1 //
   2 // Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
   3 // Copyright 2012, 2015 SAP AG. All rights reserved.
   4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 //
   6 // This code is free software; you can redistribute it and/or modify it
   7 // under the terms of the GNU General Public License version 2 only, as
   8 // published by the Free Software Foundation.
   9 //
  10 // This code is distributed in the hope that it will be useful, but WITHOUT
  11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 // version 2 for more details (a copy is included in the LICENSE file that
  14 // accompanied this code).
  15 //
  16 // You should have received a copy of the GNU General Public License version
  17 // 2 along with this work; if not, write to the Free Software Foundation,
  18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19 //
  20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21 // or visit www.oracle.com if you need additional information or have any
  22 // questions.
  23 //
  24 //
  25 
  26 //
  27 // PPC64 Architecture Description File
  28 //
  29 
  30 //----------REGISTER DEFINITION BLOCK------------------------------------------
  31 // This information is used by the matcher and the register allocator to
  32 // describe individual registers and classes of registers within the target
  33 // architecture.
  34 register %{
  35 //----------Architecture Description Register Definitions----------------------
  36 // General Registers
  37 // "reg_def"  name (register save type, C convention save type,
  38 //                  ideal register type, encoding);
  39 //
  40 // Register Save Types:
  41 //
  42 //   NS  = No-Save:     The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method, &
  44 //                      that they do not need to be saved at call sites.
  45 //
  46 //   SOC = Save-On-Call: The register allocator assumes that these registers
  47 //                      can be used without saving upon entry to the method,
  48 //                      but that they must be saved at call sites.
  49 //                      These are called "volatiles" on ppc.
  50 //
  51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, but they do not need to be saved at call
  54 //                      sites.
  55 //                      These are called "nonvolatiles" on ppc.
  56 //
  57 //   AS  = Always-Save:   The register allocator assumes that these registers
  58 //                      must be saved before using them upon entry to the
  59 //                      method, & that they must be saved at call sites.
  60 //
  61 // Ideal Register Type is used to determine how to save & restore a
  62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
  64 //
  65 // The encoding number is the actual bit-pattern placed into the opcodes.
  66 //
  67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
  68 // Supplement Version 1.7 as of 2003-10-29.
  69 //
  70 // For each 64-bit register we must define two registers: the register
  71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
  72 // e.g. R3_H, which is needed by the allocator, but is not used
  73 // for stores, loads, etc.
  74 
  75 // ----------------------------
  76 // Integer/Long Registers
  77 // ----------------------------
  78 
  79   // PPC64 has 32 64-bit integer registers.
  80 
  81   // types: v = volatile, nv = non-volatile, s = system
  82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
  83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
  84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
  85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
  86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
  87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
  88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
  89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
  90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
  91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
  92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
  93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
  94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
  95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
  96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
  97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
  98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
  99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
 100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
 101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
 102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
 103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
 104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
 105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
 106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
 107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
 108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
 109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
 110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
 111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
 112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
 113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
 114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
 115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
 116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
 117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
 118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
 119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
 120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
 121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
 122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
 123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
 124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
 125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
 126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
 127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
 128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
 129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
 130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
 131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
 132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
 133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
 134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
 135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
 136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
 137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
 138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
 139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
 140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
 141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
 142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
 143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
 144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
 145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
 146 
 147 
 148 // ----------------------------
 149 // Float/Double Registers
 150 // ----------------------------
 151 
 152   // Double Registers
 153   // The rules of ADL require that double registers be defined in pairs.
 154   // Each pair must be two 32-bit values, but not necessarily a pair of
 155   // single float registers. In each pair, ADLC-assigned register numbers
 156   // must be adjacent, with the lower number even. Finally, when the
 157   // CPU stores such a register pair to memory, the word associated with
 158   // the lower ADLC-assigned number must be stored to the lower address.
 159 
 160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
 161   // or double precision floating-point value.
 162 
 163   // types: v = volatile, nv = non-volatile, s = system
 164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
 165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
 166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
 167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
 168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
 169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
 170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
 171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
 172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
 173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
 174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
 175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
 176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
 177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
 178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
 179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
 180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
 181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
 182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
 183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
 184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
 185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
 186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
 187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
 188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
 189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
 190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
 191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
 192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
 193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
 194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
 195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
 196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
 197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
 198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
 199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
 200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
 201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
 202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
 203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
 204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
 205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
 206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
 207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
 208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
 209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
 210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
 211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
 212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
 213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
 214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
 215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
 216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
 217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
 218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
 219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
 220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
 221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
 222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
 223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
 224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
 225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
 226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
 227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
 228 
 229 // ----------------------------
 230 // Special Registers
 231 // ----------------------------
 232 
 233 // Condition Codes Flag Registers
 234 
 235   // PPC64 has 8 condition code "registers" which are all contained
 236   // in the CR register.
 237 
 238   // types: v = volatile, nv = non-volatile, s = system
 239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
 240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
 241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
 242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
 243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
 244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
 245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
 246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
 247 
 248   // Special registers of PPC64
 249 
 250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
 251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
 252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
 253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
 254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
 255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
 256 
 257 
 258 // ----------------------------
 259 // Specify priority of register selection within phases of register
 260 // allocation. Highest priority is first. A useful heuristic is to
 261 // give registers a low priority when they are required by machine
 262 // instructions, like EAX and EDX on I486, and choose no-save registers
 263 // before save-on-call, & save-on-call before save-on-entry. Registers
 264 // which participate in fixed calling sequences should come last.
 265 // Registers which are used as pairs must fall on an even boundary.
 266 
 267 // It's worth about 1% on SPEC geomean to get this right.
 268 
 269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
 270 // in adGlobals_ppc.hpp which defines the <register>_num values, e.g.
 271 // R3_num. Therefore, R3_num may not be (and in reality is not)
 272 // the same as R3->encoding()! Furthermore, we cannot make any
 273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
 274 // Additionally, the function
 275 //   static enum RC rc_class(OptoReg::Name reg )
 276 // maps a given <register>_num value to its chunk type (except for flags)
 277 // and its current implementation relies on chunk0 and chunk1 having a
 278 // size of 64 each.
 279 
 280 // If you change this allocation class, please have a look at the
 281 // default values for the parameters RoundRobinIntegerRegIntervalStart
 282 // and RoundRobinFloatRegIntervalStart
 283 
 284 alloc_class chunk0 (
 285   // Chunk0 contains *all* 64 integer registers halves.
 286 
 287   // "non-volatile" registers
 288   R14, R14_H,
 289   R15, R15_H,
 290   R17, R17_H,
 291   R18, R18_H,
 292   R19, R19_H,
 293   R20, R20_H,
 294   R21, R21_H,
 295   R22, R22_H,
 296   R23, R23_H,
 297   R24, R24_H,
 298   R25, R25_H,
 299   R26, R26_H,
 300   R27, R27_H,
 301   R28, R28_H,
 302   R29, R29_H,
 303   R30, R30_H,
 304   R31, R31_H,
 305 
 306   // scratch/special registers
 307   R11, R11_H,
 308   R12, R12_H,
 309 
 310   // argument registers
 311   R10, R10_H,
 312   R9,  R9_H,
 313   R8,  R8_H,
 314   R7,  R7_H,
 315   R6,  R6_H,
 316   R5,  R5_H,
 317   R4,  R4_H,
 318   R3,  R3_H,
 319 
 320   // special registers, not available for allocation
 321   R16, R16_H,     // R16_thread
 322   R13, R13_H,     // system thread id
 323   R2,  R2_H,      // may be used for TOC
 324   R1,  R1_H,      // SP
 325   R0,  R0_H       // R0 (scratch)
 326 );
 327 
 328 // If you change this allocation class, please have a look at the
 329 // default values for the parameters RoundRobinIntegerRegIntervalStart
 330 // and RoundRobinFloatRegIntervalStart
 331 
 332 alloc_class chunk1 (
 333   // Chunk1 contains *all* 64 floating-point registers halves.
 334 
 335   // scratch register
 336   F0,  F0_H,
 337 
 338   // argument registers
 339   F13, F13_H,
 340   F12, F12_H,
 341   F11, F11_H,
 342   F10, F10_H,
 343   F9,  F9_H,
 344   F8,  F8_H,
 345   F7,  F7_H,
 346   F6,  F6_H,
 347   F5,  F5_H,
 348   F4,  F4_H,
 349   F3,  F3_H,
 350   F2,  F2_H,
 351   F1,  F1_H,
 352 
 353   // non-volatile registers
 354   F14, F14_H,
 355   F15, F15_H,
 356   F16, F16_H,
 357   F17, F17_H,
 358   F18, F18_H,
 359   F19, F19_H,
 360   F20, F20_H,
 361   F21, F21_H,
 362   F22, F22_H,
 363   F23, F23_H,
 364   F24, F24_H,
 365   F25, F25_H,
 366   F26, F26_H,
 367   F27, F27_H,
 368   F28, F28_H,
 369   F29, F29_H,
 370   F30, F30_H,
 371   F31, F31_H
 372 );
 373 
 374 alloc_class chunk2 (
 375   // Chunk2 contains *all* 8 condition code registers.
 376 
 377   CCR0,
 378   CCR1,
 379   CCR2,
 380   CCR3,
 381   CCR4,
 382   CCR5,
 383   CCR6,
 384   CCR7
 385 );
 386 
 387 alloc_class chunk3 (
 388   // special registers
 389   // These registers are not allocated, but used for nodes generated by postalloc expand.
 390   SR_XER,
 391   SR_LR,
 392   SR_CTR,
 393   SR_VRSAVE,
 394   SR_SPEFSCR,
 395   SR_PPR
 396 );
 397 
 398 //-------Architecture Description Register Classes-----------------------
 399 
 400 // Several register classes are automatically defined based upon
 401 // information in this architecture description.
 402 
 403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
 405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 407 //
 408 
 409 // ----------------------------
 410 // 32 Bit Register Classes
 411 // ----------------------------
 412 
 413 // We specify registers twice, once as read/write, and once read-only.
 414 // We use the read-only registers for source operands. With this, we
 415 // can include preset read only registers in this class, as a hard-coded
 416 // '0'-register. (We used to simulate this on ppc.)
 417 
 418 // 32 bit registers that can be read and written i.e. these registers
 419 // can be dest (or src) of normal instructions.
 420 reg_class bits32_reg_rw(
 421 /*R0*/              // R0
 422 /*R1*/              // SP
 423   R2,               // TOC
 424   R3,
 425   R4,
 426   R5,
 427   R6,
 428   R7,
 429   R8,
 430   R9,
 431   R10,
 432   R11,
 433   R12,
 434 /*R13*/             // system thread id
 435   R14,
 436   R15,
 437 /*R16*/             // R16_thread
 438   R17,
 439   R18,
 440   R19,
 441   R20,
 442   R21,
 443   R22,
 444   R23,
 445   R24,
 446   R25,
 447   R26,
 448   R27,
 449   R28,
 450 /*R29,*/             // global TOC
 451   R30,
 452   R31
 453 );
 454 
 455 // 32 bit registers that can only be read i.e. these registers can
 456 // only be src of all instructions.
 457 reg_class bits32_reg_ro(
 458 /*R0*/              // R0
 459 /*R1*/              // SP
 460   R2                // TOC
 461   R3,
 462   R4,
 463   R5,
 464   R6,
 465   R7,
 466   R8,
 467   R9,
 468   R10,
 469   R11,
 470   R12,
 471 /*R13*/             // system thread id
 472   R14,
 473   R15,
 474 /*R16*/             // R16_thread
 475   R17,
 476   R18,
 477   R19,
 478   R20,
 479   R21,
 480   R22,
 481   R23,
 482   R24,
 483   R25,
 484   R26,
 485   R27,
 486   R28,
 487 /*R29,*/
 488   R30,
 489   R31
 490 );
 491 
 492 reg_class rscratch1_bits32_reg(R11);
 493 reg_class rscratch2_bits32_reg(R12);
 494 reg_class rarg1_bits32_reg(R3);
 495 reg_class rarg2_bits32_reg(R4);
 496 reg_class rarg3_bits32_reg(R5);
 497 reg_class rarg4_bits32_reg(R6);
 498 
 499 // ----------------------------
 500 // 64 Bit Register Classes
 501 // ----------------------------
 502 // 64-bit build means 64-bit pointers means hi/lo pairs
 503 
 504 reg_class rscratch1_bits64_reg(R11_H, R11);
 505 reg_class rscratch2_bits64_reg(R12_H, R12);
 506 reg_class rarg1_bits64_reg(R3_H, R3);
 507 reg_class rarg2_bits64_reg(R4_H, R4);
 508 reg_class rarg3_bits64_reg(R5_H, R5);
 509 reg_class rarg4_bits64_reg(R6_H, R6);
 510 // Thread register, 'written' by tlsLoadP, see there.
 511 reg_class thread_bits64_reg(R16_H, R16);
 512 
 513 reg_class r19_bits64_reg(R19_H, R19);
 514 
 515 // 64 bit registers that can be read and written i.e. these registers
 516 // can be dest (or src) of normal instructions.
 517 reg_class bits64_reg_rw(
 518 /*R0_H,  R0*/     // R0
 519 /*R1_H,  R1*/     // SP
 520   R2_H,  R2,      // TOC
 521   R3_H,  R3,
 522   R4_H,  R4,
 523   R5_H,  R5,
 524   R6_H,  R6,
 525   R7_H,  R7,
 526   R8_H,  R8,
 527   R9_H,  R9,
 528   R10_H, R10,
 529   R11_H, R11,
 530   R12_H, R12,
 531 /*R13_H, R13*/   // system thread id
 532   R14_H, R14,
 533   R15_H, R15,
 534 /*R16_H, R16*/   // R16_thread
 535   R17_H, R17,
 536   R18_H, R18,
 537   R19_H, R19,
 538   R20_H, R20,
 539   R21_H, R21,
 540   R22_H, R22,
 541   R23_H, R23,
 542   R24_H, R24,
 543   R25_H, R25,
 544   R26_H, R26,
 545   R27_H, R27,
 546   R28_H, R28,
 547 /*R29_H, R29,*/
 548   R30_H, R30,
 549   R31_H, R31
 550 );
 551 
 552 // 64 bit registers used excluding r2, r11 and r12
 553 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
 554 // r2, r11 and r12 internally.
 555 reg_class bits64_reg_leaf_call(
 556 /*R0_H,  R0*/     // R0
 557 /*R1_H,  R1*/     // SP
 558 /*R2_H,  R2*/     // TOC
 559   R3_H,  R3,
 560   R4_H,  R4,
 561   R5_H,  R5,
 562   R6_H,  R6,
 563   R7_H,  R7,
 564   R8_H,  R8,
 565   R9_H,  R9,
 566   R10_H, R10,
 567 /*R11_H, R11*/
 568 /*R12_H, R12*/
 569 /*R13_H, R13*/   // system thread id
 570   R14_H, R14,
 571   R15_H, R15,
 572 /*R16_H, R16*/   // R16_thread
 573   R17_H, R17,
 574   R18_H, R18,
 575   R19_H, R19,
 576   R20_H, R20,
 577   R21_H, R21,
 578   R22_H, R22,
 579   R23_H, R23,
 580   R24_H, R24,
 581   R25_H, R25,
 582   R26_H, R26,
 583   R27_H, R27,
 584   R28_H, R28,
 585 /*R29_H, R29,*/
 586   R30_H, R30,
 587   R31_H, R31
 588 );
 589 
 590 // Used to hold the TOC to avoid collisions with expanded DynamicCall
 591 // which uses r19 as inline cache internally and expanded LeafCall which uses
 592 // r2, r11 and r12 internally.
 593 reg_class bits64_constant_table_base(
 594 /*R0_H,  R0*/     // R0
 595 /*R1_H,  R1*/     // SP
 596 /*R2_H,  R2*/     // TOC
 597   R3_H,  R3,
 598   R4_H,  R4,
 599   R5_H,  R5,
 600   R6_H,  R6,
 601   R7_H,  R7,
 602   R8_H,  R8,
 603   R9_H,  R9,
 604   R10_H, R10,
 605 /*R11_H, R11*/
 606 /*R12_H, R12*/
 607 /*R13_H, R13*/   // system thread id
 608   R14_H, R14,
 609   R15_H, R15,
 610 /*R16_H, R16*/   // R16_thread
 611   R17_H, R17,
 612   R18_H, R18,
 613 /*R19_H, R19*/
 614   R20_H, R20,
 615   R21_H, R21,
 616   R22_H, R22,
 617   R23_H, R23,
 618   R24_H, R24,
 619   R25_H, R25,
 620   R26_H, R26,
 621   R27_H, R27,
 622   R28_H, R28,
 623 /*R29_H, R29,*/
 624   R30_H, R30,
 625   R31_H, R31
 626 );
 627 
 628 // 64 bit registers that can only be read i.e. these registers can
 629 // only be src of all instructions.
 630 reg_class bits64_reg_ro(
 631 /*R0_H,  R0*/     // R0
 632   R1_H,  R1,
 633   R2_H,  R2,       // TOC
 634   R3_H,  R3,
 635   R4_H,  R4,
 636   R5_H,  R5,
 637   R6_H,  R6,
 638   R7_H,  R7,
 639   R8_H,  R8,
 640   R9_H,  R9,
 641   R10_H, R10,
 642   R11_H, R11,
 643   R12_H, R12,
 644 /*R13_H, R13*/   // system thread id
 645   R14_H, R14,
 646   R15_H, R15,
 647   R16_H, R16,    // R16_thread
 648   R17_H, R17,
 649   R18_H, R18,
 650   R19_H, R19,
 651   R20_H, R20,
 652   R21_H, R21,
 653   R22_H, R22,
 654   R23_H, R23,
 655   R24_H, R24,
 656   R25_H, R25,
 657   R26_H, R26,
 658   R27_H, R27,
 659   R28_H, R28,
 660 /*R29_H, R29,*/ // TODO: let allocator handle TOC!!
 661   R30_H, R30,
 662   R31_H, R31
 663 );
 664 
 665 
 666 // ----------------------------
 667 // Special Class for Condition Code Flags Register
 668 
 669 reg_class int_flags(
 670 /*CCR0*/             // scratch
 671 /*CCR1*/             // scratch
 672 /*CCR2*/             // nv!
 673 /*CCR3*/             // nv!
 674 /*CCR4*/             // nv!
 675   CCR5,
 676   CCR6,
 677   CCR7
 678 );
 679 
 680 reg_class int_flags_ro(
 681   CCR0,
 682   CCR1,
 683   CCR2,
 684   CCR3,
 685   CCR4,
 686   CCR5,
 687   CCR6,
 688   CCR7
 689 );
 690 
 691 reg_class int_flags_CR0(CCR0);
 692 reg_class int_flags_CR1(CCR1);
 693 reg_class int_flags_CR6(CCR6);
 694 reg_class ctr_reg(SR_CTR);
 695 
 696 // ----------------------------
 697 // Float Register Classes
 698 // ----------------------------
 699 
 700 reg_class flt_reg(
 701 /*F0*/              // scratch
 702   F1,
 703   F2,
 704   F3,
 705   F4,
 706   F5,
 707   F6,
 708   F7,
 709   F8,
 710   F9,
 711   F10,
 712   F11,
 713   F12,
 714   F13,
 715   F14,              // nv!
 716   F15,              // nv!
 717   F16,              // nv!
 718   F17,              // nv!
 719   F18,              // nv!
 720   F19,              // nv!
 721   F20,              // nv!
 722   F21,              // nv!
 723   F22,              // nv!
 724   F23,              // nv!
 725   F24,              // nv!
 726   F25,              // nv!
 727   F26,              // nv!
 728   F27,              // nv!
 729   F28,              // nv!
 730   F29,              // nv!
 731   F30,              // nv!
 732   F31               // nv!
 733 );
 734 
 735 // Double precision float registers have virtual `high halves' that
 736 // are needed by the allocator.
 737 reg_class dbl_reg(
 738 /*F0,  F0_H*/     // scratch
 739   F1,  F1_H,
 740   F2,  F2_H,
 741   F3,  F3_H,
 742   F4,  F4_H,
 743   F5,  F5_H,
 744   F6,  F6_H,
 745   F7,  F7_H,
 746   F8,  F8_H,
 747   F9,  F9_H,
 748   F10, F10_H,
 749   F11, F11_H,
 750   F12, F12_H,
 751   F13, F13_H,
 752   F14, F14_H,    // nv!
 753   F15, F15_H,    // nv!
 754   F16, F16_H,    // nv!
 755   F17, F17_H,    // nv!
 756   F18, F18_H,    // nv!
 757   F19, F19_H,    // nv!
 758   F20, F20_H,    // nv!
 759   F21, F21_H,    // nv!
 760   F22, F22_H,    // nv!
 761   F23, F23_H,    // nv!
 762   F24, F24_H,    // nv!
 763   F25, F25_H,    // nv!
 764   F26, F26_H,    // nv!
 765   F27, F27_H,    // nv!
 766   F28, F28_H,    // nv!
 767   F29, F29_H,    // nv!
 768   F30, F30_H,    // nv!
 769   F31, F31_H     // nv!
 770 );
 771 
 772  %}
 773 
 774 //----------DEFINITION BLOCK---------------------------------------------------
 775 // Define name --> value mappings to inform the ADLC of an integer valued name
 776 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 777 // Format:
 778 //        int_def  <name>         ( <int_value>, <expression>);
 779 // Generated Code in ad_<arch>.hpp
 780 //        #define  <name>   (<expression>)
 781 //        // value == <int_value>
 782 // Generated code in ad_<arch>.cpp adlc_verification()
 783 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 784 //
 785 definitions %{
 786   // The default cost (of an ALU instruction).
 787   int_def DEFAULT_COST_LOW        (     30,      30);
 788   int_def DEFAULT_COST            (    100,     100);
 789   int_def HUGE_COST               (1000000, 1000000);
 790 
 791   // Memory refs
 792   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
 793   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
 794 
 795   // Branches are even more expensive.
 796   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
 797   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
 798 %}
 799 
 800 
 801 //----------SOURCE BLOCK-------------------------------------------------------
 802 // This is a block of C++ code which provides values, functions, and
 803 // definitions necessary in the rest of the architecture description.
 804 source_hpp %{
 805   // Header information of the source block.
 806   // Method declarations/definitions which are used outside
 807   // the ad-scope can conveniently be defined here.
 808   //
 809   // To keep related declarations/definitions/uses close together,
 810   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 811 
 812   // Returns true if Node n is followed by a MemBar node that
 813   // will do an acquire. If so, this node must not do the acquire
 814   // operation.
 815   bool followed_by_acquire(const Node *n);
 816 %}
 817 
 818 source %{
 819 
 820 // Optimize load-acquire.
 821 //
 822 // Check if acquire is unnecessary due to following operation that does
 823 // acquire anyways.
 824 // Walk the pattern:
 825 //
 826 //      n: Load.acq
 827 //           |
 828 //      MemBarAcquire
 829 //       |         |
 830 //  Proj(ctrl)  Proj(mem)
 831 //       |         |
 832 //   MemBarRelease/Volatile
 833 //
 834 bool followed_by_acquire(const Node *load) {
 835   assert(load->is_Load(), "So far implemented only for loads.");
 836 
 837   // Find MemBarAcquire.
 838   const Node *mba = NULL;
 839   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
 840     const Node *out = load->fast_out(i);
 841     if (out->Opcode() == Op_MemBarAcquire) {
 842       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
 843       mba = out;
 844       break;
 845     }
 846   }
 847   if (!mba) return false;
 848 
 849   // Find following MemBar node.
 850   //
 851   // The following node must be reachable by control AND memory
 852   // edge to assure no other operations are in between the two nodes.
 853   //
 854   // So first get the Proj node, mem_proj, to use it to iterate forward.
 855   Node *mem_proj = NULL;
 856   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
 857     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
 858     assert(mem_proj->is_Proj(), "only projections here");
 859     ProjNode *proj = mem_proj->as_Proj();
 860     if (proj->_con == TypeFunc::Memory &&
 861         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
 862       break;
 863   }
 864   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
 865 
 866   // Search MemBar behind Proj. If there are other memory operations
 867   // behind the Proj we lost.
 868   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
 869     Node *x = mem_proj->fast_out(j);
 870     // Proj might have an edge to a store or load node which precedes the membar.
 871     if (x->is_Mem()) return false;
 872 
 873     // On PPC64 release and volatile are implemented by an instruction
 874     // that also has acquire semantics. I.e. there is no need for an
 875     // acquire before these.
 876     int xop = x->Opcode();
 877     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
 878       // Make sure we're not missing Call/Phi/MergeMem by checking
 879       // control edges. The control edge must directly lead back
 880       // to the MemBarAcquire
 881       Node *ctrl_proj = x->in(0);
 882       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
 883         return true;
 884       }
 885     }
 886   }
 887 
 888   return false;
 889 }
 890 
 891 #define __ _masm.
 892 
 893 // Tertiary op of a LoadP or StoreP encoding.
 894 #define REGP_OP true
 895 
 896 // ****************************************************************************
 897 
 898 // REQUIRED FUNCTIONALITY
 899 
 900 // !!!!! Special hack to get all type of calls to specify the byte offset
 901 //       from the start of the call to the point where the return address
 902 //       will point.
 903 
 904 // PPC port: Removed use of lazy constant construct.
 905 
 906 int MachCallStaticJavaNode::ret_addr_offset() {
 907   // It's only a single branch-and-link instruction.
 908   return 4;
 909 }
 910 
 911 int MachCallDynamicJavaNode::ret_addr_offset() {
 912   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
 913   // postalloc expanded calls if we use inline caches and do not update method data.
 914   if (UseInlineCaches)
 915     return 4;
 916 
 917   int vtable_index = this->_vtable_index;
 918   if (vtable_index < 0) {
 919     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
 920     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 921     return 12;
 922   } else {
 923     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 924     return 24;
 925   }
 926 }
 927 
 928 int MachCallRuntimeNode::ret_addr_offset() {
 929 #if defined(ABI_ELFv2)
 930   return 28;
 931 #else
 932   return 40;
 933 #endif
 934 }
 935 
 936 //=============================================================================
 937 
 938 // condition code conversions
 939 
 940 static int cc_to_boint(int cc) {
 941   return Assembler::bcondCRbiIs0 | (cc & 8);
 942 }
 943 
 944 static int cc_to_inverse_boint(int cc) {
 945   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
 946 }
 947 
 948 static int cc_to_biint(int cc, int flags_reg) {
 949   return (flags_reg << 2) | (cc & 3);
 950 }
 951 
 952 //=============================================================================
 953 
 954 // Compute padding required for nodes which need alignment. The padding
 955 // is the number of bytes (not instructions) which will be inserted before
 956 // the instruction. The padding must match the size of a NOP instruction.
 957 
 958 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
 959   return (3*4-current_offset)&31;
 960 }
 961 
 962 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
 963   return (2*4-current_offset)&31;
 964 }
 965 
 966 int string_indexOf_immNode::compute_padding(int current_offset) const {
 967   return (3*4-current_offset)&31;
 968 }
 969 
 970 int string_indexOfNode::compute_padding(int current_offset) const {
 971   return (1*4-current_offset)&31;
 972 }
 973 
 974 int string_compareNode::compute_padding(int current_offset) const {
 975   return (4*4-current_offset)&31;
 976 }
 977 
 978 int string_equals_immNode::compute_padding(int current_offset) const {
 979   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
 980   return (2*4-current_offset)&31;
 981 }
 982 
 983 int string_equalsNode::compute_padding(int current_offset) const {
 984   return (7*4-current_offset)&31;
 985 }
 986 
 987 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
 988   return (2*4-current_offset)&31;
 989 }
 990 
 991 //=============================================================================
 992 
 993 // Indicate if the safepoint node needs the polling page as an input.
 994 bool SafePointNode::needs_polling_address_input() {
 995   // The address is loaded from thread by a seperate node.
 996   return true;
 997 }
 998 
 999 //=============================================================================
1000 
1001 // Emit an interrupt that is caught by the debugger (for debugging compiler).
1002 void emit_break(CodeBuffer &cbuf) {
1003   MacroAssembler _masm(&cbuf);
1004   __ illtrap();
1005 }
1006 
1007 #ifndef PRODUCT
1008 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1009   st->print("BREAKPOINT");
1010 }
1011 #endif
1012 
1013 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1014   emit_break(cbuf);
1015 }
1016 
1017 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
1018   return MachNode::size(ra_);
1019 }
1020 
1021 //=============================================================================
1022 
1023 void emit_nop(CodeBuffer &cbuf) {
1024   MacroAssembler _masm(&cbuf);
1025   __ nop();
1026 }
1027 
1028 static inline void emit_long(CodeBuffer &cbuf, int value) {
1029   *((int*)(cbuf.insts_end())) = value;
1030   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
1031 }
1032 
1033 //=============================================================================
1034 
1035 %} // interrupt source
1036 
1037 source_hpp %{ // Header information of the source block.
1038 
1039 //--------------------------------------------------------------
1040 //---<  Used for optimization in Compile::Shorten_branches  >---
1041 //--------------------------------------------------------------
1042 
1043 const uint trampoline_stub_size     =  6 * BytesPerInstWord;
1044 
1045 class CallStubImpl {
1046 
1047  public:
1048 
1049   // Emit call stub, compiled java to interpreter.
1050   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
1051 
1052   // Size of call trampoline stub.
1053   // This doesn't need to be accurate to the byte, but it
1054   // must be larger than or equal to the real size of the stub.
1055   static uint size_call_trampoline() {
1056     return trampoline_stub_size;
1057   }
1058 
1059   // number of relocations needed by a call trampoline stub
1060   static uint reloc_call_trampoline() {
1061     return 5;
1062   }
1063 
1064 };
1065 
1066 %} // end source_hpp
1067 
1068 source %{
1069 
1070 // Emit a trampoline stub for a call to a target which is too far away.
1071 //
1072 // code sequences:
1073 //
1074 // call-site:
1075 //   branch-and-link to <destination> or <trampoline stub>
1076 //
1077 // Related trampoline stub for this call-site in the stub section:
1078 //   load the call target from the constant pool
1079 //   branch via CTR (LR/link still points to the call-site above)
1080 
1081 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
1082   // Start the stub.
1083   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
1084   if (stub == NULL) {
1085     ciEnv::current()->record_failure("CodeCache is full");
1086     return;
1087   }
1088 
1089   // For java_to_interp stubs we use R11_scratch1 as scratch register
1090   // and in call trampoline stubs we use R12_scratch2. This way we
1091   // can distinguish them (see is_NativeCallTrampolineStub_at()).
1092   Register reg_scratch = R12_scratch2;
1093 
1094   // Create a trampoline stub relocation which relates this trampoline stub
1095   // with the call instruction at insts_call_instruction_offset in the
1096   // instructions code-section.
1097   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
1098   const int stub_start_offset = __ offset();
1099 
1100   // Now, create the trampoline stub's code:
1101   // - load the TOC
1102   // - load the call target from the constant pool
1103   // - call
1104   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1105   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
1106   __ mtctr(reg_scratch);
1107   __ bctr();
1108 
1109   const address stub_start_addr = __ addr_at(stub_start_offset);
1110 
1111   // FIXME: Assert that the trampoline stub can be identified and patched.
1112 
1113   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
1114   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
1115          "encoded offset into the constant pool must match");
1116   // Trampoline_stub_size should be good.
1117   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
1118   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
1119 
1120   // End the stub.
1121   __ end_a_stub();
1122 }
1123 
1124 //=============================================================================
1125 
1126 // Emit an inline branch-and-link call and a related trampoline stub.
1127 //
1128 // code sequences:
1129 //
1130 // call-site:
1131 //   branch-and-link to <destination> or <trampoline stub>
1132 //
1133 // Related trampoline stub for this call-site in the stub section:
1134 //   load the call target from the constant pool
1135 //   branch via CTR (LR/link still points to the call-site above)
1136 //
1137 
1138 typedef struct {
1139   int insts_call_instruction_offset;
1140   int ret_addr_offset;
1141 } EmitCallOffsets;
1142 
1143 // Emit a branch-and-link instruction that branches to a trampoline.
1144 // - Remember the offset of the branch-and-link instruction.
1145 // - Add a relocation at the branch-and-link instruction.
1146 // - Emit a branch-and-link.
1147 // - Remember the return pc offset.
1148 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
1149   EmitCallOffsets offsets = { -1, -1 };
1150   const int start_offset = __ offset();
1151   offsets.insts_call_instruction_offset = __ offset();
1152 
1153   // No entry point given, use the current pc.
1154   if (entry_point == NULL) entry_point = __ pc();
1155 
1156   if (!Compile::current()->in_scratch_emit_size()) {
1157     // Put the entry point as a constant into the constant pool.
1158     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
1159     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1160 
1161     // Emit the trampoline stub which will be related to the branch-and-link below.
1162     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
1163     if (ciEnv::current()->failing()) { return offsets; } // Code cache may be full.
1164     __ relocate(rtype);
1165   }
1166 
1167   // Note: At this point we do not have the address of the trampoline
1168   // stub, and the entry point might be too far away for bl, so __ pc()
1169   // serves as dummy and the bl will be patched later.
1170   __ bl((address) __ pc());
1171 
1172   offsets.ret_addr_offset = __ offset() - start_offset;
1173 
1174   return offsets;
1175 }
1176 
1177 //=============================================================================
1178 
1179 // Factory for creating loadConL* nodes for large/small constant pool.
1180 
1181 static inline jlong replicate_immF(float con) {
1182   // Replicate float con 2 times and pack into vector.
1183   int val = *((int*)&con);
1184   jlong lval = val;
1185   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
1186   return lval;
1187 }
1188 
1189 //=============================================================================
1190 
1191 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
1192 int Compile::ConstantTable::calculate_table_base_offset() const {
1193   return 0;  // absolute addressing, no offset
1194 }
1195 
1196 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
1197 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1198   iRegPdstOper *op_dst = new iRegPdstOper();
1199   MachNode *m1 = new loadToc_hiNode();
1200   MachNode *m2 = new loadToc_loNode();
1201 
1202   m1->add_req(NULL);
1203   m2->add_req(NULL, m1);
1204   m1->_opnds[0] = op_dst;
1205   m2->_opnds[0] = op_dst;
1206   m2->_opnds[1] = op_dst;
1207   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1208   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1209   nodes->push(m1);
1210   nodes->push(m2);
1211 }
1212 
1213 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1214   // Is postalloc expanded.
1215   ShouldNotReachHere();
1216 }
1217 
1218 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
1219   return 0;
1220 }
1221 
1222 #ifndef PRODUCT
1223 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1224   st->print("-- \t// MachConstantBaseNode (empty encoding)");
1225 }
1226 #endif
1227 
1228 //=============================================================================
1229 
1230 #ifndef PRODUCT
1231 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1232   Compile* C = ra_->C;
1233   const long framesize = C->frame_slots() << LogBytesPerInt;
1234 
1235   st->print("PROLOG\n\t");
1236   if (C->need_stack_bang(framesize)) {
1237     st->print("stack_overflow_check\n\t");
1238   }
1239 
1240   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
1241     st->print("save return pc\n\t");
1242     st->print("push frame %ld\n\t", -framesize);
1243   }
1244 }
1245 #endif
1246 
1247 // Macro used instead of the common __ to emulate the pipes of PPC.
1248 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
1249 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
1250 // still no scheduling of this code is possible, the micro scheduler is aware of the
1251 // code and can update its internal data. The following mechanism is used to achieve this:
1252 // The micro scheduler calls size() of each compound node during scheduling. size() does a
1253 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
1254 #if 0 // TODO: PPC port
1255 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1256                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
1257                 _masm.
1258 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1259                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
1260 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
1261                   C->hb_scheduling()->_pdScheduling->advance_offset
1262 #else
1263 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
1264                   Unimplemented();                                                    \
1265                 _masm.
1266 #define ___stop if (UsePower6SchedulerPPC64)                                          \
1267                   Unimplemented()
1268 #define ___advance if (UsePower6SchedulerPPC64)                                       \
1269                   Unimplemented()
1270 #endif
1271 
1272 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1273   Compile* C = ra_->C;
1274   MacroAssembler _masm(&cbuf);
1275 
1276   const long framesize = C->frame_size_in_bytes();
1277   assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
1278 
1279   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
1280 
1281   const Register return_pc            = R20; // Must match return_addr() in frame section.
1282   const Register callers_sp           = R21;
1283   const Register push_frame_temp      = R22;
1284   const Register toc_temp             = R23;
1285   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
1286 
1287   if (method_is_frameless) {
1288     // Add nop at beginning of all frameless methods to prevent any
1289     // oop instructions from getting overwritten by make_not_entrant
1290     // (patching attempt would fail).
1291     ___(nop) nop();
1292   } else {
1293     // Get return pc.
1294     ___(mflr) mflr(return_pc);
1295   }
1296 
1297   // Calls to C2R adapters often do not accept exceptional returns.
1298   // We require that their callers must bang for them. But be
1299   // careful, because some VM calls (such as call site linkage) can
1300   // use several kilobytes of stack. But the stack safety zone should
1301   // account for that. See bugs 4446381, 4468289, 4497237.
1302 
1303   int bangsize = C->bang_size_in_bytes();
1304   assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
1305   if (C->need_stack_bang(bangsize) && UseStackBanging) {
1306     // Unfortunately we cannot use the function provided in
1307     // assembler.cpp as we have to emulate the pipes. So I had to
1308     // insert the code of generate_stack_overflow_check(), see
1309     // assembler.cpp for some illuminative comments.
1310     const int page_size = os::vm_page_size();
1311     int bang_end = JavaThread::stack_shadow_zone_size();
1312 
1313     // This is how far the previous frame's stack banging extended.
1314     const int bang_end_safe = bang_end;
1315 
1316     if (bangsize > page_size) {
1317       bang_end += bangsize;
1318     }
1319 
1320     int bang_offset = bang_end_safe;
1321 
1322     while (bang_offset <= bang_end) {
1323       // Need at least one stack bang at end of shadow zone.
1324 
1325       // Again I had to copy code, this time from assembler_ppc.cpp,
1326       // bang_stack_with_offset - see there for comments.
1327 
1328       // Stack grows down, caller passes positive offset.
1329       assert(bang_offset > 0, "must bang with positive offset");
1330 
1331       long stdoffset = -bang_offset;
1332 
1333       if (Assembler::is_simm(stdoffset, 16)) {
1334         // Signed 16 bit offset, a simple std is ok.
1335         if (UseLoadInstructionsForStackBangingPPC64) {
1336           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
1337         } else {
1338           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
1339         }
1340       } else if (Assembler::is_simm(stdoffset, 31)) {
1341         // Use largeoffset calculations for addis & ld/std.
1342         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1343         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1344 
1345         Register tmp = R11;
1346         ___(addis) addis(tmp, R1_SP, hi);
1347         if (UseLoadInstructionsForStackBangingPPC64) {
1348           ___(ld) ld(R0, lo, tmp);
1349         } else {
1350           ___(std) std(R0, lo, tmp);
1351         }
1352       } else {
1353         ShouldNotReachHere();
1354       }
1355 
1356       bang_offset += page_size;
1357     }
1358     // R11 trashed
1359   } // C->need_stack_bang(framesize) && UseStackBanging
1360 
1361   unsigned int bytes = (unsigned int)framesize;
1362   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
1363   ciMethod *currMethod = C->method();
1364 
1365   // Optimized version for most common case.
1366   if (UsePower6SchedulerPPC64 &&
1367       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
1368       !(false /* ConstantsALot TODO: PPC port*/)) {
1369     ___(or) mr(callers_sp, R1_SP);
1370     ___(std) std(return_pc, _abi(lr), R1_SP);
1371     ___(stdu) stdu(R1_SP, -offset, R1_SP);
1372     return;
1373   }
1374 
1375   if (!method_is_frameless) {
1376     // Get callers sp.
1377     ___(or) mr(callers_sp, R1_SP);
1378 
1379     // Push method's frame, modifies SP.
1380     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
1381     // The ABI is already accounted for in 'framesize' via the
1382     // 'out_preserve' area.
1383     Register tmp = push_frame_temp;
1384     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
1385     if (Assembler::is_simm(-offset, 16)) {
1386       ___(stdu) stdu(R1_SP, -offset, R1_SP);
1387     } else {
1388       long x = -offset;
1389       // Had to insert load_const(tmp, -offset).
1390       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
1391       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
1392       ___(rldicr) sldi(tmp, tmp, 32);
1393       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
1394       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
1395 
1396       ___(stdux) stdux(R1_SP, R1_SP, tmp);
1397     }
1398   }
1399 #if 0 // TODO: PPC port
1400   // For testing large constant pools, emit a lot of constants to constant pool.
1401   // "Randomize" const_size.
1402   if (ConstantsALot) {
1403     const int num_consts = const_size();
1404     for (int i = 0; i < num_consts; i++) {
1405       __ long_constant(0xB0B5B00BBABE);
1406     }
1407   }
1408 #endif
1409   if (!method_is_frameless) {
1410     // Save return pc.
1411     ___(std) std(return_pc, _abi(lr), callers_sp);
1412   }
1413 }
1414 #undef ___
1415 #undef ___stop
1416 #undef ___advance
1417 
1418 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1419   // Variable size. determine dynamically.
1420   return MachNode::size(ra_);
1421 }
1422 
1423 int MachPrologNode::reloc() const {
1424   // Return number of relocatable values contained in this instruction.
1425   return 1; // 1 reloc entry for load_const(toc).
1426 }
1427 
1428 //=============================================================================
1429 
1430 #ifndef PRODUCT
1431 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1432   Compile* C = ra_->C;
1433 
1434   st->print("EPILOG\n\t");
1435   st->print("restore return pc\n\t");
1436   st->print("pop frame\n\t");
1437 
1438   if (do_polling() && C->is_method_compilation()) {
1439     st->print("touch polling page\n\t");
1440   }
1441 }
1442 #endif
1443 
1444 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1445   Compile* C = ra_->C;
1446   MacroAssembler _masm(&cbuf);
1447 
1448   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
1449   assert(framesize >= 0, "negative frame-size?");
1450 
1451   const bool method_needs_polling = do_polling() && C->is_method_compilation();
1452   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
1453   const Register return_pc        = R11;
1454   const Register polling_page     = R12;
1455 
1456   if (!method_is_frameless) {
1457     // Restore return pc relative to callers' sp.
1458     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
1459   }
1460 
1461   if (method_needs_polling) {
1462     if (LoadPollAddressFromThread) {
1463       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1464       Unimplemented();
1465     } else {
1466       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
1467     }
1468   }
1469 
1470   if (!method_is_frameless) {
1471     // Move return pc to LR.
1472     __ mtlr(return_pc);
1473     // Pop frame (fixed frame-size).
1474     __ addi(R1_SP, R1_SP, (int)framesize);
1475   }
1476 
1477   if (method_needs_polling) {
1478     // We need to mark the code position where the load from the safepoint
1479     // polling page was emitted as relocInfo::poll_return_type here.
1480     __ relocate(relocInfo::poll_return_type);
1481     __ load_from_polling_page(polling_page);
1482   }
1483 }
1484 
1485 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1486   // Variable size. Determine dynamically.
1487   return MachNode::size(ra_);
1488 }
1489 
1490 int MachEpilogNode::reloc() const {
1491   // Return number of relocatable values contained in this instruction.
1492   return 1; // 1 for load_from_polling_page.
1493 }
1494 
1495 const Pipeline * MachEpilogNode::pipeline() const {
1496   return MachNode::pipeline_class();
1497 }
1498 
1499 // This method seems to be obsolete. It is declared in machnode.hpp
1500 // and defined in all *.ad files, but it is never called. Should we
1501 // get rid of it?
1502 int MachEpilogNode::safepoint_offset() const {
1503   assert(do_polling(), "no return for this epilog node");
1504   return 0;
1505 }
1506 
1507 #if 0 // TODO: PPC port
1508 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1509   MacroAssembler _masm(&cbuf);
1510   if (LoadPollAddressFromThread) {
1511     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1512   } else {
1513     _masm.nop();
1514   }
1515 }
1516 
1517 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
1518   if (LoadPollAddressFromThread) {
1519     return 4;
1520   } else {
1521     return 4;
1522   }
1523 }
1524 
1525 #ifndef PRODUCT
1526 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1527   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
1528 }
1529 #endif
1530 
1531 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
1532   return RSCRATCH1_BITS64_REG_mask();
1533 }
1534 #endif // PPC port
1535 
1536 // =============================================================================
1537 
1538 // Figure out which register class each belongs in: rc_int, rc_float or
1539 // rc_stack.
1540 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1541 
1542 static enum RC rc_class(OptoReg::Name reg) {
1543   // Return the register class for the given register. The given register
1544   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
1545   // enumeration in adGlobals_ppc.hpp.
1546 
1547   if (reg == OptoReg::Bad) return rc_bad;
1548 
1549   // We have 64 integer register halves, starting at index 0.
1550   if (reg < 64) return rc_int;
1551 
1552   // We have 64 floating-point register halves, starting at index 64.
1553   if (reg < 64+64) return rc_float;
1554 
1555   // Between float regs & stack are the flags regs.
1556   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
1557 
1558   return rc_stack;
1559 }
1560 
1561 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
1562                         bool do_print, Compile* C, outputStream *st) {
1563 
1564   assert(opcode == Assembler::LD_OPCODE   ||
1565          opcode == Assembler::STD_OPCODE  ||
1566          opcode == Assembler::LWZ_OPCODE  ||
1567          opcode == Assembler::STW_OPCODE  ||
1568          opcode == Assembler::LFD_OPCODE  ||
1569          opcode == Assembler::STFD_OPCODE ||
1570          opcode == Assembler::LFS_OPCODE  ||
1571          opcode == Assembler::STFS_OPCODE,
1572          "opcode not supported");
1573 
1574   if (cbuf) {
1575     int d =
1576       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
1577         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
1578       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
1579     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
1580   }
1581 #ifndef PRODUCT
1582   else if (do_print) {
1583     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
1584               op_str,
1585               Matcher::regName[reg],
1586               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
1587   }
1588 #endif
1589   return 4; // size
1590 }
1591 
1592 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
1593   Compile* C = ra_->C;
1594 
1595   // Get registers to move.
1596   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
1597   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
1598   OptoReg::Name dst_hi = ra_->get_reg_second(this);
1599   OptoReg::Name dst_lo = ra_->get_reg_first(this);
1600 
1601   enum RC src_hi_rc = rc_class(src_hi);
1602   enum RC src_lo_rc = rc_class(src_lo);
1603   enum RC dst_hi_rc = rc_class(dst_hi);
1604   enum RC dst_lo_rc = rc_class(dst_lo);
1605 
1606   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
1607   if (src_hi != OptoReg::Bad)
1608     assert((src_lo&1)==0 && src_lo+1==src_hi &&
1609            (dst_lo&1)==0 && dst_lo+1==dst_hi,
1610            "expected aligned-adjacent pairs");
1611   // Generate spill code!
