {
6428       // An object not (yet) reached by marking: we merely need to
6429       // compute its size so as to go look at the next block.
6430       assert(p->is_oop(true), "should be an oop");
6431       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6432     }
6433   }
6434   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6435   return size;
6436 }
6437 
6438 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6439   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6440          "CMS thread should hold CMS token");
6441   assert_lock_strong(_freelistLock);
6442   assert_lock_strong(_bitMap->lock());
6443   // relinquish the free_list_lock and bitMaplock()
6444   _bitMap->lock()->unlock();
6445   _freelistLock->unlock();
6446   ConcurrentMarkSweepThread::desynchronize(true);
6447   _collector->stopTimer();
6448   if (PrintCMSStatistics != 0) {
6449     _collector->incrementYields();
6450   }
6451 
6452   // See the comment in coordinator_yield()
6453   for (unsigned i = 0; i < CMSYieldSleepCount &&
6454                    ConcurrentMarkSweepThread::should_yield() &&
6455                    !CMSCollector::foregroundGCIsActive(); ++i) {
6456     os::sleep(Thread::current(), 1, false);
6457   }
6458 
6459   ConcurrentMarkSweepThread::synchronize(true);
6460   _freelistLock->lock_without_safepoint_check();
6461   _bitMap->lock()->lock_without_safepoint_check();
6462   _collector->startTimer();
6463 }
6464 
6465 
6466 //////////////////////////////////////////////////////////////////
6467 // SurvivorSpacePrecleanClosure
6468 //////////////////////////////////////////////////////////////////
6469 // This (single-threaded) closure is used to preclean the oops in
6470 // the survivor spaces.
6471 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6472 
6473   HeapWord* addr = (HeapWord*)p;
6474   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6475   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6476   assert(p->klass_or_null() != NULL, "object should be initialized");
6477   // an initialized object; ignore mark word in verification below
6478   // since we are running concurrent with mutators
6479   assert(p->is_oop(true), "should be an oop");
6480   // Note that we do not yield while we iterate over
6481   // the interior oops of p, pushing the relevant ones
6482   // on our marking stack.
6483   size_t size = p->oop_iterate(_scanning_closure);
6484   do_yield_check();
6485   // Observe that below, we do not abandon the preclean
6486   // phase as soon as we should; rather we empty the
6487   // marking stack before returning. This is to satisfy
6488   // some existing assertions. In general, it may be a
6489   // good idea to abort immediately and complete the marking
6490   // from the grey objects at a later time.
6491   while (!_mark_stack->isEmpty()) {
6492     oop new_oop = _mark_stack->pop();
6493     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6494     assert(_bit_map->isMarked((HeapWord*)new_oop),
6495            "only grey objects on this stack");
6496     // iterate over the oops in this oop, marking and pushing
6497     // the ones in CMS heap (i.e. in _span).
6498     new_oop->oop_iterate(_scanning_closure);
6499     // check if it's time to yield
6500     do_yield_check();
6501   }
6502   unsigned int after_count =
6503     GenCollectedHeap::heap()->total_collections();
6504   bool abort = (_before_count != after_count) ||
6505                _collector->should_abort_preclean();
6506   return abort ? 0 : size;
6507 }
6508 
6509 void SurvivorSpacePrecleanClosure::do_yield_work() {
6510   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6511          "CMS thread should hold CMS token");
6512   assert_lock_strong(_bit_map->lock());
6513   // Relinquish the bit map lock
6514   _bit_map->lock()->unlock();
6515   ConcurrentMarkSweepThread::desynchronize(true);
6516   _collector->stopTimer();
6517   if (PrintCMSStatistics != 0) {
6518     _collector->incrementYields();
6519   }
6520 
6521   // See the comment in coordinator_yield()
6522   for (unsigned i = 0; i < CMSYieldSleepCount &&
6523                        ConcurrentMarkSweepThread::should_yield() &&
6524                        !CMSCollector::foregroundGCIsActive(); ++i) {
6525     os::sleep(Thread::current(), 1, false);
6526   }
6527 
6528   ConcurrentMarkSweepThread::synchronize(true);
6529   _bit_map->lock()->lock_without_safepoint_check();
6530   _collector->startTimer();
6531 }
6532 
6533 // This closure is used to rescan the marked objects on the dirty cards
6534 // in the mod union table and the card table proper. In the parallel
6535 // case, although the bitMap is shared, we do a single read so the
6536 // isMarked() query is "safe".
6537 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6538   // Ignore mark word because we are running concurrent with mutators
6539   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6540   HeapWord* addr = (HeapWord*)p;
6541   assert(_span.contains(addr), "we are scanning the CMS generation");
6542   bool is_obj_array = false;
6543   #ifdef ASSERT
6544     if (!_parallel) {
6545       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6546       assert(_collector->overflow_list_is_empty(),
6547              "overflow list should be empty");
6548 
6549     }
6550   #endif // ASSERT
6551   if (_bit_map->isMarked(addr)) {
6552     // Obj arrays are precisely marked, non-arrays are not;
6553     // so we scan objArrays precisely and non-arrays in their
6554     // entirety.
6555     if (p->is_objArray()) {
6556       is_obj_array = true;
6557       if (_parallel) {
6558         p->oop_iterate(_par_scan_closure, mr);
6559       } else {
6560         p->oop_iterate(_scan_closure, mr);
6561       }
6562     } else {
6563       if (_parallel) {
6564         p->oop_iterate(_par_scan_closure);
6565       } else {
6566         p->oop_iterate(_scan_closure);
6567       }
6568     }
6569   }
6570   #ifdef ASSERT
6571     if (!_parallel) {
6572       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6573       assert(_collector->overflow_list_is_empty(),
6574              "overflow list should be empty");
6575 
6576     }
6577   #endif // ASSERT
6578   return is_obj_array;
6579 }
6580 
6581 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6582                         MemRegion span,
6583                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6584                         bool should_yield, bool verifying):
6585   _collector(collector),
6586   _span(span),
6587   _bitMap(bitMap),
6588   _mut(&collector->_modUnionTable),
6589   _markStack(markStack),
6590   _yield(should_yield),
6591   _skipBits(0)
6592 {
6593   assert(_markStack->isEmpty(), "stack should be empty");
6594   _finger = _bitMap->startWord();
6595   _threshold = _finger;
6596   assert(_collector->_restart_addr == NULL, "Sanity check");
6597   assert(_span.contains(_finger), "Out of bounds _finger?");
6598   DEBUG_ONLY(_verifying = verifying;)
6599 }
6600 
6601 void MarkFromRootsClosure::reset(HeapWord* addr) {
6602   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6603   assert(_span.contains(addr), "Out of bounds _finger?");
6604   _finger = addr;
6605   _threshold = (HeapWord*)round_to(
6606                  (intptr_t)_finger, CardTableModRefBS::card_size);
6607 }
6608 
6609 // Should revisit to see if this should be restructured for
6610 // greater efficiency.
6611 bool MarkFromRootsClosure::do_bit(size_t offset) {
6612   if (_skipBits > 0) {
6613     _skipBits--;
6614     return true;
6615   }
6616   // convert offset into a HeapWord*
6617   HeapWord* addr = _bitMap->startWord() + offset;
6618   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6619          "address out of range");
6620   assert(_bitMap->isMarked(addr), "tautology");
6621   if (_bitMap->isMarked(addr+1)) {
6622     // this is an allocated but not yet initialized object
6623     assert(_skipBits == 0, "tautology");
6624     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6625     oop p = oop(addr);
6626     if (p->klass_or_null() == NULL) {
6627       DEBUG_ONLY(if (!_verifying) {)
6628         // We re-dirty the cards on which this object lies and increase
6629         // the _threshold so that we'll come back to scan this object
6630         // during the preclean or remark phase. (CMSCleanOnEnter)
6631         if (CMSCleanOnEnter) {
6632           size_t sz = _collector->block_size_using_printezis_bits(addr);
6633           HeapWord* end_card_addr   = (HeapWord*)round_to(
6634                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6635           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6636           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6637           // Bump _threshold to end_card_addr; note that
6638           // _threshold cannot possibly exceed end_card_addr, anyhow.
6639           // This prevents future clearing of the card as the scan proceeds
6640           // to the right.
6641           assert(_threshold <= end_card_addr,
6642                  "Because we are just scanning into this object");
6643           if (_threshold < end_card_addr) {
6644             _threshold = end_card_addr;
6645           }
6646           if (p->klass_or_null() != NULL) {
6647             // Redirty the range of cards...
6648             _mut->mark_range(redirty_range);
6649           } // ...else the setting of klass will dirty the card anyway.
6650         }
6651       DEBUG_ONLY(})
6652       return true;
6653     }
6654   }
6655   scanOopsInOop(addr);
6656   return true;
6657 }
6658 
6659 // We take a break if we've been at this for a while,
6660 // so as to avoid monopolizing the locks involved.
6661 void MarkFromRootsClosure::do_yield_work() {
6662   // First give up the locks, then yield, then re-lock
6663   // We should probably use a constructor/destructor idiom to
6664   // do this unlock/lock or modify the MutexUnlocker class to
6665   // serve our purpose. XXX
6666   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6667          "CMS thread should hold CMS token");
6668   assert_lock_strong(_bitMap->lock());
6669   _bitMap->lock()->unlock();
6670   ConcurrentMarkSweepThread::desynchronize(true);
6671   _collector->stopTimer();
6672   if (PrintCMSStatistics != 0) {
6673     _collector->incrementYields();
6674   }
6675 
6676   // See the comment in coordinator_yield()
6677   for (unsigned i = 0; i < CMSYieldSleepCount &&
6678                        ConcurrentMarkSweepThread::should_yield() &&
6679                        !CMSCollector::foregroundGCIsActive(); ++i) {
6680     os::sleep(Thread::current(), 1, false);
6681   }
6682 
6683   ConcurrentMarkSweepThread::synchronize(true);
6684   _bitMap->lock()->lock_without_safepoint_check();
6685   _collector->startTimer();
6686 }
6687 
6688 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6689   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6690   assert(_markStack->isEmpty(),
6691          "should drain stack to limit stack usage");
6692   // convert ptr to an oop preparatory to scanning
6693   oop obj = oop(ptr);
6694   // Ignore mark word in verification below, since we
6695   // may be running concurrent with mutators.
