1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1EvacuationClosures.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  31 #include "gc/g1/g1StringDedup.hpp"
  32 #include "gc/shared/taskqueue.inline.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "runtime/prefetch.inline.hpp"
  35 
  36 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length)
  37   : _g1h(g1h),
  38     _refs(g1h->task_queue(worker_id)),
  39     _dcq(&g1h->dirty_card_queue_set()),
  40     _ct_bs(g1h->g1_barrier_set()),
  41     _closures(NULL),
  42     _hash_seed(17),
  43     _worker_id(worker_id),
  44     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  45     _age_table(false),
  46     _scanner(g1h),
  47     _old_gen_is_full(false)
  48 {
  49   _scanner.set_par_scan_thread_state(this);
  50   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  51   // we "sacrifice" entry 0 to keep track of surviving bytes for
  52   // non-young regions (where the age is -1)
  53   // We also add a few elements at the beginning and at the end in
  54   // an attempt to eliminate cache contention
  55   size_t real_length = 1 + young_cset_length;
  56   size_t array_length = PADDING_ELEM_NUM +
  57                       real_length +
  58                       PADDING_ELEM_NUM;
  59   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  60   if (_surviving_young_words_base == NULL)
  61     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  62                           "Not enough space for young surv histo.");
  63   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  64   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  65 
  66   _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator());
  67 
  68   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  69   // The dest for Young is used when the objects are aged enough to
  70   // need to be moved to the next space.
  71   _dest[InCSetState::Young]        = InCSetState::Old;
  72   _dest[InCSetState::Old]          = InCSetState::Old;
  73 
  74   _closures = new_root_closures();
  75 }
  76 
  77 G1EvacuationRootClosures* G1ParScanThreadState::new_root_closures() {
  78   if (_g1h->collector_state()->during_initial_mark_pause()) {
  79     if (ClassUnloadingWithConcurrentMark) {
  80       return new G1InitalMarkClosures<G1MarkPromotedFromRoot>(_g1h, this);
  81     } else {
  82       return new G1InitalMarkClosures<G1MarkFromRoot>(_g1h, this);
  83     }
  84   } else {
  85     return new G1EvacuationClosures(_g1h, this, _g1h->collector_state()->gcs_are_young());
  86   }
  87 }
  88 
  89 // Pass locally gathered statistics to global state.
  90 void G1ParScanThreadState::flush(size_t* surviving_young_words) {
  91   _dcq.flush();
  92   // Update allocation statistics.
  93   _plab_allocator->flush_and_retire_stats();
  94   _g1h->g1_policy()->record_age_table(&_age_table);
  95 
  96   uint length = _g1h->g1_policy()->young_cset_region_length();
  97   for (uint region_index = 0; region_index < length; region_index++) {
  98     surviving_young_words[region_index] += _surviving_young_words[region_index];
  99   }
 100 }
 101 
 102 G1ParScanThreadState::~G1ParScanThreadState() {
 103   delete _plab_allocator;
 104   delete _closures;
 105   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
 106 }
 107 
 108 void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
 109   _plab_allocator->waste(wasted, undo_wasted);
 110 }
 111 
 112 #ifdef ASSERT
 113 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 114   assert(ref != NULL, "invariant");
 115   assert(UseCompressedOops, "sanity");
 116   assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
 117   oop p = oopDesc::load_decode_heap_oop(ref);
 118   assert(_g1h->is_in_g1_reserved(p),
 119          "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 120   return true;
 121 }
 122 
 123 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 124   assert(ref != NULL, "invariant");
 125   if (has_partial_array_mask(ref)) {
 126     // Must be in the collection set--it's already been copied.
 127     oop p = clear_partial_array_mask(ref);
 128     assert(_g1h->obj_in_cs(p),
 129            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 130   } else {
 131     oop p = oopDesc::load_decode_heap_oop(ref);
 132     assert(_g1h->is_in_g1_reserved(p),
 133            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 134   }
 135   return true;
 136 }
 137 
 138 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 139   if (ref.is_narrow()) {
 140     return verify_ref((narrowOop*) ref);
 141   } else {
 142     return verify_ref((oop*) ref);
 143   }
 144 }
 145 #endif // ASSERT
 146 
 147 void G1ParScanThreadState::trim_queue() {
 148   StarTask ref;
 149   do {
 150     // Drain the overflow stack first, so other threads can steal.
