1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 YoungList::YoungList(G1CollectedHeap* g1h) :
 130     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 131     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 132   guarantee(check_list_empty(false), "just making sure...");
 133 }
 134 
 135 void YoungList::push_region(HeapRegion *hr) {
 136   assert(!hr->is_young(), "should not already be young");
 137   assert(hr->get_next_young_region() == NULL, "cause it should!");
 138 
 139   hr->set_next_young_region(_head);
 140   _head = hr;
 141 
 142   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 143   ++_length;
 144 }
 145 
 146 void YoungList::add_survivor_region(HeapRegion* hr) {
 147   assert(hr->is_survivor(), "should be flagged as survivor region");
 148   assert(hr->get_next_young_region() == NULL, "cause it should!");
 149 
 150   hr->set_next_young_region(_survivor_head);
 151   if (_survivor_head == NULL) {
 152     _survivor_tail = hr;
 153   }
 154   _survivor_head = hr;
 155   ++_survivor_length;
 156 }
 157 
 158 void YoungList::empty_list(HeapRegion* list) {
 159   while (list != NULL) {
 160     HeapRegion* next = list->get_next_young_region();
 161     list->set_next_young_region(NULL);
 162     list->uninstall_surv_rate_group();
 163     // This is called before a Full GC and all the non-empty /
 164     // non-humongous regions at the end of the Full GC will end up as
 165     // old anyway.
 166     list->set_old();
 167     list = next;
 168   }
 169 }
 170 
 171 void YoungList::empty_list() {
 172   assert(check_list_well_formed(), "young list should be well formed");
 173 
 174   empty_list(_head);
 175   _head = NULL;
 176   _length = 0;
 177 
 178   empty_list(_survivor_head);
 179   _survivor_head = NULL;
 180   _survivor_tail = NULL;
 181   _survivor_length = 0;
 182 
 183   _last_sampled_rs_lengths = 0;
 184 
 185   assert(check_list_empty(false), "just making sure...");
 186 }
 187 
 188 bool YoungList::check_list_well_formed() {
 189   bool ret = true;
 190 
 191   uint length = 0;
 192   HeapRegion* curr = _head;
 193   HeapRegion* last = NULL;
 194   while (curr != NULL) {
 195     if (!curr->is_young()) {
 196       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
 197                              "incorrectly tagged (y: %d, surv: %d)",
 198                              p2i(curr->bottom()), p2i(curr->end()),
 199                              curr->is_young(), curr->is_survivor());
 200       ret = false;
 201     }
 202     ++length;
 203     last = curr;
 204     curr = curr->get_next_young_region();
 205   }
 206   ret = ret && (length == _length);
 207 
 208   if (!ret) {
 209     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 210     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 211                            length, _length);
 212   }
 213 
 214   return ret;
 215 }
 216 
 217 bool YoungList::check_list_empty(bool check_sample) {
 218   bool ret = true;
 219 
 220   if (_length != 0) {
 221     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 222                   _length);
 223     ret = false;
 224   }
 225   if (check_sample && _last_sampled_rs_lengths != 0) {
 226     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 227     ret = false;
 228   }
 229   if (_head != NULL) {
 230     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 231     ret = false;
 232   }
 233   if (!ret) {
 234     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 235   }
 236 
 237   return ret;
 238 }
 239 
 240 void
 241 YoungList::rs_length_sampling_init() {
 242   _sampled_rs_lengths = 0;
 243   _curr               = _head;
 244 }
 245 
 246 bool
 247 YoungList::rs_length_sampling_more() {
 248   return _curr != NULL;
 249 }
 250 
 251 void
 252 YoungList::rs_length_sampling_next() {
 253   assert( _curr != NULL, "invariant" );
 254   size_t rs_length = _curr->rem_set()->occupied();
 255 
 256   _sampled_rs_lengths += rs_length;
 257 
 258   // The current region may not yet have been added to the
 259   // incremental collection set (it gets added when it is
 260   // retired as the current allocation region).
 261   if (_curr->in_collection_set()) {
 262     // Update the collection set policy information for this region
 263     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 264   }
 265 
 266   _curr = _curr->get_next_young_region();
 267   if (_curr == NULL) {
 268     _last_sampled_rs_lengths = _sampled_rs_lengths;
 269     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 270   }
 271 }
 272 
 273 void
 274 YoungList::reset_auxilary_lists() {
 275   guarantee( is_empty(), "young list should be empty" );
 276   assert(check_list_well_formed(), "young list should be well formed");
 277 
 278   // Add survivor regions to SurvRateGroup.
 279   _g1h->g1_policy()->note_start_adding_survivor_regions();
 280   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 281 
 282   int young_index_in_cset = 0;
 283   for (HeapRegion* curr = _survivor_head;
 284        curr != NULL;
 285        curr = curr->get_next_young_region()) {
 286     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 287 
 288     // The region is a non-empty survivor so let's add it to
 289     // the incremental collection set for the next evacuation
 290     // pause.
 291     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 292     young_index_in_cset += 1;
 293   }
 294   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 295   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 296 
 297   _head   = _survivor_head;
 298   _length = _survivor_length;
 299   if (_survivor_head != NULL) {
 300     assert(_survivor_tail != NULL, "cause it shouldn't be");
 301     assert(_survivor_length > 0, "invariant");
 302     _survivor_tail->set_next_young_region(NULL);
 303   }
 304 
 305   // Don't clear the survivor list handles until the start of
 306   // the next evacuation pause - we need it in order to re-tag
 307   // the survivor regions from this evacuation pause as 'young'
 308   // at the start of the next.
 309 
 310   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 311 
 312   assert(check_list_well_formed(), "young list should be well formed");
 313 }
 314 
 315 void YoungList::print() {
 316   HeapRegion* lists[] = {_head,   _survivor_head};
 317   const char* names[] = {"YOUNG", "SURVIVOR"};
 318 
 319   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 320     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 321     HeapRegion *curr = lists[list];
 322     if (curr == NULL)
 323       gclog_or_tty->print_cr("  empty");
 324     while (curr != NULL) {
 325       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
 326                              HR_FORMAT_PARAMS(curr),
 327                              p2i(curr->prev_top_at_mark_start()),
 328                              p2i(curr->next_top_at_mark_start()),
 329                              curr->age_in_surv_rate_group_cond());
 330       curr = curr->get_next_young_region();
 331     }
 332   }
 333 
 334   gclog_or_tty->cr();
 335 }
 336 
 337 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 338   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 339 }
 340 
 341 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 342   // The from card cache is not the memory that is actually committed. So we cannot
 343   // take advantage of the zero_filled parameter.
 344   reset_from_card_cache(start_idx, num_regions);
 345 }
 346 
 347 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 348 {
 349   // Claim the right to put the region on the dirty cards region list
 350   // by installing a self pointer.
 351   HeapRegion* next = hr->get_next_dirty_cards_region();
 352   if (next == NULL) {
 353     HeapRegion* res = (HeapRegion*)
 354       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 355                           NULL);
 356     if (res == NULL) {
 357       HeapRegion* head;
 358       do {
 359         // Put the region to the dirty cards region list.
 360         head = _dirty_cards_region_list;
 361         next = (HeapRegion*)
 362           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 363         if (next == head) {
 364           assert(hr->get_next_dirty_cards_region() == hr,
 365                  "hr->get_next_dirty_cards_region() != hr");
 366           if (next == NULL) {
 367             // The last region in the list points to itself.
 368             hr->set_next_dirty_cards_region(hr);
 369           } else {
 370             hr->set_next_dirty_cards_region(next);
 371           }
 372         }
 373       } while (next != head);
 374     }
 375   }
 376 }
 377 
 378 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 379 {
 380   HeapRegion* head;
 381   HeapRegion* hr;
 382   do {
 383     head = _dirty_cards_region_list;
 384     if (head == NULL) {
 385       return NULL;
 386     }
 387     HeapRegion* new_head = head->get_next_dirty_cards_region();
 388     if (head == new_head) {
 389       // The last region.
 390       new_head = NULL;
 391     }
 392     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 393                                           head);
 394   } while (hr != head);
 395   assert(hr != NULL, "invariant");
 396   hr->set_next_dirty_cards_region(NULL);
 397   return hr;
 398 }
 399 
 400 // Returns true if the reference points to an object that
 401 // can move in an incremental collection.
 402 bool G1CollectedHeap::is_scavengable(const void* p) {
 403   HeapRegion* hr = heap_region_containing(p);
 404   return !hr->is_pinned();
 405 }
 406 
 407 // Private methods.
 408 
 409 HeapRegion*
 410 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 411   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 412   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 413     if (!_secondary_free_list.is_empty()) {
 414       if (G1ConcRegionFreeingVerbose) {
 415         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 416                                "secondary_free_list has %u entries",
 417                                _secondary_free_list.length());
 418       }
 419       // It looks as if there are free regions available on the
 420       // secondary_free_list. Let's move them to the free_list and try
 421       // again to allocate from it.
 422       append_secondary_free_list();
 423 
 424       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 425              "empty we should have moved at least one entry to the free_list");
 426       HeapRegion* res = _hrm.allocate_free_region(is_old);
 427       if (G1ConcRegionFreeingVerbose) {
 428         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 429                                "allocated " HR_FORMAT " from secondary_free_list",
 430                                HR_FORMAT_PARAMS(res));
 431       }
 432       return res;
 433     }
 434 
 435     // Wait here until we get notified either when (a) there are no
 436     // more free regions coming or (b) some regions have been moved on
 437     // the secondary_free_list.
 438     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 439   }
 440 
 441   if (G1ConcRegionFreeingVerbose) {
 442     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 443                            "could not allocate from secondary_free_list");
 444   }
 445   return NULL;
 446 }
 447 
 448 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 449   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 450          "the only time we use this to allocate a humongous region is "
 451          "when we are allocating a single humongous region");
 452 
 453   HeapRegion* res;
 454   if (G1StressConcRegionFreeing) {
 455     if (!_secondary_free_list.is_empty()) {
 456       if (G1ConcRegionFreeingVerbose) {
 457         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 458                                "forced to look at the secondary_free_list");
 459       }
 460       res = new_region_try_secondary_free_list(is_old);
 461       if (res != NULL) {
 462         return res;
 463       }
 464     }
 465   }
 466 
 467   res = _hrm.allocate_free_region(is_old);
 468 
 469   if (res == NULL) {
 470     if (G1ConcRegionFreeingVerbose) {
 471       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 472                              "res == NULL, trying the secondary_free_list");
 473     }
 474     res = new_region_try_secondary_free_list(is_old);
 475   }
 476   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 477     // Currently, only attempts to allocate GC alloc regions set
 478     // do_expand to true. So, we should only reach here during a
 479     // safepoint. If this assumption changes we might have to
 480     // reconsider the use of _expand_heap_after_alloc_failure.
 481     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 482 
 483     ergo_verbose1(ErgoHeapSizing,
 484                   "attempt heap expansion",
 485                   ergo_format_reason("region allocation request failed")
 486                   ergo_format_byte("allocation request"),
 487                   word_size * HeapWordSize);
 488     if (expand(word_size * HeapWordSize)) {
 489       // Given that expand() succeeded in expanding the heap, and we
 490       // always expand the heap by an amount aligned to the heap
 491       // region size, the free list should in theory not be empty.
 492       // In either case allocate_free_region() will check for NULL.
 493       res = _hrm.allocate_free_region(is_old);
 494     } else {
 495       _expand_heap_after_alloc_failure = false;
 496     }
 497   }
 498   return res;
 499 }
 500 
 501 HeapWord*
 502 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 503                                                            uint num_regions,
 504                                                            size_t word_size,
 505                                                            AllocationContext_t context) {
 506   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 507   assert(is_humongous(word_size), "word_size should be humongous");
 508   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 509 
 510   // Index of last region in the series + 1.
 511   uint last = first + num_regions;
 512 
 513   // We need to initialize the region(s) we just discovered. This is
 514   // a bit tricky given that it can happen concurrently with
 515   // refinement threads refining cards on these regions and
 516   // potentially wanting to refine the BOT as they are scanning
 517   // those cards (this can happen shortly after a cleanup; see CR
 518   // 6991377). So we have to set up the region(s) carefully and in
 519   // a specific order.
 520 
 521   // The word size sum of all the regions we will allocate.
 522   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 523   assert(word_size <= word_size_sum, "sanity");
 524 
 525   // This will be the "starts humongous" region.
 526   HeapRegion* first_hr = region_at(first);
 527   // The header of the new object will be placed at the bottom of
 528   // the first region.
 529   HeapWord* new_obj = first_hr->bottom();
 530   // This will be the new end of the first region in the series that
 531   // should also match the end of the last region in the series.
 532   HeapWord* new_end = new_obj + word_size_sum;
 533   // This will be the new top of the first region that will reflect
 534   // this allocation.
 535   HeapWord* new_top = new_obj + word_size;
 536 
 537   // First, we need to zero the header of the space that we will be
 538   // allocating. When we update top further down, some refinement
 539   // threads might try to scan the region. By zeroing the header we
 540   // ensure that any thread that will try to scan the region will
 541   // come across the zero klass word and bail out.
 542   //
 543   // NOTE: It would not have been correct to have used
 544   // CollectedHeap::fill_with_object() and make the space look like
 545   // an int array. The thread that is doing the allocation will
 546   // later update the object header to a potentially different array
 547   // type and, for a very short period of time, the klass and length
 548   // fields will be inconsistent. This could cause a refinement
 549   // thread to calculate the object size incorrectly.
 550   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 551 
 552   // We will set up the first region as "starts humongous". This
 553   // will also update the BOT covering all the regions to reflect
 554   // that there is a single object that starts at the bottom of the
 555   // first region.
 556   first_hr->set_starts_humongous(new_top, new_end);
 557   first_hr->set_allocation_context(context);
 558   // Then, if there are any, we will set up the "continues
 559   // humongous" regions.
 560   HeapRegion* hr = NULL;
 561   for (uint i = first + 1; i < last; ++i) {
 562     hr = region_at(i);
 563     hr->set_continues_humongous(first_hr);
 564     hr->set_allocation_context(context);
 565   }
 566   // If we have "continues humongous" regions (hr != NULL), then the
 567   // end of the last one should match new_end.
 568   assert(hr == NULL || hr->end() == new_end, "sanity");
 569 
 570   // Up to this point no concurrent thread would have been able to
 571   // do any scanning on any region in this series. All the top
 572   // fields still point to bottom, so the intersection between
 573   // [bottom,top] and [card_start,card_end] will be empty. Before we
 574   // update the top fields, we'll do a storestore to make sure that
 575   // no thread sees the update to top before the zeroing of the
 576   // object header and the BOT initialization.
 577   OrderAccess::storestore();
 578 
 579   // Now that the BOT and the object header have been initialized,
 580   // we can update top of the "starts humongous" region.
 581   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 582          "new_top should be in this region");
 583   first_hr->set_top(new_top);
 584   if (_hr_printer.is_active()) {
 585     HeapWord* bottom = first_hr->bottom();
 586     HeapWord* end = first_hr->orig_end();
 587     if ((first + 1) == last) {
 588       // the series has a single humongous region
 589       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 590     } else {
 591       // the series has more than one humongous regions
 592       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 593     }
 594   }
 595 
 596   // Now, we will update the top fields of the "continues humongous"
 597   // regions. The reason we need to do this is that, otherwise,
 598   // these regions would look empty and this will confuse parts of
 599   // G1. For example, the code that looks for a consecutive number
 600   // of empty regions will consider them empty and try to
 601   // re-allocate them. We can extend is_empty() to also include
 602   // !is_continues_humongous(), but it is easier to just update the top
 603   // fields here. The way we set top for all regions (i.e., top ==
 604   // end for all regions but the last one, top == new_top for the
 605   // last one) is actually used when we will free up the humongous
 606   // region in free_humongous_region().
 607   hr = NULL;
 608   for (uint i = first + 1; i < last; ++i) {
 609     hr = region_at(i);
 610     if ((i + 1) == last) {
 611       // last continues humongous region
 612       assert(hr->bottom() < new_top && new_top <= hr->end(),
 613              "new_top should fall on this region");
 614       hr->set_top(new_top);
 615       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 616     } else {
 617       // not last one
 618       assert(new_top > hr->end(), "new_top should be above this region");
 619       hr->set_top(hr->end());
 620       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 621     }
 622   }
 623   // If we have continues humongous regions (hr != NULL), then the
 624   // end of the last one should match new_end and its top should
 625   // match new_top.
 626   assert(hr == NULL ||
 627          (hr->end() == new_end && hr->top() == new_top), "sanity");
 628   check_bitmaps("Humongous Region Allocation", first_hr);
 629 
 630   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 631   increase_used(first_hr->used());
 632   _humongous_set.add(first_hr);
 633 
 634   return new_obj;
 635 }
 636 
 637 // If could fit into free regions w/o expansion, try.
 638 // Otherwise, if can expand, do so.
 639 // Otherwise, if using ex regions might help, try with ex given back.
 640 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 641   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 642 
 643   verify_region_sets_optional();
 644 
 645   uint first = G1_NO_HRM_INDEX;
 646   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 647 
 648   if (obj_regions == 1) {
 649     // Only one region to allocate, try to use a fast path by directly allocating
 650     // from the free lists. Do not try to expand here, we will potentially do that
 651     // later.
 652     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 653     if (hr != NULL) {
 654       first = hr->hrm_index();
 655     }
 656   } else {
 657     // We can't allocate humongous regions spanning more than one region while
 658     // cleanupComplete() is running, since some of the regions we find to be
 659     // empty might not yet be added to the free list. It is not straightforward
 660     // to know in which list they are on so that we can remove them. We only
 661     // need to do this if we need to allocate more than one region to satisfy the
 662     // current humongous allocation request. If we are only allocating one region
 663     // we use the one-region region allocation code (see above), that already
 664     // potentially waits for regions from the secondary free list.
 665     wait_while_free_regions_coming();
 666     append_secondary_free_list_if_not_empty_with_lock();
 667 
 668     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 669     // are lucky enough to find some.
 670     first = _hrm.find_contiguous_only_empty(obj_regions);
 671     if (first != G1_NO_HRM_INDEX) {
 672       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 673     }
 674   }
 675 
 676   if (first == G1_NO_HRM_INDEX) {
 677     // Policy: We could not find enough regions for the humongous object in the
 678     // free list. Look through the heap to find a mix of free and uncommitted regions.
 679     // If so, try expansion.
 680     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 681     if (first != G1_NO_HRM_INDEX) {
 682       // We found something. Make sure these regions are committed, i.e. expand
 683       // the heap. Alternatively we could do a defragmentation GC.
 684       ergo_verbose1(ErgoHeapSizing,
 685                     "attempt heap expansion",
 686                     ergo_format_reason("humongous allocation request failed")
 687                     ergo_format_byte("allocation request"),
 688                     word_size * HeapWordSize);
 689 
 690       _hrm.expand_at(first, obj_regions);
 691       g1_policy()->record_new_heap_size(num_regions());
 692 
 693 #ifdef ASSERT
 694       for (uint i = first; i < first + obj_regions; ++i) {
 695         HeapRegion* hr = region_at(i);
 696         assert(hr->is_free(), "sanity");
 697         assert(hr->is_empty(), "sanity");
 698         assert(is_on_master_free_list(hr), "sanity");
 699       }
 700 #endif
 701       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 702     } else {
 703       // Policy: Potentially trigger a defragmentation GC.
 704     }
 705   }
 706 
 707   HeapWord* result = NULL;
 708   if (first != G1_NO_HRM_INDEX) {
 709     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 710                                                        word_size, context);
 711     assert(result != NULL, "it should always return a valid result");
 712 
 713     // A successful humongous object allocation changes the used space
 714     // information of the old generation so we need to recalculate the
 715     // sizes and update the jstat counters here.
 716     g1mm()->update_sizes();
 717   }
 718 
 719   verify_region_sets_optional();
 720 
 721   return result;
 722 }
 723 
 724 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 725   assert_heap_not_locked_and_not_at_safepoint();
 726   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 727 
 728   uint dummy_gc_count_before;
 729   uint dummy_gclocker_retry_count = 0;
 730   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 731 }
 732 
 733 HeapWord*
 734 G1CollectedHeap::mem_allocate(size_t word_size,
 735                               bool*  gc_overhead_limit_was_exceeded) {
 736   assert_heap_not_locked_and_not_at_safepoint();
 737 
 738   // Loop until the allocation is satisfied, or unsatisfied after GC.
 739   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 740     uint gc_count_before;
 741 
 742     HeapWord* result = NULL;
 743     if (!is_humongous(word_size)) {
 744       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 745     } else {
 746       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 747     }
 748     if (result != NULL) {
 749       return result;
 750     }
 751 
 752     // Create the garbage collection operation...
 753     VM_G1CollectForAllocation op(gc_count_before, word_size);
 754     op.set_allocation_context(AllocationContext::current());
 755 
 756     // ...and get the VM thread to execute it.
 757     VMThread::execute(&op);
 758 
 759     if (op.prologue_succeeded() && op.pause_succeeded()) {
 760       // If the operation was successful we'll return the result even
 761       // if it is NULL. If the allocation attempt failed immediately
 762       // after a Full GC, it's unlikely we'll be able to allocate now.
 763       HeapWord* result = op.result();
 764       if (result != NULL && !is_humongous(word_size)) {
 765         // Allocations that take place on VM operations do not do any
 766         // card dirtying and we have to do it here. We only have to do
 767         // this for non-humongous allocations, though.
 768         dirty_young_block(result, word_size);
 769       }
 770       return result;
 771     } else {
 772       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 773         return NULL;
 774       }
 775       assert(op.result() == NULL,
 776              "the result should be NULL if the VM op did not succeed");
 777     }
 778 
 779     // Give a warning if we seem to be looping forever.
 780     if ((QueuedAllocationWarningCount > 0) &&
 781         (try_count % QueuedAllocationWarningCount == 0)) {
 782       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 783     }
 784   }
 785 
 786   ShouldNotReachHere();
 787   return NULL;
 788 }
 789 
 790 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 791                                                    AllocationContext_t context,
 792                                                    uint* gc_count_before_ret,
 793                                                    uint* gclocker_retry_count_ret) {
 794   // Make sure you read the note in attempt_allocation_humongous().
 795 
 796   assert_heap_not_locked_and_not_at_safepoint();
 797   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 798          "be called for humongous allocation requests");
 799 
 800   // We should only get here after the first-level allocation attempt
 801   // (attempt_allocation()) failed to allocate.
 802 
 803   // We will loop until a) we manage to successfully perform the
 804   // allocation or b) we successfully schedule a collection which
 805   // fails to perform the allocation. b) is the only case when we'll
 806   // return NULL.
 807   HeapWord* result = NULL;
 808   for (int try_count = 1; /* we'll return */; try_count += 1) {
 809     bool should_try_gc;
 810     uint gc_count_before;
 811 
 812     {
 813       MutexLockerEx x(Heap_lock);
 814       result = _allocator->attempt_allocation_locked(word_size, context);
 815       if (result != NULL) {
 816         return result;
 817       }
 818 
 819       if (GC_locker::is_active_and_needs_gc()) {
 820         if (g1_policy()->can_expand_young_list()) {
 821           // No need for an ergo verbose message here,
 822           // can_expand_young_list() does this when it returns true.
 823           result = _allocator->attempt_allocation_force(word_size, context);
 824           if (result != NULL) {
 825             return result;
 826           }
 827         }
 828         should_try_gc = false;
 829       } else {
 830         // The GCLocker may not be active but the GCLocker initiated
 831         // GC may not yet have been performed (GCLocker::needs_gc()
 832         // returns true). In this case we do not try this GC and
 833         // wait until the GCLocker initiated GC is performed, and
 834         // then retry the allocation.
 835         if (GC_locker::needs_gc()) {
 836           should_try_gc = false;
 837         } else {
 838           // Read the GC count while still holding the Heap_lock.
 839           gc_count_before = total_collections();
 840           should_try_gc = true;
 841         }
 842       }
 843     }
 844 
 845     if (should_try_gc) {
 846       bool succeeded;
 847       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 848                                    GCCause::_g1_inc_collection_pause);
 849       if (result != NULL) {
 850         assert(succeeded, "only way to get back a non-NULL result");
 851         return result;
 852       }
 853 
 854       if (succeeded) {
 855         // If we get here we successfully scheduled a collection which
 856         // failed to allocate. No point in trying to allocate
 857         // further. We'll just return NULL.
 858         MutexLockerEx x(Heap_lock);
 859         *gc_count_before_ret = total_collections();
 860         return NULL;
 861       }
 862     } else {
 863       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 864         MutexLockerEx x(Heap_lock);
 865         *gc_count_before_ret = total_collections();
 866         return NULL;
 867       }
 868       // The GCLocker is either active or the GCLocker initiated
 869       // GC has not yet been performed. Stall until it is and
 870       // then retry the allocation.
 871       GC_locker::stall_until_clear();
 872       (*gclocker_retry_count_ret) += 1;
 873     }
 874 
 875     // We can reach here if we were unsuccessful in scheduling a
 876     // collection (because another thread beat us to it) or if we were
 877     // stalled due to the GC locker. In either can we should retry the
 878     // allocation attempt in case another thread successfully
 879     // performed a collection and reclaimed enough space. We do the
 880     // first attempt (without holding the Heap_lock) here and the
 881     // follow-on attempt will be at the start of the next loop
 882     // iteration (after taking the Heap_lock).
 883     result = _allocator->attempt_allocation(word_size, context);
 884     if (result != NULL) {
 885       return result;
 886     }
 887 
 888     // Give a warning if we seem to be looping forever.
 889     if ((QueuedAllocationWarningCount > 0) &&
 890         (try_count % QueuedAllocationWarningCount == 0)) {
 891       warning("G1CollectedHeap::attempt_allocation_slow() "
 892               "retries %d times", try_count);
 893     }
 894   }
 895 
 896   ShouldNotReachHere();
 897   return NULL;
 898 }
 899 
 900 void G1CollectedHeap::begin_archive_alloc_range() {
 901   assert_at_safepoint(true /* should_be_vm_thread */);
 902   if (_archive_allocator == NULL) {
 903     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 904   }
 905 }
 906 
 907 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 908   // Allocations in archive regions cannot be of a size that would be considered
 909   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 910   // may be different at archive-restore time.