6696   assert(obj->is_oop(true), "should be an oop");
6697   assert(_finger <= ptr, "_finger runneth ahead");
6698   // advance the finger to right end of this object
6699   _finger = ptr + obj->size();
6700   assert(_finger > ptr, "we just incremented it above");
6701   // On large heaps, it may take us some time to get through
6702   // the marking phase. During
6703   // this time it's possible that a lot of mutations have
6704   // accumulated in the card table and the mod union table --
6705   // these mutation records are redundant until we have
6706   // actually traced into the corresponding card.
6707   // Here, we check whether advancing the finger would make
6708   // us cross into a new card, and if so clear corresponding
6709   // cards in the MUT (preclean them in the card-table in the
6710   // future).
6711 
6712   DEBUG_ONLY(if (!_verifying) {)
6713     // The clean-on-enter optimization is disabled by default,
6714     // until we fix 6178663.
6715     if (CMSCleanOnEnter && (_finger > _threshold)) {
6716       // [_threshold, _finger) represents the interval
6717       // of cards to be cleared  in MUT (or precleaned in card table).
6718       // The set of cards to be cleared is all those that overlap
6719       // with the interval [_threshold, _finger); note that
6720       // _threshold is always kept card-aligned but _finger isn't
6721       // always card-aligned.
6722       HeapWord* old_threshold = _threshold;
6723       assert(old_threshold == (HeapWord*)round_to(
6724               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6725              "_threshold should always be card-aligned");
6726       _threshold = (HeapWord*)round_to(
6727                      (intptr_t)_finger, CardTableModRefBS::card_size);
6728       MemRegion mr(old_threshold, _threshold);
6729       assert(!mr.is_empty(), "Control point invariant");
6730       assert(_span.contains(mr), "Should clear within span");
6731       _mut->clear_range(mr);
6732     }
6733   DEBUG_ONLY(})
6734   // Note: the finger doesn't advance while we drain
6735   // the stack below.
6736   PushOrMarkClosure pushOrMarkClosure(_collector,
6737                                       _span, _bitMap, _markStack,
6738                                       _finger, this);
6739   bool res = _markStack->push(obj);
6740   assert(res, "Empty non-zero size stack should have space for single push");
6741   while (!_markStack->isEmpty()) {
6742     oop new_oop = _markStack->pop();
6743     // Skip verifying header mark word below because we are
6744     // running concurrent with mutators.
6745     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6746     // now scan this oop's oops
6747     new_oop->oop_iterate(&pushOrMarkClosure);
6748     do_yield_check();
6749   }
6750   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6751 }
6752 
6753 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6754                        CMSCollector* collector, MemRegion span,
6755                        CMSBitMap* bit_map,
6756                        OopTaskQueue* work_queue,
6757                        CMSMarkStack*  overflow_stack):
6758   _collector(collector),
6759   _whole_span(collector->_span),
6760   _span(span),
6761   _bit_map(bit_map),
6762   _mut(&collector->_modUnionTable),
6763   _work_queue(work_queue),
6764   _overflow_stack(overflow_stack),
6765   _skip_bits(0),
6766   _task(task)
6767 {
6768   assert(_work_queue->size() == 0, "work_queue should be empty");
6769   _finger = span.start();
6770   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6771   assert(_span.contains(_finger), "Out of bounds _finger?");
6772 }
6773 
6774 // Should revisit to see if this should be restructured for
6775 // greater efficiency.
6776 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6777   if (_skip_bits > 0) {
6778     _skip_bits--;
6779     return true;
6780   }
6781   // convert offset into a HeapWord*
6782   HeapWord* addr = _bit_map->startWord() + offset;
6783   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6784          "address out of range");
6785   assert(_bit_map->isMarked(addr), "tautology");
6786   if (_bit_map->isMarked(addr+1)) {
6787     // this is an allocated object that might not yet be initialized
6788     assert(_skip_bits == 0, "tautology");
6789     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6790     oop p = oop(addr);
6791     if (p->klass_or_null() == NULL) {
6792       // in the case of Clean-on-Enter optimization, redirty card
6793       // and avoid clearing card by increasing  the threshold.
6794       return true;
6795     }
6796   }
6797   scan_oops_in_oop(addr);
6798   return true;
6799 }
6800 
6801 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6802   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6803   // Should we assert that our work queue is empty or
6804   // below some drain limit?
6805   assert(_work_queue->size() == 0,
6806          "should drain stack to limit stack usage");
6807   // convert ptr to an oop preparatory to scanning
6808   oop obj = oop(ptr);
6809   // Ignore mark word in verification below, since we
6810   // may be running concurrent with mutators.
6811   assert(obj->is_oop(true), "should be an oop");
6812   assert(_finger <= ptr, "_finger runneth ahead");
6813   // advance the finger to right end of this object
6814   _finger = ptr + obj->size();
6815   assert(_finger > ptr, "we just incremented it above");
6816   // On large heaps, it may take us some time to get through
6817   // the marking phase. During
6818   // this time it's possible that a lot of mutations have
6819   // accumulated in the card table and the mod union table --
6820   // these mutation records are redundant until we have
6821   // actually traced into the corresponding card.
6822   // Here, we check whether advancing the finger would make
6823   // us cross into a new card, and if so clear corresponding
6824   // cards in the MUT (preclean them in the card-table in the
6825   // future).
6826 
6827   // The clean-on-enter optimization is disabled by default,
6828   // until we fix 6178663.
6829   if (CMSCleanOnEnter && (_finger > _threshold)) {
6830     // [_threshold, _finger) represents the interval
6831     // of cards to be cleared  in MUT (or precleaned in card table).
6832     // The set of cards to be cleared is all those that overlap
6833     // with the interval [_threshold, _finger); note that
6834     // _threshold is always kept card-aligned but _finger isn't
6835     // always card-aligned.
6836     HeapWord* old_threshold = _threshold;
6837     assert(old_threshold == (HeapWord*)round_to(
6838             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6839            "_threshold should always be card-aligned");
6840     _threshold = (HeapWord*)round_to(
6841                    (intptr_t)_finger, CardTableModRefBS::card_size);
6842     MemRegion mr(old_threshold, _threshold);
6843     assert(!mr.is_empty(), "Control point invariant");
6844     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6845     _mut->clear_range(mr);
6846   }
6847 
6848   // Note: the local finger doesn't advance while we drain
6849   // the stack below, but the global finger sure can and will.
6850   HeapWord** gfa = _task->global_finger_addr();
6851   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6852                                       _span, _bit_map,
6853                                       _work_queue,
6854                                       _overflow_stack,
6855                                       _finger,
6856                                       gfa, this);
6857   bool res = _work_queue->push(obj);   // overflow could occur here
6858   assert(res, "Will hold once we use workqueues");
6859   while (true) {
6860     oop new_oop;
6861     if (!_work_queue->pop_local(new_oop)) {
6862       // We emptied our work_queue; check if there's stuff that can
6863       // be gotten from the overflow stack.
6864       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6865             _overflow_stack, _work_queue)) {
6866         do_yield_check();
6867         continue;
6868       } else {  // done
6869         break;
6870       }
6871     }
6872     // Skip verifying header mark word below because we are
6873     // running concurrent with mutators.
6874     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6875     // now scan this oop's oops
6876     new_oop->oop_iterate(&pushOrMarkClosure);
6877     do_yield_check();
6878   }
6879   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6880 }
6881 
6882 // Yield in response to a request from VM Thread or
6883 // from mutators.
6884 void Par_MarkFromRootsClosure::do_yield_work() {
6885   assert(_task != NULL, "sanity");
6886   _task->yield();
6887 }
6888 
6889 // A variant of the above used for verifying CMS marking work.
6890 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6891                         MemRegion span,
6892                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6893                         CMSMarkStack*  mark_stack):
6894   _collector(collector),
6895   _span(span),
6896   _verification_bm(verification_bm),
6897   _cms_bm(cms_bm),
6898   _mark_stack(mark_stack),
6899   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6900                       mark_stack)
6901 {
6902   assert(_mark_stack->isEmpty(), "stack should be empty");
6903   _finger = _verification_bm->startWord();
6904   assert(_collector->_restart_addr == NULL, "Sanity check");
6905   assert(_span.contains(_finger), "Out of bounds _finger?");
6906 }
6907 
6908 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6909   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6910   assert(_span.contains(addr), "Out of bounds _finger?");
6911   _finger = addr;
6912 }
6913 
6914 // Should revisit to see if this should be restructured for
6915 // greater efficiency.
6916 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6917   // convert offset into a HeapWord*
6918   HeapWord* addr = _verification_bm->startWord() + offset;
6919   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6920          "address out of range");
6921   assert(_verification_bm->isMarked(addr), "tautology");
6922   assert(_cms_bm->isMarked(addr), "tautology");
6923 
6924   assert(_mark_stack->isEmpty(),
6925          "should drain stack to limit stack usage");
6926   // convert addr to an oop preparatory to scanning
6927   oop obj = oop(addr);
6928   assert(obj->is_oop(), "should be an oop");
6929   assert(_finger <= addr, "_finger runneth ahead");
6930   // advance the finger to right end of this object
6931   _finger = addr + obj->size();
6932   assert(_finger > addr, "we just incremented it above");
6933   // Note: the finger doesn't advance while we drain
6934   // the stack below.
6935   bool res = _mark_stack->push(obj);
6936   assert(res, "Empty non-zero size stack should have space for single push");
6937   while (!_mark_stack->isEmpty()) {
6938     oop new_oop = _mark_stack->pop();
6939     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6940     // now scan this oop's oops
6941     new_oop->oop_iterate(&_pam_verify_closure);
6942   }
6943   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6944   return true;
6945 }
6946 
6947 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6948   CMSCollector* collector, MemRegion span,
6949   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6950   CMSMarkStack*  mark_stack):
6951   MetadataAwareOopClosure(collector->ref_processor()),
6952   _collector(collector),
6953   _span(span),
6954   _verification_bm(verification_bm),
6955   _cms_bm(cms_bm),
6956   _mark_stack(mark_stack)
6957 { }
6958 
6959 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6960 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6961 
6962 // Upon stack overflow, we discard (part of) the stack,
6963 // remembering the least address amongst those discarded
6964 // in CMSCollector's _restart_address.