 151     while (_refs->pop_overflow(ref)) {
 152       dispatch_reference(ref);
 153     }
 154 
 155     while (_refs->pop_local(ref)) {
 156       dispatch_reference(ref);
 157     }
 158   } while (!_refs->is_empty());
 159 }
 160 
 161 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 162                                                       InCSetState* dest,
 163                                                       size_t word_sz,
 164                                                       AllocationContext_t const context,
 165                                                       bool previous_plab_refill_failed) {
 166   assert(state.is_in_cset_or_humongous(), "Unexpected state: " CSETSTATE_FORMAT, state.value());
 167   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 168 
 169   // Right now we only have two types of regions (young / old) so
 170   // let's keep the logic here simple. We can generalize it when necessary.
 171   if (dest->is_young()) {
 172     bool plab_refill_in_old_failed = false;
 173     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 174                                                         word_sz,
 175                                                         context,
 176                                                         &plab_refill_in_old_failed);
 177     // Make sure that we won't attempt to copy any other objects out
 178     // of a survivor region (given that apparently we cannot allocate
 179     // any new ones) to avoid coming into this slow path again and again.
 180     // Only consider failed PLAB refill here: failed inline allocations are
 181     // typically large, so not indicative of remaining space.
 182     if (previous_plab_refill_failed) {
 183       _tenuring_threshold = 0;
 184     }
 185 
 186     if (obj_ptr != NULL) {
 187       dest->set_old();
 188     } else {
 189       // We just failed to allocate in old gen. The same idea as explained above
 190       // for making survivor gen unavailable for allocation applies for old gen.
 191       _old_gen_is_full = plab_refill_in_old_failed;
 192     }
 193     return obj_ptr;
 194   } else {
 195     _old_gen_is_full = previous_plab_refill_failed;
 196     assert(dest->is_old(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 197     // no other space to try.
 198     return NULL;
 199   }
 200 }
 201 
 202 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 203   if (state.is_young()) {
 204     age = !m->has_displaced_mark_helper() ? m->age()
 205                                           : m->displaced_mark_helper()->age();
 206     if (age < _tenuring_threshold) {
 207       return state;
 208     }
 209   }
 210   return dest(state);
 211 }
 212 
 213 void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
 214                                                   oop const old, size_t word_sz, uint age,
 215                                                   HeapWord * const obj_ptr,
 216                                                   const AllocationContext_t context) const {
 217   G1PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_state, context);
 218   if (alloc_buf->contains(obj_ptr)) {
 219     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz, age,
 220                                                              dest_state.value() == InCSetState::Old,
 221                                                              alloc_buf->word_sz());
 222   } else {
 223     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz, age,
 224                                                               dest_state.value() == InCSetState::Old);
 225   }
 226 }
 227 
 228 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 229                                                  oop const old,
 230                                                  markOop const old_mark) {
 231   const size_t word_sz = old->size();
 232   HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
 233   // +1 to make the -1 indexes valid...
 234   const int young_index = from_region->young_index_in_cset()+1;
 235   assert( (from_region->is_young() && young_index >  0) ||
 236          (!from_region->is_young() && young_index == 0), "invariant" );
 237   const AllocationContext_t context = from_region->allocation_context();
 238 
 239   uint age = 0;
 240   InCSetState dest_state = next_state(state, old_mark, age);
 241   // The second clause is to prevent premature evacuation failure in case there
 242   // is still space in survivor, but old gen is full.
 243   if (_old_gen_is_full && dest_state.is_old()) {
 244     return handle_evacuation_failure_par(old, old_mark);
 245   }
 246   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context);
 247 
 248   // PLAB allocations should succeed most of the time, so we'll
 249   // normally check against NULL once and that's it.
 250   if (obj_ptr == NULL) {
 251     bool plab_refill_failed = false;
 252     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context, &plab_refill_failed);
 253     if (obj_ptr == NULL) {
 254       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context, plab_refill_failed);
 255       if (obj_ptr == NULL) {
 256         // This will either forward-to-self, or detect that someone else has
 257         // installed a forwarding pointer.
 258         return handle_evacuation_failure_par(old, old_mark);
 259       }
 260     }
 261     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 262       // The events are checked individually as part of the actual commit
 263       report_promotion_event(dest_state, old, word_sz, age, obj_ptr, context);
 264     }
 265   }
 266 
 267   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 268   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 269 
 270 #ifndef PRODUCT
 271   // Should this evacuation fail?
 272   if (_g1h->evacuation_should_fail()) {
 273     // Doing this after all the allocation attempts also tests the
 274     // undo_allocation() method too.
