1 //
   2 // Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.
   3 // Copyright 2012, 2015 SAP AG. All rights reserved.
   4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 //
   6 // This code is free software; you can redistribute it and/or modify it
   7 // under the terms of the GNU General Public License version 2 only, as
   8 // published by the Free Software Foundation.
   9 //
  10 // This code is distributed in the hope that it will be useful, but WITHOUT
  11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 // version 2 for more details (a copy is included in the LICENSE file that
  14 // accompanied this code).
  15 //
  16 // You should have received a copy of the GNU General Public License version
  17 // 2 along with this work; if not, write to the Free Software Foundation,
  18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19 //
  20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21 // or visit www.oracle.com if you need additional information or have any
  22 // questions.
  23 //
  24 //
  25 
  26 //
  27 // PPC64 Architecture Description File
  28 //
  29 
  30 //----------REGISTER DEFINITION BLOCK------------------------------------------
  31 // This information is used by the matcher and the register allocator to
  32 // describe individual registers and classes of registers within the target
  33 // architecture.
  34 register %{
  35 //----------Architecture Description Register Definitions----------------------
  36 // General Registers
  37 // "reg_def"  name (register save type, C convention save type,
  38 //                  ideal register type, encoding);
  39 //
  40 // Register Save Types:
  41 //
  42 //   NS  = No-Save:     The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method, &
  44 //                      that they do not need to be saved at call sites.
  45 //
  46 //   SOC = Save-On-Call: The register allocator assumes that these registers
  47 //                      can be used without saving upon entry to the method,
  48 //                      but that they must be saved at call sites.
  49 //                      These are called "volatiles" on ppc.
  50 //
  51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, but they do not need to be saved at call
  54 //                      sites.
  55 //                      These are called "nonvolatiles" on ppc.
  56 //
  57 //   AS  = Always-Save:   The register allocator assumes that these registers
  58 //                      must be saved before using them upon entry to the
  59 //                      method, & that they must be saved at call sites.
  60 //
  61 // Ideal Register Type is used to determine how to save & restore a
  62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
  64 //
  65 // The encoding number is the actual bit-pattern placed into the opcodes.
  66 //
  67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
  68 // Supplement Version 1.7 as of 2003-10-29.
  69 //
  70 // For each 64-bit register we must define two registers: the register
  71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
  72 // e.g. R3_H, which is needed by the allocator, but is not used
  73 // for stores, loads, etc.
  74 
  75 // ----------------------------
  76 // Integer/Long Registers
  77 // ----------------------------
  78 
  79   // PPC64 has 32 64-bit integer registers.
  80 
  81   // types: v = volatile, nv = non-volatile, s = system
  82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
  83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
  84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
  85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
  86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
  87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
  88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
  89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
  90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
  91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
  92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
  93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
  94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
  95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
  96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
  97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
  98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
  99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
 100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
 101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
 102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
 103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
 104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
 105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
 106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
 107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
 108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
 109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
 110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
 111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
 112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
 113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
 114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
 115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
 116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
 117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
 118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
 119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
 120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
 121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
 122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
 123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
 124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
 125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
 126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
 127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
 128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
 129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
 130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
 131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
 132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
 133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
 134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
 135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
 136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
 137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
 138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
 139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
 140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
 141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
 142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
 143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
 144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
 145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
 146 
 147 
 148 // ----------------------------
 149 // Float/Double Registers
 150 // ----------------------------
 151 
 152   // Double Registers
 153   // The rules of ADL require that double registers be defined in pairs.
 154   // Each pair must be two 32-bit values, but not necessarily a pair of
 155   // single float registers. In each pair, ADLC-assigned register numbers
 156   // must be adjacent, with the lower number even. Finally, when the
 157   // CPU stores such a register pair to memory, the word associated with
 158   // the lower ADLC-assigned number must be stored to the lower address.
 159 
 160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
 161   // or double precision floating-point value.
 162 
 163   // types: v = volatile, nv = non-volatile, s = system
 164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
 165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
 166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
 167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
 168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
 169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
 170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
 171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
 172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
 173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
 174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
 175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
 176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
 177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
 178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
 179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
 180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
 181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
 182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
 183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
 184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
 185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
 186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
 187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
 188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
 189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
 190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
 191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
 192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
 193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
 194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
 195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
 196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
 197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
 198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
 199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
 200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
 201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
 202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
 203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
 204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
 205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
 206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
 207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
 208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
 209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
 210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
 211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
 212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
 213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
 214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
 215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
 216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
 217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
 218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
 219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
 220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
 221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
 222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
 223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
 224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
 225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
 226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
 227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
 228 
 229 // ----------------------------
 230 // Special Registers
 231 // ----------------------------
 232 
 233 // Condition Codes Flag Registers
 234 
 235   // PPC64 has 8 condition code "registers" which are all contained
 236   // in the CR register.
 237 
 238   // types: v = volatile, nv = non-volatile, s = system
 239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
 240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
 241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
 242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
 243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
 244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
 245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
 246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
 247 
 248   // Special registers of PPC64
 249 
 250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
 251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
 252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
 253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
 254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
 255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
 256 
 257 
 258 // ----------------------------
 259 // Specify priority of register selection within phases of register
 260 // allocation. Highest priority is first. A useful heuristic is to
 261 // give registers a low priority when they are required by machine
 262 // instructions, like EAX and EDX on I486, and choose no-save registers
 263 // before save-on-call, & save-on-call before save-on-entry. Registers
 264 // which participate in fixed calling sequences should come last.
 265 // Registers which are used as pairs must fall on an even boundary.
 266 
 267 // It's worth about 1% on SPEC geomean to get this right.
 268 
 269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
 270 // in adGlobals_ppc.hpp which defines the <register>_num values, e.g.
 271 // R3_num. Therefore, R3_num may not be (and in reality is not)
 272 // the same as R3->encoding()! Furthermore, we cannot make any
 273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
 274 // Additionally, the function
 275 //   static enum RC rc_class(OptoReg::Name reg )
 276 // maps a given <register>_num value to its chunk type (except for flags)
 277 // and its current implementation relies on chunk0 and chunk1 having a
 278 // size of 64 each.
 279 
 280 // If you change this allocation class, please have a look at the
 281 // default values for the parameters RoundRobinIntegerRegIntervalStart
 282 // and RoundRobinFloatRegIntervalStart
 283 
 284 alloc_class chunk0 (
 285   // Chunk0 contains *all* 64 integer registers halves.
 286 
 287   // "non-volatile" registers
 288   R14, R14_H,
 289   R15, R15_H,
 290   R17, R17_H,
 291   R18, R18_H,
 292   R19, R19_H,
 293   R20, R20_H,
 294   R21, R21_H,
 295   R22, R22_H,
 296   R23, R23_H,
 297   R24, R24_H,
 298   R25, R25_H,
 299   R26, R26_H,
 300   R27, R27_H,
 301   R28, R28_H,
 302   R29, R29_H,
 303   R30, R30_H,
 304   R31, R31_H,
 305 
 306   // scratch/special registers
 307   R11, R11_H,
 308   R12, R12_H,
 309 
 310   // argument registers
 311   R10, R10_H,
 312   R9,  R9_H,
 313   R8,  R8_H,
 314   R7,  R7_H,
 315   R6,  R6_H,
 316   R5,  R5_H,
 317   R4,  R4_H,
 318   R3,  R3_H,
 319 
 320   // special registers, not available for allocation
 321   R16, R16_H,     // R16_thread
 322   R13, R13_H,     // system thread id
 323   R2,  R2_H,      // may be used for TOC
 324   R1,  R1_H,      // SP
 325   R0,  R0_H       // R0 (scratch)
 326 );
 327 
 328 // If you change this allocation class, please have a look at the
 329 // default values for the parameters RoundRobinIntegerRegIntervalStart
 330 // and RoundRobinFloatRegIntervalStart
 331 
 332 alloc_class chunk1 (
 333   // Chunk1 contains *all* 64 floating-point registers halves.
 334 
 335   // scratch register
 336   F0,  F0_H,
 337 
 338   // argument registers
 339   F13, F13_H,
 340   F12, F12_H,
 341   F11, F11_H,
 342   F10, F10_H,
 343   F9,  F9_H,
 344   F8,  F8_H,
 345   F7,  F7_H,
 346   F6,  F6_H,
 347   F5,  F5_H,
 348   F4,  F4_H,
 349   F3,  F3_H,
 350   F2,  F2_H,
 351   F1,  F1_H,
 352 
 353   // non-volatile registers
 354   F14, F14_H,
 355   F15, F15_H,
 356   F16, F16_H,
 357   F17, F17_H,
 358   F18, F18_H,
 359   F19, F19_H,
 360   F20, F20_H,
 361   F21, F21_H,
 362   F22, F22_H,
 363   F23, F23_H,
 364   F24, F24_H,
 365   F25, F25_H,
 366   F26, F26_H,
 367   F27, F27_H,
 368   F28, F28_H,
 369   F29, F29_H,
 370   F30, F30_H,
 371   F31, F31_H
 372 );
 373 
 374 alloc_class chunk2 (
 375   // Chunk2 contains *all* 8 condition code registers.
 376 
 377   CCR0,
 378   CCR1,
 379   CCR2,
 380   CCR3,
 381   CCR4,
 382   CCR5,
 383   CCR6,
 384   CCR7
 385 );
 386 
 387 alloc_class chunk3 (
 388   // special registers
 389   // These registers are not allocated, but used for nodes generated by postalloc expand.
 390   SR_XER,
 391   SR_LR,
 392   SR_CTR,
 393   SR_VRSAVE,
 394   SR_SPEFSCR,
 395   SR_PPR
 396 );
 397 
 398 //-------Architecture Description Register Classes-----------------------
 399 
 400 // Several register classes are automatically defined based upon
 401 // information in this architecture description.
 402 
 403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
 405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 407 //
 408 
 409 // ----------------------------
 410 // 32 Bit Register Classes
 411 // ----------------------------
 412 
 413 // We specify registers twice, once as read/write, and once read-only.
 414 // We use the read-only registers for source operands. With this, we
 415 // can include preset read only registers in this class, as a hard-coded
 416 // '0'-register. (We used to simulate this on ppc.)
 417 
 418 // 32 bit registers that can be read and written i.e. these registers
 419 // can be dest (or src) of normal instructions.
 420 reg_class bits32_reg_rw(
 421 /*R0*/              // R0
 422 /*R1*/              // SP
 423   R2,               // TOC
 424   R3,
 425   R4,
 426   R5,
 427   R6,
 428   R7,
 429   R8,
 430   R9,
 431   R10,
 432   R11,
 433   R12,
 434 /*R13*/             // system thread id
 435   R14,
 436   R15,
 437 /*R16*/             // R16_thread
 438   R17,
 439   R18,
 440   R19,
 441   R20,
 442   R21,
 443   R22,
 444   R23,
 445   R24,
 446   R25,
 447   R26,
 448   R27,
 449   R28,
 450 /*R29,*/             // global TOC
 451   R30,
 452   R31
 453 );
 454 
 455 // 32 bit registers that can only be read i.e. these registers can
 456 // only be src of all instructions.
 457 reg_class bits32_reg_ro(
 458 /*R0*/              // R0
 459 /*R1*/              // SP
 460   R2                // TOC
 461   R3,
 462   R4,
 463   R5,
 464   R6,
 465   R7,
 466   R8,
 467   R9,
 468   R10,
 469   R11,
 470   R12,
 471 /*R13*/             // system thread id
 472   R14,
 473   R15,
 474 /*R16*/             // R16_thread
 475   R17,
 476   R18,
 477   R19,
 478   R20,
 479   R21,
 480   R22,
 481   R23,
 482   R24,
 483   R25,
 484   R26,
 485   R27,
 486   R28,
 487 /*R29,*/
 488   R30,
 489   R31
 490 );
 491 
 492 reg_class rscratch1_bits32_reg(R11);
 493 reg_class rscratch2_bits32_reg(R12);
 494 reg_class rarg1_bits32_reg(R3);
 495 reg_class rarg2_bits32_reg(R4);
 496 reg_class rarg3_bits32_reg(R5);
 497 reg_class rarg4_bits32_reg(R6);
 498 
 499 // ----------------------------
 500 // 64 Bit Register Classes
 501 // ----------------------------
 502 // 64-bit build means 64-bit pointers means hi/lo pairs
 503 
 504 reg_class rscratch1_bits64_reg(R11_H, R11);
 505 reg_class rscratch2_bits64_reg(R12_H, R12);
 506 reg_class rarg1_bits64_reg(R3_H, R3);
 507 reg_class rarg2_bits64_reg(R4_H, R4);
 508 reg_class rarg3_bits64_reg(R5_H, R5);
 509 reg_class rarg4_bits64_reg(R6_H, R6);
 510 // Thread register, 'written' by tlsLoadP, see there.
 511 reg_class thread_bits64_reg(R16_H, R16);
 512 
 513 reg_class r19_bits64_reg(R19_H, R19);
 514 
 515 // 64 bit registers that can be read and written i.e. these registers
 516 // can be dest (or src) of normal instructions.