 911   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 912 }
 913 
 914 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 915   assert_at_safepoint(true /* should_be_vm_thread */);
 916   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 917   if (is_archive_alloc_too_large(word_size)) {
 918     return NULL;
 919   }
 920   return _archive_allocator->archive_mem_allocate(word_size);
 921 }
 922 
 923 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 924                                               size_t end_alignment_in_bytes) {
 925   assert_at_safepoint(true /* should_be_vm_thread */);
 926   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 927 
 928   // Call complete_archive to do the real work, filling in the MemRegion
 929   // array with the archive regions.
 930   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 931   delete _archive_allocator;
 932   _archive_allocator = NULL;
 933 }
 934 
 935 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 936   assert(ranges != NULL, "MemRegion array NULL");
 937   assert(count != 0, "No MemRegions provided");
 938   MemRegion reserved = _hrm.reserved();
 939   for (size_t i = 0; i < count; i++) {
 940     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 941       return false;
 942     }
 943   }
 944   return true;
 945 }
 946 
 947 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 948   assert(!is_init_completed(), "Expect to be called at JVM init time");
 949   assert(ranges != NULL, "MemRegion array NULL");
 950   assert(count != 0, "No MemRegions provided");
 951   MutexLockerEx x(Heap_lock);
 952 
 953   MemRegion reserved = _hrm.reserved();
 954   HeapWord* prev_last_addr = NULL;
 955   HeapRegion* prev_last_region = NULL;
 956 
 957   // Temporarily disable pretouching of heap pages. This interface is used
 958   // when mmap'ing archived heap data in, so pre-touching is wasted.
 959   FlagSetting fs(AlwaysPreTouch, false);
 960 
 961   // Enable archive object checking in G1MarkSweep. We have to let it know
 962   // about each archive range, so that objects in those ranges aren't marked.
 963   G1MarkSweep::enable_archive_object_check();
 964 
 965   // For each specified MemRegion range, allocate the corresponding G1
 966   // regions and mark them as archive regions. We expect the ranges in
 967   // ascending starting address order, without overlap.
 968   for (size_t i = 0; i < count; i++) {
 969     MemRegion curr_range = ranges[i];
 970     HeapWord* start_address = curr_range.start();
 971     size_t word_size = curr_range.word_size();
 972     HeapWord* last_address = curr_range.last();
 973     size_t commits = 0;
 974 
 975     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 976               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 977               p2i(start_address), p2i(last_address));
 978     guarantee(start_address > prev_last_addr,
 979               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 980               p2i(start_address), p2i(prev_last_addr));
 981     prev_last_addr = last_address;
 982 
 983     // Check for ranges that start in the same G1 region in which the previous
 984     // range ended, and adjust the start address so we don't try to allocate
 985     // the same region again. If the current range is entirely within that
 986     // region, skip it, just adjusting the recorded top.
 987     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 988     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 989       start_address = start_region->end();
 990       if (start_address > last_address) {
 991         increase_used(word_size * HeapWordSize);
 992         start_region->set_top(last_address + 1);
 993         continue;
 994       }
 995       start_region->set_top(start_address);
 996       curr_range = MemRegion(start_address, last_address + 1);
 997       start_region = _hrm.addr_to_region(start_address);
 998     }
 999 
1000     // Perform the actual region allocation, exiting if it fails.
1001     // Then note how much new space we have allocated.
1002     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1003       return false;
1004     }
1005     increase_used(word_size * HeapWordSize);
1006     if (commits != 0) {
1007       ergo_verbose1(ErgoHeapSizing,
1008                     "attempt heap expansion",
1009                     ergo_format_reason("allocate archive regions")
1010                     ergo_format_byte("total size"),
1011                     HeapRegion::GrainWords * HeapWordSize * commits);
1012     }
1013 
1014     // Mark each G1 region touched by the range as archive, add it to the old set,
1015     // and set the allocation context and top.
1016     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1017     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1018     prev_last_region = last_region;
1019 
1020     while (curr_region != NULL) {
1021       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1022              "Region already in use (index %u)", curr_region->hrm_index());
1023       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1024       curr_region->set_allocation_context(AllocationContext::system());
1025       curr_region->set_archive();
1026       _old_set.add(curr_region);
1027       if (curr_region != last_region) {
1028         curr_region->set_top(curr_region->end());
1029         curr_region = _hrm.next_region_in_heap(curr_region);
1030       } else {
1031         curr_region->set_top(last_address + 1);
1032         curr_region = NULL;
1033       }
1034     }
1035 
1036     // Notify mark-sweep of the archive range.
1037     G1MarkSweep::set_range_archive(curr_range, true);
1038   }
1039   return true;
1040 }
1041 
1042 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1043   assert(!is_init_completed(), "Expect to be called at JVM init time");
1044   assert(ranges != NULL, "MemRegion array NULL");
1045   assert(count != 0, "No MemRegions provided");
1046   MemRegion reserved = _hrm.reserved();
1047   HeapWord *prev_last_addr = NULL;
1048   HeapRegion* prev_last_region = NULL;
1049 
1050   // For each MemRegion, create filler objects, if needed, in the G1 regions
1051   // that contain the address range. The address range actually within the
1052   // MemRegion will not be modified. That is assumed to have been initialized
1053   // elsewhere, probably via an mmap of archived heap data.
1054   MutexLockerEx x(Heap_lock);
1055   for (size_t i = 0; i < count; i++) {
1056     HeapWord* start_address = ranges[i].start();
1057     HeapWord* last_address = ranges[i].last();
1058 
1059     assert(reserved.contains(start_address) && reserved.contains(last_address),
1060            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1061            p2i(start_address), p2i(last_address));
1062     assert(start_address > prev_last_addr,
1063            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1064            p2i(start_address), p2i(prev_last_addr));
1065 
1066     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1067     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1068     HeapWord* bottom_address = start_region->bottom();
1069 
1070     // Check for a range beginning in the same region in which the
1071     // previous one ended.
1072     if (start_region == prev_last_region) {
1073       bottom_address = prev_last_addr + 1;
1074     }
1075 
1076     // Verify that the regions were all marked as archive regions by
1077     // alloc_archive_regions.
1078     HeapRegion* curr_region = start_region;
1079     while (curr_region != NULL) {
1080       guarantee(curr_region->is_archive(),
1081                 "Expected archive region at index %u", curr_region->hrm_index());
1082       if (curr_region != last_region) {
1083         curr_region = _hrm.next_region_in_heap(curr_region);
1084       } else {
1085         curr_region = NULL;
1086       }
1087     }
1088 
1089     prev_last_addr = last_address;
1090     prev_last_region = last_region;
1091 
1092     // Fill the memory below the allocated range with dummy object(s),
1093     // if the region bottom does not match the range start, or if the previous
1094     // range ended within the same G1 region, and there is a gap.
1095     if (start_address != bottom_address) {
1096       size_t fill_size = pointer_delta(start_address, bottom_address);
1097       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1098       increase_used(fill_size * HeapWordSize);
1099     }
1100   }
1101 }
1102 
1103 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
1104                                                      uint* gc_count_before_ret,
1105                                                      uint* gclocker_retry_count_ret) {
1106   assert_heap_not_locked_and_not_at_safepoint();
1107   assert(!is_humongous(word_size), "attempt_allocation() should not "
1108          "be called for humongous allocation requests");
1109 
1110   AllocationContext_t context = AllocationContext::current();
1111   HeapWord* result = _allocator->attempt_allocation(word_size, context);
1112 
1113   if (result == NULL) {
1114     result = attempt_allocation_slow(word_size,
1115                                      context,
1116                                      gc_count_before_ret,
1117                                      gclocker_retry_count_ret);
1118   }
1119   assert_heap_not_locked();
1120   if (result != NULL) {
1121     dirty_young_block(result, word_size);
1122   }
1123   return result;
1124 }
1125 
1126 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
1127   assert(!is_init_completed(), "Expect to be called at JVM init time");
1128   assert(ranges != NULL, "MemRegion array NULL");
1129   assert(count != 0, "No MemRegions provided");
1130   MemRegion reserved = _hrm.reserved();
1131   HeapWord* prev_last_addr = NULL;
1132   HeapRegion* prev_last_region = NULL;
1133   size_t size_used = 0;
1134   size_t uncommitted_regions = 0;
1135 
1136   // For each Memregion, free the G1 regions that constitute it, and
1137   // notify mark-sweep that the range is no longer to be considered 'archive.'
1138   MutexLockerEx x(Heap_lock);
1139   for (size_t i = 0; i < count; i++) {
1140     HeapWord* start_address = ranges[i].start();
1141     HeapWord* last_address = ranges[i].last();
1142 
1143     assert(reserved.contains(start_address) && reserved.contains(last_address),
1144            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1145            p2i(start_address), p2i(last_address));
1146     assert(start_address > prev_last_addr,
1147            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1148            p2i(start_address), p2i(prev_last_addr));
1149     size_used += ranges[i].byte_size();
1150     prev_last_addr = last_address;
1151 
1152     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1153     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1154 
1155     // Check for ranges that start in the same G1 region in which the previous
1156     // range ended, and adjust the start address so we don't try to free
1157     // the same region again. If the current range is entirely within that
1158     // region, skip it.
1159     if (start_region == prev_last_region) {
1160       start_address = start_region->end();
1161       if (start_address > last_address) {
1162         continue;
1163       }
1164       start_region = _hrm.addr_to_region(start_address);
1165     }
1166     prev_last_region = last_region;
1167 
1168     // After verifying that each region was marked as an archive region by
1169     // alloc_archive_regions, set it free and empty and uncommit it.
1170     HeapRegion* curr_region = start_region;
1171     while (curr_region != NULL) {
1172       guarantee(curr_region->is_archive(),
1173                 "Expected archive region at index %u", curr_region->hrm_index());
1174       uint curr_index = curr_region->hrm_index();
1175       _old_set.remove(curr_region);
1176       curr_region->set_free();
1177       curr_region->set_top(curr_region->bottom());
1178       if (curr_region != last_region) {
1179         curr_region = _hrm.next_region_in_heap(curr_region);
1180       } else {
1181         curr_region = NULL;
1182       }
1183       _hrm.shrink_at(curr_index, 1);
1184       uncommitted_regions++;
1185     }
1186 
1187     // Notify mark-sweep that this is no longer an archive range.
1188     G1MarkSweep::set_range_archive(ranges[i], false);
1189   }
1190 
1191   if (uncommitted_regions != 0) {
1192     ergo_verbose1(ErgoHeapSizing,
1193                   "attempt heap shrinking",
1194                   ergo_format_reason("uncommitted archive regions")
1195                   ergo_format_byte("total size"),
1196                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
1197   }
1198   decrease_used(size_used);
1199 }
1200 
1201 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1202                                                         uint* gc_count_before_ret,
1203                                                         uint* gclocker_retry_count_ret) {
1204   // The structure of this method has a lot of similarities to
1205   // attempt_allocation_slow(). The reason these two were not merged
1206   // into a single one is that such a method would require several "if
1207   // allocation is not humongous do this, otherwise do that"
1208   // conditional paths which would obscure its flow. In fact, an early
1209   // version of this code did use a unified method which was harder to
1210   // follow and, as a result, it had subtle bugs that were hard to
1211   // track down. So keeping these two methods separate allows each to
1212   // be more readable. It will be good to keep these two in sync as
1213   // much as possible.
1214 
1215   assert_heap_not_locked_and_not_at_safepoint();
1216   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1217          "should only be called for humongous allocations");
1218 
1219   // Humongous objects can exhaust the heap quickly, so we should check if we
1220   // need to start a marking cycle at each humongous object allocation. We do
1221   // the check before we do the actual allocation. The reason for doing it
1222   // before the allocation is that we avoid having to keep track of the newly
1223   // allocated memory while we do a GC.
1224   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1225                                            word_size)) {
1226     collect(GCCause::_g1_humongous_allocation);
1227   }
1228 
1229   // We will loop until a) we manage to successfully perform the
1230   // allocation or b) we successfully schedule a collection which
1231   // fails to perform the allocation. b) is the only case when we'll
1232   // return NULL.
1233   HeapWord* result = NULL;
1234   for (int try_count = 1; /* we'll return */; try_count += 1) {
1235     bool should_try_gc;
1236     uint gc_count_before;
1237 
1238     {
1239       MutexLockerEx x(Heap_lock);
1240 
1241       // Given that humongous objects are not allocated in young
1242       // regions, we'll first try to do the allocation without doing a
1243       // collection hoping that there's enough space in the heap.
1244       result = humongous_obj_allocate(word_size, AllocationContext::current());
1245       if (result != NULL) {
1246         return result;
1247       }
1248 
1249       if (GC_locker::is_active_and_needs_gc()) {
1250         should_try_gc = false;
1251       } else {
1252          // The GCLocker may not be active but the GCLocker initiated
1253         // GC may not yet have been performed (GCLocker::needs_gc()
1254         // returns true). In this case we do not try this GC and
1255         // wait until the GCLocker initiated GC is performed, and
1256         // then retry the allocation.
1257         if (GC_locker::needs_gc()) {
1258           should_try_gc = false;
1259         } else {
1260           // Read the GC count while still holding the Heap_lock.
1261           gc_count_before = total_collections();
1262           should_try_gc = true;
1263         }
1264       }
1265     }
1266 
1267     if (should_try_gc) {
1268       // If we failed to allocate the humongous object, we should try to
1269       // do a collection pause (if we're allowed) in case it reclaims
1270       // enough space for the allocation to succeed after the pause.
1271 
1272       bool succeeded;
1273       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1274                                    GCCause::_g1_humongous_allocation);
1275       if (result != NULL) {
1276         assert(succeeded, "only way to get back a non-NULL result");
1277         return result;
1278       }
1279 
1280       if (succeeded) {
1281         // If we get here we successfully scheduled a collection which
1282         // failed to allocate. No point in trying to allocate
1283         // further. We'll just return NULL.
1284         MutexLockerEx x(Heap_lock);
1285         *gc_count_before_ret = total_collections();
1286         return NULL;
1287       }
1288     } else {
1289       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1290         MutexLockerEx x(Heap_lock);
1291         *gc_count_before_ret = total_collections();
1292         return NULL;
1293       }
1294       // The GCLocker is either active or the GCLocker initiated
1295       // GC has not yet been performed. Stall until it is and
1296       // then retry the allocation.
1297       GC_locker::stall_until_clear();
1298       (*gclocker_retry_count_ret) += 1;
1299     }
1300 
1301     // We can reach here if we were unsuccessful in scheduling a
1302     // collection (because another thread beat us to it) or if we were
1303     // stalled due to the GC locker. In either can we should retry the
1304     // allocation attempt in case another thread successfully
1305     // performed a collection and reclaimed enough space.  Give a
1306     // warning if we seem to be looping forever.
1307 
1308     if ((QueuedAllocationWarningCount > 0) &&
1309         (try_count % QueuedAllocationWarningCount == 0)) {
1310       warning("G1CollectedHeap::attempt_allocation_humongous() "
1311               "retries %d times", try_count);
1312     }
1313   }
1314 
1315   ShouldNotReachHere();
1316   return NULL;
1317 }
1318 
1319 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1320                                                            AllocationContext_t context,
1321                                                            bool expect_null_mutator_alloc_region) {
1322   assert_at_safepoint(true /* should_be_vm_thread */);
1323   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1324          "the current alloc region was unexpectedly found to be non-NULL");
1325 
1326   if (!is_humongous(word_size)) {
1327     return _allocator->attempt_allocation_locked(word_size, context);
1328   } else {
1329     HeapWord* result = humongous_obj_allocate(word_size, context);
1330     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1331       collector_state()->set_initiate_conc_mark_if_possible(true);
1332     }
1333     return result;
1334   }
1335 
1336   ShouldNotReachHere();
1337 }
1338 
1339 class PostMCRemSetClearClosure: public HeapRegionClosure {
1340   G1CollectedHeap* _g1h;
1341   ModRefBarrierSet* _mr_bs;
1342 public:
1343   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1344     _g1h(g1h), _mr_bs(mr_bs) {}
1345 
1346   bool doHeapRegion(HeapRegion* r) {
1347     HeapRegionRemSet* hrrs = r->rem_set();
1348 
1349     if (r->is_continues_humongous()) {
1350       // We'll assert that the strong code root list and RSet is empty
1351       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1352       assert(hrrs->occupied() == 0, "RSet should be empty");
1353       return false;
1354     }
1355 
1356     _g1h->reset_gc_time_stamps(r);
1357     hrrs->clear();
1358     // You might think here that we could clear just the cards
1359     // corresponding to the used region.  But no: if we leave a dirty card
1360     // in a region we might allocate into, then it would prevent that card
1361     // from being enqueued, and cause it to be missed.
1362     // Re: the performance cost: we shouldn't be doing full GC anyway!
1363     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1364 
1365     return false;
1366   }
1367 };
1368 
1369 void G1CollectedHeap::clear_rsets_post_compaction() {
1370   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1371   heap_region_iterate(&rs_clear);
1372 }
1373 
1374 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1375   G1CollectedHeap*   _g1h;
1376   UpdateRSOopClosure _cl;
1377 public:
1378   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1379     _cl(g1->g1_rem_set(), worker_i),
1380     _g1h(g1)
1381   { }
1382 
1383   bool doHeapRegion(HeapRegion* r) {
1384     if (!r->is_continues_humongous()) {
1385       _cl.set_from(r);
1386       r->oop_iterate(&_cl);
1387     }
1388     return false;
1389   }
1390 };
1391 
1392 class ParRebuildRSTask: public AbstractGangTask {
1393   G1CollectedHeap* _g1;
1394   HeapRegionClaimer _hrclaimer;
1395 
1396 public:
1397   ParRebuildRSTask(G1CollectedHeap* g1) :
1398       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1399 
1400   void work(uint worker_id) {
1401     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1402     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1403   }
1404 };
1405 
1406 class PostCompactionPrinterClosure: public HeapRegionClosure {
1407 private:
1408   G1HRPrinter* _hr_printer;
1409 public:
1410   bool doHeapRegion(HeapRegion* hr) {
1411     assert(!hr->is_young(), "not expecting to find young regions");
1412     if (hr->is_free()) {
1413       // We only generate output for non-empty regions.
1414     } else if (hr->is_starts_humongous()) {
1415       if (hr->region_num() == 1) {
1416         // single humongous region
1417         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1418       } else {
1419         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1420       }
1421     } else if (hr->is_continues_humongous()) {
1422       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1423     } else if (hr->is_archive()) {
1424       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1425     } else if (hr->is_old()) {
1426       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1427     } else {
1428       ShouldNotReachHere();
1429     }
1430     return false;
1431   }
1432 
1433   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1434     : _hr_printer(hr_printer) { }
1435 };
1436 
1437 void G1CollectedHeap::print_hrm_post_compaction() {
1438   PostCompactionPrinterClosure cl(hr_printer());
1439   heap_region_iterate(&cl);
1440 }
1441 
1442 bool G1CollectedHeap::do_collection(bool explicit_gc,
1443                                     bool clear_all_soft_refs,
1444                                     size_t word_size) {
1445   assert_at_safepoint(true /* should_be_vm_thread */);
1446 
1447   if (GC_locker::check_active_before_gc()) {
1448     return false;
1449   }
1450 
1451   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1452   gc_timer->register_gc_start();
1453 
1454   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1455   GCIdMark gc_id_mark;
1456   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1457 
1458   SvcGCMarker sgcm(SvcGCMarker::FULL);
1459   ResourceMark rm;
1460 
1461   G1Log::update_level();
1462   print_heap_before_gc();
1463   trace_heap_before_gc(gc_tracer);
1464 
1465   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1466 
1467   verify_region_sets_optional();
1468 
1469   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1470                            collector_policy()->should_clear_all_soft_refs();
1471 
1472   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1473 
1474   {
1475     IsGCActiveMark x;
1476 
1477     // Timing
1478     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1479     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1480 
1481     {
1482       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1483       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1484       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1485 
1486       g1_policy()->record_full_collection_start();
1487 
1488       // Note: When we have a more flexible GC logging framework that
1489       // allows us to add optional attributes to a GC log record we
1490       // could consider timing and reporting how long we wait in the
1491       // following two methods.
1492       wait_while_free_regions_coming();
1493       // If we start the compaction before the CM threads finish
1494       // scanning the root regions we might trip them over as we'll
1495       // be moving objects / updating references. So let's wait until
1496       // they are done. By telling them to abort, they should complete
1497       // early.
1498       _cm->root_regions()->abort();
1499       _cm->root_regions()->wait_until_scan_finished();
1500       append_secondary_free_list_if_not_empty_with_lock();
1501 
1502       gc_prologue(true);
1503       increment_total_collections(true /* full gc */);
1504       increment_old_marking_cycles_started();
1505 
1506       assert(used() == recalculate_used(), "Should be equal");
1507 
1508       verify_before_gc();
1509 
1510       check_bitmaps("Full GC Start");
1511       pre_full_gc_dump(gc_timer);
1512 
1513       COMPILER2_PRESENT(DerivedPointerTable::clear());
1514 
1515       // Disable discovery and empty the discovered lists
1516       // for the CM ref processor.
1517       ref_processor_cm()->disable_discovery();
1518       ref_processor_cm()->abandon_partial_discovery();
1519       ref_processor_cm()->verify_no_references_recorded();
1520 
1521       // Abandon current iterations of concurrent marking and concurrent
1522       // refinement, if any are in progress. We have to do this before
1523       // wait_until_scan_finished() below.
1524       concurrent_mark()->abort();
1525 
1526       // Make sure we'll choose a new allocation region afterwards.
1527       _allocator->release_mutator_alloc_region();
1528       _allocator->abandon_gc_alloc_regions();
1529       g1_rem_set()->cleanupHRRS();
1530 
1531       // We should call this after we retire any currently active alloc
1532       // regions so that all the ALLOC / RETIRE events are generated
1533       // before the start GC event.
1534       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1535 
1536       // We may have added regions to the current incremental collection
1537       // set between the last GC or pause and now. We need to clear the
1538       // incremental collection set and then start rebuilding it afresh
1539       // after this full GC.
1540       abandon_collection_set(g1_policy()->inc_cset_head());
1541       g1_policy()->clear_incremental_cset();
1542       g1_policy()->stop_incremental_cset_building();
1543 
1544       tear_down_region_sets(false /* free_list_only */);
1545       collector_state()->set_gcs_are_young(true);
1546 
1547       // See the comments in g1CollectedHeap.hpp and
1548       // G1CollectedHeap::ref_processing_init() about
1549       // how reference processing currently works in G1.
1550 
1551       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1552       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1553 
1554       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1555       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1556 
1557       ref_processor_stw()->enable_discovery();
1558       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1559 
1560       // Do collection work
1561       {
1562         HandleMark hm;  // Discard invalid handles created during gc
1563         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1564       }
1565 
1566       assert(num_free_regions() == 0, "we should not have added any free regions");
1567       rebuild_region_sets(false /* free_list_only */);
1568 
1569       // Enqueue any discovered reference objects that have
1570       // not been removed from the discovered lists.
1571       ref_processor_stw()->enqueue_discovered_references();
1572 
1573       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1574 
1575       MemoryService::track_memory_usage();
1576 
1577       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1578       ref_processor_stw()->verify_no_references_recorded();
1579 
1580       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1581       ClassLoaderDataGraph::purge();
1582       MetaspaceAux::verify_metrics();
1583 
1584       // Note: since we've just done a full GC, concurrent
1585       // marking is no longer active. Therefore we need not
1586       // re-enable reference discovery for the CM ref processor.
1587       // That will be done at the start of the next marking cycle.
1588       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1589       ref_processor_cm()->verify_no_references_recorded();
1590 
1591       reset_gc_time_stamp();
1592       // Since everything potentially moved, we will clear all remembered
1593       // sets, and clear all cards.  Later we will rebuild remembered
1594       // sets. We will also reset the GC time stamps of the regions.
1595       clear_rsets_post_compaction();
1596       check_gc_time_stamps();
1597 
1598       // Resize the heap if necessary.
1599       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1600 
1601       if (_hr_printer.is_active()) {
1602         // We should do this after we potentially resize the heap so
1603         // that all the COMMIT / UNCOMMIT events are generated before
1604         // the end GC event.
1605 
1606         print_hrm_post_compaction();
1607         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1608       }
1609 
1610       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1611       if (hot_card_cache->use_cache()) {
1612         hot_card_cache->reset_card_counts();
1613         hot_card_cache->reset_hot_cache();
1614       }
1615 
1616       // Rebuild remembered sets of all regions.
1617       uint n_workers =
1618         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1619                                                 workers()->active_workers(),
1620                                                 Threads::number_of_non_daemon_threads());
1621       workers()->set_active_workers(n_workers);
1622 
1623       ParRebuildRSTask rebuild_rs_task(this);
1624       workers()->run_task(&rebuild_rs_task);
1625 
1626       // Rebuild the strong code root lists for each region
1627       rebuild_strong_code_roots();
1628 
1629       if (true) { // FIXME
1630         MetaspaceGC::compute_new_size();
1631       }
1632 
1633 #ifdef TRACESPINNING
1634       ParallelTaskTerminator::print_termination_counts();
1635 #endif
1636 
1637       // Discard all rset updates
1638       JavaThread::dirty_card_queue_set().abandon_logs();
1639       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1640 
1641       _young_list->reset_sampled_info();
1642       // At this point there should be no regions in the
1643       // entire heap tagged as young.
1644       assert(check_young_list_empty(true /* check_heap */),
1645              "young list should be empty at this point");
1646 
1647       // Update the number of full collections that have been completed.
1648       increment_old_marking_cycles_completed(false /* concurrent */);
1649 
1650       _hrm.verify_optional();
1651       verify_region_sets_optional();
1652 
1653       verify_after_gc();
1654 
1655       // Clear the previous marking bitmap, if needed for bitmap verification.