6965 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6966   // Remember the least grey address discarded
6967   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6968   _collector->lower_restart_addr(ra);
6969   _mark_stack->reset();  // discard stack contents
6970   _mark_stack->expand(); // expand the stack if possible
6971 }
6972 
6973 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6974   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6975   HeapWord* addr = (HeapWord*)obj;
6976   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6977     // Oop lies in _span and isn't yet grey or black
6978     _verification_bm->mark(addr);            // now grey
6979     if (!_cms_bm->isMarked(addr)) {
6980       oop(addr)->print();
6981       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6982                              addr);
6983       fatal("... aborting");
6984     }
6985 
6986     if (!_mark_stack->push(obj)) { // stack overflow
6987       if (PrintCMSStatistics != 0) {
6988         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6989                                SIZE_FORMAT, _mark_stack->capacity());
6990       }
6991       assert(_mark_stack->isFull(), "Else push should have succeeded");
6992       handle_stack_overflow(addr);
6993     }
6994     // anything including and to the right of _finger
6995     // will be scanned as we iterate over the remainder of the
6996     // bit map
6997   }
6998 }
6999 
7000 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7001                      MemRegion span,
7002                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7003                      HeapWord* finger, MarkFromRootsClosure* parent) :
7004   MetadataAwareOopClosure(collector->ref_processor()),
7005   _collector(collector),
7006   _span(span),
7007   _bitMap(bitMap),
7008   _markStack(markStack),
7009   _finger(finger),
7010   _parent(parent)
7011 { }
7012 
7013 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7014                      MemRegion span,
7015                      CMSBitMap* bit_map,
7016                      OopTaskQueue* work_queue,
7017                      CMSMarkStack*  overflow_stack,
7018                      HeapWord* finger,
7019                      HeapWord** global_finger_addr,
7020                      Par_MarkFromRootsClosure* parent) :
7021   MetadataAwareOopClosure(collector->ref_processor()),
7022   _collector(collector),
7023   _whole_span(collector->_span),
7024   _span(span),
7025   _bit_map(bit_map),
7026   _work_queue(work_queue),
7027   _overflow_stack(overflow_stack),
7028   _finger(finger),
7029   _global_finger_addr(global_finger_addr),
7030   _parent(parent)
7031 { }
7032 
7033 // Assumes thread-safe access by callers, who are
7034 // responsible for mutual exclusion.
7035 void CMSCollector::lower_restart_addr(HeapWord* low) {
7036   assert(_span.contains(low), "Out of bounds addr");
7037   if (_restart_addr == NULL) {
7038     _restart_addr = low;
7039   } else {
7040     _restart_addr = MIN2(_restart_addr, low);
7041   }
7042 }
7043 
7044 // Upon stack overflow, we discard (part of) the stack,
7045 // remembering the least address amongst those discarded
7046 // in CMSCollector's _restart_address.
7047 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7048   // Remember the least grey address discarded
7049   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7050   _collector->lower_restart_addr(ra);
7051   _markStack->reset();  // discard stack contents
7052   _markStack->expand(); // expand the stack if possible
7053 }
7054 
7055 // Upon stack overflow, we discard (part of) the stack,
7056 // remembering the least address amongst those discarded
7057 // in CMSCollector's _restart_address.
7058 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7059   // We need to do this under a mutex to prevent other
7060   // workers from interfering with the work done below.
7061   MutexLockerEx ml(_overflow_stack->par_lock(),
7062                    Mutex::_no_safepoint_check_flag);
7063   // Remember the least grey address discarded
7064   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7065   _collector->lower_restart_addr(ra);
7066   _overflow_stack->reset();  // discard stack contents
7067   _overflow_stack->expand(); // expand the stack if possible
7068 }
7069 
7070 void PushOrMarkClosure::do_oop(oop obj) {
7071   // Ignore mark word because we are running concurrent with mutators.
7072   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7073   HeapWord* addr = (HeapWord*)obj;
7074   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7075     // Oop lies in _span and isn't yet grey or black
7076     _bitMap->mark(addr);            // now grey
7077     if (addr < _finger) {
7078       // the bit map iteration has already either passed, or
7079       // sampled, this bit in the bit map; we'll need to
7080       // use the marking stack to scan this oop's oops.
7081       bool simulate_overflow = false;
7082       NOT_PRODUCT(
7083         if (CMSMarkStackOverflowALot &&
7084             _collector->simulate_overflow()) {
7085           // simulate a stack overflow
7086           simulate_overflow = true;
7087         }
7088       )
7089       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7090         if (PrintCMSStatistics != 0) {
7091           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7092                                  SIZE_FORMAT, _markStack->capacity());
7093         }
7094         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7095         handle_stack_overflow(addr);
7096       }
7097     }
7098     // anything including and to the right of _finger
7099     // will be scanned as we iterate over the remainder of the
7100     // bit map
7101     do_yield_check();
7102   }
7103 }
7104 
7105 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7106 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7107 
7108 void Par_PushOrMarkClosure::do_oop(oop obj) {
7109   // Ignore mark word because we are running concurrent with mutators.
7110   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7111   HeapWord* addr = (HeapWord*)obj;
7112   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7113     // Oop lies in _span and isn't yet grey or black
7114     // We read the global_finger (volatile read) strictly after marking oop
7115     bool res = _bit_map->par_mark(addr);    // now grey
7116     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7117     // Should we push this marked oop on our stack?
7118     // -- if someone else marked it, nothing to do
7119     // -- if target oop is above global finger nothing to do
7120     // -- if target oop is in chunk and above local finger
7121     //      then nothing to do
7122     // -- else push on work queue
7123     if (   !res       // someone else marked it, they will deal with it
7124         || (addr >= *gfa)  // will be scanned in a later task
7125         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7126       return;
7127     }
7128     // the bit map iteration has already either passed, or
7129     // sampled, this bit in the bit map; we'll need to
7130     // use the marking stack to scan this oop's oops.
7131     bool simulate_overflow = false;
7132     NOT_PRODUCT(
7133       if (CMSMarkStackOverflowALot &&
7134           _collector->simulate_overflow()) {
7135         // simulate a stack overflow
7136         simulate_overflow = true;
7137       }
7138     )
7139     if (simulate_overflow ||
7140         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7141       // stack overflow
7142       if (PrintCMSStatistics != 0) {
7143         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7144                                SIZE_FORMAT, _overflow_stack->capacity());
7145       }
7146       // We cannot assert that the overflow stack is full because
7147       // it may have been emptied since.
7148       assert(simulate_overflow ||
7149              _work_queue->size() == _work_queue->max_elems(),
7150             "Else push should have succeeded");
7151       handle_stack_overflow(addr);
7152     }
7153     do_yield_check();
7154   }
7155 }
7156 
7157 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7158 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7159 
7160 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7161                                        MemRegion span,
7162                                        ReferenceProcessor* rp,
7163                                        CMSBitMap* bit_map,
7164                                        CMSBitMap* mod_union_table,
7165                                        CMSMarkStack*  mark_stack,
7166                                        bool           concurrent_precleaning):
7167   MetadataAwareOopClosure(rp),
7168   _collector(collector),
7169   _span(span),
7170   _bit_map(bit_map),
7171   _mod_union_table(mod_union_table),
7172   _mark_stack(mark_stack),
7173   _concurrent_precleaning(concurrent_precleaning)
7174 {
7175   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7176 }
7177 
7178 // Grey object rescan during pre-cleaning and second checkpoint phases --
7179 // the non-parallel version (the parallel version appears further below.)
7180 void PushAndMarkClosure::do_oop(oop obj) {
7181   // Ignore mark word verification. If during concurrent precleaning,
7182   // the object monitor may be locked. If during the checkpoint
7183   // phases, the object may already have been reached by a  different
7184   // path and may be at the end of the global overflow list (so
7185   // the mark word may be NULL).
7186   assert(obj->is_oop_or_null(true /* ignore mark word */),
7187          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7188   HeapWord* addr = (HeapWord*)obj;
7189   // Check if oop points into the CMS generation
7190   // and is not marked
7191   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7192     // a white object ...
7193     _bit_map->mark(addr);         // ... now grey
7194     // push on the marking stack (grey set)
7195     bool simulate_overflow = false;
7196     NOT_PRODUCT(
7197       if (CMSMarkStackOverflowALot &&
7198           _collector->simulate_overflow()) {
7199         // simulate a stack overflow
7200         simulate_overflow = true;
7201       }
7202     )
7203     if (simulate_overflow || !_mark_stack->push(obj)) {
7204       if (_concurrent_precleaning) {
7205          // During precleaning we can just dirty the appropriate card(s)
7206          // in the mod union table, thus ensuring that the object remains
7207          // in the grey set  and continue. In the case of object arrays
7208          // we need to dirty all of the cards that the object spans,
7209          // since the rescan of object arrays will be limited to the
7210          // dirty cards.
7211          // Note that no one can be interfering with us in this action
7212          // of dirtying the mod union table, so no locking or atomics
7213          // are required.
7214          if (obj->is_objArray()) {
7215            size_t sz = obj->size();
7216            HeapWord* end_card_addr = (HeapWord*)round_to(
7217                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7218            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7219            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7220            _mod_union_table->mark_range(redirty_range);
7221          } else {
7222            _mod_union_table->mark(addr);
7223          }
7224          _collector->_ser_pmc_preclean_ovflw++;
7225       } else {
7226          // During the remark phase, we need to remember this oop
7227          // in the overflow list.
7228          _collector->push_on_overflow_list(obj);
7229          _collector->_ser_pmc_remark_ovflw++;
7230       }
7231     }
7232   }
7233 }
7234 
7235 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7236                                                MemRegion span,
7237                                                ReferenceProcessor* rp,
7238                                                CMSBitMap* bit_map,
7239                                                OopTaskQueue* work_queue):
7240   MetadataAwareOopClosure(rp),
7241   _collector(collector),
7242   _span(span),
7243   _bit_map(bit_map),
7244   _work_queue(work_queue)
7245 {
7246   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7247 }
7248 
7249 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7250 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7251 
7252 // Grey object rescan during second checkpoint phase --
7253 // the parallel version.