 517 reg_class bits64_reg_rw(
 518 /*R0_H,  R0*/     // R0
 519 /*R1_H,  R1*/     // SP
 520   R2_H,  R2,      // TOC
 521   R3_H,  R3,
 522   R4_H,  R4,
 523   R5_H,  R5,
 524   R6_H,  R6,
 525   R7_H,  R7,
 526   R8_H,  R8,
 527   R9_H,  R9,
 528   R10_H, R10,
 529   R11_H, R11,
 530   R12_H, R12,
 531 /*R13_H, R13*/   // system thread id
 532   R14_H, R14,
 533   R15_H, R15,
 534 /*R16_H, R16*/   // R16_thread
 535   R17_H, R17,
 536   R18_H, R18,
 537   R19_H, R19,
 538   R20_H, R20,
 539   R21_H, R21,
 540   R22_H, R22,
 541   R23_H, R23,
 542   R24_H, R24,
 543   R25_H, R25,
 544   R26_H, R26,
 545   R27_H, R27,
 546   R28_H, R28,
 547 /*R29_H, R29,*/
 548   R30_H, R30,
 549   R31_H, R31
 550 );
 551 
 552 // 64 bit registers used excluding r2, r11 and r12
 553 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
 554 // r2, r11 and r12 internally.
 555 reg_class bits64_reg_leaf_call(
 556 /*R0_H,  R0*/     // R0
 557 /*R1_H,  R1*/     // SP
 558 /*R2_H,  R2*/     // TOC
 559   R3_H,  R3,
 560   R4_H,  R4,
 561   R5_H,  R5,
 562   R6_H,  R6,
 563   R7_H,  R7,
 564   R8_H,  R8,
 565   R9_H,  R9,
 566   R10_H, R10,
 567 /*R11_H, R11*/
 568 /*R12_H, R12*/
 569 /*R13_H, R13*/   // system thread id
 570   R14_H, R14,
 571   R15_H, R15,
 572 /*R16_H, R16*/   // R16_thread
 573   R17_H, R17,
 574   R18_H, R18,
 575   R19_H, R19,
 576   R20_H, R20,
 577   R21_H, R21,
 578   R22_H, R22,
 579   R23_H, R23,
 580   R24_H, R24,
 581   R25_H, R25,
 582   R26_H, R26,
 583   R27_H, R27,
 584   R28_H, R28,
 585 /*R29_H, R29,*/
 586   R30_H, R30,
 587   R31_H, R31
 588 );
 589 
 590 // Used to hold the TOC to avoid collisions with expanded DynamicCall
 591 // which uses r19 as inline cache internally and expanded LeafCall which uses
 592 // r2, r11 and r12 internally.
 593 reg_class bits64_constant_table_base(
 594 /*R0_H,  R0*/     // R0
 595 /*R1_H,  R1*/     // SP
 596 /*R2_H,  R2*/     // TOC
 597   R3_H,  R3,
 598   R4_H,  R4,
 599   R5_H,  R5,
 600   R6_H,  R6,
 601   R7_H,  R7,
 602   R8_H,  R8,
 603   R9_H,  R9,
 604   R10_H, R10,
 605 /*R11_H, R11*/
 606 /*R12_H, R12*/
 607 /*R13_H, R13*/   // system thread id
 608   R14_H, R14,
 609   R15_H, R15,
 610 /*R16_H, R16*/   // R16_thread
 611   R17_H, R17,
 612   R18_H, R18,
 613 /*R19_H, R19*/
 614   R20_H, R20,
 615   R21_H, R21,
 616   R22_H, R22,
 617   R23_H, R23,
 618   R24_H, R24,
 619   R25_H, R25,
 620   R26_H, R26,
 621   R27_H, R27,
 622   R28_H, R28,
 623 /*R29_H, R29,*/
 624   R30_H, R30,
 625   R31_H, R31
 626 );
 627 
 628 // 64 bit registers that can only be read i.e. these registers can
 629 // only be src of all instructions.
 630 reg_class bits64_reg_ro(
 631 /*R0_H,  R0*/     // R0
 632   R1_H,  R1,
 633   R2_H,  R2,       // TOC
 634   R3_H,  R3,
 635   R4_H,  R4,
 636   R5_H,  R5,
 637   R6_H,  R6,
 638   R7_H,  R7,
 639   R8_H,  R8,
 640   R9_H,  R9,
 641   R10_H, R10,
 642   R11_H, R11,
 643   R12_H, R12,
 644 /*R13_H, R13*/   // system thread id
 645   R14_H, R14,
 646   R15_H, R15,
 647   R16_H, R16,    // R16_thread
 648   R17_H, R17,
 649   R18_H, R18,
 650   R19_H, R19,
 651   R20_H, R20,
 652   R21_H, R21,
 653   R22_H, R22,
 654   R23_H, R23,
 655   R24_H, R24,
 656   R25_H, R25,
 657   R26_H, R26,
 658   R27_H, R27,
 659   R28_H, R28,
 660 /*R29_H, R29,*/ // TODO: let allocator handle TOC!!
 661   R30_H, R30,
 662   R31_H, R31
 663 );
 664 
 665 
 666 // ----------------------------
 667 // Special Class for Condition Code Flags Register
 668 
 669 reg_class int_flags(
 670 /*CCR0*/             // scratch
 671 /*CCR1*/             // scratch
 672 /*CCR2*/             // nv!
 673 /*CCR3*/             // nv!
 674 /*CCR4*/             // nv!
 675   CCR5,
 676   CCR6,
 677   CCR7
 678 );
 679 
 680 reg_class int_flags_ro(
 681   CCR0,
 682   CCR1,
 683   CCR2,
 684   CCR3,
 685   CCR4,
 686   CCR5,
 687   CCR6,
 688   CCR7
 689 );
 690 
 691 reg_class int_flags_CR0(CCR0);
 692 reg_class int_flags_CR1(CCR1);
 693 reg_class int_flags_CR6(CCR6);
 694 reg_class ctr_reg(SR_CTR);
 695 
 696 // ----------------------------
 697 // Float Register Classes
 698 // ----------------------------
 699 
 700 reg_class flt_reg(
 701   F0,
 702   F1,
 703   F2,
 704   F3,
 705   F4,
 706   F5,
 707   F6,
 708   F7,
 709   F8,
 710   F9,
 711   F10,
 712   F11,
 713   F12,
 714   F13,
 715   F14,              // nv!
 716   F15,              // nv!
 717   F16,              // nv!
 718   F17,              // nv!
 719   F18,              // nv!
 720   F19,              // nv!
 721   F20,              // nv!
 722   F21,              // nv!
 723   F22,              // nv!
 724   F23,              // nv!
 725   F24,              // nv!
 726   F25,              // nv!
 727   F26,              // nv!
 728   F27,              // nv!
 729   F28,              // nv!
 730   F29,              // nv!
 731   F30,              // nv!
 732   F31               // nv!
 733 );
 734 
 735 // Double precision float registers have virtual `high halves' that
 736 // are needed by the allocator.
 737 reg_class dbl_reg(
 738   F0,  F0_H,
 739   F1,  F1_H,
 740   F2,  F2_H,
 741   F3,  F3_H,
 742   F4,  F4_H,
 743   F5,  F5_H,
 744   F6,  F6_H,
 745   F7,  F7_H,
 746   F8,  F8_H,
 747   F9,  F9_H,
 748   F10, F10_H,
 749   F11, F11_H,
 750   F12, F12_H,
 751   F13, F13_H,
 752   F14, F14_H,    // nv!
 753   F15, F15_H,    // nv!
 754   F16, F16_H,    // nv!
 755   F17, F17_H,    // nv!
 756   F18, F18_H,    // nv!
 757   F19, F19_H,    // nv!
 758   F20, F20_H,    // nv!
 759   F21, F21_H,    // nv!
 760   F22, F22_H,    // nv!
 761   F23, F23_H,    // nv!
 762   F24, F24_H,    // nv!
 763   F25, F25_H,    // nv!
 764   F26, F26_H,    // nv!
 765   F27, F27_H,    // nv!
 766   F28, F28_H,    // nv!
 767   F29, F29_H,    // nv!
 768   F30, F30_H,    // nv!
 769   F31, F31_H     // nv!
 770 );
 771 
 772  %}
 773 
 774 //----------DEFINITION BLOCK---------------------------------------------------
 775 // Define name --> value mappings to inform the ADLC of an integer valued name
 776 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 777 // Format:
 778 //        int_def  <name>         ( <int_value>, <expression>);
 779 // Generated Code in ad_<arch>.hpp
 780 //        #define  <name>   (<expression>)
 781 //        // value == <int_value>
 782 // Generated code in ad_<arch>.cpp adlc_verification()
 783 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 784 //
 785 definitions %{
 786   // The default cost (of an ALU instruction).
 787   int_def DEFAULT_COST_LOW        (     30,      30);
 788   int_def DEFAULT_COST            (    100,     100);
 789   int_def HUGE_COST               (1000000, 1000000);
 790 
 791   // Memory refs
 792   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
 793   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
 794 
 795   // Branches are even more expensive.
 796   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
 797   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
 798 %}
 799 
 800 
 801 //----------SOURCE BLOCK-------------------------------------------------------
 802 // This is a block of C++ code which provides values, functions, and
 803 // definitions necessary in the rest of the architecture description.
 804 source_hpp %{
 805   // Header information of the source block.
 806   // Method declarations/definitions which are used outside
 807   // the ad-scope can conveniently be defined here.
 808   //
 809   // To keep related declarations/definitions/uses close together,
 810   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 811 
 812   // Returns true if Node n is followed by a MemBar node that
 813   // will do an acquire. If so, this node must not do the acquire
 814   // operation.
 815   bool followed_by_acquire(const Node *n);
 816 %}
 817 
 818 source %{
 819 
 820 // Optimize load-acquire.
 821 //
 822 // Check if acquire is unnecessary due to following operation that does
 823 // acquire anyways.
 824 // Walk the pattern:
 825 //
 826 //      n: Load.acq
 827 //           |
 828 //      MemBarAcquire
 829 //       |         |
 830 //  Proj(ctrl)  Proj(mem)
 831 //       |         |
 832 //   MemBarRelease/Volatile
 833 //
 834 bool followed_by_acquire(const Node *load) {
 835   assert(load->is_Load(), "So far implemented only for loads.");
 836 
 837   // Find MemBarAcquire.
 838   const Node *mba = NULL;
 839   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
 840     const Node *out = load->fast_out(i);
 841     if (out->Opcode() == Op_MemBarAcquire) {
 842       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
 843       mba = out;
 844       break;
 845     }
 846   }
 847   if (!mba) return false;
 848 
 849   // Find following MemBar node.
 850   //
 851   // The following node must be reachable by control AND memory
 852   // edge to assure no other operations are in between the two nodes.
 853   //
 854   // So first get the Proj node, mem_proj, to use it to iterate forward.
 855   Node *mem_proj = NULL;
 856   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
 857     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
 858     assert(mem_proj->is_Proj(), "only projections here");
 859     ProjNode *proj = mem_proj->as_Proj();
 860     if (proj->_con == TypeFunc::Memory &&
 861         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
 862       break;
 863   }
 864   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
 865 
 866   // Search MemBar behind Proj. If there are other memory operations
 867   // behind the Proj we lost.
 868   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
 869     Node *x = mem_proj->fast_out(j);
 870     // Proj might have an edge to a store or load node which precedes the membar.
 871     if (x->is_Mem()) return false;
 872 
 873     // On PPC64 release and volatile are implemented by an instruction
 874     // that also has acquire semantics. I.e. there is no need for an
 875     // acquire before these.
 876     int xop = x->Opcode();
 877     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
 878       // Make sure we're not missing Call/Phi/MergeMem by checking
 879       // control edges. The control edge must directly lead back
 880       // to the MemBarAcquire
 881       Node *ctrl_proj = x->in(0);
 882       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
 883         return true;
 884       }
 885     }
 886   }
 887 
 888   return false;
 889 }
 890 
 891 #define __ _masm.
 892 
 893 // Tertiary op of a LoadP or StoreP encoding.
 894 #define REGP_OP true
 895 
 896 // ****************************************************************************
 897 
 898 // REQUIRED FUNCTIONALITY
 899 
 900 // !!!!! Special hack to get all type of calls to specify the byte offset
 901 //       from the start of the call to the point where the return address
 902 //       will point.
 903 
 904 // PPC port: Removed use of lazy constant construct.
 905 
 906 int MachCallStaticJavaNode::ret_addr_offset() {
 907   // It's only a single branch-and-link instruction.
 908   return 4;
 909 }
 910 
 911 int MachCallDynamicJavaNode::ret_addr_offset() {
 912   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
 913   // postalloc expanded calls if we use inline caches and do not update method data.
 914   if (UseInlineCaches)
 915     return 4;
 916 
 917   int vtable_index = this->_vtable_index;
 918   if (vtable_index < 0) {
 919     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
 920     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 921     return 12;
 922   } else {
 923     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 924     return 24;
 925   }
 926 }
 927 
 928 int MachCallRuntimeNode::ret_addr_offset() {
 929 #if defined(ABI_ELFv2)
 930   return 28;
 931 #else
 932   return 40;
 933 #endif
 934 }
 935 
 936 //=============================================================================
 937 
 938 // condition code conversions
 939 
 940 static int cc_to_boint(int cc) {
 941   return Assembler::bcondCRbiIs0 | (cc & 8);
 942 }
 943 
 944 static int cc_to_inverse_boint(int cc) {
 945   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
 946 }
 947 
 948 static int cc_to_biint(int cc, int flags_reg) {
 949   return (flags_reg << 2) | (cc & 3);
 950 }
 951 
 952 //=============================================================================
 953 
 954 // Compute padding required for nodes which need alignment. The padding
 955 // is the number of bytes (not instructions) which will be inserted before
 956 // the instruction. The padding must match the size of a NOP instruction.