1612   int size = 0;
1613 
1614   if (src_lo == dst_lo && src_hi == dst_hi)
1615     return size;            // Self copy, no move.
1616 
1617   // --------------------------------------
1618   // Memory->Memory Spill. Use R0 to hold the value.
1619   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1620     int src_offset = ra_->reg2offset(src_lo);
1621     int dst_offset = ra_->reg2offset(dst_lo);
1622     if (src_hi != OptoReg::Bad) {
1623       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
1624              "expected same type of move for high parts");
1625       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
1626       if (!cbuf && !do_size) st->print("\n\t");
1627       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
1628     } else {
1629       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
1630       if (!cbuf && !do_size) st->print("\n\t");
1631       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
1632     }
1633     return size;
1634   }
1635 
1636   // --------------------------------------
1637   // Check for float->int copy; requires a trip through memory.
1638   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1639     Unimplemented();
1640   }
1641 
1642   // --------------------------------------
1643   // Check for integer reg-reg copy.
1644   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1645       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1646       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1647       size = (Rsrc != Rdst) ? 4 : 0;
1648 
1649       if (cbuf) {
1650         MacroAssembler _masm(cbuf);
1651         if (size) {
1652           __ mr(Rdst, Rsrc);
1653         }
1654       }
1655 #ifndef PRODUCT
1656       else if (!do_size) {
1657         if (size) {
1658           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1659         } else {
1660           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1661         }
1662       }
1663 #endif
1664       return size;
1665   }
1666 
1667   // Check for integer store.
1668   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1669     int dst_offset = ra_->reg2offset(dst_lo);
1670     if (src_hi != OptoReg::Bad) {
1671       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
1672              "expected same type of move for high parts");
1673       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1674     } else {
1675       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
1676     }
1677     return size;
1678   }
1679 
1680   // Check for integer load.
1681   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1682     int src_offset = ra_->reg2offset(src_lo);
1683     if (src_hi != OptoReg::Bad) {
1684       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
1685              "expected same type of move for high parts");
1686       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1687     } else {
1688       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
1689     }
1690     return size;
1691   }
1692 
1693   // Check for float reg-reg copy.
1694   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1695     if (cbuf) {
1696       MacroAssembler _masm(cbuf);
1697       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
1698       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
1699       __ fmr(Rdst, Rsrc);
1700     }
1701 #ifndef PRODUCT
1702     else if (!do_size) {
1703       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1704     }
1705 #endif
1706     return 4;
1707   }
1708 
1709   // Check for float store.
1710   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1711     int dst_offset = ra_->reg2offset(dst_lo);
1712     if (src_hi != OptoReg::Bad) {
1713       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
1714              "expected same type of move for high parts");
1715       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1716     } else {
1717       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
1718     }
1719     return size;
1720   }
1721 
1722   // Check for float load.
1723   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1724     int src_offset = ra_->reg2offset(src_lo);
1725     if (src_hi != OptoReg::Bad) {
1726       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
1727              "expected same type of move for high parts");
1728       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1729     } else {
1730       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
1731     }
1732     return size;
1733   }
1734 
1735   // --------------------------------------------------------------------
1736   // Check for hi bits still needing moving. Only happens for misaligned
1737   // arguments to native calls.
1738   if (src_hi == dst_hi)
1739     return size;               // Self copy; no move.
1740 
1741   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
1742   ShouldNotReachHere(); // Unimplemented
1743   return 0;
1744 }
1745 
1746 #ifndef PRODUCT
1747 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1748   if (!ra_)
1749     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
1750   else
1751     implementation(NULL, ra_, false, st);
1752 }
1753 #endif
1754 
1755 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1756   implementation(&cbuf, ra_, false, NULL);
1757 }
1758 
1759 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1760   return implementation(NULL, ra_, true, NULL);
1761 }
1762 
1763 #if 0 // TODO: PPC port
1764 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
1765 #ifndef PRODUCT
1766   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
1767 #endif
1768   assert(ra_->node_regs_max_index() != 0, "");
1769 
1770   // Get registers to move.
1771   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
1772   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
1773   OptoReg::Name dst_hi = ra_->get_reg_second(n);
1774   OptoReg::Name dst_lo = ra_->get_reg_first(n);
1775 
1776   enum RC src_lo_rc = rc_class(src_lo);
1777   enum RC dst_lo_rc = rc_class(dst_lo);
1778 
1779   if (src_lo == dst_lo && src_hi == dst_hi)
1780     return ppc64Opcode_none;            // Self copy, no move.
1781 
1782   // --------------------------------------
1783   // Memory->Memory Spill. Use R0 to hold the value.
1784   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1785     return ppc64Opcode_compound;
1786   }
1787 
1788   // --------------------------------------
1789   // Check for float->int copy; requires a trip through memory.
1790   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1791     Unimplemented();
1792   }
1793 
1794   // --------------------------------------
1795   // Check for integer reg-reg copy.
1796   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1797     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1798     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1799     if (Rsrc == Rdst) {
1800       return ppc64Opcode_none;
1801     } else {
1802       return ppc64Opcode_or;
1803     }
1804   }
1805 
1806   // Check for integer store.
1807   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1808     if (src_hi != OptoReg::Bad) {
1809       return ppc64Opcode_std;
1810     } else {
1811       return ppc64Opcode_stw;
1812     }
1813   }
1814 
1815   // Check for integer load.
1816   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1817     if (src_hi != OptoReg::Bad) {
1818       return ppc64Opcode_ld;
1819     } else {
1820       return ppc64Opcode_lwz;
1821     }
1822   }
1823 
1824   // Check for float reg-reg copy.
1825   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1826     return ppc64Opcode_fmr;
1827   }
1828 
1829   // Check for float store.
1830   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1831     if (src_hi != OptoReg::Bad) {
1832       return ppc64Opcode_stfd;
1833     } else {
1834       return ppc64Opcode_stfs;
1835     }
1836   }
1837 
1838   // Check for float load.
1839   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1840     if (src_hi != OptoReg::Bad) {
1841       return ppc64Opcode_lfd;
1842     } else {
1843       return ppc64Opcode_lfs;
1844     }
1845   }
1846 
1847   // --------------------------------------------------------------------
1848   // Check for hi bits still needing moving. Only happens for misaligned
1849   // arguments to native calls.
1850   if (src_hi == dst_hi) {
1851     return ppc64Opcode_none;               // Self copy; no move.
1852   }
1853 
1854   ShouldNotReachHere();
1855   return ppc64Opcode_undefined;
1856 }
1857 #endif // PPC port
1858 
1859 #ifndef PRODUCT
1860 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1861   st->print("NOP \t// %d nops to pad for loops.", _count);
1862 }
1863 #endif
1864 
1865 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1866   MacroAssembler _masm(&cbuf);
1867   // _count contains the number of nops needed for padding.
1868   for (int i = 0; i < _count; i++) {
1869     __ nop();
1870   }
1871 }
1872 
1873 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1874   return _count * 4;
1875 }
1876 
1877 #ifndef PRODUCT
1878 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1879   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1880   char reg_str[128];
1881   ra_->dump_register(this, reg_str);
1882   st->print("ADDI    %s, SP, %d \t// box node", reg_str, offset);
1883 }
1884 #endif
1885 
1886 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1887   MacroAssembler _masm(&cbuf);
1888 
1889   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1890   int reg    = ra_->get_encode(this);
1891 
1892   if (Assembler::is_simm(offset, 16)) {
1893     __ addi(as_Register(reg), R1, offset);
1894   } else {
1895     ShouldNotReachHere();
1896   }
1897 }
1898 
1899 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1900   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
1901   return 4;
1902 }
1903 
1904 #ifndef PRODUCT
1905 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1906   st->print_cr("---- MachUEPNode ----");
1907   st->print_cr("...");
1908 }
1909 #endif
1910 
1911 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1912   // This is the unverified entry point.
1913   MacroAssembler _masm(&cbuf);
1914 
1915   // Inline_cache contains a klass.
1916   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
1917   Register receiver_klass = R12_scratch2;  // tmp
1918 
1919   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
1920   assert(R11_scratch1 == R11, "need prologue scratch register");
1921 
1922   // Check for NULL argument if we don't have implicit null checks.
1923   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
1924     if (TrapBasedNullChecks) {
1925       __ trap_null_check(R3_ARG1);
1926     } else {
1927       Label valid;
1928       __ cmpdi(CCR0, R3_ARG1, 0);
1929       __ bne_predict_taken(CCR0, valid);
1930       // We have a null argument, branch to ic_miss_stub.
1931       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1932                            relocInfo::runtime_call_type);
1933       __ bind(valid);
1934     }
1935   }
1936   // Assume argument is not NULL, load klass from receiver.
1937   __ load_klass(receiver_klass, R3_ARG1);
1938 
1939   if (TrapBasedICMissChecks) {
1940     __ trap_ic_miss_check(receiver_klass, ic_klass);
1941   } else {
1942     Label valid;
1943     __ cmpd(CCR0, receiver_klass, ic_klass);
1944     __ beq_predict_taken(CCR0, valid);
1945     // We have an unexpected klass, branch to ic_miss_stub.
1946     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1947                          relocInfo::runtime_call_type);
1948     __ bind(valid);
1949   }
1950 
1951   // Argument is valid and klass is as expected, continue.
1952 }
1953 
1954 #if 0 // TODO: PPC port
1955 // Optimize UEP code on z (save a load_const() call in main path).
1956 int MachUEPNode::ep_offset() {
1957   return 0;
1958 }
1959 #endif
1960 
1961 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1962   // Variable size. Determine dynamically.
1963   return MachNode::size(ra_);
1964 }
1965 
1966 //=============================================================================
1967 
1968 %} // interrupt source
1969 
1970 source_hpp %{ // Header information of the source block.
1971 
1972 class HandlerImpl {
1973 
1974  public:
1975 
1976   static int emit_exception_handler(CodeBuffer &cbuf);
1977   static int emit_deopt_handler(CodeBuffer& cbuf);
1978 
1979   static uint size_exception_handler() {
1980     // The exception_handler is a b64_patchable.
1981     return MacroAssembler::b64_patchable_size;
1982   }
1983 
1984   static uint size_deopt_handler() {
1985     // The deopt_handler is a bl64_patchable.
1986     return MacroAssembler::bl64_patchable_size;
1987   }
1988 
1989 };
1990 
1991 %} // end source_hpp
1992 
1993 source %{
1994 
1995 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
1996   MacroAssembler _masm(&cbuf);
1997 
1998   address base = __ start_a_stub(size_exception_handler());
1999   if (base == NULL) return 0; // CodeBuffer::expand failed
2000 
2001   int offset = __ offset();
2002   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
2003                        relocInfo::runtime_call_type);
2004   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
2005   __ end_a_stub();
2006 
2007   return offset;
2008 }
2009 
2010 // The deopt_handler is like the exception handler, but it calls to
2011 // the deoptimization blob instead of jumping to the exception blob.
2012 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
2013   MacroAssembler _masm(&cbuf);
2014 
2015   address base = __ start_a_stub(size_deopt_handler());
2016   if (base == NULL) return 0; // CodeBuffer::expand failed
2017 
2018   int offset = __ offset();
2019   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
2020                         relocInfo::runtime_call_type);
2021   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
2022   __ end_a_stub();
2023 
2024   return offset;
2025 }
2026 
2027 //=============================================================================
2028 
2029 // Use a frame slots bias for frameless methods if accessing the stack.
2030 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
2031   if (as_Register(reg_enc) == R1_SP) {
2032     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
2033   }
2034   return 0;
2035 }
2036 
2037 const bool Matcher::match_rule_supported(int opcode) {
2038   if (!has_match_rule(opcode))
2039     return false;
2040 
2041   switch (opcode) {
2042   case Op_SqrtD:
2043     return VM_Version::has_fsqrt();
2044   case Op_CountLeadingZerosI:
2045   case Op_CountLeadingZerosL:
2046   case Op_CountTrailingZerosI:
2047   case Op_CountTrailingZerosL:
2048     if (!UseCountLeadingZerosInstructionsPPC64)
2049       return false;
2050     break;
2051 
2052   case Op_PopCountI:
2053   case Op_PopCountL:
2054     return (UsePopCountInstruction && VM_Version::has_popcntw());
2055 
2056   case Op_StrComp:
2057     return SpecialStringCompareTo && !CompactStrings;
2058   case Op_StrEquals:
2059     return SpecialStringEquals && !CompactStrings;
2060   case Op_StrIndexOf:
2061     return SpecialStringIndexOf && !CompactStrings;
2062   }
2063 
2064   return true;  // Per default match rules are supported.
2065 }
2066 
2067 const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {
2068 
2069   // TODO
2070   // identify extra cases that we might want to provide match rules for
2071   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
2072   bool ret_value = match_rule_supported(opcode);
2073   // Add rules here.
2074 
2075   return ret_value;  // Per default match rules are supported.
2076 }
2077 
2078 const int Matcher::float_pressure(int default_pressure_threshold) {
2079   return default_pressure_threshold;
2080 }
2081 
2082 int Matcher::regnum_to_fpu_offset(int regnum) {
2083   // No user for this method?
2084   Unimplemented();
2085   return 999;
2086 }
2087 
2088 const bool Matcher::convL2FSupported(void) {
2089   // fcfids can do the conversion (>= Power7).
2090   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
2091   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
2092 }
2093 
2094 // Vector width in bytes.
2095 const int Matcher::vector_width_in_bytes(BasicType bt) {
2096   assert(MaxVectorSize == 8, "");
2097   return 8;
2098 }
2099 
2100 // Vector ideal reg.
2101 const int Matcher::vector_ideal_reg(int size) {
2102   assert(MaxVectorSize == 8 && size == 8, "");
2103   return Op_RegL;
2104 }
2105 
2106 const int Matcher::vector_shift_count_ideal_reg(int size) {
2107   fatal("vector shift is not supported");
2108   return Node::NotAMachineReg;
2109 }
2110 
2111 // Limits on vector size (number of elements) loaded into vector.
2112 const int Matcher::max_vector_size(const BasicType bt) {
2113   assert(is_java_primitive(bt), "only primitive type vectors");
2114   return vector_width_in_bytes(bt)/type2aelembytes(bt);
2115 }
2116 
2117 const int Matcher::min_vector_size(const BasicType bt) {
2118   return max_vector_size(bt); // Same as max.
2119 }
2120 
2121 // PPC doesn't support misaligned vectors store/load.
2122 const bool Matcher::misaligned_vectors_ok() {
2123   return false;
2124 }
2125 
2126 // PPC AES support not yet implemented
2127 const bool Matcher::pass_original_key_for_aes() {
2128   return false;
2129 }
2130 
2131 // RETURNS: whether this branch offset is short enough that a short
2132 // branch can be used.
2133 //
2134 // If the platform does not provide any short branch variants, then
2135 // this method should return `false' for offset 0.
2136 //
2137 // `Compile::Fill_buffer' will decide on basis of this information
2138 // whether to do the pass `Compile::Shorten_branches' at all.
2139 //
2140 // And `Compile::Shorten_branches' will decide on basis of this
2141 // information whether to replace particular branch sites by short
2142 // ones.
2143 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
2144   // Is the offset within the range of a ppc64 pc relative branch?
2145   bool b;
2146 
2147   const int safety_zone = 3 * BytesPerInstWord;
2148   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
2149                          29 - 16 + 1 + 2);
2150   return b;
2151 }
2152 
2153 const bool Matcher::isSimpleConstant64(jlong value) {
2154   // Probably always true, even if a temp register is required.
2155   return true;
2156 }
2157 /* TODO: PPC port
2158 // Make a new machine dependent decode node (with its operands).
2159 MachTypeNode *Matcher::make_decode_node() {
2160   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
2161          "This method is only implemented for unscaled cOops mode so far");
2162   MachTypeNode *decode = new decodeN_unscaledNode();
2163   decode->set_opnd_array(0, new iRegPdstOper());
2164   decode->set_opnd_array(1, new iRegNsrcOper());
2165   return decode;
2166 }
2167 */
2168 // Threshold size for cleararray.
2169 const int Matcher::init_array_short_size = 8 * BytesPerLong;
2170 
2171 // false => size gets scaled to BytesPerLong, ok.
2172 const bool Matcher::init_array_count_is_in_bytes = false;
2173 
2174 // Use conditional move (CMOVL) on Power7.
2175 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
2176 
2177 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
2178 // fsel doesn't accept a condition register as input, so this would be slightly different.
2179 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
2180 
2181 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
2182 const bool Matcher::require_postalloc_expand = true;
2183 
2184 // Should the Matcher clone shifts on addressing modes, expecting them to
2185 // be subsumed into complex addressing expressions or compute them into
2186 // registers? True for Intel but false for most RISCs.
2187 const bool Matcher::clone_shift_expressions = false;
2188 
2189 // Do we need to mask the count passed to shift instructions or does
2190 // the cpu only look at the lower 5/6 bits anyway?
2191 // PowerPC requires masked shift counts.
2192 const bool Matcher::need_masked_shift_count = true;
2193 
2194 // This affects two different things:
2195 //  - how Decode nodes are matched
2196 //  - how ImplicitNullCheck opportunities are recognized
2197 // If true, the matcher will try to remove all Decodes and match them
2198 // (as operands) into nodes. NullChecks are not prepared to deal with
2199 // Decodes by final_graph_reshaping().
2200 // If false, final_graph_reshaping() forces the decode behind the Cmp
2201 // for a NullCheck. The matcher matches the Decode node into a register.
2202 // Implicit_null_check optimization moves the Decode along with the
2203 // memory operation back up before the NullCheck.
2204 bool Matcher::narrow_oop_use_complex_address() {
2205   // TODO: PPC port if (MatchDecodeNodes) return true;
2206   return false;
2207 }
2208 
2209 bool Matcher::narrow_klass_use_complex_address() {
2210   NOT_LP64(ShouldNotCallThis());
2211   assert(UseCompressedClassPointers, "only for compressed klass code");
2212   // TODO: PPC port if (MatchDecodeNodes) return true;
2213   return false;
2214 }
2215 
2216 // Is it better to copy float constants, or load them directly from memory?
2217 // Intel can load a float constant from a direct address, requiring no
2218 // extra registers. Most RISCs will have to materialize an address into a
2219 // register first, so they would do better to copy the constant from stack.
2220 const bool Matcher::rematerialize_float_constants = false;
2221 
2222 // If CPU can load and store mis-aligned doubles directly then no fixup is
2223 // needed. Else we split the double into 2 integer pieces and move it
2224 // piece-by-piece. Only happens when passing doubles into C code as the
2225 // Java calling convention forces doubles to be aligned.
2226 const bool Matcher::misaligned_doubles_ok = true;
2227 
2228 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
2229  Unimplemented();
2230 }
2231 
2232 // Advertise here if the CPU requires explicit rounding operations
2233 // to implement the UseStrictFP mode.
2234 const bool Matcher::strict_fp_requires_explicit_rounding = false;
2235 
2236 // Do floats take an entire double register or just half?
2237 //
2238 // A float occupies a ppc64 double register. For the allocator, a
2239 // ppc64 double register appears as a pair of float registers.
2240 bool Matcher::float_in_double() { return true; }
2241 
2242 // Do ints take an entire long register or just half?
2243 // The relevant question is how the int is callee-saved:
2244 // the whole long is written but de-opt'ing will have to extract
2245 // the relevant 32 bits.
2246 const bool Matcher::int_in_long = true;
2247 
2248 // Constants for c2c and c calling conventions.
2249 
2250 const MachRegisterNumbers iarg_reg[8] = {
2251   R3_num, R4_num, R5_num, R6_num,
2252   R7_num, R8_num, R9_num, R10_num
2253 };
2254 
2255 const MachRegisterNumbers farg_reg[13] = {
2256   F1_num, F2_num, F3_num, F4_num,
2257   F5_num, F6_num, F7_num, F8_num,
2258   F9_num, F10_num, F11_num, F12_num,
2259   F13_num
2260 };
2261 
2262 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
2263 
2264 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
2265 
2266 // Return whether or not this register is ever used as an argument. This
2267 // function is used on startup to build the trampoline stubs in generateOptoStub.
2268 // Registers not mentioned will be killed by the VM call in the trampoline, and
2269 // arguments in those registers not be available to the callee.
2270 bool Matcher::can_be_java_arg(int reg) {
2271   // We return true for all registers contained in iarg_reg[] and
2272   // farg_reg[] and their virtual halves.
2273   // We must include the virtual halves in order to get STDs and LDs
2274   // instead of STWs and LWs in the trampoline stubs.
2275 
2276   if (   reg == R3_num  || reg == R3_H_num
2277       || reg == R4_num  || reg == R4_H_num
2278       || reg == R5_num  || reg == R5_H_num
2279       || reg == R6_num  || reg == R6_H_num
2280       || reg == R7_num  || reg == R7_H_num
2281       || reg == R8_num  || reg == R8_H_num
2282       || reg == R9_num  || reg == R9_H_num
2283       || reg == R10_num || reg == R10_H_num)
2284     return true;
2285 
2286   if (   reg == F1_num  || reg == F1_H_num
2287       || reg == F2_num  || reg == F2_H_num
2288       || reg == F3_num  || reg == F3_H_num
2289       || reg == F4_num  || reg == F4_H_num
2290       || reg == F5_num  || reg == F5_H_num
2291       || reg == F6_num  || reg == F6_H_num
2292       || reg == F7_num  || reg == F7_H_num
2293       || reg == F8_num  || reg == F8_H_num
2294       || reg == F9_num  || reg == F9_H_num
2295       || reg == F10_num || reg == F10_H_num
2296       || reg == F11_num || reg == F11_H_num
2297       || reg == F12_num || reg == F12_H_num
2298       || reg == F13_num || reg == F13_H_num)
2299     return true;
2300 
2301   return false;
2302 }
2303 
2304 bool Matcher::is_spillable_arg(int reg) {
2305   return can_be_java_arg(reg);
2306 }
2307 
2308 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
2309   return false;
2310 }
2311 
2312 // Register for DIVI projection of divmodI.
2313 RegMask Matcher::divI_proj_mask() {
2314   ShouldNotReachHere();
2315   return RegMask();
2316 }
2317 
2318 // Register for MODI projection of divmodI.
2319 RegMask Matcher::modI_proj_mask() {
2320   ShouldNotReachHere();
2321   return RegMask();
2322 }
2323 
2324 // Register for DIVL projection of divmodL.
2325 RegMask Matcher::divL_proj_mask() {
2326   ShouldNotReachHere();
2327   return RegMask();
2328 }
2329 
2330 // Register for MODL projection of divmodL.
2331 RegMask Matcher::modL_proj_mask() {
2332   ShouldNotReachHere();
2333   return RegMask();
2334 }
2335 
2336 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2337   return RegMask();
2338 }
2339 
2340 %}
2341 
2342 //----------ENCODING BLOCK-----------------------------------------------------
2343 // This block specifies the encoding classes used by the compiler to output
2344 // byte streams. Encoding classes are parameterized macros used by
2345 // Machine Instruction Nodes in order to generate the bit encoding of the
2346 // instruction. Operands specify their base encoding interface with the
2347 // interface keyword. There are currently supported four interfaces,
2348 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
2349 // operand to generate a function which returns its register number when
2350 // queried. CONST_INTER causes an operand to generate a function which
2351 // returns the value of the constant when queried. MEMORY_INTER causes an
2352 // operand to generate four functions which return the Base Register, the
2353 // Index Register, the Scale Value, and the Offset Value of the operand when
2354 // queried. COND_INTER causes an operand to generate six functions which
2355 // return the encoding code (ie - encoding bits for the instruction)
2356 // associated with each basic boolean condition for a conditional instruction.
2357 //
2358 // Instructions specify two basic values for encoding. Again, a function
2359 // is available to check if the constant displacement is an oop. They use the
2360 // ins_encode keyword to specify their encoding classes (which must be
2361 // a sequence of enc_class names, and their parameters, specified in
2362 // the encoding block), and they use the
2363 // opcode keyword to specify, in order, their primary, secondary, and
2364 // tertiary opcode. Only the opcode sections which a particular instruction
2365 // needs for encoding need to be specified.
2366 encode %{
2367   enc_class enc_unimplemented %{
2368     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2369     MacroAssembler _masm(&cbuf);
2370     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
2371   %}
2372 
2373   enc_class enc_untested %{
2374 #ifdef ASSERT
2375     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2376     MacroAssembler _masm(&cbuf);
2377     __ untested("Untested mach node encoding in AD file.");
2378 #else
2379     // TODO: PPC port $archOpcode(ppc64Opcode_none);
2380 #endif
2381   %}
2382 
2383   enc_class enc_lbz(iRegIdst dst, memory mem) %{
2384     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
2385     MacroAssembler _masm(&cbuf);
2386     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2387     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2388   %}
2389 
2390   // Load acquire.
2391   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
2392     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2393     MacroAssembler _masm(&cbuf);
2394     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2395     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2396     __ twi_0($dst$$Register);
2397     __ isync();
2398   %}
2399 
2400   enc_class enc_lhz(iRegIdst dst, memory mem) %{
2401     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
2402 
2403     MacroAssembler _masm(&cbuf);
2404     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2405     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2406   %}
2407 
2408   // Load acquire.
2409   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
2410     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2411 
2412     MacroAssembler _masm(&cbuf);
2413     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2414     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2415     __ twi_0($dst$$Register);
2416     __ isync();
2417   %}
2418 
2419   enc_class enc_lwz(iRegIdst dst, memory mem) %{
2420     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
2421 
2422     MacroAssembler _masm(&cbuf);
2423     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2424     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2425   %}
2426 
2427   // Load acquire.
2428   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
2429     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2430 
2431     MacroAssembler _masm(&cbuf);
2432     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2433     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2434     __ twi_0($dst$$Register);
2435     __ isync();
2436   %}
2437 
2438   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
2439     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2440     MacroAssembler _masm(&cbuf);
2441     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2442     // Operand 'ds' requires 4-alignment.
2443     assert((Idisp & 0x3) == 0, "unaligned offset");
2444     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2445   %}
2446 
2447   // Load acquire.
2448   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
2449     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2450     MacroAssembler _masm(&cbuf);
2451     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2452     // Operand 'ds' requires 4-alignment.
2453     assert((Idisp & 0x3) == 0, "unaligned offset");
2454     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2455     __ twi_0($dst$$Register);
2456     __ isync();
2457   %}
2458 
2459   enc_class enc_lfd(RegF dst, memory mem) %{
2460     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
2461     MacroAssembler _masm(&cbuf);
2462     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2463     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
2464   %}
2465 
2466   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
2467     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2468 
2469     MacroAssembler _masm(&cbuf);
2470     int toc_offset = 0;
2471 
2472     if (!ra_->C->in_scratch_emit_size()) {
2473       address const_toc_addr;
2474       // Create a non-oop constant, no relocation needed.
2475       // If it is an IC, it has a virtual_call_Relocation.
2476       const_toc_addr = __ long_constant((jlong)$src$$constant);
2477 
2478       // Get the constant's TOC offset.
2479       toc_offset = __ offset_to_method_toc(const_toc_addr);
2480 
2481       // Keep the current instruction offset in mind.
2482       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
2483     }
2484 
2485     __ ld($dst$$Register, toc_offset, $toc$$Register);
2486   %}
2487 
2488   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
2489     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2490 
2491     MacroAssembler _masm(&cbuf);
2492 
2493     if (!ra_->C->in_scratch_emit_size()) {
2494       address const_toc_addr;
2495       // Create a non-oop constant, no relocation needed.
2496       // If it is an IC, it has a virtual_call_Relocation.
2497       const_toc_addr = __ long_constant((jlong)$src$$constant);
2498 
2499       // Get the constant's TOC offset.
2500       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2501       // Store the toc offset of the constant.
2502       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
2503 
2504       // Also keep the current instruction offset in mind.
2505       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
2506     }
2507 
2508     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2509   %}
2510 
2511 %} // encode
2512 
2513 source %{
2514 
2515 typedef struct {
2516   loadConL_hiNode *_large_hi;
2517   loadConL_loNode *_large_lo;
2518   loadConLNode    *_small;
2519   MachNode        *_last;
2520 } loadConLNodesTuple;
2521 
2522 loadConLNodesTuple loadConLNodesTuple_create(PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
2523                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
2524   loadConLNodesTuple nodes;
2525 
2526   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2527   if (large_constant_pool) {
2528     // Create new nodes.
2529     loadConL_hiNode *m1 = new loadConL_hiNode();
2530     loadConL_loNode *m2 = new loadConL_loNode();
2531 
2532     // inputs for new nodes
2533     m1->add_req(NULL, toc);
2534     m2->add_req(NULL, m1);
2535 
2536     // operands for new nodes
2537     m1->_opnds[0] = new iRegLdstOper(); // dst
2538     m1->_opnds[1] = immSrc;             // src
2539     m1->_opnds[2] = new iRegPdstOper(); // toc
2540     m2->_opnds[0] = new iRegLdstOper(); // dst
2541     m2->_opnds[1] = immSrc;             // src
2542     m2->_opnds[2] = new iRegLdstOper(); // base
2543 
2544     // Initialize ins_attrib TOC fields.
2545     m1->_const_toc_offset = -1;
2546     m2->_const_toc_offset_hi_node = m1;
2547 
2548     // Initialize ins_attrib instruction offset.
2549     m1->_cbuf_insts_offset = -1;
2550 
2551     // register allocation for new nodes
2552     ra_->set_pair(m1->_idx, reg_second, reg_first);
2553     ra_->set_pair(m2->_idx, reg_second, reg_first);
2554 
2555     // Create result.
2556     nodes._large_hi = m1;
2557     nodes._large_lo = m2;
2558     nodes._small = NULL;
2559     nodes._last = nodes._large_lo;
2560     assert(m2->bottom_type()->isa_long(), "must be long");
2561   } else {
2562     loadConLNode *m2 = new loadConLNode();
2563 
2564     // inputs for new nodes
2565     m2->add_req(NULL, toc);
2566 
2567     // operands for new nodes
2568     m2->_opnds[0] = new iRegLdstOper(); // dst
2569     m2->_opnds[1] = immSrc;             // src
2570     m2->_opnds[2] = new iRegPdstOper(); // toc
2571 
2572     // Initialize ins_attrib instruction offset.
2573     m2->_cbuf_insts_offset = -1;
2574 
2575     // register allocation for new nodes
2576     ra_->set_pair(m2->_idx, reg_second, reg_first);
2577 
2578     // Create result.
2579     nodes._large_hi = NULL;
2580     nodes._large_lo = NULL;
2581     nodes._small = m2;
2582     nodes._last = nodes._small;
2583     assert(m2->bottom_type()->isa_long(), "must be long");
2584   }
2585 
2586   return nodes;
2587 }
2588 
2589 %} // source
2590 
2591 encode %{
2592   // Postalloc expand emitter for loading a long constant from the method's TOC.
2593   // Enc_class needed as consttanttablebase is not supported by postalloc
2594   // expand.
2595   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
2596     // Create new nodes.
2597     loadConLNodesTuple loadConLNodes =
2598       loadConLNodesTuple_create(ra_, n_toc, op_src,
2599                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
2600 
2601     // Push new nodes.
2602     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
2603     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
2604 
2605     // some asserts
2606     assert(nodes->length() >= 1, "must have created at least 1 node");
2607     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
2608   %}
2609 
2610   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
2611     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2612 
2613     MacroAssembler _masm(&cbuf);
2614     int toc_offset = 0;
2615 
2616     if (!ra_->C->in_scratch_emit_size()) {
2617       intptr_t val = $src$$constant;
2618       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2619       address const_toc_addr;
2620       if (constant_reloc == relocInfo::oop_type) {
2621         // Create an oop constant and a corresponding relocation.
2622         AddressLiteral a = __ allocate_oop_address((jobject)val);
2623         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2624         __ relocate(a.rspec());
2625       } else if (constant_reloc == relocInfo::metadata_type) {
2626         AddressLiteral a = __ constant_metadata_address((Metadata *)val);
2627         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2628         __ relocate(a.rspec());
2629       } else {
2630         // Create a non-oop constant, no relocation needed.
2631         const_toc_addr = __ long_constant((jlong)$src$$constant);
2632       }
2633 
2634       // Get the constant's TOC offset.
2635       toc_offset = __ offset_to_method_toc(const_toc_addr);
2636     }
2637 
2638     __ ld($dst$$Register, toc_offset, $toc$$Register);
2639   %}
2640 
2641   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
2642     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2643 
2644     MacroAssembler _masm(&cbuf);
2645     if (!ra_->C->in_scratch_emit_size()) {
2646       intptr_t val = $src$$constant;
2647       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2648       address const_toc_addr;
2649       if (constant_reloc == relocInfo::oop_type) {
2650         // Create an oop constant and a corresponding relocation.
2651         AddressLiteral a = __ allocate_oop_address((jobject)val);
2652         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2653         __ relocate(a.rspec());
2654       } else if (constant_reloc == relocInfo::metadata_type) {
2655         AddressLiteral a = __ constant_metadata_address((Metadata *)val);
2656         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2657         __ relocate(a.rspec());
2658       } else {  // non-oop pointers, e.g. card mark base, heap top
2659         // Create a non-oop constant, no relocation needed.
2660         const_toc_addr = __ long_constant((jlong)$src$$constant);
2661       }
2662 
2663       // Get the constant's TOC offset.
2664       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2665       // Store the toc offset of the constant.
2666       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
2667     }
2668 
2669     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2670   %}
2671 
2672   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
2673   // Enc_class needed as consttanttablebase is not supported by postalloc
2674   // expand.
2675   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
2676     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2677     if (large_constant_pool) {
2678       // Create new nodes.
2679       loadConP_hiNode *m1 = new loadConP_hiNode();
2680       loadConP_loNode *m2 = new loadConP_loNode();
2681 
2682       // inputs for new nodes
2683       m1->add_req(NULL, n_toc);
2684       m2->add_req(NULL, m1);
2685 
2686       // operands for new nodes
2687       m1->_opnds[0] = new iRegPdstOper(); // dst
2688       m1->_opnds[1] = op_src;             // src
2689       m1->_opnds[2] = new iRegPdstOper(); // toc
2690       m2->_opnds[0] = new iRegPdstOper(); // dst
2691       m2->_opnds[1] = op_src;             // src
2692       m2->_opnds[2] = new iRegLdstOper(); // base
2693 
2694       // Initialize ins_attrib TOC fields.
2695       m1->_const_toc_offset = -1;
2696       m2->_const_toc_offset_hi_node = m1;
2697 
2698       // Register allocation for new nodes.
2699       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2700       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2701 
2702       nodes->push(m1);
2703       nodes->push(m2);
2704       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2705     } else {
2706       loadConPNode *m2 = new loadConPNode();
2707 
2708       // inputs for new nodes
2709       m2->add_req(NULL, n_toc);
2710 
2711       // operands for new nodes
2712       m2->_opnds[0] = new iRegPdstOper(); // dst
2713       m2->_opnds[1] = op_src;             // src
2714       m2->_opnds[2] = new iRegPdstOper(); // toc
2715 
2716       // Register allocation for new nodes.
2717       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2718 
2719       nodes->push(m2);
2720       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2721     }
2722   %}
2723 
2724   // Enc_class needed as consttanttablebase is not supported by postalloc
2725   // expand.
2726   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
2727     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2728 
2729     MachNode *m2;
2730     if (large_constant_pool) {
2731       m2 = new loadConFCompNode();
2732     } else {
2733       m2 = new loadConFNode();
2734     }
2735     // inputs for new nodes
2736     m2->add_req(NULL, n_toc);
2737 
2738     // operands for new nodes
2739     m2->_opnds[0] = op_dst;
2740     m2->_opnds[1] = op_src;
2741     m2->_opnds[2] = new iRegPdstOper(); // constanttablebase
2742 
2743     // register allocation for new nodes
2744     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2745     nodes->push(m2);
2746   %}
2747 
2748   // Enc_class needed as consttanttablebase is not supported by postalloc
2749   // expand.
2750   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
2751     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2752 
2753     MachNode *m2;
2754     if (large_constant_pool) {
2755       m2 = new loadConDCompNode();
2756     } else {
2757       m2 = new loadConDNode();
2758     }
2759     // inputs for new nodes
2760     m2->add_req(NULL, n_toc);
2761 
2762     // operands for new nodes
2763     m2->_opnds[0] = op_dst;
2764     m2->_opnds[1] = op_src;
2765     m2->_opnds[2] = new iRegPdstOper(); // constanttablebase
2766 
2767     // register allocation for new nodes
2768     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2769     nodes->push(m2);
2770   %}
2771 
2772   enc_class enc_stw(iRegIsrc src, memory mem) %{
2773     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
2774     MacroAssembler _masm(&cbuf);
2775     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2776     __ stw($src$$Register, Idisp, $mem$$base$$Register);
2777   %}
2778 
2779   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
2780     // TODO: PPC port $archOpcode(ppc64Opcode_std);
2781     MacroAssembler _masm(&cbuf);
2782     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2783     // Operand 'ds' requires 4-alignment.
2784     assert((Idisp & 0x3) == 0, "unaligned offset");
2785     __ std($src$$Register, Idisp, $mem$$base$$Register);
2786   %}
2787 
2788   enc_class enc_stfs(RegF src, memory mem) %{
2789     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
2790     MacroAssembler _masm(&cbuf);
2791     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2792     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
2793   %}
2794 
2795   enc_class enc_stfd(RegF src, memory mem) %{
2796     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
2797     MacroAssembler _masm(&cbuf);
2798     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2799     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
2800   %}
2801 
2802   // Use release_store for card-marking to ensure that previous
2803   // oop-stores are visible before the card-mark change.
2804   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr, flagsReg crx) %{
2805     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2806     // FIXME: Implement this as a cmove and use a fixed condition code
2807     // register which is written on every transition to compiled code,
2808     // e.g. in call-stub and when returning from runtime stubs.
2809     //
2810     // Proposed code sequence for the cmove implementation:
2811     //
2812     // Label skip_release;
2813     // __ beq(CCRfixed, skip_release);
2814     // __ release();
2815     // __ bind(skip_release);
2816     // __ stb(card mark);
2817 
2818     MacroAssembler _masm(&cbuf);
2819     Label skip_storestore;
2820 
2821 #if 0 // TODO: PPC port
2822     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
2823     // StoreStore barrier conditionally.
2824     __ lwz(R0, 0, $releaseFieldAddr$$Register);
2825     __ cmpwi($crx$$CondRegister, R0, 0);
2826     __ beq_predict_taken($crx$$CondRegister, skip_storestore);
2827 #endif
2828     __ li(R0, 0);
2829     __ membar(Assembler::StoreStore);
2830 #if 0 // TODO: PPC port
2831     __ bind(skip_storestore);
2832 #endif
2833 
2834     // Do the store.
2835     if ($mem$$index == 0) {
2836       __ stb(R0, $mem$$disp, $mem$$base$$Register);
2837     } else {
2838       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
2839       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
2840     }
2841   %}
2842 
2843   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
2844 
2845     if (VM_Version::has_isel()) {
2846       // use isel instruction with Power 7
2847       cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
2848       encodeP_subNode    *n_sub_base = new encodeP_subNode();
2849       encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
2850       cond_set_0_oopNode *n_cond_set = new cond_set_0_oopNode();
2851 
2852       n_compare->add_req(n_region, n_src);
2853       n_compare->_opnds[0] = op_crx;
2854       n_compare->_opnds[1] = op_src;
2855       n_compare->_opnds[2] = new immL16Oper(0);
2856 
2857       n_sub_base->add_req(n_region, n_src);
2858       n_sub_base->_opnds[0] = op_dst;
2859       n_sub_base->_opnds[1] = op_src;
2860       n_sub_base->_bottom_type = _bottom_type;
2861 
2862       n_shift->add_req(n_region, n_sub_base);
2863       n_shift->_opnds[0] = op_dst;
2864       n_shift->_opnds[1] = op_dst;
2865       n_shift->_bottom_type = _bottom_type;
2866 
2867       n_cond_set->add_req(n_region, n_compare, n_shift);
2868       n_cond_set->_opnds[0] = op_dst;
2869       n_cond_set->_opnds[1] = op_crx;
2870       n_cond_set->_opnds[2] = op_dst;
2871       n_cond_set->_bottom_type = _bottom_type;
2872 
2873       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2874       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2875       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2876       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2877 
2878       nodes->push(n_compare);
2879       nodes->push(n_sub_base);
2880       nodes->push(n_shift);
2881       nodes->push(n_cond_set);
2882 
2883     } else {
2884       // before Power 7
2885       moveRegNode        *n_move     = new moveRegNode();
2886       cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
2887       encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
2888       cond_sub_baseNode  *n_sub_base = new cond_sub_baseNode();
2889 
2890       n_move->add_req(n_region, n_src);
2891       n_move->_opnds[0] = op_dst;
2892       n_move->_opnds[1] = op_src;
2893       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
2894 
2895       n_compare->add_req(n_region, n_src);
2896       n_compare->add_prec(n_move);
2897 
2898       n_compare->_opnds[0] = op_crx;
2899       n_compare->_opnds[1] = op_src;
2900       n_compare->_opnds[2] = new immL16Oper(0);
2901 
2902       n_sub_base->add_req(n_region, n_compare, n_src);
2903       n_sub_base->_opnds[0] = op_dst;
2904       n_sub_base->_opnds[1] = op_crx;
2905       n_sub_base->_opnds[2] = op_src;
2906       n_sub_base->_bottom_type = _bottom_type;
2907 
2908       n_shift->add_req(n_region, n_sub_base);
2909       n_shift->_opnds[0] = op_dst;
2910       n_shift->_opnds[1] = op_dst;
2911       n_shift->_bottom_type = _bottom_type;
2912 
2913       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2914       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2915       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2916       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2917 
2918       nodes->push(n_move);
2919       nodes->push(n_compare);
2920       nodes->push(n_sub_base);
2921       nodes->push(n_shift);
2922     }
2923 
2924     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2925   %}
2926 
2927   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
2928 
2929     encodeP_subNode *n1 = new encodeP_subNode();
2930     n1->add_req(n_region, n_src);
2931     n1->_opnds[0] = op_dst;
2932     n1->_opnds[1] = op_src;
2933     n1->_bottom_type = _bottom_type;
2934 
2935     encodeP_shiftNode *n2 = new encodeP_shiftNode();
2936     n2->add_req(n_region, n1);
2937     n2->_opnds[0] = op_dst;
2938     n2->_opnds[1] = op_dst;
2939     n2->_bottom_type = _bottom_type;
2940     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2941     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2942 
2943     nodes->push(n1);
2944     nodes->push(n2);
2945     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2946   %}
2947 
2948   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
2949     decodeN_shiftNode *n_shift    = new decodeN_shiftNode();
2950     cmpN_reg_imm0Node *n_compare  = new cmpN_reg_imm0Node();
2951 
2952     n_compare->add_req(n_region, n_src);
2953     n_compare->_opnds[0] = op_crx;
2954     n_compare->_opnds[1] = op_src;
2955     n_compare->_opnds[2] = new immN_0Oper(TypeNarrowOop::NULL_PTR);
2956 
2957     n_shift->add_req(n_region, n_src);
2958     n_shift->_opnds[0] = op_dst;
2959     n_shift->_opnds[1] = op_src;
2960     n_shift->_bottom_type = _bottom_type;
2961 
2962     if (VM_Version::has_isel()) {
2963       // use isel instruction with Power 7
2964 
2965       decodeN_addNode *n_add_base = new decodeN_addNode();
2966       n_add_base->add_req(n_region, n_shift);
2967       n_add_base->_opnds[0] = op_dst;
2968       n_add_base->_opnds[1] = op_dst;
2969       n_add_base->_bottom_type = _bottom_type;
2970 
2971       cond_set_0_ptrNode *n_cond_set = new cond_set_0_ptrNode();
2972       n_cond_set->add_req(n_region, n_compare, n_add_base);
2973       n_cond_set->_opnds[0] = op_dst;
2974       n_cond_set->_opnds[1] = op_crx;
2975       n_cond_set->_opnds[2] = op_dst;
2976       n_cond_set->_bottom_type = _bottom_type;
2977 
2978       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
2979       ra_->set_oop(n_cond_set, true);
2980 
2981       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2982       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2983       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2984       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2985 
2986       nodes->push(n_compare);
2987       nodes->push(n_shift);
2988       nodes->push(n_add_base);
2989       nodes->push(n_cond_set);
2990 
2991     } else {
2992       // before Power 7
2993       cond_add_baseNode *n_add_base = new cond_add_baseNode();
2994 
2995       n_add_base->add_req(n_region, n_compare, n_shift);
2996       n_add_base->_opnds[0] = op_dst;
2997       n_add_base->_opnds[1] = op_crx;
2998       n_add_base->_opnds[2] = op_dst;
2999       n_add_base->_bottom_type = _bottom_type;
3000 
3001       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3002       ra_->set_oop(n_add_base, true);
3003 
3004       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3005       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
3006       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3007 
3008       nodes->push(n_compare);
3009       nodes->push(n_shift);
3010       nodes->push(n_add_base);
3011     }
3012   %}
3013 
3014   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
3015     decodeN_shiftNode *n1 = new decodeN_shiftNode();
3016     n1->add_req(n_region, n_src);
3017     n1->_opnds[0] = op_dst;
3018     n1->_opnds[1] = op_src;
3019     n1->_bottom_type = _bottom_type;
3020 
3021     decodeN_addNode *n2 = new decodeN_addNode();
3022     n2->add_req(n_region, n1);
3023     n2->_opnds[0] = op_dst;
3024     n2->_opnds[1] = op_dst;
3025     n2->_bottom_type = _bottom_type;
3026     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3027     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3028 
3029     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3030     ra_->set_oop(n2, true);
3031 
3032     nodes->push(n1);
3033     nodes->push(n2);
3034   %}
3035 
3036   enc_class enc_cmove_reg(iRegIdst dst, flagsRegSrc crx, iRegIsrc src, cmpOp cmp) %{
3037     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3038 
3039     MacroAssembler _masm(&cbuf);
3040     int cc        = $cmp$$cmpcode;
3041     int flags_reg = $crx$$reg;
3042     Label done;
3043     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3044     // Branch if not (cmp crx).
3045     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
3046     __ mr($dst$$Register, $src$$Register);
3047     // TODO PPC port __ endgroup_if_needed(_size == 12);
3048     __ bind(done);
3049   %}
3050 
3051   enc_class enc_cmove_imm(iRegIdst dst, flagsRegSrc crx, immI16 src, cmpOp cmp) %{
3052     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3053 
3054     MacroAssembler _masm(&cbuf);
3055     Label done;
3056     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3057     // Branch if not (cmp crx).
3058     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
3059     __ li($dst$$Register, $src$$constant);
3060     // TODO PPC port __ endgroup_if_needed(_size == 12);
3061     __ bind(done);
3062   %}
3063 
3064   // New atomics.
