/* * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "code/vtableStubs.hpp" #include "interp_masm_x86.hpp" #include "memory/resourceArea.hpp" #include "oops/instanceKlass.hpp" #include "oops/klassVtable.hpp" #include "runtime/sharedRuntime.hpp" #include "vmreg_x86.inline.hpp" #ifdef COMPILER2 #include "opto/runtime.hpp" #endif // machine-dependent part of VtableStubs: create VtableStub of correct size and // initialize its code #define __ masm-> #ifndef PRODUCT extern "C" void bad_compiled_vtable_index(JavaThread* thread, oop receiver, int index); #endif VtableStub* VtableStubs::create_vtable_stub(int vtable_index) { const int amd64_code_length = VtableStub::pd_code_size_limit(true); VtableStub* s = new(amd64_code_length) VtableStub(true, vtable_index); // Can be NULL if there is no free space in the code cache. if (s == NULL) { return NULL; } ResourceMark rm; CodeBuffer cb(s->entry_point(), amd64_code_length); MacroAssembler* masm = new MacroAssembler(&cb); #ifndef PRODUCT if (CountCompiledCalls) { __ incrementl(ExternalAddress((address) SharedRuntime::nof_megamorphic_calls_addr())); } #endif // get receiver (need to skip return address on top of stack) assert(VtableStub::receiver_location() == j_rarg0->as_VMReg(), "receiver expected in j_rarg0"); // Free registers (non-args) are rax, rbx // get receiver klass address npe_addr = __ pc(); __ load_klass(rax, j_rarg0); #ifndef PRODUCT if (DebugVtables) { Label L; // check offset vs vtable length __ cmpl(Address(rax, InstanceKlass::vtable_length_offset()), vtable_index * vtableEntry::size()); __ jcc(Assembler::greater, L); __ movl(rbx, vtable_index); __ call_VM(noreg, CAST_FROM_FN_PTR(address, bad_compiled_vtable_index), j_rarg0, rbx); __ bind(L); } #endif // PRODUCT // load Method* and target address const Register method = rbx; __ lookup_virtual_method(rax, vtable_index, method); if (DebugVtables) { Label L; __ cmpptr(method, (int32_t)NULL_WORD); __ jcc(Assembler::equal, L); __ cmpptr(Address(method, Method::from_compiled_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::notZero, L); __ stop("Vtable entry is NULL"); __ bind(L); } // rax: receiver klass // rbx: Method* // rcx: receiver address ame_addr = __ pc(); __ jmp( Address(rbx, Method::from_compiled_offset())); __ flush(); if (PrintMiscellaneous && (WizardMode || Verbose)) { tty->print_cr("vtable #%d at " PTR_FORMAT "[%d] left over: %d", vtable_index, p2i(s->entry_point()), (int)(s->code_end() - s->entry_point()), (int)(s->code_end() - __ pc())); } guarantee(__ pc() <= s->code_end(), "overflowed buffer"); // shut the door on sizing bugs int slop = 3; // 32-bit offset is this much larger than an 8-bit one assert(vtable_index > 10 || __ pc() + slop <= s->code_end(), "room for 32-bit offset"); s->set_exception_points(npe_addr, ame_addr); return s; } VtableStub* VtableStubs::create_itable_stub(int itable_index) { // Note well: pd_code_size_limit is the absolute minimum we can get // away with. If you add code here, bump the code stub size // returned by pd_code_size_limit! const int amd64_code_length = VtableStub::pd_code_size_limit(false); VtableStub* s = new(amd64_code_length) VtableStub(false, itable_index); // Can be NULL if there is no free space in the code cache. if (s == NULL) { return NULL; } ResourceMark rm; CodeBuffer cb(s->entry_point(), amd64_code_length); MacroAssembler* masm = new MacroAssembler(&cb); #ifndef PRODUCT if (CountCompiledCalls) { __ incrementl(ExternalAddress((address) SharedRuntime::nof_megamorphic_calls_addr())); } #endif // Entry arguments: // rax: Interface // j_rarg0: Receiver // Free registers (non-args) are rax (interface), rbx // get receiver (need to skip return address on top of stack) assert(VtableStub::receiver_location() == j_rarg0->as_VMReg(), "receiver expected in j_rarg0"); // get receiver klass (also an implicit null-check) address npe_addr = __ pc(); // Most registers are in use; we'll use rax, rbx, r10, r11 // (various calling sequences use r[cd]x, r[sd]i, r[89]; stay away from them) __ load_klass(r10, j_rarg0); // If we take a trap while this arg is on the stack we will not // be able to walk the stack properly. This is not an issue except // when there are mistakes in this assembly code that could generate // a spurious fault. Ask me how I know... const Register method = rbx; Label throw_icce; // Get Method* and entrypoint for compiler __ lookup_interface_method(// inputs: rec. class, interface, itable index r10, rax, itable_index, // outputs: method, scan temp. reg method, r11, throw_icce); // method (rbx): Method* // j_rarg0: receiver #ifdef ASSERT if (DebugVtables) { Label L2; __ cmpptr(method, (int32_t)NULL_WORD); __ jcc(Assembler::equal, L2); __ cmpptr(Address(method, Method::from_compiled_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::notZero, L2); __ stop("compiler entrypoint is null"); __ bind(L2); } #endif // ASSERT // rbx: Method* // j_rarg0: receiver address ame_addr = __ pc(); __ jmp(Address(method, Method::from_compiled_offset())); __ bind(throw_icce); __ jump(RuntimeAddress(StubRoutines::throw_IncompatibleClassChangeError_entry())); __ flush(); if (PrintMiscellaneous && (WizardMode || Verbose)) { tty->print_cr("itable #%d at " PTR_FORMAT "[%d] left over: %d", itable_index, p2i(s->entry_point()), (int)(s->code_end() - s->entry_point()), (int)(s->code_end() - __ pc())); } guarantee(__ pc() <= s->code_end(), "overflowed buffer"); // shut the door on sizing bugs int slop = 3; // 32-bit offset is this much larger than an 8-bit one assert(itable_index > 10 || __ pc() + slop <= s->code_end(), "room for 32-bit offset"); s->set_exception_points(npe_addr, ame_addr); return s; } int VtableStub::pd_code_size_limit(bool is_vtable_stub) { if (is_vtable_stub) { // Vtable stub size return (DebugVtables ? 512 : 24) + (CountCompiledCalls ? 13 : 0) + (UseCompressedClassPointers ? MacroAssembler::instr_size_for_decode_klass_not_null() : 0); } else { // Itable stub size return (DebugVtables ? 512 : 74) + (CountCompiledCalls ? 13 : 0) + (UseCompressedClassPointers ? MacroAssembler::instr_size_for_decode_klass_not_null() : 0); } // In order to tune these parameters, run the JVM with VM options // +PrintMiscellaneous and +WizardMode to see information about // actual itable stubs. Look for lines like this: // itable #1 at 0x5551212[71] left over: 3 // Reduce the constants so that the "left over" number is >=3 // for the common cases. // Do not aim at a left-over number of zero, because a // large vtable or itable index (>= 32) will require a 32-bit // immediate displacement instead of an 8-bit one. // // The JVM98 app. _202_jess has a megamorphic interface call. // The itable code looks like this: // Decoding VtableStub itbl[1]@12 // mov 0x8(%rsi),%r10 // mov 0x198(%r10),%r11d // lea 0x218(%r10,%r11,8),%r11 // lea 0x8(%r10),%r10 // mov (%r11),%rbx // cmp %rbx,%rax // je success // loop: // test %rbx,%rbx // je throw_icce // add $0x10,%r11 // mov (%r11),%rbx // cmp %rbx,%rax // jne loop // success: // mov 0x8(%r11),%r11d // mov (%r10,%r11,1),%rbx // jmpq *0x60(%rbx) // throw_icce: // jmpq throw_ICCE_entry } int VtableStub::pd_code_alignment() { return wordSize; }