 957 
 958 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
 959   return (3*4-current_offset)&31;
 960 }
 961 
 962 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
 963   return (2*4-current_offset)&31;
 964 }
 965 
 966 int string_indexOf_immNode::compute_padding(int current_offset) const {
 967   return (3*4-current_offset)&31;
 968 }
 969 
 970 int string_indexOfNode::compute_padding(int current_offset) const {
 971   return (1*4-current_offset)&31;
 972 }
 973 
 974 int string_compareNode::compute_padding(int current_offset) const {
 975   return (4*4-current_offset)&31;
 976 }
 977 
 978 int string_equals_immNode::compute_padding(int current_offset) const {
 979   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
 980   return (2*4-current_offset)&31;
 981 }
 982 
 983 int string_equalsNode::compute_padding(int current_offset) const {
 984   return (7*4-current_offset)&31;
 985 }
 986 
 987 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
 988   return (2*4-current_offset)&31;
 989 }
 990 
 991 //=============================================================================
 992 
 993 // Indicate if the safepoint node needs the polling page as an input.
 994 bool SafePointNode::needs_polling_address_input() {
 995   // The address is loaded from thread by a seperate node.
 996   return true;
 997 }
 998 
 999 //=============================================================================
1000 
1001 // Emit an interrupt that is caught by the debugger (for debugging compiler).
1002 void emit_break(CodeBuffer &cbuf) {
1003   MacroAssembler _masm(&cbuf);
1004   __ illtrap();
1005 }
1006 
1007 #ifndef PRODUCT
1008 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1009   st->print("BREAKPOINT");
1010 }
1011 #endif
1012 
1013 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1014   emit_break(cbuf);
1015 }
1016 
1017 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
1018   return MachNode::size(ra_);
1019 }
1020 
1021 //=============================================================================
1022 
1023 void emit_nop(CodeBuffer &cbuf) {
1024   MacroAssembler _masm(&cbuf);
1025   __ nop();
1026 }
1027 
1028 static inline void emit_long(CodeBuffer &cbuf, int value) {
1029   *((int*)(cbuf.insts_end())) = value;
1030   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
1031 }
1032 
1033 //=============================================================================
1034 
1035 %} // interrupt source
1036 
1037 source_hpp %{ // Header information of the source block.
1038 
1039 //--------------------------------------------------------------
1040 //---<  Used for optimization in Compile::Shorten_branches  >---
1041 //--------------------------------------------------------------
1042 
1043 class CallStubImpl {
1044 
1045  public:
1046 
1047   // Emit call stub, compiled java to interpreter.
1048   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
1049 
1050   // Size of call trampoline stub.
1051   // This doesn't need to be accurate to the byte, but it
1052   // must be larger than or equal to the real size of the stub.
1053   static uint size_call_trampoline() {
1054     return MacroAssembler::trampoline_stub_size;
1055   }
1056 
1057   // number of relocations needed by a call trampoline stub
1058   static uint reloc_call_trampoline() {
1059     return 5;
1060   }
1061 
1062 };
1063 
1064 %} // end source_hpp
1065 
1066 source %{
1067 
1068 // Emit a trampoline stub for a call to a target which is too far away.
1069 //
1070 // code sequences:
1071 //
1072 // call-site:
1073 //   branch-and-link to <destination> or <trampoline stub>
1074 //
1075 // Related trampoline stub for this call-site in the stub section:
1076 //   load the call target from the constant pool
1077 //   branch via CTR (LR/link still points to the call-site above)
1078 
1079 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
1080   address stub = __ emit_trampoline_stub(destination_toc_offset, insts_call_instruction_offset);
1081   if (stub == NULL) {
1082     ciEnv::current()->record_out_of_memory_failure();
1083   }
1084 }
1085 
1086 //=============================================================================
1087 
1088 // Emit an inline branch-and-link call and a related trampoline stub.
1089 //
1090 // code sequences:
1091 //
1092 // call-site:
1093 //   branch-and-link to <destination> or <trampoline stub>
1094 //
1095 // Related trampoline stub for this call-site in the stub section:
1096 //   load the call target from the constant pool
1097 //   branch via CTR (LR/link still points to the call-site above)
1098 //
1099 
1100 typedef struct {
1101   int insts_call_instruction_offset;
1102   int ret_addr_offset;
1103 } EmitCallOffsets;
1104 
1105 // Emit a branch-and-link instruction that branches to a trampoline.
1106 // - Remember the offset of the branch-and-link instruction.
1107 // - Add a relocation at the branch-and-link instruction.
1108 // - Emit a branch-and-link.
1109 // - Remember the return pc offset.
1110 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
1111   EmitCallOffsets offsets = { -1, -1 };
1112   const int start_offset = __ offset();
1113   offsets.insts_call_instruction_offset = __ offset();
1114 
1115   // No entry point given, use the current pc.
1116   if (entry_point == NULL) entry_point = __ pc();
1117 
1118   if (!Compile::current()->in_scratch_emit_size()) {
1119     // Put the entry point as a constant into the constant pool.
1120     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
1121     if (entry_point_toc_addr == NULL) {
1122       ciEnv::current()->record_out_of_memory_failure();
1123       return offsets;
1124     }
1125     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1126 
1127     // Emit the trampoline stub which will be related to the branch-and-link below.
1128     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
1129     if (ciEnv::current()->failing()) { return offsets; } // Code cache may be full.
1130     __ relocate(rtype);
1131   }
1132 
1133   // Note: At this point we do not have the address of the trampoline
1134   // stub, and the entry point might be too far away for bl, so __ pc()
1135   // serves as dummy and the bl will be patched later.
1136   __ bl((address) __ pc());
1137 
1138   offsets.ret_addr_offset = __ offset() - start_offset;
1139 
1140   return offsets;
1141 }
1142 
1143 //=============================================================================
1144 
1145 // Factory for creating loadConL* nodes for large/small constant pool.
1146 
1147 static inline jlong replicate_immF(float con) {
1148   // Replicate float con 2 times and pack into vector.
1149   int val = *((int*)&con);
1150   jlong lval = val;
1151   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
1152   return lval;
1153 }
1154 
1155 //=============================================================================
1156 
1157 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
1158 int Compile::ConstantTable::calculate_table_base_offset() const {
1159   return 0;  // absolute addressing, no offset
1160 }
1161 
1162 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
1163 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1164   iRegPdstOper *op_dst = new iRegPdstOper();
1165   MachNode *m1 = new loadToc_hiNode();
1166   MachNode *m2 = new loadToc_loNode();
1167 
1168   m1->add_req(NULL);
1169   m2->add_req(NULL, m1);
1170   m1->_opnds[0] = op_dst;
1171   m2->_opnds[0] = op_dst;
1172   m2->_opnds[1] = op_dst;
1173   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1174   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
1175   nodes->push(m1);
1176   nodes->push(m2);
1177 }
1178 
1179 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1180   // Is postalloc expanded.
1181   ShouldNotReachHere();
1182 }
1183 
1184 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
1185   return 0;
1186 }
1187 
1188 #ifndef PRODUCT
1189 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1190   st->print("-- \t// MachConstantBaseNode (empty encoding)");
1191 }
1192 #endif
1193 
1194 //=============================================================================
1195 
1196 #ifndef PRODUCT
1197 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1198   Compile* C = ra_->C;
1199   const long framesize = C->frame_slots() << LogBytesPerInt;
1200 
1201   st->print("PROLOG\n\t");
1202   if (C->need_stack_bang(framesize)) {
1203     st->print("stack_overflow_check\n\t");
1204   }
1205 
1206   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
1207     st->print("save return pc\n\t");
1208     st->print("push frame %ld\n\t", -framesize);
1209   }
1210 }
1211 #endif
1212 
1213 // Macro used instead of the common __ to emulate the pipes of PPC.
1214 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
1215 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
1216 // still no scheduling of this code is possible, the micro scheduler is aware of the
1217 // code and can update its internal data. The following mechanism is used to achieve this:
1218 // The micro scheduler calls size() of each compound node during scheduling. size() does a
1219 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
1220 #if 0 // TODO: PPC port
1221 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1222                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
1223                 _masm.
1224 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
1225                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
1226 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
1227                   C->hb_scheduling()->_pdScheduling->advance_offset
1228 #else
1229 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
1230                   Unimplemented();                                                    \
1231                 _masm.
1232 #define ___stop if (UsePower6SchedulerPPC64)                                          \
1233                   Unimplemented()
1234 #define ___advance if (UsePower6SchedulerPPC64)                                       \
1235                   Unimplemented()
1236 #endif
1237 
1238 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1239   Compile* C = ra_->C;
1240   MacroAssembler _masm(&cbuf);
1241 
1242   const long framesize = C->frame_size_in_bytes();
1243   assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
1244 
1245   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
1246 
1247   const Register return_pc            = R20; // Must match return_addr() in frame section.
1248   const Register callers_sp           = R21;
1249   const Register push_frame_temp      = R22;
1250   const Register toc_temp             = R23;
1251   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
1252 
1253   if (method_is_frameless) {
1254     // Add nop at beginning of all frameless methods to prevent any
1255     // oop instructions from getting overwritten by make_not_entrant
1256     // (patching attempt would fail).
1257     ___(nop) nop();
1258   } else {
1259     // Get return pc.
1260     ___(mflr) mflr(return_pc);
1261   }
1262 
1263   // Calls to C2R adapters often do not accept exceptional returns.
1264   // We require that their callers must bang for them. But be
1265   // careful, because some VM calls (such as call site linkage) can
1266   // use several kilobytes of stack. But the stack safety zone should
1267   // account for that. See bugs 4446381, 4468289, 4497237.
1268 
1269   int bangsize = C->bang_size_in_bytes();
1270   assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
1271   if (C->need_stack_bang(bangsize) && UseStackBanging) {
1272     // Unfortunately we cannot use the function provided in
1273     // assembler.cpp as we have to emulate the pipes. So I had to
1274     // insert the code of generate_stack_overflow_check(), see
1275     // assembler.cpp for some illuminative comments.
1276     const int page_size = os::vm_page_size();
1277     int bang_end = JavaThread::stack_shadow_zone_size();
1278 
1279     // This is how far the previous frame's stack banging extended.
1280     const int bang_end_safe = bang_end;
1281 
1282     if (bangsize > page_size) {
1283       bang_end += bangsize;
1284     }
1285 
1286     int bang_offset = bang_end_safe;
1287 
1288     while (bang_offset <= bang_end) {
1289       // Need at least one stack bang at end of shadow zone.
1290 
1291       // Again I had to copy code, this time from assembler_ppc.cpp,
1292       // bang_stack_with_offset - see there for comments.
1293 
1294       // Stack grows down, caller passes positive offset.
1295       assert(bang_offset > 0, "must bang with positive offset");
1296 
1297       long stdoffset = -bang_offset;
1298 
1299       if (Assembler::is_simm(stdoffset, 16)) {
1300         // Signed 16 bit offset, a simple std is ok.
1301         if (UseLoadInstructionsForStackBangingPPC64) {
1302           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
1303         } else {
1304           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
1305         }
1306       } else if (Assembler::is_simm(stdoffset, 31)) {
1307         // Use largeoffset calculations for addis & ld/std.
1308         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1309         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1310 
1311         Register tmp = R11;
1312         ___(addis) addis(tmp, R1_SP, hi);
1313         if (UseLoadInstructionsForStackBangingPPC64) {
1314           ___(ld) ld(R0, lo, tmp);
1315         } else {
1316           ___(std) std(R0, lo, tmp);
1317         }
1318       } else {
1319         ShouldNotReachHere();
1320       }
1321 
1322       bang_offset += page_size;
1323     }
1324     // R11 trashed
1325   } // C->need_stack_bang(framesize) && UseStackBanging
1326 
1327   unsigned int bytes = (unsigned int)framesize;
1328   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
1329   ciMethod *currMethod = C->method();
1330 
1331   // Optimized version for most common case.
1332   if (UsePower6SchedulerPPC64 &&
1333       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
1334       !(false /* ConstantsALot TODO: PPC port*/)) {
1335     ___(or) mr(callers_sp, R1_SP);
1336     ___(std) std(return_pc, _abi(lr), R1_SP);
1337     ___(stdu) stdu(R1_SP, -offset, R1_SP);
1338     return;
1339   }
1340 
1341   if (!method_is_frameless) {
1342     // Get callers sp.
1343     ___(or) mr(callers_sp, R1_SP);
1344 
1345     // Push method's frame, modifies SP.
1346     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
1347     // The ABI is already accounted for in 'framesize' via the
1348     // 'out_preserve' area.
1349     Register tmp = push_frame_temp;
1350     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
1351     if (Assembler::is_simm(-offset, 16)) {
1352       ___(stdu) stdu(R1_SP, -offset, R1_SP);
1353     } else {
1354       long x = -offset;
1355       // Had to insert load_const(tmp, -offset).
1356       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
1357       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
1358       ___(rldicr) sldi(tmp, tmp, 32);
1359       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
1360       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
1361 
1362       ___(stdux) stdux(R1_SP, R1_SP, tmp);
1363     }
1364   }
1365 #if 0 // TODO: PPC port
1366   // For testing large constant pools, emit a lot of constants to constant pool.
1367   // "Randomize" const_size.
1368   if (ConstantsALot) {
1369     const int num_consts = const_size();
1370     for (int i = 0; i < num_consts; i++) {
1371       __ long_constant(0xB0B5B00BBABE);
1372     }
1373   }
1374 #endif
1375   if (!method_is_frameless) {
1376     // Save return pc.
1377     ___(std) std(return_pc, _abi(lr), callers_sp);
1378   }
1379 }
1380 #undef ___
1381 #undef ___stop
1382 #undef ___advance
1383 
1384 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1385   // Variable size. determine dynamically.