7254 void Par_PushAndMarkClosure::do_oop(oop obj) {
7255   // In the assert below, we ignore the mark word because
7256   // this oop may point to an already visited object that is
7257   // on the overflow stack (in which case the mark word has
7258   // been hijacked for chaining into the overflow stack --
7259   // if this is the last object in the overflow stack then
7260   // its mark word will be NULL). Because this object may
7261   // have been subsequently popped off the global overflow
7262   // stack, and the mark word possibly restored to the prototypical
7263   // value, by the time we get to examined this failing assert in
7264   // the debugger, is_oop_or_null(false) may subsequently start
7265   // to hold.
7266   assert(obj->is_oop_or_null(true),
7267          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7268   HeapWord* addr = (HeapWord*)obj;
7269   // Check if oop points into the CMS generation
7270   // and is not marked
7271   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7272     // a white object ...
7273     // If we manage to "claim" the object, by being the
7274     // first thread to mark it, then we push it on our
7275     // marking stack
7276     if (_bit_map->par_mark(addr)) {     // ... now grey
7277       // push on work queue (grey set)
7278       bool simulate_overflow = false;
7279       NOT_PRODUCT(
7280         if (CMSMarkStackOverflowALot &&
7281             _collector->par_simulate_overflow()) {
7282           // simulate a stack overflow
7283           simulate_overflow = true;
7284         }
7285       )
7286       if (simulate_overflow || !_work_queue->push(obj)) {
7287         _collector->par_push_on_overflow_list(obj);
7288         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7289       }
7290     } // Else, some other thread got there first
7291   }
7292 }
7293 
7294 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7295 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7296 
7297 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7298   Mutex* bml = _collector->bitMapLock();
7299   assert_lock_strong(bml);
7300   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7301          "CMS thread should hold CMS token");
7302 
7303   bml->unlock();
7304   ConcurrentMarkSweepThread::desynchronize(true);
7305 
7306   _collector->stopTimer();
7307   if (PrintCMSStatistics != 0) {
7308     _collector->incrementYields();
7309   }
7310 
7311   // See the comment in coordinator_yield()
7312   for (unsigned i = 0; i < CMSYieldSleepCount &&
7313                        ConcurrentMarkSweepThread::should_yield() &&
7314                        !CMSCollector::foregroundGCIsActive(); ++i) {
7315     os::sleep(Thread::current(), 1, false);
7316   }
7317 
7318   ConcurrentMarkSweepThread::synchronize(true);
7319   bml->lock();
7320 
7321   _collector->startTimer();
7322 }
7323 
7324 bool CMSPrecleanRefsYieldClosure::should_return() {
7325   if (ConcurrentMarkSweepThread::should_yield()) {
7326     do_yield_work();
7327   }
7328   return _collector->foregroundGCIsActive();
7329 }
7330 
7331 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7332   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7333          "mr should be aligned to start at a card boundary");
7334   // We'd like to assert:
7335   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7336   //        "mr should be a range of cards");
7337   // However, that would be too strong in one case -- the last
7338   // partition ends at _unallocated_block which, in general, can be
7339   // an arbitrary boundary, not necessarily card aligned.
7340   if (PrintCMSStatistics != 0) {
7341     _num_dirty_cards +=
7342          mr.word_size()/CardTableModRefBS::card_size_in_words;
7343   }
7344   _space->object_iterate_mem(mr, &_scan_cl);
7345 }
7346 
7347 SweepClosure::SweepClosure(CMSCollector* collector,
7348                            ConcurrentMarkSweepGeneration* g,
7349                            CMSBitMap* bitMap, bool should_yield) :
7350   _collector(collector),
7351   _g(g),
7352   _sp(g->cmsSpace()),
7353   _limit(_sp->sweep_limit()),
7354   _freelistLock(_sp->freelistLock()),
7355   _bitMap(bitMap),
7356   _yield(should_yield),
7357   _inFreeRange(false),           // No free range at beginning of sweep
7358   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7359   _lastFreeRangeCoalesced(false),
7360   _freeFinger(g->used_region().start())
7361 {
7362   NOT_PRODUCT(
7363     _numObjectsFreed = 0;
7364     _numWordsFreed   = 0;
7365     _numObjectsLive = 0;
7366     _numWordsLive = 0;
7367     _numObjectsAlreadyFree = 0;
7368     _numWordsAlreadyFree = 0;
7369     _last_fc = NULL;
7370 
7371     _sp->initializeIndexedFreeListArrayReturnedBytes();
7372     _sp->dictionary()->initialize_dict_returned_bytes();
7373   )
7374   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7375          "sweep _limit out of bounds");
7376   if (CMSTraceSweeper) {
7377     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7378                         _limit);
7379   }
7380 }
7381 
7382 void SweepClosure::print_on(outputStream* st) const {
7383   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7384                 _sp->bottom(), _sp->end());
7385   tty->print_cr("_limit = " PTR_FORMAT, _limit);
7386   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
7387   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
7388   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7389                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7390 }
7391 
7392 #ifndef PRODUCT
7393 // Assertion checking only:  no useful work in product mode --
7394 // however, if any of the flags below become product flags,
7395 // you may need to review this code to see if it needs to be
7396 // enabled in product mode.
7397 SweepClosure::~SweepClosure() {
7398   assert_lock_strong(_freelistLock);
7399   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7400          "sweep _limit out of bounds");
7401   if (inFreeRange()) {
7402     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7403     print();
7404     ShouldNotReachHere();
7405   }
7406   if (Verbose && PrintGC) {
7407     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7408                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7409     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7410                            SIZE_FORMAT" bytes  "
7411       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7412       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7413       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7414     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7415                         * sizeof(HeapWord);
7416     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7417 
7418     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7419       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7420       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7421       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7422       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7423       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7424         indexListReturnedBytes);
7425       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7426         dict_returned_bytes);
7427     }
7428   }
7429   if (CMSTraceSweeper) {
7430     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7431                            _limit);
7432   }
7433 }
7434 #endif  // PRODUCT
7435 
7436 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7437     bool freeRangeInFreeLists) {
7438   if (CMSTraceSweeper) {
7439     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7440                freeFinger, freeRangeInFreeLists);
7441   }
7442   assert(!inFreeRange(), "Trampling existing free range");
7443   set_inFreeRange(true);
7444   set_lastFreeRangeCoalesced(false);
7445 
7446   set_freeFinger(freeFinger);
7447   set_freeRangeInFreeLists(freeRangeInFreeLists);
7448   if (CMSTestInFreeList) {
7449     if (freeRangeInFreeLists) {
7450       FreeChunk* fc = (FreeChunk*) freeFinger;
7451       assert(fc->is_free(), "A chunk on the free list should be free.");
7452       assert(fc->size() > 0, "Free range should have a size");
7453       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7454     }
7455   }
7456 }
7457 
7458 // Note that the sweeper runs concurrently with mutators. Thus,
7459 // it is possible for direct allocation in this generation to happen
7460 // in the middle of the sweep. Note that the sweeper also coalesces
7461 // contiguous free blocks. Thus, unless the sweeper and the allocator
7462 // synchronize appropriately freshly allocated blocks may get swept up.
7463 // This is accomplished by the sweeper locking the free lists while
7464 // it is sweeping. Thus blocks that are determined to be free are
7465 // indeed free. There is however one additional complication:
7466 // blocks that have been allocated since the final checkpoint and
7467 // mark, will not have been marked and so would be treated as
7468 // unreachable and swept up. To prevent this, the allocator marks
7469 // the bit map when allocating during the sweep phase. This leads,
7470 // however, to a further complication -- objects may have been allocated
7471 // but not yet initialized -- in the sense that the header isn't yet
7472 // installed. The sweeper can not then determine the size of the block
7473 // in order to skip over it. To deal with this case, we use a technique
7474 // (due to Printezis) to encode such uninitialized block sizes in the
7475 // bit map. Since the bit map uses a bit per every HeapWord, but the
7476 // CMS generation has a minimum object size of 3 HeapWords, it follows
7477 // that "normal marks" won't be adjacent in the bit map (there will
7478 // always be at least two 0 bits between successive 1 bits). We make use
7479 // of these "unused" bits to represent uninitialized blocks -- the bit
7480 // corresponding to the start of the uninitialized object and the next
7481 // bit are both set. Finally, a 1 bit marks the end of the object that
7482 // started with the two consecutive 1 bits to indicate its potentially
7483 // uninitialized state.
7484 
7485 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7486   FreeChunk* fc = (FreeChunk*)addr;
7487   size_t res;
7488 
7489   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7490   // than "addr == _limit" because although _limit was a block boundary when
7491   // we started the sweep, it may no longer be one because heap expansion
7492   // may have caused us to coalesce the block ending at the address _limit
7493   // with a newly expanded chunk (this happens when _limit was set to the
7494   // previous _end of the space), so we may have stepped past _limit:
7495   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7496   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7497     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7498            "sweep _limit out of bounds");
7499     assert(addr < _sp->end(), "addr out of bounds");
7500     // Flush any free range we might be holding as a single
7501     // coalesced chunk to the appropriate free list.
7502     if (inFreeRange()) {
7503       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7504              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
7505       flush_cur_free_chunk(freeFinger(),
7506                            pointer_delta(addr, freeFinger()));
7507       if (CMSTraceSweeper) {
7508         gclog_or_tty->print("Sweep: last chunk: ");
7509         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
7510                    "[coalesced:%d]\n",
7511                    freeFinger(), pointer_delta(addr, freeFinger()),
7512                    lastFreeRangeCoalesced() ? 1 : 0);
7513       }
7514     }
7515 
7516     // help the iterator loop finish
7517     return pointer_delta(_sp->end(), addr);
7518   }
7519 
7520   assert(addr < _limit, "sweep invariant");
7521   // check if we should yield
7522   do_yield_check(addr);
7523   if (fc->is_free()) {
7524     // Chunk that is already free
7525     res = fc->size();
7526     do_already_free_chunk(fc);
7527     debug_only(_sp->verifyFreeLists());
7528     // If we flush the chunk at hand in lookahead_and_flush()
7529     // and it's coalesced with a preceding chunk, then the
7530     // process of "mangling" the payload of the coalesced block
7531     // will cause erasure of the size information from the
7532     // (erstwhile) header of all the coalesced blocks but the
7533     // first, so the first disjunct in the assert will not hold
7534     // in that specific case (in which case the second disjunct
7535     // will hold).