1656       // Note we cannot do this when we clear the next marking bitmap in
1657       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1658       // objects marked during a full GC against the previous bitmap.
1659       // But we need to clear it before calling check_bitmaps below since
1660       // the full GC has compacted objects and updated TAMS but not updated
1661       // the prev bitmap.
1662       if (G1VerifyBitmaps) {
1663         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1664       }
1665       check_bitmaps("Full GC End");
1666 
1667       // Start a new incremental collection set for the next pause
1668       assert(g1_policy()->collection_set() == NULL, "must be");
1669       g1_policy()->start_incremental_cset_building();
1670 
1671       clear_cset_fast_test();
1672 
1673       _allocator->init_mutator_alloc_region();
1674 
1675       g1_policy()->record_full_collection_end();
1676 
1677       if (G1Log::fine()) {
1678         g1_policy()->print_heap_transition();
1679       }
1680 
1681       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1682       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1683       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1684       // before any GC notifications are raised.
1685       g1mm()->update_sizes();
1686 
1687       gc_epilogue(true);
1688     }
1689 
1690     if (G1Log::finer()) {
1691       g1_policy()->print_detailed_heap_transition(true /* full */);
1692     }
1693 
1694     print_heap_after_gc();
1695     trace_heap_after_gc(gc_tracer);
1696 
1697     post_full_gc_dump(gc_timer);
1698 
1699     gc_timer->register_gc_end();
1700     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1701   }
1702 
1703   return true;
1704 }
1705 
1706 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1707   // do_collection() will return whether it succeeded in performing
1708   // the GC. Currently, there is no facility on the
1709   // do_full_collection() API to notify the caller than the collection
1710   // did not succeed (e.g., because it was locked out by the GC
1711   // locker). So, right now, we'll ignore the return value.
1712   bool dummy = do_collection(true,                /* explicit_gc */
1713                              clear_all_soft_refs,
1714                              0                    /* word_size */);
1715 }
1716 
1717 // This code is mostly copied from TenuredGeneration.
1718 void
1719 G1CollectedHeap::
1720 resize_if_necessary_after_full_collection(size_t word_size) {
1721   // Include the current allocation, if any, and bytes that will be
1722   // pre-allocated to support collections, as "used".
1723   const size_t used_after_gc = used();
1724   const size_t capacity_after_gc = capacity();
1725   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1726 
1727   // This is enforced in arguments.cpp.
1728   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1729          "otherwise the code below doesn't make sense");
1730 
1731   // We don't have floating point command-line arguments
1732   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1733   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1734   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1735   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1736 
1737   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1738   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1739 
1740   // We have to be careful here as these two calculations can overflow
1741   // 32-bit size_t's.
1742   double used_after_gc_d = (double) used_after_gc;
1743   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1744   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1745 
1746   // Let's make sure that they are both under the max heap size, which
1747   // by default will make them fit into a size_t.
1748   double desired_capacity_upper_bound = (double) max_heap_size;
1749   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1750                                     desired_capacity_upper_bound);
1751   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1752                                     desired_capacity_upper_bound);
1753 
1754   // We can now safely turn them into size_t's.
1755   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1756   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1757 
1758   // This assert only makes sense here, before we adjust them
1759   // with respect to the min and max heap size.
1760   assert(minimum_desired_capacity <= maximum_desired_capacity,
1761          "minimum_desired_capacity = " SIZE_FORMAT ", "
1762          "maximum_desired_capacity = " SIZE_FORMAT,
1763          minimum_desired_capacity, maximum_desired_capacity);
1764 
1765   // Should not be greater than the heap max size. No need to adjust
1766   // it with respect to the heap min size as it's a lower bound (i.e.,
1767   // we'll try to make the capacity larger than it, not smaller).
1768   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1769   // Should not be less than the heap min size. No need to adjust it
1770   // with respect to the heap max size as it's an upper bound (i.e.,
1771   // we'll try to make the capacity smaller than it, not greater).
1772   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1773 
1774   if (capacity_after_gc < minimum_desired_capacity) {
1775     // Don't expand unless it's significant
1776     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1777     ergo_verbose4(ErgoHeapSizing,
1778                   "attempt heap expansion",
1779                   ergo_format_reason("capacity lower than "
1780                                      "min desired capacity after Full GC")
1781                   ergo_format_byte("capacity")
1782                   ergo_format_byte("occupancy")
1783                   ergo_format_byte_perc("min desired capacity"),
1784                   capacity_after_gc, used_after_gc,
1785                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1786     expand(expand_bytes);
1787 
1788     // No expansion, now see if we want to shrink
1789   } else if (capacity_after_gc > maximum_desired_capacity) {
1790     // Capacity too large, compute shrinking size
1791     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1792     ergo_verbose4(ErgoHeapSizing,
1793                   "attempt heap shrinking",
1794                   ergo_format_reason("capacity higher than "
1795                                      "max desired capacity after Full GC")
1796                   ergo_format_byte("capacity")
1797                   ergo_format_byte("occupancy")
1798                   ergo_format_byte_perc("max desired capacity"),
1799                   capacity_after_gc, used_after_gc,
1800                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1801     shrink(shrink_bytes);
1802   }
1803 }
1804 
1805 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1806                                                             AllocationContext_t context,
1807                                                             bool do_gc,
1808                                                             bool clear_all_soft_refs,
1809                                                             bool expect_null_mutator_alloc_region,
1810                                                             bool* gc_succeeded) {
1811   *gc_succeeded = true;
1812   // Let's attempt the allocation first.
1813   HeapWord* result =
1814     attempt_allocation_at_safepoint(word_size,
1815                                     context,
1816                                     expect_null_mutator_alloc_region);
1817   if (result != NULL) {
1818     assert(*gc_succeeded, "sanity");
1819     return result;
1820   }
1821 
1822   // In a G1 heap, we're supposed to keep allocation from failing by
1823   // incremental pauses.  Therefore, at least for now, we'll favor
1824   // expansion over collection.  (This might change in the future if we can
1825   // do something smarter than full collection to satisfy a failed alloc.)
1826   result = expand_and_allocate(word_size, context);
1827   if (result != NULL) {
1828     assert(*gc_succeeded, "sanity");
1829     return result;
1830   }
1831 
1832   if (do_gc) {
1833     // Expansion didn't work, we'll try to do a Full GC.
1834     *gc_succeeded = do_collection(false, /* explicit_gc */
1835                                   clear_all_soft_refs,
1836                                   word_size);
1837   }
1838 
1839   return NULL;
1840 }
1841 
1842 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1843                                                      AllocationContext_t context,
1844                                                      bool* succeeded) {
1845   assert_at_safepoint(true /* should_be_vm_thread */);
1846 
1847   // Attempts to allocate followed by Full GC.
1848   HeapWord* result =
1849     satisfy_failed_allocation_helper(word_size,
1850                                      context,
1851                                      true,  /* do_gc */
1852                                      false, /* clear_all_soft_refs */
1853                                      false, /* expect_null_mutator_alloc_region */
1854                                      succeeded);
1855 
1856   if (result != NULL || !*succeeded) {
1857     return result;
1858   }
1859 
1860   // Attempts to allocate followed by Full GC that will collect all soft references.
1861   result = satisfy_failed_allocation_helper(word_size,
1862                                             context,
1863                                             true, /* do_gc */
1864                                             true, /* clear_all_soft_refs */
1865                                             true, /* expect_null_mutator_alloc_region */
1866                                             succeeded);
1867 
1868   if (result != NULL || !*succeeded) {
1869     return result;
1870   }
1871 
1872   // Attempts to allocate, no GC
1873   result = satisfy_failed_allocation_helper(word_size,
1874                                             context,
1875                                             false, /* do_gc */
1876                                             false, /* clear_all_soft_refs */
1877                                             true,  /* expect_null_mutator_alloc_region */
1878                                             succeeded);
1879 
1880   if (result != NULL) {
1881     assert(*succeeded, "sanity");
1882     return result;
1883   }
1884 
1885   assert(!collector_policy()->should_clear_all_soft_refs(),
1886          "Flag should have been handled and cleared prior to this point");
1887 
1888   // What else?  We might try synchronous finalization later.  If the total
1889   // space available is large enough for the allocation, then a more
1890   // complete compaction phase than we've tried so far might be
1891   // appropriate.
1892   assert(*succeeded, "sanity");
1893   return NULL;
1894 }
1895 
1896 // Attempting to expand the heap sufficiently
1897 // to support an allocation of the given "word_size".  If
1898 // successful, perform the allocation and return the address of the
1899 // allocated block, or else "NULL".
1900 
1901 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1902   assert_at_safepoint(true /* should_be_vm_thread */);
1903 
1904   verify_region_sets_optional();
1905 
1906   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1907   ergo_verbose1(ErgoHeapSizing,
1908                 "attempt heap expansion",
1909                 ergo_format_reason("allocation request failed")
1910                 ergo_format_byte("allocation request"),
1911                 word_size * HeapWordSize);
1912   if (expand(expand_bytes)) {
1913     _hrm.verify_optional();
1914     verify_region_sets_optional();
1915     return attempt_allocation_at_safepoint(word_size,
1916                                            context,
1917                                            false /* expect_null_mutator_alloc_region */);
1918   }
1919   return NULL;
1920 }
1921 
1922 bool G1CollectedHeap::expand(size_t expand_bytes) {
1923   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1924   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1925                                        HeapRegion::GrainBytes);
1926   ergo_verbose2(ErgoHeapSizing,
1927                 "expand the heap",
1928                 ergo_format_byte("requested expansion amount")
1929                 ergo_format_byte("attempted expansion amount"),
1930                 expand_bytes, aligned_expand_bytes);
1931 
1932   if (is_maximal_no_gc()) {
1933     ergo_verbose0(ErgoHeapSizing,
1934                       "did not expand the heap",
1935                       ergo_format_reason("heap already fully expanded"));
1936     return false;
1937   }
1938 
1939   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1940   assert(regions_to_expand > 0, "Must expand by at least one region");
1941 
1942   uint expanded_by = _hrm.expand_by(regions_to_expand);
1943 
1944   if (expanded_by > 0) {
1945     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1946     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1947     g1_policy()->record_new_heap_size(num_regions());
1948   } else {
1949     ergo_verbose0(ErgoHeapSizing,
1950                   "did not expand the heap",
1951                   ergo_format_reason("heap expansion operation failed"));
1952     // The expansion of the virtual storage space was unsuccessful.
1953     // Let's see if it was because we ran out of swap.
1954     if (G1ExitOnExpansionFailure &&
1955         _hrm.available() >= regions_to_expand) {
1956       // We had head room...
1957       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1958     }
1959   }
1960   return regions_to_expand > 0;
1961 }
1962 
1963 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1964   size_t aligned_shrink_bytes =
1965     ReservedSpace::page_align_size_down(shrink_bytes);
1966   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1967                                          HeapRegion::GrainBytes);
1968   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1969 
1970   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1971   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1972 
1973   ergo_verbose3(ErgoHeapSizing,
1974                 "shrink the heap",
1975                 ergo_format_byte("requested shrinking amount")
1976                 ergo_format_byte("aligned shrinking amount")
1977                 ergo_format_byte("attempted shrinking amount"),
1978                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1979   if (num_regions_removed > 0) {
1980     g1_policy()->record_new_heap_size(num_regions());
1981   } else {
1982     ergo_verbose0(ErgoHeapSizing,
1983                   "did not shrink the heap",
1984                   ergo_format_reason("heap shrinking operation failed"));
1985   }
1986 }
1987 
1988 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1989   verify_region_sets_optional();
1990 
1991   // We should only reach here at the end of a Full GC which means we
1992   // should not not be holding to any GC alloc regions. The method
1993   // below will make sure of that and do any remaining clean up.
1994   _allocator->abandon_gc_alloc_regions();
1995 
1996   // Instead of tearing down / rebuilding the free lists here, we
1997   // could instead use the remove_all_pending() method on free_list to
1998   // remove only the ones that we need to remove.
1999   tear_down_region_sets(true /* free_list_only */);
2000   shrink_helper(shrink_bytes);
2001   rebuild_region_sets(true /* free_list_only */);
2002 
2003   _hrm.verify_optional();
2004   verify_region_sets_optional();
2005 }
2006 
2007 // Public methods.
2008 
2009 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
2010 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
2011 #endif // _MSC_VER
2012 
2013 
2014 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
2015   CollectedHeap(),
2016   _g1_policy(policy_),
2017   _dirty_card_queue_set(false),
2018   _into_cset_dirty_card_queue_set(false),
2019   _is_alive_closure_cm(this),
2020   _is_alive_closure_stw(this),
2021   _ref_processor_cm(NULL),
2022   _ref_processor_stw(NULL),
2023   _bot_shared(NULL),
2024   _cg1r(NULL),
2025   _g1mm(NULL),
2026   _refine_cte_cl(NULL),
2027   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
2028   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
2029   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
2030   _humongous_reclaim_candidates(),
2031   _has_humongous_reclaim_candidates(false),
2032   _archive_allocator(NULL),
2033   _free_regions_coming(false),
2034   _young_list(new YoungList(this)),
2035   _gc_time_stamp(0),
2036   _summary_bytes_used(0),
2037   _survivor_evac_stats(YoungPLABSize, PLABWeight),
2038   _old_evac_stats(OldPLABSize, PLABWeight),
2039   _expand_heap_after_alloc_failure(true),
2040   _old_marking_cycles_started(0),
2041   _old_marking_cycles_completed(0),
2042   _heap_summary_sent(false),
2043   _in_cset_fast_test(),
2044   _dirty_cards_region_list(NULL),
2045   _worker_cset_start_region(NULL),
2046   _worker_cset_start_region_time_stamp(NULL),
2047   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
2048   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
2049   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
2050   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
2051 
2052   _workers = new WorkGang("GC Thread", ParallelGCThreads,
2053                           /* are_GC_task_threads */true,
2054                           /* are_ConcurrentGC_threads */false);
2055   _workers->initialize_workers();
2056 
2057   _allocator = G1Allocator::create_allocator(this);
2058   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
2059 
2060   // Override the default _filler_array_max_size so that no humongous filler
2061   // objects are created.
2062   _filler_array_max_size = _humongous_object_threshold_in_words;
2063 
2064   uint n_queues = ParallelGCThreads;
2065   _task_queues = new RefToScanQueueSet(n_queues);
2066 
2067   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
2068   assert(n_rem_sets > 0, "Invariant.");
2069 
2070   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
2071   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
2072   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
2073 
2074   for (uint i = 0; i < n_queues; i++) {
2075     RefToScanQueue* q = new RefToScanQueue();
2076     q->initialize();
2077     _task_queues->register_queue(i, q);
2078     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
2079   }
2080   clear_cset_start_regions();
2081 
2082   // Initialize the G1EvacuationFailureALot counters and flags.
2083   NOT_PRODUCT(reset_evacuation_should_fail();)
2084 
2085   guarantee(_task_queues != NULL, "task_queues allocation failure.");
2086 }
2087 
2088 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
2089                                                                  size_t size,
2090                                                                  size_t translation_factor) {
2091   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
2092   // Allocate a new reserved space, preferring to use large pages.
2093   ReservedSpace rs(size, preferred_page_size);
2094   G1RegionToSpaceMapper* result  =
2095     G1RegionToSpaceMapper::create_mapper(rs,
2096                                          size,
2097                                          rs.alignment(),
2098                                          HeapRegion::GrainBytes,
2099                                          translation_factor,
2100                                          mtGC);
2101   if (TracePageSizes) {
2102     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2103                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2104   }
2105   return result;
2106 }
2107 
2108 jint G1CollectedHeap::initialize() {
2109   CollectedHeap::pre_initialize();
2110   os::enable_vtime();
2111 
2112   G1Log::init();
2113 
2114   // Necessary to satisfy locking discipline assertions.
2115 
2116   MutexLocker x(Heap_lock);
2117 
2118   // We have to initialize the printer before committing the heap, as
2119   // it will be used then.
2120   _hr_printer.set_active(G1PrintHeapRegions);
2121 
2122   // While there are no constraints in the GC code that HeapWordSize
2123   // be any particular value, there are multiple other areas in the
2124   // system which believe this to be true (e.g. oop->object_size in some
2125   // cases incorrectly returns the size in wordSize units rather than
2126   // HeapWordSize).
2127   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2128 
2129   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2130   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2131   size_t heap_alignment = collector_policy()->heap_alignment();
2132 
2133   // Ensure that the sizes are properly aligned.
2134   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2135   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2136   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2137 
2138   _refine_cte_cl = new RefineCardTableEntryClosure();
2139 
2140   jint ecode = JNI_OK;
2141   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
2142   if (_cg1r == NULL) {
2143     return ecode;
2144   }
2145 
2146   // Reserve the maximum.
2147 
2148   // When compressed oops are enabled, the preferred heap base
2149   // is calculated by subtracting the requested size from the
2150   // 32Gb boundary and using the result as the base address for
2151   // heap reservation. If the requested size is not aligned to
2152   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2153   // into the ReservedHeapSpace constructor) then the actual
2154   // base of the reserved heap may end up differing from the
2155   // address that was requested (i.e. the preferred heap base).
2156   // If this happens then we could end up using a non-optimal
2157   // compressed oops mode.
2158 
2159   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2160                                                  heap_alignment);
2161 
2162   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2163 
2164   // Create the barrier set for the entire reserved region.
2165   G1SATBCardTableLoggingModRefBS* bs
2166     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2167   bs->initialize();
2168   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2169   set_barrier_set(bs);
2170 
2171   // Also create a G1 rem set.
2172   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2173 
2174   // Carve out the G1 part of the heap.
2175 
2176   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2177   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2178   G1RegionToSpaceMapper* heap_storage =
2179     G1RegionToSpaceMapper::create_mapper(g1_rs,
2180                                          g1_rs.size(),
2181                                          page_size,
2182                                          HeapRegion::GrainBytes,
2183                                          1,
2184                                          mtJavaHeap);
2185   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2186                        max_byte_size, page_size,
2187                        heap_rs.base(),
2188                        heap_rs.size());
2189   heap_storage->set_mapping_changed_listener(&_listener);
2190 
2191   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2192   G1RegionToSpaceMapper* bot_storage =
2193     create_aux_memory_mapper("Block offset table",
2194                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2195                              G1BlockOffsetSharedArray::heap_map_factor());
2196 
2197   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2198   G1RegionToSpaceMapper* cardtable_storage =
2199     create_aux_memory_mapper("Card table",
2200                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2201                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2202 
2203   G1RegionToSpaceMapper* card_counts_storage =
2204     create_aux_memory_mapper("Card counts table",
2205                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2206                              G1CardCounts::heap_map_factor());
2207 
2208   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2209   G1RegionToSpaceMapper* prev_bitmap_storage =
2210     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2211   G1RegionToSpaceMapper* next_bitmap_storage =
2212     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2213 
2214   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2215   g1_barrier_set()->initialize(cardtable_storage);
2216    // Do later initialization work for concurrent refinement.
2217   _cg1r->init(card_counts_storage);
2218 
2219   // 6843694 - ensure that the maximum region index can fit
2220   // in the remembered set structures.
2221   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2222   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2223 
2224   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2225   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2226   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2227             "too many cards per region");
2228 
2229   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2230 
2231   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2232 
2233   {
2234     HeapWord* start = _hrm.reserved().start();
2235     HeapWord* end = _hrm.reserved().end();
2236     size_t granularity = HeapRegion::GrainBytes;
2237 
2238     _in_cset_fast_test.initialize(start, end, granularity);
2239     _humongous_reclaim_candidates.initialize(start, end, granularity);
2240   }
2241 
2242   // Create the ConcurrentMark data structure and thread.
2243   // (Must do this late, so that "max_regions" is defined.)
2244   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2245   if (_cm == NULL || !_cm->completed_initialization()) {
2246     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2247     return JNI_ENOMEM;
2248   }
2249   _cmThread = _cm->cmThread();
2250 
2251   // Initialize the from_card cache structure of HeapRegionRemSet.
2252   HeapRegionRemSet::init_heap(max_regions());
2253 
2254   // Now expand into the initial heap size.
2255   if (!expand(init_byte_size)) {
2256     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2257     return JNI_ENOMEM;
2258   }
2259 
2260   // Perform any initialization actions delegated to the policy.
2261   g1_policy()->init();
2262 
2263   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2264                                                SATB_Q_FL_lock,
2265                                                G1SATBProcessCompletedThreshold,
2266                                                Shared_SATB_Q_lock);
2267 
2268   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2269                                                 DirtyCardQ_CBL_mon,
2270                                                 DirtyCardQ_FL_lock,
2271                                                 concurrent_g1_refine()->yellow_zone(),
2272                                                 concurrent_g1_refine()->red_zone(),
2273                                                 Shared_DirtyCardQ_lock);
2274 
2275   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2276                                     DirtyCardQ_CBL_mon,
2277                                     DirtyCardQ_FL_lock,
2278                                     -1, // never trigger processing
2279                                     -1, // no limit on length
2280                                     Shared_DirtyCardQ_lock,
2281                                     &JavaThread::dirty_card_queue_set());
2282 
2283   // Initialize the card queue set used to hold cards containing
2284   // references into the collection set.
2285   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2286                                              DirtyCardQ_CBL_mon,
2287                                              DirtyCardQ_FL_lock,
2288                                              -1, // never trigger processing
2289                                              -1, // no limit on length
2290                                              Shared_DirtyCardQ_lock,
2291                                              &JavaThread::dirty_card_queue_set());
2292 
2293   // Here we allocate the dummy HeapRegion that is required by the
2294   // G1AllocRegion class.
2295   HeapRegion* dummy_region = _hrm.get_dummy_region();
2296 
2297   // We'll re-use the same region whether the alloc region will
2298   // require BOT updates or not and, if it doesn't, then a non-young
2299   // region will complain that it cannot support allocations without
2300   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2301   dummy_region->set_eden();
2302   // Make sure it's full.
2303   dummy_region->set_top(dummy_region->end());
2304   G1AllocRegion::setup(this, dummy_region);
2305 
2306   _allocator->init_mutator_alloc_region();
2307 
2308   // Do create of the monitoring and management support so that
2309   // values in the heap have been properly initialized.
2310   _g1mm = new G1MonitoringSupport(this);
2311 
2312   G1StringDedup::initialize();
2313 
2314   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2315   for (uint i = 0; i < ParallelGCThreads; i++) {
2316     new (&_preserved_objs[i]) OopAndMarkOopStack();
2317   }
2318 
2319   return JNI_OK;
2320 }
2321 
2322 void G1CollectedHeap::stop() {
2323   // Stop all concurrent threads. We do this to make sure these threads
2324   // do not continue to execute and access resources (e.g. gclog_or_tty)
2325   // that are destroyed during shutdown.
2326   _cg1r->stop();
2327   _cmThread->stop();
2328   if (G1StringDedup::is_enabled()) {
2329     G1StringDedup::stop();
2330   }
2331 }
2332 
2333 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2334   return HeapRegion::max_region_size();
2335 }
2336 
2337 void G1CollectedHeap::post_initialize() {
2338   CollectedHeap::post_initialize();
2339   ref_processing_init();
2340 }
2341 
2342 void G1CollectedHeap::ref_processing_init() {
2343   // Reference processing in G1 currently works as follows:
2344   //
2345   // * There are two reference processor instances. One is
2346   //   used to record and process discovered references
2347   //   during concurrent marking; the other is used to
2348   //   record and process references during STW pauses
2349   //   (both full and incremental).
2350   // * Both ref processors need to 'span' the entire heap as
2351   //   the regions in the collection set may be dotted around.
2352   //
2353   // * For the concurrent marking ref processor:
2354   //   * Reference discovery is enabled at initial marking.
2355   //   * Reference discovery is disabled and the discovered
2356   //     references processed etc during remarking.
2357   //   * Reference discovery is MT (see below).
2358   //   * Reference discovery requires a barrier (see below).
2359   //   * Reference processing may or may not be MT
2360   //     (depending on the value of ParallelRefProcEnabled
2361   //     and ParallelGCThreads).
2362   //   * A full GC disables reference discovery by the CM
2363   //     ref processor and abandons any entries on it's
2364   //     discovered lists.
2365   //
2366   // * For the STW processor:
2367   //   * Non MT discovery is enabled at the start of a full GC.
2368   //   * Processing and enqueueing during a full GC is non-MT.
2369   //   * During a full GC, references are processed after marking.
2370   //
2371   //   * Discovery (may or may not be MT) is enabled at the start
2372   //     of an incremental evacuation pause.
2373   //   * References are processed near the end of a STW evacuation pause.
2374   //   * For both types of GC:
2375   //     * Discovery is atomic - i.e. not concurrent.
2376   //     * Reference discovery will not need a barrier.