1386   return MachNode::size(ra_);
1387 }
1388 
1389 int MachPrologNode::reloc() const {
1390   // Return number of relocatable values contained in this instruction.
1391   return 1; // 1 reloc entry for load_const(toc).
1392 }
1393 
1394 //=============================================================================
1395 
1396 #ifndef PRODUCT
1397 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1398   Compile* C = ra_->C;
1399 
1400   st->print("EPILOG\n\t");
1401   st->print("restore return pc\n\t");
1402   st->print("pop frame\n\t");
1403 
1404   if (do_polling() && C->is_method_compilation()) {
1405     st->print("touch polling page\n\t");
1406   }
1407 }
1408 #endif
1409 
1410 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1411   Compile* C = ra_->C;
1412   MacroAssembler _masm(&cbuf);
1413 
1414   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
1415   assert(framesize >= 0, "negative frame-size?");
1416 
1417   const bool method_needs_polling = do_polling() && C->is_method_compilation();
1418   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
1419   const Register return_pc        = R11;
1420   const Register polling_page     = R12;
1421 
1422   if (!method_is_frameless) {
1423     // Restore return pc relative to callers' sp.
1424     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
1425   }
1426 
1427   if (method_needs_polling) {
1428     if (LoadPollAddressFromThread) {
1429       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1430       Unimplemented();
1431     } else {
1432       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
1433     }
1434   }
1435 
1436   if (!method_is_frameless) {
1437     // Move return pc to LR.
1438     __ mtlr(return_pc);
1439     // Pop frame (fixed frame-size).
1440     __ addi(R1_SP, R1_SP, (int)framesize);
1441   }
1442 
1443   if (method_needs_polling) {
1444     // We need to mark the code position where the load from the safepoint
1445     // polling page was emitted as relocInfo::poll_return_type here.
1446     __ relocate(relocInfo::poll_return_type);
1447     __ load_from_polling_page(polling_page);
1448   }
1449 }
1450 
1451 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1452   // Variable size. Determine dynamically.
1453   return MachNode::size(ra_);
1454 }
1455 
1456 int MachEpilogNode::reloc() const {
1457   // Return number of relocatable values contained in this instruction.
1458   return 1; // 1 for load_from_polling_page.
1459 }
1460 
1461 const Pipeline * MachEpilogNode::pipeline() const {
1462   return MachNode::pipeline_class();
1463 }
1464 
1465 // This method seems to be obsolete. It is declared in machnode.hpp
1466 // and defined in all *.ad files, but it is never called. Should we
1467 // get rid of it?
1468 int MachEpilogNode::safepoint_offset() const {
1469   assert(do_polling(), "no return for this epilog node");
1470   return 0;
1471 }
1472 
1473 #if 0 // TODO: PPC port
1474 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1475   MacroAssembler _masm(&cbuf);
1476   if (LoadPollAddressFromThread) {
1477     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
1478   } else {
1479     _masm.nop();
1480   }
1481 }
1482 
1483 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
1484   if (LoadPollAddressFromThread) {
1485     return 4;
1486   } else {
1487     return 4;
1488   }
1489 }
1490 
1491 #ifndef PRODUCT
1492 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1493   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
1494 }
1495 #endif
1496 
1497 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
1498   return RSCRATCH1_BITS64_REG_mask();
1499 }
1500 #endif // PPC port
1501 
1502 // =============================================================================
1503 
1504 // Figure out which register class each belongs in: rc_int, rc_float or
1505 // rc_stack.
1506 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1507 
1508 static enum RC rc_class(OptoReg::Name reg) {
1509   // Return the register class for the given register. The given register
1510   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
1511   // enumeration in adGlobals_ppc.hpp.
1512 
1513   if (reg == OptoReg::Bad) return rc_bad;
1514 
1515   // We have 64 integer register halves, starting at index 0.
1516   if (reg < 64) return rc_int;
1517 
1518   // We have 64 floating-point register halves, starting at index 64.
1519   if (reg < 64+64) return rc_float;
1520 
1521   // Between float regs & stack are the flags regs.
1522   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
1523 
1524   return rc_stack;
1525 }
1526 
1527 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
1528                         bool do_print, Compile* C, outputStream *st) {
1529 
1530   assert(opcode == Assembler::LD_OPCODE   ||
1531          opcode == Assembler::STD_OPCODE  ||
1532          opcode == Assembler::LWZ_OPCODE  ||
1533          opcode == Assembler::STW_OPCODE  ||
1534          opcode == Assembler::LFD_OPCODE  ||
1535          opcode == Assembler::STFD_OPCODE ||
1536          opcode == Assembler::LFS_OPCODE  ||
1537          opcode == Assembler::STFS_OPCODE,
1538          "opcode not supported");
1539 
1540   if (cbuf) {
1541     int d =
1542       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
1543         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
1544       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
1545     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
1546   }
1547 #ifndef PRODUCT
1548   else if (do_print) {
1549     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
1550               op_str,
1551               Matcher::regName[reg],
1552               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
1553   }
1554 #endif
1555   return 4; // size
1556 }
1557 
1558 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
1559   Compile* C = ra_->C;
1560 
1561   // Get registers to move.
1562   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
1563   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
1564   OptoReg::Name dst_hi = ra_->get_reg_second(this);
1565   OptoReg::Name dst_lo = ra_->get_reg_first(this);
1566 
1567   enum RC src_hi_rc = rc_class(src_hi);
1568   enum RC src_lo_rc = rc_class(src_lo);
1569   enum RC dst_hi_rc = rc_class(dst_hi);
1570   enum RC dst_lo_rc = rc_class(dst_lo);
1571 
1572   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
1573   if (src_hi != OptoReg::Bad)
1574     assert((src_lo&1)==0 && src_lo+1==src_hi &&
1575            (dst_lo&1)==0 && dst_lo+1==dst_hi,
1576            "expected aligned-adjacent pairs");
1577   // Generate spill code!
1578   int size = 0;
1579 
1580   if (src_lo == dst_lo && src_hi == dst_hi)
1581     return size;            // Self copy, no move.
1582 
1583   // --------------------------------------
1584   // Memory->Memory Spill. Use R0 to hold the value.
1585   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1586     int src_offset = ra_->reg2offset(src_lo);
1587     int dst_offset = ra_->reg2offset(dst_lo);
1588     if (src_hi != OptoReg::Bad) {
1589       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
1590              "expected same type of move for high parts");
1591       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
1592       if (!cbuf && !do_size) st->print("\n\t");
1593       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
1594     } else {
1595       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
1596       if (!cbuf && !do_size) st->print("\n\t");
1597       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
1598     }
1599     return size;
1600   }
1601 
1602   // --------------------------------------
1603   // Check for float->int copy; requires a trip through memory.
1604   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1605     Unimplemented();
1606   }
1607 
1608   // --------------------------------------
1609   // Check for integer reg-reg copy.
1610   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1611       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1612       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1613       size = (Rsrc != Rdst) ? 4 : 0;
1614 
1615       if (cbuf) {
1616         MacroAssembler _masm(cbuf);
1617         if (size) {
1618           __ mr(Rdst, Rsrc);
1619         }
1620       }
1621 #ifndef PRODUCT
1622       else if (!do_size) {
1623         if (size) {
1624           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1625         } else {
1626           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1627         }
1628       }
1629 #endif
1630       return size;
1631   }
1632 
1633   // Check for integer store.
1634   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1635     int dst_offset = ra_->reg2offset(dst_lo);
1636     if (src_hi != OptoReg::Bad) {
1637       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
1638              "expected same type of move for high parts");
1639       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1640     } else {
1641       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
1642     }
1643     return size;
1644   }
1645 
1646   // Check for integer load.
1647   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1648     int src_offset = ra_->reg2offset(src_lo);
1649     if (src_hi != OptoReg::Bad) {
1650       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
1651              "expected same type of move for high parts");
1652       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1653     } else {
1654       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
1655     }
1656     return size;
1657   }
1658 
1659   // Check for float reg-reg copy.
1660   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1661     if (cbuf) {
1662       MacroAssembler _masm(cbuf);
1663       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
1664       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
1665       __ fmr(Rdst, Rsrc);
1666     }
1667 #ifndef PRODUCT
1668     else if (!do_size) {
1669       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
1670     }
1671 #endif
1672     return 4;
1673   }
1674 
1675   // Check for float store.
1676   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1677     int dst_offset = ra_->reg2offset(dst_lo);
1678     if (src_hi != OptoReg::Bad) {
1679       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
1680              "expected same type of move for high parts");
1681       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
1682     } else {
1683       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
1684     }
1685     return size;
1686   }
1687 
1688   // Check for float load.
1689   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1690     int src_offset = ra_->reg2offset(src_lo);
1691     if (src_hi != OptoReg::Bad) {
1692       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
1693              "expected same type of move for high parts");
1694       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
1695     } else {
1696       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
1697     }
1698     return size;
1699   }
1700 
1701   // --------------------------------------------------------------------
1702   // Check for hi bits still needing moving. Only happens for misaligned
1703   // arguments to native calls.
1704   if (src_hi == dst_hi)
1705     return size;               // Self copy; no move.
1706 
1707   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
1708   ShouldNotReachHere(); // Unimplemented
1709   return 0;
1710 }
1711 
1712 #ifndef PRODUCT
1713 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1714   if (!ra_)
1715     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
1716   else
1717     implementation(NULL, ra_, false, st);
1718 }
1719 #endif
1720 
1721 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1722   implementation(&cbuf, ra_, false, NULL);
1723 }
1724 
1725 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1726   return implementation(NULL, ra_, true, NULL);
1727 }
1728 
1729 #if 0 // TODO: PPC port
1730 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
1731 #ifndef PRODUCT
1732   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
1733 #endif
1734   assert(ra_->node_regs_max_index() != 0, "");
1735 
1736   // Get registers to move.
1737   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
1738   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
1739   OptoReg::Name dst_hi = ra_->get_reg_second(n);
1740   OptoReg::Name dst_lo = ra_->get_reg_first(n);
1741 
1742   enum RC src_lo_rc = rc_class(src_lo);
1743   enum RC dst_lo_rc = rc_class(dst_lo);
1744 
1745   if (src_lo == dst_lo && src_hi == dst_hi)
1746     return ppc64Opcode_none;            // Self copy, no move.
1747 
1748   // --------------------------------------
1749   // Memory->Memory Spill. Use R0 to hold the value.
1750   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
1751     return ppc64Opcode_compound;
1752   }
1753 
1754   // --------------------------------------
1755   // Check for float->int copy; requires a trip through memory.
1756   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
1757     Unimplemented();
1758   }
1759 
1760   // --------------------------------------
1761   // Check for integer reg-reg copy.
1762   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
1763     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
1764     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
1765     if (Rsrc == Rdst) {
1766       return ppc64Opcode_none;
1767     } else {
1768       return ppc64Opcode_or;
1769     }
1770   }
1771 
1772   // Check for integer store.
1773   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
1774     if (src_hi != OptoReg::Bad) {
1775       return ppc64Opcode_std;
1776     } else {
1777       return ppc64Opcode_stw;
1778     }
1779   }
1780 
1781   // Check for integer load.
1782   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
1783     if (src_hi != OptoReg::Bad) {
1784       return ppc64Opcode_ld;
1785     } else {
1786       return ppc64Opcode_lwz;
1787     }
1788   }
1789 
1790   // Check for float reg-reg copy.
1791   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
1792     return ppc64Opcode_fmr;
1793   }
1794 
1795   // Check for float store.
1796   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
1797     if (src_hi != OptoReg::Bad) {
1798       return ppc64Opcode_stfd;
1799     } else {
1800       return ppc64Opcode_stfs;
1801     }
1802   }
1803 
1804   // Check for float load.
1805   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
1806     if (src_hi != OptoReg::Bad) {
1807       return ppc64Opcode_lfd;
1808     } else {
1809       return ppc64Opcode_lfs;
1810     }
1811   }
1812 
1813   // --------------------------------------------------------------------
1814   // Check for hi bits still needing moving. Only happens for misaligned
1815   // arguments to native calls.
1816   if (src_hi == dst_hi) {
1817     return ppc64Opcode_none;               // Self copy; no move.
1818   }
1819 
1820   ShouldNotReachHere();
1821   return ppc64Opcode_undefined;
1822 }
1823 #endif // PPC port
1824 
1825 #ifndef PRODUCT
1826 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1827   st->print("NOP \t// %d nops to pad for loops.", _count);
1828 }
1829 #endif
1830 
1831 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1832   MacroAssembler _masm(&cbuf);
1833   // _count contains the number of nops needed for padding.
1834   for (int i = 0; i < _count; i++) {
1835     __ nop();
1836   }
1837 }
1838 
1839 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1840   return _count * 4;
1841 }
1842 
1843 #ifndef PRODUCT
1844 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1845   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1846   char reg_str[128];
1847   ra_->dump_register(this, reg_str);
1848   st->print("ADDI    %s, SP, %d \t// box node", reg_str, offset);
1849 }
1850 #endif
1851 
1852 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1853   MacroAssembler _masm(&cbuf);
1854 
1855   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1856   int reg    = ra_->get_encode(this);
1857 
1858   if (Assembler::is_simm(offset, 16)) {
1859     __ addi(as_Register(reg), R1, offset);
1860   } else {
1861     ShouldNotReachHere();
1862   }
1863 }
1864 
1865 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1866   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
1867   return 4;
1868 }
1869 
1870 #ifndef PRODUCT
1871 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
1872   st->print_cr("---- MachUEPNode ----");
1873   st->print_cr("...");
1874 }
1875 #endif
1876 
1877 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1878   // This is the unverified entry point.