7536     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7537            "Otherwise the size info doesn't change at this step");
7538     NOT_PRODUCT(
7539       _numObjectsAlreadyFree++;
7540       _numWordsAlreadyFree += res;
7541     )
7542     NOT_PRODUCT(_last_fc = fc;)
7543   } else if (!_bitMap->isMarked(addr)) {
7544     // Chunk is fresh garbage
7545     res = do_garbage_chunk(fc);
7546     debug_only(_sp->verifyFreeLists());
7547     NOT_PRODUCT(
7548       _numObjectsFreed++;
7549       _numWordsFreed += res;
7550     )
7551   } else {
7552     // Chunk that is alive.
7553     res = do_live_chunk(fc);
7554     debug_only(_sp->verifyFreeLists());
7555     NOT_PRODUCT(
7556         _numObjectsLive++;
7557         _numWordsLive += res;
7558     )
7559   }
7560   return res;
7561 }
7562 
7563 // For the smart allocation, record following
7564 //  split deaths - a free chunk is removed from its free list because
7565 //      it is being split into two or more chunks.
7566 //  split birth - a free chunk is being added to its free list because
7567 //      a larger free chunk has been split and resulted in this free chunk.
7568 //  coal death - a free chunk is being removed from its free list because
7569 //      it is being coalesced into a large free chunk.
7570 //  coal birth - a free chunk is being added to its free list because
7571 //      it was created when two or more free chunks where coalesced into
7572 //      this free chunk.
7573 //
7574 // These statistics are used to determine the desired number of free
7575 // chunks of a given size.  The desired number is chosen to be relative
7576 // to the end of a CMS sweep.  The desired number at the end of a sweep
7577 // is the
7578 //      count-at-end-of-previous-sweep (an amount that was enough)
7579 //              - count-at-beginning-of-current-sweep  (the excess)
7580 //              + split-births  (gains in this size during interval)
7581 //              - split-deaths  (demands on this size during interval)
7582 // where the interval is from the end of one sweep to the end of the
7583 // next.
7584 //
7585 // When sweeping the sweeper maintains an accumulated chunk which is
7586 // the chunk that is made up of chunks that have been coalesced.  That
7587 // will be termed the left-hand chunk.  A new chunk of garbage that
7588 // is being considered for coalescing will be referred to as the
7589 // right-hand chunk.
7590 //
7591 // When making a decision on whether to coalesce a right-hand chunk with
7592 // the current left-hand chunk, the current count vs. the desired count
7593 // of the left-hand chunk is considered.  Also if the right-hand chunk
7594 // is near the large chunk at the end of the heap (see
7595 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7596 // left-hand chunk is coalesced.
7597 //
7598 // When making a decision about whether to split a chunk, the desired count
7599 // vs. the current count of the candidate to be split is also considered.
7600 // If the candidate is underpopulated (currently fewer chunks than desired)
7601 // a chunk of an overpopulated (currently more chunks than desired) size may
7602 // be chosen.  The "hint" associated with a free list, if non-null, points
7603 // to a free list which may be overpopulated.
7604 //
7605 
7606 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7607   const size_t size = fc->size();
7608   // Chunks that cannot be coalesced are not in the
7609   // free lists.
7610   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7611     assert(_sp->verify_chunk_in_free_list(fc),
7612       "free chunk should be in free lists");
7613   }
7614   // a chunk that is already free, should not have been
7615   // marked in the bit map
7616   HeapWord* const addr = (HeapWord*) fc;
7617   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7618   // Verify that the bit map has no bits marked between
7619   // addr and purported end of this block.
7620   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7621 
7622   // Some chunks cannot be coalesced under any circumstances.
7623   // See the definition of cantCoalesce().
7624   if (!fc->cantCoalesce()) {
7625     // This chunk can potentially be coalesced.
7626     if (_sp->adaptive_freelists()) {
7627       // All the work is done in
7628       do_post_free_or_garbage_chunk(fc, size);
7629     } else {  // Not adaptive free lists
7630       // this is a free chunk that can potentially be coalesced by the sweeper;
7631       if (!inFreeRange()) {
7632         // if the next chunk is a free block that can't be coalesced
7633         // it doesn't make sense to remove this chunk from the free lists
7634         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7635         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7636         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7637             nextChunk->is_free()               &&     // ... which is free...
7638             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7639           // nothing to do
7640         } else {
7641           // Potentially the start of a new free range:
7642           // Don't eagerly remove it from the free lists.
7643           // No need to remove it if it will just be put
7644           // back again.  (Also from a pragmatic point of view
7645           // if it is a free block in a region that is beyond
7646           // any allocated blocks, an assertion will fail)
7647           // Remember the start of a free run.
7648           initialize_free_range(addr, true);
7649           // end - can coalesce with next chunk
7650         }
7651       } else {
7652         // the midst of a free range, we are coalescing
7653         print_free_block_coalesced(fc);
7654         if (CMSTraceSweeper) {
7655           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
7656         }
7657         // remove it from the free lists
7658         _sp->removeFreeChunkFromFreeLists(fc);
7659         set_lastFreeRangeCoalesced(true);
7660         // If the chunk is being coalesced and the current free range is
7661         // in the free lists, remove the current free range so that it
7662         // will be returned to the free lists in its entirety - all
7663         // the coalesced pieces included.
7664         if (freeRangeInFreeLists()) {
7665           FreeChunk* ffc = (FreeChunk*) freeFinger();
7666           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7667             "Size of free range is inconsistent with chunk size.");
7668           if (CMSTestInFreeList) {
7669             assert(_sp->verify_chunk_in_free_list(ffc),
7670               "free range is not in free lists");
7671           }
7672           _sp->removeFreeChunkFromFreeLists(ffc);
7673           set_freeRangeInFreeLists(false);
7674         }
7675       }
7676     }
7677     // Note that if the chunk is not coalescable (the else arm
7678     // below), we unconditionally flush, without needing to do
7679     // a "lookahead," as we do below.
7680     if (inFreeRange()) lookahead_and_flush(fc, size);
7681   } else {
7682     // Code path common to both original and adaptive free lists.
7683 
7684     // cant coalesce with previous block; this should be treated
7685     // as the end of a free run if any
7686     if (inFreeRange()) {
7687       // we kicked some butt; time to pick up the garbage
7688       assert(freeFinger() < addr, "freeFinger points too high");
7689       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7690     }
7691     // else, nothing to do, just continue
7692   }
7693 }
7694 
7695 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7696   // This is a chunk of garbage.  It is not in any free list.
7697   // Add it to a free list or let it possibly be coalesced into
7698   // a larger chunk.
7699   HeapWord* const addr = (HeapWord*) fc;
7700   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7701 
7702   if (_sp->adaptive_freelists()) {
7703     // Verify that the bit map has no bits marked between
7704     // addr and purported end of just dead object.
7705     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7706 
7707     do_post_free_or_garbage_chunk(fc, size);
7708   } else {
7709     if (!inFreeRange()) {
7710       // start of a new free range
7711       assert(size > 0, "A free range should have a size");
7712       initialize_free_range(addr, false);
7713     } else {
7714       // this will be swept up when we hit the end of the
7715       // free range
7716       if (CMSTraceSweeper) {
7717         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
7718       }
7719       // If the chunk is being coalesced and the current free range is
7720       // in the free lists, remove the current free range so that it
7721       // will be returned to the free lists in its entirety - all
7722       // the coalesced pieces included.
7723       if (freeRangeInFreeLists()) {
7724         FreeChunk* ffc = (FreeChunk*)freeFinger();
7725         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7726           "Size of free range is inconsistent with chunk size.");
7727         if (CMSTestInFreeList) {
7728           assert(_sp->verify_chunk_in_free_list(ffc),
7729             "free range is not in free lists");
7730         }
7731         _sp->removeFreeChunkFromFreeLists(ffc);
7732         set_freeRangeInFreeLists(false);
7733       }
7734       set_lastFreeRangeCoalesced(true);
7735     }
7736     // this will be swept up when we hit the end of the free range
7737 
7738     // Verify that the bit map has no bits marked between
7739     // addr and purported end of just dead object.
7740     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7741   }
7742   assert(_limit >= addr + size,
7743          "A freshly garbage chunk can't possibly straddle over _limit");
7744   if (inFreeRange()) lookahead_and_flush(fc, size);
7745   return size;
7746 }
7747 
7748 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7749   HeapWord* addr = (HeapWord*) fc;
7750   // The sweeper has just found a live object. Return any accumulated
7751   // left hand chunk to the free lists.
7752   if (inFreeRange()) {
7753     assert(freeFinger() < addr, "freeFinger points too high");
7754     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7755   }
7756 
7757   // This object is live: we'd normally expect this to be
7758   // an oop, and like to assert the following:
7759   // assert(oop(addr)->is_oop(), "live block should be an oop");
7760   // However, as we commented above, this may be an object whose
7761   // header hasn't yet been initialized.
7762   size_t size;
7763   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7764   if (_bitMap->isMarked(addr + 1)) {
7765     // Determine the size from the bit map, rather than trying to
7766     // compute it from the object header.
7767     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7768     size = pointer_delta(nextOneAddr + 1, addr);
7769     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7770            "alignment problem");
7771 
7772 #ifdef ASSERT
7773       if (oop(addr)->klass_or_null() != NULL) {
7774         // Ignore mark word because we are running concurrent with mutators
7775         assert(oop(addr)->is_oop(true), "live block should be an oop");
7776         assert(size ==
7777                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7778                "P-mark and computed size do not agree");
7779       }
7780 #endif
7781 
7782   } else {
7783     // This should be an initialized object that's alive.