2377 
2378   MemRegion mr = reserved_region();
2379 
2380   // Concurrent Mark ref processor
2381   _ref_processor_cm =
2382     new ReferenceProcessor(mr,    // span
2383                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2384                                 // mt processing
2385                            ParallelGCThreads,
2386                                 // degree of mt processing
2387                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2388                                 // mt discovery
2389                            MAX2(ParallelGCThreads, ConcGCThreads),
2390                                 // degree of mt discovery
2391                            false,
2392                                 // Reference discovery is not atomic
2393                            &_is_alive_closure_cm);
2394                                 // is alive closure
2395                                 // (for efficiency/performance)
2396 
2397   // STW ref processor
2398   _ref_processor_stw =
2399     new ReferenceProcessor(mr,    // span
2400                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2401                                 // mt processing
2402                            ParallelGCThreads,
2403                                 // degree of mt processing
2404                            (ParallelGCThreads > 1),
2405                                 // mt discovery
2406                            ParallelGCThreads,
2407                                 // degree of mt discovery
2408                            true,
2409                                 // Reference discovery is atomic
2410                            &_is_alive_closure_stw);
2411                                 // is alive closure
2412                                 // (for efficiency/performance)
2413 }
2414 
2415 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2416   return g1_policy();
2417 }
2418 
2419 size_t G1CollectedHeap::capacity() const {
2420   return _hrm.length() * HeapRegion::GrainBytes;
2421 }
2422 
2423 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2424   assert(!hr->is_continues_humongous(), "pre-condition");
2425   hr->reset_gc_time_stamp();
2426   if (hr->is_starts_humongous()) {
2427     uint first_index = hr->hrm_index() + 1;
2428     uint last_index = hr->last_hc_index();
2429     for (uint i = first_index; i < last_index; i += 1) {
2430       HeapRegion* chr = region_at(i);
2431       assert(chr->is_continues_humongous(), "sanity");
2432       chr->reset_gc_time_stamp();
2433     }
2434   }
2435 }
2436 
2437 #ifndef PRODUCT
2438 
2439 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2440 private:
2441   unsigned _gc_time_stamp;
2442   bool _failures;
2443 
2444 public:
2445   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2446     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2447 
2448   virtual bool doHeapRegion(HeapRegion* hr) {
2449     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2450     if (_gc_time_stamp != region_gc_time_stamp) {
2451       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2452                              "expected %d", HR_FORMAT_PARAMS(hr),
2453                              region_gc_time_stamp, _gc_time_stamp);
2454       _failures = true;
2455     }
2456     return false;
2457   }
2458 
2459   bool failures() { return _failures; }
2460 };
2461 
2462 void G1CollectedHeap::check_gc_time_stamps() {
2463   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2464   heap_region_iterate(&cl);
2465   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2466 }
2467 #endif // PRODUCT
2468 
2469 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2470                                                  DirtyCardQueue* into_cset_dcq,
2471                                                  bool concurrent,
2472                                                  uint worker_i) {
2473   // Clean cards in the hot card cache
2474   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2475   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2476 
2477   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2478   size_t n_completed_buffers = 0;
2479   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2480     n_completed_buffers++;
2481   }
2482   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2483   dcqs.clear_n_completed_buffers();
2484   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2485 }
2486 
2487 // Computes the sum of the storage used by the various regions.
2488 size_t G1CollectedHeap::used() const {
2489   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2490   if (_archive_allocator != NULL) {
2491     result += _archive_allocator->used();
2492   }
2493   return result;
2494 }
2495 
2496 size_t G1CollectedHeap::used_unlocked() const {
2497   return _summary_bytes_used;
2498 }
2499 
2500 class SumUsedClosure: public HeapRegionClosure {
2501   size_t _used;
2502 public:
2503   SumUsedClosure() : _used(0) {}
2504   bool doHeapRegion(HeapRegion* r) {
2505     if (!r->is_continues_humongous()) {
2506       _used += r->used();
2507     }
2508     return false;
2509   }
2510   size_t result() { return _used; }
2511 };
2512 
2513 size_t G1CollectedHeap::recalculate_used() const {
2514   double recalculate_used_start = os::elapsedTime();
2515 
2516   SumUsedClosure blk;
2517   heap_region_iterate(&blk);
2518 
2519   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2520   return blk.result();
2521 }
2522 
2523 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2524   switch (cause) {
2525     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2526     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2527     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2528     case GCCause::_g1_humongous_allocation: return true;
2529     case GCCause::_update_allocation_context_stats_inc: return true;
2530     case GCCause::_wb_conc_mark:            return true;
2531     default:                                return false;
2532   }
2533 }
2534 
2535 #ifndef PRODUCT
2536 void G1CollectedHeap::allocate_dummy_regions() {
2537   // Let's fill up most of the region
2538   size_t word_size = HeapRegion::GrainWords - 1024;
2539   // And as a result the region we'll allocate will be humongous.
2540   guarantee(is_humongous(word_size), "sanity");
2541 
2542   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2543     // Let's use the existing mechanism for the allocation
2544     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2545                                                  AllocationContext::system());
2546     if (dummy_obj != NULL) {
2547       MemRegion mr(dummy_obj, word_size);
2548       CollectedHeap::fill_with_object(mr);
2549     } else {
2550       // If we can't allocate once, we probably cannot allocate
2551       // again. Let's get out of the loop.
2552       break;
2553     }
2554   }
2555 }
2556 #endif // !PRODUCT
2557 
2558 void G1CollectedHeap::increment_old_marking_cycles_started() {
2559   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2560          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2561          "Wrong marking cycle count (started: %d, completed: %d)",
2562          _old_marking_cycles_started, _old_marking_cycles_completed);
2563 
2564   _old_marking_cycles_started++;
2565 }
2566 
2567 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2568   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2569 
2570   // We assume that if concurrent == true, then the caller is a
2571   // concurrent thread that was joined the Suspendible Thread
2572   // Set. If there's ever a cheap way to check this, we should add an
2573   // assert here.
2574 
2575   // Given that this method is called at the end of a Full GC or of a
2576   // concurrent cycle, and those can be nested (i.e., a Full GC can
2577   // interrupt a concurrent cycle), the number of full collections
2578   // completed should be either one (in the case where there was no
2579   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2580   // behind the number of full collections started.
2581 
2582   // This is the case for the inner caller, i.e. a Full GC.
2583   assert(concurrent ||
2584          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2585          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2586          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2587          "is inconsistent with _old_marking_cycles_completed = %u",
2588          _old_marking_cycles_started, _old_marking_cycles_completed);
2589 
2590   // This is the case for the outer caller, i.e. the concurrent cycle.
2591   assert(!concurrent ||
2592          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2593          "for outer caller (concurrent cycle): "
2594          "_old_marking_cycles_started = %u "
2595          "is inconsistent with _old_marking_cycles_completed = %u",
2596          _old_marking_cycles_started, _old_marking_cycles_completed);
2597 
2598   _old_marking_cycles_completed += 1;
2599 
2600   // We need to clear the "in_progress" flag in the CM thread before
2601   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2602   // is set) so that if a waiter requests another System.gc() it doesn't
2603   // incorrectly see that a marking cycle is still in progress.
2604   if (concurrent) {
2605     _cmThread->set_idle();
2606   }
2607 
2608   // This notify_all() will ensure that a thread that called
2609   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2610   // and it's waiting for a full GC to finish will be woken up. It is
2611   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2612   FullGCCount_lock->notify_all();
2613 }
2614 
2615 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2616   collector_state()->set_concurrent_cycle_started(true);
2617   _gc_timer_cm->register_gc_start(start_time);
2618 
2619   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2620   trace_heap_before_gc(_gc_tracer_cm);
2621 }
2622 
2623 void G1CollectedHeap::register_concurrent_cycle_end() {
2624   if (collector_state()->concurrent_cycle_started()) {
2625     if (_cm->has_aborted()) {
2626       _gc_tracer_cm->report_concurrent_mode_failure();
2627     }
2628 
2629     _gc_timer_cm->register_gc_end();
2630     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2631 
2632     // Clear state variables to prepare for the next concurrent cycle.
2633      collector_state()->set_concurrent_cycle_started(false);
2634     _heap_summary_sent = false;
2635   }
2636 }
2637 
2638 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2639   if (collector_state()->concurrent_cycle_started()) {
2640     // This function can be called when:
2641     //  the cleanup pause is run
2642     //  the concurrent cycle is aborted before the cleanup pause.
2643     //  the concurrent cycle is aborted after the cleanup pause,
2644     //   but before the concurrent cycle end has been registered.
2645     // Make sure that we only send the heap information once.
2646     if (!_heap_summary_sent) {
2647       trace_heap_after_gc(_gc_tracer_cm);
2648       _heap_summary_sent = true;
2649     }
2650   }
2651 }
2652 
2653 void G1CollectedHeap::collect(GCCause::Cause cause) {
2654   assert_heap_not_locked();
2655 
2656   uint gc_count_before;
2657   uint old_marking_count_before;
2658   uint full_gc_count_before;
2659   bool retry_gc;
2660 
2661   do {
2662     retry_gc = false;
2663 
2664     {
2665       MutexLocker ml(Heap_lock);
2666 
2667       // Read the GC count while holding the Heap_lock
2668       gc_count_before = total_collections();
2669       full_gc_count_before = total_full_collections();
2670       old_marking_count_before = _old_marking_cycles_started;
2671     }
2672 
2673     if (should_do_concurrent_full_gc(cause)) {
2674       // Schedule an initial-mark evacuation pause that will start a
2675       // concurrent cycle. We're setting word_size to 0 which means that
2676       // we are not requesting a post-GC allocation.
2677       VM_G1IncCollectionPause op(gc_count_before,
2678                                  0,     /* word_size */
2679                                  true,  /* should_initiate_conc_mark */
2680                                  g1_policy()->max_pause_time_ms(),
2681                                  cause);
2682       op.set_allocation_context(AllocationContext::current());
2683 
2684       VMThread::execute(&op);
2685       if (!op.pause_succeeded()) {
2686         if (old_marking_count_before == _old_marking_cycles_started) {
2687           retry_gc = op.should_retry_gc();
2688         } else {
2689           // A Full GC happened while we were trying to schedule the
2690           // initial-mark GC. No point in starting a new cycle given
2691           // that the whole heap was collected anyway.
2692         }
2693 
2694         if (retry_gc) {
2695           if (GC_locker::is_active_and_needs_gc()) {
2696             GC_locker::stall_until_clear();
2697           }
2698         }
2699       }
2700     } else {
2701       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2702           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2703 
2704         // Schedule a standard evacuation pause. We're setting word_size
2705         // to 0 which means that we are not requesting a post-GC allocation.
2706         VM_G1IncCollectionPause op(gc_count_before,
2707                                    0,     /* word_size */
2708                                    false, /* should_initiate_conc_mark */
2709                                    g1_policy()->max_pause_time_ms(),
2710                                    cause);
2711         VMThread::execute(&op);
2712       } else {
2713         // Schedule a Full GC.
2714         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2715         VMThread::execute(&op);
2716       }
2717     }
2718   } while (retry_gc);
2719 }
2720 
2721 bool G1CollectedHeap::is_in(const void* p) const {
2722   if (_hrm.reserved().contains(p)) {
2723     // Given that we know that p is in the reserved space,
2724     // heap_region_containing_raw() should successfully
2725     // return the containing region.
2726     HeapRegion* hr = heap_region_containing_raw(p);
2727     return hr->is_in(p);
2728   } else {
2729     return false;
2730   }
2731 }
2732 
2733 #ifdef ASSERT
2734 bool G1CollectedHeap::is_in_exact(const void* p) const {
2735   bool contains = reserved_region().contains(p);
2736   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2737   if (contains && available) {
2738     return true;
2739   } else {
2740     return false;
2741   }
2742 }
2743 #endif
2744 
2745 bool G1CollectedHeap::obj_in_cs(oop obj) {
2746   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2747   return r != NULL && r->in_collection_set();
2748 }
2749 
2750 // Iteration functions.
2751 
2752 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2753 
2754 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2755   ExtendedOopClosure* _cl;
2756 public:
2757   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2758   bool doHeapRegion(HeapRegion* r) {
2759     if (!r->is_continues_humongous()) {
2760       r->oop_iterate(_cl);
2761     }
2762     return false;
2763   }
2764 };
2765 
2766 // Iterates an ObjectClosure over all objects within a HeapRegion.
2767 
2768 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2769   ObjectClosure* _cl;
2770 public:
2771   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2772   bool doHeapRegion(HeapRegion* r) {
2773     if (!r->is_continues_humongous()) {
2774       r->object_iterate(_cl);
2775     }
2776     return false;
2777   }
2778 };
2779 
2780 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2781   IterateObjectClosureRegionClosure blk(cl);
2782   heap_region_iterate(&blk);
2783 }
2784 
2785 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2786   _hrm.iterate(cl);
2787 }
2788 
2789 void
2790 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2791                                          uint worker_id,
2792                                          HeapRegionClaimer *hrclaimer,
2793                                          bool concurrent) const {
2794   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2795 }
2796 
2797 // Clear the cached CSet starting regions and (more importantly)
2798 // the time stamps. Called when we reset the GC time stamp.
2799 void G1CollectedHeap::clear_cset_start_regions() {
2800   assert(_worker_cset_start_region != NULL, "sanity");
2801   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2802 
2803   for (uint i = 0; i < ParallelGCThreads; i++) {
2804     _worker_cset_start_region[i] = NULL;
2805     _worker_cset_start_region_time_stamp[i] = 0;
2806   }
2807 }
2808 
2809 // Given the id of a worker, obtain or calculate a suitable
2810 // starting region for iterating over the current collection set.
2811 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2812   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2813 
2814   HeapRegion* result = NULL;
2815   unsigned gc_time_stamp = get_gc_time_stamp();
2816 
2817   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2818     // Cached starting region for current worker was set
2819     // during the current pause - so it's valid.
2820     // Note: the cached starting heap region may be NULL
2821     // (when the collection set is empty).
2822     result = _worker_cset_start_region[worker_i];
2823     assert(result == NULL || result->in_collection_set(), "sanity");
2824     return result;
2825   }
2826 
2827   // The cached entry was not valid so let's calculate
2828   // a suitable starting heap region for this worker.
2829 
2830   // We want the parallel threads to start their collection
2831   // set iteration at different collection set regions to
2832   // avoid contention.
2833   // If we have:
2834   //          n collection set regions
2835   //          p threads
2836   // Then thread t will start at region floor ((t * n) / p)
2837 
2838   result = g1_policy()->collection_set();
2839   uint cs_size = g1_policy()->cset_region_length();
2840   uint active_workers = workers()->active_workers();
2841 
2842   uint end_ind   = (cs_size * worker_i) / active_workers;
2843   uint start_ind = 0;
2844 
2845   if (worker_i > 0 &&
2846       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2847     // Previous workers starting region is valid
2848     // so let's iterate from there
2849     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2850     result = _worker_cset_start_region[worker_i - 1];
2851   }
2852 
2853   for (uint i = start_ind; i < end_ind; i++) {
2854     result = result->next_in_collection_set();
2855   }
2856 
2857   // Note: the calculated starting heap region may be NULL
2858   // (when the collection set is empty).
2859   assert(result == NULL || result->in_collection_set(), "sanity");
2860   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2861          "should be updated only once per pause");
2862   _worker_cset_start_region[worker_i] = result;
2863   OrderAccess::storestore();
2864   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2865   return result;
2866 }
2867 
2868 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2869   HeapRegion* r = g1_policy()->collection_set();
2870   while (r != NULL) {
2871     HeapRegion* next = r->next_in_collection_set();
2872     if (cl->doHeapRegion(r)) {
2873       cl->incomplete();
2874       return;
2875     }
2876     r = next;
2877   }
2878 }
2879 
2880 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2881                                                   HeapRegionClosure *cl) {
2882   if (r == NULL) {
2883     // The CSet is empty so there's nothing to do.
2884     return;
2885   }
2886 
2887   assert(r->in_collection_set(),
2888          "Start region must be a member of the collection set.");
2889   HeapRegion* cur = r;
2890   while (cur != NULL) {
2891     HeapRegion* next = cur->next_in_collection_set();
2892     if (cl->doHeapRegion(cur) && false) {
2893       cl->incomplete();
2894       return;
2895     }
2896     cur = next;
2897   }
2898   cur = g1_policy()->collection_set();
2899   while (cur != r) {
2900     HeapRegion* next = cur->next_in_collection_set();
2901     if (cl->doHeapRegion(cur) && false) {
2902       cl->incomplete();
2903       return;
2904     }
2905     cur = next;
2906   }
2907 }
2908 
2909 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2910   HeapRegion* result = _hrm.next_region_in_heap(from);
2911   while (result != NULL && result->is_pinned()) {
2912     result = _hrm.next_region_in_heap(result);
2913   }
2914   return result;
2915 }
2916 
2917 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2918   HeapRegion* hr = heap_region_containing(addr);
2919   return hr->block_start(addr);
2920 }
2921 
2922 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2923   HeapRegion* hr = heap_region_containing(addr);
2924   return hr->block_size(addr);
2925 }
2926 
2927 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2928   HeapRegion* hr = heap_region_containing(addr);
2929   return hr->block_is_obj(addr);
2930 }
2931 
2932 bool G1CollectedHeap::supports_tlab_allocation() const {
2933   return true;
2934 }
2935 
2936 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2937   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2938 }
2939 
2940 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2941   return young_list()->eden_used_bytes();
2942 }
2943 
2944 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2945 // must be equal to the humongous object limit.
2946 size_t G1CollectedHeap::max_tlab_size() const {
2947   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2948 }
2949 
2950 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2951   AllocationContext_t context = AllocationContext::current();
2952   return _allocator->unsafe_max_tlab_alloc(context);
2953 }
2954 
2955 size_t G1CollectedHeap::max_capacity() const {
2956   return _hrm.reserved().byte_size();
2957 }
2958 
2959 jlong G1CollectedHeap::millis_since_last_gc() {
2960   // assert(false, "NYI");
2961   return 0;
2962 }
2963 
2964 void G1CollectedHeap::prepare_for_verify() {
2965   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2966     ensure_parsability(false);
2967   }
2968   g1_rem_set()->prepare_for_verify();
2969 }
2970 
2971 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2972                                               VerifyOption vo) {
2973   switch (vo) {
2974   case VerifyOption_G1UsePrevMarking:
2975     return hr->obj_allocated_since_prev_marking(obj);
2976   case VerifyOption_G1UseNextMarking:
2977     return hr->obj_allocated_since_next_marking(obj);
2978   case VerifyOption_G1UseMarkWord:
2979     return false;
2980   default:
2981     ShouldNotReachHere();
2982   }
2983   return false; // keep some compilers happy
2984 }
2985 
2986 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2987   switch (vo) {
2988   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2989   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2990   case VerifyOption_G1UseMarkWord:    return NULL;
2991   default:                            ShouldNotReachHere();
2992   }
2993   return NULL; // keep some compilers happy
2994 }
2995 
2996 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2997   switch (vo) {
2998   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2999   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3000   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3001   default:                            ShouldNotReachHere();
3002   }
3003   return false; // keep some compilers happy
3004 }
3005 
3006 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3007   switch (vo) {
3008   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3009   case VerifyOption_G1UseNextMarking: return "NTAMS";
3010   case VerifyOption_G1UseMarkWord:    return "NONE";
3011   default:                            ShouldNotReachHere();
3012   }
3013   return NULL; // keep some compilers happy
3014 }
3015 
3016 class VerifyRootsClosure: public OopClosure {
3017 private:
3018   G1CollectedHeap* _g1h;
3019   VerifyOption     _vo;
3020   bool             _failures;
3021 public:
3022   // _vo == UsePrevMarking -> use "prev" marking information,
3023   // _vo == UseNextMarking -> use "next" marking information,
3024   // _vo == UseMarkWord    -> use mark word from object header.
3025   VerifyRootsClosure(VerifyOption vo) :
3026     _g1h(G1CollectedHeap::heap()),
3027     _vo(vo),
3028     _failures(false) { }
3029 
3030   bool failures() { return _failures; }
3031 
3032   template <class T> void do_oop_nv(T* p) {
3033     T heap_oop = oopDesc::load_heap_oop(p);
3034     if (!oopDesc::is_null(heap_oop)) {
3035       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3036       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3037         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
3038                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
3039         if (_vo == VerifyOption_G1UseMarkWord) {
3040           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
3041         }
3042         obj->print_on(gclog_or_tty);
3043         _failures = true;
3044       }
3045     }
3046   }
3047 
3048   void do_oop(oop* p)       { do_oop_nv(p); }
3049   void do_oop(narrowOop* p) { do_oop_nv(p); }
3050 };
3051 
3052 class G1VerifyCodeRootOopClosure: public OopClosure {
3053   G1CollectedHeap* _g1h;
3054   OopClosure* _root_cl;
3055   nmethod* _nm;
3056   VerifyOption _vo;
3057   bool _failures;
3058 
3059   template <class T> void do_oop_work(T* p) {
3060     // First verify that this root is live
3061     _root_cl->do_oop(p);
3062 
3063     if (!G1VerifyHeapRegionCodeRoots) {
3064       // We're not verifying the code roots attached to heap region.
3065       return;
3066     }
3067 
3068     // Don't check the code roots during marking verification in a full GC
3069     if (_vo == VerifyOption_G1UseMarkWord) {
3070       return;
3071     }
3072 
3073     // Now verify that the current nmethod (which contains p) is
3074     // in the code root list of the heap region containing the
3075     // object referenced by p.
3076 
3077     T heap_oop = oopDesc::load_heap_oop(p);
3078     if (!oopDesc::is_null(heap_oop)) {
3079       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3080 
3081       // Now fetch the region containing the object
3082       HeapRegion* hr = _g1h->heap_region_containing(obj);
3083       HeapRegionRemSet* hrrs = hr->rem_set();
3084       // Verify that the strong code root list for this region
3085       // contains the nmethod
3086       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3087         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
3088                                "from nmethod " PTR_FORMAT " not in strong "
3089                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
3090                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3091         _failures = true;
3092       }
3093     }
3094   }
3095 
3096 public:
3097   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3098     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3099 
3100   void do_oop(oop* p) { do_oop_work(p); }
3101   void do_oop(narrowOop* p) { do_oop_work(p); }
3102 
3103   void set_nmethod(nmethod* nm) { _nm = nm; }
3104   bool failures() { return _failures; }
3105 };
3106 
3107 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3108   G1VerifyCodeRootOopClosure* _oop_cl;
3109 
3110 public:
3111   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3112     _oop_cl(oop_cl) {}
3113 
3114   void do_code_blob(CodeBlob* cb) {
3115     nmethod* nm = cb->as_nmethod_or_null();
3116     if (nm != NULL) {
3117       _oop_cl->set_nmethod(nm);
3118       nm->oops_do(_oop_cl);
3119     }
3120   }
3121 };
3122 
3123 class YoungRefCounterClosure : public OopClosure {
3124   G1CollectedHeap* _g1h;
3125   int              _count;
3126  public:
3127   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3128   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3129   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3130 
3131   int count() { return _count; }
3132   void reset_count() { _count = 0; };
3133 };
3134 
3135 class VerifyKlassClosure: public KlassClosure {
3136   YoungRefCounterClosure _young_ref_counter_closure;
3137   OopClosure *_oop_closure;
3138  public:
3139   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3140   void do_klass(Klass* k) {
3141     k->oops_do(_oop_closure);
3142 
3143     _young_ref_counter_closure.reset_count();
3144     k->oops_do(&_young_ref_counter_closure);
3145     if (_young_ref_counter_closure.count() > 0) {
3146       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
3147     }
3148   }
3149 };
3150 
3151 class VerifyLivenessOopClosure: public OopClosure {
3152   G1CollectedHeap* _g1h;
3153   VerifyOption _vo;
3154 public:
3155   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3156     _g1h(g1h), _vo(vo)
3157   { }
3158   void do_oop(narrowOop *p) { do_oop_work(p); }
3159   void do_oop(      oop *p) { do_oop_work(p); }
3160 
3161   template <class T> void do_oop_work(T *p) {
3162     oop obj = oopDesc::load_decode_heap_oop(p);
3163     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3164               "Dead object referenced by a not dead object");
3165   }
3166 };
3167 
3168 class VerifyObjsInRegionClosure: public ObjectClosure {
3169 private:
3170   G1CollectedHeap* _g1h;
3171   size_t _live_bytes;
3172   HeapRegion *_hr;
3173   VerifyOption _vo;
3174 public:
3175   // _vo == UsePrevMarking -> use "prev" marking information,
3176   // _vo == UseNextMarking -> use "next" marking information,
3177   // _vo == UseMarkWord    -> use mark word from object header.
3178   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3179     : _live_bytes(0), _hr(hr), _vo(vo) {
3180     _g1h = G1CollectedHeap::heap();
3181   }
3182   void do_object(oop o) {
3183     VerifyLivenessOopClosure isLive(_g1h, _vo);
3184     assert(o != NULL, "Huh?");
3185     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3186       // If the object is alive according to the mark word,
3187       // then verify that the marking information agrees.
3188       // Note we can't verify the contra-positive of the
3189       // above: if the object is dead (according to the mark
3190       // word), it may not be marked, or may have been marked
3191       // but has since became dead, or may have been allocated
3192       // since the last marking.
3193       if (_vo == VerifyOption_G1UseMarkWord) {
3194         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3195       }
3196 
3197       o->oop_iterate_no_header(&isLive);
3198       if (!_hr->obj_allocated_since_prev_marking(o)) {
3199         size_t obj_size = o->size();    // Make sure we don't overflow
3200         _live_bytes += (obj_size * HeapWordSize);
3201       }
3202     }
3203   }
3204   size_t live_bytes() { return _live_bytes; }
3205 };
3206 
3207 class VerifyArchiveOopClosure: public OopClosure {
3208 public:
3209   VerifyArchiveOopClosure(HeapRegion *hr) { }
3210   void do_oop(narrowOop *p) { do_oop_work(p); }
3211   void do_oop(      oop *p) { do_oop_work(p); }
3212 
3213   template <class T> void do_oop_work(T *p) {
3214     oop obj = oopDesc::load_decode_heap_oop(p);
3215     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3216               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3217               p2i(p), p2i(obj));
3218   }
3219 };
3220 
3221 class VerifyArchiveRegionClosure: public ObjectClosure {
3222 public:
3223   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3224   // Verify that all object pointers are to archive regions.
3225   void do_object(oop o) {
3226     VerifyArchiveOopClosure checkOop(NULL);
3227     assert(o != NULL, "Should not be here for NULL oops");
3228     o->oop_iterate_no_header(&checkOop);
3229   }
3230 };
3231 
3232 class VerifyRegionClosure: public HeapRegionClosure {
3233 private:
3234   bool             _par;
3235   VerifyOption     _vo;
3236   bool             _failures;
3237 public:
3238   // _vo == UsePrevMarking -> use "prev" marking information,
3239   // _vo == UseNextMarking -> use "next" marking information,
3240   // _vo == UseMarkWord    -> use mark word from object header.
3241   VerifyRegionClosure(bool par, VerifyOption vo)
3242     : _par(par),
3243       _vo(vo),
3244       _failures(false) {}
3245 
3246   bool failures() {
3247     return _failures;
3248   }
3249 
3250   bool doHeapRegion(HeapRegion* r) {
3251     // For archive regions, verify there are no heap pointers to
3252     // non-pinned regions. For all others, verify liveness info.