1879   MacroAssembler _masm(&cbuf);
1880 
1881   // Inline_cache contains a klass.
1882   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
1883   Register receiver_klass = R12_scratch2;  // tmp
1884 
1885   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
1886   assert(R11_scratch1 == R11, "need prologue scratch register");
1887 
1888   // Check for NULL argument if we don't have implicit null checks.
1889   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
1890     if (TrapBasedNullChecks) {
1891       __ trap_null_check(R3_ARG1);
1892     } else {
1893       Label valid;
1894       __ cmpdi(CCR0, R3_ARG1, 0);
1895       __ bne_predict_taken(CCR0, valid);
1896       // We have a null argument, branch to ic_miss_stub.
1897       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1898                            relocInfo::runtime_call_type);
1899       __ bind(valid);
1900     }
1901   }
1902   // Assume argument is not NULL, load klass from receiver.
1903   __ load_klass(receiver_klass, R3_ARG1);
1904 
1905   if (TrapBasedICMissChecks) {
1906     __ trap_ic_miss_check(receiver_klass, ic_klass);
1907   } else {
1908     Label valid;
1909     __ cmpd(CCR0, receiver_klass, ic_klass);
1910     __ beq_predict_taken(CCR0, valid);
1911     // We have an unexpected klass, branch to ic_miss_stub.
1912     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1913                          relocInfo::runtime_call_type);
1914     __ bind(valid);
1915   }
1916 
1917   // Argument is valid and klass is as expected, continue.
1918 }
1919 
1920 #if 0 // TODO: PPC port
1921 // Optimize UEP code on z (save a load_const() call in main path).
1922 int MachUEPNode::ep_offset() {
1923   return 0;
1924 }
1925 #endif
1926 
1927 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1928   // Variable size. Determine dynamically.
1929   return MachNode::size(ra_);
1930 }
1931 
1932 //=============================================================================
1933 
1934 %} // interrupt source
1935 
1936 source_hpp %{ // Header information of the source block.
1937 
1938 class HandlerImpl {
1939 
1940  public:
1941 
1942   static int emit_exception_handler(CodeBuffer &cbuf);
1943   static int emit_deopt_handler(CodeBuffer& cbuf);
1944 
1945   static uint size_exception_handler() {
1946     // The exception_handler is a b64_patchable.
1947     return MacroAssembler::b64_patchable_size;
1948   }
1949 
1950   static uint size_deopt_handler() {
1951     // The deopt_handler is a bl64_patchable.
1952     return MacroAssembler::bl64_patchable_size;
1953   }
1954 
1955 };
1956 
1957 %} // end source_hpp
1958 
1959 source %{
1960 
1961 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
1962   MacroAssembler _masm(&cbuf);
1963 
1964   address base = __ start_a_stub(size_exception_handler());
1965   if (base == NULL) return 0; // CodeBuffer::expand failed
1966 
1967   int offset = __ offset();
1968   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
1969                        relocInfo::runtime_call_type);
1970   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
1971   __ end_a_stub();
1972 
1973   return offset;
1974 }
1975 
1976 // The deopt_handler is like the exception handler, but it calls to
1977 // the deoptimization blob instead of jumping to the exception blob.
1978 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1979   MacroAssembler _masm(&cbuf);
1980 
1981   address base = __ start_a_stub(size_deopt_handler());
1982   if (base == NULL) return 0; // CodeBuffer::expand failed
1983 
1984   int offset = __ offset();
1985   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
1986                         relocInfo::runtime_call_type);
1987   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
1988   __ end_a_stub();
1989 
1990   return offset;
1991 }
1992 
1993 //=============================================================================
1994 
1995 // Use a frame slots bias for frameless methods if accessing the stack.
1996 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
1997   if (as_Register(reg_enc) == R1_SP) {
1998     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
1999   }
2000   return 0;
2001 }
2002 
2003 const bool Matcher::match_rule_supported(int opcode) {
2004   if (!has_match_rule(opcode))
2005     return false;
2006 
2007   switch (opcode) {
2008   case Op_SqrtD:
2009     return VM_Version::has_fsqrt();
2010   case Op_CountLeadingZerosI:
2011   case Op_CountLeadingZerosL:
2012   case Op_CountTrailingZerosI:
2013   case Op_CountTrailingZerosL:
2014     if (!UseCountLeadingZerosInstructionsPPC64)
2015       return false;
2016     break;
2017 
2018   case Op_PopCountI:
2019   case Op_PopCountL:
2020     return (UsePopCountInstruction && VM_Version::has_popcntw());
2021 
2022   case Op_StrComp:
2023     return SpecialStringCompareTo && !CompactStrings;
2024   case Op_StrEquals:
2025     return SpecialStringEquals && !CompactStrings;
2026   case Op_StrIndexOf:
2027     return SpecialStringIndexOf && !CompactStrings;
2028   }
2029 
2030   return true;  // Per default match rules are supported.
2031 }
2032 
2033 const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {
2034 
2035   // TODO
2036   // identify extra cases that we might want to provide match rules for
2037   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
2038   bool ret_value = match_rule_supported(opcode);
2039   // Add rules here.
2040 
2041   return ret_value;  // Per default match rules are supported.
2042 }
2043 
2044 const int Matcher::float_pressure(int default_pressure_threshold) {
2045   return default_pressure_threshold;
2046 }
2047 
2048 int Matcher::regnum_to_fpu_offset(int regnum) {
2049   // No user for this method?
2050   Unimplemented();
2051   return 999;
2052 }
2053 
2054 const bool Matcher::convL2FSupported(void) {
2055   // fcfids can do the conversion (>= Power7).
2056   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
2057   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
2058 }
2059 
2060 // Vector width in bytes.
2061 const int Matcher::vector_width_in_bytes(BasicType bt) {
2062   assert(MaxVectorSize == 8, "");
2063   return 8;
2064 }
2065 
2066 // Vector ideal reg.
2067 const int Matcher::vector_ideal_reg(int size) {
2068   assert(MaxVectorSize == 8 && size == 8, "");
2069   return Op_RegL;
2070 }
2071 
2072 const int Matcher::vector_shift_count_ideal_reg(int size) {
2073   fatal("vector shift is not supported");
2074   return Node::NotAMachineReg;
2075 }
2076 
2077 // Limits on vector size (number of elements) loaded into vector.
2078 const int Matcher::max_vector_size(const BasicType bt) {
2079   assert(is_java_primitive(bt), "only primitive type vectors");
2080   return vector_width_in_bytes(bt)/type2aelembytes(bt);
2081 }
2082 
2083 const int Matcher::min_vector_size(const BasicType bt) {
2084   return max_vector_size(bt); // Same as max.
2085 }
2086 
2087 // PPC doesn't support misaligned vectors store/load.
2088 const bool Matcher::misaligned_vectors_ok() {
2089   return false;
2090 }
2091 
2092 // PPC AES support not yet implemented
2093 const bool Matcher::pass_original_key_for_aes() {
2094   return false;
2095 }
2096 
2097 // RETURNS: whether this branch offset is short enough that a short
2098 // branch can be used.
2099 //
2100 // If the platform does not provide any short branch variants, then
2101 // this method should return `false' for offset 0.
2102 //
2103 // `Compile::Fill_buffer' will decide on basis of this information
2104 // whether to do the pass `Compile::Shorten_branches' at all.
2105 //
2106 // And `Compile::Shorten_branches' will decide on basis of this
2107 // information whether to replace particular branch sites by short
2108 // ones.
2109 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
2110   // Is the offset within the range of a ppc64 pc relative branch?
2111   bool b;
2112 
2113   const int safety_zone = 3 * BytesPerInstWord;
2114   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
2115                          29 - 16 + 1 + 2);
2116   return b;
2117 }
2118 
2119 const bool Matcher::isSimpleConstant64(jlong value) {
2120   // Probably always true, even if a temp register is required.
2121   return true;
2122 }
2123 /* TODO: PPC port
2124 // Make a new machine dependent decode node (with its operands).
2125 MachTypeNode *Matcher::make_decode_node() {
2126   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
2127          "This method is only implemented for unscaled cOops mode so far");
2128   MachTypeNode *decode = new decodeN_unscaledNode();
2129   decode->set_opnd_array(0, new iRegPdstOper());
2130   decode->set_opnd_array(1, new iRegNsrcOper());
2131   return decode;
2132 }
2133 */
2134 // Threshold size for cleararray.
2135 const int Matcher::init_array_short_size = 8 * BytesPerLong;
2136 
2137 // false => size gets scaled to BytesPerLong, ok.
2138 const bool Matcher::init_array_count_is_in_bytes = false;
2139 
2140 // Use conditional move (CMOVL) on Power7.
2141 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
2142 
2143 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
2144 // fsel doesn't accept a condition register as input, so this would be slightly different.
2145 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
2146 
2147 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
2148 const bool Matcher::require_postalloc_expand = true;
2149 
2150 // Should the Matcher clone shifts on addressing modes, expecting them to
2151 // be subsumed into complex addressing expressions or compute them into
2152 // registers? True for Intel but false for most RISCs.
2153 const bool Matcher::clone_shift_expressions = false;
2154 
2155 // Do we need to mask the count passed to shift instructions or does
2156 // the cpu only look at the lower 5/6 bits anyway?
2157 // PowerPC requires masked shift counts.
2158 const bool Matcher::need_masked_shift_count = true;
2159 
2160 // This affects two different things:
2161 //  - how Decode nodes are matched
2162 //  - how ImplicitNullCheck opportunities are recognized
2163 // If true, the matcher will try to remove all Decodes and match them
2164 // (as operands) into nodes. NullChecks are not prepared to deal with
2165 // Decodes by final_graph_reshaping().
2166 // If false, final_graph_reshaping() forces the decode behind the Cmp
2167 // for a NullCheck. The matcher matches the Decode node into a register.
2168 // Implicit_null_check optimization moves the Decode along with the
2169 // memory operation back up before the NullCheck.
2170 bool Matcher::narrow_oop_use_complex_address() {
2171   // TODO: PPC port if (MatchDecodeNodes) return true;
2172   return false;
2173 }
2174 
2175 bool Matcher::narrow_klass_use_complex_address() {
2176   NOT_LP64(ShouldNotCallThis());
2177   assert(UseCompressedClassPointers, "only for compressed klass code");
2178   // TODO: PPC port if (MatchDecodeNodes) return true;
2179   return false;
2180 }
2181 
2182 // Is it better to copy float constants, or load them directly from memory?
2183 // Intel can load a float constant from a direct address, requiring no
2184 // extra registers. Most RISCs will have to materialize an address into a
2185 // register first, so they would do better to copy the constant from stack.
2186 const bool Matcher::rematerialize_float_constants = false;
2187 
2188 // If CPU can load and store mis-aligned doubles directly then no fixup is
2189 // needed. Else we split the double into 2 integer pieces and move it
2190 // piece-by-piece. Only happens when passing doubles into C code as the
2191 // Java calling convention forces doubles to be aligned.
2192 const bool Matcher::misaligned_doubles_ok = true;
2193 
2194 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
2195  Unimplemented();
2196 }
2197 
2198 // Advertise here if the CPU requires explicit rounding operations
2199 // to implement the UseStrictFP mode.
2200 const bool Matcher::strict_fp_requires_explicit_rounding = false;
2201 
2202 // Do floats take an entire double register or just half?
2203 //
2204 // A float occupies a ppc64 double register. For the allocator, a
2205 // ppc64 double register appears as a pair of float registers.
2206 bool Matcher::float_in_double() { return true; }
2207 
2208 // Do ints take an entire long register or just half?
2209 // The relevant question is how the int is callee-saved:
2210 // the whole long is written but de-opt'ing will have to extract
2211 // the relevant 32 bits.
2212 const bool Matcher::int_in_long = true;
2213 
2214 // Constants for c2c and c calling conventions.
2215 
2216 const MachRegisterNumbers iarg_reg[8] = {
2217   R3_num, R4_num, R5_num, R6_num,
2218   R7_num, R8_num, R9_num, R10_num
2219 };
2220 
2221 const MachRegisterNumbers farg_reg[13] = {
2222   F1_num, F2_num, F3_num, F4_num,
2223   F5_num, F6_num, F7_num, F8_num,
2224   F9_num, F10_num, F11_num, F12_num,
2225   F13_num
2226 };
2227 
2228 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
2229 
2230 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
2231 
2232 // Return whether or not this register is ever used as an argument. This
2233 // function is used on startup to build the trampoline stubs in generateOptoStub.
2234 // Registers not mentioned will be killed by the VM call in the trampoline, and
2235 // arguments in those registers not be available to the callee.
2236 bool Matcher::can_be_java_arg(int reg) {
2237   // We return true for all registers contained in iarg_reg[] and
2238   // farg_reg[] and their virtual halves.
2239   // We must include the virtual halves in order to get STDs and LDs
2240   // instead of STWs and LWs in the trampoline stubs.