3065   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3066     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3067 
3068     MacroAssembler _masm(&cbuf);
3069     Register Rtmp   = R0;
3070     Register Rres   = $res$$Register;
3071     Register Rsrc   = $src$$Register;
3072     Register Rptr   = $mem_ptr$$Register;
3073     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3074     Register Rold   = RegCollision ? Rtmp : Rres;
3075 
3076     Label Lretry;
3077     __ bind(Lretry);
3078     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3079     __ add(Rtmp, Rsrc, Rold);
3080     __ stwcx_(Rtmp, Rptr);
3081     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3082       __ bne_predict_not_taken(CCR0, Lretry);
3083     } else {
3084       __ bne(                  CCR0, Lretry);
3085     }
3086     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3087     __ fence();
3088   %}
3089 
3090   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3091     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3092 
3093     MacroAssembler _masm(&cbuf);
3094     Register Rtmp   = R0;
3095     Register Rres   = $res$$Register;
3096     Register Rsrc   = $src$$Register;
3097     Register Rptr   = $mem_ptr$$Register;
3098     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3099     Register Rold   = RegCollision ? Rtmp : Rres;
3100 
3101     Label Lretry;
3102     __ bind(Lretry);
3103     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3104     __ add(Rtmp, Rsrc, Rold);
3105     __ stdcx_(Rtmp, Rptr);
3106     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3107       __ bne_predict_not_taken(CCR0, Lretry);
3108     } else {
3109       __ bne(                  CCR0, Lretry);
3110     }
3111     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3112     __ fence();
3113   %}
3114 
3115   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3116     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3117 
3118     MacroAssembler _masm(&cbuf);
3119     Register Rtmp   = R0;
3120     Register Rres   = $res$$Register;
3121     Register Rsrc   = $src$$Register;
3122     Register Rptr   = $mem_ptr$$Register;
3123     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3124     Register Rold   = RegCollision ? Rtmp : Rres;
3125 
3126     Label Lretry;
3127     __ bind(Lretry);
3128     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3129     __ stwcx_(Rsrc, Rptr);
3130     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3131       __ bne_predict_not_taken(CCR0, Lretry);
3132     } else {
3133       __ bne(                  CCR0, Lretry);
3134     }
3135     if (RegCollision) __ mr(Rres, Rtmp);
3136     __ fence();
3137   %}
3138 
3139   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3140     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3141 
3142     MacroAssembler _masm(&cbuf);
3143     Register Rtmp   = R0;
3144     Register Rres   = $res$$Register;
3145     Register Rsrc   = $src$$Register;
3146     Register Rptr   = $mem_ptr$$Register;
3147     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3148     Register Rold   = RegCollision ? Rtmp : Rres;
3149 
3150     Label Lretry;
3151     __ bind(Lretry);
3152     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3153     __ stdcx_(Rsrc, Rptr);
3154     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3155       __ bne_predict_not_taken(CCR0, Lretry);
3156     } else {
3157       __ bne(                  CCR0, Lretry);
3158     }
3159     if (RegCollision) __ mr(Rres, Rtmp);
3160     __ fence();
3161   %}
3162 
3163   // This enc_class is needed so that scheduler gets proper
3164   // input mapping for latency computation.
3165   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
3166     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
3167     MacroAssembler _masm(&cbuf);
3168     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
3169   %}
3170 
3171   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3172     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3173 
3174     MacroAssembler _masm(&cbuf);
3175 
3176     Label done;
3177     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
3178     __ li($dst$$Register, $zero$$constant);
3179     __ beq($crx$$CondRegister, done);
3180     __ li($dst$$Register, $notzero$$constant);
3181     __ bind(done);
3182   %}
3183 
3184   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3185     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3186 
3187     MacroAssembler _masm(&cbuf);
3188 
3189     Label done;
3190     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
3191     __ li($dst$$Register, $zero$$constant);
3192     __ beq($crx$$CondRegister, done);
3193     __ li($dst$$Register, $notzero$$constant);
3194     __ bind(done);
3195   %}
3196 
3197   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsRegSrc crx, stackSlotL mem ) %{
3198     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3199 
3200     MacroAssembler _masm(&cbuf);
3201     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
3202     Label done;
3203     __ bso($crx$$CondRegister, done);
3204     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
3205     // TODO PPC port __ endgroup_if_needed(_size == 12);
3206     __ bind(done);
3207   %}
3208 
3209   enc_class enc_bc(flagsRegSrc crx, cmpOp cmp, Label lbl) %{
3210     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3211 
3212     MacroAssembler _masm(&cbuf);
3213     Label d;   // dummy
3214     __ bind(d);
3215     Label* p = ($lbl$$label);
3216     // `p' is `NULL' when this encoding class is used only to
3217     // determine the size of the encoded instruction.
3218     Label& l = (NULL == p)? d : *(p);
3219     int cc = $cmp$$cmpcode;
3220     int flags_reg = $crx$$reg;
3221     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3222     int bhint = Assembler::bhintNoHint;
3223 
3224     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3225       if (_prob <= PROB_NEVER) {
3226         bhint = Assembler::bhintIsNotTaken;
3227       } else if (_prob >= PROB_ALWAYS) {
3228         bhint = Assembler::bhintIsTaken;
3229       }
3230     }
3231 
3232     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3233           cc_to_biint(cc, flags_reg),
3234           l);
3235   %}
3236 
3237   enc_class enc_bc_far(flagsRegSrc crx, cmpOp cmp, Label lbl) %{
3238     // The scheduler doesn't know about branch shortening, so we set the opcode
3239     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3240     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3241 
3242     MacroAssembler _masm(&cbuf);
3243     Label d;    // dummy
3244     __ bind(d);
3245     Label* p = ($lbl$$label);
3246     // `p' is `NULL' when this encoding class is used only to
3247     // determine the size of the encoded instruction.
3248     Label& l = (NULL == p)? d : *(p);
3249     int cc = $cmp$$cmpcode;
3250     int flags_reg = $crx$$reg;
3251     int bhint = Assembler::bhintNoHint;
3252 
3253     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3254       if (_prob <= PROB_NEVER) {
3255         bhint = Assembler::bhintIsNotTaken;
3256       } else if (_prob >= PROB_ALWAYS) {
3257         bhint = Assembler::bhintIsTaken;
3258       }
3259     }
3260 
3261     // Tell the conditional far branch to optimize itself when being relocated.
3262     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3263                   cc_to_biint(cc, flags_reg),
3264                   l,
3265                   MacroAssembler::bc_far_optimize_on_relocate);
3266   %}
3267 
3268   // Branch used with Power6 scheduling (can be shortened without changing the node).
3269   enc_class enc_bc_short_far(flagsRegSrc crx, cmpOp cmp, Label lbl) %{
3270     // The scheduler doesn't know about branch shortening, so we set the opcode
3271     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3272     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3273 
3274     MacroAssembler _masm(&cbuf);
3275     Label d;   // dummy
3276     __ bind(d);
3277     Label* p = ($lbl$$label);
3278     // `p' is `NULL' when this encoding class is used only to
3279     // determine the size of the encoded instruction.
3280     Label& l = (NULL == p)? d : *(p);
3281     int cc = $cmp$$cmpcode;
3282     int flags_reg = $crx$$reg;
3283     int bhint = Assembler::bhintNoHint;
3284 
3285     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3286       if (_prob <= PROB_NEVER) {
3287         bhint = Assembler::bhintIsNotTaken;
3288       } else if (_prob >= PROB_ALWAYS) {
3289         bhint = Assembler::bhintIsTaken;
3290       }
3291     }
3292 
3293 #if 0 // TODO: PPC port
3294     if (_size == 8) {
3295       // Tell the conditional far branch to optimize itself when being relocated.
3296       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3297                     cc_to_biint(cc, flags_reg),
3298                     l,
3299                     MacroAssembler::bc_far_optimize_on_relocate);
3300     } else {
3301       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3302                     cc_to_biint(cc, flags_reg),
3303                     l);
3304     }
3305 #endif
3306     Unimplemented();
3307   %}
3308 
3309   // Postalloc expand emitter for loading a replicatef float constant from
3310   // the method's TOC.
3311   // Enc_class needed as consttanttablebase is not supported by postalloc
3312   // expand.
3313   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
3314     // Create new nodes.
3315 
3316     // Make an operand with the bit pattern to load as float.
3317     immLOper *op_repl = new immLOper((jlong)replicate_immF(op_src->constantF()));
3318 
3319     loadConLNodesTuple loadConLNodes =
3320       loadConLNodesTuple_create(ra_, n_toc, op_repl,
3321                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
3322 
3323     // Push new nodes.
3324     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
3325     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
3326 
3327     assert(nodes->length() >= 1, "must have created at least 1 node");
3328     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
3329   %}
3330 
3331   // This enc_class is needed so that scheduler gets proper
3332   // input mapping for latency computation.
3333   enc_class enc_poll(immI dst, iRegLdst poll) %{
3334     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
3335     // Fake operand dst needed for PPC scheduler.
3336     assert($dst$$constant == 0x0, "dst must be 0x0");
3337 
3338     MacroAssembler _masm(&cbuf);
3339     // Mark the code position where the load from the safepoint
3340     // polling page was emitted as relocInfo::poll_type.
3341     __ relocate(relocInfo::poll_type);
3342     __ load_from_polling_page($poll$$Register);
3343   %}
3344 
3345   // A Java static call or a runtime call.
3346   //
3347   // Branch-and-link relative to a trampoline.
3348   // The trampoline loads the target address and does a long branch to there.
3349   // In case we call java, the trampoline branches to a interpreter_stub
3350   // which loads the inline cache and the real call target from the constant pool.
3351   //
3352   // This basically looks like this:
3353   //
3354   // >>>> consts      -+  -+
3355   //                   |   |- offset1
3356   // [call target1]    | <-+
3357   // [IC cache]        |- offset2
3358   // [call target2] <--+
3359   //
3360   // <<<< consts
3361   // >>>> insts
3362   //
3363   // bl offset16               -+  -+             ??? // How many bits available?
3364   //                            |   |
3365   // <<<< insts                 |   |
3366   // >>>> stubs                 |   |
3367   //                            |   |- trampoline_stub_Reloc
3368   // trampoline stub:           | <-+
3369   //   r2 = toc                 |
3370   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
3371   //   mtctr r2                 |
3372   //   bctr                     |- static_stub_Reloc
3373   // comp_to_interp_stub:   <---+
3374   //   r1 = toc
3375   //   ICreg = [r1 + IC_offset]         // Load IC from const section
3376   //   r1    = [r1 + offset2]           // Load call target2 from const section
3377   //   mtctr r1
3378   //   bctr
3379   //
3380   // <<<< stubs
3381   //
3382   // The call instruction in the code either
3383   // - Branches directly to a compiled method if the offset is encodable in instruction.
3384   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
3385   // - Branches to the compiled_to_interp stub if the target is interpreted.
3386   //
3387   // Further there are three relocations from the loads to the constants in
3388   // the constant section.
3389   //
3390   // Usage of r1 and r2 in the stubs allows to distinguish them.
3391   enc_class enc_java_static_call(method meth) %{
3392     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3393 
3394     MacroAssembler _masm(&cbuf);
3395     address entry_point = (address)$meth$$method;
3396 
3397     if (!_method) {
3398       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
3399       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
3400     } else {
3401       // Remember the offset not the address.
3402       const int start_offset = __ offset();
3403       // The trampoline stub.
3404       if (!Compile::current()->in_scratch_emit_size()) {
3405         // No entry point given, use the current pc.
3406         // Make sure branch fits into
3407         if (entry_point == 0) entry_point = __ pc();
3408 
3409         // Put the entry point as a constant into the constant pool.
3410         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3411         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3412 
3413         // Emit the trampoline stub which will be related to the branch-and-link below.
3414         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3415         if (ciEnv::current()->failing()) { return; } // Code cache may be full.
3416         __ relocate(_optimized_virtual ?
3417                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
3418       }
3419 
3420       // The real call.
3421       // Note: At this point we do not have the address of the trampoline
3422       // stub, and the entry point might be too far away for bl, so __ pc()
3423       // serves as dummy and the bl will be patched later.
3424       cbuf.set_insts_mark();
3425       __ bl(__ pc());  // Emits a relocation.
3426 
3427       // The stub for call to interpreter.
3428       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
3429       if (stub == NULL) {
3430         ciEnv::current()->record_failure("CodeCache is full");
3431         return;
3432       }
3433     }
3434   %}
3435 
3436   // Emit a method handle call.
3437   //
3438   // Method handle calls from compiled to compiled are going thru a
3439   // c2i -> i2c adapter, extending the frame for their arguments. The
3440   // caller however, returns directly to the compiled callee, that has
3441   // to cope with the extended frame. We restore the original frame by
3442   // loading the callers sp and adding the calculated framesize.
3443   enc_class enc_java_handle_call(method meth) %{
3444     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3445 
3446     MacroAssembler _masm(&cbuf);
3447     address entry_point = (address)$meth$$method;
3448 
3449     // Remember the offset not the address.
3450     const int start_offset = __ offset();
3451     // The trampoline stub.
3452     if (!ra_->C->in_scratch_emit_size()) {
3453       // No entry point given, use the current pc.
3454       // Make sure branch fits into
3455       if (entry_point == 0) entry_point = __ pc();
3456 
3457       // Put the entry point as a constant into the constant pool.
3458       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3459       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3460 
3461       // Emit the trampoline stub which will be related to the branch-and-link below.
3462       CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3463       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
3464       assert(_optimized_virtual, "methodHandle call should be a virtual call");
3465       __ relocate(relocInfo::opt_virtual_call_type);
3466     }
3467 
3468     // The real call.
3469     // Note: At this point we do not have the address of the trampoline
3470     // stub, and the entry point might be too far away for bl, so __ pc()
3471     // serves as dummy and the bl will be patched later.
3472     cbuf.set_insts_mark();
3473     __ bl(__ pc());  // Emits a relocation.
3474 
3475     assert(_method, "execute next statement conditionally");
3476     // The stub for call to interpreter.
3477     address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
3478     if (stub == NULL) {
3479       ciEnv::current()->record_failure("CodeCache is full");
3480       return;
3481     }
3482 
3483     // Restore original sp.
3484     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
3485     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
3486     unsigned int bytes = (unsigned int)framesize;
3487     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
3488     if (Assembler::is_simm(-offset, 16)) {
3489       __ addi(R1_SP, R11_scratch1, -offset);
3490     } else {
3491       __ load_const_optimized(R12_scratch2, -offset);
3492       __ add(R1_SP, R11_scratch1, R12_scratch2);
3493     }
3494 #ifdef ASSERT
3495   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
3496   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
3497   __ asm_assert_eq("backlink changed", 0x8000);
3498 #endif
3499     // If fails should store backlink before unextending.
3500 
3501     if (ra_->C->env()->failing()) {
3502       return;
3503     }
3504   %}
3505 
3506   // Second node of expanded dynamic call - the call.
3507   enc_class enc_java_dynamic_call_sched(method meth) %{
3508     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3509 
3510     MacroAssembler _masm(&cbuf);
3511 
3512     if (!ra_->C->in_scratch_emit_size()) {
3513       // Create a call trampoline stub for the given method.
3514       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
3515       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
3516       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
3517       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
3518       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
3519 
3520       // Build relocation at call site with ic position as data.
3521       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
3522              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
3523              "must have one, but can't have both");
3524       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
3525              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
3526              "must contain instruction offset");
3527       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
3528         ? _load_ic_hi_node->_cbuf_insts_offset
3529         : _load_ic_node->_cbuf_insts_offset;
3530       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
3531       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
3532              "should be load from TOC");
3533 
3534       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
3535     }
3536 
3537     // At this point I do not have the address of the trampoline stub,
3538     // and the entry point might be too far away for bl. Pc() serves
3539     // as dummy and bl will be patched later.
3540     __ bl((address) __ pc());
3541   %}
3542 
3543   // postalloc expand emitter for virtual calls.
3544   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
3545 
3546     // Create the nodes for loading the IC from the TOC.
3547     loadConLNodesTuple loadConLNodes_IC =
3548       loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong)Universe::non_oop_word()),
3549                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
3550 
3551     // Create the call node.
3552     CallDynamicJavaDirectSchedNode *call = new CallDynamicJavaDirectSchedNode();
3553     call->_method_handle_invoke = _method_handle_invoke;
3554     call->_vtable_index      = _vtable_index;
3555     call->_method            = _method;
3556     call->_bci               = _bci;
3557     call->_optimized_virtual = _optimized_virtual;
3558     call->_tf                = _tf;
3559     call->_entry_point       = _entry_point;
3560     call->_cnt               = _cnt;
3561     call->_argsize           = _argsize;
3562     call->_oop_map           = _oop_map;
3563     call->_jvms              = _jvms;
3564     call->_jvmadj            = _jvmadj;
3565     call->_in_rms            = _in_rms;
3566     call->_nesting           = _nesting;
3567 
3568     // New call needs all inputs of old call.
3569     // Req...
3570     for (uint i = 0; i < req(); ++i) {
3571       // The expanded node does not need toc any more.
3572       // Add the inline cache constant here instead. This expresses the
3573       // register of the inline cache must be live at the call.
3574       // Else we would have to adapt JVMState by -1.
3575       if (i == mach_constant_base_node_input()) {
3576         call->add_req(loadConLNodes_IC._last);
3577       } else {
3578         call->add_req(in(i));
3579       }
3580     }
3581     // ...as well as prec
3582     for (uint i = req(); i < len(); ++i) {
3583       call->add_prec(in(i));
3584     }
3585 
3586     // Remember nodes loading the inline cache into r19.
3587     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
3588     call->_load_ic_node    = loadConLNodes_IC._small;
3589 
3590     // Operands for new nodes.
3591     call->_opnds[0] = _opnds[0];
3592     call->_opnds[1] = _opnds[1];
3593 
3594     // Only the inline cache is associated with a register.
3595     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
3596 
3597     // Push new nodes.
3598     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
3599     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
3600     nodes->push(call);
3601   %}
3602 
3603   // Compound version of call dynamic
3604   // Toc is only passed so that it can be used in ins_encode statement.
3605   // In the code we have to use $constanttablebase.
3606   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
3607     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3608     MacroAssembler _masm(&cbuf);
3609     int start_offset = __ offset();
3610 
3611     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
3612 #if 0
3613     int vtable_index = this->_vtable_index;
3614     if (_vtable_index < 0) {
3615       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
3616       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
3617       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
3618 
3619       // Virtual call relocation will point to ic load.
3620       address virtual_call_meta_addr = __ pc();
3621       // Load a clear inline cache.
3622       AddressLiteral empty_ic((address) Universe::non_oop_word());
3623       __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc);
3624       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
3625       // to determine who we intended to call.
3626       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
3627       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
3628       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3629              "Fix constant in ret_addr_offset()");
3630     } else {
3631       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
3632       // Go thru the vtable. Get receiver klass. Receiver already
3633       // checked for non-null. If we'll go thru a C2I adapter, the
3634       // interpreter expects method in R19_method.
3635 
3636       __ load_klass(R11_scratch1, R3);
3637 
3638       int entry_offset = in_bytes(InstanceKlass::vtable_start_offset()) + _vtable_index * vtableEntry::size_in_bytes();
3639       int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
3640       __ li(R19_method, v_off);
3641       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
3642       // NOTE: for vtable dispatches, the vtable entry will never be
3643       // null. However it may very well end up in handle_wrong_method
3644       // if the method is abstract for the particular class.
3645       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
3646       // Call target. Either compiled code or C2I adapter.
3647       __ mtctr(R11_scratch1);
3648       __ bctrl();
3649       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
3650         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
3651       }
3652       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3653              "Fix constant in ret_addr_offset()");
3654     }
3655 #endif
3656     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
3657   %}
3658 
3659   // a runtime call
3660   enc_class enc_java_to_runtime_call (method meth) %{
3661     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3662 
3663     MacroAssembler _masm(&cbuf);
3664     const address start_pc = __ pc();
3665 
3666 #if defined(ABI_ELFv2)
3667     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
3668     __ call_c(entry, relocInfo::runtime_call_type);
3669 #else
3670     // The function we're going to call.
3671     FunctionDescriptor fdtemp;
3672     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
3673 
3674     Register Rtoc = R12_scratch2;
3675     // Calculate the method's TOC.
3676     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
3677     // Put entry, env, toc into the constant pool, this needs up to 3 constant
3678     // pool entries; call_c_using_toc will optimize the call.
3679     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
3680 #endif
3681 
3682     // Check the ret_addr_offset.
3683     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
3684            "Fix constant in ret_addr_offset()");
3685   %}
3686 
3687   // Move to ctr for leaf call.
3688   // This enc_class is needed so that scheduler gets proper
3689   // input mapping for latency computation.
3690   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
3691     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
3692     MacroAssembler _masm(&cbuf);
3693     __ mtctr($src$$Register);
3694   %}
3695 
3696   // Postalloc expand emitter for runtime leaf calls.
3697   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
3698     loadConLNodesTuple loadConLNodes_Entry;
3699 #if defined(ABI_ELFv2)
3700     jlong entry_address = (jlong) this->entry_point();
3701     assert(entry_address, "need address here");
3702     loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
3703                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3704 #else
3705     // Get the struct that describes the function we are about to call.
3706     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
3707     assert(fd, "need fd here");
3708     jlong entry_address = (jlong) fd->entry();
3709     // new nodes
3710     loadConLNodesTuple loadConLNodes_Env;
3711     loadConLNodesTuple loadConLNodes_Toc;
3712 
3713     // Create nodes and operands for loading the entry point.
3714     loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
3715                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3716 
3717 
3718     // Create nodes and operands for loading the env pointer.
3719     if (fd->env() != NULL) {
3720       loadConLNodes_Env = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->env()),
3721                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3722     } else {
3723       loadConLNodes_Env._large_hi = NULL;
3724       loadConLNodes_Env._large_lo = NULL;
3725       loadConLNodes_Env._small    = NULL;
3726       loadConLNodes_Env._last = new loadConL16Node();
3727       loadConLNodes_Env._last->_opnds[0] = new iRegLdstOper();
3728       loadConLNodes_Env._last->_opnds[1] = new immL16Oper(0);
3729       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3730     }
3731 
3732     // Create nodes and operands for loading the Toc point.
3733     loadConLNodes_Toc = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->toc()),
3734                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
3735 #endif // ABI_ELFv2
3736     // mtctr node
3737     MachNode *mtctr = new CallLeafDirect_mtctrNode();
3738 
3739     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
3740     mtctr->add_req(0, loadConLNodes_Entry._last);
3741 
3742     mtctr->_opnds[0] = new iRegLdstOper();
3743     mtctr->_opnds[1] = new iRegLdstOper();
3744 
3745     // call node
3746     MachCallLeafNode *call = new CallLeafDirectNode();
3747 
3748     call->_opnds[0] = _opnds[0];
3749     call->_opnds[1] = new methodOper((intptr_t) entry_address); // May get set later.
3750 
3751     // Make the new call node look like the old one.
3752     call->_name        = _name;
3753     call->_tf          = _tf;
3754     call->_entry_point = _entry_point;
3755     call->_cnt         = _cnt;
3756     call->_argsize     = _argsize;
3757     call->_oop_map     = _oop_map;
3758     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
3759     call->_jvms        = NULL;
3760     call->_jvmadj      = _jvmadj;
3761     call->_in_rms      = _in_rms;
3762     call->_nesting     = _nesting;
3763 
3764 
3765     // New call needs all inputs of old call.
3766     // Req...
3767     for (uint i = 0; i < req(); ++i) {
3768       if (i != mach_constant_base_node_input()) {
3769         call->add_req(in(i));
3770       }
3771     }
3772 
3773     // These must be reqired edges, as the registers are live up to
3774     // the call. Else the constants are handled as kills.
3775     call->add_req(mtctr);
3776 #if !defined(ABI_ELFv2)
3777     call->add_req(loadConLNodes_Env._last);
3778     call->add_req(loadConLNodes_Toc._last);
3779 #endif
3780 
3781     // ...as well as prec
3782     for (uint i = req(); i < len(); ++i) {
3783       call->add_prec(in(i));
3784     }
3785 
3786     // registers
3787     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
3788 
3789     // Insert the new nodes.
3790     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
3791     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
3792 #if !defined(ABI_ELFv2)
3793     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
3794     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
3795     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
3796     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
3797 #endif
3798     nodes->push(mtctr);
3799     nodes->push(call);
3800   %}
3801 %}
3802 
3803 //----------FRAME--------------------------------------------------------------
3804 // Definition of frame structure and management information.
3805 
3806 frame %{
3807   // What direction does stack grow in (assumed to be same for native & Java).
3808   stack_direction(TOWARDS_LOW);
3809 
3810   // These two registers define part of the calling convention between
3811   // compiled code and the interpreter.
3812 
3813   // Inline Cache Register or method for I2C.
3814   inline_cache_reg(R19); // R19_method
3815 
3816   // Method Oop Register when calling interpreter.
3817   interpreter_method_oop_reg(R19); // R19_method
3818 
3819   // Optional: name the operand used by cisc-spilling to access
3820   // [stack_pointer + offset].
3821   cisc_spilling_operand_name(indOffset);
3822 
3823   // Number of stack slots consumed by a Monitor enter.
3824   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
3825 
3826   // Compiled code's Frame Pointer.
3827   frame_pointer(R1); // R1_SP
3828 
3829   // Interpreter stores its frame pointer in a register which is
3830   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
3831   // interpreted java to compiled java.
3832   //
3833   // R14_state holds pointer to caller's cInterpreter.
3834   interpreter_frame_pointer(R14); // R14_state
3835 
3836   stack_alignment(frame::alignment_in_bytes);
3837 
3838   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
3839 
3840   // Number of outgoing stack slots killed above the
3841   // out_preserve_stack_slots for calls to C. Supports the var-args
3842   // backing area for register parms.
3843   //
3844   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
3845 
3846   // The after-PROLOG location of the return address. Location of
3847   // return address specifies a type (REG or STACK) and a number
3848   // representing the register number (i.e. - use a register name) or
3849   // stack slot.
3850   //
3851   // A: Link register is stored in stack slot ...
3852   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
3853   // J: Therefore, we make sure that the link register is also in R11_scratch1
3854   //    at the end of the prolog.
3855   // B: We use R20, now.
3856   //return_addr(REG R20);
3857 
3858   // G: After reading the comments made by all the luminaries on their
3859   //    failure to tell the compiler where the return address really is,
3860   //    I hardly dare to try myself.  However, I'm convinced it's in slot
3861   //    4 what apparently works and saves us some spills.
3862   return_addr(STACK 4);
3863 
3864   // This is the body of the function
3865   //
3866   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
3867   //                                  uint length,      // length of array
3868   //                                  bool is_outgoing)
3869   //
3870   // The `sig' array is to be updated. sig[j] represents the location
3871   // of the j-th argument, either a register or a stack slot.
3872 
3873   // Comment taken from i486.ad:
3874   // Body of function which returns an integer array locating
3875   // arguments either in registers or in stack slots. Passed an array
3876   // of ideal registers called "sig" and a "length" count. Stack-slot
3877   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3878   // arguments for a CALLEE. Incoming stack arguments are
3879   // automatically biased by the preserve_stack_slots field above.
3880   calling_convention %{
3881     // No difference between ingoing/outgoing. Just pass false.
3882     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3883   %}
3884 
3885   // Comment taken from i486.ad:
3886   // Body of function which returns an integer array locating
3887   // arguments either in registers or in stack slots. Passed an array
3888   // of ideal registers called "sig" and a "length" count. Stack-slot
3889   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3890   // arguments for a CALLEE. Incoming stack arguments are
3891   // automatically biased by the preserve_stack_slots field above.
3892   c_calling_convention %{
3893     // This is obviously always outgoing.
3894     // C argument in register AND stack slot.
3895     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3896   %}
3897 
3898   // Location of native (C/C++) and interpreter return values. This
3899   // is specified to be the same as Java. In the 32-bit VM, long
3900   // values are actually returned from native calls in O0:O1 and
3901   // returned to the interpreter in I0:I1. The copying to and from
3902   // the register pairs is done by the appropriate call and epilog
3903   // opcodes. This simplifies the register allocator.
3904   c_return_value %{
3905     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3906             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3907             "only return normal values");
3908     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3909     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3910     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3911     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3912   %}
3913 
3914   // Location of compiled Java return values.  Same as C
3915   return_value %{
3916     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3917             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3918             "only return normal values");
3919     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3920     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3921     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3922     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3923   %}
3924 %}
3925 
3926 
3927 //----------ATTRIBUTES---------------------------------------------------------
3928 
3929 //----------Operand Attributes-------------------------------------------------
3930 op_attrib op_cost(1);          // Required cost attribute.
3931 
3932 //----------Instruction Attributes---------------------------------------------
3933 
3934 // Cost attribute. required.
3935 ins_attrib ins_cost(DEFAULT_COST);
3936 
3937 // Is this instruction a non-matching short branch variant of some
3938 // long branch? Not required.
3939 ins_attrib ins_short_branch(0);
3940 
3941 ins_attrib ins_is_TrapBasedCheckNode(true);
3942 
3943 // Number of constants.
3944 // This instruction uses the given number of constants
3945 // (optional attribute).
3946 // This is needed to determine in time whether the constant pool will
3947 // exceed 4000 entries. Before postalloc_expand the overall number of constants
3948 // is determined. It's also used to compute the constant pool size
3949 // in Output().
3950 ins_attrib ins_num_consts(0);
3951 
3952 // Required alignment attribute (must be a power of 2) specifies the
3953 // alignment that some part of the instruction (not necessarily the
3954 // start) requires. If > 1, a compute_padding() function must be
3955 // provided for the instruction.
3956 ins_attrib ins_alignment(1);
3957 
3958 // Enforce/prohibit rematerializations.
3959 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
3960 //   then rematerialization of that instruction is prohibited and the
3961 //   instruction's value will be spilled if necessary.
3962 //   Causes that MachNode::rematerialize() returns false.
3963 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
3964 //   then rematerialization should be enforced and a copy of the instruction
3965 //   should be inserted if possible; rematerialization is not guaranteed.
3966 //   Note: this may result in rematerializations in front of every use.
3967 //   Causes that MachNode::rematerialize() can return true.
3968 // (optional attribute)
3969 ins_attrib ins_cannot_rematerialize(false);
3970 ins_attrib ins_should_rematerialize(false);
3971 
3972 // Instruction has variable size depending on alignment.
3973 ins_attrib ins_variable_size_depending_on_alignment(false);
3974 
3975 // Instruction is a nop.
3976 ins_attrib ins_is_nop(false);
3977 
3978 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
3979 ins_attrib ins_use_mach_if_fast_lock_node(false);
3980 
3981 // Field for the toc offset of a constant.
3982 //
3983 // This is needed if the toc offset is not encodable as an immediate in
3984 // the PPC load instruction. If so, the upper (hi) bits of the offset are
3985 // added to the toc, and from this a load with immediate is performed.
3986 // With postalloc expand, we get two nodes that require the same offset
3987 // but which don't know about each other. The offset is only known
3988 // when the constant is added to the constant pool during emitting.
3989 // It is generated in the 'hi'-node adding the upper bits, and saved
3990 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
3991 // the offset from there when it gets encoded.
3992 ins_attrib ins_field_const_toc_offset(0);
3993 ins_attrib ins_field_const_toc_offset_hi_node(0);
3994 
3995 // A field that can hold the instructions offset in the code buffer.
3996 // Set in the nodes emitter.
3997 ins_attrib ins_field_cbuf_insts_offset(-1);
3998 
3999 // Fields for referencing a call's load-IC-node.
4000 // If the toc offset can not be encoded as an immediate in a load, we
4001 // use two nodes.
4002 ins_attrib ins_field_load_ic_hi_node(0);
4003 ins_attrib ins_field_load_ic_node(0);
4004 
4005 //----------OPERANDS-----------------------------------------------------------
4006 // Operand definitions must precede instruction definitions for correct
4007 // parsing in the ADLC because operands constitute user defined types
4008 // which are used in instruction definitions.
4009 //
4010 // Formats are generated automatically for constants and base registers.
4011 
4012 //----------Simple Operands----------------------------------------------------
4013 // Immediate Operands
4014 
4015 // Integer Immediate: 32-bit
4016 operand immI() %{
4017   match(ConI);
4018   op_cost(40);
4019   format %{ %}
4020   interface(CONST_INTER);
4021 %}
4022 
4023 operand immI8() %{
4024   predicate(Assembler::is_simm(n->get_int(), 8));
4025   op_cost(0);
4026   match(ConI);
4027   format %{ %}
4028   interface(CONST_INTER);
4029 %}
4030 
4031 // Integer Immediate: 16-bit
4032 operand immI16() %{
4033   predicate(Assembler::is_simm(n->get_int(), 16));
4034   op_cost(0);
4035   match(ConI);
4036   format %{ %}
4037   interface(CONST_INTER);
4038 %}
4039 
4040 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
4041 operand immIhi16() %{
4042   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
4043   match(ConI);
4044   op_cost(0);
4045   format %{ %}
4046   interface(CONST_INTER);
4047 %}
4048 
4049 operand immInegpow2() %{
4050   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
4051   match(ConI);
4052   op_cost(0);
4053   format %{ %}
4054   interface(CONST_INTER);
4055 %}
4056 
4057 operand immIpow2minus1() %{
4058   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
4059   match(ConI);
4060   op_cost(0);
4061   format %{ %}
4062   interface(CONST_INTER);
4063 %}
4064 
4065 operand immIpowerOf2() %{
4066   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
4067   match(ConI);
4068   op_cost(0);
4069   format %{ %}
4070   interface(CONST_INTER);
4071 %}
4072 
4073 // Unsigned Integer Immediate: the values 0-31
4074 operand uimmI5() %{
4075   predicate(Assembler::is_uimm(n->get_int(), 5));
4076   match(ConI);
4077   op_cost(0);
4078   format %{ %}
4079   interface(CONST_INTER);
4080 %}
4081 
4082 // Unsigned Integer Immediate: 6-bit
4083 operand uimmI6() %{
4084   predicate(Assembler::is_uimm(n->get_int(), 6));
4085   match(ConI);
4086   op_cost(0);
4087   format %{ %}
4088   interface(CONST_INTER);
4089 %}
4090 
4091 // Unsigned Integer Immediate:  6-bit int, greater than 32
4092 operand uimmI6_ge32() %{
4093   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
4094   match(ConI);
4095   op_cost(0);
4096   format %{ %}
4097   interface(CONST_INTER);
4098 %}
4099 
4100 // Unsigned Integer Immediate: 15-bit
4101 operand uimmI15() %{
4102   predicate(Assembler::is_uimm(n->get_int(), 15));
4103   match(ConI);
4104   op_cost(0);
4105   format %{ %}
4106   interface(CONST_INTER);
4107 %}
4108 
4109 // Unsigned Integer Immediate: 16-bit
4110 operand uimmI16() %{
4111   predicate(Assembler::is_uimm(n->get_int(), 16));
4112   match(ConI);
4113   op_cost(0);
4114   format %{ %}
4115   interface(CONST_INTER);
4116 %}
4117 
4118 // constant 'int 0'.
4119 operand immI_0() %{
4120   predicate(n->get_int() == 0);
4121   match(ConI);
4122   op_cost(0);
4123   format %{ %}
4124   interface(CONST_INTER);
4125 %}
4126 
4127 // constant 'int 1'.
4128 operand immI_1() %{
4129   predicate(n->get_int() == 1);
4130   match(ConI);
4131   op_cost(0);
4132   format %{ %}
4133   interface(CONST_INTER);
4134 %}
4135 
4136 // constant 'int -1'.
4137 operand immI_minus1() %{
4138   predicate(n->get_int() == -1);
4139   match(ConI);
4140   op_cost(0);
4141   format %{ %}
4142   interface(CONST_INTER);
4143 %}
4144 
4145 // int value 16.
4146 operand immI_16() %{
4147   predicate(n->get_int() == 16);
4148   match(ConI);
4149   op_cost(0);
4150   format %{ %}
4151   interface(CONST_INTER);
4152 %}
4153 
4154 // int value 24.
4155 operand immI_24() %{
4156   predicate(n->get_int() == 24);
4157   match(ConI);
4158   op_cost(0);
4159   format %{ %}
4160   interface(CONST_INTER);
4161 %}
4162 
4163 // Compressed oops constants
4164 // Pointer Immediate
4165 operand immN() %{
4166   match(ConN);
4167 
4168   op_cost(10);
4169   format %{ %}
4170   interface(CONST_INTER);
4171 %}
4172 
4173 // NULL Pointer Immediate
4174 operand immN_0() %{
4175   predicate(n->get_narrowcon() == 0);
4176   match(ConN);
4177 
4178   op_cost(0);
4179   format %{ %}
4180   interface(CONST_INTER);
4181 %}
4182 
4183 // Compressed klass constants
4184 operand immNKlass() %{
4185   match(ConNKlass);
4186 
4187   op_cost(0);
4188   format %{ %}
4189   interface(CONST_INTER);
4190 %}
4191 
4192 // This operand can be used to avoid matching of an instruct
4193 // with chain rule.
4194 operand immNKlass_NM() %{
4195   match(ConNKlass);
4196   predicate(false);
4197   op_cost(0);
4198   format %{ %}
4199   interface(CONST_INTER);
4200 %}
4201 
4202 // Pointer Immediate: 64-bit
4203 operand immP() %{
4204   match(ConP);
4205   op_cost(0);
4206   format %{ %}
4207   interface(CONST_INTER);
4208 %}
4209 
4210 // Operand to avoid match of loadConP.
4211 // This operand can be used to avoid matching of an instruct
4212 // with chain rule.
4213 operand immP_NM() %{
4214   match(ConP);
4215   predicate(false);
4216   op_cost(0);
4217   format %{ %}
4218   interface(CONST_INTER);
4219 %}
4220 
4221 // costant 'pointer 0'.
4222 operand immP_0() %{
4223   predicate(n->get_ptr() == 0);
4224   match(ConP);
4225   op_cost(0);
4226   format %{ %}
4227   interface(CONST_INTER);
4228 %}
4229 
4230 // pointer 0x0 or 0x1
4231 operand immP_0or1() %{
4232   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
4233   match(ConP);
4234   op_cost(0);
4235   format %{ %}
4236   interface(CONST_INTER);
4237 %}
4238 
4239 operand immL() %{
4240   match(ConL);
4241   op_cost(40);
4242   format %{ %}
4243   interface(CONST_INTER);
4244 %}
4245 
4246 // Long Immediate: 16-bit
4247 operand immL16() %{
4248   predicate(Assembler::is_simm(n->get_long(), 16));
4249   match(ConL);
4250   op_cost(0);
4251   format %{ %}
4252   interface(CONST_INTER);
4253 %}
4254 
4255 // Long Immediate: 16-bit, 4-aligned
4256 operand immL16Alg4() %{
4257   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
4258   match(ConL);
4259   op_cost(0);
4260   format %{ %}
4261   interface(CONST_INTER);
4262 %}
4263 
4264 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
4265 operand immL32hi16() %{
4266   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
4267   match(ConL);
4268   op_cost(0);
4269   format %{ %}
4270   interface(CONST_INTER);
4271 %}
4272 
4273 // Long Immediate: 32-bit
4274 operand immL32() %{
4275   predicate(Assembler::is_simm(n->get_long(), 32));
4276   match(ConL);
4277   op_cost(0);
4278   format %{ %}
4279   interface(CONST_INTER);
4280 %}
4281 
4282 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
4283 operand immLhighest16() %{
4284   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
4285   match(ConL);
4286   op_cost(0);
4287   format %{ %}
4288   interface(CONST_INTER);
4289 %}
4290 
4291 operand immLnegpow2() %{
4292   predicate(is_power_of_2_long((jlong)-(n->get_long())));
4293   match(ConL);
4294   op_cost(0);
4295   format %{ %}
4296   interface(CONST_INTER);
4297 %}
4298 
4299 operand immLpow2minus1() %{
4300   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
4301             (n->get_long() != (jlong)0xffffffffffffffffL));
4302   match(ConL);
4303   op_cost(0);
4304   format %{ %}
4305   interface(CONST_INTER);
4306 %}
4307 
4308 // constant 'long 0'.
4309 operand immL_0() %{
4310   predicate(n->get_long() == 0L);
4311   match(ConL);
4312   op_cost(0);
4313   format %{ %}
4314   interface(CONST_INTER);
4315 %}
4316 
4317 // constat ' long -1'.
4318 operand immL_minus1() %{
4319   predicate(n->get_long() == -1L);
4320   match(ConL);
4321   op_cost(0);
4322   format %{ %}
4323   interface(CONST_INTER);
4324 %}
4325 
4326 // Long Immediate: low 32-bit mask
4327 operand immL_32bits() %{
4328   predicate(n->get_long() == 0xFFFFFFFFL);
4329   match(ConL);
4330   op_cost(0);
4331   format %{ %}
4332   interface(CONST_INTER);
4333 %}
4334 
4335 // Unsigned Long Immediate: 16-bit
4336 operand uimmL16() %{
4337   predicate(Assembler::is_uimm(n->get_long(), 16));
4338   match(ConL);
4339   op_cost(0);
4340   format %{ %}
4341   interface(CONST_INTER);
4342 %}
4343 
4344 // Float Immediate
4345 operand immF() %{
4346   match(ConF);
4347   op_cost(40);
4348   format %{ %}
4349   interface(CONST_INTER);
4350 %}
4351 
4352 // Float Immediate: +0.0f.
4353 operand immF_0() %{
4354   predicate(jint_cast(n->getf()) == 0);
4355   match(ConF);
4356 
4357   op_cost(0);
4358   format %{ %}
4359   interface(CONST_INTER);
4360 %}
4361 
4362 // Double Immediate
4363 operand immD() %{
4364   match(ConD);
4365   op_cost(40);
4366   format %{ %}
4367   interface(CONST_INTER);
4368 %}
4369 
4370 // Integer Register Operands
4371 // Integer Destination Register
4372 // See definition of reg_class bits32_reg_rw.
4373 operand iRegIdst() %{
4374   constraint(ALLOC_IN_RC(bits32_reg_rw));
4375   match(RegI);
4376   match(rscratch1RegI);
4377   match(rscratch2RegI);
4378   match(rarg1RegI);
4379   match(rarg2RegI);
4380   match(rarg3RegI);
4381   match(rarg4RegI);
4382   format %{ %}
4383   interface(REG_INTER);
4384 %}
4385 
4386 // Integer Source Register
4387 // See definition of reg_class bits32_reg_ro.
4388 operand iRegIsrc() %{
4389   constraint(ALLOC_IN_RC(bits32_reg_ro));
4390   match(RegI);
4391   match(rscratch1RegI);
4392   match(rscratch2RegI);
4393   match(rarg1RegI);
4394   match(rarg2RegI);
4395   match(rarg3RegI);
4396   match(rarg4RegI);
4397   format %{ %}
4398   interface(REG_INTER);
4399 %}
4400 
4401 operand rscratch1RegI() %{
4402   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
4403   match(iRegIdst);
4404   format %{ %}
4405   interface(REG_INTER);
4406 %}
4407 
4408 operand rscratch2RegI() %{
4409   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
4410   match(iRegIdst);
4411   format %{ %}
4412   interface(REG_INTER);
4413 %}
4414 
4415 operand rarg1RegI() %{
4416   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
4417   match(iRegIdst);
4418   format %{ %}
4419   interface(REG_INTER);
4420 %}
4421 
4422 operand rarg2RegI() %{
4423   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
4424   match(iRegIdst);
4425   format %{ %}
4426   interface(REG_INTER);
4427 %}
4428 
4429 operand rarg3RegI() %{
4430   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
4431   match(iRegIdst);
4432   format %{ %}
4433   interface(REG_INTER);
4434 %}
4435 
4436 operand rarg4RegI() %{
4437   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
4438   match(iRegIdst);
4439   format %{ %}
4440   interface(REG_INTER);
4441 %}
4442 
4443 operand rarg1RegL() %{
4444   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4445   match(iRegLdst);
4446   format %{ %}
4447   interface(REG_INTER);
4448 %}
4449 
4450 operand rarg2RegL() %{
4451   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4452   match(iRegLdst);
4453   format %{ %}
4454   interface(REG_INTER);
4455 %}
4456 
4457 operand rarg3RegL() %{
4458   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4459   match(iRegLdst);
4460   format %{ %}
4461   interface(REG_INTER);
4462 %}
4463 
4464 operand rarg4RegL() %{
4465   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4466   match(iRegLdst);
4467   format %{ %}
4468   interface(REG_INTER);
4469 %}
4470 
4471 // Pointer Destination Register
4472 // See definition of reg_class bits64_reg_rw.
4473 operand iRegPdst() %{
4474   constraint(ALLOC_IN_RC(bits64_reg_rw));
4475   match(RegP);
4476   match(rscratch1RegP);
4477   match(rscratch2RegP);
4478   match(rarg1RegP);
4479   match(rarg2RegP);
4480   match(rarg3RegP);
4481   match(rarg4RegP);
4482   format %{ %}
4483   interface(REG_INTER);
4484 %}
4485 
4486 // Pointer Destination Register
4487 // Operand not using r11 and r12 (killed in epilog).
4488 operand iRegPdstNoScratch() %{
4489   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
4490   match(RegP);
4491   match(rarg1RegP);
4492   match(rarg2RegP);
4493   match(rarg3RegP);
4494   match(rarg4RegP);
4495   format %{ %}
4496   interface(REG_INTER);
4497 %}
4498 
4499 // Pointer Source Register
4500 // See definition of reg_class bits64_reg_ro.
4501 operand iRegPsrc() %{
4502   constraint(ALLOC_IN_RC(bits64_reg_ro));
4503   match(RegP);
4504   match(iRegPdst);
4505   match(rscratch1RegP);
4506   match(rscratch2RegP);
4507   match(rarg1RegP);
4508   match(rarg2RegP);
4509   match(rarg3RegP);
4510   match(rarg4RegP);
4511   match(threadRegP);
4512   format %{ %}
4513   interface(REG_INTER);
4514 %}
4515 
4516 // Thread operand.
4517 operand threadRegP() %{
4518   constraint(ALLOC_IN_RC(thread_bits64_reg));
4519   match(iRegPdst);
4520   format %{ "R16" %}
4521   interface(REG_INTER);
4522 %}
4523 
4524 operand rscratch1RegP() %{
4525   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4526   match(iRegPdst);
4527   format %{ "R11" %}
4528   interface(REG_INTER);
4529 %}
4530 
4531 operand rscratch2RegP() %{
4532   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4533   match(iRegPdst);
4534   format %{ %}
4535   interface(REG_INTER);
4536 %}
4537 
4538 operand rarg1RegP() %{
4539   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4540   match(iRegPdst);
4541   format %{ %}
4542   interface(REG_INTER);
4543 %}
4544 
4545 operand rarg2RegP() %{
4546   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4547   match(iRegPdst);
4548   format %{ %}
4549   interface(REG_INTER);
4550 %}
4551 
4552 operand rarg3RegP() %{
4553   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4554   match(iRegPdst);
4555   format %{ %}
4556   interface(REG_INTER);
4557 %}
4558 
4559 operand rarg4RegP() %{
4560   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4561   match(iRegPdst);
4562   format %{ %}
4563   interface(REG_INTER);
4564 %}
4565 
4566 operand iRegNsrc() %{
4567   constraint(ALLOC_IN_RC(bits32_reg_ro));
4568   match(RegN);
4569   match(iRegNdst);
4570 
4571   format %{ %}
4572   interface(REG_INTER);
4573 %}
4574 
4575 operand iRegNdst() %{
4576   constraint(ALLOC_IN_RC(bits32_reg_rw));
4577   match(RegN);
4578 
4579   format %{ %}
4580   interface(REG_INTER);
4581 %}
4582 
4583 // Long Destination Register
4584 // See definition of reg_class bits64_reg_rw.