3253     if (r->is_archive()) {
3254       VerifyArchiveRegionClosure verify_oop_pointers(r);
3255       r->object_iterate(&verify_oop_pointers);
3256       return true;
3257     }
3258     if (!r->is_continues_humongous()) {
3259       bool failures = false;
3260       r->verify(_vo, &failures);
3261       if (failures) {
3262         _failures = true;
3263       } else {
3264         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3265         r->object_iterate(&not_dead_yet_cl);
3266         if (_vo != VerifyOption_G1UseNextMarking) {
3267           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3268             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3269                                    "max_live_bytes " SIZE_FORMAT " "
3270                                    "< calculated " SIZE_FORMAT,
3271                                    p2i(r->bottom()), p2i(r->end()),
3272                                    r->max_live_bytes(),
3273                                  not_dead_yet_cl.live_bytes());
3274             _failures = true;
3275           }
3276         } else {
3277           // When vo == UseNextMarking we cannot currently do a sanity
3278           // check on the live bytes as the calculation has not been
3279           // finalized yet.
3280         }
3281       }
3282     }
3283     return false; // stop the region iteration if we hit a failure
3284   }
3285 };
3286 
3287 // This is the task used for parallel verification of the heap regions
3288 
3289 class G1ParVerifyTask: public AbstractGangTask {
3290 private:
3291   G1CollectedHeap*  _g1h;
3292   VerifyOption      _vo;
3293   bool              _failures;
3294   HeapRegionClaimer _hrclaimer;
3295 
3296 public:
3297   // _vo == UsePrevMarking -> use "prev" marking information,
3298   // _vo == UseNextMarking -> use "next" marking information,
3299   // _vo == UseMarkWord    -> use mark word from object header.
3300   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3301       AbstractGangTask("Parallel verify task"),
3302       _g1h(g1h),
3303       _vo(vo),
3304       _failures(false),
3305       _hrclaimer(g1h->workers()->active_workers()) {}
3306 
3307   bool failures() {
3308     return _failures;
3309   }
3310 
3311   void work(uint worker_id) {
3312     HandleMark hm;
3313     VerifyRegionClosure blk(true, _vo);
3314     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3315     if (blk.failures()) {
3316       _failures = true;
3317     }
3318   }
3319 };
3320 
3321 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3322   if (SafepointSynchronize::is_at_safepoint()) {
3323     assert(Thread::current()->is_VM_thread(),
3324            "Expected to be executed serially by the VM thread at this point");
3325 
3326     if (!silent) { gclog_or_tty->print("Roots "); }
3327     VerifyRootsClosure rootsCl(vo);
3328     VerifyKlassClosure klassCl(this, &rootsCl);
3329     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3330 
3331     // We apply the relevant closures to all the oops in the
3332     // system dictionary, class loader data graph, the string table
3333     // and the nmethods in the code cache.
3334     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3335     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3336 
3337     {
3338       G1RootProcessor root_processor(this, 1);
3339       root_processor.process_all_roots(&rootsCl,
3340                                        &cldCl,
3341                                        &blobsCl);
3342     }
3343 
3344     bool failures = rootsCl.failures() || codeRootsCl.failures();
3345 
3346     if (vo != VerifyOption_G1UseMarkWord) {
3347       // If we're verifying during a full GC then the region sets
3348       // will have been torn down at the start of the GC. Therefore
3349       // verifying the region sets will fail. So we only verify
3350       // the region sets when not in a full GC.
3351       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3352       verify_region_sets();
3353     }
3354 
3355     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3356     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3357 
3358       G1ParVerifyTask task(this, vo);
3359       workers()->run_task(&task);
3360       if (task.failures()) {
3361         failures = true;
3362       }
3363 
3364     } else {
3365       VerifyRegionClosure blk(false, vo);
3366       heap_region_iterate(&blk);
3367       if (blk.failures()) {
3368         failures = true;
3369       }
3370     }
3371 
3372     if (G1StringDedup::is_enabled()) {
3373       if (!silent) gclog_or_tty->print("StrDedup ");
3374       G1StringDedup::verify();
3375     }
3376 
3377     if (failures) {
3378       gclog_or_tty->print_cr("Heap:");
3379       // It helps to have the per-region information in the output to
3380       // help us track down what went wrong. This is why we call
3381       // print_extended_on() instead of print_on().
3382       print_extended_on(gclog_or_tty);
3383       gclog_or_tty->cr();
3384       gclog_or_tty->flush();
3385     }
3386     guarantee(!failures, "there should not have been any failures");
3387   } else {
3388     if (!silent) {
3389       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3390       if (G1StringDedup::is_enabled()) {
3391         gclog_or_tty->print(", StrDedup");
3392       }
3393       gclog_or_tty->print(") ");
3394     }
3395   }
3396 }
3397 
3398 void G1CollectedHeap::verify(bool silent) {
3399   verify(silent, VerifyOption_G1UsePrevMarking);
3400 }
3401 
3402 double G1CollectedHeap::verify(bool guard, const char* msg) {
3403   double verify_time_ms = 0.0;
3404 
3405   if (guard && total_collections() >= VerifyGCStartAt) {
3406     double verify_start = os::elapsedTime();
3407     HandleMark hm;  // Discard invalid handles created during verification
3408     prepare_for_verify();
3409     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3410     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3411   }
3412 
3413   return verify_time_ms;
3414 }
3415 
3416 void G1CollectedHeap::verify_before_gc() {
3417   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3418   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3419 }
3420 
3421 void G1CollectedHeap::verify_after_gc() {
3422   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3423   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3424 }
3425 
3426 class PrintRegionClosure: public HeapRegionClosure {
3427   outputStream* _st;
3428 public:
3429   PrintRegionClosure(outputStream* st) : _st(st) {}
3430   bool doHeapRegion(HeapRegion* r) {
3431     r->print_on(_st);
3432     return false;
3433   }
3434 };
3435 
3436 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3437                                        const HeapRegion* hr,
3438                                        const VerifyOption vo) const {
3439   switch (vo) {
3440   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3441   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3442   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3443   default:                            ShouldNotReachHere();
3444   }
3445   return false; // keep some compilers happy
3446 }
3447 
3448 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3449                                        const VerifyOption vo) const {
3450   switch (vo) {
3451   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3452   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3453   case VerifyOption_G1UseMarkWord: {
3454     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3455     return !obj->is_gc_marked() && !hr->is_archive();
3456   }
3457   default:                            ShouldNotReachHere();
3458   }
3459   return false; // keep some compilers happy
3460 }
3461 
3462 void G1CollectedHeap::print_on(outputStream* st) const {
3463   st->print(" %-20s", "garbage-first heap");
3464   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3465             capacity()/K, used_unlocked()/K);
3466   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3467             p2i(_hrm.reserved().start()),
3468             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3469             p2i(_hrm.reserved().end()));
3470   st->cr();
3471   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3472   uint young_regions = _young_list->length();
3473   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3474             (size_t) young_regions * HeapRegion::GrainBytes / K);
3475   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3476   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3477             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3478   st->cr();
3479   MetaspaceAux::print_on(st);
3480 }
3481 
3482 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3483   print_on(st);
3484 
3485   // Print the per-region information.
3486   st->cr();
3487   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3488                "HS=humongous(starts), HC=humongous(continues), "
3489                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3490                "PTAMS=previous top-at-mark-start, "
3491                "NTAMS=next top-at-mark-start)");
3492   PrintRegionClosure blk(st);
3493   heap_region_iterate(&blk);
3494 }
3495 
3496 void G1CollectedHeap::print_on_error(outputStream* st) const {
3497   this->CollectedHeap::print_on_error(st);
3498 
3499   if (_cm != NULL) {
3500     st->cr();
3501     _cm->print_on_error(st);
3502   }
3503 }
3504 
3505 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3506   workers()->print_worker_threads_on(st);
3507   _cmThread->print_on(st);
3508   st->cr();
3509   _cm->print_worker_threads_on(st);
3510   _cg1r->print_worker_threads_on(st);
3511   if (G1StringDedup::is_enabled()) {
3512     G1StringDedup::print_worker_threads_on(st);
3513   }
3514 }
3515 
3516 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3517   workers()->threads_do(tc);
3518   tc->do_thread(_cmThread);
3519   _cg1r->threads_do(tc);
3520   if (G1StringDedup::is_enabled()) {
3521     G1StringDedup::threads_do(tc);
3522   }
3523 }
3524 
3525 void G1CollectedHeap::print_tracing_info() const {
3526   // We'll overload this to mean "trace GC pause statistics."
3527   if (TraceYoungGenTime || TraceOldGenTime) {
3528     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3529     // to that.
3530     g1_policy()->print_tracing_info();
3531   }
3532   if (G1SummarizeRSetStats) {
3533     g1_rem_set()->print_summary_info();
3534   }
3535   if (G1SummarizeConcMark) {
3536     concurrent_mark()->print_summary_info();
3537   }
3538   g1_policy()->print_yg_surv_rate_info();
3539 }
3540 
3541 #ifndef PRODUCT
3542 // Helpful for debugging RSet issues.
3543 
3544 class PrintRSetsClosure : public HeapRegionClosure {
3545 private:
3546   const char* _msg;
3547   size_t _occupied_sum;
3548 
3549 public:
3550   bool doHeapRegion(HeapRegion* r) {
3551     HeapRegionRemSet* hrrs = r->rem_set();
3552     size_t occupied = hrrs->occupied();
3553     _occupied_sum += occupied;
3554 
3555     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3556                            HR_FORMAT_PARAMS(r));
3557     if (occupied == 0) {
3558       gclog_or_tty->print_cr("  RSet is empty");
3559     } else {
3560       hrrs->print();
3561     }
3562     gclog_or_tty->print_cr("----------");
3563     return false;
3564   }
3565 
3566   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3567     gclog_or_tty->cr();
3568     gclog_or_tty->print_cr("========================================");
3569     gclog_or_tty->print_cr("%s", msg);
3570     gclog_or_tty->cr();
3571   }
3572 
3573   ~PrintRSetsClosure() {
3574     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3575     gclog_or_tty->print_cr("========================================");
3576     gclog_or_tty->cr();
3577   }
3578 };
3579 
3580 void G1CollectedHeap::print_cset_rsets() {
3581   PrintRSetsClosure cl("Printing CSet RSets");
3582   collection_set_iterate(&cl);
3583 }
3584 
3585 void G1CollectedHeap::print_all_rsets() {
3586   PrintRSetsClosure cl("Printing All RSets");;
3587   heap_region_iterate(&cl);
3588 }
3589 #endif // PRODUCT
3590 
3591 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3592   YoungList* young_list = heap()->young_list();
3593 
3594   size_t eden_used_bytes = young_list->eden_used_bytes();
3595   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3596 
3597   size_t eden_capacity_bytes =
3598     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3599 
3600   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3601   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3602 }
3603 
3604 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3605   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3606                        stats->unused(), stats->used(), stats->region_end_waste(),
3607                        stats->regions_filled(), stats->direct_allocated(),
3608                        stats->failure_used(), stats->failure_waste());
3609 }
3610 
3611 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3612   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3613   gc_tracer->report_gc_heap_summary(when, heap_summary);
3614 
3615   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3616   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3617 }
3618 
3619 
3620 G1CollectedHeap* G1CollectedHeap::heap() {
3621   CollectedHeap* heap = Universe::heap();
3622   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3623   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3624   return (G1CollectedHeap*)heap;
3625 }
3626 
3627 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3628   // always_do_update_barrier = false;
3629   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3630   // Fill TLAB's and such
3631   accumulate_statistics_all_tlabs();
3632   ensure_parsability(true);
3633 
3634   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3635       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3636     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3637   }
3638 }
3639 
3640 void G1CollectedHeap::gc_epilogue(bool full) {
3641 
3642   if (G1SummarizeRSetStats &&
3643       (G1SummarizeRSetStatsPeriod > 0) &&
3644       // we are at the end of the GC. Total collections has already been increased.
3645       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3646     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3647   }
3648 
3649   // FIXME: what is this about?
3650   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3651   // is set.
3652   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3653                         "derived pointer present"));
3654   // always_do_update_barrier = true;
3655 
3656   resize_all_tlabs();
3657   allocation_context_stats().update(full);
3658 
3659   // We have just completed a GC. Update the soft reference
3660   // policy with the new heap occupancy
3661   Universe::update_heap_info_at_gc();
3662 }
3663 
3664 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3665                                                uint gc_count_before,
3666                                                bool* succeeded,
3667                                                GCCause::Cause gc_cause) {
3668   assert_heap_not_locked_and_not_at_safepoint();
3669   g1_policy()->record_stop_world_start();
3670   VM_G1IncCollectionPause op(gc_count_before,
3671                              word_size,
3672                              false, /* should_initiate_conc_mark */
3673                              g1_policy()->max_pause_time_ms(),
3674                              gc_cause);
3675 
3676   op.set_allocation_context(AllocationContext::current());
3677   VMThread::execute(&op);
3678 
3679   HeapWord* result = op.result();
3680   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3681   assert(result == NULL || ret_succeeded,
3682          "the result should be NULL if the VM did not succeed");
3683   *succeeded = ret_succeeded;
3684 
3685   assert_heap_not_locked();
3686   return result;
3687 }
3688 
3689 void
3690 G1CollectedHeap::doConcurrentMark() {
3691   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3692   if (!_cmThread->in_progress()) {
3693     _cmThread->set_started();
3694     CGC_lock->notify();
3695   }
3696 }
3697 
3698 size_t G1CollectedHeap::pending_card_num() {
3699   size_t extra_cards = 0;
3700   JavaThread *curr = Threads::first();
3701   while (curr != NULL) {
3702     DirtyCardQueue& dcq = curr->dirty_card_queue();
3703     extra_cards += dcq.size();
3704     curr = curr->next();
3705   }
3706   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3707   size_t buffer_size = dcqs.buffer_size();
3708   size_t buffer_num = dcqs.completed_buffers_num();
3709 
3710   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3711   // in bytes - not the number of 'entries'. We need to convert
3712   // into a number of cards.
3713   return (buffer_size * buffer_num + extra_cards) / oopSize;
3714 }
3715 
3716 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3717  private:
3718   size_t _total_humongous;
3719   size_t _candidate_humongous;
3720 
3721   DirtyCardQueue _dcq;
3722 
3723   // We don't nominate objects with many remembered set entries, on
3724   // the assumption that such objects are likely still live.
3725   bool is_remset_small(HeapRegion* region) const {
3726     HeapRegionRemSet* const rset = region->rem_set();
3727     return G1EagerReclaimHumongousObjectsWithStaleRefs
3728       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3729       : rset->is_empty();
3730   }
3731 
3732   bool is_typeArray_region(HeapRegion* region) const {
3733     return oop(region->bottom())->is_typeArray();
3734   }
3735 
3736   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3737     assert(region->is_starts_humongous(), "Must start a humongous object");
3738 
3739     // Candidate selection must satisfy the following constraints
3740     // while concurrent marking is in progress:
3741     //
3742     // * In order to maintain SATB invariants, an object must not be
3743     // reclaimed if it was allocated before the start of marking and
3744     // has not had its references scanned.  Such an object must have
3745     // its references (including type metadata) scanned to ensure no
3746     // live objects are missed by the marking process.  Objects
3747     // allocated after the start of concurrent marking don't need to
3748     // be scanned.
3749     //
3750     // * An object must not be reclaimed if it is on the concurrent
3751     // mark stack.  Objects allocated after the start of concurrent
3752     // marking are never pushed on the mark stack.
3753     //
3754     // Nominating only objects allocated after the start of concurrent
3755     // marking is sufficient to meet both constraints.  This may miss
3756     // some objects that satisfy the constraints, but the marking data
3757     // structures don't support efficiently performing the needed
3758     // additional tests or scrubbing of the mark stack.
3759     //
3760     // However, we presently only nominate is_typeArray() objects.
3761     // A humongous object containing references induces remembered
3762     // set entries on other regions.  In order to reclaim such an
3763     // object, those remembered sets would need to be cleaned up.
3764     //
3765     // We also treat is_typeArray() objects specially, allowing them
3766     // to be reclaimed even if allocated before the start of
3767     // concurrent mark.  For this we rely on mark stack insertion to
3768     // exclude is_typeArray() objects, preventing reclaiming an object
3769     // that is in the mark stack.  We also rely on the metadata for
3770     // such objects to be built-in and so ensured to be kept live.
3771     // Frequent allocation and drop of large binary blobs is an
3772     // important use case for eager reclaim, and this special handling
3773     // may reduce needed headroom.
3774 
3775     return is_typeArray_region(region) && is_remset_small(region);
3776   }
3777 
3778  public:
3779   RegisterHumongousWithInCSetFastTestClosure()
3780   : _total_humongous(0),
3781     _candidate_humongous(0),
3782     _dcq(&JavaThread::dirty_card_queue_set()) {
3783   }
3784 
3785   virtual bool doHeapRegion(HeapRegion* r) {
3786     if (!r->is_starts_humongous()) {
3787       return false;
3788     }
3789     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3790 
3791     bool is_candidate = humongous_region_is_candidate(g1h, r);
3792     uint rindex = r->hrm_index();
3793     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3794     if (is_candidate) {
3795       _candidate_humongous++;
3796       g1h->register_humongous_region_with_cset(rindex);
3797       // Is_candidate already filters out humongous object with large remembered sets.
3798       // If we have a humongous object with a few remembered sets, we simply flush these
3799       // remembered set entries into the DCQS. That will result in automatic
3800       // re-evaluation of their remembered set entries during the following evacuation
3801       // phase.
3802       if (!r->rem_set()->is_empty()) {
3803         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3804                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3805         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3806         HeapRegionRemSetIterator hrrs(r->rem_set());
3807         size_t card_index;
3808         while (hrrs.has_next(card_index)) {
3809           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3810           // The remembered set might contain references to already freed
3811           // regions. Filter out such entries to avoid failing card table
3812           // verification.
3813           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3814             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3815               *card_ptr = CardTableModRefBS::dirty_card_val();
3816               _dcq.enqueue(card_ptr);
3817             }
3818           }
3819         }
3820         r->rem_set()->clear_locked();
3821       }
3822       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3823     }
3824     _total_humongous++;
3825 
3826     return false;
3827   }
3828 
3829   size_t total_humongous() const { return _total_humongous; }
3830   size_t candidate_humongous() const { return _candidate_humongous; }
3831 
3832   void flush_rem_set_entries() { _dcq.flush(); }
3833 };
3834 
3835 void G1CollectedHeap::register_humongous_regions_with_cset() {
3836   if (!G1EagerReclaimHumongousObjects) {
3837     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3838     return;
3839   }
3840   double time = os::elapsed_counter();
3841 
3842   // Collect reclaim candidate information and register candidates with cset.
3843   RegisterHumongousWithInCSetFastTestClosure cl;
3844   heap_region_iterate(&cl);
3845 
3846   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3847   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3848                                                                   cl.total_humongous(),
3849                                                                   cl.candidate_humongous());
3850   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3851 
3852   // Finally flush all remembered set entries to re-check into the global DCQS.
3853   cl.flush_rem_set_entries();
3854 }
3855 
3856 #ifdef ASSERT
3857 class VerifyCSetClosure: public HeapRegionClosure {
3858 public:
3859   bool doHeapRegion(HeapRegion* hr) {
3860     // Here we check that the CSet region's RSet is ready for parallel
3861     // iteration. The fields that we'll verify are only manipulated
3862     // when the region is part of a CSet and is collected. Afterwards,
3863     // we reset these fields when we clear the region's RSet (when the
3864     // region is freed) so they are ready when the region is
3865     // re-allocated. The only exception to this is if there's an
3866     // evacuation failure and instead of freeing the region we leave
3867     // it in the heap. In that case, we reset these fields during
3868     // evacuation failure handling.
3869     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3870 
3871     // Here's a good place to add any other checks we'd like to
3872     // perform on CSet regions.
3873     return false;
3874   }
3875 };
3876 #endif // ASSERT
3877 
3878 uint G1CollectedHeap::num_task_queues() const {
3879   return _task_queues->size();
3880 }
3881 
3882 #if TASKQUEUE_STATS
3883 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3884   st->print_raw_cr("GC Task Stats");
3885   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3886   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3887 }
3888 
3889 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3890   print_taskqueue_stats_hdr(st);
3891 
3892   TaskQueueStats totals;
3893   const uint n = num_task_queues();
3894   for (uint i = 0; i < n; ++i) {
3895     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3896     totals += task_queue(i)->stats;
3897   }
3898   st->print_raw("tot "); totals.print(st); st->cr();
3899 
3900   DEBUG_ONLY(totals.verify());
3901 }
3902 
3903 void G1CollectedHeap::reset_taskqueue_stats() {
3904   const uint n = num_task_queues();
3905   for (uint i = 0; i < n; ++i) {
3906     task_queue(i)->stats.reset();
3907   }
3908 }
3909 #endif // TASKQUEUE_STATS
3910 
3911 void G1CollectedHeap::log_gc_header() {
3912   if (!G1Log::fine()) {
3913     return;
3914   }
3915 
3916   gclog_or_tty->gclog_stamp();
3917 
3918   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3919     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3920     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3921 
3922   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3923 }
3924 
3925 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3926   if (!G1Log::fine()) {
3927     return;
3928   }
3929 
3930   if (G1Log::finer()) {
3931     if (evacuation_failed()) {
3932       gclog_or_tty->print(" (to-space exhausted)");
3933     }
3934     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3935     g1_policy()->phase_times()->note_gc_end();
3936     g1_policy()->phase_times()->print(pause_time_sec);
3937     g1_policy()->print_detailed_heap_transition();
3938   } else {
3939     if (evacuation_failed()) {
3940       gclog_or_tty->print("--");
3941     }
3942     g1_policy()->print_heap_transition();
3943     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3944   }
3945   gclog_or_tty->flush();
3946 }
3947 
3948 void G1CollectedHeap::wait_for_root_region_scanning() {
3949   double scan_wait_start = os::elapsedTime();
3950   // We have to wait until the CM threads finish scanning the
3951   // root regions as it's the only way to ensure that all the
3952   // objects on them have been correctly scanned before we start
3953   // moving them during the GC.
3954   bool waited = _cm->root_regions()->wait_until_scan_finished();
3955   double wait_time_ms = 0.0;
3956   if (waited) {
3957     double scan_wait_end = os::elapsedTime();
3958     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3959   }
3960   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3961 }
3962 
3963 bool
3964 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3965   assert_at_safepoint(true /* should_be_vm_thread */);
3966   guarantee(!is_gc_active(), "collection is not reentrant");
3967 
3968   if (GC_locker::check_active_before_gc()) {
3969     return false;
3970   }
3971 
3972   _gc_timer_stw->register_gc_start();
3973 
3974   GCIdMark gc_id_mark;
3975   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3976 
3977   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3978   ResourceMark rm;
3979 
3980   wait_for_root_region_scanning();
3981 
3982   G1Log::update_level();
3983   print_heap_before_gc();
3984   trace_heap_before_gc(_gc_tracer_stw);
3985 
3986   verify_region_sets_optional();
3987   verify_dirty_young_regions();
3988 
3989   // This call will decide whether this pause is an initial-mark
3990   // pause. If it is, during_initial_mark_pause() will return true
3991   // for the duration of this pause.
3992   g1_policy()->decide_on_conc_mark_initiation();
3993 
3994   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3995   assert(!collector_state()->during_initial_mark_pause() ||
3996           collector_state()->gcs_are_young(), "sanity");
3997 
3998   // We also do not allow mixed GCs during marking.
3999   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
4000 
4001   // Record whether this pause is an initial mark. When the current
4002   // thread has completed its logging output and it's safe to signal
4003   // the CM thread, the flag's value in the policy has been reset.
4004   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
4005 
4006   // Inner scope for scope based logging, timers, and stats collection
4007   {
4008     EvacuationInfo evacuation_info;
4009 
4010     if (collector_state()->during_initial_mark_pause()) {
4011       // We are about to start a marking cycle, so we increment the
4012       // full collection counter.
4013       increment_old_marking_cycles_started();
4014       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
4015     }
4016 
4017     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
4018 
4019     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
4020 
4021     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
4022                                                                   workers()->active_workers(),
4023                                                                   Threads::number_of_non_daemon_threads());
4024     workers()->set_active_workers(active_workers);
4025 
4026     double pause_start_sec = os::elapsedTime();
4027     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
4028     log_gc_header();
4029 
4030     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
4031     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
4032 
4033     // If the secondary_free_list is not empty, append it to the
4034     // free_list. No need to wait for the cleanup operation to finish;
4035     // the region allocation code will check the secondary_free_list
4036     // and wait if necessary. If the G1StressConcRegionFreeing flag is
4037     // set, skip this step so that the region allocation code has to
4038     // get entries from the secondary_free_list.
4039     if (!G1StressConcRegionFreeing) {
4040       append_secondary_free_list_if_not_empty_with_lock();
4041     }
4042 
4043     assert(check_young_list_well_formed(), "young list should be well formed");
4044 
4045     // Don't dynamically change the number of GC threads this early.  A value of
4046     // 0 is used to indicate serial work.  When parallel work is done,
4047     // it will be set.
4048 
4049     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
4050       IsGCActiveMark x;
4051 
4052       gc_prologue(false);
4053       increment_total_collections(false /* full gc */);
4054       increment_gc_time_stamp();
4055 
4056       verify_before_gc();
4057 
4058       check_bitmaps("GC Start");
4059 
4060       COMPILER2_PRESENT(DerivedPointerTable::clear());
4061 
4062       // Please see comment in g1CollectedHeap.hpp and
4063       // G1CollectedHeap::ref_processing_init() to see how
4064       // reference processing currently works in G1.
4065 
4066       // Enable discovery in the STW reference processor
4067       ref_processor_stw()->enable_discovery();
4068 
4069       {
4070         // We want to temporarily turn off discovery by the
4071         // CM ref processor, if necessary, and turn it back on
4072         // on again later if we do. Using a scoped
4073         // NoRefDiscovery object will do this.
4074         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4075 
4076         // Forget the current alloc region (we might even choose it to be part
4077         // of the collection set!).