2241 
2242   if (   reg == R3_num  || reg == R3_H_num
2243       || reg == R4_num  || reg == R4_H_num
2244       || reg == R5_num  || reg == R5_H_num
2245       || reg == R6_num  || reg == R6_H_num
2246       || reg == R7_num  || reg == R7_H_num
2247       || reg == R8_num  || reg == R8_H_num
2248       || reg == R9_num  || reg == R9_H_num
2249       || reg == R10_num || reg == R10_H_num)
2250     return true;
2251 
2252   if (   reg == F1_num  || reg == F1_H_num
2253       || reg == F2_num  || reg == F2_H_num
2254       || reg == F3_num  || reg == F3_H_num
2255       || reg == F4_num  || reg == F4_H_num
2256       || reg == F5_num  || reg == F5_H_num
2257       || reg == F6_num  || reg == F6_H_num
2258       || reg == F7_num  || reg == F7_H_num
2259       || reg == F8_num  || reg == F8_H_num
2260       || reg == F9_num  || reg == F9_H_num
2261       || reg == F10_num || reg == F10_H_num
2262       || reg == F11_num || reg == F11_H_num
2263       || reg == F12_num || reg == F12_H_num
2264       || reg == F13_num || reg == F13_H_num)
2265     return true;
2266 
2267   return false;
2268 }
2269 
2270 bool Matcher::is_spillable_arg(int reg) {
2271   return can_be_java_arg(reg);
2272 }
2273 
2274 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
2275   return false;
2276 }
2277 
2278 // Register for DIVI projection of divmodI.
2279 RegMask Matcher::divI_proj_mask() {
2280   ShouldNotReachHere();
2281   return RegMask();
2282 }
2283 
2284 // Register for MODI projection of divmodI.
2285 RegMask Matcher::modI_proj_mask() {
2286   ShouldNotReachHere();
2287   return RegMask();
2288 }
2289 
2290 // Register for DIVL projection of divmodL.
2291 RegMask Matcher::divL_proj_mask() {
2292   ShouldNotReachHere();
2293   return RegMask();
2294 }
2295 
2296 // Register for MODL projection of divmodL.
2297 RegMask Matcher::modL_proj_mask() {
2298   ShouldNotReachHere();
2299   return RegMask();
2300 }
2301 
2302 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2303   return RegMask();
2304 }
2305 
2306 %}
2307 
2308 //----------ENCODING BLOCK-----------------------------------------------------
2309 // This block specifies the encoding classes used by the compiler to output
2310 // byte streams. Encoding classes are parameterized macros used by
2311 // Machine Instruction Nodes in order to generate the bit encoding of the
2312 // instruction. Operands specify their base encoding interface with the
2313 // interface keyword. There are currently supported four interfaces,
2314 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
2315 // operand to generate a function which returns its register number when
2316 // queried. CONST_INTER causes an operand to generate a function which
2317 // returns the value of the constant when queried. MEMORY_INTER causes an
2318 // operand to generate four functions which return the Base Register, the
2319 // Index Register, the Scale Value, and the Offset Value of the operand when
2320 // queried. COND_INTER causes an operand to generate six functions which
2321 // return the encoding code (ie - encoding bits for the instruction)
2322 // associated with each basic boolean condition for a conditional instruction.
2323 //
2324 // Instructions specify two basic values for encoding. Again, a function
2325 // is available to check if the constant displacement is an oop. They use the
2326 // ins_encode keyword to specify their encoding classes (which must be
2327 // a sequence of enc_class names, and their parameters, specified in
2328 // the encoding block), and they use the
2329 // opcode keyword to specify, in order, their primary, secondary, and
2330 // tertiary opcode. Only the opcode sections which a particular instruction
2331 // needs for encoding need to be specified.
2332 encode %{
2333   enc_class enc_unimplemented %{
2334     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2335     MacroAssembler _masm(&cbuf);
2336     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
2337   %}
2338 
2339   enc_class enc_untested %{
2340 #ifdef ASSERT
2341     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2342     MacroAssembler _masm(&cbuf);
2343     __ untested("Untested mach node encoding in AD file.");
2344 #else
2345     // TODO: PPC port $archOpcode(ppc64Opcode_none);
2346 #endif
2347   %}
2348 
2349   enc_class enc_lbz(iRegIdst dst, memory mem) %{
2350     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
2351     MacroAssembler _masm(&cbuf);
2352     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2353     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2354   %}
2355 
2356   // Load acquire.
2357   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
2358     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2359     MacroAssembler _masm(&cbuf);
2360     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2361     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
2362     __ twi_0($dst$$Register);
2363     __ isync();
2364   %}
2365 
2366   enc_class enc_lhz(iRegIdst dst, memory mem) %{
2367     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
2368 
2369     MacroAssembler _masm(&cbuf);
2370     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2371     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2372   %}
2373 
2374   // Load acquire.
2375   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
2376     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2377 
2378     MacroAssembler _masm(&cbuf);
2379     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2380     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
2381     __ twi_0($dst$$Register);
2382     __ isync();
2383   %}
2384 
2385   enc_class enc_lwz(iRegIdst dst, memory mem) %{
2386     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
2387 
2388     MacroAssembler _masm(&cbuf);
2389     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2390     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2391   %}
2392 
2393   // Load acquire.
2394   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
2395     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2396 
2397     MacroAssembler _masm(&cbuf);
2398     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2399     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
2400     __ twi_0($dst$$Register);
2401     __ isync();
2402   %}
2403 
2404   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
2405     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2406     MacroAssembler _masm(&cbuf);
2407     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2408     // Operand 'ds' requires 4-alignment.
2409     assert((Idisp & 0x3) == 0, "unaligned offset");
2410     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2411   %}
2412 
2413   // Load acquire.
2414   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
2415     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2416     MacroAssembler _masm(&cbuf);
2417     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2418     // Operand 'ds' requires 4-alignment.
2419     assert((Idisp & 0x3) == 0, "unaligned offset");
2420     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
2421     __ twi_0($dst$$Register);
2422     __ isync();
2423   %}
2424 
2425   enc_class enc_lfd(RegF dst, memory mem) %{
2426     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
2427     MacroAssembler _masm(&cbuf);
2428     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2429     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
2430   %}
2431 
2432   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
2433     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2434 
2435     MacroAssembler _masm(&cbuf);
2436     int toc_offset = 0;
2437 
2438     if (!ra_->C->in_scratch_emit_size()) {
2439       address const_toc_addr;
2440       // Create a non-oop constant, no relocation needed.
2441       // If it is an IC, it has a virtual_call_Relocation.
2442       const_toc_addr = __ long_constant((jlong)$src$$constant);
2443       if (const_toc_addr == NULL) {
2444         ciEnv::current()->record_out_of_memory_failure();
2445         return;
2446       }
2447 
2448       // Get the constant's TOC offset.
2449       toc_offset = __ offset_to_method_toc(const_toc_addr);
2450 
2451       // Keep the current instruction offset in mind.
2452       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
2453     }
2454 
2455     __ ld($dst$$Register, toc_offset, $toc$$Register);
2456   %}
2457 
2458   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
2459     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2460 
2461     MacroAssembler _masm(&cbuf);
2462 
2463     if (!ra_->C->in_scratch_emit_size()) {
2464       address const_toc_addr;
2465       // Create a non-oop constant, no relocation needed.
2466       // If it is an IC, it has a virtual_call_Relocation.
2467       const_toc_addr = __ long_constant((jlong)$src$$constant);
2468       if (const_toc_addr == NULL) {
2469         ciEnv::current()->record_out_of_memory_failure();
2470         return;
2471       }
2472 
2473       // Get the constant's TOC offset.
2474       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2475       // Store the toc offset of the constant.
2476       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
2477 
2478       // Also keep the current instruction offset in mind.
2479       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
2480     }
2481 
2482     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2483   %}
2484 
2485 %} // encode
2486 
2487 source %{
2488 
2489 typedef struct {
2490   loadConL_hiNode *_large_hi;
2491   loadConL_loNode *_large_lo;
2492   loadConLNode    *_small;
2493   MachNode        *_last;
2494 } loadConLNodesTuple;
2495 
2496 loadConLNodesTuple loadConLNodesTuple_create(PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
2497                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
2498   loadConLNodesTuple nodes;
2499 
2500   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2501   if (large_constant_pool) {
2502     // Create new nodes.
2503     loadConL_hiNode *m1 = new loadConL_hiNode();
2504     loadConL_loNode *m2 = new loadConL_loNode();
2505 
2506     // inputs for new nodes
2507     m1->add_req(NULL, toc);
2508     m2->add_req(NULL, m1);
2509 
2510     // operands for new nodes
2511     m1->_opnds[0] = new iRegLdstOper(); // dst
2512     m1->_opnds[1] = immSrc;             // src
2513     m1->_opnds[2] = new iRegPdstOper(); // toc
2514     m2->_opnds[0] = new iRegLdstOper(); // dst
2515     m2->_opnds[1] = immSrc;             // src
2516     m2->_opnds[2] = new iRegLdstOper(); // base
2517 
2518     // Initialize ins_attrib TOC fields.
2519     m1->_const_toc_offset = -1;
2520     m2->_const_toc_offset_hi_node = m1;
2521 
2522     // Initialize ins_attrib instruction offset.
2523     m1->_cbuf_insts_offset = -1;
2524 
2525     // register allocation for new nodes
2526     ra_->set_pair(m1->_idx, reg_second, reg_first);
2527     ra_->set_pair(m2->_idx, reg_second, reg_first);
2528 
2529     // Create result.
2530     nodes._large_hi = m1;
2531     nodes._large_lo = m2;
2532     nodes._small = NULL;
2533     nodes._last = nodes._large_lo;
2534     assert(m2->bottom_type()->isa_long(), "must be long");
2535   } else {
2536     loadConLNode *m2 = new loadConLNode();
2537 
2538     // inputs for new nodes
2539     m2->add_req(NULL, toc);
2540 
2541     // operands for new nodes
2542     m2->_opnds[0] = new iRegLdstOper(); // dst
2543     m2->_opnds[1] = immSrc;             // src
2544     m2->_opnds[2] = new iRegPdstOper(); // toc
2545 
2546     // Initialize ins_attrib instruction offset.
2547     m2->_cbuf_insts_offset = -1;
2548 
2549     // register allocation for new nodes
2550     ra_->set_pair(m2->_idx, reg_second, reg_first);
2551 
2552     // Create result.
2553     nodes._large_hi = NULL;
2554     nodes._large_lo = NULL;
2555     nodes._small = m2;
2556     nodes._last = nodes._small;
2557     assert(m2->bottom_type()->isa_long(), "must be long");
2558   }
2559 
2560   return nodes;
2561 }
2562 
2563 %} // source
2564 
2565 encode %{
2566   // Postalloc expand emitter for loading a long constant from the method's TOC.
2567   // Enc_class needed as consttanttablebase is not supported by postalloc
2568   // expand.
2569   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
2570     // Create new nodes.
2571     loadConLNodesTuple loadConLNodes =
2572       loadConLNodesTuple_create(ra_, n_toc, op_src,
2573                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
2574 
2575     // Push new nodes.
2576     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
2577     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
2578 
2579     // some asserts
2580     assert(nodes->length() >= 1, "must have created at least 1 node");
2581     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
2582   %}
2583 
2584   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
2585     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
2586 
2587     MacroAssembler _masm(&cbuf);
2588     int toc_offset = 0;
2589 
2590     if (!ra_->C->in_scratch_emit_size()) {
2591       intptr_t val = $src$$constant;
2592       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2593       address const_toc_addr;
2594       if (constant_reloc == relocInfo::oop_type) {
2595         // Create an oop constant and a corresponding relocation.
2596         AddressLiteral a = __ allocate_oop_address((jobject)val);
2597         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2598         __ relocate(a.rspec());
2599       } else if (constant_reloc == relocInfo::metadata_type) {
2600         AddressLiteral a = __ constant_metadata_address((Metadata *)val);
2601         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2602         __ relocate(a.rspec());
2603       } else {
2604         // Create a non-oop constant, no relocation needed.
2605         const_toc_addr = __ long_constant((jlong)$src$$constant);
2606       }
2607 
2608       if (const_toc_addr == NULL) {
2609         ciEnv::current()->record_out_of_memory_failure();
2610         return;
2611       }
2612       // Get the constant's TOC offset.
2613       toc_offset = __ offset_to_method_toc(const_toc_addr);
2614     }
2615 
2616     __ ld($dst$$Register, toc_offset, $toc$$Register);
2617   %}
2618 
2619   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
2620     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
2621 
2622     MacroAssembler _masm(&cbuf);
2623     if (!ra_->C->in_scratch_emit_size()) {
2624       intptr_t val = $src$$constant;
2625       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
2626       address const_toc_addr;
2627       if (constant_reloc == relocInfo::oop_type) {
2628         // Create an oop constant and a corresponding relocation.
2629         AddressLiteral a = __ allocate_oop_address((jobject)val);
2630         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2631         __ relocate(a.rspec());
2632       } else if (constant_reloc == relocInfo::metadata_type) {
2633         AddressLiteral a = __ constant_metadata_address((Metadata *)val);
2634         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
2635         __ relocate(a.rspec());
2636       } else {  // non-oop pointers, e.g. card mark base, heap top
2637         // Create a non-oop constant, no relocation needed.
2638         const_toc_addr = __ long_constant((jlong)$src$$constant);
2639       }
2640 
2641       if (const_toc_addr == NULL) {
2642         ciEnv::current()->record_out_of_memory_failure();
2643         return;
2644       }
2645       // Get the constant's TOC offset.
2646       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
2647       // Store the toc offset of the constant.
2648       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
2649     }
2650 
2651     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
2652   %}
2653 
2654   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
2655   // Enc_class needed as consttanttablebase is not supported by postalloc
2656   // expand.
2657   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
2658     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2659     if (large_constant_pool) {
2660       // Create new nodes.
2661       loadConP_hiNode *m1 = new loadConP_hiNode();
2662       loadConP_loNode *m2 = new loadConP_loNode();
2663 
2664       // inputs for new nodes
2665       m1->add_req(NULL, n_toc);
2666       m2->add_req(NULL, m1);
2667 
2668       // operands for new nodes
2669       m1->_opnds[0] = new iRegPdstOper(); // dst
2670       m1->_opnds[1] = op_src;             // src
2671       m1->_opnds[2] = new iRegPdstOper(); // toc
2672       m2->_opnds[0] = new iRegPdstOper(); // dst
2673       m2->_opnds[1] = op_src;             // src
2674       m2->_opnds[2] = new iRegLdstOper(); // base
2675 
2676       // Initialize ins_attrib TOC fields.