4585 operand iRegLdst() %{
4586   constraint(ALLOC_IN_RC(bits64_reg_rw));
4587   match(RegL);
4588   match(rscratch1RegL);
4589   match(rscratch2RegL);
4590   format %{ %}
4591   interface(REG_INTER);
4592 %}
4593 
4594 // Long Source Register
4595 // See definition of reg_class bits64_reg_ro.
4596 operand iRegLsrc() %{
4597   constraint(ALLOC_IN_RC(bits64_reg_ro));
4598   match(RegL);
4599   match(iRegLdst);
4600   match(rscratch1RegL);
4601   match(rscratch2RegL);
4602   format %{ %}
4603   interface(REG_INTER);
4604 %}
4605 
4606 // Special operand for ConvL2I.
4607 operand iRegL2Isrc(iRegLsrc reg) %{
4608   constraint(ALLOC_IN_RC(bits64_reg_ro));
4609   match(ConvL2I reg);
4610   format %{ "ConvL2I($reg)" %}
4611   interface(REG_INTER)
4612 %}
4613 
4614 operand rscratch1RegL() %{
4615   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4616   match(RegL);
4617   format %{ %}
4618   interface(REG_INTER);
4619 %}
4620 
4621 operand rscratch2RegL() %{
4622   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4623   match(RegL);
4624   format %{ %}
4625   interface(REG_INTER);
4626 %}
4627 
4628 // Condition Code Flag Registers
4629 operand flagsReg() %{
4630   constraint(ALLOC_IN_RC(int_flags));
4631   match(RegFlags);
4632   format %{ %}
4633   interface(REG_INTER);
4634 %}
4635 
4636 operand flagsRegSrc() %{
4637   constraint(ALLOC_IN_RC(int_flags_ro));
4638   match(RegFlags);
4639   match(flagsReg);
4640   match(flagsRegCR0);
4641   format %{ %}
4642   interface(REG_INTER);
4643 %}
4644 
4645 // Condition Code Flag Register CR0
4646 operand flagsRegCR0() %{
4647   constraint(ALLOC_IN_RC(int_flags_CR0));
4648   match(RegFlags);
4649   format %{ "CR0" %}
4650   interface(REG_INTER);
4651 %}
4652 
4653 operand flagsRegCR1() %{
4654   constraint(ALLOC_IN_RC(int_flags_CR1));
4655   match(RegFlags);
4656   format %{ "CR1" %}
4657   interface(REG_INTER);
4658 %}
4659 
4660 operand flagsRegCR6() %{
4661   constraint(ALLOC_IN_RC(int_flags_CR6));
4662   match(RegFlags);
4663   format %{ "CR6" %}
4664   interface(REG_INTER);
4665 %}
4666 
4667 operand regCTR() %{
4668   constraint(ALLOC_IN_RC(ctr_reg));
4669   // RegFlags should work. Introducing a RegSpecial type would cause a
4670   // lot of changes.
4671   match(RegFlags);
4672   format %{"SR_CTR" %}
4673   interface(REG_INTER);
4674 %}
4675 
4676 operand regD() %{
4677   constraint(ALLOC_IN_RC(dbl_reg));
4678   match(RegD);
4679   format %{ %}
4680   interface(REG_INTER);
4681 %}
4682 
4683 operand regF() %{
4684   constraint(ALLOC_IN_RC(flt_reg));
4685   match(RegF);
4686   format %{ %}
4687   interface(REG_INTER);
4688 %}
4689 
4690 // Special Registers
4691 
4692 // Method Register
4693 operand inline_cache_regP(iRegPdst reg) %{
4694   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
4695   match(reg);
4696   format %{ %}
4697   interface(REG_INTER);
4698 %}
4699 
4700 operand compiler_method_oop_regP(iRegPdst reg) %{
4701   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
4702   match(reg);
4703   format %{ %}
4704   interface(REG_INTER);
4705 %}
4706 
4707 operand interpreter_method_oop_regP(iRegPdst reg) %{
4708   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
4709   match(reg);
4710   format %{ %}
4711   interface(REG_INTER);
4712 %}
4713 
4714 // Operands to remove register moves in unscaled mode.
4715 // Match read/write registers with an EncodeP node if neither shift nor add are required.
4716 operand iRegP2N(iRegPsrc reg) %{
4717   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
4718   constraint(ALLOC_IN_RC(bits64_reg_ro));
4719   match(EncodeP reg);
4720   format %{ "$reg" %}
4721   interface(REG_INTER)
4722 %}
4723 
4724 operand iRegN2P(iRegNsrc reg) %{
4725   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4726   constraint(ALLOC_IN_RC(bits32_reg_ro));
4727   match(DecodeN reg);
4728   format %{ "$reg" %}
4729   interface(REG_INTER)
4730 %}
4731 
4732 operand iRegN2P_klass(iRegNsrc reg) %{
4733   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
4734   constraint(ALLOC_IN_RC(bits32_reg_ro));
4735   match(DecodeNKlass reg);
4736   format %{ "$reg" %}
4737   interface(REG_INTER)
4738 %}
4739 
4740 //----------Complex Operands---------------------------------------------------
4741 // Indirect Memory Reference
4742 operand indirect(iRegPsrc reg) %{
4743   constraint(ALLOC_IN_RC(bits64_reg_ro));
4744   match(reg);
4745   op_cost(100);
4746   format %{ "[$reg]" %}
4747   interface(MEMORY_INTER) %{
4748     base($reg);
4749     index(0x0);
4750     scale(0x0);
4751     disp(0x0);
4752   %}
4753 %}
4754 
4755 // Indirect with Offset
4756 operand indOffset16(iRegPsrc reg, immL16 offset) %{
4757   constraint(ALLOC_IN_RC(bits64_reg_ro));
4758   match(AddP reg offset);
4759   op_cost(100);
4760   format %{ "[$reg + $offset]" %}
4761   interface(MEMORY_INTER) %{
4762     base($reg);
4763     index(0x0);
4764     scale(0x0);
4765     disp($offset);
4766   %}
4767 %}
4768 
4769 // Indirect with 4-aligned Offset
4770 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
4771   constraint(ALLOC_IN_RC(bits64_reg_ro));
4772   match(AddP reg offset);
4773   op_cost(100);
4774   format %{ "[$reg + $offset]" %}
4775   interface(MEMORY_INTER) %{
4776     base($reg);
4777     index(0x0);
4778     scale(0x0);
4779     disp($offset);
4780   %}
4781 %}
4782 
4783 //----------Complex Operands for Compressed OOPs-------------------------------
4784 // Compressed OOPs with narrow_oop_shift == 0.
4785 
4786 // Indirect Memory Reference, compressed OOP
4787 operand indirectNarrow(iRegNsrc reg) %{
4788   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4789   constraint(ALLOC_IN_RC(bits64_reg_ro));
4790   match(DecodeN reg);
4791   op_cost(100);
4792   format %{ "[$reg]" %}
4793   interface(MEMORY_INTER) %{
4794     base($reg);
4795     index(0x0);
4796     scale(0x0);
4797     disp(0x0);
4798   %}
4799 %}
4800 
4801 operand indirectNarrow_klass(iRegNsrc reg) %{
4802   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
4803   constraint(ALLOC_IN_RC(bits64_reg_ro));
4804   match(DecodeNKlass reg);
4805   op_cost(100);
4806   format %{ "[$reg]" %}
4807   interface(MEMORY_INTER) %{
4808     base($reg);
4809     index(0x0);
4810     scale(0x0);
4811     disp(0x0);
4812   %}
4813 %}
4814 
4815 // Indirect with Offset, compressed OOP
4816 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
4817   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4818   constraint(ALLOC_IN_RC(bits64_reg_ro));
4819   match(AddP (DecodeN reg) offset);
4820   op_cost(100);
4821   format %{ "[$reg + $offset]" %}
4822   interface(MEMORY_INTER) %{
4823     base($reg);
4824     index(0x0);
4825     scale(0x0);
4826     disp($offset);
4827   %}
4828 %}
4829 
4830 operand indOffset16Narrow_klass(iRegNsrc reg, immL16 offset) %{
4831   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
4832   constraint(ALLOC_IN_RC(bits64_reg_ro));
4833   match(AddP (DecodeNKlass reg) offset);
4834   op_cost(100);
4835   format %{ "[$reg + $offset]" %}
4836   interface(MEMORY_INTER) %{
4837     base($reg);
4838     index(0x0);
4839     scale(0x0);
4840     disp($offset);
4841   %}
4842 %}
4843 
4844 // Indirect with 4-aligned Offset, compressed OOP
4845 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
4846   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4847   constraint(ALLOC_IN_RC(bits64_reg_ro));
4848   match(AddP (DecodeN reg) offset);
4849   op_cost(100);
4850   format %{ "[$reg + $offset]" %}
4851   interface(MEMORY_INTER) %{
4852     base($reg);
4853     index(0x0);
4854     scale(0x0);
4855     disp($offset);
4856   %}
4857 %}
4858 
4859 operand indOffset16NarrowAlg4_klass(iRegNsrc reg, immL16Alg4 offset) %{
4860   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
4861   constraint(ALLOC_IN_RC(bits64_reg_ro));
4862   match(AddP (DecodeNKlass reg) offset);
4863   op_cost(100);
4864   format %{ "[$reg + $offset]" %}
4865   interface(MEMORY_INTER) %{
4866     base($reg);
4867     index(0x0);
4868     scale(0x0);
4869     disp($offset);
4870   %}
4871 %}
4872 
4873 //----------Special Memory Operands--------------------------------------------
4874 // Stack Slot Operand
4875 //
4876 // This operand is used for loading and storing temporary values on
4877 // the stack where a match requires a value to flow through memory.
4878 operand stackSlotI(sRegI reg) %{
4879   constraint(ALLOC_IN_RC(stack_slots));
4880   op_cost(100);
4881   //match(RegI);
4882   format %{ "[sp+$reg]" %}
4883   interface(MEMORY_INTER) %{
4884     base(0x1);   // R1_SP
4885     index(0x0);
4886     scale(0x0);
4887     disp($reg);  // Stack Offset
4888   %}
4889 %}
4890 
4891 operand stackSlotL(sRegL reg) %{
4892   constraint(ALLOC_IN_RC(stack_slots));
4893   op_cost(100);
4894   //match(RegL);
4895   format %{ "[sp+$reg]" %}
4896   interface(MEMORY_INTER) %{
4897     base(0x1);   // R1_SP
4898     index(0x0);
4899     scale(0x0);
4900     disp($reg);  // Stack Offset
4901   %}
4902 %}
4903 
4904 operand stackSlotP(sRegP reg) %{
4905   constraint(ALLOC_IN_RC(stack_slots));
4906   op_cost(100);
4907   //match(RegP);
4908   format %{ "[sp+$reg]" %}
4909   interface(MEMORY_INTER) %{
4910     base(0x1);   // R1_SP
4911     index(0x0);
4912     scale(0x0);
4913     disp($reg);  // Stack Offset
4914   %}
4915 %}
4916 
4917 operand stackSlotF(sRegF reg) %{
4918   constraint(ALLOC_IN_RC(stack_slots));
4919   op_cost(100);
4920   //match(RegF);
4921   format %{ "[sp+$reg]" %}
4922   interface(MEMORY_INTER) %{
4923     base(0x1);   // R1_SP
4924     index(0x0);
4925     scale(0x0);
4926     disp($reg);  // Stack Offset
4927   %}
4928 %}
4929 
4930 operand stackSlotD(sRegD reg) %{
4931   constraint(ALLOC_IN_RC(stack_slots));
4932   op_cost(100);
4933   //match(RegD);
4934   format %{ "[sp+$reg]" %}
4935   interface(MEMORY_INTER) %{
4936     base(0x1);   // R1_SP
4937     index(0x0);
4938     scale(0x0);
4939     disp($reg);  // Stack Offset
4940   %}
4941 %}
4942 
4943 // Operands for expressing Control Flow
4944 // NOTE: Label is a predefined operand which should not be redefined in
4945 //       the AD file. It is generically handled within the ADLC.
4946 
4947 //----------Conditional Branch Operands----------------------------------------
4948 // Comparison Op
4949 //
4950 // This is the operation of the comparison, and is limited to the
4951 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
4952 // (!=).
4953 //
4954 // Other attributes of the comparison, such as unsignedness, are specified
4955 // by the comparison instruction that sets a condition code flags register.
4956 // That result is represented by a flags operand whose subtype is appropriate
4957 // to the unsignedness (etc.) of the comparison.
4958 //
4959 // Later, the instruction which matches both the Comparison Op (a Bool) and
4960 // the flags (produced by the Cmp) specifies the coding of the comparison op
4961 // by matching a specific subtype of Bool operand below.
4962 
4963 // When used for floating point comparisons: unordered same as less.
4964 operand cmpOp() %{
4965   match(Bool);
4966   format %{ "" %}
4967   interface(COND_INTER) %{
4968                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
4969                            //           BO          &  BI
4970     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
4971     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
4972     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
4973     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
4974     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
4975     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
4976     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
4977     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
4978   %}
4979 %}
4980 
4981 //----------OPERAND CLASSES----------------------------------------------------
4982 // Operand Classes are groups of operands that are used to simplify
4983 // instruction definitions by not requiring the AD writer to specify
4984 // seperate instructions for every form of operand when the
4985 // instruction accepts multiple operand types with the same basic
4986 // encoding and format. The classic case of this is memory operands.
4987 // Indirect is not included since its use is limited to Compare & Swap.
4988 
4989 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indirectNarrow_klass, indOffset16Narrow, indOffset16Narrow_klass);
4990 // Memory operand where offsets are 4-aligned. Required for ld, std.
4991 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4, indOffset16NarrowAlg4_klass);
4992 opclass indirectMemory(indirect, indirectNarrow);
4993 
4994 // Special opclass for I and ConvL2I.
4995 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
4996 
4997 // Operand classes to match encode and decode. iRegN_P2N is only used
4998 // for storeN. I have never seen an encode node elsewhere.
4999 opclass iRegN_P2N(iRegNsrc, iRegP2N);
5000 opclass iRegP_N2P(iRegPsrc, iRegN2P, iRegN2P_klass);
5001 
5002 //----------PIPELINE-----------------------------------------------------------
5003 
5004 pipeline %{
5005 
5006 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
5007 // J. Res. & Dev., No. 1, Jan. 2002.
5008 
5009 //----------ATTRIBUTES---------------------------------------------------------
5010 attributes %{
5011 
5012   // Power4 instructions are of fixed length.
5013   fixed_size_instructions;
5014 
5015   // TODO: if `bundle' means number of instructions fetched
5016   // per cycle, this is 8. If `bundle' means Power4 `group', that is
5017   // max instructions issued per cycle, this is 5.
5018   max_instructions_per_bundle = 8;
5019 
5020   // A Power4 instruction is 4 bytes long.
5021   instruction_unit_size = 4;
5022 
5023   // The Power4 processor fetches 64 bytes...
5024   instruction_fetch_unit_size = 64;
5025 
5026   // ...in one line
5027   instruction_fetch_units = 1
5028 
5029   // Unused, list one so that array generated by adlc is not empty.
5030   // Aix compiler chokes if _nop_count = 0.
5031   nops(fxNop);
5032 %}
5033 
5034 //----------RESOURCES----------------------------------------------------------
5035 // Resources are the functional units available to the machine
5036 resources(
5037    PPC_BR,         // branch unit
5038    PPC_CR,         // condition unit
5039    PPC_FX1,        // integer arithmetic unit 1
5040    PPC_FX2,        // integer arithmetic unit 2
5041    PPC_LDST1,      // load/store unit 1
5042    PPC_LDST2,      // load/store unit 2
5043    PPC_FP1,        // float arithmetic unit 1
5044    PPC_FP2,        // float arithmetic unit 2
5045    PPC_LDST = PPC_LDST1 | PPC_LDST2,
5046    PPC_FX = PPC_FX1 | PPC_FX2,
5047    PPC_FP = PPC_FP1 | PPC_FP2
5048  );
5049 
5050 //----------PIPELINE DESCRIPTION-----------------------------------------------
5051 // Pipeline Description specifies the stages in the machine's pipeline
5052 pipe_desc(
5053    // Power4 longest pipeline path
5054    PPC_IF,   // instruction fetch
5055    PPC_IC,
5056    //PPC_BP, // branch prediction
5057    PPC_D0,   // decode
5058    PPC_D1,   // decode
5059    PPC_D2,   // decode
5060    PPC_D3,   // decode
5061    PPC_Xfer1,
5062    PPC_GD,   // group definition
5063    PPC_MP,   // map
5064    PPC_ISS,  // issue
5065    PPC_RF,   // resource fetch
5066    PPC_EX1,  // execute (all units)
5067    PPC_EX2,  // execute (FP, LDST)
5068    PPC_EX3,  // execute (FP, LDST)
5069    PPC_EX4,  // execute (FP)
5070    PPC_EX5,  // execute (FP)
5071    PPC_EX6,  // execute (FP)
5072    PPC_WB,   // write back
5073    PPC_Xfer2,
5074    PPC_CP
5075  );
5076 
5077 //----------PIPELINE CLASSES---------------------------------------------------
5078 // Pipeline Classes describe the stages in which input and output are
5079 // referenced by the hardware pipeline.
5080 
5081 // Simple pipeline classes.
5082 
5083 // Default pipeline class.
5084 pipe_class pipe_class_default() %{
5085   single_instruction;
5086   fixed_latency(2);
5087 %}
5088 
5089 // Pipeline class for empty instructions.
5090 pipe_class pipe_class_empty() %{
5091   single_instruction;
5092   fixed_latency(0);
5093 %}
5094 
5095 // Pipeline class for compares.
5096 pipe_class pipe_class_compare() %{
5097   single_instruction;
5098   fixed_latency(16);
5099 %}
5100 
5101 // Pipeline class for traps.
5102 pipe_class pipe_class_trap() %{
5103   single_instruction;
5104   fixed_latency(100);
5105 %}
5106 
5107 // Pipeline class for memory operations.
5108 pipe_class pipe_class_memory() %{
5109   single_instruction;
5110   fixed_latency(16);
5111 %}
5112 
5113 // Pipeline class for call.
5114 pipe_class pipe_class_call() %{
5115   single_instruction;
5116   fixed_latency(100);
5117 %}
5118 
5119 // Define the class for the Nop node.
5120 define %{
5121    MachNop = pipe_class_default;
5122 %}
5123 
5124 %}
5125 
5126 //----------INSTRUCTIONS-------------------------------------------------------
5127 
5128 // Naming of instructions:
5129 //   opA_operB / opA_operB_operC:
5130 //     Operation 'op' with one or two source operands 'oper'. Result
5131 //     type is A, source operand types are B and C.
5132 //     Iff A == B == C, B and C are left out.
5133 //
5134 // The instructions are ordered according to the following scheme:
5135 //  - loads
5136 //  - load constants
5137 //  - prefetch
5138 //  - store
5139 //  - encode/decode
5140 //  - membar
5141 //  - conditional moves
5142 //  - compare & swap
5143 //  - arithmetic and logic operations
5144 //    * int: Add, Sub, Mul, Div, Mod
5145 //    * int: lShift, arShift, urShift, rot
5146 //    * float: Add, Sub, Mul, Div
5147 //    * and, or, xor ...
5148 //  - register moves: float <-> int, reg <-> stack, repl
5149 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
5150 //  - conv (low level type cast requiring bit changes (sign extend etc)
5151 //  - compares, range & zero checks.
5152 //  - branches
5153 //  - complex operations, intrinsics, min, max, replicate
5154 //  - lock
5155 //  - Calls
5156 //
5157 // If there are similar instructions with different types they are sorted:
5158 // int before float
5159 // small before big
5160 // signed before unsigned
5161 // e.g., loadS before loadUS before loadI before loadF.
5162 
5163 
5164 //----------Load/Store Instructions--------------------------------------------
5165 
5166 //----------Load Instructions--------------------------------------------------
5167 
5168 // Converts byte to int.
5169 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
5170 // reuses the 'amount' operand, but adlc expects that operand specification
5171 // and operands in match rule are equivalent.
5172 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
5173   effect(DEF dst, USE src);
5174   format %{ "EXTSB   $dst, $src \t// byte->int" %}
5175   size(4);
5176   ins_encode %{
5177     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
5178     __ extsb($dst$$Register, $src$$Register);
5179   %}
5180   ins_pipe(pipe_class_default);
5181 %}
5182 
5183 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
5184   // match-rule, false predicate
5185   match(Set dst (LoadB mem));
5186   predicate(false);
5187 
5188   format %{ "LBZ     $dst, $mem" %}
5189   size(4);
5190   ins_encode( enc_lbz(dst, mem) );
5191   ins_pipe(pipe_class_memory);
5192 %}
5193 
5194 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
5195   // match-rule, false predicate
5196   match(Set dst (LoadB mem));
5197   predicate(false);
5198 
5199   format %{ "LBZ     $dst, $mem\n\t"
5200             "TWI     $dst\n\t"
5201             "ISYNC" %}
5202   size(12);
5203   ins_encode( enc_lbz_ac(dst, mem) );
5204   ins_pipe(pipe_class_memory);
5205 %}
5206 
5207 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5208 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
5209   match(Set dst (LoadB mem));
5210   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5211   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5212   expand %{
5213     iRegIdst tmp;
5214     loadUB_indirect(tmp, mem);
5215     convB2I_reg_2(dst, tmp);
5216   %}
5217 %}
5218 
5219 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
5220   match(Set dst (LoadB mem));
5221   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5222   expand %{
5223     iRegIdst tmp;
5224     loadUB_indirect_ac(tmp, mem);
5225     convB2I_reg_2(dst, tmp);
5226   %}
5227 %}
5228 
5229 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
5230   // match-rule, false predicate
5231   match(Set dst (LoadB mem));
5232   predicate(false);
5233 
5234   format %{ "LBZ     $dst, $mem" %}
5235   size(4);
5236   ins_encode( enc_lbz(dst, mem) );
5237   ins_pipe(pipe_class_memory);
5238 %}
5239 
5240 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
5241   // match-rule, false predicate
5242   match(Set dst (LoadB mem));
5243   predicate(false);
5244 
5245   format %{ "LBZ     $dst, $mem\n\t"
5246             "TWI     $dst\n\t"
5247             "ISYNC" %}
5248   size(12);
5249   ins_encode( enc_lbz_ac(dst, mem) );
5250   ins_pipe(pipe_class_memory);
5251 %}
5252 
5253 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5254 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
5255   match(Set dst (LoadB mem));
5256   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5257   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5258 
5259   expand %{
5260     iRegIdst tmp;
5261     loadUB_indOffset16(tmp, mem);
5262     convB2I_reg_2(dst, tmp);
5263   %}
5264 %}
5265 
5266 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
5267   match(Set dst (LoadB mem));
5268   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5269 
5270   expand %{
5271     iRegIdst tmp;
5272     loadUB_indOffset16_ac(tmp, mem);
5273     convB2I_reg_2(dst, tmp);
5274   %}
5275 %}
5276 
5277 // Load Unsigned Byte (8bit UNsigned) into an int reg.
5278 instruct loadUB(iRegIdst dst, memory mem) %{
5279   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5280   match(Set dst (LoadUB mem));
5281   ins_cost(MEMORY_REF_COST);
5282 
5283   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
5284   size(4);
5285   ins_encode( enc_lbz(dst, mem) );
5286   ins_pipe(pipe_class_memory);
5287 %}
5288 
5289 // Load  Unsigned Byte (8bit UNsigned) acquire.
5290 instruct loadUB_ac(iRegIdst dst, memory mem) %{
5291   match(Set dst (LoadUB mem));
5292   ins_cost(3*MEMORY_REF_COST);
5293 
5294   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
5295             "TWI     $dst\n\t"
5296             "ISYNC" %}
5297   size(12);
5298   ins_encode( enc_lbz_ac(dst, mem) );
5299   ins_pipe(pipe_class_memory);
5300 %}
5301 
5302 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
5303 instruct loadUB2L(iRegLdst dst, memory mem) %{
5304   match(Set dst (ConvI2L (LoadUB mem)));
5305   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5306   ins_cost(MEMORY_REF_COST);
5307 
5308   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
5309   size(4);
5310   ins_encode( enc_lbz(dst, mem) );
5311   ins_pipe(pipe_class_memory);
5312 %}
5313 
5314 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
5315   match(Set dst (ConvI2L (LoadUB mem)));
5316   ins_cost(3*MEMORY_REF_COST);
5317 
5318   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
5319             "TWI     $dst\n\t"
5320             "ISYNC" %}
5321   size(12);
5322   ins_encode( enc_lbz_ac(dst, mem) );
5323   ins_pipe(pipe_class_memory);
5324 %}
5325 
5326 // Load Short (16bit signed)
5327 instruct loadS(iRegIdst dst, memory mem) %{
5328   match(Set dst (LoadS mem));
5329   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5330   ins_cost(MEMORY_REF_COST);
5331 
5332   format %{ "LHA     $dst, $mem" %}
5333   size(4);
5334   ins_encode %{
5335     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
5336     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5337     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5338   %}
5339   ins_pipe(pipe_class_memory);
5340 %}
5341 
5342 // Load Short (16bit signed) acquire.
5343 instruct loadS_ac(iRegIdst dst, memory mem) %{
5344   match(Set dst (LoadS mem));
5345   ins_cost(3*MEMORY_REF_COST);
5346 
5347   format %{ "LHA     $dst, $mem\t acquire\n\t"
5348             "TWI     $dst\n\t"
5349             "ISYNC" %}
5350   size(12);
5351   ins_encode %{
5352     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5353     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5354     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5355     __ twi_0($dst$$Register);
5356     __ isync();
5357   %}
5358   ins_pipe(pipe_class_memory);
5359 %}
5360 
5361 // Load Char (16bit unsigned)
5362 instruct loadUS(iRegIdst dst, memory mem) %{
5363   match(Set dst (LoadUS mem));
5364   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5365   ins_cost(MEMORY_REF_COST);
5366 
5367   format %{ "LHZ     $dst, $mem" %}
5368   size(4);
5369   ins_encode( enc_lhz(dst, mem) );
5370   ins_pipe(pipe_class_memory);
5371 %}
5372 
5373 // Load Char (16bit unsigned) acquire.
5374 instruct loadUS_ac(iRegIdst dst, memory mem) %{
5375   match(Set dst (LoadUS mem));
5376   ins_cost(3*MEMORY_REF_COST);
5377 
5378   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
5379             "TWI     $dst\n\t"
5380             "ISYNC" %}
5381   size(12);
5382   ins_encode( enc_lhz_ac(dst, mem) );
5383   ins_pipe(pipe_class_memory);
5384 %}
5385 
5386 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
5387 instruct loadUS2L(iRegLdst dst, memory mem) %{
5388   match(Set dst (ConvI2L (LoadUS mem)));
5389   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5390   ins_cost(MEMORY_REF_COST);
5391 
5392   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
5393   size(4);
5394   ins_encode( enc_lhz(dst, mem) );
5395   ins_pipe(pipe_class_memory);
5396 %}
5397 
5398 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
5399 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
5400   match(Set dst (ConvI2L (LoadUS mem)));
5401   ins_cost(3*MEMORY_REF_COST);
5402 
5403   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
5404             "TWI     $dst\n\t"
5405             "ISYNC" %}
5406   size(12);
5407   ins_encode( enc_lhz_ac(dst, mem) );
5408   ins_pipe(pipe_class_memory);
5409 %}
5410 
5411 // Load Integer.
5412 instruct loadI(iRegIdst dst, memory mem) %{
5413   match(Set dst (LoadI mem));
5414   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5415   ins_cost(MEMORY_REF_COST);
5416 
5417   format %{ "LWZ     $dst, $mem" %}
5418   size(4);
5419   ins_encode( enc_lwz(dst, mem) );
5420   ins_pipe(pipe_class_memory);
5421 %}
5422 
5423 // Load Integer acquire.
5424 instruct loadI_ac(iRegIdst dst, memory mem) %{
5425   match(Set dst (LoadI mem));
5426   ins_cost(3*MEMORY_REF_COST);
5427 
5428   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
5429             "TWI     $dst\n\t"
5430             "ISYNC" %}
5431   size(12);
5432   ins_encode( enc_lwz_ac(dst, mem) );
5433   ins_pipe(pipe_class_memory);
5434 %}
5435 
5436 // Match loading integer and casting it to unsigned int in
5437 // long register.
5438 // LoadI + ConvI2L + AndL 0xffffffff.
5439 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
5440   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5441   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
5442   ins_cost(MEMORY_REF_COST);
5443 
5444   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
5445   size(4);
5446   ins_encode( enc_lwz(dst, mem) );
5447   ins_pipe(pipe_class_memory);
5448 %}
5449 
5450 // Match loading integer and casting it to long.
5451 instruct loadI2L(iRegLdst dst, memory mem) %{
5452   match(Set dst (ConvI2L (LoadI mem)));
5453   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5454   ins_cost(MEMORY_REF_COST);
5455 
5456   format %{ "LWA     $dst, $mem \t// loadI2L" %}
5457   size(4);
5458   ins_encode %{
5459     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5460     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5461     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5462   %}
5463   ins_pipe(pipe_class_memory);
5464 %}
5465 
5466 // Match loading integer and casting it to long - acquire.
5467 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
5468   match(Set dst (ConvI2L (LoadI mem)));
5469   ins_cost(3*MEMORY_REF_COST);
5470 
5471   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
5472             "TWI     $dst\n\t"
5473             "ISYNC" %}
5474   size(12);
5475   ins_encode %{
5476     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5477     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5478     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5479     __ twi_0($dst$$Register);
5480     __ isync();
5481   %}
5482   ins_pipe(pipe_class_memory);
5483 %}
5484 
5485 // Load Long - aligned
5486 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
5487   match(Set dst (LoadL mem));
5488   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5489   ins_cost(MEMORY_REF_COST);
5490 
5491   format %{ "LD      $dst, $mem \t// long" %}
5492   size(4);
5493   ins_encode( enc_ld(dst, mem) );
5494   ins_pipe(pipe_class_memory);
5495 %}
5496 
5497 // Load Long - aligned acquire.
5498 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
5499   match(Set dst (LoadL mem));
5500   ins_cost(3*MEMORY_REF_COST);
5501 
5502   format %{ "LD      $dst, $mem \t// long acquire\n\t"
5503             "TWI     $dst\n\t"
5504             "ISYNC" %}
5505   size(12);
5506   ins_encode( enc_ld_ac(dst, mem) );
5507   ins_pipe(pipe_class_memory);
5508 %}
5509 
5510 // Load Long - UNaligned
5511 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
5512   match(Set dst (LoadL_unaligned mem));
5513   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5514   ins_cost(MEMORY_REF_COST);
5515 
5516   format %{ "LD      $dst, $mem \t// unaligned long" %}
5517   size(4);
5518   ins_encode( enc_ld(dst, mem) );
5519   ins_pipe(pipe_class_memory);
5520 %}
5521 
5522 // Load nodes for superwords
5523 
5524 // Load Aligned Packed Byte
5525 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
5526   predicate(n->as_LoadVector()->memory_size() == 8);
5527   match(Set dst (LoadVector mem));
5528   ins_cost(MEMORY_REF_COST);
5529 
5530   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
5531   size(4);
5532   ins_encode( enc_ld(dst, mem) );
5533   ins_pipe(pipe_class_memory);
5534 %}
5535 
5536 // Load Range, range = array length (=jint)
5537 instruct loadRange(iRegIdst dst, memory mem) %{
5538   match(Set dst (LoadRange mem));
5539   ins_cost(MEMORY_REF_COST);
5540 
5541   format %{ "LWZ     $dst, $mem \t// range" %}
5542   size(4);
5543   ins_encode( enc_lwz(dst, mem) );
5544   ins_pipe(pipe_class_memory);
5545 %}
5546 
5547 // Load Compressed Pointer
5548 instruct loadN(iRegNdst dst, memory mem) %{
5549   match(Set dst (LoadN mem));
5550   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5551   ins_cost(MEMORY_REF_COST);
5552 
5553   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
5554   size(4);
5555   ins_encode( enc_lwz(dst, mem) );
5556   ins_pipe(pipe_class_memory);
5557 %}
5558 
5559 // Load Compressed Pointer acquire.
5560 instruct loadN_ac(iRegNdst dst, memory mem) %{
5561   match(Set dst (LoadN mem));
5562   ins_cost(3*MEMORY_REF_COST);
5563 
5564   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
5565             "TWI     $dst\n\t"
5566             "ISYNC" %}
5567   size(12);
5568   ins_encode( enc_lwz_ac(dst, mem) );
5569   ins_pipe(pipe_class_memory);
5570 %}
5571 
5572 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
5573 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
5574   match(Set dst (DecodeN (LoadN mem)));
5575   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
5576   ins_cost(MEMORY_REF_COST);
5577 
5578   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
5579   size(4);
5580   ins_encode( enc_lwz(dst, mem) );
5581   ins_pipe(pipe_class_memory);
5582 %}
5583 
5584 instruct loadN2P_klass_unscaled(iRegPdst dst, memory mem) %{
5585   match(Set dst (DecodeNKlass (LoadNKlass mem)));
5586   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0 &&
5587             _kids[0]->_leaf->as_Load()->is_unordered());
5588   ins_cost(MEMORY_REF_COST);
5589 
5590   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
5591   size(4);
5592   ins_encode( enc_lwz(dst, mem) );
5593   ins_pipe(pipe_class_memory);
5594 %}
5595 
5596 // Load Pointer
5597 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
5598   match(Set dst (LoadP mem));
5599   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5600   ins_cost(MEMORY_REF_COST);
5601 
5602   format %{ "LD      $dst, $mem \t// ptr" %}
5603   size(4);
5604   ins_encode( enc_ld(dst, mem) );
5605   ins_pipe(pipe_class_memory);
5606 %}
5607 
5608 // Load Pointer acquire.
5609 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
5610   match(Set dst (LoadP mem));
5611   ins_cost(3*MEMORY_REF_COST);
5612 
5613   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
5614             "TWI     $dst\n\t"
5615             "ISYNC" %}
5616   size(12);
5617   ins_encode( enc_ld_ac(dst, mem) );
5618   ins_pipe(pipe_class_memory);
5619 %}
5620 
5621 // LoadP + CastP2L
5622 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
5623   match(Set dst (CastP2X (LoadP mem)));
5624   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5625   ins_cost(MEMORY_REF_COST);
5626 
5627   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
5628   size(4);
5629   ins_encode( enc_ld(dst, mem) );
5630   ins_pipe(pipe_class_memory);
5631 %}
5632 
5633 // Load compressed klass pointer.
5634 instruct loadNKlass(iRegNdst dst, memory mem) %{
5635   match(Set dst (LoadNKlass mem));
5636   ins_cost(MEMORY_REF_COST);
5637 
5638   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
5639   size(4);
5640   ins_encode( enc_lwz(dst, mem) );
5641   ins_pipe(pipe_class_memory);
5642 %}
5643 
5644 // Load Klass Pointer
5645 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
5646   match(Set dst (LoadKlass mem));
5647   ins_cost(MEMORY_REF_COST);
5648 
5649   format %{ "LD      $dst, $mem \t// klass ptr" %}
5650   size(4);
5651   ins_encode( enc_ld(dst, mem) );
5652   ins_pipe(pipe_class_memory);
5653 %}
5654 
5655 // Load Float
5656 instruct loadF(regF dst, memory mem) %{
5657   match(Set dst (LoadF mem));
5658   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5659   ins_cost(MEMORY_REF_COST);
5660 
5661   format %{ "LFS     $dst, $mem" %}
5662   size(4);
5663   ins_encode %{
5664     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
5665     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5666     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5667   %}
5668   ins_pipe(pipe_class_memory);
5669 %}
5670 
5671 // Load Float acquire.
5672 instruct loadF_ac(regF dst, memory mem, flagsRegCR0 cr0) %{
5673   match(Set dst (LoadF mem));
5674   effect(TEMP cr0);
5675   ins_cost(3*MEMORY_REF_COST);
5676 
5677   format %{ "LFS     $dst, $mem \t// acquire\n\t"
5678             "FCMPU   cr0, $dst, $dst\n\t"
5679             "BNE     cr0, next\n"
5680             "next:\n\t"
5681             "ISYNC" %}
5682   size(16);
5683   ins_encode %{
5684     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5685     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5686     Label next;
5687     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5688     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5689     __ bne(CCR0, next);
5690     __ bind(next);
5691     __ isync();
5692   %}
5693   ins_pipe(pipe_class_memory);
5694 %}
5695 
5696 // Load Double - aligned
5697 instruct loadD(regD dst, memory mem) %{
5698   match(Set dst (LoadD mem));
5699   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5700   ins_cost(MEMORY_REF_COST);
5701 
5702   format %{ "LFD     $dst, $mem" %}
5703   size(4);
5704   ins_encode( enc_lfd(dst, mem) );
5705   ins_pipe(pipe_class_memory);
5706 %}
5707 
5708 // Load Double - aligned acquire.
5709 instruct loadD_ac(regD dst, memory mem, flagsRegCR0 cr0) %{
5710   match(Set dst (LoadD mem));
5711   effect(TEMP cr0);
5712   ins_cost(3*MEMORY_REF_COST);
5713 
5714   format %{ "LFD     $dst, $mem \t// acquire\n\t"
5715             "FCMPU   cr0, $dst, $dst\n\t"
5716             "BNE     cr0, next\n"
5717             "next:\n\t"
5718             "ISYNC" %}
5719   size(16);
5720   ins_encode %{
5721     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5722     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5723     Label next;
5724     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5725     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5726     __ bne(CCR0, next);
5727     __ bind(next);
5728     __ isync();
5729   %}
5730   ins_pipe(pipe_class_memory);
5731 %}
5732 
5733 // Load Double - UNaligned
5734 instruct loadD_unaligned(regD dst, memory mem) %{
5735   match(Set dst (LoadD_unaligned mem));
5736   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5737   ins_cost(MEMORY_REF_COST);
5738 
5739   format %{ "LFD     $dst, $mem" %}
5740   size(4);
5741   ins_encode( enc_lfd(dst, mem) );
5742   ins_pipe(pipe_class_memory);
5743 %}
5744 
5745 //----------Constants--------------------------------------------------------
5746 
5747 // Load MachConstantTableBase: add hi offset to global toc.
5748 // TODO: Handle hidden register r29 in bundler!
5749 instruct loadToc_hi(iRegLdst dst) %{
5750   effect(DEF dst);
5751   ins_cost(DEFAULT_COST);
5752 
5753   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
5754   size(4);
5755   ins_encode %{
5756     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5757     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
5758   %}
5759   ins_pipe(pipe_class_default);
5760 %}
5761 
5762 // Load MachConstantTableBase: add lo offset to global toc.
5763 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
5764   effect(DEF dst, USE src);
5765   ins_cost(DEFAULT_COST);
5766 
5767   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
5768   size(4);
5769   ins_encode %{
5770     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5771     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
5772   %}
5773   ins_pipe(pipe_class_default);
5774 %}
5775 
5776 // Load 16-bit integer constant 0xssss????
5777 instruct loadConI16(iRegIdst dst, immI16 src) %{
5778   match(Set dst src);
5779 
5780   format %{ "LI      $dst, $src" %}
5781   size(4);
5782   ins_encode %{
5783     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5784     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
5785   %}
5786   ins_pipe(pipe_class_default);
5787 %}
5788 
5789 // Load integer constant 0x????0000
5790 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
5791   match(Set dst src);
5792   ins_cost(DEFAULT_COST);
5793 
5794   format %{ "LIS     $dst, $src.hi" %}
5795   size(4);
5796   ins_encode %{
5797     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5798     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
5799     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5800   %}
5801   ins_pipe(pipe_class_default);
5802 %}
5803 
5804 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
5805 // and sign extended), this adds the low 16 bits.
5806 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
5807   // no match-rule, false predicate
5808   effect(DEF dst, USE src1, USE src2);
5809   predicate(false);
5810 
5811   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
5812   size(4);
5813   ins_encode %{
5814     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5815     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5816   %}
5817   ins_pipe(pipe_class_default);
5818 %}
5819 
5820 instruct loadConI_Ex(iRegIdst dst, immI src) %{
5821   match(Set dst src);
5822   ins_cost(DEFAULT_COST*2);
5823 
5824   expand %{
5825     // Would like to use $src$$constant.
5826     immI16 srcLo %{ _opnds[1]->constant() %}
5827     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5828     immIhi16 srcHi %{ _opnds[1]->constant() %}
5829     iRegIdst tmpI;
5830     loadConIhi16(tmpI, srcHi);
5831     loadConI32_lo16(dst, tmpI, srcLo);
5832   %}
5833 %}
5834 
5835 // No constant pool entries required.
5836 instruct loadConL16(iRegLdst dst, immL16 src) %{
5837   match(Set dst src);
5838 
5839   format %{ "LI      $dst, $src \t// long" %}
5840   size(4);
5841   ins_encode %{
5842     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5843     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
5844   %}
5845   ins_pipe(pipe_class_default);
5846 %}
5847 
5848 // Load long constant 0xssssssss????0000
5849 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
5850   match(Set dst src);
5851   ins_cost(DEFAULT_COST);
5852 
5853   format %{ "LIS     $dst, $src.hi \t// long" %}
5854   size(4);
5855   ins_encode %{
5856     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5857     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5858   %}
5859   ins_pipe(pipe_class_default);
5860 %}
5861 
5862 // To load a 32 bit constant: merge lower 16 bits into already loaded
5863 // high 16 bits.
5864 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
5865   // no match-rule, false predicate
5866   effect(DEF dst, USE src1, USE src2);
5867   predicate(false);
5868 
5869   format %{ "ORI     $dst, $src1, $src2.lo" %}
5870   size(4);
5871   ins_encode %{
5872     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5873     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5874   %}
5875   ins_pipe(pipe_class_default);
5876 %}
5877 
5878 // Load 32-bit long constant
5879 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
5880   match(Set dst src);
5881   ins_cost(DEFAULT_COST*2);
5882 
5883   expand %{
5884     // Would like to use $src$$constant.
5885     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
5886     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5887     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
5888     iRegLdst tmpL;
5889     loadConL32hi16(tmpL, srcHi);
5890     loadConL32_lo16(dst, tmpL, srcLo);
5891   %}
5892 %}
5893 
5894 // Load long constant 0x????000000000000.
5895 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
5896   match(Set dst src);
5897   ins_cost(DEFAULT_COST);
5898 
5899   expand %{
5900     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
5901     immI shift32 %{ 32 %}
5902     iRegLdst tmpL;
5903     loadConL32hi16(tmpL, srcHi);
5904     lshiftL_regL_immI(dst, tmpL, shift32);
5905   %}
5906 %}
5907 
5908 // Expand node for constant pool load: small offset.
5909 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
5910   effect(DEF dst, USE src, USE toc);
5911   ins_cost(MEMORY_REF_COST);
5912 
5913   ins_num_consts(1);
5914   // Needed so that CallDynamicJavaDirect can compute the address of this
5915   // instruction for relocation.
5916   ins_field_cbuf_insts_offset(int);
5917 
5918   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
5919   size(4);
5920   ins_encode( enc_load_long_constL(dst, src, toc) );
5921   ins_pipe(pipe_class_memory);
5922 %}
5923 
5924 // Expand node for constant pool load: large offset.
5925 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
5926   effect(DEF dst, USE src, USE toc);
5927   predicate(false);
5928 
5929   ins_num_consts(1);
5930   ins_field_const_toc_offset(int);
5931   // Needed so that CallDynamicJavaDirect can compute the address of this
5932   // instruction for relocation.
5933   ins_field_cbuf_insts_offset(int);
5934 
5935   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
5936   size(4);
5937   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
5938   ins_pipe(pipe_class_default);
5939 %}
5940 
5941 // Expand node for constant pool load: large offset.
5942 // No constant pool entries required.
5943 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
5944   effect(DEF dst, USE src, USE base);
5945   predicate(false);
5946 
5947   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
5948 
5949   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
5950   size(4);
5951   ins_encode %{
5952     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
5953     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
5954     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
5955   %}
5956   ins_pipe(pipe_class_memory);
5957 %}
5958 
5959 // Load long constant from constant table. Expand in case of
5960 // offset > 16 bit is needed.
5961 // Adlc adds toc node MachConstantTableBase.
5962 instruct loadConL_Ex(iRegLdst dst, immL src) %{
5963   match(Set dst src);
5964   ins_cost(MEMORY_REF_COST);
5965 
5966   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
5967   // We can not inline the enc_class for the expand as that does not support constanttablebase.
5968   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
5969 %}
5970 
5971 // Load NULL as compressed oop.
5972 instruct loadConN0(iRegNdst dst, immN_0 src) %{
5973   match(Set dst src);
5974   ins_cost(DEFAULT_COST);
5975 
5976   format %{ "LI      $dst, $src \t// compressed ptr" %}
5977   size(4);
5978   ins_encode %{
5979     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5980     __ li($dst$$Register, 0);
5981   %}
5982   ins_pipe(pipe_class_default);
5983 %}
5984 
5985 // Load hi part of compressed oop constant.
5986 instruct loadConN_hi(iRegNdst dst, immN src) %{
5987   effect(DEF dst, USE src);
5988   ins_cost(DEFAULT_COST);
5989 
5990   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
5991   size(4);
5992   ins_encode %{
5993     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5994     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
5995   %}
5996   ins_pipe(pipe_class_default);
5997 %}
5998 
5999 // Add lo part of compressed oop constant to already loaded hi part.
6000 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
6001   effect(DEF dst, USE src1, USE src2);
6002   ins_cost(DEFAULT_COST);
6003 
6004   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
6005   size(4);
6006   ins_encode %{
6007     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6008     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6009     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
6010     RelocationHolder rspec = oop_Relocation::spec(oop_index);
6011     __ relocate(rspec, 1);
6012     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
6013   %}
6014   ins_pipe(pipe_class_default);
6015 %}
6016 
6017 // Needed to postalloc expand loadConN: ConN is loaded as ConI
6018 // leaving the upper 32 bits with sign-extension bits.