7784     assert(oop(addr)->klass_or_null() != NULL,
7785            "Should be an initialized object");
7786     // Ignore mark word because we are running concurrent with mutators
7787     assert(oop(addr)->is_oop(true), "live block should be an oop");
7788     // Verify that the bit map has no bits marked between
7789     // addr and purported end of this block.
7790     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7791     assert(size >= 3, "Necessary for Printezis marks to work");
7792     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7793     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7794   }
7795   return size;
7796 }
7797 
7798 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7799                                                  size_t chunkSize) {
7800   // do_post_free_or_garbage_chunk() should only be called in the case
7801   // of the adaptive free list allocator.
7802   const bool fcInFreeLists = fc->is_free();
7803   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7804   assert((HeapWord*)fc <= _limit, "sweep invariant");
7805   if (CMSTestInFreeList && fcInFreeLists) {
7806     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7807   }
7808 
7809   if (CMSTraceSweeper) {
7810     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", fc, chunkSize);
7811   }
7812 
7813   HeapWord* const fc_addr = (HeapWord*) fc;
7814 
7815   bool coalesce;
7816   const size_t left  = pointer_delta(fc_addr, freeFinger());
7817   const size_t right = chunkSize;
7818   switch (FLSCoalescePolicy) {
7819     // numeric value forms a coalition aggressiveness metric
7820     case 0:  { // never coalesce
7821       coalesce = false;
7822       break;
7823     }
7824     case 1: { // coalesce if left & right chunks on overpopulated lists
7825       coalesce = _sp->coalOverPopulated(left) &&
7826                  _sp->coalOverPopulated(right);
7827       break;
7828     }
7829     case 2: { // coalesce if left chunk on overpopulated list (default)
7830       coalesce = _sp->coalOverPopulated(left);
7831       break;
7832     }
7833     case 3: { // coalesce if left OR right chunk on overpopulated list
7834       coalesce = _sp->coalOverPopulated(left) ||
7835                  _sp->coalOverPopulated(right);
7836       break;
7837     }
7838     case 4: { // always coalesce
7839       coalesce = true;
7840       break;
7841     }
7842     default:
7843      ShouldNotReachHere();
7844   }
7845 
7846   // Should the current free range be coalesced?
7847   // If the chunk is in a free range and either we decided to coalesce above
7848   // or the chunk is near the large block at the end of the heap
7849   // (isNearLargestChunk() returns true), then coalesce this chunk.
7850   const bool doCoalesce = inFreeRange()
7851                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7852   if (doCoalesce) {
7853     // Coalesce the current free range on the left with the new
7854     // chunk on the right.  If either is on a free list,
7855     // it must be removed from the list and stashed in the closure.
7856     if (freeRangeInFreeLists()) {
7857       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7858       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7859         "Size of free range is inconsistent with chunk size.");
7860       if (CMSTestInFreeList) {
7861         assert(_sp->verify_chunk_in_free_list(ffc),
7862           "Chunk is not in free lists");
7863       }
7864       _sp->coalDeath(ffc->size());
7865       _sp->removeFreeChunkFromFreeLists(ffc);
7866       set_freeRangeInFreeLists(false);
7867     }
7868     if (fcInFreeLists) {
7869       _sp->coalDeath(chunkSize);
7870       assert(fc->size() == chunkSize,
7871         "The chunk has the wrong size or is not in the free lists");
7872       _sp->removeFreeChunkFromFreeLists(fc);
7873     }
7874     set_lastFreeRangeCoalesced(true);
7875     print_free_block_coalesced(fc);
7876   } else {  // not in a free range and/or should not coalesce
7877     // Return the current free range and start a new one.
7878     if (inFreeRange()) {
7879       // In a free range but cannot coalesce with the right hand chunk.
7880       // Put the current free range into the free lists.
7881       flush_cur_free_chunk(freeFinger(),
7882                            pointer_delta(fc_addr, freeFinger()));
7883     }
7884     // Set up for new free range.  Pass along whether the right hand
7885     // chunk is in the free lists.
7886     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7887   }
7888 }
7889 
7890 // Lookahead flush:
7891 // If we are tracking a free range, and this is the last chunk that
7892 // we'll look at because its end crosses past _limit, we'll preemptively
7893 // flush it along with any free range we may be holding on to. Note that
7894 // this can be the case only for an already free or freshly garbage
7895 // chunk. If this block is an object, it can never straddle
7896 // over _limit. The "straddling" occurs when _limit is set at
7897 // the previous end of the space when this cycle started, and
7898 // a subsequent heap expansion caused the previously co-terminal
7899 // free block to be coalesced with the newly expanded portion,
7900 // thus rendering _limit a non-block-boundary making it dangerous
7901 // for the sweeper to step over and examine.
7902 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7903   assert(inFreeRange(), "Should only be called if currently in a free range.");
7904   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7905   assert(_sp->used_region().contains(eob - 1),
7906          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7907                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7908                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7909                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
7910   if (eob >= _limit) {
7911     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7912     if (CMSTraceSweeper) {
7913       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7914                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7915                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7916                              _limit, fc, eob, _sp->bottom(), _sp->end());
7917     }
7918     // Return the storage we are tracking back into the free lists.
7919     if (CMSTraceSweeper) {
7920       gclog_or_tty->print_cr("Flushing ... ");
7921     }
7922     assert(freeFinger() < eob, "Error");
7923     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7924   }
7925 }
7926 
7927 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7928   assert(inFreeRange(), "Should only be called if currently in a free range.");
7929   assert(size > 0,
7930     "A zero sized chunk cannot be added to the free lists.");
7931   if (!freeRangeInFreeLists()) {
7932     if (CMSTestInFreeList) {
7933       FreeChunk* fc = (FreeChunk*) chunk;
7934       fc->set_size(size);
7935       assert(!_sp->verify_chunk_in_free_list(fc),
7936         "chunk should not be in free lists yet");
7937     }
7938     if (CMSTraceSweeper) {
7939       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7940                     chunk, size);
7941     }
7942     // A new free range is going to be starting.  The current
7943     // free range has not been added to the free lists yet or
7944     // was removed so add it back.
7945     // If the current free range was coalesced, then the death
7946     // of the free range was recorded.  Record a birth now.
7947     if (lastFreeRangeCoalesced()) {
7948       _sp->coalBirth(size);
7949     }
7950     _sp->addChunkAndRepairOffsetTable(chunk, size,
7951             lastFreeRangeCoalesced());
7952   } else if (CMSTraceSweeper) {
7953     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7954   }
7955   set_inFreeRange(false);
7956   set_freeRangeInFreeLists(false);
7957 }
7958 
7959 // We take a break if we've been at this for a while,
7960 // so as to avoid monopolizing the locks involved.
7961 void SweepClosure::do_yield_work(HeapWord* addr) {
7962   // Return current free chunk being used for coalescing (if any)
7963   // to the appropriate freelist.  After yielding, the next
7964   // free block encountered will start a coalescing range of
7965   // free blocks.  If the next free block is adjacent to the
7966   // chunk just flushed, they will need to wait for the next
7967   // sweep to be coalesced.
7968   if (inFreeRange()) {
7969     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7970   }
7971 
7972   // First give up the locks, then yield, then re-lock.
7973   // We should probably use a constructor/destructor idiom to
7974   // do this unlock/lock or modify the MutexUnlocker class to
7975   // serve our purpose. XXX
7976   assert_lock_strong(_bitMap->lock());
7977   assert_lock_strong(_freelistLock);
7978   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7979          "CMS thread should hold CMS token");
7980   _bitMap->lock()->unlock();
7981   _freelistLock->unlock();
7982   ConcurrentMarkSweepThread::desynchronize(true);
7983   _collector->stopTimer();
7984   if (PrintCMSStatistics != 0) {
7985     _collector->incrementYields();
7986   }
7987 
7988   // See the comment in coordinator_yield()
7989   for (unsigned i = 0; i < CMSYieldSleepCount &&
7990                        ConcurrentMarkSweepThread::should_yield() &&
7991                        !CMSCollector::foregroundGCIsActive(); ++i) {
7992     os::sleep(Thread::current(), 1, false);
7993   }
7994 
7995   ConcurrentMarkSweepThread::synchronize(true);
7996   _freelistLock->lock();
7997   _bitMap->lock()->lock_without_safepoint_check();
7998   _collector->startTimer();
7999 }
8000 
8001 #ifndef PRODUCT
8002 // This is actually very useful in a product build if it can
8003 // be called from the debugger.  Compile it into the product
8004 // as needed.
8005 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8006   return debug_cms_space->verify_chunk_in_free_list(fc);
8007 }
8008 #endif
8009 
8010 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8011   if (CMSTraceSweeper) {
8012     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8013                            fc, fc->size());
8014   }
8015 }
8016 
8017 // CMSIsAliveClosure
8018 bool CMSIsAliveClosure::do_object_b(oop obj) {
8019   HeapWord* addr = (HeapWord*)obj;
8020   return addr != NULL &&
8021          (!_span.contains(addr) || _bit_map->isMarked(addr));
8022 }
8023 
8024 
8025 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8026                       MemRegion span,
8027                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8028                       bool cpc):
8029   _collector(collector),
8030   _span(span),
8031   _bit_map(bit_map),
8032   _mark_stack(mark_stack),
8033   _concurrent_precleaning(cpc) {
8034   assert(!_span.is_empty(), "Empty span could spell trouble");
8035 }
8036 
8037 
8038 // CMSKeepAliveClosure: the serial version
8039 void CMSKeepAliveClosure::do_oop(oop obj) {
8040   HeapWord* addr = (HeapWord*)obj;
8041   if (_span.contains(addr) &&
8042       !_bit_map->isMarked(addr)) {
8043     _bit_map->mark(addr);
8044     bool simulate_overflow = false;
8045     NOT_PRODUCT(
8046       if (CMSMarkStackOverflowALot &&
8047           _collector->simulate_overflow()) {
8048         // simulate a stack overflow
8049         simulate_overflow = true;
8050       }
8051     )
8052     if (simulate_overflow || !_mark_stack->push(obj)) {
8053       if (_concurrent_precleaning) {
8054         // We dirty the overflown object and let the remark
8055         // phase deal with it.