2677       m1->_const_toc_offset = -1;
2678       m2->_const_toc_offset_hi_node = m1;
2679 
2680       // Register allocation for new nodes.
2681       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2682       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2683 
2684       nodes->push(m1);
2685       nodes->push(m2);
2686       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2687     } else {
2688       loadConPNode *m2 = new loadConPNode();
2689 
2690       // inputs for new nodes
2691       m2->add_req(NULL, n_toc);
2692 
2693       // operands for new nodes
2694       m2->_opnds[0] = new iRegPdstOper(); // dst
2695       m2->_opnds[1] = op_src;             // src
2696       m2->_opnds[2] = new iRegPdstOper(); // toc
2697 
2698       // Register allocation for new nodes.
2699       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2700 
2701       nodes->push(m2);
2702       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
2703     }
2704   %}
2705 
2706   // Enc_class needed as consttanttablebase is not supported by postalloc
2707   // expand.
2708   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
2709     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2710 
2711     MachNode *m2;
2712     if (large_constant_pool) {
2713       m2 = new loadConFCompNode();
2714     } else {
2715       m2 = new loadConFNode();
2716     }
2717     // inputs for new nodes
2718     m2->add_req(NULL, n_toc);
2719 
2720     // operands for new nodes
2721     m2->_opnds[0] = op_dst;
2722     m2->_opnds[1] = op_src;
2723     m2->_opnds[2] = new iRegPdstOper(); // constanttablebase
2724 
2725     // register allocation for new nodes
2726     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2727     nodes->push(m2);
2728   %}
2729 
2730   // Enc_class needed as consttanttablebase is not supported by postalloc
2731   // expand.
2732   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
2733     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
2734 
2735     MachNode *m2;
2736     if (large_constant_pool) {
2737       m2 = new loadConDCompNode();
2738     } else {
2739       m2 = new loadConDNode();
2740     }
2741     // inputs for new nodes
2742     m2->add_req(NULL, n_toc);
2743 
2744     // operands for new nodes
2745     m2->_opnds[0] = op_dst;
2746     m2->_opnds[1] = op_src;
2747     m2->_opnds[2] = new iRegPdstOper(); // constanttablebase
2748 
2749     // register allocation for new nodes
2750     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2751     nodes->push(m2);
2752   %}
2753 
2754   enc_class enc_stw(iRegIsrc src, memory mem) %{
2755     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
2756     MacroAssembler _masm(&cbuf);
2757     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2758     __ stw($src$$Register, Idisp, $mem$$base$$Register);
2759   %}
2760 
2761   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
2762     // TODO: PPC port $archOpcode(ppc64Opcode_std);
2763     MacroAssembler _masm(&cbuf);
2764     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2765     // Operand 'ds' requires 4-alignment.
2766     assert((Idisp & 0x3) == 0, "unaligned offset");
2767     __ std($src$$Register, Idisp, $mem$$base$$Register);
2768   %}
2769 
2770   enc_class enc_stfs(RegF src, memory mem) %{
2771     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
2772     MacroAssembler _masm(&cbuf);
2773     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2774     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
2775   %}
2776 
2777   enc_class enc_stfd(RegF src, memory mem) %{
2778     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
2779     MacroAssembler _masm(&cbuf);
2780     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
2781     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
2782   %}
2783 
2784   // Use release_store for card-marking to ensure that previous
2785   // oop-stores are visible before the card-mark change.
2786   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr, flagsReg crx) %{
2787     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
2788     // FIXME: Implement this as a cmove and use a fixed condition code
2789     // register which is written on every transition to compiled code,
2790     // e.g. in call-stub and when returning from runtime stubs.
2791     //
2792     // Proposed code sequence for the cmove implementation:
2793     //
2794     // Label skip_release;
2795     // __ beq(CCRfixed, skip_release);
2796     // __ release();
2797     // __ bind(skip_release);
2798     // __ stb(card mark);
2799 
2800     MacroAssembler _masm(&cbuf);
2801     Label skip_storestore;
2802 
2803 #if 0 // TODO: PPC port
2804     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
2805     // StoreStore barrier conditionally.
2806     __ lwz(R0, 0, $releaseFieldAddr$$Register);
2807     __ cmpwi($crx$$CondRegister, R0, 0);
2808     __ beq_predict_taken($crx$$CondRegister, skip_storestore);
2809 #endif
2810     __ li(R0, 0);
2811     __ membar(Assembler::StoreStore);
2812 #if 0 // TODO: PPC port
2813     __ bind(skip_storestore);
2814 #endif
2815 
2816     // Do the store.
2817     if ($mem$$index == 0) {
2818       __ stb(R0, $mem$$disp, $mem$$base$$Register);
2819     } else {
2820       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
2821       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
2822     }
2823   %}
2824 
2825   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
2826 
2827     if (VM_Version::has_isel()) {
2828       // use isel instruction with Power 7
2829       cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
2830       encodeP_subNode    *n_sub_base = new encodeP_subNode();
2831       encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
2832       cond_set_0_oopNode *n_cond_set = new cond_set_0_oopNode();
2833 
2834       n_compare->add_req(n_region, n_src);
2835       n_compare->_opnds[0] = op_crx;
2836       n_compare->_opnds[1] = op_src;
2837       n_compare->_opnds[2] = new immL16Oper(0);
2838 
2839       n_sub_base->add_req(n_region, n_src);
2840       n_sub_base->_opnds[0] = op_dst;
2841       n_sub_base->_opnds[1] = op_src;
2842       n_sub_base->_bottom_type = _bottom_type;
2843 
2844       n_shift->add_req(n_region, n_sub_base);
2845       n_shift->_opnds[0] = op_dst;
2846       n_shift->_opnds[1] = op_dst;
2847       n_shift->_bottom_type = _bottom_type;
2848 
2849       n_cond_set->add_req(n_region, n_compare, n_shift);
2850       n_cond_set->_opnds[0] = op_dst;
2851       n_cond_set->_opnds[1] = op_crx;
2852       n_cond_set->_opnds[2] = op_dst;
2853       n_cond_set->_bottom_type = _bottom_type;
2854 
2855       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2856       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2857       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2858       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2859 
2860       nodes->push(n_compare);
2861       nodes->push(n_sub_base);
2862       nodes->push(n_shift);
2863       nodes->push(n_cond_set);
2864 
2865     } else {
2866       // before Power 7
2867       moveRegNode        *n_move     = new moveRegNode();
2868       cmpP_reg_imm16Node *n_compare  = new cmpP_reg_imm16Node();
2869       encodeP_shiftNode  *n_shift    = new encodeP_shiftNode();
2870       cond_sub_baseNode  *n_sub_base = new cond_sub_baseNode();
2871 
2872       n_move->add_req(n_region, n_src);
2873       n_move->_opnds[0] = op_dst;
2874       n_move->_opnds[1] = op_src;
2875       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
2876 
2877       n_compare->add_req(n_region, n_src);
2878       n_compare->add_prec(n_move);
2879 
2880       n_compare->_opnds[0] = op_crx;
2881       n_compare->_opnds[1] = op_src;
2882       n_compare->_opnds[2] = new immL16Oper(0);
2883 
2884       n_sub_base->add_req(n_region, n_compare, n_src);
2885       n_sub_base->_opnds[0] = op_dst;
2886       n_sub_base->_opnds[1] = op_crx;
2887       n_sub_base->_opnds[2] = op_src;
2888       n_sub_base->_bottom_type = _bottom_type;
2889 
2890       n_shift->add_req(n_region, n_sub_base);
2891       n_shift->_opnds[0] = op_dst;
2892       n_shift->_opnds[1] = op_dst;
2893       n_shift->_bottom_type = _bottom_type;
2894 
2895       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2896       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2897       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2898       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2899 
2900       nodes->push(n_move);
2901       nodes->push(n_compare);
2902       nodes->push(n_sub_base);
2903       nodes->push(n_shift);
2904     }
2905 
2906     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2907   %}
2908 
2909   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
2910 
2911     encodeP_subNode *n1 = new encodeP_subNode();
2912     n1->add_req(n_region, n_src);
2913     n1->_opnds[0] = op_dst;
2914     n1->_opnds[1] = op_src;
2915     n1->_bottom_type = _bottom_type;
2916 
2917     encodeP_shiftNode *n2 = new encodeP_shiftNode();
2918     n2->add_req(n_region, n1);
2919     n2->_opnds[0] = op_dst;
2920     n2->_opnds[1] = op_dst;
2921     n2->_bottom_type = _bottom_type;
2922     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2923     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2924 
2925     nodes->push(n1);
2926     nodes->push(n2);
2927     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
2928   %}
2929 
2930   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
2931     decodeN_shiftNode *n_shift    = new decodeN_shiftNode();
2932     cmpN_reg_imm0Node *n_compare  = new cmpN_reg_imm0Node();
2933 
2934     n_compare->add_req(n_region, n_src);
2935     n_compare->_opnds[0] = op_crx;
2936     n_compare->_opnds[1] = op_src;
2937     n_compare->_opnds[2] = new immN_0Oper(TypeNarrowOop::NULL_PTR);
2938 
2939     n_shift->add_req(n_region, n_src);
2940     n_shift->_opnds[0] = op_dst;
2941     n_shift->_opnds[1] = op_src;
2942     n_shift->_bottom_type = _bottom_type;
2943 
2944     if (VM_Version::has_isel()) {
2945       // use isel instruction with Power 7
2946 
2947       decodeN_addNode *n_add_base = new decodeN_addNode();
2948       n_add_base->add_req(n_region, n_shift);
2949       n_add_base->_opnds[0] = op_dst;
2950       n_add_base->_opnds[1] = op_dst;
2951       n_add_base->_bottom_type = _bottom_type;
2952 
2953       cond_set_0_ptrNode *n_cond_set = new cond_set_0_ptrNode();
2954       n_cond_set->add_req(n_region, n_compare, n_add_base);
2955       n_cond_set->_opnds[0] = op_dst;
2956       n_cond_set->_opnds[1] = op_crx;
2957       n_cond_set->_opnds[2] = op_dst;
2958       n_cond_set->_bottom_type = _bottom_type;
2959 
2960       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
2961       ra_->set_oop(n_cond_set, true);
2962 
2963       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2964       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2965       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2966       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2967 
2968       nodes->push(n_compare);
2969       nodes->push(n_shift);
2970       nodes->push(n_add_base);
2971       nodes->push(n_cond_set);
2972 
2973     } else {
2974       // before Power 7
2975       cond_add_baseNode *n_add_base = new cond_add_baseNode();
2976 
2977       n_add_base->add_req(n_region, n_compare, n_shift);
2978       n_add_base->_opnds[0] = op_dst;
2979       n_add_base->_opnds[1] = op_crx;
2980       n_add_base->_opnds[2] = op_dst;
2981       n_add_base->_bottom_type = _bottom_type;
2982 
2983       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
2984       ra_->set_oop(n_add_base, true);
2985 
2986       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2987       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
2988       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
2989 
2990       nodes->push(n_compare);
2991       nodes->push(n_shift);
2992       nodes->push(n_add_base);
2993     }
2994   %}
2995 
2996   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
2997     decodeN_shiftNode *n1 = new decodeN_shiftNode();
2998     n1->add_req(n_region, n_src);
2999     n1->_opnds[0] = op_dst;
3000     n1->_opnds[1] = op_src;
3001     n1->_bottom_type = _bottom_type;
3002 
3003     decodeN_addNode *n2 = new decodeN_addNode();
3004     n2->add_req(n_region, n1);
3005     n2->_opnds[0] = op_dst;
3006     n2->_opnds[1] = op_dst;
3007     n2->_bottom_type = _bottom_type;
3008     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3009     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
3010 
3011     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
3012     ra_->set_oop(n2, true);
3013 
3014     nodes->push(n1);
3015     nodes->push(n2);
3016   %}
3017 
3018   enc_class enc_cmove_reg(iRegIdst dst, flagsRegSrc crx, iRegIsrc src, cmpOp cmp) %{
3019     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3020 
3021     MacroAssembler _masm(&cbuf);
3022     int cc        = $cmp$$cmpcode;
3023     int flags_reg = $crx$$reg;
3024     Label done;
3025     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3026     // Branch if not (cmp crx).
3027     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
3028     __ mr($dst$$Register, $src$$Register);
3029     // TODO PPC port __ endgroup_if_needed(_size == 12);
3030     __ bind(done);
3031   %}
3032 
3033   enc_class enc_cmove_imm(iRegIdst dst, flagsRegSrc crx, immI16 src, cmpOp cmp) %{
3034     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3035 
3036     MacroAssembler _masm(&cbuf);
3037     Label done;
3038     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3039     // Branch if not (cmp crx).
3040     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
3041     __ li($dst$$Register, $src$$constant);
3042     // TODO PPC port __ endgroup_if_needed(_size == 12);
3043     __ bind(done);
3044   %}
3045 
3046   // New atomics.