6019 // This clears these bits: dst = src & 0xFFFFFFFF.
6020 // TODO: Eventually call this maskN_regN_FFFFFFFF.
6021 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
6022   effect(DEF dst, USE src);
6023   predicate(false);
6024 
6025   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
6026   size(4);
6027   ins_encode %{
6028     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6029     __ clrldi($dst$$Register, $src$$Register, 0x20);
6030   %}
6031   ins_pipe(pipe_class_default);
6032 %}
6033 
6034 // Optimize DecodeN for disjoint base.
6035 // Load base of compressed oops into a register
6036 instruct loadBase(iRegLdst dst) %{
6037   effect(DEF dst);
6038 
6039   format %{ "LoadConst $dst, heapbase" %}
6040   ins_encode %{
6041     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6042     __ load_const_optimized($dst$$Register, Universe::narrow_oop_base(), R0);
6043   %}
6044   ins_pipe(pipe_class_default);
6045 %}
6046 
6047 // Loading ConN must be postalloc expanded so that edges between
6048 // the nodes are safe. They may not interfere with a safepoint.
6049 // GL TODO: This needs three instructions: better put this into the constant pool.
6050 instruct loadConN_Ex(iRegNdst dst, immN src) %{
6051   match(Set dst src);
6052   ins_cost(DEFAULT_COST*2);
6053 
6054   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6055   postalloc_expand %{
6056     MachNode *m1 = new loadConN_hiNode();
6057     MachNode *m2 = new loadConN_loNode();
6058     MachNode *m3 = new clearMs32bNode();
6059     m1->add_req(NULL);
6060     m2->add_req(NULL, m1);
6061     m3->add_req(NULL, m2);
6062     m1->_opnds[0] = op_dst;
6063     m1->_opnds[1] = op_src;
6064     m2->_opnds[0] = op_dst;
6065     m2->_opnds[1] = op_dst;
6066     m2->_opnds[2] = op_src;
6067     m3->_opnds[0] = op_dst;
6068     m3->_opnds[1] = op_dst;
6069     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6070     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6071     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6072     nodes->push(m1);
6073     nodes->push(m2);
6074     nodes->push(m3);
6075   %}
6076 %}
6077 
6078 // We have seen a safepoint between the hi and lo parts, and this node was handled
6079 // as an oop. Therefore this needs a match rule so that build_oop_map knows this is
6080 // not a narrow oop.
6081 instruct loadConNKlass_hi(iRegNdst dst, immNKlass_NM src) %{
6082   match(Set dst src);
6083   effect(DEF dst, USE src);
6084   ins_cost(DEFAULT_COST);
6085 
6086   format %{ "LIS     $dst, $src \t// narrow klass hi" %}
6087   size(4);
6088   ins_encode %{
6089     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
6090     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
6091     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
6092   %}
6093   ins_pipe(pipe_class_default);
6094 %}
6095 
6096 // As loadConNKlass_hi this must be recognized as narrow klass, not oop!
6097 instruct loadConNKlass_mask(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6098   match(Set dst src1);
6099   effect(TEMP src2);
6100   ins_cost(DEFAULT_COST);
6101 
6102   format %{ "MASK    $dst, $src2, 0xFFFFFFFF" %} // mask
6103   size(4);
6104   ins_encode %{
6105     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6106     __ clrldi($dst$$Register, $src2$$Register, 0x20);
6107   %}
6108   ins_pipe(pipe_class_default);
6109 %}
6110 
6111 // This needs a match rule so that build_oop_map knows this is
6112 // not a narrow oop.
6113 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6114   match(Set dst src1);
6115   effect(TEMP src2);
6116   ins_cost(DEFAULT_COST);
6117 
6118   format %{ "ORI     $dst, $src1, $src2 \t// narrow klass lo" %}
6119   size(4);
6120   ins_encode %{
6121     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
6122     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
6123     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6124     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
6125     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6126 
6127     __ relocate(rspec, 1);
6128     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
6129   %}
6130   ins_pipe(pipe_class_default);
6131 %}
6132 
6133 // Loading ConNKlass must be postalloc expanded so that edges between
6134 // the nodes are safe. They may not interfere with a safepoint.
6135 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
6136   match(Set dst src);
6137   ins_cost(DEFAULT_COST*2);
6138 
6139   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6140   postalloc_expand %{
6141     // Load high bits into register. Sign extended.
6142     MachNode *m1 = new loadConNKlass_hiNode();
6143     m1->add_req(NULL);
6144     m1->_opnds[0] = op_dst;
6145     m1->_opnds[1] = op_src;
6146     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6147     nodes->push(m1);
6148 
6149     MachNode *m2 = m1;
6150     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
6151       // Value might be 1-extended. Mask out these bits.
6152       m2 = new loadConNKlass_maskNode();
6153       m2->add_req(NULL, m1);
6154       m2->_opnds[0] = op_dst;
6155       m2->_opnds[1] = op_src;
6156       m2->_opnds[2] = op_dst;
6157       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6158       nodes->push(m2);
6159     }
6160 
6161     MachNode *m3 = new loadConNKlass_loNode();
6162     m3->add_req(NULL, m2);
6163     m3->_opnds[0] = op_dst;
6164     m3->_opnds[1] = op_src;
6165     m3->_opnds[2] = op_dst;
6166     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6167     nodes->push(m3);
6168   %}
6169 %}
6170 
6171 // 0x1 is used in object initialization (initial object header).
6172 // No constant pool entries required.
6173 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
6174   match(Set dst src);
6175 
6176   format %{ "LI      $dst, $src \t// ptr" %}
6177   size(4);
6178   ins_encode %{
6179     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6180     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
6181   %}
6182   ins_pipe(pipe_class_default);
6183 %}
6184 
6185 // Expand node for constant pool load: small offset.
6186 // The match rule is needed to generate the correct bottom_type(),
6187 // however this node should never match. The use of predicate is not
6188 // possible since ADLC forbids predicates for chain rules. The higher
6189 // costs do not prevent matching in this case. For that reason the
6190 // operand immP_NM with predicate(false) is used.
6191 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6192   match(Set dst src);
6193   effect(TEMP toc);
6194 
6195   ins_num_consts(1);
6196 
6197   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
6198   size(4);
6199   ins_encode( enc_load_long_constP(dst, src, toc) );
6200   ins_pipe(pipe_class_memory);
6201 %}
6202 
6203 // Expand node for constant pool load: large offset.
6204 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6205   effect(DEF dst, USE src, USE toc);
6206   predicate(false);
6207 
6208   ins_num_consts(1);
6209   ins_field_const_toc_offset(int);
6210 
6211   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
6212   size(4);
6213   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
6214   ins_pipe(pipe_class_default);
6215 %}
6216 
6217 // Expand node for constant pool load: large offset.
6218 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
6219   match(Set dst src);
6220   effect(TEMP base);
6221 
6222   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
6223 
6224   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
6225   size(4);
6226   ins_encode %{
6227     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
6228     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
6229     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
6230   %}
6231   ins_pipe(pipe_class_memory);
6232 %}
6233 
6234 // Load pointer constant from constant table. Expand in case an
6235 // offset > 16 bit is needed.
6236 // Adlc adds toc node MachConstantTableBase.
6237 instruct loadConP_Ex(iRegPdst dst, immP src) %{
6238   match(Set dst src);
6239   ins_cost(MEMORY_REF_COST);
6240 
6241   // This rule does not use "expand" because then
6242   // the result type is not known to be an Oop.  An ADLC
6243   // enhancement will be needed to make that work - not worth it!
6244 
6245   // If this instruction rematerializes, it prolongs the live range
6246   // of the toc node, causing illegal graphs.
6247   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
6248   ins_cannot_rematerialize(true);
6249 
6250   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
6251   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
6252 %}
6253 
6254 // Expand node for constant pool load: small offset.
6255 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
6256   effect(DEF dst, USE src, USE toc);
6257   ins_cost(MEMORY_REF_COST);
6258 
6259   ins_num_consts(1);
6260 
6261   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
6262   size(4);
6263   ins_encode %{
6264     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
6265     address float_address = __ float_constant($src$$constant);
6266     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
6267   %}
6268   ins_pipe(pipe_class_memory);
6269 %}
6270 
6271 // Expand node for constant pool load: large offset.
6272 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
6273   effect(DEF dst, USE src, USE toc);
6274   ins_cost(MEMORY_REF_COST);
6275 
6276   ins_num_consts(1);
6277 
6278   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6279             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
6280             "ADDIS   $toc, $toc, -offset_hi"%}
6281   size(12);
6282   ins_encode %{
6283     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6284     FloatRegister Rdst    = $dst$$FloatRegister;
6285     Register Rtoc         = $toc$$Register;
6286     address float_address = __ float_constant($src$$constant);
6287     int offset            = __ offset_to_method_toc(float_address);
6288     int hi = (offset + (1<<15))>>16;
6289     int lo = offset - hi * (1<<16);
6290 
6291     __ addis(Rtoc, Rtoc, hi);
6292     __ lfs(Rdst, lo, Rtoc);
6293     __ addis(Rtoc, Rtoc, -hi);
6294   %}
6295   ins_pipe(pipe_class_memory);
6296 %}
6297 
6298 // Adlc adds toc node MachConstantTableBase.
6299 instruct loadConF_Ex(regF dst, immF src) %{
6300   match(Set dst src);
6301   ins_cost(MEMORY_REF_COST);
6302 
6303   // See loadConP.
6304   ins_cannot_rematerialize(true);
6305 
6306   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6307   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
6308 %}
6309 
6310 // Expand node for constant pool load: small offset.
6311 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
6312   effect(DEF dst, USE src, USE toc);
6313   ins_cost(MEMORY_REF_COST);
6314 
6315   ins_num_consts(1);
6316 
6317   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
6318   size(4);
6319   ins_encode %{
6320     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
6321     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
6322     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
6323   %}
6324   ins_pipe(pipe_class_memory);
6325 %}
6326 
6327 // Expand node for constant pool load: large offset.
6328 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
6329   effect(DEF dst, USE src, USE toc);
6330   ins_cost(MEMORY_REF_COST);
6331 
6332   ins_num_consts(1);
6333 
6334   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6335             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
6336             "ADDIS   $toc, $toc, -offset_hi" %}
6337   size(12);
6338   ins_encode %{
6339     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6340     FloatRegister Rdst    = $dst$$FloatRegister;
6341     Register      Rtoc    = $toc$$Register;
6342     address float_address = __ double_constant($src$$constant);
6343     int offset            = __ offset_to_method_toc(float_address);
6344     int hi = (offset + (1<<15))>>16;
6345     int lo = offset - hi * (1<<16);
6346 
6347     __ addis(Rtoc, Rtoc, hi);
6348     __ lfd(Rdst, lo, Rtoc);
6349     __ addis(Rtoc, Rtoc, -hi);
6350   %}
6351   ins_pipe(pipe_class_memory);
6352 %}
6353 
6354 // Adlc adds toc node MachConstantTableBase.
6355 instruct loadConD_Ex(regD dst, immD src) %{
6356   match(Set dst src);
6357   ins_cost(MEMORY_REF_COST);
6358 
6359   // See loadConP.
6360   ins_cannot_rematerialize(true);
6361 
6362   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6363   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
6364 %}
6365 
6366 // Prefetch instructions.
6367 // Must be safe to execute with invalid address (cannot fault).
6368 
6369 // Special prefetch versions which use the dcbz instruction.
6370 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
6371   match(PrefetchAllocation (AddP mem src));
6372   predicate(AllocatePrefetchStyle == 3);
6373   ins_cost(MEMORY_REF_COST);
6374 
6375   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
6376   size(4);
6377   ins_encode %{
6378     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6379     __ dcbz($src$$Register, $mem$$base$$Register);
6380   %}
6381   ins_pipe(pipe_class_memory);
6382 %}
6383 
6384 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
6385   match(PrefetchAllocation mem);
6386   predicate(AllocatePrefetchStyle == 3);
6387   ins_cost(MEMORY_REF_COST);
6388 
6389   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
6390   size(4);
6391   ins_encode %{
6392     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6393     __ dcbz($mem$$base$$Register);
6394   %}
6395   ins_pipe(pipe_class_memory);
6396 %}
6397 
6398 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
6399   match(PrefetchAllocation (AddP mem src));
6400   predicate(AllocatePrefetchStyle != 3);
6401   ins_cost(MEMORY_REF_COST);
6402 
6403   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
6404   size(4);
6405   ins_encode %{
6406     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6407     __ dcbtst($src$$Register, $mem$$base$$Register);
6408   %}
6409   ins_pipe(pipe_class_memory);
6410 %}
6411 
6412 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
6413   match(PrefetchAllocation mem);
6414   predicate(AllocatePrefetchStyle != 3);
6415   ins_cost(MEMORY_REF_COST);
6416 
6417   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
6418   size(4);
6419   ins_encode %{
6420     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6421     __ dcbtst($mem$$base$$Register);
6422   %}
6423   ins_pipe(pipe_class_memory);
6424 %}
6425 
6426 //----------Store Instructions-------------------------------------------------
6427 
6428 // Store Byte
6429 instruct storeB(memory mem, iRegIsrc src) %{
6430   match(Set mem (StoreB mem src));
6431   ins_cost(MEMORY_REF_COST);
6432 
6433   format %{ "STB     $src, $mem \t// byte" %}
6434   size(4);
6435   ins_encode %{
6436     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
6437     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6438     __ stb($src$$Register, Idisp, $mem$$base$$Register);
6439   %}
6440   ins_pipe(pipe_class_memory);
6441 %}
6442 
6443 // Store Char/Short
6444 instruct storeC(memory mem, iRegIsrc src) %{
6445   match(Set mem (StoreC mem src));
6446   ins_cost(MEMORY_REF_COST);
6447 
6448   format %{ "STH     $src, $mem \t// short" %}
6449   size(4);
6450   ins_encode %{
6451     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
6452     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6453     __ sth($src$$Register, Idisp, $mem$$base$$Register);
6454   %}
6455   ins_pipe(pipe_class_memory);
6456 %}
6457 
6458 // Store Integer
6459 instruct storeI(memory mem, iRegIsrc src) %{
6460   match(Set mem (StoreI mem src));
6461   ins_cost(MEMORY_REF_COST);
6462 
6463   format %{ "STW     $src, $mem" %}
6464   size(4);
6465   ins_encode( enc_stw(src, mem) );
6466   ins_pipe(pipe_class_memory);
6467 %}
6468 
6469 // ConvL2I + StoreI.
6470 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
6471   match(Set mem (StoreI mem (ConvL2I src)));
6472   ins_cost(MEMORY_REF_COST);
6473 
6474   format %{ "STW     l2i($src), $mem" %}
6475   size(4);
6476   ins_encode( enc_stw(src, mem) );
6477   ins_pipe(pipe_class_memory);
6478 %}
6479 
6480 // Store Long
6481 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
6482   match(Set mem (StoreL mem src));
6483   ins_cost(MEMORY_REF_COST);
6484 
6485   format %{ "STD     $src, $mem \t// long" %}
6486   size(4);
6487   ins_encode( enc_std(src, mem) );
6488   ins_pipe(pipe_class_memory);
6489 %}
6490 
6491 // Store super word nodes.
6492 
6493 // Store Aligned Packed Byte long register to memory
6494 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
6495   predicate(n->as_StoreVector()->memory_size() == 8);
6496   match(Set mem (StoreVector mem src));
6497   ins_cost(MEMORY_REF_COST);
6498 
6499   format %{ "STD     $mem, $src \t// packed8B" %}
6500   size(4);
6501   ins_encode( enc_std(src, mem) );
6502   ins_pipe(pipe_class_memory);
6503 %}
6504 
6505 // Store Compressed Oop
6506 instruct storeN(memory dst, iRegN_P2N src) %{
6507   match(Set dst (StoreN dst src));
6508   ins_cost(MEMORY_REF_COST);
6509 
6510   format %{ "STW     $src, $dst \t// compressed oop" %}
6511   size(4);
6512   ins_encode( enc_stw(src, dst) );
6513   ins_pipe(pipe_class_memory);
6514 %}
6515 
6516 // Store Compressed KLass
6517 instruct storeNKlass(memory dst, iRegN_P2N src) %{
6518   match(Set dst (StoreNKlass dst src));
6519   ins_cost(MEMORY_REF_COST);
6520 
6521   format %{ "STW     $src, $dst \t// compressed klass" %}
6522   size(4);
6523   ins_encode( enc_stw(src, dst) );
6524   ins_pipe(pipe_class_memory);
6525 %}
6526 
6527 // Store Pointer
6528 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
6529   match(Set dst (StoreP dst src));
6530   ins_cost(MEMORY_REF_COST);
6531 
6532   format %{ "STD     $src, $dst \t// ptr" %}
6533   size(4);
6534   ins_encode( enc_std(src, dst) );
6535   ins_pipe(pipe_class_memory);
6536 %}
6537 
6538 // Store Float
6539 instruct storeF(memory mem, regF src) %{
6540   match(Set mem (StoreF mem src));
6541   ins_cost(MEMORY_REF_COST);
6542 
6543   format %{ "STFS    $src, $mem" %}
6544   size(4);
6545   ins_encode( enc_stfs(src, mem) );
6546   ins_pipe(pipe_class_memory);
6547 %}
6548 
6549 // Store Double
6550 instruct storeD(memory mem, regD src) %{
6551   match(Set mem (StoreD mem src));
6552   ins_cost(MEMORY_REF_COST);
6553 
6554   format %{ "STFD    $src, $mem" %}
6555   size(4);
6556   ins_encode( enc_stfd(src, mem) );
6557   ins_pipe(pipe_class_memory);
6558 %}
6559 
6560 //----------Store Instructions With Zeros--------------------------------------
6561 
6562 // Card-mark for CMS garbage collection.
6563 // This cardmark does an optimization so that it must not always
6564 // do a releasing store. For this, it gets the address of
6565 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
6566 // (Using releaseFieldAddr in the match rule is a hack.)
6567 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr, flagsReg crx) %{
6568   match(Set mem (StoreCM mem releaseFieldAddr));
6569   effect(TEMP crx);
6570   predicate(false);
6571   ins_cost(MEMORY_REF_COST);
6572 
6573   // See loadConP.
6574   ins_cannot_rematerialize(true);
6575 
6576   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
6577   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr, crx) );
6578   ins_pipe(pipe_class_memory);
6579 %}
6580 
6581 // Card-mark for CMS garbage collection.
6582 // This cardmark does an optimization so that it must not always
6583 // do a releasing store. For this, it needs the constant address of
6584 // CMSCollectorCardTableModRefBSExt::_requires_release.
6585 // This constant address is split off here by expand so we can use
6586 // adlc / matcher functionality to load it from the constant section.
6587 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
6588   match(Set mem (StoreCM mem zero));
6589   predicate(UseConcMarkSweepGC);
6590 
6591   expand %{
6592     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
6593     iRegLdst releaseFieldAddress;
6594     flagsReg crx;
6595     loadConL_Ex(releaseFieldAddress, baseImm);
6596     storeCM_CMS(mem, releaseFieldAddress, crx);
6597   %}
6598 %}
6599 
6600 instruct storeCM_G1(memory mem, immI_0 zero) %{
6601   match(Set mem (StoreCM mem zero));
6602   predicate(UseG1GC);
6603   ins_cost(MEMORY_REF_COST);
6604 
6605   ins_cannot_rematerialize(true);
6606 
6607   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
6608   size(8);
6609   ins_encode %{
6610     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6611     __ li(R0, 0);
6612     //__ release(); // G1: oops are allowed to get visible after dirty marking
6613     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
6614     __ stb(R0, $mem$$disp, $mem$$base$$Register);
6615   %}
6616   ins_pipe(pipe_class_memory);
6617 %}
6618 
6619 // Convert oop pointer into compressed form.
6620 
6621 // Nodes for postalloc expand.
6622 
6623 // Shift node for expand.
6624 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
6625   // The match rule is needed to make it a 'MachTypeNode'!
6626   match(Set dst (EncodeP src));
6627   predicate(false);
6628 
6629   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6630   size(4);
6631   ins_encode %{
6632     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6633     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6634   %}
6635   ins_pipe(pipe_class_default);
6636 %}
6637 
6638 // Add node for expand.
6639 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
6640   // The match rule is needed to make it a 'MachTypeNode'!
6641   match(Set dst (EncodeP src));
6642   predicate(false);
6643 
6644   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
6645   ins_encode %{
6646     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6647     __ sub_const_optimized($dst$$Register, $src$$Register, Universe::narrow_oop_base(), R0);
6648   %}
6649   ins_pipe(pipe_class_default);
6650 %}
6651 
6652 // Conditional sub base.
6653 instruct cond_sub_base(iRegNdst dst, flagsRegSrc crx, iRegPsrc src1) %{
6654   // The match rule is needed to make it a 'MachTypeNode'!
6655   match(Set dst (EncodeP (Binary crx src1)));
6656   predicate(false);
6657 
6658   format %{ "BEQ     $crx, done\n\t"
6659             "SUB     $dst, $src1, heapbase \t// encode: subtract base if != NULL\n"
6660             "done:" %}
6661   ins_encode %{
6662     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6663     Label done;
6664     __ beq($crx$$CondRegister, done);
6665     __ sub_const_optimized($dst$$Register, $src1$$Register, Universe::narrow_oop_base(), R0);
6666     __ bind(done);
6667   %}
6668   ins_pipe(pipe_class_default);
6669 %}
6670 
6671 // Power 7 can use isel instruction
6672 instruct cond_set_0_oop(iRegNdst dst, flagsRegSrc crx, iRegPsrc src1) %{
6673   // The match rule is needed to make it a 'MachTypeNode'!
6674   match(Set dst (EncodeP (Binary crx src1)));
6675   predicate(false);
6676 
6677   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
6678   size(4);
6679   ins_encode %{
6680     // This is a Power7 instruction for which no machine description exists.
6681     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6682     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6683   %}
6684   ins_pipe(pipe_class_default);
6685 %}
6686 
6687 // Disjoint narrow oop base.
6688 instruct encodeP_Disjoint(iRegNdst dst, iRegPsrc src) %{
6689   match(Set dst (EncodeP src));
6690   predicate(Universe::narrow_oop_base_disjoint());
6691 
6692   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with disjoint base" %}
6693   size(4);
6694   ins_encode %{
6695     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6696     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6697   %}
6698   ins_pipe(pipe_class_default);
6699 %}
6700 
6701 // shift != 0, base != 0
6702 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
6703   match(Set dst (EncodeP src));
6704   effect(TEMP crx);
6705   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
6706             Universe::narrow_oop_shift() != 0 &&
6707             Universe::narrow_oop_base_overlaps());
6708 
6709   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
6710   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
6711 %}
6712 
6713 // shift != 0, base != 0
6714 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
6715   match(Set dst (EncodeP src));
6716   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
6717             Universe::narrow_oop_shift() != 0 &&
6718             Universe::narrow_oop_base_overlaps());
6719 
6720   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
6721   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
6722 %}
6723 
6724 // shift != 0, base == 0
6725 // TODO: This is the same as encodeP_shift. Merge!
6726 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
6727   match(Set dst (EncodeP src));
6728   predicate(Universe::narrow_oop_shift() != 0 &&
6729             Universe::narrow_oop_base() ==0);
6730 
6731   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
6732   size(4);
6733   ins_encode %{
6734     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6735     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6736   %}
6737   ins_pipe(pipe_class_default);
6738 %}
6739 
6740 // Compressed OOPs with narrow_oop_shift == 0.
6741 // shift == 0, base == 0
6742 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
6743   match(Set dst (EncodeP src));
6744   predicate(Universe::narrow_oop_shift() == 0);
6745 
6746   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
6747   // variable size, 0 or 4.
6748   ins_encode %{
6749     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6750     __ mr_if_needed($dst$$Register, $src$$Register);
6751   %}
6752   ins_pipe(pipe_class_default);
6753 %}
6754 
6755 // Decode nodes.
6756 
6757 // Shift node for expand.
6758 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
6759   // The match rule is needed to make it a 'MachTypeNode'!
6760   match(Set dst (DecodeN src));
6761   predicate(false);
6762 
6763   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
6764   size(4);
6765   ins_encode %{
6766     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6767     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6768   %}
6769   ins_pipe(pipe_class_default);
6770 %}
6771 
6772 // Add node for expand.
6773 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
6774   // The match rule is needed to make it a 'MachTypeNode'!
6775   match(Set dst (DecodeN src));
6776   predicate(false);
6777 
6778   format %{ "ADD     $dst, $src, heapbase \t// DecodeN, add oop base" %}
6779   ins_encode %{
6780     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6781     __ add_const_optimized($dst$$Register, $src$$Register, Universe::narrow_oop_base(), R0);
6782   %}
6783   ins_pipe(pipe_class_default);
6784 %}
6785 
6786 // conditianal add base for expand
6787 instruct cond_add_base(iRegPdst dst, flagsRegSrc crx, iRegPsrc src) %{
6788   // The match rule is needed to make it a 'MachTypeNode'!
6789   // NOTICE that the rule is nonsense - we just have to make sure that:
6790   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6791   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6792   match(Set dst (DecodeN (Binary crx src)));
6793   predicate(false);
6794 
6795   format %{ "BEQ     $crx, done\n\t"
6796             "ADD     $dst, $src, heapbase \t// DecodeN: add oop base if $src != NULL\n"
6797             "done:" %}
6798   ins_encode %{
6799     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6800     Label done;
6801     __ beq($crx$$CondRegister, done);
6802     __ add_const_optimized($dst$$Register, $src$$Register, Universe::narrow_oop_base(), R0);
6803     __ bind(done);
6804   %}
6805   ins_pipe(pipe_class_default);
6806 %}
6807 
6808 instruct cond_set_0_ptr(iRegPdst dst, flagsRegSrc crx, iRegPsrc src1) %{
6809   // The match rule is needed to make it a 'MachTypeNode'!
6810   // NOTICE that the rule is nonsense - we just have to make sure that:
6811   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6812   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6813   match(Set dst (DecodeN (Binary crx src1)));
6814   predicate(false);
6815 
6816   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
6817   size(4);
6818   ins_encode %{
6819     // This is a Power7 instruction for which no machine description exists.
6820     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6821     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6822   %}
6823   ins_pipe(pipe_class_default);
6824 %}
6825 
6826 //  shift != 0, base != 0
6827 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6828   match(Set dst (DecodeN src));
6829   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6830              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6831             Universe::narrow_oop_shift() != 0 &&
6832             Universe::narrow_oop_base() != 0);
6833   ins_cost(4 * DEFAULT_COST); // Should be more expensive than decodeN_Disjoint_isel_Ex.
6834   effect(TEMP crx);
6835 
6836   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
6837   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
6838 %}
6839 
6840 // shift != 0, base == 0
6841 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
6842   match(Set dst (DecodeN src));
6843   predicate(Universe::narrow_oop_shift() != 0 &&
6844             Universe::narrow_oop_base() == 0);
6845 
6846   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
6847   size(4);
6848   ins_encode %{
6849     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6850     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6851   %}
6852   ins_pipe(pipe_class_default);
6853 %}
6854 
6855 // Optimize DecodeN for disjoint base.
6856 // Shift narrow oop and or it into register that already contains the heap base.
6857 // Base == dst must hold, and is assured by construction in postaloc_expand.
6858 instruct decodeN_mergeDisjoint(iRegPdst dst, iRegNsrc src, iRegLsrc base) %{
6859   match(Set dst (DecodeN src));
6860   effect(TEMP base);
6861   predicate(false);
6862 
6863   format %{ "RLDIMI  $dst, $src, shift, 32-shift \t// DecodeN (disjoint base)" %}
6864   size(4);
6865   ins_encode %{
6866     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
6867     __ rldimi($dst$$Register, $src$$Register, Universe::narrow_oop_shift(), 32-Universe::narrow_oop_shift());
6868   %}
6869   ins_pipe(pipe_class_default);
6870 %}
6871 
6872 // Optimize DecodeN for disjoint base.
6873 // This node requires only one cycle on the critical path.
6874 // We must postalloc_expand as we can not express use_def effects where
6875 // the used register is L and the def'ed register P.
6876 instruct decodeN_Disjoint_notNull_Ex(iRegPdst dst, iRegNsrc src) %{
6877   match(Set dst (DecodeN src));
6878   effect(TEMP_DEF dst);
6879   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6880              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6881             Universe::narrow_oop_base_disjoint());
6882   ins_cost(DEFAULT_COST);
6883 
6884   format %{ "MOV     $dst, heapbase \t\n"
6885             "RLDIMI  $dst, $src, shift, 32-shift \t// decode with disjoint base" %}
6886   postalloc_expand %{
6887     loadBaseNode *n1 = new loadBaseNode();
6888     n1->add_req(NULL);
6889     n1->_opnds[0] = op_dst;
6890 
6891     decodeN_mergeDisjointNode *n2 = new decodeN_mergeDisjointNode();
6892     n2->add_req(n_region, n_src, n1);
6893     n2->_opnds[0] = op_dst;
6894     n2->_opnds[1] = op_src;
6895     n2->_opnds[2] = op_dst;
6896     n2->_bottom_type = _bottom_type;
6897 
6898     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6899     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6900 
6901     nodes->push(n1);
6902     nodes->push(n2);
6903   %}
6904 %}
6905 
6906 instruct decodeN_Disjoint_isel_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6907   match(Set dst (DecodeN src));
6908   effect(TEMP_DEF dst, TEMP crx);
6909   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6910              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6911             Universe::narrow_oop_base_disjoint() && VM_Version::has_isel());
6912   ins_cost(3 * DEFAULT_COST);
6913 
6914   format %{ "DecodeN  $dst, $src \t// decode with disjoint base using isel" %}
6915   postalloc_expand %{
6916     loadBaseNode *n1 = new loadBaseNode();
6917     n1->add_req(NULL);
6918     n1->_opnds[0] = op_dst;
6919 
6920     cmpN_reg_imm0Node *n_compare  = new cmpN_reg_imm0Node();
6921     n_compare->add_req(n_region, n_src);
6922     n_compare->_opnds[0] = op_crx;
6923     n_compare->_opnds[1] = op_src;
6924     n_compare->_opnds[2] = new immN_0Oper(TypeNarrowOop::NULL_PTR);
6925 
6926     decodeN_mergeDisjointNode *n2 = new decodeN_mergeDisjointNode();
6927     n2->add_req(n_region, n_src, n1);
6928     n2->_opnds[0] = op_dst;
6929     n2->_opnds[1] = op_src;
6930     n2->_opnds[2] = op_dst;
6931     n2->_bottom_type = _bottom_type;
6932 
6933     cond_set_0_ptrNode *n_cond_set = new cond_set_0_ptrNode();
6934     n_cond_set->add_req(n_region, n_compare, n2);
6935     n_cond_set->_opnds[0] = op_dst;
6936     n_cond_set->_opnds[1] = op_crx;
6937     n_cond_set->_opnds[2] = op_dst;
6938     n_cond_set->_bottom_type = _bottom_type;
6939 
6940     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
6941     ra_->set_oop(n_cond_set, true);
6942 
6943     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6944     ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
6945     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6946     ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6947 
6948     nodes->push(n1);
6949     nodes->push(n_compare);
6950     nodes->push(n2);
6951     nodes->push(n_cond_set);
6952   %}
6953 %}
6954 
6955 // src != 0, shift != 0, base != 0
6956 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
6957   match(Set dst (DecodeN src));
6958   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6959              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6960             Universe::narrow_oop_shift() != 0 &&
6961             Universe::narrow_oop_base() != 0);
6962   ins_cost(2 * DEFAULT_COST);
6963 
6964   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
6965   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
6966 %}
6967 
6968 // Compressed OOPs with narrow_oop_shift == 0.
6969 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
6970   match(Set dst (DecodeN src));
6971   predicate(Universe::narrow_oop_shift() == 0);
6972   ins_cost(DEFAULT_COST);
6973 
6974   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
6975   // variable size, 0 or 4.
6976   ins_encode %{
6977     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6978     __ mr_if_needed($dst$$Register, $src$$Register);
6979   %}
6980   ins_pipe(pipe_class_default);
6981 %}
6982 
6983 // Convert compressed oop into int for vectors alignment masking.
6984 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
6985   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6986   predicate(Universe::narrow_oop_shift() == 0);
6987   ins_cost(DEFAULT_COST);
6988 
6989   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
6990   // variable size, 0 or 4.
6991   ins_encode %{
6992     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6993     __ mr_if_needed($dst$$Register, $src$$Register);
6994   %}
6995   ins_pipe(pipe_class_default);
6996 %}
6997 
6998 // Convert klass pointer into compressed form.
6999 
7000 // Nodes for postalloc expand.
7001 
7002 // Shift node for expand.
7003 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
7004   // The match rule is needed to make it a 'MachTypeNode'!
7005   match(Set dst (EncodePKlass src));
7006   predicate(false);
7007 
7008   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
7009   size(4);
7010   ins_encode %{
7011     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
7012     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
7013   %}
7014   ins_pipe(pipe_class_default);
7015 %}
7016 
7017 // Add node for expand.
7018 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
7019   // The match rule is needed to make it a 'MachTypeNode'!
7020   match(Set dst (EncodePKlass (Binary base src)));
7021   predicate(false);
7022 
7023   format %{ "SUB     $dst, $base, $src \t// encode" %}
7024   size(4);
7025   ins_encode %{
7026     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7027     __ subf($dst$$Register, $base$$Register, $src$$Register);
7028   %}
7029   ins_pipe(pipe_class_default);
7030 %}
7031 
7032 // Disjoint narrow oop base.
7033 instruct encodePKlass_Disjoint(iRegNdst dst, iRegPsrc src) %{
7034   match(Set dst (EncodePKlass src));
7035   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
7036 
7037   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with disjoint base" %}
7038   size(4);
7039   ins_encode %{
7040     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
7041     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_klass_shift(), 32);
7042   %}
7043   ins_pipe(pipe_class_default);
7044 %}
7045 
7046 // shift != 0, base != 0
7047 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
7048   match(Set dst (EncodePKlass (Binary base src)));
7049   predicate(false);
7050 
7051   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
7052   postalloc_expand %{
7053     encodePKlass_sub_baseNode *n1 = new encodePKlass_sub_baseNode();
7054     n1->add_req(n_region, n_base, n_src);
7055     n1->_opnds[0] = op_dst;
7056     n1->_opnds[1] = op_base;
7057     n1->_opnds[2] = op_src;
7058     n1->_bottom_type = _bottom_type;
7059 
7060     encodePKlass_shiftNode *n2 = new encodePKlass_shiftNode();
7061     n2->add_req(n_region, n1);
7062     n2->_opnds[0] = op_dst;
7063     n2->_opnds[1] = op_dst;
7064     n2->_bottom_type = _bottom_type;
7065     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7066     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7067 
7068     nodes->push(n1);
7069     nodes->push(n2);
7070   %}
7071 %}
7072 
7073 // shift != 0, base != 0
7074 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
7075   match(Set dst (EncodePKlass src));
7076   //predicate(Universe::narrow_klass_shift() != 0 &&
7077   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
7078 
7079   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
7080   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7081   expand %{
7082     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
7083     iRegLdst base;
7084     loadConL_Ex(base, baseImm);
7085     encodePKlass_not_null_Ex(dst, base, src);
7086   %}
7087 %}
7088 
7089 // Decode nodes.
7090 
7091 // Shift node for expand.
7092 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
7093   // The match rule is needed to make it a 'MachTypeNode'!
7094   match(Set dst (DecodeNKlass src));
7095   predicate(false);
7096 
7097   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
7098   size(4);
7099   ins_encode %{
7100     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
7101     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
7102   %}
7103   ins_pipe(pipe_class_default);
7104 %}
7105 
7106 // Add node for expand.
7107 
7108 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
7109   // The match rule is needed to make it a 'MachTypeNode'!
7110   match(Set dst (DecodeNKlass (Binary base src)));
7111   predicate(false);
7112 
7113   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
7114   size(4);
7115   ins_encode %{
7116     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7117     __ add($dst$$Register, $base$$Register, $src$$Register);
7118   %}
7119   ins_pipe(pipe_class_default);
7120 %}
7121 
7122 // src != 0, shift != 0, base != 0
7123 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
7124   match(Set dst (DecodeNKlass (Binary base src)));
7125   //effect(kill src); // We need a register for the immediate result after shifting.
7126   predicate(false);
7127 
7128   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
7129   postalloc_expand %{
7130     decodeNKlass_add_baseNode *n1 = new decodeNKlass_add_baseNode();
7131     n1->add_req(n_region, n_base, n_src);
7132     n1->_opnds[0] = op_dst;
7133     n1->_opnds[1] = op_base;
7134     n1->_opnds[2] = op_src;
7135     n1->_bottom_type = _bottom_type;
7136 
7137     decodeNKlass_shiftNode *n2 = new decodeNKlass_shiftNode();
7138     n2->add_req(n_region, n1);
7139     n2->_opnds[0] = op_dst;
7140     n2->_opnds[1] = op_dst;
7141     n2->_bottom_type = _bottom_type;
7142 
7143     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7144     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7145 
7146     nodes->push(n1);
7147     nodes->push(n2);
7148   %}
7149 %}
7150 
7151 // src != 0, shift != 0, base != 0
7152 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
7153   match(Set dst (DecodeNKlass src));
7154   // predicate(Universe::narrow_klass_shift() != 0 &&
7155   //           Universe::narrow_klass_base() != 0);
7156 
7157   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
7158 
7159   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7160   expand %{
7161     // We add first, then we shift. Like this, we can get along with one register less.
7162     // But we have to load the base pre-shifted.
7163     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
7164     iRegLdst base;
7165     loadConL_Ex(base, baseImm);
7166     decodeNKlass_notNull_addBase_Ex(dst, base, src);
7167   %}
7168 %}
7169 
7170 //----------MemBar Instructions-----------------------------------------------
7171 // Memory barrier flavors
7172 
7173 instruct membar_acquire() %{
7174   match(LoadFence);
7175   ins_cost(4*MEMORY_REF_COST);
7176 
7177   format %{ "MEMBAR-acquire" %}
7178   size(4);
7179   ins_encode %{
7180     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7181     __ acquire();
7182   %}
7183   ins_pipe(pipe_class_default);
7184 %}
7185 
7186 instruct unnecessary_membar_acquire() %{
7187   match(MemBarAcquire);
7188   ins_cost(0);
7189 
7190   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
7191   size(0);
7192   ins_encode( /*empty*/ );
7193   ins_pipe(pipe_class_default);
7194 %}
7195 
7196 instruct membar_acquire_lock() %{
7197   match(MemBarAcquireLock);
7198   ins_cost(0);
7199 
7200   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
7201   size(0);
7202   ins_encode( /*empty*/ );
7203   ins_pipe(pipe_class_default);
7204 %}
7205 
7206 instruct membar_release() %{
7207   match(MemBarRelease);
7208   match(StoreFence);
7209   ins_cost(4*MEMORY_REF_COST);
7210 
7211   format %{ "MEMBAR-release" %}
7212   size(4);
7213   ins_encode %{
7214     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7215     __ release();
7216   %}
7217   ins_pipe(pipe_class_default);
7218 %}
7219 
7220 instruct membar_storestore() %{
7221   match(MemBarStoreStore);
7222   ins_cost(4*MEMORY_REF_COST);
7223 
7224   format %{ "MEMBAR-store-store" %}
7225   size(4);
7226   ins_encode %{
7227     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7228     __ membar(Assembler::StoreStore);
7229   %}
7230   ins_pipe(pipe_class_default);
7231 %}
7232 
7233 instruct membar_release_lock() %{
7234   match(MemBarReleaseLock);
7235   ins_cost(0);
7236 
7237   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
7238   size(0);
7239   ins_encode( /*empty*/ );
7240   ins_pipe(pipe_class_default);
7241 %}
7242 
7243 instruct membar_volatile() %{
7244   match(MemBarVolatile);
7245   ins_cost(4*MEMORY_REF_COST);
7246 
7247   format %{ "MEMBAR-volatile" %}
7248   size(4);
7249   ins_encode %{
7250     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
7251     __ fence();
7252   %}
7253   ins_pipe(pipe_class_default);
7254 %}
7255 
7256 // This optimization is wrong on PPC. The following pattern is not supported:
7257 //  MemBarVolatile
7258 //   ^        ^
7259 //   |        |
7260 //  CtrlProj MemProj
7261 //   ^        ^
7262 //   |        |
7263 //   |       Load
7264 //   |
7265 //  MemBarVolatile
7266 //
7267 //  The first MemBarVolatile could get optimized out! According to
7268 //  Vladimir, this pattern can not occur on Oracle platforms.
7269 //  However, it does occur on PPC64 (because of membars in
7270 //  inline_unsafe_load_store).
7271 //
7272 // Add this node again if we found a good solution for inline_unsafe_load_store().
7273 // Don't forget to look at the implementation of post_store_load_barrier again,
7274 // we did other fixes in that method.
7275 //instruct unnecessary_membar_volatile() %{
7276 //  match(MemBarVolatile);
7277 //  predicate(Matcher::post_store_load_barrier(n));
7278 //  ins_cost(0);
7279 //
7280 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
7281 //  size(0);
7282 //  ins_encode( /*empty*/ );
7283 //  ins_pipe(pipe_class_default);
7284 //%}
7285 
7286 instruct membar_CPUOrder() %{
7287   match(MemBarCPUOrder);
7288   ins_cost(0);
7289 
7290   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
7291   size(0);
7292   ins_encode( /*empty*/ );
7293   ins_pipe(pipe_class_default);
7294 %}
7295 
7296 //----------Conditional Move---------------------------------------------------
7297 
7298 // Cmove using isel.
7299 instruct cmovI_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegIdst dst, iRegIsrc src) %{
7300   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7301   predicate(VM_Version::has_isel());
7302   ins_cost(DEFAULT_COST);
7303 
7304   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7305   size(4);
7306   ins_encode %{
7307     // This is a Power7 instruction for which no machine description
7308     // exists. Anyways, the scheduler should be off on Power7.
7309     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7310     int cc        = $cmp$$cmpcode;
7311     __ isel($dst$$Register, $crx$$CondRegister,
7312             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7313   %}
7314   ins_pipe(pipe_class_default);
7315 %}
7316 
7317 instruct cmovI_reg(cmpOp cmp, flagsRegSrc crx, iRegIdst dst, iRegIsrc src) %{
7318   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7319   predicate(!VM_Version::has_isel());
7320   ins_cost(DEFAULT_COST+BRANCH_COST);
7321 
7322   ins_variable_size_depending_on_alignment(true);
7323 
7324   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7325   // Worst case is branch + move + stop, no stop without scheduler
7326   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7327   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7328   ins_pipe(pipe_class_default);
7329 %}
7330 
7331 instruct cmovI_imm(cmpOp cmp, flagsRegSrc crx, iRegIdst dst, immI16 src) %{
7332   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7333   ins_cost(DEFAULT_COST+BRANCH_COST);
7334 
7335   ins_variable_size_depending_on_alignment(true);
7336 
7337   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7338   // Worst case is branch + move + stop, no stop without scheduler
7339   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7340   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7341   ins_pipe(pipe_class_default);
7342 %}
7343 
7344 // Cmove using isel.
7345 instruct cmovL_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegLdst dst, iRegLsrc src) %{
7346   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7347   predicate(VM_Version::has_isel());
7348   ins_cost(DEFAULT_COST);
7349 
7350   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7351   size(4);
7352   ins_encode %{
7353     // This is a Power7 instruction for which no machine description
7354     // exists. Anyways, the scheduler should be off on Power7.
7355     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7356     int cc        = $cmp$$cmpcode;
7357     __ isel($dst$$Register, $crx$$CondRegister,
7358             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7359   %}
7360   ins_pipe(pipe_class_default);
7361 %}
7362 
7363 instruct cmovL_reg(cmpOp cmp, flagsRegSrc crx, iRegLdst dst, iRegLsrc src) %{
7364   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7365   predicate(!VM_Version::has_isel());
7366   ins_cost(DEFAULT_COST+BRANCH_COST);
7367 
7368   ins_variable_size_depending_on_alignment(true);
7369 
7370   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7371   // Worst case is branch + move + stop, no stop without scheduler.
7372   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7373   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7374   ins_pipe(pipe_class_default);
7375 %}
7376 
7377 instruct cmovL_imm(cmpOp cmp, flagsRegSrc crx, iRegLdst dst, immL16 src) %{
7378   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7379   ins_cost(DEFAULT_COST+BRANCH_COST);
7380 
7381   ins_variable_size_depending_on_alignment(true);
7382 
7383   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7384   // Worst case is branch + move + stop, no stop without scheduler.
7385   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7386   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7387   ins_pipe(pipe_class_default);
7388 %}
7389 
7390 // Cmove using isel.
7391 instruct cmovN_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegNdst dst, iRegNsrc src) %{
7392   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7393   predicate(VM_Version::has_isel());
7394   ins_cost(DEFAULT_COST);
7395 
7396   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7397   size(4);
7398   ins_encode %{
7399     // This is a Power7 instruction for which no machine description
7400     // exists. Anyways, the scheduler should be off on Power7.
7401     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7402     int cc        = $cmp$$cmpcode;
7403     __ isel($dst$$Register, $crx$$CondRegister,
7404             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7405   %}
7406   ins_pipe(pipe_class_default);
7407 %}
7408 
7409 // Conditional move for RegN. Only cmov(reg, reg).
7410 instruct cmovN_reg(cmpOp cmp, flagsRegSrc crx, iRegNdst dst, iRegNsrc src) %{
7411   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7412   predicate(!VM_Version::has_isel());
7413   ins_cost(DEFAULT_COST+BRANCH_COST);
7414 
7415   ins_variable_size_depending_on_alignment(true);
7416 
7417   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7418   // Worst case is branch + move + stop, no stop without scheduler.
7419   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7420   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7421   ins_pipe(pipe_class_default);
7422 %}
7423 
7424 instruct cmovN_imm(cmpOp cmp, flagsRegSrc crx, iRegNdst dst, immN_0 src) %{
7425   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7426   ins_cost(DEFAULT_COST+BRANCH_COST);
7427 
7428   ins_variable_size_depending_on_alignment(true);
7429 
7430   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7431   // Worst case is branch + move + stop, no stop without scheduler.
7432   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7433   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7434   ins_pipe(pipe_class_default);
7435 %}
7436 
7437 // Cmove using isel.
7438 instruct cmovP_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegPdst dst, iRegPsrc src) %{
7439   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7440   predicate(VM_Version::has_isel());
7441   ins_cost(DEFAULT_COST);
7442 
7443   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7444   size(4);
7445   ins_encode %{
7446     // This is a Power7 instruction for which no machine description
7447     // exists. Anyways, the scheduler should be off on Power7.