8056         assert(_collector->overflow_list_is_empty(), "Error");
8057         // In the case of object arrays, we need to dirty all of
8058         // the cards that the object spans. No locking or atomics
8059         // are needed since no one else can be mutating the mod union
8060         // table.
8061         if (obj->is_objArray()) {
8062           size_t sz = obj->size();
8063           HeapWord* end_card_addr =
8064             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8065           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8066           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8067           _collector->_modUnionTable.mark_range(redirty_range);
8068         } else {
8069           _collector->_modUnionTable.mark(addr);
8070         }
8071         _collector->_ser_kac_preclean_ovflw++;
8072       } else {
8073         _collector->push_on_overflow_list(obj);
8074         _collector->_ser_kac_ovflw++;
8075       }
8076     }
8077   }
8078 }
8079 
8080 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8081 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8082 
8083 // CMSParKeepAliveClosure: a parallel version of the above.
8084 // The work queues are private to each closure (thread),
8085 // but (may be) available for stealing by other threads.
8086 void CMSParKeepAliveClosure::do_oop(oop obj) {
8087   HeapWord* addr = (HeapWord*)obj;
8088   if (_span.contains(addr) &&
8089       !_bit_map->isMarked(addr)) {
8090     // In general, during recursive tracing, several threads
8091     // may be concurrently getting here; the first one to
8092     // "tag" it, claims it.
8093     if (_bit_map->par_mark(addr)) {
8094       bool res = _work_queue->push(obj);
8095       assert(res, "Low water mark should be much less than capacity");
8096       // Do a recursive trim in the hope that this will keep
8097       // stack usage lower, but leave some oops for potential stealers
8098       trim_queue(_low_water_mark);
8099     } // Else, another thread got there first
8100   }
8101 }
8102 
8103 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8104 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8105 
8106 void CMSParKeepAliveClosure::trim_queue(uint max) {
8107   while (_work_queue->size() > max) {
8108     oop new_oop;
8109     if (_work_queue->pop_local(new_oop)) {
8110       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8111       assert(_bit_map->isMarked((HeapWord*)new_oop),
8112              "no white objects on this stack!");
8113       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8114       // iterate over the oops in this oop, marking and pushing
8115       // the ones in CMS heap (i.e. in _span).
8116       new_oop->oop_iterate(&_mark_and_push);
8117     }
8118   }
8119 }
8120 
8121 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8122                                 CMSCollector* collector,
8123                                 MemRegion span, CMSBitMap* bit_map,
8124                                 OopTaskQueue* work_queue):
8125   _collector(collector),
8126   _span(span),
8127   _bit_map(bit_map),
8128   _work_queue(work_queue) { }
8129 
8130 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8131   HeapWord* addr = (HeapWord*)obj;
8132   if (_span.contains(addr) &&
8133       !_bit_map->isMarked(addr)) {
8134     if (_bit_map->par_mark(addr)) {
8135       bool simulate_overflow = false;
8136       NOT_PRODUCT(
8137         if (CMSMarkStackOverflowALot &&
8138             _collector->par_simulate_overflow()) {
8139           // simulate a stack overflow
8140           simulate_overflow = true;
8141         }
8142       )
8143       if (simulate_overflow || !_work_queue->push(obj)) {
8144         _collector->par_push_on_overflow_list(obj);
8145         _collector->_par_kac_ovflw++;
8146       }
8147     } // Else another thread got there already
8148   }
8149 }
8150 
8151 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8152 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8153 
8154 //////////////////////////////////////////////////////////////////
8155 //  CMSExpansionCause                /////////////////////////////
8156 //////////////////////////////////////////////////////////////////
8157 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8158   switch (cause) {
8159     case _no_expansion:
8160       return "No expansion";
8161     case _satisfy_free_ratio:
8162       return "Free ratio";
8163     case _satisfy_promotion:
8164       return "Satisfy promotion";
8165     case _satisfy_allocation:
8166       return "allocation";
8167     case _allocate_par_lab:
8168       return "Par LAB";
8169     case _allocate_par_spooling_space:
8170       return "Par Spooling Space";
8171     case _adaptive_size_policy:
8172       return "Ergonomics";
8173     default:
8174       return "unknown";
8175   }
8176 }
8177 
8178 void CMSDrainMarkingStackClosure::do_void() {
8179   // the max number to take from overflow list at a time
8180   const size_t num = _mark_stack->capacity()/4;
8181   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8182          "Overflow list should be NULL during concurrent phases");
8183   while (!_mark_stack->isEmpty() ||
8184          // if stack is empty, check the overflow list
8185          _collector->take_from_overflow_list(num, _mark_stack)) {
8186     oop obj = _mark_stack->pop();
8187     HeapWord* addr = (HeapWord*)obj;
8188     assert(_span.contains(addr), "Should be within span");
8189     assert(_bit_map->isMarked(addr), "Should be marked");
8190     assert(obj->is_oop(), "Should be an oop");
8191     obj->oop_iterate(_keep_alive);
8192   }
8193 }
8194 
8195 void CMSParDrainMarkingStackClosure::do_void() {
8196   // drain queue
8197   trim_queue(0);
8198 }
8199 
8200 // Trim our work_queue so its length is below max at return
8201 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8202   while (_work_queue->size() > max) {
8203     oop new_oop;
8204     if (_work_queue->pop_local(new_oop)) {
8205       assert(new_oop->is_oop(), "Expected an oop");
8206       assert(_bit_map->isMarked((HeapWord*)new_oop),
8207              "no white objects on this stack!");
8208       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8209       // iterate over the oops in this oop, marking and pushing
8210       // the ones in CMS heap (i.e. in _span).
8211       new_oop->oop_iterate(&_mark_and_push);
8212     }
8213   }
8214 }
8215 
8216 ////////////////////////////////////////////////////////////////////
8217 // Support for Marking Stack Overflow list handling and related code
8218 ////////////////////////////////////////////////////////////////////
8219 // Much of the following code is similar in shape and spirit to the
8220 // code used in ParNewGC. We should try and share that code
8221 // as much as possible in the future.
8222 
8223 #ifndef PRODUCT
8224 // Debugging support for CMSStackOverflowALot
8225 
8226 // It's OK to call this multi-threaded;  the worst thing
8227 // that can happen is that we'll get a bunch of closely
8228 // spaced simulated overflows, but that's OK, in fact
8229 // probably good as it would exercise the overflow code
8230 // under contention.
8231 bool CMSCollector::simulate_overflow() {
8232   if (_overflow_counter-- <= 0) { // just being defensive
8233     _overflow_counter = CMSMarkStackOverflowInterval;
8234     return true;
8235   } else {
8236     return false;
8237   }
8238 }
8239 
8240 bool CMSCollector::par_simulate_overflow() {
8241   return simulate_overflow();
8242 }
8243 #endif
8244 
8245 // Single-threaded
8246 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8247   assert(stack->isEmpty(), "Expected precondition");
8248   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8249   size_t i = num;
8250   oop  cur = _overflow_list;
8251   const markOop proto = markOopDesc::prototype();
8252   NOT_PRODUCT(ssize_t n = 0;)
8253   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8254     next = oop(cur->mark());
8255     cur->set_mark(proto);   // until proven otherwise
8256     assert(cur->is_oop(), "Should be an oop");
8257     bool res = stack->push(cur);
8258     assert(res, "Bit off more than can chew?");
8259     NOT_PRODUCT(n++;)
8260   }
8261   _overflow_list = cur;
8262 #ifndef PRODUCT
8263   assert(_num_par_pushes >= n, "Too many pops?");
8264   _num_par_pushes -=n;
8265 #endif
8266   return !stack->isEmpty();
8267 }
8268 
8269 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8270 // (MT-safe) Get a prefix of at most "num" from the list.
8271 // The overflow list is chained through the mark word of
8272 // each object in the list. We fetch the entire list,
8273 // break off a prefix of the right size and return the
8274 // remainder. If other threads try to take objects from
8275 // the overflow list at that time, they will wait for
8276 // some time to see if data becomes available. If (and
8277 // only if) another thread places one or more object(s)
8278 // on the global list before we have returned the suffix
8279 // to the global list, we will walk down our local list
8280 // to find its end and append the global list to
8281 // our suffix before returning it. This suffix walk can
8282 // prove to be expensive (quadratic in the amount of traffic)
8283 // when there are many objects in the overflow list and
8284 // there is much producer-consumer contention on the list.
8285 // *NOTE*: The overflow list manipulation code here and
8286 // in ParNewGeneration:: are very similar in shape,
8287 // except that in the ParNew case we use the old (from/eden)
8288 // copy of the object to thread the list via its klass word.
8289 // Because of the common code, if you make any changes in
8290 // the code below, please check the ParNew version to see if
8291 // similar changes might be needed.
8292 // CR 6797058 has been filed to consolidate the common code.
8293 bool CMSCollector::par_take_from_overflow_list(size_t num,
8294                                                OopTaskQueue* work_q,
8295                                                int no_of_gc_threads) {
8296   assert(work_q->size() == 0, "First empty local work queue");
8297   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8298   if (_overflow_list == NULL) {
8299     return false;
8300   }
8301   // Grab the entire list; we'll put back a suffix
8302   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8303   Thread* tid = Thread::current();
8304   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8305   // set to ParallelGCThreads.
8306   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8307   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8308   // If the list is busy, we spin for a short while,
8309   // sleeping between attempts to get the list.
8310   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8311     os::sleep(tid, sleep_time_millis, false);
8312     if (_overflow_list == NULL) {
8313       // Nothing left to take
8314       return false;
8315     } else if (_overflow_list != BUSY) {
8316       // Try and grab the prefix
8317       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8318     }
8319   }
8320   // If the list was found to be empty, or we spun long
8321   // enough, we give up and return empty-handed. If we leave
8322   // the list in the BUSY state below, it must be the case that
8323   // some other thread holds the overflow list and will set it
8324   // to a non-BUSY state in the future.
8325   if (prefix == NULL || prefix == BUSY) {
8326      // Nothing to take or waited long enough
8327      if (prefix == NULL) {
8328        // Write back the NULL in case we overwrote it with BUSY above
8329        // and it is still the same value.