4078         _allocator->release_mutator_alloc_region();
4079 
4080         // We should call this after we retire the mutator alloc
4081         // region(s) so that all the ALLOC / RETIRE events are generated
4082         // before the start GC event.
4083         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4084 
4085         // This timing is only used by the ergonomics to handle our pause target.
4086         // It is unclear why this should not include the full pause. We will
4087         // investigate this in CR 7178365.
4088         //
4089         // Preserving the old comment here if that helps the investigation:
4090         //
4091         // The elapsed time induced by the start time below deliberately elides
4092         // the possible verification above.
4093         double sample_start_time_sec = os::elapsedTime();
4094 
4095         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4096 
4097         if (collector_state()->during_initial_mark_pause()) {
4098           concurrent_mark()->checkpointRootsInitialPre();
4099         }
4100 
4101         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
4102         g1_policy()->finalize_old_cset_part(time_remaining_ms);
4103 
4104         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
4105 
4106         register_humongous_regions_with_cset();
4107 
4108         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4109 
4110         _cm->note_start_of_gc();
4111         // We call this after finalize_cset() to
4112         // ensure that the CSet has been finalized.
4113         _cm->verify_no_cset_oops();
4114 
4115         if (_hr_printer.is_active()) {
4116           HeapRegion* hr = g1_policy()->collection_set();
4117           while (hr != NULL) {
4118             _hr_printer.cset(hr);
4119             hr = hr->next_in_collection_set();
4120           }
4121         }
4122 
4123 #ifdef ASSERT
4124         VerifyCSetClosure cl;
4125         collection_set_iterate(&cl);
4126 #endif // ASSERT
4127 
4128         // Initialize the GC alloc regions.
4129         _allocator->init_gc_alloc_regions(evacuation_info);
4130 
4131         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
4132         // Actually do the work...
4133         evacuate_collection_set(evacuation_info, &per_thread_states);
4134 
4135         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
4136         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
4137 
4138         eagerly_reclaim_humongous_regions();
4139 
4140         g1_policy()->clear_collection_set();
4141 
4142         // Start a new incremental collection set for the next pause.
4143         g1_policy()->start_incremental_cset_building();
4144 
4145         clear_cset_fast_test();
4146 
4147         _young_list->reset_sampled_info();
4148 
4149         // Don't check the whole heap at this point as the
4150         // GC alloc regions from this pause have been tagged
4151         // as survivors and moved on to the survivor list.
4152         // Survivor regions will fail the !is_young() check.
4153         assert(check_young_list_empty(false /* check_heap */),
4154           "young list should be empty");
4155 
4156         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4157                                              _young_list->first_survivor_region(),
4158                                              _young_list->last_survivor_region());
4159 
4160         _young_list->reset_auxilary_lists();
4161 
4162         if (evacuation_failed()) {
4163           set_used(recalculate_used());
4164           if (_archive_allocator != NULL) {
4165             _archive_allocator->clear_used();
4166           }
4167           for (uint i = 0; i < ParallelGCThreads; i++) {
4168             if (_evacuation_failed_info_array[i].has_failed()) {
4169               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4170             }
4171           }
4172         } else {
4173           // The "used" of the the collection set have already been subtracted
4174           // when they were freed.  Add in the bytes evacuated.
4175           increase_used(g1_policy()->bytes_copied_during_gc());
4176         }
4177 
4178         if (collector_state()->during_initial_mark_pause()) {
4179           // We have to do this before we notify the CM threads that
4180           // they can start working to make sure that all the
4181           // appropriate initialization is done on the CM object.
4182           concurrent_mark()->checkpointRootsInitialPost();
4183           collector_state()->set_mark_in_progress(true);
4184           // Note that we don't actually trigger the CM thread at
4185           // this point. We do that later when we're sure that
4186           // the current thread has completed its logging output.
4187         }
4188 
4189         allocate_dummy_regions();
4190 
4191         _allocator->init_mutator_alloc_region();
4192 
4193         {
4194           size_t expand_bytes = g1_policy()->expansion_amount();
4195           if (expand_bytes > 0) {
4196             size_t bytes_before = capacity();
4197             // No need for an ergo verbose message here,
4198             // expansion_amount() does this when it returns a value > 0.
4199             if (!expand(expand_bytes)) {
4200               // We failed to expand the heap. Cannot do anything about it.
4201             }
4202           }
4203         }
4204 
4205         // We redo the verification but now wrt to the new CSet which
4206         // has just got initialized after the previous CSet was freed.
4207         _cm->verify_no_cset_oops();
4208         _cm->note_end_of_gc();
4209 
4210         // This timing is only used by the ergonomics to handle our pause target.
4211         // It is unclear why this should not include the full pause. We will
4212         // investigate this in CR 7178365.
4213         double sample_end_time_sec = os::elapsedTime();
4214         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4215         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
4216         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
4217 
4218         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
4219         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
4220 
4221         MemoryService::track_memory_usage();
4222 
4223         // In prepare_for_verify() below we'll need to scan the deferred
4224         // update buffers to bring the RSets up-to-date if
4225         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4226         // the update buffers we'll probably need to scan cards on the
4227         // regions we just allocated to (i.e., the GC alloc
4228         // regions). However, during the last GC we called
4229         // set_saved_mark() on all the GC alloc regions, so card
4230         // scanning might skip the [saved_mark_word()...top()] area of
4231         // those regions (i.e., the area we allocated objects into
4232         // during the last GC). But it shouldn't. Given that
4233         // saved_mark_word() is conditional on whether the GC time stamp
4234         // on the region is current or not, by incrementing the GC time
4235         // stamp here we invalidate all the GC time stamps on all the
4236         // regions and saved_mark_word() will simply return top() for
4237         // all the regions. This is a nicer way of ensuring this rather
4238         // than iterating over the regions and fixing them. In fact, the
4239         // GC time stamp increment here also ensures that
4240         // saved_mark_word() will return top() between pauses, i.e.,
4241         // during concurrent refinement. So we don't need the
4242         // is_gc_active() check to decided which top to use when
4243         // scanning cards (see CR 7039627).
4244         increment_gc_time_stamp();
4245 
4246         verify_after_gc();
4247         check_bitmaps("GC End");
4248 
4249         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4250         ref_processor_stw()->verify_no_references_recorded();
4251 
4252         // CM reference discovery will be re-enabled if necessary.
4253       }
4254 
4255       // We should do this after we potentially expand the heap so
4256       // that all the COMMIT events are generated before the end GC
4257       // event, and after we retire the GC alloc regions so that all
4258       // RETIRE events are generated before the end GC event.
4259       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4260 
4261 #ifdef TRACESPINNING
4262       ParallelTaskTerminator::print_termination_counts();
4263 #endif
4264 
4265       gc_epilogue(false);
4266     }
4267 
4268     // Print the remainder of the GC log output.
4269     log_gc_footer(os::elapsedTime() - pause_start_sec);
4270 
4271     // It is not yet to safe to tell the concurrent mark to
4272     // start as we have some optional output below. We don't want the
4273     // output from the concurrent mark thread interfering with this
4274     // logging output either.
4275 
4276     _hrm.verify_optional();
4277     verify_region_sets_optional();
4278 
4279     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4280     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4281 
4282     print_heap_after_gc();
4283     trace_heap_after_gc(_gc_tracer_stw);
4284 
4285     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4286     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4287     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4288     // before any GC notifications are raised.
4289     g1mm()->update_sizes();
4290 
4291     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4292     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4293     _gc_timer_stw->register_gc_end();
4294     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4295   }
4296   // It should now be safe to tell the concurrent mark thread to start
4297   // without its logging output interfering with the logging output
4298   // that came from the pause.
4299 
4300   if (should_start_conc_mark) {
4301     // CAUTION: after the doConcurrentMark() call below,
4302     // the concurrent marking thread(s) could be running
4303     // concurrently with us. Make sure that anything after
4304     // this point does not assume that we are the only GC thread
4305     // running. Note: of course, the actual marking work will
4306     // not start until the safepoint itself is released in
4307     // SuspendibleThreadSet::desynchronize().
4308     doConcurrentMark();
4309   }
4310 
4311   return true;
4312 }
4313 
4314 void G1CollectedHeap::remove_self_forwarding_pointers() {
4315   double remove_self_forwards_start = os::elapsedTime();
4316 
4317   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4318   workers()->run_task(&rsfp_task);
4319 
4320   // Now restore saved marks, if any.
4321   for (uint i = 0; i < ParallelGCThreads; i++) {
4322     OopAndMarkOopStack& cur = _preserved_objs[i];
4323     while (!cur.is_empty()) {
4324       OopAndMarkOop elem = cur.pop();
4325       elem.set_mark();
4326     }
4327     cur.clear(true);
4328   }
4329 
4330   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4331 }
4332 
4333 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4334   if (!_evacuation_failed) {
4335     _evacuation_failed = true;
4336   }
4337 
4338   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4339 
4340   // We want to call the "for_promotion_failure" version only in the
4341   // case of a promotion failure.
4342   if (m->must_be_preserved_for_promotion_failure(obj)) {
4343     OopAndMarkOop elem(obj, m);
4344     _preserved_objs[worker_id].push(elem);
4345   }
4346 }
4347 
4348 class G1ParEvacuateFollowersClosure : public VoidClosure {
4349 private:
4350   double _start_term;
4351   double _term_time;
4352   size_t _term_attempts;
4353 
4354   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4355   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4356 protected:
4357   G1CollectedHeap*              _g1h;
4358   G1ParScanThreadState*         _par_scan_state;
4359   RefToScanQueueSet*            _queues;
4360   ParallelTaskTerminator*       _terminator;
4361 
4362   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4363   RefToScanQueueSet*      queues()         { return _queues; }
4364   ParallelTaskTerminator* terminator()     { return _terminator; }
4365 
4366 public:
4367   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4368                                 G1ParScanThreadState* par_scan_state,
4369                                 RefToScanQueueSet* queues,
4370                                 ParallelTaskTerminator* terminator)
4371     : _g1h(g1h), _par_scan_state(par_scan_state),
4372       _queues(queues), _terminator(terminator),
4373       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4374 
4375   void do_void();
4376 
4377   double term_time() const { return _term_time; }
4378   size_t term_attempts() const { return _term_attempts; }
4379 
4380 private:
4381   inline bool offer_termination();
4382 };
4383 
4384 bool G1ParEvacuateFollowersClosure::offer_termination() {
4385   G1ParScanThreadState* const pss = par_scan_state();
4386   start_term_time();
4387   const bool res = terminator()->offer_termination();
4388   end_term_time();
4389   return res;
4390 }
4391 
4392 void G1ParEvacuateFollowersClosure::do_void() {
4393   G1ParScanThreadState* const pss = par_scan_state();
4394   pss->trim_queue();
4395   do {
4396     pss->steal_and_trim_queue(queues());
4397   } while (!offer_termination());
4398 }
4399 
4400 class G1ParTask : public AbstractGangTask {
4401 protected:
4402   G1CollectedHeap*         _g1h;
4403   G1ParScanThreadStateSet* _pss;
4404   RefToScanQueueSet*       _queues;
4405   G1RootProcessor*         _root_processor;
4406   ParallelTaskTerminator   _terminator;
4407   uint                     _n_workers;
4408 
4409 public:
4410   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4411     : AbstractGangTask("G1 collection"),
4412       _g1h(g1h),
4413       _pss(per_thread_states),
4414       _queues(task_queues),
4415       _root_processor(root_processor),
4416       _terminator(n_workers, _queues),
4417       _n_workers(n_workers)
4418   {}
4419 
4420   void work(uint worker_id) {
4421     if (worker_id >= _n_workers) return;  // no work needed this round
4422 
4423     double start_sec = os::elapsedTime();
4424     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4425 
4426     {
4427       ResourceMark rm;
4428       HandleMark   hm;
4429 
4430       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4431 
4432       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4433       pss->set_ref_processor(rp);
4434 
4435       double start_strong_roots_sec = os::elapsedTime();
4436 
4437       _root_processor->evacuate_roots(pss->closures(), worker_id);
4438 
4439       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(pss->closures(), worker_id);
4440 
4441       _pss->add_cards_scanned(worker_id, cards_scanned);
4442 
4443       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4444 
4445       double term_sec = 0.0;
4446       size_t evac_term_attempts = 0;
4447       {
4448         double start = os::elapsedTime();
4449         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4450         evac.do_void();
4451 
4452         evac_term_attempts = evac.term_attempts();
4453         term_sec = evac.term_time();
4454         double elapsed_sec = os::elapsedTime() - start;
4455         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4456         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4457         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4458       }
4459 
4460       assert(pss->queue_is_empty(), "should be empty");
4461 
4462       if (PrintTerminationStats) {
4463         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4464         size_t lab_waste;
4465         size_t lab_undo_waste;
4466         pss->waste(lab_waste, lab_undo_waste);
4467         _g1h->print_termination_stats(gclog_or_tty,
4468                                       worker_id,
4469                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4470                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4471                                       term_sec * 1000.0,                          /* evac term time */
4472                                       evac_term_attempts,                         /* evac term attempts */
4473                                       lab_waste,                                  /* alloc buffer waste */
4474                                       lab_undo_waste                              /* undo waste */
4475                                       );
4476       }
4477 
4478       // Close the inner scope so that the ResourceMark and HandleMark
4479       // destructors are executed here and are included as part of the
4480       // "GC Worker Time".
4481     }
4482     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4483   }
4484 };
4485 
4486 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4487   st->print_raw_cr("GC Termination Stats");
4488   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4489   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4490   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4491 }
4492 
4493 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4494                                               uint worker_id,
4495                                               double elapsed_ms,
4496                                               double strong_roots_ms,
4497                                               double term_ms,
4498                                               size_t term_attempts,
4499                                               size_t alloc_buffer_waste,
4500                                               size_t undo_waste) const {
4501   st->print_cr("%3d %9.2f %9.2f %6.2f "
4502                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4503                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4504                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4505                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4506                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4507                alloc_buffer_waste * HeapWordSize / K,
4508                undo_waste * HeapWordSize / K);
4509 }
4510 
4511 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4512 private:
4513   BoolObjectClosure* _is_alive;
4514   int _initial_string_table_size;
4515   int _initial_symbol_table_size;
4516 
4517   bool  _process_strings;
4518   int _strings_processed;
4519   int _strings_removed;
4520 
4521   bool  _process_symbols;
4522   int _symbols_processed;
4523   int _symbols_removed;
4524 
4525 public:
4526   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4527     AbstractGangTask("String/Symbol Unlinking"),
4528     _is_alive(is_alive),
4529     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4530     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4531 
4532     _initial_string_table_size = StringTable::the_table()->table_size();
4533     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4534     if (process_strings) {
4535       StringTable::clear_parallel_claimed_index();
4536     }
4537     if (process_symbols) {
4538       SymbolTable::clear_parallel_claimed_index();
4539     }
4540   }
4541 
4542   ~G1StringSymbolTableUnlinkTask() {
4543     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4544               "claim value %d after unlink less than initial string table size %d",
4545               StringTable::parallel_claimed_index(), _initial_string_table_size);
4546     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4547               "claim value %d after unlink less than initial symbol table size %d",
4548               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4549 
4550     if (G1TraceStringSymbolTableScrubbing) {
4551       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4552                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4553                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4554                              strings_processed(), strings_removed(),
4555                              symbols_processed(), symbols_removed());
4556     }
4557   }
4558 
4559   void work(uint worker_id) {
4560     int strings_processed = 0;
4561     int strings_removed = 0;
4562     int symbols_processed = 0;
4563     int symbols_removed = 0;
4564     if (_process_strings) {
4565       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4566       Atomic::add(strings_processed, &_strings_processed);
4567       Atomic::add(strings_removed, &_strings_removed);
4568     }
4569     if (_process_symbols) {
4570       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4571       Atomic::add(symbols_processed, &_symbols_processed);
4572       Atomic::add(symbols_removed, &_symbols_removed);
4573     }
4574   }
4575 
4576   size_t strings_processed() const { return (size_t)_strings_processed; }
4577   size_t strings_removed()   const { return (size_t)_strings_removed; }
4578 
4579   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4580   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4581 };
4582 
4583 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4584 private:
4585   static Monitor* _lock;
4586 
4587   BoolObjectClosure* const _is_alive;
4588   const bool               _unloading_occurred;
4589   const uint               _num_workers;
4590 
4591   // Variables used to claim nmethods.
4592   nmethod* _first_nmethod;
4593   volatile nmethod* _claimed_nmethod;
4594 
4595   // The list of nmethods that need to be processed by the second pass.
4596   volatile nmethod* _postponed_list;
4597   volatile uint     _num_entered_barrier;
4598 
4599  public:
4600   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4601       _is_alive(is_alive),
4602       _unloading_occurred(unloading_occurred),
4603       _num_workers(num_workers),
4604       _first_nmethod(NULL),
4605       _claimed_nmethod(NULL),
4606       _postponed_list(NULL),
4607       _num_entered_barrier(0)
4608   {
4609     nmethod::increase_unloading_clock();
4610     // Get first alive nmethod
4611     NMethodIterator iter = NMethodIterator();
4612     if(iter.next_alive()) {
4613       _first_nmethod = iter.method();
4614     }
4615     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4616   }
4617 
4618   ~G1CodeCacheUnloadingTask() {
4619     CodeCache::verify_clean_inline_caches();
4620 
4621     CodeCache::set_needs_cache_clean(false);
4622     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4623 
4624     CodeCache::verify_icholder_relocations();
4625   }
4626 
4627  private:
4628   void add_to_postponed_list(nmethod* nm) {
4629       nmethod* old;
4630       do {
4631         old = (nmethod*)_postponed_list;
4632         nm->set_unloading_next(old);
4633       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4634   }
4635 
4636   void clean_nmethod(nmethod* nm) {
4637     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4638 
4639     if (postponed) {
4640       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4641       add_to_postponed_list(nm);
4642     }
4643 
4644     // Mark that this thread has been cleaned/unloaded.
4645     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4646     nm->set_unloading_clock(nmethod::global_unloading_clock());
4647   }
4648 
4649   void clean_nmethod_postponed(nmethod* nm) {
4650     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4651   }
4652 
4653   static const int MaxClaimNmethods = 16;
4654 
4655   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4656     nmethod* first;
4657     NMethodIterator last;
4658 
4659     do {
4660       *num_claimed_nmethods = 0;
4661 
4662       first = (nmethod*)_claimed_nmethod;
4663       last = NMethodIterator(first);
4664 
4665       if (first != NULL) {
4666 
4667         for (int i = 0; i < MaxClaimNmethods; i++) {
4668           if (!last.next_alive()) {
4669             break;
4670           }
4671           claimed_nmethods[i] = last.method();
4672           (*num_claimed_nmethods)++;
4673         }
4674       }
4675 
4676     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4677   }
4678 
4679   nmethod* claim_postponed_nmethod() {
4680     nmethod* claim;
4681     nmethod* next;
4682 
4683     do {
4684       claim = (nmethod*)_postponed_list;
4685       if (claim == NULL) {
4686         return NULL;
4687       }
4688 
4689       next = claim->unloading_next();
4690 
4691     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4692 
4693     return claim;
4694   }
4695 
4696  public:
4697   // Mark that we're done with the first pass of nmethod cleaning.
4698   void barrier_mark(uint worker_id) {
4699     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4700     _num_entered_barrier++;
4701     if (_num_entered_barrier == _num_workers) {
4702       ml.notify_all();
4703     }
4704   }
4705 
4706   // See if we have to wait for the other workers to
4707   // finish their first-pass nmethod cleaning work.
4708   void barrier_wait(uint worker_id) {
4709     if (_num_entered_barrier < _num_workers) {
4710       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4711       while (_num_entered_barrier < _num_workers) {
4712           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4713       }
4714     }
4715   }
4716 
4717   // Cleaning and unloading of nmethods. Some work has to be postponed
4718   // to the second pass, when we know which nmethods survive.
4719   void work_first_pass(uint worker_id) {
4720     // The first nmethods is claimed by the first worker.
4721     if (worker_id == 0 && _first_nmethod != NULL) {
4722       clean_nmethod(_first_nmethod);
4723       _first_nmethod = NULL;
4724     }
4725 
4726     int num_claimed_nmethods;
4727     nmethod* claimed_nmethods[MaxClaimNmethods];
4728 
4729     while (true) {
4730       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4731 
4732       if (num_claimed_nmethods == 0) {
4733         break;
4734       }
4735 
4736       for (int i = 0; i < num_claimed_nmethods; i++) {
4737         clean_nmethod(claimed_nmethods[i]);
4738       }
4739     }
4740   }
4741 
4742   void work_second_pass(uint worker_id) {
4743     nmethod* nm;
4744     // Take care of postponed nmethods.
4745     while ((nm = claim_postponed_nmethod()) != NULL) {
4746       clean_nmethod_postponed(nm);
4747     }
4748   }
4749 };
4750 
4751 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4752 
4753 class G1KlassCleaningTask : public StackObj {
4754   BoolObjectClosure*                      _is_alive;
4755   volatile jint                           _clean_klass_tree_claimed;
4756   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4757 
4758  public:
4759   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4760       _is_alive(is_alive),
4761       _clean_klass_tree_claimed(0),
4762       _klass_iterator() {
4763   }
4764 
4765  private:
4766   bool claim_clean_klass_tree_task() {
4767     if (_clean_klass_tree_claimed) {
4768       return false;
4769     }
4770 
4771     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4772   }
4773 
4774   InstanceKlass* claim_next_klass() {
4775     Klass* klass;
4776     do {
4777       klass =_klass_iterator.next_klass();
4778     } while (klass != NULL && !klass->oop_is_instance());
4779 
4780     return (InstanceKlass*)klass;
4781   }
4782 
4783 public:
4784 
4785   void clean_klass(InstanceKlass* ik) {
4786     ik->clean_implementors_list(_is_alive);
4787     ik->clean_method_data(_is_alive);
4788 
4789     // G1 specific cleanup work that has
4790     // been moved here to be done in parallel.
4791     ik->clean_dependent_nmethods();
4792   }
4793 
4794   void work() {
4795     ResourceMark rm;
4796 
4797     // One worker will clean the subklass/sibling klass tree.
4798     if (claim_clean_klass_tree_task()) {
4799       Klass::clean_subklass_tree(_is_alive);
4800     }
4801 
4802     // All workers will help cleaning the classes,
4803     InstanceKlass* klass;
4804     while ((klass = claim_next_klass()) != NULL) {
4805       clean_klass(klass);
4806     }
4807   }
4808 };
4809 
4810 // To minimize the remark pause times, the tasks below are done in parallel.
4811 class G1ParallelCleaningTask : public AbstractGangTask {
4812 private:
4813   G1StringSymbolTableUnlinkTask _string_symbol_task;
4814   G1CodeCacheUnloadingTask      _code_cache_task;
4815   G1KlassCleaningTask           _klass_cleaning_task;
4816 
4817 public:
4818   // The constructor is run in the VMThread.
4819   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4820       AbstractGangTask("Parallel Cleaning"),
4821       _string_symbol_task(is_alive, process_strings, process_symbols),
4822       _code_cache_task(num_workers, is_alive, unloading_occurred),
4823       _klass_cleaning_task(is_alive) {
4824   }
4825 
4826   // The parallel work done by all worker threads.
4827   void work(uint worker_id) {
4828     // Do first pass of code cache cleaning.
4829     _code_cache_task.work_first_pass(worker_id);
4830 
4831     // Let the threads mark that the first pass is done.
4832     _code_cache_task.barrier_mark(worker_id);
4833 
4834     // Clean the Strings and Symbols.
4835     _string_symbol_task.work(worker_id);
4836 
4837     // Wait for all workers to finish the first code cache cleaning pass.
4838     _code_cache_task.barrier_wait(worker_id);
4839 
4840     // Do the second code cache cleaning work, which realize on
4841     // the liveness information gathered during the first pass.
4842     _code_cache_task.work_second_pass(worker_id);
4843 
4844     // Clean all klasses that were not unloaded.
4845     _klass_cleaning_task.work();
4846   }
4847 };
4848 
4849 
4850 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4851                                         bool process_strings,
4852                                         bool process_symbols,
4853                                         bool class_unloading_occurred) {
4854   uint n_workers = workers()->active_workers();
4855 
4856   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4857                                         n_workers, class_unloading_occurred);
4858   workers()->run_task(&g1_unlink_task);
4859 }
4860 
4861 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4862                                                      bool process_strings, bool process_symbols) {
4863   {
4864     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4865     workers()->run_task(&g1_unlink_task);
4866   }
4867 
4868   if (G1StringDedup::is_enabled()) {
4869     G1StringDedup::unlink(is_alive);
4870   }
4871 }
4872 
4873 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4874  private:
4875   DirtyCardQueueSet* _queue;
4876  public:
4877   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4878 
4879   virtual void work(uint worker_id) {
4880     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4881     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4882 
4883     RedirtyLoggedCardTableEntryClosure cl;
4884     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4885 
4886     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4887   }
4888 };
4889 
4890 void G1CollectedHeap::redirty_logged_cards() {
4891   double redirty_logged_cards_start = os::elapsedTime();
4892 
4893   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4894   dirty_card_queue_set().reset_for_par_iteration();
4895   workers()->run_task(&redirty_task);
4896 
4897   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4898   dcq.merge_bufferlists(&dirty_card_queue_set());
4899   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4900 
4901   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4902 }
4903 
4904 // Weak Reference Processing support
4905 
4906 // An always "is_alive" closure that is used to preserve referents.
4907 // If the object is non-null then it's alive.  Used in the preservation
4908 // of referent objects that are pointed to by reference objects
4909 // discovered by the CM ref processor.
4910 class G1AlwaysAliveClosure: public BoolObjectClosure {
4911   G1CollectedHeap* _g1;
4912 public:
4913   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4914   bool do_object_b(oop p) {
4915     if (p != NULL) {
4916       return true;
4917     }
4918     return false;
4919   }
4920 };
4921 
4922 bool G1STWIsAliveClosure::do_object_b(oop p) {
4923   // An object is reachable if it is outside the collection set,
4924   // or is inside and copied.