7448     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7449     int cc        = $cmp$$cmpcode;
7450     __ isel($dst$$Register, $crx$$CondRegister,
7451             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7452   %}
7453   ins_pipe(pipe_class_default);
7454 %}
7455 
7456 instruct cmovP_reg(cmpOp cmp, flagsRegSrc crx, iRegPdst dst, iRegP_N2P src) %{
7457   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7458   predicate(!VM_Version::has_isel());
7459   ins_cost(DEFAULT_COST+BRANCH_COST);
7460 
7461   ins_variable_size_depending_on_alignment(true);
7462 
7463   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7464   // Worst case is branch + move + stop, no stop without scheduler.
7465   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7466   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7467   ins_pipe(pipe_class_default);
7468 %}
7469 
7470 instruct cmovP_imm(cmpOp cmp, flagsRegSrc crx, iRegPdst dst, immP_0 src) %{
7471   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7472   ins_cost(DEFAULT_COST+BRANCH_COST);
7473 
7474   ins_variable_size_depending_on_alignment(true);
7475 
7476   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7477   // Worst case is branch + move + stop, no stop without scheduler.
7478   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7479   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7480   ins_pipe(pipe_class_default);
7481 %}
7482 
7483 instruct cmovF_reg(cmpOp cmp, flagsRegSrc crx, regF dst, regF src) %{
7484   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
7485   ins_cost(DEFAULT_COST+BRANCH_COST);
7486 
7487   ins_variable_size_depending_on_alignment(true);
7488 
7489   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7490   // Worst case is branch + move + stop, no stop without scheduler.
7491   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7492   ins_encode %{
7493     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7494     Label done;
7495     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7496     // Branch if not (cmp crx).
7497     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7498     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7499     // TODO PPC port __ endgroup_if_needed(_size == 12);
7500     __ bind(done);
7501   %}
7502   ins_pipe(pipe_class_default);
7503 %}
7504 
7505 instruct cmovD_reg(cmpOp cmp, flagsRegSrc crx, regD dst, regD src) %{
7506   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
7507   ins_cost(DEFAULT_COST+BRANCH_COST);
7508 
7509   ins_variable_size_depending_on_alignment(true);
7510 
7511   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7512   // Worst case is branch + move + stop, no stop without scheduler.
7513   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7514   ins_encode %{
7515     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7516     Label done;
7517     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7518     // Branch if not (cmp crx).
7519     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7520     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7521     // TODO PPC port __ endgroup_if_needed(_size == 12);
7522     __ bind(done);
7523   %}
7524   ins_pipe(pipe_class_default);
7525 %}
7526 
7527 //----------Conditional_store--------------------------------------------------
7528 // Conditional-store of the updated heap-top.
7529 // Used during allocation of the shared heap.
7530 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
7531 
7532 // As compareAndSwapL, but return flag register instead of boolean value in
7533 // int register.
7534 // Used by sun/misc/AtomicLongCSImpl.java.
7535 // Mem_ptr must be a memory operand, else this node does not get
7536 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7537 // can be rematerialized which leads to errors.
7538 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal, flagsRegCR0 cr0) %{
7539   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
7540   effect(TEMP cr0);
7541   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7542   ins_encode %{
7543     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7544     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7545                 MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_atomic_update(),
7546                 noreg, NULL, true);
7547   %}
7548   ins_pipe(pipe_class_default);
7549 %}
7550 
7551 // As compareAndSwapP, but return flag register instead of boolean value in
7552 // int register.
7553 // This instruction is matched if UseTLAB is off.
7554 // Mem_ptr must be a memory operand, else this node does not get
7555 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7556 // can be rematerialized which leads to errors.
7557 instruct storePConditional_regP_regP_regP(flagsRegCR0 cr0, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
7558   match(Set cr0 (StorePConditional mem_ptr (Binary oldVal newVal)));
7559   ins_cost(2*MEMORY_REF_COST);
7560 
7561   format %{ "STDCX_  if ($cr0 = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7562   ins_encode %{
7563     // TODO: PPC port $archOpcode(ppc64Opcode_stdcx_);
7564     __ stdcx_($newVal$$Register, $mem_ptr$$Register);
7565   %}
7566   ins_pipe(pipe_class_memory);
7567 %}
7568 
7569 // Implement LoadPLocked. Must be ordered against changes of the memory location
7570 // by storePConditional.
7571 // Don't know whether this is ever used.
7572 instruct loadPLocked(iRegPdst dst, memory mem) %{
7573   match(Set dst (LoadPLocked mem));
7574   ins_cost(2*MEMORY_REF_COST);
7575 
7576   format %{ "LDARX   $dst, $mem \t// loadPLocked\n\t" %}
7577   size(4);
7578   ins_encode %{
7579     // TODO: PPC port $archOpcode(ppc64Opcode_ldarx);
7580     __ ldarx($dst$$Register, $mem$$Register, MacroAssembler::cmpxchgx_hint_atomic_update());
7581   %}
7582   ins_pipe(pipe_class_memory);
7583 %}
7584 
7585 //----------Compare-And-Swap---------------------------------------------------
7586 
7587 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
7588 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
7589 // matched.
7590 
7591 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2, flagsRegCR0 cr0) %{
7592   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
7593   effect(TEMP cr0);
7594   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7595   // Variable size: instruction count smaller if regs are disjoint.
7596   ins_encode %{
7597     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7598     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7599     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7600                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7601                 $res$$Register, true);
7602   %}
7603   ins_pipe(pipe_class_default);
7604 %}
7605 
7606 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2, flagsRegCR0 cr0) %{
7607   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
7608   effect(TEMP cr0);
7609   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7610   // Variable size: instruction count smaller if regs are disjoint.
7611   ins_encode %{
7612     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7613     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7614     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7615                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7616                 $res$$Register, true);
7617   %}
7618   ins_pipe(pipe_class_default);
7619 %}
7620 
7621 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
7622   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
7623   effect(TEMP cr0);
7624   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
7625   // Variable size: instruction count smaller if regs are disjoint.
7626   ins_encode %{
7627     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7628     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7629     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7630                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7631                 $res$$Register, NULL, true);
7632   %}
7633   ins_pipe(pipe_class_default);
7634 %}
7635 
7636 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2, flagsRegCR0 cr0) %{
7637   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
7638   effect(TEMP cr0);
7639   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
7640   // Variable size: instruction count smaller if regs are disjoint.
7641   ins_encode %{
7642     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7643     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7644     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7645                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7646                 $res$$Register, NULL, true);
7647   %}
7648   ins_pipe(pipe_class_default);
7649 %}
7650 
7651 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src, flagsRegCR0 cr0) %{
7652   match(Set res (GetAndAddI mem_ptr src));
7653   effect(TEMP cr0);
7654   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
7655   // Variable size: instruction count smaller if regs are disjoint.
7656   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
7657   ins_pipe(pipe_class_default);
7658 %}
7659 
7660 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src, flagsRegCR0 cr0) %{
7661   match(Set res (GetAndAddL mem_ptr src));
7662   effect(TEMP cr0);
7663   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
7664   // Variable size: instruction count smaller if regs are disjoint.
7665   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
7666   ins_pipe(pipe_class_default);
7667 %}
7668 
7669 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src, flagsRegCR0 cr0) %{
7670   match(Set res (GetAndSetI mem_ptr src));
7671   effect(TEMP cr0);
7672   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
7673   // Variable size: instruction count smaller if regs are disjoint.
7674   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7675   ins_pipe(pipe_class_default);
7676 %}
7677 
7678 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src, flagsRegCR0 cr0) %{
7679   match(Set res (GetAndSetL mem_ptr src));
7680   effect(TEMP cr0);
7681   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
7682   // Variable size: instruction count smaller if regs are disjoint.
7683   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7684   ins_pipe(pipe_class_default);
7685 %}
7686 
7687 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src, flagsRegCR0 cr0) %{
7688   match(Set res (GetAndSetP mem_ptr src));
7689   effect(TEMP cr0);
7690   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
7691   // Variable size: instruction count smaller if regs are disjoint.
7692   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7693   ins_pipe(pipe_class_default);
7694 %}
7695 
7696 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src, flagsRegCR0 cr0) %{
7697   match(Set res (GetAndSetN mem_ptr src));
7698   effect(TEMP cr0);
7699   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
7700   // Variable size: instruction count smaller if regs are disjoint.
7701   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7702   ins_pipe(pipe_class_default);
7703 %}
7704 
7705 //----------Arithmetic Instructions--------------------------------------------
7706 // Addition Instructions
7707 
7708 // Register Addition
7709 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
7710   match(Set dst (AddI src1 src2));
7711   format %{ "ADD     $dst, $src1, $src2" %}
7712   size(4);
7713   ins_encode %{
7714     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7715     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7716   %}
7717   ins_pipe(pipe_class_default);
7718 %}
7719 
7720 // Expand does not work with above instruct. (??)
7721 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7722   // no match-rule
7723   effect(DEF dst, USE src1, USE src2);
7724   format %{ "ADD     $dst, $src1, $src2" %}
7725   size(4);
7726   ins_encode %{
7727     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7728     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7729   %}
7730   ins_pipe(pipe_class_default);
7731 %}
7732 
7733 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
7734   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
7735   ins_cost(DEFAULT_COST*3);
7736 
7737   expand %{
7738     // FIXME: we should do this in the ideal world.
7739     iRegIdst tmp1;
7740     iRegIdst tmp2;
7741     addI_reg_reg(tmp1, src1, src2);
7742     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
7743     addI_reg_reg(dst, tmp1, tmp2);
7744   %}
7745 %}
7746 
7747 // Immediate Addition
7748 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7749   match(Set dst (AddI src1 src2));
7750   format %{ "ADDI    $dst, $src1, $src2" %}
7751   size(4);
7752   ins_encode %{
7753     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7754     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7755   %}
7756   ins_pipe(pipe_class_default);
7757 %}
7758 
7759 // Immediate Addition with 16-bit shifted operand
7760 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
7761   match(Set dst (AddI src1 src2));
7762   format %{ "ADDIS   $dst, $src1, $src2" %}
7763   size(4);
7764   ins_encode %{
7765     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7766     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7767   %}
7768   ins_pipe(pipe_class_default);
7769 %}
7770 
7771 // Long Addition
7772 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7773   match(Set dst (AddL src1 src2));
7774   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7775   size(4);
7776   ins_encode %{
7777     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7778     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7779   %}
7780   ins_pipe(pipe_class_default);
7781 %}
7782 
7783 // Expand does not work with above instruct. (??)
7784 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7785   // no match-rule
7786   effect(DEF dst, USE src1, USE src2);
7787   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7788   size(4);
7789   ins_encode %{
7790     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7791     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7792   %}
7793   ins_pipe(pipe_class_default);
7794 %}
7795 
7796 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
7797   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
7798   ins_cost(DEFAULT_COST*3);
7799 
7800   expand %{
7801     // FIXME: we should do this in the ideal world.
7802     iRegLdst tmp1;
7803     iRegLdst tmp2;
7804     addL_reg_reg(tmp1, src1, src2);
7805     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
7806     addL_reg_reg(dst, tmp1, tmp2);
7807   %}
7808 %}
7809 
7810 // AddL + ConvL2I.
7811 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7812   match(Set dst (ConvL2I (AddL src1 src2)));
7813 
7814   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
7815   size(4);
7816   ins_encode %{
7817     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7818     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7819   %}
7820   ins_pipe(pipe_class_default);
7821 %}
7822 
7823 // No constant pool entries required.
7824 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7825   match(Set dst (AddL src1 src2));
7826 
7827   format %{ "ADDI    $dst, $src1, $src2" %}
7828   size(4);
7829   ins_encode %{
7830     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7831     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7832   %}
7833   ins_pipe(pipe_class_default);
7834 %}
7835 
7836 // Long Immediate Addition with 16-bit shifted operand.
7837 // No constant pool entries required.
7838 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
7839   match(Set dst (AddL src1 src2));
7840 
7841   format %{ "ADDIS   $dst, $src1, $src2" %}
7842   size(4);
7843   ins_encode %{
7844     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7845     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7846   %}
7847   ins_pipe(pipe_class_default);
7848 %}
7849 
7850 // Pointer Register Addition
7851 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
7852   match(Set dst (AddP src1 src2));
7853   format %{ "ADD     $dst, $src1, $src2" %}
7854   size(4);
7855   ins_encode %{
7856     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7857     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7858   %}
7859   ins_pipe(pipe_class_default);
7860 %}
7861 
7862 // Pointer Immediate Addition
7863 // No constant pool entries required.
7864 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
7865   match(Set dst (AddP src1 src2));
7866 
7867   format %{ "ADDI    $dst, $src1, $src2" %}
7868   size(4);
7869   ins_encode %{
7870     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7871     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7872   %}
7873   ins_pipe(pipe_class_default);
7874 %}
7875 
7876 // Pointer Immediate Addition with 16-bit shifted operand.
7877 // No constant pool entries required.
7878 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
7879   match(Set dst (AddP src1 src2));
7880 
7881   format %{ "ADDIS   $dst, $src1, $src2" %}
7882   size(4);
7883   ins_encode %{
7884     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7885     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7886   %}
7887   ins_pipe(pipe_class_default);
7888 %}
7889 
7890 //---------------------
7891 // Subtraction Instructions
7892 
7893 // Register Subtraction
7894 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7895   match(Set dst (SubI src1 src2));
7896   format %{ "SUBF    $dst, $src2, $src1" %}
7897   size(4);
7898   ins_encode %{
7899     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7900     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7901   %}
7902   ins_pipe(pipe_class_default);
7903 %}
7904 
7905 // Immediate Subtraction
7906 // Immediate Subtraction: The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
7907 // Don't try to use addi with - $src2$$constant since it can overflow when $src2$$constant == minI16.
7908 
7909 // SubI from constant (using subfic).
7910 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
7911   match(Set dst (SubI src1 src2));
7912   format %{ "SUBI    $dst, $src1, $src2" %}
7913 
7914   size(4);
7915   ins_encode %{
7916     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
7917     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
7918   %}
7919   ins_pipe(pipe_class_default);
7920 %}
7921 
7922 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
7923 // positive integers and 0xF...F for negative ones.
7924 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
7925   // no match-rule, false predicate
7926   effect(DEF dst, USE src);
7927   predicate(false);
7928 
7929   format %{ "SRAWI   $dst, $src, #31" %}
7930   size(4);
7931   ins_encode %{
7932     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
7933     __ srawi($dst$$Register, $src$$Register, 0x1f);
7934   %}
7935   ins_pipe(pipe_class_default);
7936 %}
7937 
7938 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
7939   match(Set dst (AbsI src));
7940   ins_cost(DEFAULT_COST*3);
7941 
7942   expand %{
7943     iRegIdst tmp1;
7944     iRegIdst tmp2;
7945     signmask32I_regI(tmp1, src);
7946     xorI_reg_reg(tmp2, tmp1, src);
7947     subI_reg_reg(dst, tmp2, tmp1);
7948   %}
7949 %}
7950 
7951 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
7952   match(Set dst (SubI zero src2));
7953   format %{ "NEG     $dst, $src2" %}
7954   size(4);
7955   ins_encode %{
7956     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7957     __ neg($dst$$Register, $src2$$Register);
7958   %}
7959   ins_pipe(pipe_class_default);
7960 %}
7961 
7962 // Long subtraction
7963 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7964   match(Set dst (SubL src1 src2));
7965   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
7966   size(4);
7967   ins_encode %{
7968     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7969     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7970   %}
7971   ins_pipe(pipe_class_default);
7972 %}
7973 
7974 // SubL + convL2I.
7975 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7976   match(Set dst (ConvL2I (SubL src1 src2)));
7977 
7978   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
7979   size(4);
7980   ins_encode %{
7981     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7982     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7983   %}
7984   ins_pipe(pipe_class_default);
7985 %}
7986 
7987 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
7988 // positive longs and 0xF...F for negative ones.
7989 instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
7990   // no match-rule, false predicate
7991   effect(DEF dst, USE src);
7992   predicate(false);
7993 
7994   format %{ "SRADI   $dst, $src, #63" %}
7995   size(4);
7996   ins_encode %{
7997     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
7998     __ sradi($dst$$Register, $src$$Register, 0x3f);
7999   %}
8000   ins_pipe(pipe_class_default);
8001 %}
8002 
8003 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
8004 // positive longs and 0xF...F for negative ones.
8005 instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
8006   // no match-rule, false predicate
8007   effect(DEF dst, USE src);
8008   predicate(false);
8009 
8010   format %{ "SRADI   $dst, $src, #63" %}
8011   size(4);
8012   ins_encode %{
8013     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8014     __ sradi($dst$$Register, $src$$Register, 0x3f);
8015   %}
8016   ins_pipe(pipe_class_default);
8017 %}
8018 
8019 // Long negation
8020 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
8021   match(Set dst (SubL zero src2));
8022   format %{ "NEG     $dst, $src2 \t// long" %}
8023   size(4);
8024   ins_encode %{
8025     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8026     __ neg($dst$$Register, $src2$$Register);
8027   %}
8028   ins_pipe(pipe_class_default);
8029 %}
8030 
8031 // NegL + ConvL2I.
8032 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
8033   match(Set dst (ConvL2I (SubL zero src2)));
8034 
8035   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
8036   size(4);
8037   ins_encode %{
8038     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8039     __ neg($dst$$Register, $src2$$Register);
8040   %}
8041   ins_pipe(pipe_class_default);
8042 %}
8043 
8044 // Multiplication Instructions
8045 // Integer Multiplication
8046 
8047 // Register Multiplication
8048 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8049   match(Set dst (MulI src1 src2));
8050   ins_cost(DEFAULT_COST);
8051 
8052   format %{ "MULLW   $dst, $src1, $src2" %}
8053   size(4);
8054   ins_encode %{
8055     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
8056     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
8057   %}
8058   ins_pipe(pipe_class_default);
8059 %}
8060 
8061 // Immediate Multiplication
8062 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
8063   match(Set dst (MulI src1 src2));
8064   ins_cost(DEFAULT_COST);
8065 
8066   format %{ "MULLI   $dst, $src1, $src2" %}
8067   size(4);
8068   ins_encode %{
8069     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
8070     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
8071   %}
8072   ins_pipe(pipe_class_default);
8073 %}
8074 
8075 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8076   match(Set dst (MulL src1 src2));
8077   ins_cost(DEFAULT_COST);
8078 
8079   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
8080   size(4);
8081   ins_encode %{
8082     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
8083     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
8084   %}
8085   ins_pipe(pipe_class_default);
8086 %}
8087 
8088 // Multiply high for optimized long division by constant.
8089 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8090   match(Set dst (MulHiL src1 src2));
8091   ins_cost(DEFAULT_COST);
8092 
8093   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
8094   size(4);
8095   ins_encode %{
8096     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
8097     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
8098   %}
8099   ins_pipe(pipe_class_default);
8100 %}
8101 
8102 // Immediate Multiplication
8103 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
8104   match(Set dst (MulL src1 src2));
8105   ins_cost(DEFAULT_COST);
8106 
8107   format %{ "MULLI   $dst, $src1, $src2" %}
8108   size(4);
8109   ins_encode %{
8110     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
8111     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
8112   %}
8113   ins_pipe(pipe_class_default);
8114 %}
8115 
8116 // Integer Division with Immediate -1: Negate.
8117 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
8118   match(Set dst (DivI src1 src2));
8119   ins_cost(DEFAULT_COST);
8120 
8121   format %{ "NEG     $dst, $src1 \t// /-1" %}
8122   size(4);
8123   ins_encode %{
8124     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8125     __ neg($dst$$Register, $src1$$Register);
8126   %}
8127   ins_pipe(pipe_class_default);
8128 %}
8129 
8130 // Integer Division with constant, but not -1.
8131 // We should be able to improve this by checking the type of src2.
8132 // It might well be that src2 is known to be positive.
8133 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8134   match(Set dst (DivI src1 src2));
8135   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
8136   ins_cost(2*DEFAULT_COST);
8137 
8138   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
8139   size(4);
8140   ins_encode %{
8141     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
8142     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
8143   %}
8144   ins_pipe(pipe_class_default);
8145 %}
8146 
8147 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsRegSrc crx, iRegIsrc src1) %{
8148   effect(USE_DEF dst, USE src1, USE crx);
8149   predicate(false);
8150 
8151   ins_variable_size_depending_on_alignment(true);
8152 
8153   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8154   // Worst case is branch + move + stop, no stop without scheduler.
8155   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8156   ins_encode %{
8157     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8158     Label done;
8159     __ bne($crx$$CondRegister, done);
8160     __ neg($dst$$Register, $src1$$Register);
8161     // TODO PPC port __ endgroup_if_needed(_size == 12);
8162     __ bind(done);
8163   %}
8164   ins_pipe(pipe_class_default);
8165 %}
8166 
8167 // Integer Division with Registers not containing constants.
8168 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8169   match(Set dst (DivI src1 src2));
8170   ins_cost(10*DEFAULT_COST);
8171 
8172   expand %{
8173     immI16 imm %{ (int)-1 %}
8174     flagsReg tmp1;
8175     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8176     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8177     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8178   %}
8179 %}
8180 
8181 // Long Division with Immediate -1: Negate.
8182 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
8183   match(Set dst (DivL src1 src2));
8184   ins_cost(DEFAULT_COST);
8185 
8186   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
8187   size(4);
8188   ins_encode %{
8189     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8190     __ neg($dst$$Register, $src1$$Register);
8191   %}
8192   ins_pipe(pipe_class_default);
8193 %}
8194 
8195 // Long Division with constant, but not -1.
8196 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8197   match(Set dst (DivL src1 src2));
8198   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
8199   ins_cost(2*DEFAULT_COST);
8200 
8201   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
8202   size(4);
8203   ins_encode %{
8204     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
8205     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
8206   %}
8207   ins_pipe(pipe_class_default);
8208 %}
8209 
8210 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsRegSrc crx, iRegLsrc src1) %{
8211   effect(USE_DEF dst, USE src1, USE crx);
8212   predicate(false);
8213 
8214   ins_variable_size_depending_on_alignment(true);
8215 
8216   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8217   // Worst case is branch + move + stop, no stop without scheduler.
8218   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8219   ins_encode %{
8220     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8221     Label done;
8222     __ bne($crx$$CondRegister, done);
8223     __ neg($dst$$Register, $src1$$Register);
8224     // TODO PPC port __ endgroup_if_needed(_size == 12);
8225     __ bind(done);
8226   %}
8227   ins_pipe(pipe_class_default);
8228 %}
8229 
8230 // Long Division with Registers not containing constants.
8231 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8232   match(Set dst (DivL src1 src2));
8233   ins_cost(10*DEFAULT_COST);
8234 
8235   expand %{
8236     immL16 imm %{ (int)-1 %}
8237     flagsReg tmp1;
8238     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8239     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8240     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8241   %}
8242 %}
8243 
8244 // Integer Remainder with registers.
8245 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8246   match(Set dst (ModI src1 src2));
8247   ins_cost(10*DEFAULT_COST);
8248 
8249   expand %{
8250     immI16 imm %{ (int)-1 %}
8251     flagsReg tmp1;
8252     iRegIdst tmp2;
8253     iRegIdst tmp3;
8254     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
8255     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
8256     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
8257     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
8258     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
8259   %}
8260 %}
8261 
8262 // Long Remainder with registers
8263 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8264   match(Set dst (ModL src1 src2));
8265   ins_cost(10*DEFAULT_COST);
8266 
8267   expand %{
8268     immL16 imm %{ (int)-1 %}
8269     flagsReg tmp1;
8270     iRegLdst tmp2;
8271     iRegLdst tmp3;
8272     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
8273     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
8274     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
8275     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
8276     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
8277   %}
8278 %}
8279 
8280 // Integer Shift Instructions
8281 
8282 // Register Shift Left
8283 
8284 // Clear all but the lowest #mask bits.
8285 // Used to normalize shift amounts in registers.
8286 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
8287   // no match-rule, false predicate
8288   effect(DEF dst, USE src, USE mask);
8289   predicate(false);
8290 
8291   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
8292   size(4);
8293   ins_encode %{
8294     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8295     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
8296   %}
8297   ins_pipe(pipe_class_default);
8298 %}
8299 
8300 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8301   // no match-rule, false predicate
8302   effect(DEF dst, USE src1, USE src2);
8303   predicate(false);
8304 
8305   format %{ "SLW     $dst, $src1, $src2" %}
8306   size(4);
8307   ins_encode %{
8308     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
8309     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
8310   %}
8311   ins_pipe(pipe_class_default);
8312 %}
8313 
8314 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8315   match(Set dst (LShiftI src1 src2));
8316   ins_cost(DEFAULT_COST*2);
8317   expand %{
8318     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8319     iRegIdst tmpI;
8320     maskI_reg_imm(tmpI, src2, mask);
8321     lShiftI_reg_reg(dst, src1, tmpI);
8322   %}
8323 %}
8324 
8325 // Register Shift Left Immediate
8326 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8327   match(Set dst (LShiftI src1 src2));
8328 
8329   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
8330   size(4);
8331   ins_encode %{
8332     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8333     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8334   %}
8335   ins_pipe(pipe_class_default);
8336 %}
8337 
8338 // AndI with negpow2-constant + LShiftI
8339 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8340   match(Set dst (LShiftI (AndI src1 src2) src3));
8341   predicate(UseRotateAndMaskInstructionsPPC64);
8342 
8343   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
8344   size(4);
8345   ins_encode %{
8346     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8347     long src2      = $src2$$constant;
8348     long src3      = $src3$$constant;
8349     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8350     if (maskbits >= 32) {
8351       __ li($dst$$Register, 0); // addi
8352     } else {
8353       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
8354     }
8355   %}
8356   ins_pipe(pipe_class_default);
8357 %}
8358 
8359 // RShiftI + AndI with negpow2-constant + LShiftI
8360 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8361   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
8362   predicate(UseRotateAndMaskInstructionsPPC64);
8363 
8364   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
8365   size(4);
8366   ins_encode %{
8367     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8368     long src2      = $src2$$constant;
8369     long src3      = $src3$$constant;
8370     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8371     if (maskbits >= 32) {
8372       __ li($dst$$Register, 0); // addi
8373     } else {
8374       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
8375     }
8376   %}
8377   ins_pipe(pipe_class_default);
8378 %}
8379 
8380 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8381   // no match-rule, false predicate
8382   effect(DEF dst, USE src1, USE src2);
8383   predicate(false);
8384 
8385   format %{ "SLD     $dst, $src1, $src2" %}
8386   size(4);
8387   ins_encode %{
8388     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
8389     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
8390   %}
8391   ins_pipe(pipe_class_default);
8392 %}
8393 
8394 // Register Shift Left
8395 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8396   match(Set dst (LShiftL src1 src2));
8397   ins_cost(DEFAULT_COST*2);
8398   expand %{
8399     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8400     iRegIdst tmpI;
8401     maskI_reg_imm(tmpI, src2, mask);
8402     lShiftL_regL_regI(dst, src1, tmpI);
8403   %}
8404 %}
8405 
8406 // Register Shift Left Immediate
8407 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8408   match(Set dst (LShiftL src1 src2));
8409   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
8410   size(4);
8411   ins_encode %{
8412     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8413     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8414   %}
8415   ins_pipe(pipe_class_default);
8416 %}
8417 
8418 // If we shift more than 32 bits, we need not convert I2L.
8419 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
8420   match(Set dst (LShiftL (ConvI2L src1) src2));
8421   ins_cost(DEFAULT_COST);
8422 
8423   size(4);
8424   format %{ "SLDI    $dst, i2l($src1), $src2" %}
8425   ins_encode %{
8426     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8427     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8428   %}
8429   ins_pipe(pipe_class_default);
8430 %}
8431 
8432 // Shift a postivie int to the left.
8433 // Clrlsldi clears the upper 32 bits and shifts.
8434 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
8435   match(Set dst (LShiftL (ConvI2L src1) src2));
8436   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
8437 
8438   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
8439   size(4);
8440   ins_encode %{
8441     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
8442     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
8443   %}
8444   ins_pipe(pipe_class_default);
8445 %}
8446 
8447 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8448   // no match-rule, false predicate
8449   effect(DEF dst, USE src1, USE src2);
8450   predicate(false);
8451 
8452   format %{ "SRAW    $dst, $src1, $src2" %}
8453   size(4);
8454   ins_encode %{
8455     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
8456     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
8457   %}
8458   ins_pipe(pipe_class_default);
8459 %}
8460 
8461 // Register Arithmetic Shift Right
8462 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8463   match(Set dst (RShiftI src1 src2));
8464   ins_cost(DEFAULT_COST*2);
8465   expand %{
8466     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8467     iRegIdst tmpI;
8468     maskI_reg_imm(tmpI, src2, mask);
8469     arShiftI_reg_reg(dst, src1, tmpI);
8470   %}
8471 %}
8472 
8473 // Register Arithmetic Shift Right Immediate
8474 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8475   match(Set dst (RShiftI src1 src2));
8476 
8477   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
8478   size(4);
8479   ins_encode %{
8480     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
8481     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8482   %}
8483   ins_pipe(pipe_class_default);
8484 %}
8485 
8486 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8487   // no match-rule, false predicate
8488   effect(DEF dst, USE src1, USE src2);
8489   predicate(false);
8490 
8491   format %{ "SRAD    $dst, $src1, $src2" %}
8492   size(4);
8493   ins_encode %{
8494     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
8495     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
8496   %}
8497   ins_pipe(pipe_class_default);
8498 %}
8499 
8500 // Register Shift Right Arithmetic Long
8501 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8502   match(Set dst (RShiftL src1 src2));
8503   ins_cost(DEFAULT_COST*2);
8504 
8505   expand %{
8506     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8507     iRegIdst tmpI;
8508     maskI_reg_imm(tmpI, src2, mask);
8509     arShiftL_regL_regI(dst, src1, tmpI);
8510   %}
8511 %}
8512 
8513 // Register Shift Right Immediate
8514 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8515   match(Set dst (RShiftL src1 src2));
8516 
8517   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
8518   size(4);
8519   ins_encode %{
8520     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8521     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8522   %}
8523   ins_pipe(pipe_class_default);
8524 %}
8525 
8526 // RShiftL + ConvL2I
8527 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8528   match(Set dst (ConvL2I (RShiftL src1 src2)));
8529 
8530   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8531   size(4);
8532   ins_encode %{
8533     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8534     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8535   %}
8536   ins_pipe(pipe_class_default);
8537 %}
8538 
8539 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8540   // no match-rule, false predicate
8541   effect(DEF dst, USE src1, USE src2);
8542   predicate(false);
8543 
8544   format %{ "SRW     $dst, $src1, $src2" %}
8545   size(4);
8546   ins_encode %{
8547     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
8548     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
8549   %}
8550   ins_pipe(pipe_class_default);
8551 %}
8552 
8553 // Register Shift Right
8554 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8555   match(Set dst (URShiftI src1 src2));
8556   ins_cost(DEFAULT_COST*2);
8557 
8558   expand %{
8559     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8560     iRegIdst tmpI;
8561     maskI_reg_imm(tmpI, src2, mask);
8562     urShiftI_reg_reg(dst, src1, tmpI);
8563   %}
8564 %}
8565 
8566 // Register Shift Right Immediate
8567 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8568   match(Set dst (URShiftI src1 src2));
8569 
8570   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
8571   size(4);
8572   ins_encode %{
8573     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8574     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8575   %}
8576   ins_pipe(pipe_class_default);
8577 %}
8578 
8579 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8580   // no match-rule, false predicate
8581   effect(DEF dst, USE src1, USE src2);
8582   predicate(false);
8583 
8584   format %{ "SRD     $dst, $src1, $src2" %}
8585   size(4);
8586   ins_encode %{
8587     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
8588     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
8589   %}
8590   ins_pipe(pipe_class_default);
8591 %}
8592 
8593 // Register Shift Right
8594 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8595   match(Set dst (URShiftL src1 src2));
8596   ins_cost(DEFAULT_COST*2);
8597 
8598   expand %{
8599     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8600     iRegIdst tmpI;
8601     maskI_reg_imm(tmpI, src2, mask);
8602     urShiftL_regL_regI(dst, src1, tmpI);
8603   %}
8604 %}
8605 
8606 // Register Shift Right Immediate
8607 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8608   match(Set dst (URShiftL src1 src2));
8609 
8610   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
8611   size(4);
8612   ins_encode %{
8613     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8614     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8615   %}
8616   ins_pipe(pipe_class_default);
8617 %}
8618 
8619 // URShiftL + ConvL2I.
8620 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8621   match(Set dst (ConvL2I (URShiftL src1 src2)));
8622 
8623   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8624   size(4);
8625   ins_encode %{
8626     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8627     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8628   %}
8629   ins_pipe(pipe_class_default);
8630 %}
8631 
8632 // Register Shift Right Immediate with a CastP2X
8633 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
8634   match(Set dst (URShiftL (CastP2X src1) src2));
8635 
8636   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
8637   size(4);
8638   ins_encode %{
8639     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8640     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8641   %}
8642   ins_pipe(pipe_class_default);
8643 %}
8644 
8645 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
8646   match(Set dst (ConvL2I (ConvI2L src)));
8647 
8648   format %{ "EXTSW   $dst, $src \t// int->int" %}
8649   size(4);
8650   ins_encode %{
8651     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
8652     __ extsw($dst$$Register, $src$$Register);
8653   %}
8654   ins_pipe(pipe_class_default);
8655 %}
8656 
8657 //----------Rotate Instructions------------------------------------------------
8658 
8659 // Rotate Left by 8-bit immediate
8660 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
8661   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
8662   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8663 
8664   format %{ "ROTLWI  $dst, $src, $lshift" %}
8665   size(4);
8666   ins_encode %{
8667     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8668     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
8669   %}
8670   ins_pipe(pipe_class_default);
8671 %}
8672 
8673 // Rotate Right by 8-bit immediate
8674 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
8675   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
8676   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8677 
8678   format %{ "ROTRWI  $dst, $rshift" %}
8679   size(4);
8680   ins_encode %{
8681     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8682     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
8683   %}
8684   ins_pipe(pipe_class_default);
8685 %}
8686 
8687 //----------Floating Point Arithmetic Instructions-----------------------------
8688 
8689 // Add float single precision
8690 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
8691   match(Set dst (AddF src1 src2));
8692 
8693   format %{ "FADDS   $dst, $src1, $src2" %}
8694   size(4);
8695   ins_encode %{
8696     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
8697     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8698   %}
8699   ins_pipe(pipe_class_default);
8700 %}
8701 
8702 // Add float double precision
8703 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
8704   match(Set dst (AddD src1 src2));
8705 
8706   format %{ "FADD    $dst, $src1, $src2" %}
8707   size(4);
8708   ins_encode %{
8709     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
8710     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8711   %}
8712   ins_pipe(pipe_class_default);
8713 %}
8714 
8715 // Sub float single precision
8716 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
8717   match(Set dst (SubF src1 src2));
8718 
8719   format %{ "FSUBS   $dst, $src1, $src2" %}
8720   size(4);
8721   ins_encode %{
8722     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
8723     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8724   %}
8725   ins_pipe(pipe_class_default);
8726 %}
8727 
8728 // Sub float double precision
8729 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
8730   match(Set dst (SubD src1 src2));
8731   format %{ "FSUB    $dst, $src1, $src2" %}
8732   size(4);
8733   ins_encode %{
8734     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
8735     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8736   %}
8737   ins_pipe(pipe_class_default);
8738 %}
8739 
8740 // Mul float single precision
8741 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
8742   match(Set dst (MulF src1 src2));
8743   format %{ "FMULS   $dst, $src1, $src2" %}
8744   size(4);
8745   ins_encode %{
8746     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
8747     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8748   %}
8749   ins_pipe(pipe_class_default);
8750 %}
8751 
8752 // Mul float double precision
8753 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
8754   match(Set dst (MulD src1 src2));
8755   format %{ "FMUL    $dst, $src1, $src2" %}
8756   size(4);
8757   ins_encode %{
8758     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
8759     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8760   %}
8761   ins_pipe(pipe_class_default);
8762 %}
8763 
8764 // Div float single precision
8765 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
8766   match(Set dst (DivF src1 src2));
8767   format %{ "FDIVS   $dst, $src1, $src2" %}
8768   size(4);
8769   ins_encode %{
8770     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
8771     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8772   %}
8773   ins_pipe(pipe_class_default);
8774 %}
8775 
8776 // Div float double precision
8777 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
8778   match(Set dst (DivD src1 src2));
8779   format %{ "FDIV    $dst, $src1, $src2" %}
8780   size(4);
8781   ins_encode %{
8782     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
8783     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8784   %}
8785   ins_pipe(pipe_class_default);
8786 %}
8787 
8788 // Absolute float single precision
8789 instruct absF_reg(regF dst, regF src) %{
8790   match(Set dst (AbsF src));
8791   format %{ "FABS    $dst, $src \t// float" %}
8792   size(4);
8793   ins_encode %{
8794     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8795     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8796   %}
8797   ins_pipe(pipe_class_default);
8798 %}
8799 
8800 // Absolute float double precision
8801 instruct absD_reg(regD dst, regD src) %{
8802   match(Set dst (AbsD src));
8803   format %{ "FABS    $dst, $src \t// double" %}
8804   size(4);
8805   ins_encode %{
8806     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8807     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8808   %}
8809   ins_pipe(pipe_class_default);
8810 %}
8811 
8812 instruct negF_reg(regF dst, regF src) %{
8813   match(Set dst (NegF src));
8814   format %{ "FNEG    $dst, $src \t// float" %}
8815   size(4);
8816   ins_encode %{
8817     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8818     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8819   %}
8820   ins_pipe(pipe_class_default);
8821 %}
8822 
8823 instruct negD_reg(regD dst, regD src) %{
8824   match(Set dst (NegD src));
8825   format %{ "FNEG    $dst, $src \t// double" %}
8826   size(4);
8827   ins_encode %{
8828     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8829     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8830   %}
8831   ins_pipe(pipe_class_default);
8832 %}
8833 
8834 // AbsF + NegF.
8835 instruct negF_absF_reg(regF dst, regF src) %{
8836   match(Set dst (NegF (AbsF src)));
8837   format %{ "FNABS   $dst, $src \t// float" %}
8838   size(4);
8839   ins_encode %{
8840     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8841     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8842   %}
8843   ins_pipe(pipe_class_default);
8844 %}
8845 
8846 // AbsD + NegD.
8847 instruct negD_absD_reg(regD dst, regD src) %{
8848   match(Set dst (NegD (AbsD src)));
8849   format %{ "FNABS   $dst, $src \t// double" %}
8850   size(4);
8851   ins_encode %{
8852     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8853     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8854   %}
8855   ins_pipe(pipe_class_default);
8856 %}
8857 
8858 // VM_Version::has_fsqrt() decides if this node will be used.
8859 // Sqrt float double precision
8860 instruct sqrtD_reg(regD dst, regD src) %{
8861   match(Set dst (SqrtD src));
8862   format %{ "FSQRT   $dst, $src" %}
8863   size(4);
8864   ins_encode %{
8865     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
8866     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
8867   %}
8868   ins_pipe(pipe_class_default);
8869 %}
8870 
8871 // Single-precision sqrt.
8872 instruct sqrtF_reg(regF dst, regF src) %{
8873   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8874   predicate(VM_Version::has_fsqrts());
8875   ins_cost(DEFAULT_COST);
8876 
8877   format %{ "FSQRTS  $dst, $src" %}
8878   size(4);
8879   ins_encode %{
8880     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
8881     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
8882   %}
8883   ins_pipe(pipe_class_default);
8884 %}
8885 
8886 instruct roundDouble_nop(regD dst) %{
8887   match(Set dst (RoundDouble dst));
8888   ins_cost(0);
8889 
8890   format %{ " -- \t// RoundDouble not needed - empty" %}
8891   size(0);
8892   // PPC results are already "rounded" (i.e., normal-format IEEE).
8893   ins_encode( /*empty*/ );
8894   ins_pipe(pipe_class_default);
8895 %}
8896 
8897 instruct roundFloat_nop(regF dst) %{
8898   match(Set dst (RoundFloat dst));
8899   ins_cost(0);
8900 
8901   format %{ " -- \t// RoundFloat not needed - empty" %}
8902   size(0);
8903   // PPC results are already "rounded" (i.e., normal-format IEEE).
8904   ins_encode( /*empty*/ );
8905   ins_pipe(pipe_class_default);
8906 %}
8907 
8908 //----------Logical Instructions-----------------------------------------------
8909 
8910 // And Instructions
8911 
8912 // Register And
8913 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8914   match(Set dst (AndI src1 src2));
8915   format %{ "AND     $dst, $src1, $src2" %}
8916   size(4);
8917   ins_encode %{
8918     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8919     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8920   %}
8921   ins_pipe(pipe_class_default);
8922 %}
8923 
8924 // Immediate And
8925 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
8926   match(Set dst (AndI src1 src2));
8927   effect(KILL cr0);
8928 
8929   format %{ "ANDI    $dst, $src1, $src2" %}
8930   size(4);
8931   ins_encode %{
8932     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8933     // FIXME: avoid andi_ ?
8934     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8935   %}
8936   ins_pipe(pipe_class_default);
8937 %}
8938 
8939 // Immediate And where the immediate is a negative power of 2.
8940 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
8941   match(Set dst (AndI src1 src2));
8942   format %{ "ANDWI   $dst, $src1, $src2" %}
8943   size(4);
8944   ins_encode %{
8945     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8946     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
8947   %}
8948   ins_pipe(pipe_class_default);
8949 %}
8950 
8951 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
8952   match(Set dst (AndI src1 src2));
8953   format %{ "ANDWI   $dst, $src1, $src2" %}
8954   size(4);
8955   ins_encode %{
8956     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8957     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8958   %}
8959   ins_pipe(pipe_class_default);
8960 %}
8961 
8962 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
8963   match(Set dst (AndI src1 src2));
8964   predicate(UseRotateAndMaskInstructionsPPC64);
8965   format %{ "ANDWI   $dst, $src1, $src2" %}
8966   size(4);
8967   ins_encode %{
8968     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8969     __ rlwinm($dst$$Register, $src1$$Register, 0,
8970               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
8971   %}
8972   ins_pipe(pipe_class_default);
8973 %}
8974 
8975 // Register And Long
8976 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8977   match(Set dst (AndL src1 src2));
8978   ins_cost(DEFAULT_COST);
8979 
8980   format %{ "AND     $dst, $src1, $src2 \t// long" %}
8981   size(4);
8982   ins_encode %{
8983     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8984     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8985   %}
8986   ins_pipe(pipe_class_default);
8987 %}
8988 
8989 // Immediate And long
8990 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
8991   match(Set dst (AndL src1 src2));
8992   effect(KILL cr0);
8993 
8994   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
8995   size(4);
8996   ins_encode %{
8997     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8998     // FIXME: avoid andi_ ?
8999     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
9000   %}
9001   ins_pipe(pipe_class_default);
9002 %}
9003 
9004 // Immediate And Long where the immediate is a negative power of 2.
9005 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
9006   match(Set dst (AndL src1 src2));
9007   format %{ "ANDDI   $dst, $src1, $src2" %}
9008   size(4);
9009   ins_encode %{
9010     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
9011     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
9012   %}
9013   ins_pipe(pipe_class_default);
9014 %}
9015 
9016 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
9017   match(Set dst (AndL src1 src2));
9018   format %{ "ANDDI   $dst, $src1, $src2" %}
9019   size(4);
9020   ins_encode %{
9021     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9022     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
9023   %}
9024   ins_pipe(pipe_class_default);
9025 %}
9026 
9027 // AndL + ConvL2I.
9028 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
9029   match(Set dst (ConvL2I (AndL src1 src2)));
9030   ins_cost(DEFAULT_COST);
9031 
9032   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
9033   size(4);
9034   ins_encode %{
9035     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9036     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
9037   %}
9038   ins_pipe(pipe_class_default);
9039 %}
9040 
9041 // Or Instructions
9042 
9043 // Register Or
9044 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9045   match(Set dst (OrI src1 src2));
9046   format %{ "OR      $dst, $src1, $src2" %}
9047   size(4);
9048   ins_encode %{
9049     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9050     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9051   %}
9052   ins_pipe(pipe_class_default);
9053 %}
9054 
9055 // Expand does not work with above instruct. (??)
9056 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9057   // no match-rule
9058   effect(DEF dst, USE src1, USE src2);
9059   format %{ "OR      $dst, $src1, $src2" %}
9060   size(4);
9061   ins_encode %{
9062     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9063     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9064   %}
9065   ins_pipe(pipe_class_default);
9066 %}
9067 
9068 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9069   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
9070   ins_cost(DEFAULT_COST*3);
9071 
9072   expand %{
9073     // FIXME: we should do this in the ideal world.
9074     iRegIdst tmp1;
9075     iRegIdst tmp2;
9076     orI_reg_reg(tmp1, src1, src2);
9077     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
9078     orI_reg_reg(dst, tmp1, tmp2);
9079   %}
9080 %}
9081 
9082 // Immediate Or
9083 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9084   match(Set dst (OrI src1 src2));
9085   format %{ "ORI     $dst, $src1, $src2" %}
9086   size(4);
9087   ins_encode %{
9088     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9089     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
9090   %}
9091   ins_pipe(pipe_class_default);
9092 %}
9093 
9094 // Register Or Long
9095 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9096   match(Set dst (OrL src1 src2));
9097   ins_cost(DEFAULT_COST);
9098 
9099   size(4);
9100   format %{ "OR      $dst, $src1, $src2 \t// long" %}
9101   ins_encode %{
9102     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9103     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9104   %}
9105   ins_pipe(pipe_class_default);
9106 %}
9107 
9108 // OrL + ConvL2I.
9109 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9110   match(Set dst (ConvL2I (OrL src1 src2)));
9111   ins_cost(DEFAULT_COST);
9112 
9113   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
9114   size(4);
9115   ins_encode %{
9116     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9117     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9118   %}
9119   ins_pipe(pipe_class_default);
9120 %}
9121 
9122 // Immediate Or long
9123 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
9124   match(Set dst (OrL src1 con));
9125   ins_cost(DEFAULT_COST);
9126 
9127   format %{ "ORI     $dst, $src1, $con \t// long" %}
9128   size(4);
9129   ins_encode %{
9130     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9131     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
9132   %}
9133   ins_pipe(pipe_class_default);
9134 %}
9135 
9136 // Xor Instructions
9137 
9138 // Register Xor
9139 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9140   match(Set dst (XorI src1 src2));
9141   format %{ "XOR     $dst, $src1, $src2" %}
9142   size(4);
9143   ins_encode %{
9144     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9145     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9146   %}
9147   ins_pipe(pipe_class_default);
9148 %}
9149 
9150 // Expand does not work with above instruct. (??)
9151 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9152   // no match-rule
9153   effect(DEF dst, USE src1, USE src2);
9154   format %{ "XOR     $dst, $src1, $src2" %}
9155   size(4);
9156   ins_encode %{
9157     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9158     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9159   %}
9160   ins_pipe(pipe_class_default);
9161 %}
9162 
9163 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9164   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
9165   ins_cost(DEFAULT_COST*3);
9166 
9167   expand %{
9168     // FIXME: we should do this in the ideal world.