8330        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8331      }
8332      return false;
8333   }
8334   assert(prefix != NULL && prefix != BUSY, "Error");
8335   size_t i = num;
8336   oop cur = prefix;
8337   // Walk down the first "num" objects, unless we reach the end.
8338   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8339   if (cur->mark() == NULL) {
8340     // We have "num" or fewer elements in the list, so there
8341     // is nothing to return to the global list.
8342     // Write back the NULL in lieu of the BUSY we wrote
8343     // above, if it is still the same value.
8344     if (_overflow_list == BUSY) {
8345       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8346     }
8347   } else {
8348     // Chop off the suffix and return it to the global list.
8349     assert(cur->mark() != BUSY, "Error");
8350     oop suffix_head = cur->mark(); // suffix will be put back on global list
8351     cur->set_mark(NULL);           // break off suffix
8352     // It's possible that the list is still in the empty(busy) state
8353     // we left it in a short while ago; in that case we may be
8354     // able to place back the suffix without incurring the cost
8355     // of a walk down the list.
8356     oop observed_overflow_list = _overflow_list;
8357     oop cur_overflow_list = observed_overflow_list;
8358     bool attached = false;
8359     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8360       observed_overflow_list =
8361         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8362       if (cur_overflow_list == observed_overflow_list) {
8363         attached = true;
8364         break;
8365       } else cur_overflow_list = observed_overflow_list;
8366     }
8367     if (!attached) {
8368       // Too bad, someone else sneaked in (at least) an element; we'll need
8369       // to do a splice. Find tail of suffix so we can prepend suffix to global
8370       // list.
8371       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8372       oop suffix_tail = cur;
8373       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8374              "Tautology");
8375       observed_overflow_list = _overflow_list;
8376       do {
8377         cur_overflow_list = observed_overflow_list;
8378         if (cur_overflow_list != BUSY) {
8379           // Do the splice ...
8380           suffix_tail->set_mark(markOop(cur_overflow_list));
8381         } else { // cur_overflow_list == BUSY
8382           suffix_tail->set_mark(NULL);
8383         }
8384         // ... and try to place spliced list back on overflow_list ...
8385         observed_overflow_list =
8386           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8387       } while (cur_overflow_list != observed_overflow_list);
8388       // ... until we have succeeded in doing so.
8389     }
8390   }
8391 
8392   // Push the prefix elements on work_q
8393   assert(prefix != NULL, "control point invariant");
8394   const markOop proto = markOopDesc::prototype();
8395   oop next;
8396   NOT_PRODUCT(ssize_t n = 0;)
8397   for (cur = prefix; cur != NULL; cur = next) {
8398     next = oop(cur->mark());
8399     cur->set_mark(proto);   // until proven otherwise
8400     assert(cur->is_oop(), "Should be an oop");
8401     bool res = work_q->push(cur);
8402     assert(res, "Bit off more than we can chew?");
8403     NOT_PRODUCT(n++;)
8404   }
8405 #ifndef PRODUCT
8406   assert(_num_par_pushes >= n, "Too many pops?");
8407   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8408 #endif
8409   return true;
8410 }
8411 
8412 // Single-threaded
8413 void CMSCollector::push_on_overflow_list(oop p) {
8414   NOT_PRODUCT(_num_par_pushes++;)
8415   assert(p->is_oop(), "Not an oop");
8416   preserve_mark_if_necessary(p);
8417   p->set_mark((markOop)_overflow_list);
8418   _overflow_list = p;
8419 }
8420 
8421 // Multi-threaded; use CAS to prepend to overflow list
8422 void CMSCollector::par_push_on_overflow_list(oop p) {
8423   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8424   assert(p->is_oop(), "Not an oop");
8425   par_preserve_mark_if_necessary(p);
8426   oop observed_overflow_list = _overflow_list;
8427   oop cur_overflow_list;
8428   do {
8429     cur_overflow_list = observed_overflow_list;
8430     if (cur_overflow_list != BUSY) {
8431       p->set_mark(markOop(cur_overflow_list));
8432     } else {
8433       p->set_mark(NULL);
8434     }
8435     observed_overflow_list =
8436       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8437   } while (cur_overflow_list != observed_overflow_list);
8438 }
8439 #undef BUSY
8440 
8441 // Single threaded
8442 // General Note on GrowableArray: pushes may silently fail
8443 // because we are (temporarily) out of C-heap for expanding
8444 // the stack. The problem is quite ubiquitous and affects
8445 // a lot of code in the JVM. The prudent thing for GrowableArray
8446 // to do (for now) is to exit with an error. However, that may
8447 // be too draconian in some cases because the caller may be
8448 // able to recover without much harm. For such cases, we
8449 // should probably introduce a "soft_push" method which returns
8450 // an indication of success or failure with the assumption that
8451 // the caller may be able to recover from a failure; code in
8452 // the VM can then be changed, incrementally, to deal with such
8453 // failures where possible, thus, incrementally hardening the VM
8454 // in such low resource situations.
8455 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8456   _preserved_oop_stack.push(p);
8457   _preserved_mark_stack.push(m);
8458   assert(m == p->mark(), "Mark word changed");
8459   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8460          "bijection");
8461 }
8462 
8463 // Single threaded
8464 void CMSCollector::preserve_mark_if_necessary(oop p) {
8465   markOop m = p->mark();
8466   if (m->must_be_preserved(p)) {
8467     preserve_mark_work(p, m);
8468   }
8469 }
8470 
8471 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8472   markOop m = p->mark();
8473   if (m->must_be_preserved(p)) {
8474     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8475     // Even though we read the mark word without holding
8476     // the lock, we are assured that it will not change
8477     // because we "own" this oop, so no other thread can
8478     // be trying to push it on the overflow list; see
8479     // the assertion in preserve_mark_work() that checks
8480     // that m == p->mark().
8481     preserve_mark_work(p, m);
8482   }
8483 }
8484 
8485 // We should be able to do this multi-threaded,
8486 // a chunk of stack being a task (this is
8487 // correct because each oop only ever appears
8488 // once in the overflow list. However, it's
8489 // not very easy to completely overlap this with
8490 // other operations, so will generally not be done
8491 // until all work's been completed. Because we
8492 // expect the preserved oop stack (set) to be small,
8493 // it's probably fine to do this single-threaded.
8494 // We can explore cleverer concurrent/overlapped/parallel
8495 // processing of preserved marks if we feel the
8496 // need for this in the future. Stack overflow should
8497 // be so rare in practice and, when it happens, its
8498 // effect on performance so great that this will
8499 // likely just be in the noise anyway.
8500 void CMSCollector::restore_preserved_marks_if_any() {
8501   assert(SafepointSynchronize::is_at_safepoint(),
8502          "world should be stopped");
8503   assert(Thread::current()->is_ConcurrentGC_thread() ||
8504          Thread::current()->is_VM_thread(),
8505          "should be single-threaded");
8506   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8507          "bijection");
8508 
8509   while (!_preserved_oop_stack.is_empty()) {
8510     oop p = _preserved_oop_stack.pop();
8511     assert(p->is_oop(), "Should be an oop");
8512     assert(_span.contains(p), "oop should be in _span");
8513     assert(p->mark() == markOopDesc::prototype(),
8514            "Set when taken from overflow list");
8515     markOop m = _preserved_mark_stack.pop();
8516     p->set_mark(m);
8517   }
8518   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8519          "stacks were cleared above");
8520 }
8521 
8522 #ifndef PRODUCT
8523 bool CMSCollector::no_preserved_marks() const {
8524   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8525 }
8526 #endif
8527 
8528 // Transfer some number of overflown objects to usual marking
8529 // stack. Return true if some objects were transferred.
8530 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8531   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8532                     (size_t)ParGCDesiredObjsFromOverflowList);
8533 
8534   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8535   assert(_collector->overflow_list_is_empty() || res,
8536          "If list is not empty, we should have taken something");
8537   assert(!res || !_mark_stack->isEmpty(),
8538          "If we took something, it should now be on our stack");
8539   return res;
8540 }
8541 
8542 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8543   size_t res = _sp->block_size_no_stall(addr, _collector);
8544   if (_sp->block_is_obj(addr)) {
8545     if (_live_bit_map->isMarked(addr)) {
8546       // It can't have been dead in a previous cycle
8547       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8548     } else {
8549       _dead_bit_map->mark(addr);      // mark the dead object
8550     }
8551   }
8552   // Could be 0, if the block size could not be computed without stalling.
8553   return res;
8554 }
8555 
8556 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8557 
8558   switch (phase) {
8559     case CMSCollector::InitialMarking:
8560       initialize(true  /* fullGC */ ,
8561                  cause /* cause of the GC */,
8562                  true  /* recordGCBeginTime */,
8563                  true  /* recordPreGCUsage */,
8564                  false /* recordPeakUsage */,
8565                  false /* recordPostGCusage */,
8566                  true  /* recordAccumulatedGCTime */,
8567                  false /* recordGCEndTime */,
8568                  false /* countCollection */  );
8569       break;
8570 
8571     case CMSCollector::FinalMarking:
8572       initialize(true  /* fullGC */ ,
8573                  cause /* cause of the GC */,
8574                  false /* recordGCBeginTime */,
8575                  false /* recordPreGCUsage */,
8576                  false /* recordPeakUsage */,
8577                  false /* recordPostGCusage */,
8578                  true  /* recordAccumulatedGCTime */,
8579                  false /* recordGCEndTime */,
8580                  false /* countCollection */  );
8581       break;
8582 
8583     case CMSCollector::Sweeping:
8584       initialize(true  /* fullGC */ ,
8585                  cause /* cause of the GC */,
8586                  false /* recordGCBeginTime */,
8587                  false /* recordPreGCUsage */,
8588                  true  /* recordPeakUsage */,
8589                  true  /* recordPostGCusage */,
8590                  false /* recordAccumulatedGCTime */,
8591                  true  /* recordGCEndTime */,
8592                  true  /* countCollection */  );
8593       break;
8594 
8595     default:
8596       ShouldNotReachHere();
8597   }
8598 }