4925   return !_g1->is_in_cset(p) || p->is_forwarded();
4926 }
4927 
4928 // Non Copying Keep Alive closure
4929 class G1KeepAliveClosure: public OopClosure {
4930   G1CollectedHeap* _g1;
4931 public:
4932   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4933   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4934   void do_oop(oop* p) {
4935     oop obj = *p;
4936     assert(obj != NULL, "the caller should have filtered out NULL values");
4937 
4938     const InCSetState cset_state = _g1->in_cset_state(obj);
4939     if (!cset_state.is_in_cset_or_humongous()) {
4940       return;
4941     }
4942     if (cset_state.is_in_cset()) {
4943       assert( obj->is_forwarded(), "invariant" );
4944       *p = obj->forwardee();
4945     } else {
4946       assert(!obj->is_forwarded(), "invariant" );
4947       assert(cset_state.is_humongous(),
4948              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4949       _g1->set_humongous_is_live(obj);
4950     }
4951   }
4952 };
4953 
4954 // Copying Keep Alive closure - can be called from both
4955 // serial and parallel code as long as different worker
4956 // threads utilize different G1ParScanThreadState instances
4957 // and different queues.
4958 
4959 class G1CopyingKeepAliveClosure: public OopClosure {
4960   G1CollectedHeap*         _g1h;
4961   OopClosure*              _copy_non_heap_obj_cl;
4962   G1ParScanThreadState*    _par_scan_state;
4963 
4964 public:
4965   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4966                             OopClosure* non_heap_obj_cl,
4967                             G1ParScanThreadState* pss):
4968     _g1h(g1h),
4969     _copy_non_heap_obj_cl(non_heap_obj_cl),
4970     _par_scan_state(pss)
4971   {}
4972 
4973   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4974   virtual void do_oop(      oop* p) { do_oop_work(p); }
4975 
4976   template <class T> void do_oop_work(T* p) {
4977     oop obj = oopDesc::load_decode_heap_oop(p);
4978 
4979     if (_g1h->is_in_cset_or_humongous(obj)) {
4980       // If the referent object has been forwarded (either copied
4981       // to a new location or to itself in the event of an
4982       // evacuation failure) then we need to update the reference
4983       // field and, if both reference and referent are in the G1
4984       // heap, update the RSet for the referent.
4985       //
4986       // If the referent has not been forwarded then we have to keep
4987       // it alive by policy. Therefore we have copy the referent.
4988       //
4989       // If the reference field is in the G1 heap then we can push
4990       // on the PSS queue. When the queue is drained (after each
4991       // phase of reference processing) the object and it's followers
4992       // will be copied, the reference field set to point to the
4993       // new location, and the RSet updated. Otherwise we need to
4994       // use the the non-heap or metadata closures directly to copy
4995       // the referent object and update the pointer, while avoiding
4996       // updating the RSet.
4997 
4998       if (_g1h->is_in_g1_reserved(p)) {
4999         _par_scan_state->push_on_queue(p);
5000       } else {
5001         assert(!Metaspace::contains((const void*)p),
5002                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
5003         _copy_non_heap_obj_cl->do_oop(p);
5004       }
5005     }
5006   }
5007 };
5008 
5009 // Serial drain queue closure. Called as the 'complete_gc'
5010 // closure for each discovered list in some of the
5011 // reference processing phases.
5012 
5013 class G1STWDrainQueueClosure: public VoidClosure {
5014 protected:
5015   G1CollectedHeap* _g1h;
5016   G1ParScanThreadState* _par_scan_state;
5017 
5018   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5019 
5020 public:
5021   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5022     _g1h(g1h),
5023     _par_scan_state(pss)
5024   { }
5025 
5026   void do_void() {
5027     G1ParScanThreadState* const pss = par_scan_state();
5028     pss->trim_queue();
5029   }
5030 };
5031 
5032 // Parallel Reference Processing closures
5033 
5034 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5035 // processing during G1 evacuation pauses.
5036 
5037 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5038 private:
5039   G1CollectedHeap*          _g1h;
5040   G1ParScanThreadStateSet*  _pss;
5041   RefToScanQueueSet*        _queues;
5042   WorkGang*                 _workers;
5043   uint                      _active_workers;
5044 
5045 public:
5046   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5047                            G1ParScanThreadStateSet* per_thread_states,
5048                            WorkGang* workers,
5049                            RefToScanQueueSet *task_queues,
5050                            uint n_workers) :
5051     _g1h(g1h),
5052     _pss(per_thread_states),
5053     _queues(task_queues),
5054     _workers(workers),
5055     _active_workers(n_workers)
5056   {
5057     assert(n_workers > 0, "shouldn't call this otherwise");
5058   }
5059 
5060   // Executes the given task using concurrent marking worker threads.
5061   virtual void execute(ProcessTask& task);
5062   virtual void execute(EnqueueTask& task);
5063 };
5064 
5065 // Gang task for possibly parallel reference processing
5066 
5067 class G1STWRefProcTaskProxy: public AbstractGangTask {
5068   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5069   ProcessTask&     _proc_task;
5070   G1CollectedHeap* _g1h;
5071   G1ParScanThreadStateSet* _pss;
5072   RefToScanQueueSet* _task_queues;
5073   ParallelTaskTerminator* _terminator;
5074 
5075 public:
5076   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5077                         G1CollectedHeap* g1h,
5078                         G1ParScanThreadStateSet* per_thread_states,
5079                         RefToScanQueueSet *task_queues,
5080                         ParallelTaskTerminator* terminator) :
5081     AbstractGangTask("Process reference objects in parallel"),
5082     _proc_task(proc_task),
5083     _g1h(g1h),
5084     _pss(per_thread_states),
5085     _task_queues(task_queues),
5086     _terminator(terminator)
5087   {}
5088 
5089   virtual void work(uint worker_id) {
5090     // The reference processing task executed by a single worker.
5091     ResourceMark rm;
5092     HandleMark   hm;
5093 
5094     G1STWIsAliveClosure is_alive(_g1h);
5095 
5096     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
5097     pss->set_ref_processor(NULL);
5098 
5099     // Keep alive closure.
5100     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
5101 
5102     // Complete GC closure
5103     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
5104 
5105     // Call the reference processing task's work routine.
5106     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5107 
5108     // Note we cannot assert that the refs array is empty here as not all
5109     // of the processing tasks (specifically phase2 - pp2_work) execute
5110     // the complete_gc closure (which ordinarily would drain the queue) so
5111     // the queue may not be empty.
5112   }
5113 };
5114 
5115 // Driver routine for parallel reference processing.
5116 // Creates an instance of the ref processing gang
5117 // task and has the worker threads execute it.
5118 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5119   assert(_workers != NULL, "Need parallel worker threads.");
5120 
5121   ParallelTaskTerminator terminator(_active_workers, _queues);
5122   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
5123 
5124   _workers->run_task(&proc_task_proxy);
5125 }
5126 
5127 // Gang task for parallel reference enqueueing.
5128 
5129 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5130   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5131   EnqueueTask& _enq_task;
5132 
5133 public:
5134   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5135     AbstractGangTask("Enqueue reference objects in parallel"),
5136     _enq_task(enq_task)
5137   { }
5138 
5139   virtual void work(uint worker_id) {
5140     _enq_task.work(worker_id);
5141   }
5142 };
5143 
5144 // Driver routine for parallel reference enqueueing.
5145 // Creates an instance of the ref enqueueing gang
5146 // task and has the worker threads execute it.
5147 
5148 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5149   assert(_workers != NULL, "Need parallel worker threads.");
5150 
5151   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5152 
5153   _workers->run_task(&enq_task_proxy);
5154 }
5155 
5156 // End of weak reference support closures
5157 
5158 // Abstract task used to preserve (i.e. copy) any referent objects
5159 // that are in the collection set and are pointed to by reference
5160 // objects discovered by the CM ref processor.
5161 
5162 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5163 protected:
5164   G1CollectedHeap*         _g1h;
5165   G1ParScanThreadStateSet* _pss;
5166   RefToScanQueueSet*       _queues;
5167   ParallelTaskTerminator   _terminator;
5168   uint                     _n_workers;
5169 
5170 public:
5171   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
5172     AbstractGangTask("ParPreserveCMReferents"),
5173     _g1h(g1h),
5174     _pss(per_thread_states),
5175     _queues(task_queues),
5176     _terminator(workers, _queues),
5177     _n_workers(workers)
5178   { }
5179 
5180   void work(uint worker_id) {
5181     ResourceMark rm;
5182     HandleMark   hm;
5183 
5184     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
5185     pss->set_ref_processor(NULL);
5186     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5187 
5188     // Is alive closure
5189     G1AlwaysAliveClosure always_alive(_g1h);
5190 
5191     // Copying keep alive closure. Applied to referent objects that need
5192     // to be copied.
5193     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
5194 
5195     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5196 
5197     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5198     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5199 
5200     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5201     // So this must be true - but assert just in case someone decides to
5202     // change the worker ids.
5203     assert(worker_id < limit, "sanity");
5204     assert(!rp->discovery_is_atomic(), "check this code");
5205 
5206     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5207     for (uint idx = worker_id; idx < limit; idx += stride) {
5208       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5209 
5210       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5211       while (iter.has_next()) {
5212         // Since discovery is not atomic for the CM ref processor, we
5213         // can see some null referent objects.
5214         iter.load_ptrs(DEBUG_ONLY(true));
5215         oop ref = iter.obj();
5216 
5217         // This will filter nulls.
5218         if (iter.is_referent_alive()) {
5219           iter.make_referent_alive();
5220         }
5221         iter.move_to_next();
5222       }
5223     }
5224 
5225     // Drain the queue - which may cause stealing
5226     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5227     drain_queue.do_void();
5228     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5229     assert(pss->queue_is_empty(), "should be");
5230   }
5231 };
5232 
5233 // Weak Reference processing during an evacuation pause (part 1).
5234 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5235   double ref_proc_start = os::elapsedTime();
5236 
5237   ReferenceProcessor* rp = _ref_processor_stw;
5238   assert(rp->discovery_enabled(), "should have been enabled");
5239 
5240   // Any reference objects, in the collection set, that were 'discovered'
5241   // by the CM ref processor should have already been copied (either by
5242   // applying the external root copy closure to the discovered lists, or
5243   // by following an RSet entry).
5244   //
5245   // But some of the referents, that are in the collection set, that these
5246   // reference objects point to may not have been copied: the STW ref
5247   // processor would have seen that the reference object had already
5248   // been 'discovered' and would have skipped discovering the reference,
5249   // but would not have treated the reference object as a regular oop.
5250   // As a result the copy closure would not have been applied to the
5251   // referent object.
5252   //
5253   // We need to explicitly copy these referent objects - the references
5254   // will be processed at the end of remarking.
5255   //
5256   // We also need to do this copying before we process the reference
5257   // objects discovered by the STW ref processor in case one of these
5258   // referents points to another object which is also referenced by an
5259   // object discovered by the STW ref processor.
5260 
5261   uint no_of_gc_workers = workers()->active_workers();
5262 
5263   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5264                                                  per_thread_states,
5265                                                  no_of_gc_workers,
5266                                                  _task_queues);
5267 
5268   workers()->run_task(&keep_cm_referents);
5269 
5270   // Closure to test whether a referent is alive.
5271   G1STWIsAliveClosure is_alive(this);
5272 
5273   // Even when parallel reference processing is enabled, the processing
5274   // of JNI refs is serial and performed serially by the current thread
5275   // rather than by a worker. The following PSS will be used for processing
5276   // JNI refs.
5277 
5278   // Use only a single queue for this PSS.
5279   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5280   pss->set_ref_processor(NULL);
5281   assert(pss->queue_is_empty(), "pre-condition");
5282 
5283   // Keep alive closure.
5284   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5285 
5286   // Serial Complete GC closure
5287   G1STWDrainQueueClosure drain_queue(this, pss);
5288 
5289   // Setup the soft refs policy...
5290   rp->setup_policy(false);
5291 
5292   ReferenceProcessorStats stats;
5293   if (!rp->processing_is_mt()) {
5294     // Serial reference processing...
5295     stats = rp->process_discovered_references(&is_alive,
5296                                               &keep_alive,
5297                                               &drain_queue,
5298                                               NULL,
5299                                               _gc_timer_stw);
5300   } else {
5301     // Parallel reference processing
5302     assert(rp->num_q() == no_of_gc_workers, "sanity");
5303     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5304 
5305     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5306     stats = rp->process_discovered_references(&is_alive,
5307                                               &keep_alive,
5308                                               &drain_queue,
5309                                               &par_task_executor,
5310                                               _gc_timer_stw);
5311   }
5312 
5313   _gc_tracer_stw->report_gc_reference_stats(stats);
5314 
5315   // We have completed copying any necessary live referent objects.
5316   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5317 
5318   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5319   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5320 }
5321 
5322 // Weak Reference processing during an evacuation pause (part 2).
5323 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5324   double ref_enq_start = os::elapsedTime();
5325 
5326   ReferenceProcessor* rp = _ref_processor_stw;
5327   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5328 
5329   // Now enqueue any remaining on the discovered lists on to
5330   // the pending list.
5331   if (!rp->processing_is_mt()) {
5332     // Serial reference processing...
5333     rp->enqueue_discovered_references();
5334   } else {
5335     // Parallel reference enqueueing
5336 
5337     uint n_workers = workers()->active_workers();
5338 
5339     assert(rp->num_q() == n_workers, "sanity");
5340     assert(n_workers <= rp->max_num_q(), "sanity");
5341 
5342     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5343     rp->enqueue_discovered_references(&par_task_executor);
5344   }
5345 
5346   rp->verify_no_references_recorded();
5347   assert(!rp->discovery_enabled(), "should have been disabled");
5348 
5349   // FIXME
5350   // CM's reference processing also cleans up the string and symbol tables.
5351   // Should we do that here also? We could, but it is a serial operation
5352   // and could significantly increase the pause time.
5353 
5354   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5355   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5356 }
5357 
5358 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5359   _expand_heap_after_alloc_failure = true;
5360   _evacuation_failed = false;
5361 
5362   // Should G1EvacuationFailureALot be in effect for this GC?
5363   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5364 
5365   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5366 
5367   // Disable the hot card cache.
5368   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5369   hot_card_cache->reset_hot_cache_claimed_index();
5370   hot_card_cache->set_use_cache(false);
5371 
5372   const uint n_workers = workers()->active_workers();
5373 
5374   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5375   double start_par_time_sec = os::elapsedTime();
5376   double end_par_time_sec;
5377 
5378   {
5379     G1RootProcessor root_processor(this, n_workers);
5380     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5381     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5382     if (collector_state()->during_initial_mark_pause()) {
5383       ClassLoaderDataGraph::clear_claimed_marks();
5384     }
5385 
5386     // The individual threads will set their evac-failure closures.
5387     if (PrintTerminationStats) {
5388       print_termination_stats_hdr(gclog_or_tty);
5389     }
5390 
5391     workers()->run_task(&g1_par_task);
5392     end_par_time_sec = os::elapsedTime();
5393 
5394     // Closing the inner scope will execute the destructor
5395     // for the G1RootProcessor object. We record the current
5396     // elapsed time before closing the scope so that time
5397     // taken for the destructor is NOT included in the
5398     // reported parallel time.
5399   }
5400 
5401   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5402 
5403   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5404   phase_times->record_par_time(par_time_ms);
5405 
5406   double code_root_fixup_time_ms =
5407         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5408   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5409 
5410   // Process any discovered reference objects - we have
5411   // to do this _before_ we retire the GC alloc regions
5412   // as we may have to copy some 'reachable' referent
5413   // objects (and their reachable sub-graphs) that were
5414   // not copied during the pause.
5415   process_discovered_references(per_thread_states);
5416 
5417   if (G1StringDedup::is_enabled()) {
5418     double fixup_start = os::elapsedTime();
5419 
5420     G1STWIsAliveClosure is_alive(this);
5421     G1KeepAliveClosure keep_alive(this);
5422     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5423 
5424     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5425     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5426   }
5427 
5428   _allocator->release_gc_alloc_regions(evacuation_info);
5429   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5430 
5431   per_thread_states->flush();
5432 
5433   record_obj_copy_mem_stats();
5434 
5435   // Reset and re-enable the hot card cache.
5436   // Note the counts for the cards in the regions in the
5437   // collection set are reset when the collection set is freed.
5438   hot_card_cache->reset_hot_cache();
5439   hot_card_cache->set_use_cache(true);
5440 
5441   purge_code_root_memory();
5442 
5443   if (evacuation_failed()) {
5444     remove_self_forwarding_pointers();
5445 
5446     // Reset the G1EvacuationFailureALot counters and flags
5447     // Note: the values are reset only when an actual
5448     // evacuation failure occurs.
5449     NOT_PRODUCT(reset_evacuation_should_fail();)
5450   }
5451 
5452   // Enqueue any remaining references remaining on the STW
5453   // reference processor's discovered lists. We need to do
5454   // this after the card table is cleaned (and verified) as
5455   // the act of enqueueing entries on to the pending list
5456   // will log these updates (and dirty their associated
5457   // cards). We need these updates logged to update any
5458   // RSets.
5459   enqueue_discovered_references(per_thread_states);
5460 
5461   redirty_logged_cards();
5462   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5463 }
5464 
5465 void G1CollectedHeap::record_obj_copy_mem_stats() {
5466   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5467                                                create_g1_evac_summary(&_old_evac_stats));
5468 }
5469 
5470 void G1CollectedHeap::free_region(HeapRegion* hr,
5471                                   FreeRegionList* free_list,
5472                                   bool par,
5473                                   bool locked) {
5474   assert(!hr->is_free(), "the region should not be free");
5475   assert(!hr->is_empty(), "the region should not be empty");
5476   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5477   assert(free_list != NULL, "pre-condition");
5478 
5479   if (G1VerifyBitmaps) {
5480     MemRegion mr(hr->bottom(), hr->end());
5481     concurrent_mark()->clearRangePrevBitmap(mr);
5482   }
5483 
5484   // Clear the card counts for this region.
5485   // Note: we only need to do this if the region is not young
5486   // (since we don't refine cards in young regions).
5487   if (!hr->is_young()) {
5488     _cg1r->hot_card_cache()->reset_card_counts(hr);
5489   }
5490   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5491   free_list->add_ordered(hr);
5492 }
5493 
5494 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5495                                      FreeRegionList* free_list,
5496                                      bool par) {
5497   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5498   assert(free_list != NULL, "pre-condition");
5499 
5500   size_t hr_capacity = hr->capacity();
5501   // We need to read this before we make the region non-humongous,
5502   // otherwise the information will be gone.
5503   uint last_index = hr->last_hc_index();
5504   hr->clear_humongous();
5505   free_region(hr, free_list, par);
5506 
5507   uint i = hr->hrm_index() + 1;
5508   while (i < last_index) {
5509     HeapRegion* curr_hr = region_at(i);
5510     assert(curr_hr->is_continues_humongous(), "invariant");
5511     curr_hr->clear_humongous();
5512     free_region(curr_hr, free_list, par);
5513     i += 1;
5514   }
5515 }
5516 
5517 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5518                                        const HeapRegionSetCount& humongous_regions_removed) {
5519   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5520     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5521     _old_set.bulk_remove(old_regions_removed);
5522     _humongous_set.bulk_remove(humongous_regions_removed);
5523   }
5524 
5525 }
5526 
5527 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5528   assert(list != NULL, "list can't be null");
5529   if (!list->is_empty()) {
5530     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5531     _hrm.insert_list_into_free_list(list);
5532   }
5533 }
5534 
5535 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5536   decrease_used(bytes);
5537 }
5538 
5539 class G1ParCleanupCTTask : public AbstractGangTask {
5540   G1SATBCardTableModRefBS* _ct_bs;
5541   G1CollectedHeap* _g1h;
5542   HeapRegion* volatile _su_head;
5543 public:
5544   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5545                      G1CollectedHeap* g1h) :
5546     AbstractGangTask("G1 Par Cleanup CT Task"),
5547     _ct_bs(ct_bs), _g1h(g1h) { }
5548 
5549   void work(uint worker_id) {
5550     HeapRegion* r;
5551     while (r = _g1h->pop_dirty_cards_region()) {
5552       clear_cards(r);
5553     }
5554   }
5555 
5556   void clear_cards(HeapRegion* r) {
5557     // Cards of the survivors should have already been dirtied.
5558     if (!r->is_survivor()) {
5559       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5560     }
5561   }
5562 };
5563 
5564 #ifndef PRODUCT
5565 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5566   G1CollectedHeap* _g1h;
5567   G1SATBCardTableModRefBS* _ct_bs;
5568 public:
5569   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5570     : _g1h(g1h), _ct_bs(ct_bs) { }
5571   virtual bool doHeapRegion(HeapRegion* r) {
5572     if (r->is_survivor()) {
5573       _g1h->verify_dirty_region(r);
5574     } else {
5575       _g1h->verify_not_dirty_region(r);
5576     }
5577     return false;
5578   }
5579 };
5580 
5581 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5582   // All of the region should be clean.
5583   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5584   MemRegion mr(hr->bottom(), hr->end());
5585   ct_bs->verify_not_dirty_region(mr);
5586 }
5587 
5588 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5589   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5590   // dirty allocated blocks as they allocate them. The thread that
5591   // retires each region and replaces it with a new one will do a
5592   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5593   // not dirty that area (one less thing to have to do while holding
5594   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5595   // is dirty.
5596   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5597   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5598   if (hr->is_young()) {
5599     ct_bs->verify_g1_young_region(mr);
5600   } else {
5601     ct_bs->verify_dirty_region(mr);
5602   }
5603 }
5604 
5605 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5606   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5607   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5608     verify_dirty_region(hr);
5609   }
5610 }
5611 
5612 void G1CollectedHeap::verify_dirty_young_regions() {
5613   verify_dirty_young_list(_young_list->first_region());
5614 }
5615 
5616 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5617                                                HeapWord* tams, HeapWord* end) {
5618   guarantee(tams <= end,
5619             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5620   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5621   if (result < end) {
5622     gclog_or_tty->cr();
5623     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5624                            bitmap_name, p2i(result));
5625     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5626                            bitmap_name, p2i(tams), p2i(end));
5627     return false;
5628   }
5629   return true;
5630 }
5631 
5632 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5633   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5634   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5635 
5636   HeapWord* bottom = hr->bottom();
5637   HeapWord* ptams  = hr->prev_top_at_mark_start();
5638   HeapWord* ntams  = hr->next_top_at_mark_start();
5639   HeapWord* end    = hr->end();
5640 
5641   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5642 
5643   bool res_n = true;
5644   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5645   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5646   // if we happen to be in that state.
5647   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5648     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5649   }
5650   if (!res_p || !res_n) {
5651     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5652                            HR_FORMAT_PARAMS(hr));
5653     gclog_or_tty->print_cr("#### Caller: %s", caller);
5654     return false;
5655   }
5656   return true;
5657 }
5658 
5659 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5660   if (!G1VerifyBitmaps) return;
5661 
5662   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5663 }
5664 
5665 class G1VerifyBitmapClosure : public HeapRegionClosure {
5666 private:
5667   const char* _caller;
5668   G1CollectedHeap* _g1h;
5669   bool _failures;
5670 
5671 public:
5672   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5673     _caller(caller), _g1h(g1h), _failures(false) { }
5674 
5675   bool failures() { return _failures; }
5676 
5677   virtual bool doHeapRegion(HeapRegion* hr) {
5678     if (hr->is_continues_humongous()) return false;
5679 
5680     bool result = _g1h->verify_bitmaps(_caller, hr);
5681     if (!result) {
5682       _failures = true;
5683     }
5684     return false;
5685   }
5686 };
5687 
5688 void G1CollectedHeap::check_bitmaps(const char* caller) {
5689   if (!G1VerifyBitmaps) return;
5690 
5691   G1VerifyBitmapClosure cl(caller, this);
5692   heap_region_iterate(&cl);
5693   guarantee(!cl.failures(), "bitmap verification");
5694 }
5695 
5696 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5697  private:
5698   bool _failures;
5699  public:
5700   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5701 
5702   virtual bool doHeapRegion(HeapRegion* hr) {
5703     uint i = hr->hrm_index();
5704     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5705     if (hr->is_humongous()) {
5706       if (hr->in_collection_set()) {
5707         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5708         _failures = true;
5709         return true;
5710       }
5711       if (cset_state.is_in_cset()) {
5712         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5713         _failures = true;
5714         return true;
5715       }
5716       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5717         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5718         _failures = true;
5719         return true;
5720       }
5721     } else {
5722       if (cset_state.is_humongous()) {
5723         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5724         _failures = true;
5725         return true;
5726       }
5727       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5728         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5729                                hr->in_collection_set(), cset_state.value(), i);
5730         _failures = true;
5731         return true;
5732       }
5733       if (cset_state.is_in_cset()) {
5734         if (hr->is_young() != (cset_state.is_young())) {
5735           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5736                                  hr->is_young(), cset_state.value(), i);
5737           _failures = true;
5738           return true;
5739         }
5740         if (hr->is_old() != (cset_state.is_old())) {
5741           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5742                                  hr->is_old(), cset_state.value(), i);
5743           _failures = true;
5744           return true;
5745         }
5746       }
5747     }
5748     return false;
5749   }
5750 
5751   bool failures() const { return _failures; }
5752 };
5753 
5754 bool G1CollectedHeap::check_cset_fast_test() {
5755   G1CheckCSetFastTableClosure cl;
5756   _hrm.iterate(&cl);
5757   return !cl.failures();
5758 }
5759 #endif // PRODUCT
5760 
5761 void G1CollectedHeap::cleanUpCardTable() {
5762   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5763   double start = os::elapsedTime();
5764 
5765   {
5766     // Iterate over the dirty cards region list.