9169     iRegIdst tmp1;
9170     iRegIdst tmp2;
9171     xorI_reg_reg(tmp1, src1, src2);
9172     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
9173     xorI_reg_reg(dst, tmp1, tmp2);
9174   %}
9175 %}
9176 
9177 // Immediate Xor
9178 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9179   match(Set dst (XorI src1 src2));
9180   format %{ "XORI    $dst, $src1, $src2" %}
9181   size(4);
9182   ins_encode %{
9183     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9184     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9185   %}
9186   ins_pipe(pipe_class_default);
9187 %}
9188 
9189 // Register Xor Long
9190 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9191   match(Set dst (XorL src1 src2));
9192   ins_cost(DEFAULT_COST);
9193 
9194   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
9195   size(4);
9196   ins_encode %{
9197     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9198     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9199   %}
9200   ins_pipe(pipe_class_default);
9201 %}
9202 
9203 // XorL + ConvL2I.
9204 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9205   match(Set dst (ConvL2I (XorL src1 src2)));
9206   ins_cost(DEFAULT_COST);
9207 
9208   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
9209   size(4);
9210   ins_encode %{
9211     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9212     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9213   %}
9214   ins_pipe(pipe_class_default);
9215 %}
9216 
9217 // Immediate Xor Long
9218 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
9219   match(Set dst (XorL src1 src2));
9220   ins_cost(DEFAULT_COST);
9221 
9222   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
9223   size(4);
9224   ins_encode %{
9225     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9226     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9227   %}
9228   ins_pipe(pipe_class_default);
9229 %}
9230 
9231 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
9232   match(Set dst (XorI src1 src2));
9233   ins_cost(DEFAULT_COST);
9234 
9235   format %{ "NOT     $dst, $src1 ($src2)" %}
9236   size(4);
9237   ins_encode %{
9238     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9239     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9240   %}
9241   ins_pipe(pipe_class_default);
9242 %}
9243 
9244 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
9245   match(Set dst (XorL src1 src2));
9246   ins_cost(DEFAULT_COST);
9247 
9248   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
9249   size(4);
9250   ins_encode %{
9251     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9252     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9253   %}
9254   ins_pipe(pipe_class_default);
9255 %}
9256 
9257 // And-complement
9258 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
9259   match(Set dst (AndI (XorI src1 src2) src3));
9260   ins_cost(DEFAULT_COST);
9261 
9262   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
9263   size(4);
9264   ins_encode( enc_andc(dst, src3, src1) );
9265   ins_pipe(pipe_class_default);
9266 %}
9267 
9268 // And-complement
9269 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9270   // no match-rule, false predicate
9271   effect(DEF dst, USE src1, USE src2);
9272   predicate(false);
9273 
9274   format %{ "ANDC    $dst, $src1, $src2" %}
9275   size(4);
9276   ins_encode %{
9277     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
9278     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
9279   %}
9280   ins_pipe(pipe_class_default);
9281 %}
9282 
9283 //----------Moves between int/long and float/double----------------------------
9284 //
9285 // The following rules move values from int/long registers/stack-locations
9286 // to float/double registers/stack-locations and vice versa, without doing any
9287 // conversions. These rules are used to implement the bit-conversion methods
9288 // of java.lang.Float etc., e.g.
9289 //   int   floatToIntBits(float value)
9290 //   float intBitsToFloat(int bits)
9291 //
9292 // Notes on the implementation on ppc64:
9293 // We only provide rules which move between a register and a stack-location,
9294 // because we always have to go through memory when moving between a float
9295 // register and an integer register.
9296 
9297 //---------- Chain stack slots between similar types --------
9298 
9299 // These are needed so that the rules below can match.
9300 
9301 // Load integer from stack slot
9302 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
9303   match(Set dst src);
9304   ins_cost(MEMORY_REF_COST);
9305 
9306   format %{ "LWZ     $dst, $src" %}
9307   size(4);
9308   ins_encode( enc_lwz(dst, src) );
9309   ins_pipe(pipe_class_memory);
9310 %}
9311 
9312 // Store integer to stack slot
9313 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
9314   match(Set dst src);
9315   ins_cost(MEMORY_REF_COST);
9316 
9317   format %{ "STW     $src, $dst \t// stk" %}
9318   size(4);
9319   ins_encode( enc_stw(src, dst) ); // rs=rt
9320   ins_pipe(pipe_class_memory);
9321 %}
9322 
9323 // Load long from stack slot
9324 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
9325   match(Set dst src);
9326   ins_cost(MEMORY_REF_COST);
9327 
9328   format %{ "LD      $dst, $src \t// long" %}
9329   size(4);
9330   ins_encode( enc_ld(dst, src) );
9331   ins_pipe(pipe_class_memory);
9332 %}
9333 
9334 // Store long to stack slot
9335 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
9336   match(Set dst src);
9337   ins_cost(MEMORY_REF_COST);
9338 
9339   format %{ "STD     $src, $dst \t// long" %}
9340   size(4);
9341   ins_encode( enc_std(src, dst) ); // rs=rt
9342   ins_pipe(pipe_class_memory);
9343 %}
9344 
9345 //----------Moves between int and float
9346 
9347 // Move float value from float stack-location to integer register.
9348 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
9349   match(Set dst (MoveF2I src));
9350   ins_cost(MEMORY_REF_COST);
9351 
9352   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
9353   size(4);
9354   ins_encode( enc_lwz(dst, src) );
9355   ins_pipe(pipe_class_memory);
9356 %}
9357 
9358 // Move float value from float register to integer stack-location.
9359 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
9360   match(Set dst (MoveF2I src));
9361   ins_cost(MEMORY_REF_COST);
9362 
9363   format %{ "STFS    $src, $dst \t// MoveF2I" %}
9364   size(4);
9365   ins_encode( enc_stfs(src, dst) );
9366   ins_pipe(pipe_class_memory);
9367 %}
9368 
9369 // Move integer value from integer stack-location to float register.
9370 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
9371   match(Set dst (MoveI2F src));
9372   ins_cost(MEMORY_REF_COST);
9373 
9374   format %{ "LFS     $dst, $src \t// MoveI2F" %}
9375   size(4);
9376   ins_encode %{
9377     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
9378     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
9379     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
9380   %}
9381   ins_pipe(pipe_class_memory);
9382 %}
9383 
9384 // Move integer value from integer register to float stack-location.
9385 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
9386   match(Set dst (MoveI2F src));
9387   ins_cost(MEMORY_REF_COST);
9388 
9389   format %{ "STW     $src, $dst \t// MoveI2F" %}
9390   size(4);
9391   ins_encode( enc_stw(src, dst) );
9392   ins_pipe(pipe_class_memory);
9393 %}
9394 
9395 //----------Moves between long and float
9396 
9397 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
9398   // no match-rule, false predicate
9399   effect(DEF dst, USE src);
9400   predicate(false);
9401 
9402   format %{ "storeD  $src, $dst \t// STACK" %}
9403   size(4);
9404   ins_encode( enc_stfd(src, dst) );
9405   ins_pipe(pipe_class_default);
9406 %}
9407 
9408 //----------Moves between long and double
9409 
9410 // Move double value from double stack-location to long register.
9411 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
9412   match(Set dst (MoveD2L src));
9413   ins_cost(MEMORY_REF_COST);
9414   size(4);
9415   format %{ "LD      $dst, $src \t// MoveD2L" %}
9416   ins_encode( enc_ld(dst, src) );
9417   ins_pipe(pipe_class_memory);
9418 %}
9419 
9420 // Move double value from double register to long stack-location.
9421 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
9422   match(Set dst (MoveD2L src));
9423   effect(DEF dst, USE src);
9424   ins_cost(MEMORY_REF_COST);
9425 
9426   format %{ "STFD    $src, $dst \t// MoveD2L" %}
9427   size(4);
9428   ins_encode( enc_stfd(src, dst) );
9429   ins_pipe(pipe_class_memory);
9430 %}
9431 
9432 // Move long value from long stack-location to double register.
9433 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
9434   match(Set dst (MoveL2D src));
9435   ins_cost(MEMORY_REF_COST);
9436 
9437   format %{ "LFD     $dst, $src \t// MoveL2D" %}
9438   size(4);
9439   ins_encode( enc_lfd(dst, src) );
9440   ins_pipe(pipe_class_memory);
9441 %}
9442 
9443 // Move long value from long register to double stack-location.
9444 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
9445   match(Set dst (MoveL2D src));
9446   ins_cost(MEMORY_REF_COST);
9447 
9448   format %{ "STD     $src, $dst \t// MoveL2D" %}
9449   size(4);
9450   ins_encode( enc_std(src, dst) );
9451   ins_pipe(pipe_class_memory);
9452 %}
9453 
9454 //----------Register Move Instructions-----------------------------------------
9455 
9456 // Replicate for Superword
9457 
9458 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
9459   predicate(false);
9460   effect(DEF dst, USE src);
9461 
9462   format %{ "MR      $dst, $src \t// replicate " %}
9463   // variable size, 0 or 4.
9464   ins_encode %{
9465     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9466     __ mr_if_needed($dst$$Register, $src$$Register);
9467   %}
9468   ins_pipe(pipe_class_default);
9469 %}
9470 
9471 //----------Cast instructions (Java-level type cast)---------------------------
9472 
9473 // Cast Long to Pointer for unsafe natives.
9474 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
9475   match(Set dst (CastX2P src));
9476 
9477   format %{ "MR      $dst, $src \t// Long->Ptr" %}
9478   // variable size, 0 or 4.
9479   ins_encode %{
9480     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9481     __ mr_if_needed($dst$$Register, $src$$Register);
9482   %}
9483  ins_pipe(pipe_class_default);
9484 %}
9485 
9486 // Cast Pointer to Long for unsafe natives.
9487 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
9488   match(Set dst (CastP2X src));
9489 
9490   format %{ "MR      $dst, $src \t// Ptr->Long" %}
9491   // variable size, 0 or 4.
9492   ins_encode %{
9493     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9494     __ mr_if_needed($dst$$Register, $src$$Register);
9495   %}
9496   ins_pipe(pipe_class_default);
9497 %}
9498 
9499 instruct castPP(iRegPdst dst) %{
9500   match(Set dst (CastPP dst));
9501   format %{ " -- \t// castPP of $dst" %}
9502   size(0);
9503   ins_encode( /*empty*/ );
9504   ins_pipe(pipe_class_default);
9505 %}
9506 
9507 instruct castII(iRegIdst dst) %{
9508   match(Set dst (CastII dst));
9509   format %{ " -- \t// castII of $dst" %}
9510   size(0);
9511   ins_encode( /*empty*/ );
9512   ins_pipe(pipe_class_default);
9513 %}
9514 
9515 instruct checkCastPP(iRegPdst dst) %{
9516   match(Set dst (CheckCastPP dst));
9517   format %{ " -- \t// checkcastPP of $dst" %}
9518   size(0);
9519   ins_encode( /*empty*/ );
9520   ins_pipe(pipe_class_default);
9521 %}
9522 
9523 //----------Convert instructions-----------------------------------------------
9524 
9525 // Convert to boolean.
9526 
9527 // int_to_bool(src) : { 1   if src != 0
9528 //                    { 0   else
9529 //
9530 // strategy:
9531 // 1) Count leading zeros of 32 bit-value src,
9532 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
9533 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9534 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9535 
9536 // convI2Bool
9537 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
9538   match(Set dst (Conv2B src));
9539   predicate(UseCountLeadingZerosInstructionsPPC64);
9540   ins_cost(DEFAULT_COST);
9541 
9542   expand %{
9543     immI shiftAmount %{ 0x5 %}
9544     uimmI16 mask %{ 0x1 %}
9545     iRegIdst tmp1;
9546     iRegIdst tmp2;
9547     countLeadingZerosI(tmp1, src);
9548     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9549     xorI_reg_uimm16(dst, tmp2, mask);
9550   %}
9551 %}
9552 
9553 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
9554   match(Set dst (Conv2B src));
9555   effect(TEMP crx);
9556   predicate(!UseCountLeadingZerosInstructionsPPC64);
9557   ins_cost(DEFAULT_COST);
9558 
9559   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
9560             "LI      $dst, #0\n\t"
9561             "BEQ     $crx, done\n\t"
9562             "LI      $dst, #1\n"
9563             "done:" %}
9564   size(16);
9565   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
9566   ins_pipe(pipe_class_compare);
9567 %}
9568 
9569 // ConvI2B + XorI
9570 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
9571   match(Set dst (XorI (Conv2B src) mask));
9572   predicate(UseCountLeadingZerosInstructionsPPC64);
9573   ins_cost(DEFAULT_COST);
9574 
9575   expand %{
9576     immI shiftAmount %{ 0x5 %}
9577     iRegIdst tmp1;
9578     countLeadingZerosI(tmp1, src);
9579     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9580   %}
9581 %}
9582 
9583 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
9584   match(Set dst (XorI (Conv2B src) mask));
9585   effect(TEMP crx);
9586   predicate(!UseCountLeadingZerosInstructionsPPC64);
9587   ins_cost(DEFAULT_COST);
9588 
9589   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
9590             "LI      $dst, #1\n\t"
9591             "BEQ     $crx, done\n\t"
9592             "LI      $dst, #0\n"
9593             "done:" %}
9594   size(16);
9595   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
9596   ins_pipe(pipe_class_compare);
9597 %}
9598 
9599 // AndI 0b0..010..0 + ConvI2B
9600 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
9601   match(Set dst (Conv2B (AndI src mask)));
9602   predicate(UseRotateAndMaskInstructionsPPC64);
9603   ins_cost(DEFAULT_COST);
9604 
9605   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
9606   size(4);
9607   ins_encode %{
9608     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
9609     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
9610   %}
9611   ins_pipe(pipe_class_default);
9612 %}
9613 
9614 // Convert pointer to boolean.
9615 //
9616 // ptr_to_bool(src) : { 1   if src != 0
9617 //                    { 0   else
9618 //
9619 // strategy:
9620 // 1) Count leading zeros of 64 bit-value src,
9621 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
9622 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9623 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9624 
9625 // ConvP2B
9626 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
9627   match(Set dst (Conv2B src));
9628   predicate(UseCountLeadingZerosInstructionsPPC64);
9629   ins_cost(DEFAULT_COST);
9630 
9631   expand %{
9632     immI shiftAmount %{ 0x6 %}
9633     uimmI16 mask %{ 0x1 %}
9634     iRegIdst tmp1;
9635     iRegIdst tmp2;
9636     countLeadingZerosP(tmp1, src);
9637     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9638     xorI_reg_uimm16(dst, tmp2, mask);
9639   %}
9640 %}
9641 
9642 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
9643   match(Set dst (Conv2B src));
9644   effect(TEMP crx);
9645   predicate(!UseCountLeadingZerosInstructionsPPC64);
9646   ins_cost(DEFAULT_COST);
9647 
9648   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
9649             "LI      $dst, #0\n\t"
9650             "BEQ     $crx, done\n\t"
9651             "LI      $dst, #1\n"
9652             "done:" %}
9653   size(16);
9654   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
9655   ins_pipe(pipe_class_compare);
9656 %}
9657 
9658 // ConvP2B + XorI
9659 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
9660   match(Set dst (XorI (Conv2B src) mask));
9661   predicate(UseCountLeadingZerosInstructionsPPC64);
9662   ins_cost(DEFAULT_COST);
9663 
9664   expand %{
9665     immI shiftAmount %{ 0x6 %}
9666     iRegIdst tmp1;
9667     countLeadingZerosP(tmp1, src);
9668     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9669   %}
9670 %}
9671 
9672 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
9673   match(Set dst (XorI (Conv2B src) mask));
9674   effect(TEMP crx);
9675   predicate(!UseCountLeadingZerosInstructionsPPC64);
9676   ins_cost(DEFAULT_COST);
9677 
9678   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
9679             "LI      $dst, #1\n\t"
9680             "BEQ     $crx, done\n\t"
9681             "LI      $dst, #0\n"
9682             "done:" %}
9683   size(16);
9684   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
9685   ins_pipe(pipe_class_compare);
9686 %}
9687 
9688 // if src1 < src2, return -1 else return 0
9689 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9690   match(Set dst (CmpLTMask src1 src2));
9691   ins_cost(DEFAULT_COST*4);
9692 
9693   expand %{
9694     iRegLdst src1s;
9695     iRegLdst src2s;
9696     iRegLdst diff;
9697     convI2L_reg(src1s, src1); // Ensure proper sign extension.
9698     convI2L_reg(src2s, src2); // Ensure proper sign extension.
9699     subL_reg_reg(diff, src1s, src2s);
9700     // Need to consider >=33 bit result, therefore we need signmaskL.
9701     signmask64I_regL(dst, diff);
9702   %}
9703 %}
9704 
9705 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
9706   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
9707   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
9708   size(4);
9709   ins_encode %{
9710     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
9711     __ srawi($dst$$Register, $src1$$Register, 0x1f);
9712   %}
9713   ins_pipe(pipe_class_default);
9714 %}
9715 
9716 //----------Arithmetic Conversion Instructions---------------------------------
9717 
9718 // Convert to Byte  -- nop
9719 // Convert to Short -- nop
9720 
9721 // Convert to Int
9722 
9723 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
9724   match(Set dst (RShiftI (LShiftI src amount) amount));
9725   format %{ "EXTSB   $dst, $src \t// byte->int" %}
9726   size(4);
9727   ins_encode %{
9728     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
9729     __ extsb($dst$$Register, $src$$Register);
9730   %}
9731   ins_pipe(pipe_class_default);
9732 %}
9733 
9734 // LShiftI 16 + RShiftI 16 converts short to int.
9735 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
9736   match(Set dst (RShiftI (LShiftI src amount) amount));
9737   format %{ "EXTSH   $dst, $src \t// short->int" %}
9738   size(4);
9739   ins_encode %{
9740     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
9741     __ extsh($dst$$Register, $src$$Register);
9742   %}
9743   ins_pipe(pipe_class_default);
9744 %}
9745 
9746 // ConvL2I + ConvI2L: Sign extend int in long register.
9747 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
9748   match(Set dst (ConvI2L (ConvL2I src)));
9749 
9750   format %{ "EXTSW   $dst, $src \t// long->long" %}
9751   size(4);
9752   ins_encode %{
9753     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9754     __ extsw($dst$$Register, $src$$Register);
9755   %}
9756   ins_pipe(pipe_class_default);
9757 %}
9758 
9759 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
9760   match(Set dst (ConvL2I src));
9761   format %{ "MR      $dst, $src \t// long->int" %}
9762   // variable size, 0 or 4
9763   ins_encode %{
9764     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9765     __ mr_if_needed($dst$$Register, $src$$Register);
9766   %}
9767   ins_pipe(pipe_class_default);
9768 %}
9769 
9770 instruct convD2IRaw_regD(regD dst, regD src) %{
9771   // no match-rule, false predicate
9772   effect(DEF dst, USE src);
9773   predicate(false);
9774 
9775   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
9776   size(4);
9777   ins_encode %{
9778     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
9779     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9780   %}
9781   ins_pipe(pipe_class_default);
9782 %}
9783 
9784 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsRegSrc crx, stackSlotL src) %{
9785   // no match-rule, false predicate
9786   effect(DEF dst, USE crx, USE src);
9787   predicate(false);
9788 
9789   ins_variable_size_depending_on_alignment(true);
9790 
9791   format %{ "cmovI   $crx, $dst, $src" %}
9792   // Worst case is branch + move + stop, no stop without scheduler.
9793   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
9794   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9795   ins_pipe(pipe_class_default);
9796 %}
9797 
9798 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsRegSrc crx, stackSlotL mem) %{
9799   // no match-rule, false predicate
9800   effect(DEF dst, USE crx, USE mem);
9801   predicate(false);
9802 
9803   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
9804   postalloc_expand %{
9805     //
9806     // replaces
9807     //
9808     //   region  dst  crx  mem
9809     //    \       |    |   /
9810     //     dst=cmovI_bso_stackSlotL_conLvalue0
9811     //
9812     // with
9813     //
9814     //   region  dst
9815     //    \       /
9816     //     dst=loadConI16(0)
9817     //      |
9818     //      ^  region  dst  crx  mem
9819     //      |   \       |    |    /
9820     //      dst=cmovI_bso_stackSlotL
9821     //
9822 
9823     // Create new nodes.
9824     MachNode *m1 = new loadConI16Node();
9825     MachNode *m2 = new cmovI_bso_stackSlotLNode();
9826 
9827     // inputs for new nodes
9828     m1->add_req(n_region);
9829     m2->add_req(n_region, n_crx, n_mem);
9830 
9831     // precedences for new nodes
9832     m2->add_prec(m1);
9833 
9834     // operands for new nodes
9835     m1->_opnds[0] = op_dst;
9836     m1->_opnds[1] = new immI16Oper(0);
9837 
9838     m2->_opnds[0] = op_dst;
9839     m2->_opnds[1] = op_crx;
9840     m2->_opnds[2] = op_mem;
9841 
9842     // registers for new nodes
9843     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9844     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9845 
9846     // Insert new nodes.
9847     nodes->push(m1);
9848     nodes->push(m2);
9849   %}
9850 %}
9851 
9852 // Double to Int conversion, NaN is mapped to 0.
9853 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
9854   match(Set dst (ConvD2I src));
9855   ins_cost(DEFAULT_COST);
9856 
9857   expand %{
9858     regD tmpD;
9859     stackSlotL tmpS;
9860     flagsReg crx;
9861     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9862     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
9863     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9864     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9865   %}
9866 %}
9867 
9868 instruct convF2IRaw_regF(regF dst, regF src) %{
9869   // no match-rule, false predicate
9870   effect(DEF dst, USE src);
9871   predicate(false);
9872 
9873   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
9874   size(4);
9875   ins_encode %{
9876     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9877     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9878   %}
9879   ins_pipe(pipe_class_default);
9880 %}
9881 
9882 // Float to Int conversion, NaN is mapped to 0.
9883 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
9884   match(Set dst (ConvF2I src));
9885   ins_cost(DEFAULT_COST);
9886 
9887   expand %{
9888     regF tmpF;
9889     stackSlotL tmpS;
9890     flagsReg crx;
9891     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9892     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
9893     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9894     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9895   %}
9896 %}
9897 
9898 // Convert to Long
9899 
9900 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
9901   match(Set dst (ConvI2L src));
9902   format %{ "EXTSW   $dst, $src \t// int->long" %}
9903   size(4);
9904   ins_encode %{
9905     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9906     __ extsw($dst$$Register, $src$$Register);
9907   %}
9908   ins_pipe(pipe_class_default);
9909 %}
9910 
9911 // Zero-extend: convert unsigned int to long (convUI2L).
9912 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
9913   match(Set dst (AndL (ConvI2L src) mask));
9914   ins_cost(DEFAULT_COST);
9915 
9916   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9917   size(4);
9918   ins_encode %{
9919     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9920     __ clrldi($dst$$Register, $src$$Register, 32);
9921   %}
9922   ins_pipe(pipe_class_default);
9923 %}
9924 
9925 // Zero-extend: convert unsigned int to long in long register.
9926 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
9927   match(Set dst (AndL src mask));
9928   ins_cost(DEFAULT_COST);
9929 
9930   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9931   size(4);
9932   ins_encode %{
9933     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9934     __ clrldi($dst$$Register, $src$$Register, 32);
9935   %}
9936   ins_pipe(pipe_class_default);
9937 %}
9938 
9939 instruct convF2LRaw_regF(regF dst, regF src) %{
9940   // no match-rule, false predicate
9941   effect(DEF dst, USE src);
9942   predicate(false);
9943 
9944   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
9945   size(4);
9946   ins_encode %{
9947     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9948     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9949   %}
9950   ins_pipe(pipe_class_default);
9951 %}
9952 
9953 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsRegSrc crx, stackSlotL src) %{
9954   // no match-rule, false predicate
9955   effect(DEF dst, USE crx, USE src);
9956   predicate(false);
9957 
9958   ins_variable_size_depending_on_alignment(true);
9959 
9960   format %{ "cmovL   $crx, $dst, $src" %}
9961   // Worst case is branch + move + stop, no stop without scheduler.
9962   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
9963   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9964   ins_pipe(pipe_class_default);
9965 %}
9966 
9967 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsRegSrc crx, stackSlotL mem) %{
9968   // no match-rule, false predicate
9969   effect(DEF dst, USE crx, USE mem);
9970   predicate(false);
9971 
9972   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
9973   postalloc_expand %{
9974     //
9975     // replaces
9976     //
9977     //   region  dst  crx  mem
9978     //    \       |    |   /
9979     //     dst=cmovL_bso_stackSlotL_conLvalue0
9980     //
9981     // with
9982     //
9983     //   region  dst
9984     //    \       /
9985     //     dst=loadConL16(0)
9986     //      |
9987     //      ^  region  dst  crx  mem
9988     //      |   \       |    |    /
9989     //      dst=cmovL_bso_stackSlotL
9990     //
9991 
9992     // Create new nodes.
9993     MachNode *m1 = new loadConL16Node();
9994     MachNode *m2 = new cmovL_bso_stackSlotLNode();
9995 
9996     // inputs for new nodes
9997     m1->add_req(n_region);
9998     m2->add_req(n_region, n_crx, n_mem);
9999     m2->add_prec(m1);
10000 
10001     // operands for new nodes
10002     m1->_opnds[0] = op_dst;
10003     m1->_opnds[1] = new immL16Oper(0);
10004     m2->_opnds[0] = op_dst;
10005     m2->_opnds[1] = op_crx;
10006     m2->_opnds[2] = op_mem;
10007 
10008     // registers for new nodes
10009     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10010     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10011 
10012     // Insert new nodes.
10013     nodes->push(m1);
10014     nodes->push(m2);
10015   %}
10016 %}
10017 
10018 // Float to Long conversion, NaN is mapped to 0.
10019 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
10020   match(Set dst (ConvF2L src));
10021   ins_cost(DEFAULT_COST);
10022 
10023   expand %{
10024     regF tmpF;
10025     stackSlotL tmpS;
10026     flagsReg crx;
10027     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
10028     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
10029     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
10030     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
10031   %}
10032 %}
10033 
10034 instruct convD2LRaw_regD(regD dst, regD src) %{
10035   // no match-rule, false predicate
10036   effect(DEF dst, USE src);
10037   predicate(false);
10038 
10039   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
10040   size(4);
10041   ins_encode %{
10042     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
10043     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
10044   %}
10045   ins_pipe(pipe_class_default);
10046 %}
10047 
10048 // Double to Long conversion, NaN is mapped to 0.
10049 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
10050   match(Set dst (ConvD2L src));
10051   ins_cost(DEFAULT_COST);
10052 
10053   expand %{
10054     regD tmpD;
10055     stackSlotL tmpS;
10056     flagsReg crx;
10057     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
10058     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
10059     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
10060     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
10061   %}
10062 %}
10063 
10064 // Convert to Float
10065 
10066 // Placed here as needed in expand.
10067 instruct convL2DRaw_regD(regD dst, regD src) %{
10068   // no match-rule, false predicate
10069   effect(DEF dst, USE src);
10070   predicate(false);
10071 
10072   format %{ "FCFID $dst, $src \t// convL2D" %}
10073   size(4);
10074   ins_encode %{
10075     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10076     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
10077   %}
10078   ins_pipe(pipe_class_default);
10079 %}
10080 
10081 // Placed here as needed in expand.
10082 instruct convD2F_reg(regF dst, regD src) %{
10083   match(Set dst (ConvD2F src));
10084   format %{ "FRSP    $dst, $src \t// convD2F" %}
10085   size(4);
10086   ins_encode %{
10087     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
10088     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
10089   %}
10090   ins_pipe(pipe_class_default);
10091 %}
10092 
10093 // Integer to Float conversion.
10094 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
10095   match(Set dst (ConvI2F src));
10096   predicate(!VM_Version::has_fcfids());
10097   ins_cost(DEFAULT_COST);
10098 
10099   expand %{
10100     iRegLdst tmpL;
10101     stackSlotL tmpS;
10102     regD tmpD;
10103     regD tmpD2;
10104     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10105     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10106     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10107     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
10108     convD2F_reg(dst, tmpD2);             // Convert double to float.
10109   %}
10110 %}
10111 
10112 instruct convL2FRaw_regF(regF dst, regD src) %{
10113   // no match-rule, false predicate
10114   effect(DEF dst, USE src);
10115   predicate(false);
10116 
10117   format %{ "FCFIDS $dst, $src \t// convL2F" %}
10118   size(4);
10119   ins_encode %{
10120     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10121     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
10122   %}
10123   ins_pipe(pipe_class_default);
10124 %}
10125 
10126 // Integer to Float conversion. Special version for Power7.
10127 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
10128   match(Set dst (ConvI2F src));
10129   predicate(VM_Version::has_fcfids());
10130   ins_cost(DEFAULT_COST);
10131 
10132   expand %{
10133     iRegLdst tmpL;
10134     stackSlotL tmpS;
10135     regD tmpD;
10136     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10137     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10138     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10139     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10140   %}
10141 %}
10142 
10143 // L2F to avoid runtime call.
10144 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
10145   match(Set dst (ConvL2F src));
10146   predicate(VM_Version::has_fcfids());
10147   ins_cost(DEFAULT_COST);
10148 
10149   expand %{
10150     stackSlotL tmpS;
10151     regD tmpD;
10152     regL_to_stkL(tmpS, src);             // Store long to stack.
10153     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10154     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10155   %}
10156 %}
10157 
10158 // Moved up as used in expand.
10159 //instruct convD2F_reg(regF dst, regD src) %{%}
10160 
10161 // Convert to Double
10162 
10163 // Integer to Double conversion.
10164 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
10165   match(Set dst (ConvI2D src));
10166   ins_cost(DEFAULT_COST);
10167 
10168   expand %{
10169     iRegLdst tmpL;
10170     stackSlotL tmpS;
10171     regD tmpD;
10172     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10173     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10174     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10175     convL2DRaw_regD(dst, tmpD);          // Convert to double.
10176   %}
10177 %}
10178 
10179 // Long to Double conversion
10180 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
10181   match(Set dst (ConvL2D src));
10182   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10183 
10184   expand %{
10185     regD tmpD;
10186     moveL2D_stack_reg(tmpD, src);
10187     convL2DRaw_regD(dst, tmpD);
10188   %}
10189 %}
10190 
10191 instruct convF2D_reg(regD dst, regF src) %{
10192   match(Set dst (ConvF2D src));
10193   format %{ "FMR     $dst, $src \t// float->double" %}
10194   // variable size, 0 or 4
10195   ins_encode %{
10196     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
10197     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
10198   %}
10199   ins_pipe(pipe_class_default);
10200 %}
10201 
10202 //----------Control Flow Instructions------------------------------------------
10203 // Compare Instructions
10204 
10205 // Compare Integers
10206 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10207   match(Set crx (CmpI src1 src2));
10208   size(4);
10209   format %{ "CMPW    $crx, $src1, $src2" %}
10210   ins_encode %{
10211     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10212     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10213   %}
10214   ins_pipe(pipe_class_compare);
10215 %}
10216 
10217 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
10218   match(Set crx (CmpI src1 src2));
10219   format %{ "CMPWI   $crx, $src1, $src2" %}
10220   size(4);
10221   ins_encode %{
10222     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10223     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10224   %}
10225   ins_pipe(pipe_class_compare);
10226 %}
10227 
10228 // (src1 & src2) == 0?
10229 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
10230   match(Set cr0 (CmpI (AndI src1 src2) zero));
10231   // r0 is killed
10232   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
10233   size(4);
10234   ins_encode %{
10235     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10236     __ andi_(R0, $src1$$Register, $src2$$constant);
10237   %}
10238   ins_pipe(pipe_class_compare);
10239 %}
10240 
10241 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
10242   match(Set crx (CmpL src1 src2));
10243   format %{ "CMPD    $crx, $src1, $src2" %}
10244   size(4);
10245   ins_encode %{
10246     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10247     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
10248   %}
10249   ins_pipe(pipe_class_compare);
10250 %}
10251 
10252 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
10253   match(Set crx (CmpL src1 src2));
10254   format %{ "CMPDI   $crx, $src1, $src2" %}
10255   size(4);
10256   ins_encode %{
10257     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10258     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10259   %}
10260   ins_pipe(pipe_class_compare);
10261 %}
10262 
10263 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
10264   match(Set cr0 (CmpL (AndL src1 src2) zero));
10265   // r0 is killed
10266   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
10267   size(4);
10268   ins_encode %{
10269     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
10270     __ and_(R0, $src1$$Register, $src2$$Register);
10271   %}
10272   ins_pipe(pipe_class_compare);
10273 %}
10274 
10275 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
10276   match(Set cr0 (CmpL (AndL src1 src2) zero));
10277   // r0 is killed
10278   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
10279   size(4);
10280   ins_encode %{
10281     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10282     __ andi_(R0, $src1$$Register, $src2$$constant);
10283   %}
10284   ins_pipe(pipe_class_compare);
10285 %}
10286 
10287 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsRegSrc crx) %{
10288   // no match-rule, false predicate
10289   effect(DEF dst, USE crx);
10290   predicate(false);
10291 
10292   ins_variable_size_depending_on_alignment(true);
10293 
10294   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
10295   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
10296   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
10297   ins_encode %{
10298     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
10299     Label done;
10300     // li(Rdst, 0);              // equal -> 0
10301     __ beq($crx$$CondRegister, done);
10302     __ li($dst$$Register, 1);    // greater -> +1
10303     __ bgt($crx$$CondRegister, done);
10304     __ li($dst$$Register, -1);   // unordered or less -> -1
10305     // TODO: PPC port__ endgroup_if_needed(_size == 20);
10306     __ bind(done);
10307   %}
10308   ins_pipe(pipe_class_compare);
10309 %}
10310 
10311 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsRegSrc crx) %{
10312   // no match-rule, false predicate
10313   effect(DEF dst, USE crx);
10314   predicate(false);
10315 
10316   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
10317   postalloc_expand %{
10318     //
10319     // replaces
10320     //
10321     //   region  crx
10322     //    \       |
10323     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
10324     //
10325     // with
10326     //
10327     //   region
10328     //    \
10329     //     dst=loadConI16(0)
10330     //      |
10331     //      ^  region  crx
10332     //      |   \       |
10333     //      dst=cmovI_conIvalueMinus1_conIvalue1
10334     //
10335 
10336     // Create new nodes.
10337     MachNode *m1 = new loadConI16Node();
10338     MachNode *m2 = new cmovI_conIvalueMinus1_conIvalue1Node();
10339 
10340     // inputs for new nodes
10341     m1->add_req(n_region);
10342     m2->add_req(n_region, n_crx);
10343     m2->add_prec(m1);
10344 
10345     // operands for new nodes
10346     m1->_opnds[0] = op_dst;
10347     m1->_opnds[1] = new immI16Oper(0);
10348     m2->_opnds[0] = op_dst;
10349     m2->_opnds[1] = op_crx;
10350 
10351     // registers for new nodes
10352     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10353     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10354 
10355     // Insert new nodes.
10356     nodes->push(m1);
10357     nodes->push(m2);
10358   %}
10359 %}
10360 
10361 // Manifest a CmpL3 result in an integer register. Very painful.
10362 // This is the test to avoid.
10363 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
10364 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
10365   match(Set dst (CmpL3 src1 src2));
10366   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10367 
10368   expand %{
10369     flagsReg tmp1;
10370     cmpL_reg_reg(tmp1, src1, src2);
10371     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10372   %}
10373 %}
10374 
10375 // Implicit range checks.
10376 // A range check in the ideal world has one of the following shapes:
10377 //  - (If le (CmpU length index)), (IfTrue  throw exception)
10378 //  - (If lt (CmpU index length)), (IfFalse throw exception)
10379 //
10380 // Match range check 'If le (CmpU length index)'.
10381 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
10382   match(If cmp (CmpU src_length index));
10383   effect(USE labl);
10384   predicate(TrapBasedRangeChecks &&
10385             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
10386             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
10387             (Matcher::branches_to_uncommon_trap(_leaf)));
10388 
10389   ins_is_TrapBasedCheckNode(true);
10390 
10391   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
10392   size(4);
10393   ins_encode %{
10394     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10395     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
10396       __ trap_range_check_le($src_length$$Register, $index$$constant);
10397     } else {
10398       // Both successors are uncommon traps, probability is 0.
10399       // Node got flipped during fixup flow.
10400       assert($cmp$$cmpcode == 0x9, "must be greater");
10401       __ trap_range_check_g($src_length$$Register, $index$$constant);
10402     }
10403   %}
10404   ins_pipe(pipe_class_trap);
10405 %}
10406 
10407 // Match range check 'If lt (CmpU index length)'.
10408 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
10409   match(If cmp (CmpU src_index src_length));
10410   effect(USE labl);
10411   predicate(TrapBasedRangeChecks &&
10412             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10413             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10414             (Matcher::branches_to_uncommon_trap(_leaf)));
10415 
10416   ins_is_TrapBasedCheckNode(true);
10417 
10418   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
10419   size(4);
10420   ins_encode %{
10421     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
10422     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10423       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
10424     } else {
10425       // Both successors are uncommon traps, probability is 0.
10426       // Node got flipped during fixup flow.
10427       assert($cmp$$cmpcode == 0x8, "must be less");
10428       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
10429     }
10430   %}
10431   ins_pipe(pipe_class_trap);
10432 %}
10433 
10434 // Match range check 'If lt (CmpU index length)'.
10435 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
10436   match(If cmp (CmpU src_index length));
10437   effect(USE labl);
10438   predicate(TrapBasedRangeChecks &&
10439             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10440             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10441             (Matcher::branches_to_uncommon_trap(_leaf)));
10442 
10443   ins_is_TrapBasedCheckNode(true);
10444 
10445   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
10446   size(4);
10447   ins_encode %{
10448     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10449     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10450       __ trap_range_check_ge($src_index$$Register, $length$$constant);
10451     } else {
10452       // Both successors are uncommon traps, probability is 0.
10453       // Node got flipped during fixup flow.
10454       assert($cmp$$cmpcode == 0x8, "must be less");
10455       __ trap_range_check_l($src_index$$Register, $length$$constant);
10456     }
10457   %}
10458   ins_pipe(pipe_class_trap);
10459 %}
10460 
10461 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10462   match(Set crx (CmpU src1 src2));
10463   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
10464   size(4);
10465   ins_encode %{
10466     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10467     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10468   %}
10469   ins_pipe(pipe_class_compare);
10470 %}
10471 
10472 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
10473   match(Set crx (CmpU src1 src2));
10474   size(4);
10475   format %{ "CMPLWI  $crx, $src1, $src2" %}
10476   ins_encode %{
10477     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10478     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10479   %}
10480   ins_pipe(pipe_class_compare);
10481 %}
10482 
10483 // Implicit zero checks (more implicit null checks).
10484 // No constant pool entries required.
10485 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
10486   match(If cmp (CmpN value zero));
10487   effect(USE labl);
10488   predicate(TrapBasedNullChecks &&
10489             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10490             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10491             Matcher::branches_to_uncommon_trap(_leaf));
10492   ins_cost(1);
10493 
10494   ins_is_TrapBasedCheckNode(true);
10495 
10496   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
10497   size(4);
10498   ins_encode %{
10499     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10500     if ($cmp$$cmpcode == 0xA) {
10501       __ trap_null_check($value$$Register);
10502     } else {
10503       // Both successors are uncommon traps, probability is 0.
10504       // Node got flipped during fixup flow.
10505       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10506       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10507     }
10508   %}
10509   ins_pipe(pipe_class_trap);
10510 %}
10511 
10512 // Compare narrow oops.
10513 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
10514   match(Set crx (CmpN src1 src2));
10515 
10516   size(4);
10517   ins_cost(2);
10518   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
10519   ins_encode %{
10520     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10521     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10522   %}
10523   ins_pipe(pipe_class_compare);
10524 %}
10525 
10526 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
10527   match(Set crx (CmpN src1 src2));
10528   // Make this more expensive than zeroCheckN_iReg_imm0.
10529   ins_cost(2);
10530 
10531   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
10532   size(4);
10533   ins_encode %{
10534     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10535     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10536   %}
10537   ins_pipe(pipe_class_compare);
10538 %}
10539 
10540 // Implicit zero checks (more implicit null checks).
10541 // No constant pool entries required.
10542 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
10543   match(If cmp (CmpP value zero));
10544   effect(USE labl);
10545   predicate(TrapBasedNullChecks &&
10546             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10547             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10548             Matcher::branches_to_uncommon_trap(_leaf));
10549   ins_cost(1); // Should not be cheaper than zeroCheckN.
10550 
10551   ins_is_TrapBasedCheckNode(true);
10552 
10553   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
10554   size(4);
10555   ins_encode %{
10556     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10557     if ($cmp$$cmpcode == 0xA) {
10558       __ trap_null_check($value$$Register);
10559     } else {
10560       // Both successors are uncommon traps, probability is 0.
10561       // Node got flipped during fixup flow.
10562       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10563       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10564     }
10565   %}
10566   ins_pipe(pipe_class_trap);
10567 %}
10568 
10569 // Compare Pointers
10570 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
10571   match(Set crx (CmpP src1 src2));
10572   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
10573   size(4);
10574   ins_encode %{
10575     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10576     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
10577   %}
10578   ins_pipe(pipe_class_compare);
10579 %}
10580 
10581 // Used in postalloc expand.
10582 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
10583   // This match rule prevents reordering of node before a safepoint.
10584   // This only makes sense if this instructions is used exclusively
10585   // for the expansion of EncodeP!
10586   match(Set crx (CmpP src1 src2));
10587   predicate(false);
10588 
10589   format %{ "CMPDI   $crx, $src1, $src2" %}
10590   size(4);
10591   ins_encode %{
10592     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10593     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10594   %}
10595   ins_pipe(pipe_class_compare);
10596 %}
10597 
10598 //----------Float Compares----------------------------------------------------
10599 
10600 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
10601   // Needs matchrule, see cmpDUnordered.
10602   match(Set crx (CmpF src1 src2));
10603   // no match-rule, false predicate
10604   predicate(false);
10605 
10606   format %{ "cmpFUrd $crx, $src1, $src2" %}
10607   size(4);
10608   ins_encode %{
10609     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10610     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10611   %}
10612   ins_pipe(pipe_class_default);
10613 %}
10614 
10615 instruct cmov_bns_less(flagsReg crx) %{
10616   // no match-rule, false predicate
10617   effect(DEF crx);
10618   predicate(false);
10619 
10620   ins_variable_size_depending_on_alignment(true);
10621 
10622   format %{ "cmov    $crx" %}
10623   // Worst case is branch + move + stop, no stop without scheduler.
10624   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
10625   ins_encode %{
10626     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
10627     Label done;
10628     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
10629     __ li(R0, 0);
10630     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
10631     // TODO PPC port __ endgroup_if_needed(_size == 16);
10632     __ bind(done);
10633   %}
10634   ins_pipe(pipe_class_default);
10635 %}
10636 
10637 // Compare floating, generate condition code.
10638 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
10639   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
10640   //
10641   // The following code sequence occurs a lot in mpegaudio:
10642   //
10643   // block BXX:
10644   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
10645   //    cmpFUrd CCR6, F11, F9
10646   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
10647   //    cmov CCR6
10648   // 8: instruct branchConSched:
10649   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
10650   match(Set crx (CmpF src1 src2));
10651   ins_cost(DEFAULT_COST+BRANCH_COST);
10652 
10653   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
10654   postalloc_expand %{
10655     //
10656     // replaces
10657     //
10658     //   region  src1  src2
10659     //    \       |     |
10660     //     crx=cmpF_reg_reg
10661     //
10662     // with
10663     //
10664     //   region  src1  src2
10665     //    \       |     |
10666     //     crx=cmpFUnordered_reg_reg
10667     //      |
10668     //      ^  region
10669     //      |   \
10670     //      crx=cmov_bns_less
10671     //
10672 
10673     // Create new nodes.
10674     MachNode *m1 = new cmpFUnordered_reg_regNode();
10675     MachNode *m2 = new cmov_bns_lessNode();
10676 
10677     // inputs for new nodes
10678     m1->add_req(n_region, n_src1, n_src2);
10679     m2->add_req(n_region);
10680     m2->add_prec(m1);
10681 
10682     // operands for new nodes
10683     m1->_opnds[0] = op_crx;
10684     m1->_opnds[1] = op_src1;
10685     m1->_opnds[2] = op_src2;
10686     m2->_opnds[0] = op_crx;
10687 
10688     // registers for new nodes
10689     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10690     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10691 
10692     // Insert new nodes.
10693     nodes->push(m1);
10694     nodes->push(m2);
10695   %}
10696 %}
10697 
10698 // Compare float, generate -1,0,1
10699 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
10700   match(Set dst (CmpF3 src1 src2));
10701   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10702 
10703   expand %{
10704     flagsReg tmp1;
10705     cmpFUnordered_reg_reg(tmp1, src1, src2);
10706     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10707   %}
10708 %}
10709 
10710 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
10711   // Needs matchrule so that ideal opcode is Cmp. This causes that gcm places the
10712   // node right before the conditional move using it.
10713   // In jck test api/java_awt/geom/QuadCurve2DFloat/index.html#SetCurveTesttestCase7,
10714   // compilation of java.awt.geom.RectangularShape::getBounds()Ljava/awt/Rectangle
10715   // crashed in register allocation where the flags Reg between cmpDUnoredered and a
10716   // conditional move was supposed to be spilled.
10717   match(Set crx (CmpD src1 src2));
10718   // False predicate, shall not be matched.
10719   predicate(false);
10720 
10721   format %{ "cmpFUrd $crx, $src1, $src2" %}
10722   size(4);
10723   ins_encode %{
10724     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10725     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10726   %}
10727   ins_pipe(pipe_class_default);
10728 %}
10729 
10730 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
10731   match(Set crx (CmpD src1 src2));
10732   ins_cost(DEFAULT_COST+BRANCH_COST);
10733 
10734   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
10735   postalloc_expand %{
10736     //
10737     // replaces
10738     //
10739     //   region  src1  src2
10740     //    \       |     |
10741     //     crx=cmpD_reg_reg
10742     //
10743     // with
10744     //
10745     //   region  src1  src2
10746     //    \       |     |
10747     //     crx=cmpDUnordered_reg_reg
10748     //      |
10749     //      ^  region
10750     //      |   \
10751     //      crx=cmov_bns_less
10752     //
10753 
10754     // create new nodes
10755     MachNode *m1 = new cmpDUnordered_reg_regNode();
10756     MachNode *m2 = new cmov_bns_lessNode();
10757 
10758     // inputs for new nodes
10759     m1->add_req(n_region, n_src1, n_src2);
10760     m2->add_req(n_region);
10761     m2->add_prec(m1);
10762 
10763     // operands for new nodes
10764     m1->_opnds[0] = op_crx;
10765     m1->_opnds[1] = op_src1;
10766     m1->_opnds[2] = op_src2;
10767     m2->_opnds[0] = op_crx;
10768 
10769     // registers for new nodes
10770     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10771     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10772 
10773     // Insert new nodes.