 275     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 276     return handle_evacuation_failure_par(old, old_mark);
 277   }
 278 #endif // !PRODUCT
 279 
 280   // We're going to allocate linearly, so might as well prefetch ahead.
 281   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 282 
 283   const oop obj = oop(obj_ptr);
 284   const oop forward_ptr = old->forward_to_atomic(obj);
 285   if (forward_ptr == NULL) {
 286     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 287 
 288     if (dest_state.is_young()) {
 289       if (age < markOopDesc::max_age) {
 290         age++;
 291       }
 292       if (old_mark->has_displaced_mark_helper()) {
 293         // In this case, we have to install the mark word first,
 294         // otherwise obj looks to be forwarded (the old mark word,
 295         // which contains the forward pointer, was copied)
 296         obj->set_mark(old_mark);
 297         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 298         old_mark->set_displaced_mark_helper(new_mark);
 299       } else {
 300         obj->set_mark(old_mark->set_age(age));
 301       }
 302       _age_table.add(age, word_sz);
 303     } else {
 304       obj->set_mark(old_mark);
 305     }
 306 
 307     if (G1StringDedup::is_enabled()) {
 308       const bool is_from_young = state.is_young();
 309       const bool is_to_young = dest_state.is_young();
 310       assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
 311              "sanity");
 312       assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
 313              "sanity");
 314       G1StringDedup::enqueue_from_evacuation(is_from_young,
 315                                              is_to_young,
 316                                              _worker_id,
 317                                              obj);
 318     }
 319 
 320     _surviving_young_words[young_index] += word_sz;
 321 
 322     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 323       // We keep track of the next start index in the length field of
 324       // the to-space object. The actual length can be found in the
 325       // length field of the from-space object.
 326       arrayOop(obj)->set_length(0);
 327       oop* old_p = set_partial_array_mask(old);
 328       push_on_queue(old_p);
 329     } else {
 330       HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
 331       _scanner.set_region(to_region);
 332       obj->oop_iterate_backwards(&_scanner);
 333     }
 334     return obj;
 335   } else {
 336     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 337     return forward_ptr;
 338   }
 339 }
 340 
 341 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 342   assert(worker_id < _n_workers, "out of bounds access");
 343   return _states[worker_id];
 344 }
 345 
 346 void G1ParScanThreadStateSet::add_cards_scanned(uint worker_id, size_t cards_scanned) {
 347   assert(worker_id < _n_workers, "out of bounds access");
 348   _cards_scanned[worker_id] += cards_scanned;
 349 }
 350 
 351 size_t G1ParScanThreadStateSet::total_cards_scanned() const {
 352   assert(_flushed, "thread local state from the per thread states should have been flushed");
 353   return _total_cards_scanned;
 354 }
 355 
 356 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 357   assert(_flushed, "thread local state from the per thread states should have been flushed");
 358   return _surviving_young_words_total;
 359 }
 360 
 361 void G1ParScanThreadStateSet::flush() {
 362   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 363   assert(_total_cards_scanned == 0, "should have been cleared");
 364 
 365   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 366     G1ParScanThreadState* pss = _states[worker_index];
 367 
 368     _total_cards_scanned += _cards_scanned[worker_index];
 369 
 370     pss->flush(_surviving_young_words_total);
 371     delete pss;
 372     _states[worker_index] = NULL;
 373   }
 374   _flushed = true;
 375 }
 376 
 377 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 378   assert(_g1h->obj_in_cs(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 379 
 380   oop forward_ptr = old->forward_to_atomic(old);
 381   if (forward_ptr == NULL) {
 382     // Forward-to-self succeeded. We are the "owner" of the object.
 383     HeapRegion* r = _g1h->heap_region_containing(old);
 384 
 385     if (!r->evacuation_failed()) {
 386       r->set_evacuation_failed(true);
 387      _g1h->hr_printer()->evac_failure(r);
 388     }
 389 
 390     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 391 
 392     _scanner.set_region(r);
 393     old->oop_iterate_backwards(&_scanner);
 394 
 395     return old;
 396   } else {
 397     // Forward-to-self failed. Either someone else managed to allocate
 398     // space for this object (old != forward_ptr) or they beat us in
 399     // self-forwarding it (old == forward_ptr).
 400     assert(old == forward_ptr || !_g1h->obj_in_cs(forward_ptr),
 401            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 402            "should not be in the CSet",
 403            p2i(old), p2i(forward_ptr));
 404     return forward_ptr;
 405   }
 406 }
 407