5767     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5768 
5769     workers()->run_task(&cleanup_task);
5770 #ifndef PRODUCT
5771     if (G1VerifyCTCleanup || VerifyAfterGC) {
5772       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5773       heap_region_iterate(&cleanup_verifier);
5774     }
5775 #endif
5776   }
5777 
5778   double elapsed = os::elapsedTime() - start;
5779   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5780 }
5781 
5782 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5783   size_t pre_used = 0;
5784   FreeRegionList local_free_list("Local List for CSet Freeing");
5785 
5786   double young_time_ms     = 0.0;
5787   double non_young_time_ms = 0.0;
5788 
5789   // Since the collection set is a superset of the the young list,
5790   // all we need to do to clear the young list is clear its
5791   // head and length, and unlink any young regions in the code below
5792   _young_list->clear();
5793 
5794   G1CollectorPolicy* policy = g1_policy();
5795 
5796   double start_sec = os::elapsedTime();
5797   bool non_young = true;
5798 
5799   HeapRegion* cur = cs_head;
5800   int age_bound = -1;
5801   size_t rs_lengths = 0;
5802 
5803   while (cur != NULL) {
5804     assert(!is_on_master_free_list(cur), "sanity");
5805     if (non_young) {
5806       if (cur->is_young()) {
5807         double end_sec = os::elapsedTime();
5808         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5809         non_young_time_ms += elapsed_ms;
5810 
5811         start_sec = os::elapsedTime();
5812         non_young = false;
5813       }
5814     } else {
5815       if (!cur->is_young()) {
5816         double end_sec = os::elapsedTime();
5817         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5818         young_time_ms += elapsed_ms;
5819 
5820         start_sec = os::elapsedTime();
5821         non_young = true;
5822       }
5823     }
5824 
5825     rs_lengths += cur->rem_set()->occupied_locked();
5826 
5827     HeapRegion* next = cur->next_in_collection_set();
5828     assert(cur->in_collection_set(), "bad CS");
5829     cur->set_next_in_collection_set(NULL);
5830     clear_in_cset(cur);
5831 
5832     if (cur->is_young()) {
5833       int index = cur->young_index_in_cset();
5834       assert(index != -1, "invariant");
5835       assert((uint) index < policy->young_cset_region_length(), "invariant");
5836       size_t words_survived = surviving_young_words[index];
5837       cur->record_surv_words_in_group(words_survived);
5838 
5839       // At this point the we have 'popped' cur from the collection set
5840       // (linked via next_in_collection_set()) but it is still in the
5841       // young list (linked via next_young_region()). Clear the
5842       // _next_young_region field.
5843       cur->set_next_young_region(NULL);
5844     } else {
5845       int index = cur->young_index_in_cset();
5846       assert(index == -1, "invariant");
5847     }
5848 
5849     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5850             (!cur->is_young() && cur->young_index_in_cset() == -1),
5851             "invariant" );
5852 
5853     if (!cur->evacuation_failed()) {
5854       MemRegion used_mr = cur->used_region();
5855 
5856       // And the region is empty.
5857       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5858       pre_used += cur->used();
5859       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5860     } else {
5861       cur->uninstall_surv_rate_group();
5862       if (cur->is_young()) {
5863         cur->set_young_index_in_cset(-1);
5864       }
5865       cur->set_evacuation_failed(false);
5866       // The region is now considered to be old.
5867       cur->set_old();
5868       // Do some allocation statistics accounting. Regions that failed evacuation
5869       // are always made old, so there is no need to update anything in the young
5870       // gen statistics, but we need to update old gen statistics.
5871       size_t used_words = cur->marked_bytes() / HeapWordSize;
5872       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5873       _old_set.add(cur);
5874       evacuation_info.increment_collectionset_used_after(cur->used());
5875     }
5876     cur = next;
5877   }
5878 
5879   evacuation_info.set_regions_freed(local_free_list.length());
5880   policy->record_max_rs_lengths(rs_lengths);
5881   policy->cset_regions_freed();
5882 
5883   double end_sec = os::elapsedTime();
5884   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5885 
5886   if (non_young) {
5887     non_young_time_ms += elapsed_ms;
5888   } else {
5889     young_time_ms += elapsed_ms;
5890   }
5891 
5892   prepend_to_freelist(&local_free_list);
5893   decrement_summary_bytes(pre_used);
5894   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5895   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5896 }
5897 
5898 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5899  private:
5900   FreeRegionList* _free_region_list;
5901   HeapRegionSet* _proxy_set;
5902   HeapRegionSetCount _humongous_regions_removed;
5903   size_t _freed_bytes;
5904  public:
5905 
5906   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5907     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5908   }
5909 
5910   virtual bool doHeapRegion(HeapRegion* r) {
5911     if (!r->is_starts_humongous()) {
5912       return false;
5913     }
5914 
5915     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5916 
5917     oop obj = (oop)r->bottom();
5918     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5919 
5920     // The following checks whether the humongous object is live are sufficient.
5921     // The main additional check (in addition to having a reference from the roots
5922     // or the young gen) is whether the humongous object has a remembered set entry.
5923     //
5924     // A humongous object cannot be live if there is no remembered set for it
5925     // because:
5926     // - there can be no references from within humongous starts regions referencing
5927     // the object because we never allocate other objects into them.
5928     // (I.e. there are no intra-region references that may be missed by the
5929     // remembered set)
5930     // - as soon there is a remembered set entry to the humongous starts region
5931     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5932     // until the end of a concurrent mark.
5933     //
5934     // It is not required to check whether the object has been found dead by marking
5935     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5936     // all objects allocated during that time are considered live.
5937     // SATB marking is even more conservative than the remembered set.
5938     // So if at this point in the collection there is no remembered set entry,
5939     // nobody has a reference to it.
5940     // At the start of collection we flush all refinement logs, and remembered sets
5941     // are completely up-to-date wrt to references to the humongous object.
5942     //
5943     // Other implementation considerations:
5944     // - never consider object arrays at this time because they would pose
5945     // considerable effort for cleaning up the the remembered sets. This is
5946     // required because stale remembered sets might reference locations that
5947     // are currently allocated into.
5948     uint region_idx = r->hrm_index();
5949     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5950         !r->rem_set()->is_empty()) {
5951 
5952       if (G1TraceEagerReclaimHumongousObjects) {
5953         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5954                                region_idx,
5955                                (size_t)obj->size() * HeapWordSize,
5956                                p2i(r->bottom()),
5957                                r->region_num(),
5958                                r->rem_set()->occupied(),
5959                                r->rem_set()->strong_code_roots_list_length(),
5960                                next_bitmap->isMarked(r->bottom()),
5961                                g1h->is_humongous_reclaim_candidate(region_idx),
5962                                obj->is_typeArray()
5963                               );
5964       }
5965 
5966       return false;
5967     }
5968 
5969     guarantee(obj->is_typeArray(),
5970               "Only eagerly reclaiming type arrays is supported, but the object "
5971               PTR_FORMAT " is not.", p2i(r->bottom()));
5972 
5973     if (G1TraceEagerReclaimHumongousObjects) {
5974       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5975                              region_idx,
5976                              (size_t)obj->size() * HeapWordSize,
5977                              p2i(r->bottom()),
5978                              r->region_num(),
5979                              r->rem_set()->occupied(),
5980                              r->rem_set()->strong_code_roots_list_length(),
5981                              next_bitmap->isMarked(r->bottom()),
5982                              g1h->is_humongous_reclaim_candidate(region_idx),
5983                              obj->is_typeArray()
5984                             );
5985     }
5986     // Need to clear mark bit of the humongous object if already set.
5987     if (next_bitmap->isMarked(r->bottom())) {
5988       next_bitmap->clear(r->bottom());
5989     }
5990     _freed_bytes += r->used();
5991     r->set_containing_set(NULL);
5992     _humongous_regions_removed.increment(1u, r->capacity());
5993     g1h->free_humongous_region(r, _free_region_list, false);
5994 
5995     return false;
5996   }
5997 
5998   HeapRegionSetCount& humongous_free_count() {
5999     return _humongous_regions_removed;
6000   }
6001 
6002   size_t bytes_freed() const {
6003     return _freed_bytes;
6004   }
6005 
6006   size_t humongous_reclaimed() const {
6007     return _humongous_regions_removed.length();
6008   }
6009 };
6010 
6011 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6012   assert_at_safepoint(true);
6013 
6014   if (!G1EagerReclaimHumongousObjects ||
6015       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6016     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6017     return;
6018   }
6019 
6020   double start_time = os::elapsedTime();
6021 
6022   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6023 
6024   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6025   heap_region_iterate(&cl);
6026 
6027   HeapRegionSetCount empty_set;
6028   remove_from_old_sets(empty_set, cl.humongous_free_count());
6029 
6030   G1HRPrinter* hrp = hr_printer();
6031   if (hrp->is_active()) {
6032     FreeRegionListIterator iter(&local_cleanup_list);
6033     while (iter.more_available()) {
6034       HeapRegion* hr = iter.get_next();
6035       hrp->cleanup(hr);
6036     }
6037   }
6038 
6039   prepend_to_freelist(&local_cleanup_list);
6040   decrement_summary_bytes(cl.bytes_freed());
6041 
6042   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6043                                                                     cl.humongous_reclaimed());
6044 }
6045 
6046 // This routine is similar to the above but does not record
6047 // any policy statistics or update free lists; we are abandoning
6048 // the current incremental collection set in preparation of a
6049 // full collection. After the full GC we will start to build up
6050 // the incremental collection set again.
6051 // This is only called when we're doing a full collection
6052 // and is immediately followed by the tearing down of the young list.
6053 
6054 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6055   HeapRegion* cur = cs_head;
6056 
6057   while (cur != NULL) {
6058     HeapRegion* next = cur->next_in_collection_set();
6059     assert(cur->in_collection_set(), "bad CS");
6060     cur->set_next_in_collection_set(NULL);
6061     clear_in_cset(cur);
6062     cur->set_young_index_in_cset(-1);
6063     cur = next;
6064   }
6065 }
6066 
6067 void G1CollectedHeap::set_free_regions_coming() {
6068   if (G1ConcRegionFreeingVerbose) {
6069     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6070                            "setting free regions coming");
6071   }
6072 
6073   assert(!free_regions_coming(), "pre-condition");
6074   _free_regions_coming = true;
6075 }
6076 
6077 void G1CollectedHeap::reset_free_regions_coming() {
6078   assert(free_regions_coming(), "pre-condition");
6079 
6080   {
6081     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6082     _free_regions_coming = false;
6083     SecondaryFreeList_lock->notify_all();
6084   }
6085 
6086   if (G1ConcRegionFreeingVerbose) {
6087     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6088                            "reset free regions coming");
6089   }
6090 }
6091 
6092 void G1CollectedHeap::wait_while_free_regions_coming() {
6093   // Most of the time we won't have to wait, so let's do a quick test
6094   // first before we take the lock.
6095   if (!free_regions_coming()) {
6096     return;
6097   }
6098 
6099   if (G1ConcRegionFreeingVerbose) {
6100     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6101                            "waiting for free regions");
6102   }
6103 
6104   {
6105     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6106     while (free_regions_coming()) {
6107       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6108     }
6109   }
6110 
6111   if (G1ConcRegionFreeingVerbose) {
6112     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6113                            "done waiting for free regions");
6114   }
6115 }
6116 
6117 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
6118   return _allocator->is_retained_old_region(hr);
6119 }
6120 
6121 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6122   _young_list->push_region(hr);
6123 }
6124 
6125 class NoYoungRegionsClosure: public HeapRegionClosure {
6126 private:
6127   bool _success;
6128 public:
6129   NoYoungRegionsClosure() : _success(true) { }
6130   bool doHeapRegion(HeapRegion* r) {
6131     if (r->is_young()) {
6132       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6133                              p2i(r->bottom()), p2i(r->end()));
6134       _success = false;
6135     }
6136     return false;
6137   }
6138   bool success() { return _success; }
6139 };
6140 
6141 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6142   bool ret = _young_list->check_list_empty(check_sample);
6143 
6144   if (check_heap) {
6145     NoYoungRegionsClosure closure;
6146     heap_region_iterate(&closure);
6147     ret = ret && closure.success();
6148   }
6149 
6150   return ret;
6151 }
6152 
6153 class TearDownRegionSetsClosure : public HeapRegionClosure {
6154 private:
6155   HeapRegionSet *_old_set;
6156 
6157 public:
6158   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6159 
6160   bool doHeapRegion(HeapRegion* r) {
6161     if (r->is_old()) {
6162       _old_set->remove(r);
6163     } else {
6164       // We ignore free regions, we'll empty the free list afterwards.
6165       // We ignore young regions, we'll empty the young list afterwards.
6166       // We ignore humongous regions, we're not tearing down the
6167       // humongous regions set.
6168       assert(r->is_free() || r->is_young() || r->is_humongous(),
6169              "it cannot be another type");
6170     }
6171     return false;
6172   }
6173 
6174   ~TearDownRegionSetsClosure() {
6175     assert(_old_set->is_empty(), "post-condition");
6176   }
6177 };
6178 
6179 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6180   assert_at_safepoint(true /* should_be_vm_thread */);
6181 
6182   if (!free_list_only) {
6183     TearDownRegionSetsClosure cl(&_old_set);
6184     heap_region_iterate(&cl);
6185 
6186     // Note that emptying the _young_list is postponed and instead done as
6187     // the first step when rebuilding the regions sets again. The reason for
6188     // this is that during a full GC string deduplication needs to know if
6189     // a collected region was young or old when the full GC was initiated.
6190   }
6191   _hrm.remove_all_free_regions();
6192 }
6193 
6194 void G1CollectedHeap::increase_used(size_t bytes) {
6195   _summary_bytes_used += bytes;
6196 }
6197 
6198 void G1CollectedHeap::decrease_used(size_t bytes) {
6199   assert(_summary_bytes_used >= bytes,
6200          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6201          _summary_bytes_used, bytes);
6202   _summary_bytes_used -= bytes;
6203 }
6204 
6205 void G1CollectedHeap::set_used(size_t bytes) {
6206   _summary_bytes_used = bytes;
6207 }
6208 
6209 class RebuildRegionSetsClosure : public HeapRegionClosure {
6210 private:
6211   bool            _free_list_only;
6212   HeapRegionSet*   _old_set;
6213   HeapRegionManager*   _hrm;
6214   size_t          _total_used;
6215 
6216 public:
6217   RebuildRegionSetsClosure(bool free_list_only,
6218                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6219     _free_list_only(free_list_only),
6220     _old_set(old_set), _hrm(hrm), _total_used(0) {
6221     assert(_hrm->num_free_regions() == 0, "pre-condition");
6222     if (!free_list_only) {
6223       assert(_old_set->is_empty(), "pre-condition");
6224     }
6225   }
6226 
6227   bool doHeapRegion(HeapRegion* r) {
6228     if (r->is_continues_humongous()) {
6229       return false;
6230     }
6231 
6232     if (r->is_empty()) {
6233       // Add free regions to the free list
6234       r->set_free();
6235       r->set_allocation_context(AllocationContext::system());
6236       _hrm->insert_into_free_list(r);
6237     } else if (!_free_list_only) {
6238       assert(!r->is_young(), "we should not come across young regions");
6239 
6240       if (r->is_humongous()) {
6241         // We ignore humongous regions. We left the humongous set unchanged.
6242       } else {
6243         // Objects that were compacted would have ended up on regions
6244         // that were previously old or free.  Archive regions (which are
6245         // old) will not have been touched.
6246         assert(r->is_free() || r->is_old(), "invariant");
6247         // We now consider them old, so register as such. Leave
6248         // archive regions set that way, however, while still adding
6249         // them to the old set.
6250         if (!r->is_archive()) {
6251           r->set_old();
6252         }
6253         _old_set->add(r);
6254       }
6255       _total_used += r->used();
6256     }
6257 
6258     return false;
6259   }
6260 
6261   size_t total_used() {
6262     return _total_used;
6263   }
6264 };
6265 
6266 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6267   assert_at_safepoint(true /* should_be_vm_thread */);
6268 
6269   if (!free_list_only) {
6270     _young_list->empty_list();
6271   }
6272 
6273   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6274   heap_region_iterate(&cl);
6275 
6276   if (!free_list_only) {
6277     set_used(cl.total_used());
6278     if (_archive_allocator != NULL) {
6279       _archive_allocator->clear_used();
6280     }
6281   }
6282   assert(used_unlocked() == recalculate_used(),
6283          "inconsistent used_unlocked(), "
6284          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6285          used_unlocked(), recalculate_used());
6286 }
6287 
6288 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6289   _refine_cte_cl->set_concurrent(concurrent);
6290 }
6291 
6292 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6293   HeapRegion* hr = heap_region_containing(p);
6294   return hr->is_in(p);
6295 }
6296 
6297 // Methods for the mutator alloc region
6298 
6299 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6300                                                       bool force) {
6301   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6302   assert(!force || g1_policy()->can_expand_young_list(),
6303          "if force is true we should be able to expand the young list");
6304   bool young_list_full = g1_policy()->is_young_list_full();
6305   if (force || !young_list_full) {
6306     HeapRegion* new_alloc_region = new_region(word_size,
6307                                               false /* is_old */,
6308                                               false /* do_expand */);
6309     if (new_alloc_region != NULL) {
6310       set_region_short_lived_locked(new_alloc_region);
6311       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6312       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6313       return new_alloc_region;
6314     }
6315   }
6316   return NULL;
6317 }
6318 
6319 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6320                                                   size_t allocated_bytes) {
6321   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6322   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6323 
6324   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6325   increase_used(allocated_bytes);
6326   _hr_printer.retire(alloc_region);
6327   // We update the eden sizes here, when the region is retired,
6328   // instead of when it's allocated, since this is the point that its
6329   // used space has been recored in _summary_bytes_used.
6330   g1mm()->update_eden_size();
6331 }
6332 
6333 // Methods for the GC alloc regions
6334 
6335 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6336                                                  uint count,
6337                                                  InCSetState dest) {
6338   assert(FreeList_lock->owned_by_self(), "pre-condition");
6339 
6340   if (count < g1_policy()->max_regions(dest)) {
6341     const bool is_survivor = (dest.is_young());
6342     HeapRegion* new_alloc_region = new_region(word_size,
6343                                               !is_survivor,
6344                                               true /* do_expand */);
6345     if (new_alloc_region != NULL) {
6346       // We really only need to do this for old regions given that we
6347       // should never scan survivors. But it doesn't hurt to do it
6348       // for survivors too.
6349       new_alloc_region->record_timestamp();
6350       if (is_survivor) {
6351         new_alloc_region->set_survivor();
6352         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6353         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6354       } else {
6355         new_alloc_region->set_old();
6356         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6357         check_bitmaps("Old Region Allocation", new_alloc_region);
6358       }
6359       bool during_im = collector_state()->during_initial_mark_pause();
6360       new_alloc_region->note_start_of_copying(during_im);
6361       return new_alloc_region;
6362     }
6363   }
6364   return NULL;
6365 }
6366 
6367 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6368                                              size_t allocated_bytes,
6369                                              InCSetState dest) {
6370   bool during_im = collector_state()->during_initial_mark_pause();
6371   alloc_region->note_end_of_copying(during_im);
6372   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6373   if (dest.is_young()) {
6374     young_list()->add_survivor_region(alloc_region);
6375   } else {
6376     _old_set.add(alloc_region);
6377   }
6378   _hr_printer.retire(alloc_region);
6379 }
6380 
6381 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6382   bool expanded = false;
6383   uint index = _hrm.find_highest_free(&expanded);
6384 
6385   if (index != G1_NO_HRM_INDEX) {
6386     if (expanded) {
6387       ergo_verbose1(ErgoHeapSizing,
6388                     "attempt heap expansion",
6389                     ergo_format_reason("requested address range outside heap bounds")
6390                     ergo_format_byte("region size"),
6391                     HeapRegion::GrainWords * HeapWordSize);
6392     }
6393     _hrm.allocate_free_regions_starting_at(index, 1);
6394     return region_at(index);
6395   }
6396   return NULL;
6397 }
6398 
6399 // Heap region set verification
6400 
6401 class VerifyRegionListsClosure : public HeapRegionClosure {
6402 private:
6403   HeapRegionSet*   _old_set;
6404   HeapRegionSet*   _humongous_set;
6405   HeapRegionManager*   _hrm;
6406 
6407 public:
6408   HeapRegionSetCount _old_count;
6409   HeapRegionSetCount _humongous_count;
6410   HeapRegionSetCount _free_count;
6411 
6412   VerifyRegionListsClosure(HeapRegionSet* old_set,
6413                            HeapRegionSet* humongous_set,
6414                            HeapRegionManager* hrm) :
6415     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6416     _old_count(), _humongous_count(), _free_count(){ }
6417 
6418   bool doHeapRegion(HeapRegion* hr) {
6419     if (hr->is_continues_humongous()) {
6420       return false;
6421     }
6422 
6423     if (hr->is_young()) {
6424       // TODO
6425     } else if (hr->is_starts_humongous()) {
6426       assert(hr->containing_set() == _humongous_set, "Heap region %u is starts humongous but not in humongous set.", hr->hrm_index());
6427       _humongous_count.increment(1u, hr->capacity());
6428     } else if (hr->is_empty()) {
6429       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6430       _free_count.increment(1u, hr->capacity());
6431     } else if (hr->is_old()) {
6432       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6433       _old_count.increment(1u, hr->capacity());
6434     } else {
6435       // There are no other valid region types. Check for one invalid
6436       // one we can identify: pinned without old or humongous set.
6437       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6438       ShouldNotReachHere();
6439     }
6440     return false;
6441   }
6442 
6443   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6444     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6445     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6446               old_set->total_capacity_bytes(), _old_count.capacity());
6447 
6448     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6449     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6450               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6451 
6452     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6453     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6454               free_list->total_capacity_bytes(), _free_count.capacity());
6455   }
6456 };
6457 
6458 void G1CollectedHeap::verify_region_sets() {
6459   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6460 
6461   // First, check the explicit lists.
6462   _hrm.verify();
6463   {
6464     // Given that a concurrent operation might be adding regions to
6465     // the secondary free list we have to take the lock before
6466     // verifying it.
6467     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6468     _secondary_free_list.verify_list();
6469   }
6470 
6471   // If a concurrent region freeing operation is in progress it will
6472   // be difficult to correctly attributed any free regions we come
6473   // across to the correct free list given that they might belong to
6474   // one of several (free_list, secondary_free_list, any local lists,
6475   // etc.). So, if that's the case we will skip the rest of the
6476   // verification operation. Alternatively, waiting for the concurrent
6477   // operation to complete will have a non-trivial effect on the GC's
6478   // operation (no concurrent operation will last longer than the
6479   // interval between two calls to verification) and it might hide
6480   // any issues that we would like to catch during testing.
6481   if (free_regions_coming()) {
6482     return;
6483   }
6484 
6485   // Make sure we append the secondary_free_list on the free_list so
6486   // that all free regions we will come across can be safely
6487   // attributed to the free_list.
6488   append_secondary_free_list_if_not_empty_with_lock();
6489 
6490   // Finally, make sure that the region accounting in the lists is
6491   // consistent with what we see in the heap.
6492 
6493   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6494   heap_region_iterate(&cl);
6495   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6496 }
6497 
6498 // Optimized nmethod scanning
6499 
6500 class RegisterNMethodOopClosure: public OopClosure {
6501   G1CollectedHeap* _g1h;
6502   nmethod* _nm;
6503 
6504   template <class T> void do_oop_work(T* p) {
6505     T heap_oop = oopDesc::load_heap_oop(p);
6506     if (!oopDesc::is_null(heap_oop)) {
6507       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6508       HeapRegion* hr = _g1h->heap_region_containing(obj);
6509       assert(!hr->is_continues_humongous(),
6510              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6511              " starting at " HR_FORMAT,
6512              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6513 
6514       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6515       hr->add_strong_code_root_locked(_nm);
6516     }
6517   }
6518 
6519 public:
6520   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6521     _g1h(g1h), _nm(nm) {}
6522 
6523   void do_oop(oop* p)       { do_oop_work(p); }
6524   void do_oop(narrowOop* p) { do_oop_work(p); }
6525 };
6526 
6527 class UnregisterNMethodOopClosure: public OopClosure {
6528   G1CollectedHeap* _g1h;
6529   nmethod* _nm;
6530 
6531   template <class T> void do_oop_work(T* p) {
6532     T heap_oop = oopDesc::load_heap_oop(p);
6533     if (!oopDesc::is_null(heap_oop)) {
6534       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6535       HeapRegion* hr = _g1h->heap_region_containing(obj);
6536       assert(!hr->is_continues_humongous(),
6537              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6538              " starting at " HR_FORMAT,
6539              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6540 
6541       hr->remove_strong_code_root(_nm);
6542     }
6543   }
6544 
6545 public:
6546   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6547     _g1h(g1h), _nm(nm) {}
6548 
6549   void do_oop(oop* p)       { do_oop_work(p); }
6550   void do_oop(narrowOop* p) { do_oop_work(p); }
6551 };
6552 
6553 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6554   CollectedHeap::register_nmethod(nm);
6555 
6556   guarantee(nm != NULL, "sanity");
6557   RegisterNMethodOopClosure reg_cl(this, nm);
6558   nm->oops_do(&reg_cl);
6559 }
6560 
6561 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6562   CollectedHeap::unregister_nmethod(nm);
6563 
6564   guarantee(nm != NULL, "sanity");
6565   UnregisterNMethodOopClosure reg_cl(this, nm);
6566   nm->oops_do(&reg_cl, true);
6567 }
6568 
6569 void G1CollectedHeap::purge_code_root_memory() {
6570   double purge_start = os::elapsedTime();
6571   G1CodeRootSet::purge();
6572   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6573   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6574 }
6575 
6576 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6577   G1CollectedHeap* _g1h;
6578 
6579 public:
6580   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6581     _g1h(g1h) {}
6582 
6583   void do_code_blob(CodeBlob* cb) {
6584     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6585     if (nm == NULL) {
6586       return;
6587     }
6588 
6589     if (ScavengeRootsInCode) {
6590       _g1h->register_nmethod(nm);
6591     }
6592   }
6593 };
6594 
6595 void G1CollectedHeap::rebuild_strong_code_roots() {
6596   RebuildStrongCodeRootClosure blob_cl(this);
6597   CodeCache::blobs_do(&blob_cl);
6598 }