10774     nodes->push(m1);
10775     nodes->push(m2);
10776   %}
10777 %}
10778 
10779 // Compare double, generate -1,0,1
10780 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
10781   match(Set dst (CmpD3 src1 src2));
10782   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10783 
10784   expand %{
10785     flagsReg tmp1;
10786     cmpDUnordered_reg_reg(tmp1, src1, src2);
10787     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10788   %}
10789 %}
10790 
10791 //----------Branches---------------------------------------------------------
10792 // Jump
10793 
10794 // Direct Branch.
10795 instruct branch(label labl) %{
10796   match(Goto);
10797   effect(USE labl);
10798   ins_cost(BRANCH_COST);
10799 
10800   format %{ "B       $labl" %}
10801   size(4);
10802   ins_encode %{
10803     // TODO: PPC port $archOpcode(ppc64Opcode_b);
10804      Label d;    // dummy
10805      __ bind(d);
10806      Label* p = $labl$$label;
10807      // `p' is `NULL' when this encoding class is used only to
10808      // determine the size of the encoded instruction.
10809      Label& l = (NULL == p)? d : *(p);
10810      __ b(l);
10811   %}
10812   ins_pipe(pipe_class_default);
10813 %}
10814 
10815 // Conditional Near Branch
10816 instruct branchCon(cmpOp cmp, flagsRegSrc crx, label lbl) %{
10817   // Same match rule as `branchConFar'.
10818   match(If cmp crx);
10819   effect(USE lbl);
10820   ins_cost(BRANCH_COST);
10821 
10822   // If set to 1 this indicates that the current instruction is a
10823   // short variant of a long branch. This avoids using this
10824   // instruction in first-pass matching. It will then only be used in
10825   // the `Shorten_branches' pass.
10826   ins_short_branch(1);
10827 
10828   format %{ "B$cmp     $crx, $lbl" %}
10829   size(4);
10830   ins_encode( enc_bc(crx, cmp, lbl) );
10831   ins_pipe(pipe_class_default);
10832 %}
10833 
10834 // This is for cases when the ppc64 `bc' instruction does not
10835 // reach far enough. So we emit a far branch here, which is more
10836 // expensive.
10837 //
10838 // Conditional Far Branch
10839 instruct branchConFar(cmpOp cmp, flagsRegSrc crx, label lbl) %{
10840   // Same match rule as `branchCon'.
10841   match(If cmp crx);
10842   effect(USE crx, USE lbl);
10843   predicate(!false /* TODO: PPC port HB_Schedule*/);
10844   // Higher cost than `branchCon'.
10845   ins_cost(5*BRANCH_COST);
10846 
10847   // This is not a short variant of a branch, but the long variant.
10848   ins_short_branch(0);
10849 
10850   format %{ "B_FAR$cmp $crx, $lbl" %}
10851   size(8);
10852   ins_encode( enc_bc_far(crx, cmp, lbl) );
10853   ins_pipe(pipe_class_default);
10854 %}
10855 
10856 // Conditional Branch used with Power6 scheduler (can be far or short).
10857 instruct branchConSched(cmpOp cmp, flagsRegSrc crx, label lbl) %{
10858   // Same match rule as `branchCon'.
10859   match(If cmp crx);
10860   effect(USE crx, USE lbl);
10861   predicate(false /* TODO: PPC port HB_Schedule*/);
10862   // Higher cost than `branchCon'.
10863   ins_cost(5*BRANCH_COST);
10864 
10865   // Actually size doesn't depend on alignment but on shortening.
10866   ins_variable_size_depending_on_alignment(true);
10867   // long variant.
10868   ins_short_branch(0);
10869 
10870   format %{ "B_FAR$cmp $crx, $lbl" %}
10871   size(8); // worst case
10872   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
10873   ins_pipe(pipe_class_default);
10874 %}
10875 
10876 instruct branchLoopEnd(cmpOp cmp, flagsRegSrc crx, label labl) %{
10877   match(CountedLoopEnd cmp crx);
10878   effect(USE labl);
10879   ins_cost(BRANCH_COST);
10880 
10881   // short variant.
10882   ins_short_branch(1);
10883 
10884   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
10885   size(4);
10886   ins_encode( enc_bc(crx, cmp, labl) );
10887   ins_pipe(pipe_class_default);
10888 %}
10889 
10890 instruct branchLoopEndFar(cmpOp cmp, flagsRegSrc crx, label labl) %{
10891   match(CountedLoopEnd cmp crx);
10892   effect(USE labl);
10893   predicate(!false /* TODO: PPC port HB_Schedule */);
10894   ins_cost(BRANCH_COST);
10895 
10896   // Long variant.
10897   ins_short_branch(0);
10898 
10899   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10900   size(8);
10901   ins_encode( enc_bc_far(crx, cmp, labl) );
10902   ins_pipe(pipe_class_default);
10903 %}
10904 
10905 // Conditional Branch used with Power6 scheduler (can be far or short).
10906 instruct branchLoopEndSched(cmpOp cmp, flagsRegSrc crx, label labl) %{
10907   match(CountedLoopEnd cmp crx);
10908   effect(USE labl);
10909   predicate(false /* TODO: PPC port HB_Schedule */);
10910   // Higher cost than `branchCon'.
10911   ins_cost(5*BRANCH_COST);
10912 
10913   // Actually size doesn't depend on alignment but on shortening.
10914   ins_variable_size_depending_on_alignment(true);
10915   // Long variant.
10916   ins_short_branch(0);
10917 
10918   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10919   size(8); // worst case
10920   ins_encode( enc_bc_short_far(crx, cmp, labl) );
10921   ins_pipe(pipe_class_default);
10922 %}
10923 
10924 // ============================================================================
10925 // Java runtime operations, intrinsics and other complex operations.
10926 
10927 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
10928 // array for an instance of the superklass. Set a hidden internal cache on a
10929 // hit (cache is checked with exposed code in gen_subtype_check()). Return
10930 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
10931 //
10932 // GL TODO: Improve this.
10933 // - result should not be a TEMP
10934 // - Add match rule as on sparc avoiding additional Cmp.
10935 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
10936                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
10937   match(Set result (PartialSubtypeCheck subklass superklass));
10938   effect(TEMP_DEF result, TEMP tmp_klass, TEMP tmp_arrayptr);
10939   ins_cost(DEFAULT_COST*10);
10940 
10941   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
10942   ins_encode %{
10943     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10944     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
10945                                      $tmp_klass$$Register, NULL, $result$$Register);
10946   %}
10947   ins_pipe(pipe_class_default);
10948 %}
10949 
10950 // inlined locking and unlocking
10951 
10952 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10953   match(Set crx (FastLock oop box));
10954   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10955   predicate(!Compile::current()->use_rtm());
10956 
10957   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
10958   ins_encode %{
10959     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10960     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10961                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register,
10962                                  UseBiasedLocking && !UseOptoBiasInlining);
10963     // If locking was successfull, crx should indicate 'EQ'.
10964     // The compiler generates a branch to the runtime call to
10965     // _complete_monitor_locking_Java for the case where crx is 'NE'.
10966   %}
10967   ins_pipe(pipe_class_compare);
10968 %}
10969 
10970 // Separate version for TM. Use bound register for box to enable USE_KILL.
10971 instruct cmpFastLock_tm(flagsReg crx, iRegPdst oop, rarg2RegP box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10972   match(Set crx (FastLock oop box));
10973   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, USE_KILL box);
10974   predicate(Compile::current()->use_rtm());
10975 
10976   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3 (TM)" %}
10977   ins_encode %{
10978     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10979     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10980                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register,
10981                                  /*Biased Locking*/ false,
10982                                  _rtm_counters, _stack_rtm_counters,
10983                                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
10984                                  /*TM*/ true, ra_->C->profile_rtm());
10985     // If locking was successfull, crx should indicate 'EQ'.
10986     // The compiler generates a branch to the runtime call to
10987     // _complete_monitor_locking_Java for the case where crx is 'NE'.
10988   %}
10989   ins_pipe(pipe_class_compare);
10990 %}
10991 
10992 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10993   match(Set crx (FastUnlock oop box));
10994   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10995   predicate(!Compile::current()->use_rtm());
10996 
10997   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
10998   ins_encode %{
10999     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11000     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
11001                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register,
11002                                    UseBiasedLocking && !UseOptoBiasInlining,
11003                                    false);
11004     // If unlocking was successfull, crx should indicate 'EQ'.
11005     // The compiler generates a branch to the runtime call to
11006     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
11007   %}
11008   ins_pipe(pipe_class_compare);
11009 %}
11010 
11011 instruct cmpFastUnlock_tm(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
11012   match(Set crx (FastUnlock oop box));
11013   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
11014   predicate(Compile::current()->use_rtm());
11015 
11016   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2 (TM)" %}
11017   ins_encode %{
11018     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11019     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
11020                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register,
11021                                    /*Biased Locking*/ false, /*TM*/ true);
11022     // If unlocking was successfull, crx should indicate 'EQ'.
11023     // The compiler generates a branch to the runtime call to
11024     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
11025   %}
11026   ins_pipe(pipe_class_compare);
11027 %}
11028 
11029 // Align address.
11030 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
11031   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
11032 
11033   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
11034   size(4);
11035   ins_encode %{
11036     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
11037     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
11038   %}
11039   ins_pipe(pipe_class_default);
11040 %}
11041 
11042 // Array size computation.
11043 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
11044   match(Set dst (SubL (CastP2X end) (CastP2X start)));
11045 
11046   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
11047   size(4);
11048   ins_encode %{
11049     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
11050     __ subf($dst$$Register, $start$$Register, $end$$Register);
11051   %}
11052   ins_pipe(pipe_class_default);
11053 %}
11054 
11055 // Clear-array with dynamic array-size.
11056 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
11057   match(Set dummy (ClearArray cnt base));
11058   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
11059   ins_cost(MEMORY_REF_COST);
11060 
11061   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11062 
11063   format %{ "ClearArray $cnt, $base" %}
11064   ins_encode %{
11065     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11066     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
11067   %}
11068   ins_pipe(pipe_class_default);
11069 %}
11070 
11071 // String_IndexOf for needle of length 1.
11072 //
11073 // Match needle into immediate operands: no loadConP node needed. Saves one
11074 // register and two instructions over string_indexOf_imm1Node.
11075 //
11076 // Assumes register result differs from all input registers.
11077 //
11078 // Preserves registers haystack, haycnt
11079 // Kills     registers tmp1, tmp2
11080 // Defines   registers result
11081 //
11082 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11083 //
11084 // Unfortunately this does not match too often. In many situations the AddP is used
11085 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
11086 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
11087                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
11088                                   iRegIdst tmp1, iRegIdst tmp2,
11089                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
11090   predicate(SpecialStringIndexOf && !CompactStrings);  // type check implicit by parameter type, See Matcher::match_rule_supported
11091   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
11092 
11093   effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
11094 
11095   ins_cost(150);
11096   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
11097             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
11098 
11099   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
11100   ins_encode %{
11101     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11102     immPOper *needleOper = (immPOper *)$needleImm;
11103     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
11104     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
11105 
11106     __ string_indexof_1($result$$Register,
11107                         $haystack$$Register, $haycnt$$Register,
11108                         R0, needle_values->char_at(0),
11109                         $tmp1$$Register, $tmp2$$Register);
11110   %}
11111   ins_pipe(pipe_class_compare);
11112 %}
11113 
11114 // String_IndexOf for needle of length 1.
11115 //
11116 // Special case requires less registers and emits less instructions.
11117 //
11118 // Assumes register result differs from all input registers.
11119 //
11120 // Preserves registers haystack, haycnt
11121 // Kills     registers tmp1, tmp2, needle
11122 // Defines   registers result
11123 //
11124 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11125 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
11126                              rscratch2RegP needle, immI_1 needlecntImm,
11127                              iRegIdst tmp1, iRegIdst tmp2,
11128                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
11129   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11130   effect(USE_KILL needle, /* TDEF needle, */ TEMP_DEF result,
11131          TEMP tmp1, TEMP tmp2);
11132   // Required for EA: check if it is still a type_array.
11133   predicate(SpecialStringIndexOf && !CompactStrings && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11134             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11135   ins_cost(180);
11136 
11137   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11138 
11139   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11140             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
11141   ins_encode %{
11142     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11143     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11144     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11145     guarantee(needle_values, "sanity");
11146     if (needle_values != NULL) {
11147       __ string_indexof_1($result$$Register,
11148                           $haystack$$Register, $haycnt$$Register,
11149                           R0, needle_values->char_at(0),
11150                           $tmp1$$Register, $tmp2$$Register);
11151     } else {
11152       __ string_indexof_1($result$$Register,
11153                           $haystack$$Register, $haycnt$$Register,
11154                           $needle$$Register, 0,
11155                           $tmp1$$Register, $tmp2$$Register);
11156     }
11157   %}
11158   ins_pipe(pipe_class_compare);
11159 %}
11160 
11161 // String_IndexOf.
11162 //
11163 // Length of needle as immediate. This saves instruction loading constant needle
11164 // length.
11165 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
11166 // completely or do it in vector instruction. This should save registers for
11167 // needlecnt and needle.
11168 //
11169 // Assumes register result differs from all input registers.
11170 // Overwrites haycnt, needlecnt.
11171 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11172 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
11173                             iRegPsrc needle, uimmI15 needlecntImm,
11174                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
11175                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11176   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11177   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP_DEF result,
11178          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
11179   // Required for EA: check if it is still a type_array.
11180   predicate(SpecialStringIndexOf && !CompactStrings && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11181             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11182   ins_cost(250);
11183 
11184   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11185 
11186   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11187             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
11188   ins_encode %{
11189     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11190     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11191     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11192 
11193     __ string_indexof($result$$Register,
11194                       $haystack$$Register, $haycnt$$Register,
11195                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
11196                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11197   %}
11198   ins_pipe(pipe_class_compare);
11199 %}
11200 
11201 // StrIndexOf node.
11202 //
11203 // Assumes register result differs from all input registers.
11204 // Overwrites haycnt, needlecnt.
11205 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11206 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
11207                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
11208                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11209   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
11210   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
11211          TEMP_DEF result,
11212          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
11213   predicate(SpecialStringIndexOf && !CompactStrings);  // See Matcher::match_rule_supported.
11214   ins_cost(300);
11215 
11216   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11217 
11218   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
11219              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
11220   ins_encode %{
11221     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11222     __ string_indexof($result$$Register,
11223                       $haystack$$Register, $haycnt$$Register,
11224                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
11225                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11226   %}
11227   ins_pipe(pipe_class_compare);
11228 %}
11229 
11230 // String equals with immediate.
11231 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
11232                            iRegPdst tmp1, iRegPdst tmp2,
11233                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
11234   match(Set result (StrEquals (Binary str1 str2) cntImm));
11235   effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2,
11236          KILL cr0, KILL cr6, KILL ctr);
11237   predicate(SpecialStringEquals && !CompactStrings);  // See Matcher::match_rule_supported.
11238   ins_cost(250);
11239 
11240   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11241 
11242   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
11243             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
11244   ins_encode %{
11245     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11246     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
11247                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
11248   %}
11249   ins_pipe(pipe_class_compare);
11250 %}
11251 
11252 // String equals.
11253 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11254 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
11255                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
11256                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
11257   match(Set result (StrEquals (Binary str1 str2) cnt));
11258   effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
11259          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
11260   predicate(SpecialStringEquals && !CompactStrings);  // See Matcher::match_rule_supported.
11261   ins_cost(300);
11262 
11263   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11264 
11265   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
11266             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
11267   ins_encode %{
11268     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11269     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
11270                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
11271   %}
11272   ins_pipe(pipe_class_compare);
11273 %}
11274 
11275 // String compare.
11276 // Char[] pointers are passed in.
11277 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11278 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
11279                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
11280   predicate(!CompactStrings);
11281   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11282   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP_DEF result, TEMP tmp, KILL cr0, KILL ctr);
11283   ins_cost(300);
11284 
11285   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11286 
11287   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
11288             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
11289   ins_encode %{
11290     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11291     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
11292                       $result$$Register, $tmp$$Register);
11293   %}
11294   ins_pipe(pipe_class_compare);
11295 %}
11296 
11297 //---------- Min/Max Instructions ---------------------------------------------
11298 
11299 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11300   match(Set dst (MinI src1 src2));
11301   ins_cost(DEFAULT_COST*6);
11302 
11303   expand %{
11304     iRegLdst src1s;
11305     iRegLdst src2s;
11306     iRegLdst diff;
11307     iRegLdst sm;
11308     iRegLdst doz; // difference or zero
11309     convI2L_reg(src1s, src1); // Ensure proper sign extension.
11310     convI2L_reg(src2s, src2); // Ensure proper sign extension.
11311     subL_reg_reg(diff, src2s, src1s);
11312     // Need to consider >=33 bit result, therefore we need signmaskL.
11313     signmask64L_regL(sm, diff);
11314     andL_reg_reg(doz, diff, sm); // <=0
11315     addI_regL_regL(dst, doz, src1s);
11316   %}
11317 %}
11318 
11319 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11320   match(Set dst (MaxI src1 src2));
11321   ins_cost(DEFAULT_COST*6);
11322 
11323   expand %{
11324     iRegLdst src1s;
11325     iRegLdst src2s;
11326     iRegLdst diff;
11327     iRegLdst sm;
11328     iRegLdst doz; // difference or zero
11329     convI2L_reg(src1s, src1); // Ensure proper sign extension.
11330     convI2L_reg(src2s, src2); // Ensure proper sign extension.
11331     subL_reg_reg(diff, src2s, src1s);
11332     // Need to consider >=33 bit result, therefore we need signmaskL.
11333     signmask64L_regL(sm, diff);
11334     andcL_reg_reg(doz, diff, sm); // >=0
11335     addI_regL_regL(dst, doz, src1s);
11336   %}
11337 %}
11338 
11339 //---------- Population Count Instructions ------------------------------------
11340 
11341 // Popcnt for Power7.
11342 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
11343   match(Set dst (PopCountI src));
11344   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11345   ins_cost(DEFAULT_COST);
11346 
11347   format %{ "POPCNTW $dst, $src" %}
11348   size(4);
11349   ins_encode %{
11350     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11351     __ popcntw($dst$$Register, $src$$Register);
11352   %}
11353   ins_pipe(pipe_class_default);
11354 %}
11355 
11356 // Popcnt for Power7.
11357 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
11358   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11359   match(Set dst (PopCountL src));
11360   ins_cost(DEFAULT_COST);
11361 
11362   format %{ "POPCNTD $dst, $src" %}
11363   size(4);
11364   ins_encode %{
11365     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11366     __ popcntd($dst$$Register, $src$$Register);
11367   %}
11368   ins_pipe(pipe_class_default);
11369 %}
11370 
11371 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
11372   match(Set dst (CountLeadingZerosI src));
11373   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11374   ins_cost(DEFAULT_COST);
11375 
11376   format %{ "CNTLZW  $dst, $src" %}
11377   size(4);
11378   ins_encode %{
11379     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
11380     __ cntlzw($dst$$Register, $src$$Register);
11381   %}
11382   ins_pipe(pipe_class_default);
11383 %}
11384 
11385 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
11386   match(Set dst (CountLeadingZerosL src));
11387   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11388   ins_cost(DEFAULT_COST);
11389 
11390   format %{ "CNTLZD  $dst, $src" %}
11391   size(4);
11392   ins_encode %{
11393     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11394     __ cntlzd($dst$$Register, $src$$Register);
11395   %}
11396   ins_pipe(pipe_class_default);
11397 %}
11398 
11399 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
11400   // no match-rule, false predicate
11401   effect(DEF dst, USE src);
11402   predicate(false);
11403 
11404   format %{ "CNTLZD  $dst, $src" %}
11405   size(4);
11406   ins_encode %{
11407     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11408     __ cntlzd($dst$$Register, $src$$Register);
11409   %}
11410   ins_pipe(pipe_class_default);
11411 %}
11412 
11413 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
11414   match(Set dst (CountTrailingZerosI src));
11415   predicate(UseCountLeadingZerosInstructionsPPC64);
11416   ins_cost(DEFAULT_COST);
11417 
11418   expand %{
11419     immI16 imm1 %{ (int)-1 %}
11420     immI16 imm2 %{ (int)32 %}
11421     immI_minus1 m1 %{ -1 %}
11422     iRegIdst tmpI1;
11423     iRegIdst tmpI2;
11424     iRegIdst tmpI3;
11425     addI_reg_imm16(tmpI1, src, imm1);
11426     andcI_reg_reg(tmpI2, src, m1, tmpI1);
11427     countLeadingZerosI(tmpI3, tmpI2);
11428     subI_imm16_reg(dst, imm2, tmpI3);
11429   %}
11430 %}
11431 
11432 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
11433   match(Set dst (CountTrailingZerosL src));
11434   predicate(UseCountLeadingZerosInstructionsPPC64);
11435   ins_cost(DEFAULT_COST);
11436 
11437   expand %{
11438     immL16 imm1 %{ (long)-1 %}
11439     immI16 imm2 %{ (int)64 %}
11440     iRegLdst tmpL1;
11441     iRegLdst tmpL2;
11442     iRegIdst tmpL3;
11443     addL_reg_imm16(tmpL1, src, imm1);
11444     andcL_reg_reg(tmpL2, tmpL1, src);
11445     countLeadingZerosL(tmpL3, tmpL2);
11446     subI_imm16_reg(dst, imm2, tmpL3);
11447  %}
11448 %}
11449 
11450 // Expand nodes for byte_reverse_int.
11451 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11452   effect(DEF dst, USE src, USE pos, USE shift);
11453   predicate(false);
11454 
11455   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11456   size(4);
11457   ins_encode %{
11458     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11459     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11460   %}
11461   ins_pipe(pipe_class_default);
11462 %}
11463 
11464 // As insrwi_a, but with USE_DEF.
11465 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11466   effect(USE_DEF dst, USE src, USE pos, USE shift);
11467   predicate(false);
11468 
11469   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11470   size(4);
11471   ins_encode %{
11472     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11473     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11474   %}
11475   ins_pipe(pipe_class_default);
11476 %}
11477 
11478 // Just slightly faster than java implementation.
11479 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
11480   match(Set dst (ReverseBytesI src));
11481   predicate(UseCountLeadingZerosInstructionsPPC64);
11482   ins_cost(DEFAULT_COST);
11483 
11484   expand %{
11485     immI16 imm24 %{ (int) 24 %}
11486     immI16 imm16 %{ (int) 16 %}
11487     immI16  imm8 %{ (int)  8 %}
11488     immI16  imm4 %{ (int)  4 %}
11489     immI16  imm0 %{ (int)  0 %}
11490     iRegLdst tmpI1;
11491     iRegLdst tmpI2;
11492     iRegLdst tmpI3;
11493 
11494     urShiftI_reg_imm(tmpI1, src, imm24);
11495     insrwi_a(dst, tmpI1, imm24, imm8);
11496     urShiftI_reg_imm(tmpI2, src, imm16);
11497     insrwi(dst, tmpI2, imm8, imm16);
11498     urShiftI_reg_imm(tmpI3, src, imm8);
11499     insrwi(dst, tmpI3, imm8, imm8);
11500     insrwi(dst, src, imm0, imm8);
11501   %}
11502 %}
11503 
11504 //---------- Replicate Vector Instructions ------------------------------------
11505 
11506 // Insrdi does replicate if src == dst.
11507 instruct repl32(iRegLdst dst) %{
11508   predicate(false);
11509   effect(USE_DEF dst);
11510 
11511   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
11512   size(4);
11513   ins_encode %{
11514     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11515     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
11516   %}
11517   ins_pipe(pipe_class_default);
11518 %}
11519 
11520 // Insrdi does replicate if src == dst.
11521 instruct repl48(iRegLdst dst) %{
11522   predicate(false);
11523   effect(USE_DEF dst);
11524 
11525   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
11526   size(4);
11527   ins_encode %{
11528     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11529     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
11530   %}
11531   ins_pipe(pipe_class_default);
11532 %}
11533 
11534 // Insrdi does replicate if src == dst.
11535 instruct repl56(iRegLdst dst) %{
11536   predicate(false);
11537   effect(USE_DEF dst);
11538 
11539   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
11540   size(4);
11541   ins_encode %{
11542     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11543     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
11544   %}
11545   ins_pipe(pipe_class_default);
11546 %}
11547 
11548 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11549   match(Set dst (ReplicateB src));
11550   predicate(n->as_Vector()->length() == 8);
11551   expand %{
11552     moveReg(dst, src);
11553     repl56(dst);
11554     repl48(dst);
11555     repl32(dst);
11556   %}
11557 %}
11558 
11559 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
11560   match(Set dst (ReplicateB zero));
11561   predicate(n->as_Vector()->length() == 8);
11562   format %{ "LI      $dst, #0 \t// replicate8B" %}
11563   size(4);
11564   ins_encode %{
11565     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11566     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11567   %}
11568   ins_pipe(pipe_class_default);
11569 %}
11570 
11571 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
11572   match(Set dst (ReplicateB src));
11573   predicate(n->as_Vector()->length() == 8);
11574   format %{ "LI      $dst, #-1 \t// replicate8B" %}
11575   size(4);
11576   ins_encode %{
11577     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11578     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11579   %}
11580   ins_pipe(pipe_class_default);
11581 %}
11582 
11583 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11584   match(Set dst (ReplicateS src));
11585   predicate(n->as_Vector()->length() == 4);
11586   expand %{
11587     moveReg(dst, src);
11588     repl48(dst);
11589     repl32(dst);
11590   %}
11591 %}
11592 
11593 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
11594   match(Set dst (ReplicateS zero));
11595   predicate(n->as_Vector()->length() == 4);
11596   format %{ "LI      $dst, #0 \t// replicate4C" %}
11597   size(4);
11598   ins_encode %{
11599     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11600     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11601   %}
11602   ins_pipe(pipe_class_default);
11603 %}
11604 
11605 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
11606   match(Set dst (ReplicateS src));
11607   predicate(n->as_Vector()->length() == 4);
11608   format %{ "LI      $dst, -1 \t// replicate4C" %}
11609   size(4);
11610   ins_encode %{
11611     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11612     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11613   %}
11614   ins_pipe(pipe_class_default);
11615 %}
11616 
11617 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11618   match(Set dst (ReplicateI src));
11619   predicate(n->as_Vector()->length() == 2);
11620   ins_cost(2 * DEFAULT_COST);
11621   expand %{
11622     moveReg(dst, src);
11623     repl32(dst);
11624   %}
11625 %}
11626 
11627 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
11628   match(Set dst (ReplicateI zero));
11629   predicate(n->as_Vector()->length() == 2);
11630   format %{ "LI      $dst, #0 \t// replicate4C" %}
11631   size(4);
11632   ins_encode %{
11633     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11634     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11635   %}
11636   ins_pipe(pipe_class_default);
11637 %}
11638 
11639 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
11640   match(Set dst (ReplicateI src));
11641   predicate(n->as_Vector()->length() == 2);
11642   format %{ "LI      $dst, -1 \t// replicate4C" %}
11643   size(4);
11644   ins_encode %{
11645     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11646     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11647   %}
11648   ins_pipe(pipe_class_default);
11649 %}
11650 
11651 // Move float to int register via stack, replicate.
11652 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
11653   match(Set dst (ReplicateF src));
11654   predicate(n->as_Vector()->length() == 2);
11655   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
11656   expand %{
11657     stackSlotL tmpS;
11658     iRegIdst tmpI;
11659     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
11660     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
11661     moveReg(dst, tmpI);             // Move int to long reg.
11662     repl32(dst);                    // Replicate bitpattern.
11663   %}
11664 %}
11665 
11666 // Replicate scalar constant to packed float values in Double register
11667 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
11668   match(Set dst (ReplicateF src));
11669   predicate(n->as_Vector()->length() == 2);
11670   ins_cost(5 * DEFAULT_COST);
11671 
11672   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
11673   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
11674 %}
11675 
11676 // Replicate scalar zero constant to packed float values in Double register
11677 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
11678   match(Set dst (ReplicateF zero));
11679   predicate(n->as_Vector()->length() == 2);
11680 
11681   format %{ "LI      $dst, #0 \t// replicate2F" %}
11682   ins_encode %{
11683     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11684     __ li($dst$$Register, 0x0);
11685   %}
11686   ins_pipe(pipe_class_default);
11687 %}
11688 
11689 
11690 //----------Overflow Math Instructions-----------------------------------------
11691 
11692 // Note that we have to make sure that XER.SO is reset before using overflow instructions.
11693 // Simple Overflow operations can be matched by very few instructions (e.g. addExact: xor, and_, bc).
11694 // Seems like only Long intrinsincs have an advantage. (The only expensive one is OverflowMulL.)
11695 
11696 instruct overflowAddL_reg_reg(flagsRegCR0 cr0, iRegLsrc op1, iRegLsrc op2) %{
11697   match(Set cr0 (OverflowAddL op1 op2));
11698 
11699   format %{ "add_    $op1, $op2\t# overflow check long" %}
11700   ins_encode %{
11701     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11702     __ li(R0, 0);
11703     __ mtxer(R0); // clear XER.SO
11704     __ addo_(R0, $op1$$Register, $op2$$Register);
11705   %}
11706   ins_pipe(pipe_class_default);
11707 %}
11708 
11709 instruct overflowSubL_reg_reg(flagsRegCR0 cr0, iRegLsrc op1, iRegLsrc op2) %{
11710   match(Set cr0 (OverflowSubL op1 op2));
11711 
11712   format %{ "subfo_  R0, $op2, $op1\t# overflow check long" %}
11713   ins_encode %{
11714     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11715     __ li(R0, 0);
11716     __ mtxer(R0); // clear XER.SO
11717     __ subfo_(R0, $op2$$Register, $op1$$Register);
11718   %}
11719   ins_pipe(pipe_class_default);
11720 %}
11721 
11722 instruct overflowNegL_reg(flagsRegCR0 cr0, immL_0 zero, iRegLsrc op2) %{
11723   match(Set cr0 (OverflowSubL zero op2));
11724 
11725   format %{ "nego_   R0, $op2\t# overflow check long" %}
11726   ins_encode %{
11727     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11728     __ li(R0, 0);
11729     __ mtxer(R0); // clear XER.SO
11730     __ nego_(R0, $op2$$Register);
11731   %}
11732   ins_pipe(pipe_class_default);
11733 %}
11734 
11735 instruct overflowMulL_reg_reg(flagsRegCR0 cr0, iRegLsrc op1, iRegLsrc op2) %{
11736   match(Set cr0 (OverflowMulL op1 op2));
11737 
11738   format %{ "mulldo_ R0, $op1, $op2\t# overflow check long" %}
11739   ins_encode %{
11740     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11741     __ li(R0, 0);
11742     __ mtxer(R0); // clear XER.SO
11743     __ mulldo_(R0, $op1$$Register, $op2$$Register);
11744   %}
11745   ins_pipe(pipe_class_default);
11746 %}
11747 
11748 
11749 // ============================================================================
11750 // Safepoint Instruction
11751 
11752 instruct safePoint_poll(iRegPdst poll) %{
11753   match(SafePoint poll);
11754   predicate(LoadPollAddressFromThread);
11755 
11756   // It caused problems to add the effect that r0 is killed, but this
11757   // effect no longer needs to be mentioned, since r0 is not contained
11758   // in a reg_class.
11759 
11760   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
11761   size(4);
11762   ins_encode( enc_poll(0x0, poll) );
11763   ins_pipe(pipe_class_default);
11764 %}
11765 
11766 // Safepoint without per-thread support. Load address of page to poll
11767 // as constant.
11768 // Rscratch2RegP is R12.
11769 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
11770 // a seperate node so that the oop map is at the right location.
11771 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
11772   match(SafePoint poll);
11773   predicate(!LoadPollAddressFromThread);
11774 
11775   // It caused problems to add the effect that r0 is killed, but this
11776   // effect no longer needs to be mentioned, since r0 is not contained
11777   // in a reg_class.
11778 
11779   format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
11780   ins_encode( enc_poll(0x0, poll) );
11781   ins_pipe(pipe_class_default);
11782 %}
11783 
11784 // ============================================================================
11785 // Call Instructions
11786 
11787 // Call Java Static Instruction
11788 
11789 // Schedulable version of call static node.
11790 instruct CallStaticJavaDirect(method meth) %{
11791   match(CallStaticJava);
11792   effect(USE meth);
11793   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
11794   ins_cost(CALL_COST);
11795 
11796   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11797 
11798   format %{ "CALL,static $meth \t// ==> " %}
11799   size(4);
11800   ins_encode( enc_java_static_call(meth) );
11801   ins_pipe(pipe_class_call);
11802 %}
11803 
11804 // Schedulable version of call static node.
11805 instruct CallStaticJavaDirectHandle(method meth) %{
11806   match(CallStaticJava);
11807   effect(USE meth);
11808   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
11809   ins_cost(CALL_COST);
11810 
11811   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11812 
11813   format %{ "CALL,static $meth \t// ==> " %}
11814   ins_encode( enc_java_handle_call(meth) );
11815   ins_pipe(pipe_class_call);
11816 %}
11817 
11818 // Call Java Dynamic Instruction
11819 
11820 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
11821 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
11822 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
11823 // The call destination must still be placed in the constant pool.
11824 instruct CallDynamicJavaDirectSched(method meth) %{
11825   match(CallDynamicJava); // To get all the data fields we need ...
11826   effect(USE meth);
11827   predicate(false);       // ... but never match.
11828 
11829   ins_field_load_ic_hi_node(loadConL_hiNode*);
11830   ins_field_load_ic_node(loadConLNode*);
11831   ins_num_consts(1 /* 1 patchable constant: call destination */);
11832 
11833   format %{ "BL        \t// dynamic $meth ==> " %}
11834   size(4);
11835   ins_encode( enc_java_dynamic_call_sched(meth) );
11836   ins_pipe(pipe_class_call);
11837 %}
11838 
11839 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
11840 // We use postalloc expanded calls if we use inline caches
11841 // and do not update method data.
11842 //
11843 // This instruction has two constants: inline cache (IC) and call destination.
11844 // Loading the inline cache will be postalloc expanded, thus leaving a call with
11845 // one constant.
11846 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
11847   match(CallDynamicJava);
11848   effect(USE meth);
11849   predicate(UseInlineCaches);
11850   ins_cost(CALL_COST);
11851 
11852   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
11853 
11854   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
11855   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
11856 %}
11857 
11858 // Compound version of call dynamic java
11859 // We use postalloc expanded calls if we use inline caches
11860 // and do not update method data.
11861 instruct CallDynamicJavaDirect(method meth) %{
11862   match(CallDynamicJava);
11863   effect(USE meth);
11864   predicate(!UseInlineCaches);
11865   ins_cost(CALL_COST);
11866 
11867   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
11868   ins_num_consts(4);
11869 
11870   format %{ "CALL,dynamic $meth \t// ==> " %}
11871   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
11872   ins_pipe(pipe_class_call);
11873 %}
11874 
11875 // Call Runtime Instruction
11876 
11877 instruct CallRuntimeDirect(method meth) %{
11878   match(CallRuntime);
11879   effect(USE meth);
11880   ins_cost(CALL_COST);
11881 
11882   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11883   // env for callee, C-toc.
11884   ins_num_consts(3);
11885 
11886   format %{ "CALL,runtime" %}
11887   ins_encode( enc_java_to_runtime_call(meth) );
11888   ins_pipe(pipe_class_call);
11889 %}
11890 
11891 // Call Leaf
11892 
11893 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
11894 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
11895   effect(DEF dst, USE src);
11896 
11897   ins_num_consts(1);
11898 
11899   format %{ "MTCTR   $src" %}
11900   size(4);
11901   ins_encode( enc_leaf_call_mtctr(src) );
11902   ins_pipe(pipe_class_default);
11903 %}
11904 
11905 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
11906 instruct CallLeafDirect(method meth) %{
11907   match(CallLeaf);   // To get the data all the data fields we need ...
11908   effect(USE meth);
11909   predicate(false);  // but never match.
11910 
11911   format %{ "BCTRL     \t// leaf call $meth ==> " %}
11912   size(4);
11913   ins_encode %{
11914     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
11915     __ bctrl();
11916   %}
11917   ins_pipe(pipe_class_call);
11918 %}
11919 
11920 // postalloc expand of CallLeafDirect.
11921 // Load adress to call from TOC, then bl to it.
11922 instruct CallLeafDirect_Ex(method meth) %{
11923   match(CallLeaf);
11924   effect(USE meth);
11925   ins_cost(CALL_COST);
11926 
11927   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
11928   // env for callee, C-toc.
11929   ins_num_consts(3);
11930 
11931   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
11932   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11933 %}
11934 
11935 // Call runtime without safepoint - same as CallLeaf.
11936 // postalloc expand of CallLeafNoFPDirect.
11937 // Load adress to call from TOC, then bl to it.
11938 instruct CallLeafNoFPDirect_Ex(method meth) %{
11939   match(CallLeafNoFP);
11940   effect(USE meth);
11941   ins_cost(CALL_COST);
11942 
11943   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11944   // env for callee, C-toc.
11945   ins_num_consts(3);
11946 
11947   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
11948   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11949 %}
11950 
11951 // Tail Call; Jump from runtime stub to Java code.
11952 // Also known as an 'interprocedural jump'.
11953 // Target of jump will eventually return to caller.
11954 // TailJump below removes the return address.
11955 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
11956   match(TailCall jump_target method_oop);
11957   ins_cost(CALL_COST);
11958 
11959   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
11960             "BCTR         \t// tail call" %}
11961   size(8);
11962   ins_encode %{
11963     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11964     __ mtctr($jump_target$$Register);
11965     __ bctr();
11966   %}
11967   ins_pipe(pipe_class_call);
11968 %}
11969 
11970 // Return Instruction
11971 instruct Ret() %{
11972   match(Return);
11973   format %{ "BLR      \t// branch to link register" %}
11974   size(4);
11975   ins_encode %{
11976     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
11977     // LR is restored in MachEpilogNode. Just do the RET here.
11978     __ blr();
11979   %}
11980   ins_pipe(pipe_class_default);
11981 %}
11982 
11983 // Tail Jump; remove the return address; jump to target.
11984 // TailCall above leaves the return address around.
11985 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
11986 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
11987 // "restore" before this instruction (in Epilogue), we need to materialize it
11988 // in %i0.
11989 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
11990   match(TailJump jump_target ex_oop);
11991   ins_cost(CALL_COST);
11992 
11993   format %{ "LD      R4_ARG2 = LR\n\t"
11994             "MTCTR   $jump_target\n\t"
11995             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
11996   size(12);
11997   ins_encode %{
11998     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11999     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
12000     __ mtctr($jump_target$$Register);
12001     __ bctr();
12002   %}
12003   ins_pipe(pipe_class_call);
12004 %}
12005 
12006 // Create exception oop: created by stack-crawling runtime code.
12007 // Created exception is now available to this handler, and is setup
12008 // just prior to jumping to this handler. No code emitted.
12009 instruct CreateException(rarg1RegP ex_oop) %{
12010   match(Set ex_oop (CreateEx));
12011   ins_cost(0);
12012 
12013   format %{ " -- \t// exception oop; no code emitted" %}
12014   size(0);
12015   ins_encode( /*empty*/ );
12016   ins_pipe(pipe_class_default);
12017 %}
12018 
12019 // Rethrow exception: The exception oop will come in the first
12020 // argument position. Then JUMP (not call) to the rethrow stub code.
12021 instruct RethrowException() %{
12022   match(Rethrow);
12023   ins_cost(CALL_COST);
12024 
12025   format %{ "Jmp     rethrow_stub" %}
12026   ins_encode %{
12027     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
12028     cbuf.set_insts_mark();
12029     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
12030   %}
12031   ins_pipe(pipe_class_call);
12032 %}
12033 
12034 // Die now.
12035 instruct ShouldNotReachHere() %{
12036   match(Halt);
12037   ins_cost(CALL_COST);
12038 
12039   format %{ "ShouldNotReachHere" %}
12040   size(4);
12041   ins_encode %{
12042     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
12043     __ trap_should_not_reach_here();
12044   %}
12045   ins_pipe(pipe_class_default);
12046 %}
12047 
12048 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
12049 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
12050 // Get a DEF on threadRegP, no costs, no encoding, use
12051 // 'ins_should_rematerialize(true)' to avoid spilling.
12052 instruct tlsLoadP(threadRegP dst) %{
12053   match(Set dst (ThreadLocal));
12054   ins_cost(0);
12055 
12056   ins_should_rematerialize(true);
12057 
12058   format %{ " -- \t// $dst=Thread::current(), empty" %}
12059   size(0);
12060   ins_encode( /*empty*/ );
12061   ins_pipe(pipe_class_empty);
12062 %}
12063 
12064 //---Some PPC specific nodes---------------------------------------------------
12065 
12066 // Stop a group.
12067 instruct endGroup() %{
12068   ins_cost(0);
12069 
12070   ins_is_nop(true);
12071 
12072   format %{ "End Bundle (ori r1, r1, 0)" %}
12073   size(4);
12074   ins_encode %{
12075     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
12076     __ endgroup();
12077   %}
12078   ins_pipe(pipe_class_default);
12079 %}
12080 
12081 // Nop instructions
12082 
12083 instruct fxNop() %{
12084   ins_cost(0);
12085 
12086   ins_is_nop(true);
12087 
12088   format %{ "fxNop" %}
12089   size(4);
12090   ins_encode %{
12091     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
12092     __ nop();
12093   %}
12094   ins_pipe(pipe_class_default);
12095 %}
12096 
12097 instruct fpNop0() %{
12098   ins_cost(0);
12099 
12100   ins_is_nop(true);
12101 
12102   format %{ "fpNop0" %}
12103   size(4);
12104   ins_encode %{
12105     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
12106     __ fpnop0();
12107   %}
12108   ins_pipe(pipe_class_default);
12109 %}
12110 
12111 instruct fpNop1() %{
12112   ins_cost(0);
12113 
12114   ins_is_nop(true);
12115 
12116   format %{ "fpNop1" %}
12117   size(4);
12118   ins_encode %{
12119     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
12120     __ fpnop1();
12121   %}
12122   ins_pipe(pipe_class_default);
12123 %}
12124 
12125 instruct brNop0() %{
12126   ins_cost(0);
12127   size(4);
12128   format %{ "brNop0" %}
12129   ins_encode %{
12130     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12131     __ brnop0();
12132   %}
12133   ins_is_nop(true);
12134   ins_pipe(pipe_class_default);
12135 %}
12136 
12137 instruct brNop1() %{
12138   ins_cost(0);
12139 
12140   ins_is_nop(true);
12141 
12142   format %{ "brNop1" %}
12143   size(4);
12144   ins_encode %{
12145     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12146     __ brnop1();
12147   %}
12148   ins_pipe(pipe_class_default);
12149 %}
12150 
12151 instruct brNop2() %{
12152   ins_cost(0);
12153 
12154   ins_is_nop(true);
12155 
12156   format %{ "brNop2" %}
12157   size(4);
12158   ins_encode %{
12159     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12160     __ brnop2();
12161   %}
12162   ins_pipe(pipe_class_default);
12163 %}
12164 
12165 //----------PEEPHOLE RULES-----------------------------------------------------
12166 // These must follow all instruction definitions as they use the names
12167 // defined in the instructions definitions.
12168 //
12169 // peepmatch ( root_instr_name [preceeding_instruction]* );
12170 //
12171 // peepconstraint %{
12172 // (instruction_number.operand_name relational_op instruction_number.operand_name
12173 //  [, ...] );
12174 // // instruction numbers are zero-based using left to right order in peepmatch
12175 //
12176 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
12177 // // provide an instruction_number.operand_name for each operand that appears
12178 // // in the replacement instruction's match rule
12179 //
12180 // ---------VM FLAGS---------------------------------------------------------
12181 //
12182 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12183 //
12184 // Each peephole rule is given an identifying number starting with zero and
12185 // increasing by one in the order seen by the parser. An individual peephole
12186 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12187 // on the command-line.
12188 //
12189 // ---------CURRENT LIMITATIONS----------------------------------------------
12190 //
12191 // Only match adjacent instructions in same basic block
12192 // Only equality constraints
12193 // Only constraints between operands, not (0.dest_reg == EAX_enc)
12194 // Only one replacement instruction
12195 //
12196 // ---------EXAMPLE----------------------------------------------------------
12197 //
12198 // // pertinent parts of existing instructions in architecture description
12199 // instruct movI(eRegI dst, eRegI src) %{
12200 //   match(Set dst (CopyI src));
12201 // %}
12202 //
12203 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
12204 //   match(Set dst (AddI dst src));
12205 //   effect(KILL cr);
12206 // %}
12207 //
12208 // // Change (inc mov) to lea
12209 // peephole %{
12210 //   // increment preceeded by register-register move
12211 //   peepmatch ( incI_eReg movI );
12212 //   // require that the destination register of the increment
12213 //   // match the destination register of the move
12214 //   peepconstraint ( 0.dst == 1.dst );
12215 //   // construct a replacement instruction that sets
12216 //   // the destination to ( move's source register + one )
12217 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12218 // %}
12219 //
12220 // Implementation no longer uses movX instructions since
12221 // machine-independent system no longer uses CopyX nodes.
12222 //
12223 // peephole %{
12224 //   peepmatch ( incI_eReg movI );
12225 //   peepconstraint ( 0.dst == 1.dst );
12226 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12227 // %}
12228 //
12229 // peephole %{
12230 //   peepmatch ( decI_eReg movI );
12231 //   peepconstraint ( 0.dst == 1.dst );
12232 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12233 // %}
12234 //
12235 // peephole %{
12236 //   peepmatch ( addI_eReg_imm movI );
12237 //   peepconstraint ( 0.dst == 1.dst );
12238 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12239 // %}
12240 //
12241 // peephole %{
12242 //   peepmatch ( addP_eReg_imm movP );
12243 //   peepconstraint ( 0.dst == 1.dst );
12244 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12245 // %}
12246 
12247 // // Change load of spilled value to only a spill
12248 // instruct storeI(memory mem, eRegI src) %{
12249 //   match(Set mem (StoreI mem src));
12250 // %}
12251 //
12252 // instruct loadI(eRegI dst, memory mem) %{
12253 //   match(Set dst (LoadI mem));
12254 // %}
12255 //
12256 peephole %{
12257   peepmatch ( loadI storeI );
12258   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12259   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12260 %}
12261 
12262 peephole %{
12263   peepmatch ( loadL storeL );
12264   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12265   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
12266 %}
12267 
12268 peephole %{
12269   peepmatch ( loadP storeP );
12270   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
12271   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
12272 %}
12273 
12274 //----------SMARTSPILL RULES---------------------------------------------------
12275 // These must follow all instruction definitions as they use the names
12276 // defined in the instructions definitions.