3047   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3048     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3049 
3050     MacroAssembler _masm(&cbuf);
3051     Register Rtmp   = R0;
3052     Register Rres   = $res$$Register;
3053     Register Rsrc   = $src$$Register;
3054     Register Rptr   = $mem_ptr$$Register;
3055     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3056     Register Rold   = RegCollision ? Rtmp : Rres;
3057 
3058     Label Lretry;
3059     __ bind(Lretry);
3060     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3061     __ add(Rtmp, Rsrc, Rold);
3062     __ stwcx_(Rtmp, Rptr);
3063     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3064       __ bne_predict_not_taken(CCR0, Lretry);
3065     } else {
3066       __ bne(                  CCR0, Lretry);
3067     }
3068     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3069     __ fence();
3070   %}
3071 
3072   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3073     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3074 
3075     MacroAssembler _masm(&cbuf);
3076     Register Rtmp   = R0;
3077     Register Rres   = $res$$Register;
3078     Register Rsrc   = $src$$Register;
3079     Register Rptr   = $mem_ptr$$Register;
3080     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3081     Register Rold   = RegCollision ? Rtmp : Rres;
3082 
3083     Label Lretry;
3084     __ bind(Lretry);
3085     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3086     __ add(Rtmp, Rsrc, Rold);
3087     __ stdcx_(Rtmp, Rptr);
3088     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3089       __ bne_predict_not_taken(CCR0, Lretry);
3090     } else {
3091       __ bne(                  CCR0, Lretry);
3092     }
3093     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
3094     __ fence();
3095   %}
3096 
3097   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
3098     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3099 
3100     MacroAssembler _masm(&cbuf);
3101     Register Rtmp   = R0;
3102     Register Rres   = $res$$Register;
3103     Register Rsrc   = $src$$Register;
3104     Register Rptr   = $mem_ptr$$Register;
3105     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3106     Register Rold   = RegCollision ? Rtmp : Rres;
3107 
3108     Label Lretry;
3109     __ bind(Lretry);
3110     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3111     __ stwcx_(Rsrc, Rptr);
3112     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3113       __ bne_predict_not_taken(CCR0, Lretry);
3114     } else {
3115       __ bne(                  CCR0, Lretry);
3116     }
3117     if (RegCollision) __ mr(Rres, Rtmp);
3118     __ fence();
3119   %}
3120 
3121   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
3122     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3123 
3124     MacroAssembler _masm(&cbuf);
3125     Register Rtmp   = R0;
3126     Register Rres   = $res$$Register;
3127     Register Rsrc   = $src$$Register;
3128     Register Rptr   = $mem_ptr$$Register;
3129     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
3130     Register Rold   = RegCollision ? Rtmp : Rres;
3131 
3132     Label Lretry;
3133     __ bind(Lretry);
3134     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3135     __ stdcx_(Rsrc, Rptr);
3136     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3137       __ bne_predict_not_taken(CCR0, Lretry);
3138     } else {
3139       __ bne(                  CCR0, Lretry);
3140     }
3141     if (RegCollision) __ mr(Rres, Rtmp);
3142     __ fence();
3143   %}
3144 
3145   // This enc_class is needed so that scheduler gets proper
3146   // input mapping for latency computation.
3147   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
3148     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
3149     MacroAssembler _masm(&cbuf);
3150     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
3151   %}
3152 
3153   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3154     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3155 
3156     MacroAssembler _masm(&cbuf);
3157 
3158     Label done;
3159     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
3160     __ li($dst$$Register, $zero$$constant);
3161     __ beq($crx$$CondRegister, done);
3162     __ li($dst$$Register, $notzero$$constant);
3163     __ bind(done);
3164   %}
3165 
3166   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
3167     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3168 
3169     MacroAssembler _masm(&cbuf);
3170 
3171     Label done;
3172     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
3173     __ li($dst$$Register, $zero$$constant);
3174     __ beq($crx$$CondRegister, done);
3175     __ li($dst$$Register, $notzero$$constant);
3176     __ bind(done);
3177   %}
3178 
3179   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsRegSrc crx, stackSlotL mem ) %{
3180     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
3181 
3182     MacroAssembler _masm(&cbuf);
3183     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
3184     Label done;
3185     __ bso($crx$$CondRegister, done);
3186     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
3187     // TODO PPC port __ endgroup_if_needed(_size == 12);
3188     __ bind(done);
3189   %}
3190 
3191   enc_class enc_bc(flagsRegSrc crx, cmpOp cmp, Label lbl) %{
3192     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3193 
3194     MacroAssembler _masm(&cbuf);
3195     Label d;   // dummy
3196     __ bind(d);
3197     Label* p = ($lbl$$label);
3198     // `p' is `NULL' when this encoding class is used only to
3199     // determine the size of the encoded instruction.
3200     Label& l = (NULL == p)? d : *(p);
3201     int cc = $cmp$$cmpcode;
3202     int flags_reg = $crx$$reg;
3203     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
3204     int bhint = Assembler::bhintNoHint;
3205 
3206     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3207       if (_prob <= PROB_NEVER) {
3208         bhint = Assembler::bhintIsNotTaken;
3209       } else if (_prob >= PROB_ALWAYS) {
3210         bhint = Assembler::bhintIsTaken;
3211       }
3212     }
3213 
3214     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3215           cc_to_biint(cc, flags_reg),
3216           l);
3217   %}
3218 
3219   enc_class enc_bc_far(flagsRegSrc crx, cmpOp cmp, Label lbl) %{
3220     // The scheduler doesn't know about branch shortening, so we set the opcode
3221     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3222     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3223 
3224     MacroAssembler _masm(&cbuf);
3225     Label d;    // dummy
3226     __ bind(d);
3227     Label* p = ($lbl$$label);
3228     // `p' is `NULL' when this encoding class is used only to
3229     // determine the size of the encoded instruction.
3230     Label& l = (NULL == p)? d : *(p);
3231     int cc = $cmp$$cmpcode;
3232     int flags_reg = $crx$$reg;
3233     int bhint = Assembler::bhintNoHint;
3234 
3235     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3236       if (_prob <= PROB_NEVER) {
3237         bhint = Assembler::bhintIsNotTaken;
3238       } else if (_prob >= PROB_ALWAYS) {
3239         bhint = Assembler::bhintIsTaken;
3240       }
3241     }
3242 
3243     // Tell the conditional far branch to optimize itself when being relocated.
3244     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3245                   cc_to_biint(cc, flags_reg),
3246                   l,
3247                   MacroAssembler::bc_far_optimize_on_relocate);
3248   %}
3249 
3250   // Branch used with Power6 scheduling (can be shortened without changing the node).
3251   enc_class enc_bc_short_far(flagsRegSrc crx, cmpOp cmp, Label lbl) %{
3252     // The scheduler doesn't know about branch shortening, so we set the opcode
3253     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
3254     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
3255 
3256     MacroAssembler _masm(&cbuf);
3257     Label d;   // dummy
3258     __ bind(d);
3259     Label* p = ($lbl$$label);
3260     // `p' is `NULL' when this encoding class is used only to
3261     // determine the size of the encoded instruction.
3262     Label& l = (NULL == p)? d : *(p);
3263     int cc = $cmp$$cmpcode;
3264     int flags_reg = $crx$$reg;
3265     int bhint = Assembler::bhintNoHint;
3266 
3267     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
3268       if (_prob <= PROB_NEVER) {
3269         bhint = Assembler::bhintIsNotTaken;
3270       } else if (_prob >= PROB_ALWAYS) {
3271         bhint = Assembler::bhintIsTaken;
3272       }
3273     }
3274 
3275 #if 0 // TODO: PPC port
3276     if (_size == 8) {
3277       // Tell the conditional far branch to optimize itself when being relocated.
3278       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3279                     cc_to_biint(cc, flags_reg),
3280                     l,
3281                     MacroAssembler::bc_far_optimize_on_relocate);
3282     } else {
3283       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
3284                     cc_to_biint(cc, flags_reg),
3285                     l);
3286     }
3287 #endif
3288     Unimplemented();
3289   %}
3290 
3291   // Postalloc expand emitter for loading a replicatef float constant from
3292   // the method's TOC.
3293   // Enc_class needed as consttanttablebase is not supported by postalloc
3294   // expand.
3295   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
3296     // Create new nodes.
3297 
3298     // Make an operand with the bit pattern to load as float.
3299     immLOper *op_repl = new immLOper((jlong)replicate_immF(op_src->constantF()));
3300 
3301     loadConLNodesTuple loadConLNodes =
3302       loadConLNodesTuple_create(ra_, n_toc, op_repl,
3303                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
3304 
3305     // Push new nodes.
3306     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
3307     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
3308 
3309     assert(nodes->length() >= 1, "must have created at least 1 node");
3310     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
3311   %}
3312 
3313   // This enc_class is needed so that scheduler gets proper
3314   // input mapping for latency computation.
3315   enc_class enc_poll(immI dst, iRegLdst poll) %{
3316     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
3317     // Fake operand dst needed for PPC scheduler.
3318     assert($dst$$constant == 0x0, "dst must be 0x0");
3319 
3320     MacroAssembler _masm(&cbuf);
3321     // Mark the code position where the load from the safepoint
3322     // polling page was emitted as relocInfo::poll_type.
3323     __ relocate(relocInfo::poll_type);
3324     __ load_from_polling_page($poll$$Register);
3325   %}
3326 
3327   // A Java static call or a runtime call.
3328   //
3329   // Branch-and-link relative to a trampoline.
3330   // The trampoline loads the target address and does a long branch to there.
3331   // In case we call java, the trampoline branches to a interpreter_stub
3332   // which loads the inline cache and the real call target from the constant pool.
3333   //
3334   // This basically looks like this:
3335   //
3336   // >>>> consts      -+  -+
3337   //                   |   |- offset1
3338   // [call target1]    | <-+
3339   // [IC cache]        |- offset2
3340   // [call target2] <--+
3341   //
3342   // <<<< consts
3343   // >>>> insts
3344   //
3345   // bl offset16               -+  -+             ??? // How many bits available?
3346   //                            |   |
3347   // <<<< insts                 |   |
3348   // >>>> stubs                 |   |
3349   //                            |   |- trampoline_stub_Reloc
3350   // trampoline stub:           | <-+
3351   //   r2 = toc                 |
3352   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
3353   //   mtctr r2                 |
3354   //   bctr                     |- static_stub_Reloc
3355   // comp_to_interp_stub:   <---+
3356   //   r1 = toc
3357   //   ICreg = [r1 + IC_offset]         // Load IC from const section
3358   //   r1    = [r1 + offset2]           // Load call target2 from const section
3359   //   mtctr r1
3360   //   bctr
3361   //
3362   // <<<< stubs
3363   //
3364   // The call instruction in the code either
3365   // - Branches directly to a compiled method if the offset is encodable in instruction.
3366   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
3367   // - Branches to the compiled_to_interp stub if the target is interpreted.
3368   //
3369   // Further there are three relocations from the loads to the constants in
3370   // the constant section.
3371   //
3372   // Usage of r1 and r2 in the stubs allows to distinguish them.
3373   enc_class enc_java_static_call(method meth) %{
3374     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3375 
3376     MacroAssembler _masm(&cbuf);
3377     address entry_point = (address)$meth$$method;
3378 
3379     if (!_method) {
3380       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
3381       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
3382     } else {
3383       // Remember the offset not the address.
3384       const int start_offset = __ offset();
3385       // The trampoline stub.
3386       if (!Compile::current()->in_scratch_emit_size()) {
3387         // No entry point given, use the current pc.
3388         // Make sure branch fits into
3389         if (entry_point == 0) entry_point = __ pc();
3390 
3391         // Put the entry point as a constant into the constant pool.
3392         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
3393         if (entry_point_toc_addr == NULL) {
3394           ciEnv::current()->record_out_of_memory_failure();
3395           return;
3396         }
3397         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
3398 
3399 
3400         // Emit the trampoline stub which will be related to the branch-and-link below.
3401         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
3402         if (ciEnv::current()->failing()) { return; } // Code cache may be full.
3403         int method_index = resolved_method_index(cbuf);
3404         __ relocate(_optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
3405                                        : static_call_Relocation::spec(method_index));
3406       }
3407 
3408       // The real call.
3409       // Note: At this point we do not have the address of the trampoline
3410       // stub, and the entry point might be too far away for bl, so __ pc()
3411       // serves as dummy and the bl will be patched later.
3412       cbuf.set_insts_mark();
3413       __ bl(__ pc());  // Emits a relocation.
3414 
3415       // The stub for call to interpreter.
3416       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
3417       if (stub == NULL) {
3418         ciEnv::current()->record_failure("CodeCache is full");
3419         return;
3420       }
3421     }
3422   %}
3423 
3424   // Second node of expanded dynamic call - the call.
3425   enc_class enc_java_dynamic_call_sched(method meth) %{
3426     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
3427 
3428     MacroAssembler _masm(&cbuf);
3429 
3430     if (!ra_->C->in_scratch_emit_size()) {
3431       // Create a call trampoline stub for the given method.
3432       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
3433       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
3434       if (entry_point_const == NULL) {
3435         ciEnv::current()->record_out_of_memory_failure();
3436         return;
3437       }
3438       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
3439       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
3440       if (ra_->C->env()->failing()) { return; } // Code cache may be full.
3441 
3442       // Build relocation at call site with ic position as data.
3443       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
3444              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
3445              "must have one, but can't have both");
3446       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
3447              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
3448              "must contain instruction offset");
3449       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
3450         ? _load_ic_hi_node->_cbuf_insts_offset
3451         : _load_ic_node->_cbuf_insts_offset;
3452       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
3453       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
3454              "should be load from TOC");
3455       int method_index = resolved_method_index(cbuf);
3456       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr, method_index));
3457     }
3458 
3459     // At this point I do not have the address of the trampoline stub,
3460     // and the entry point might be too far away for bl. Pc() serves
3461     // as dummy and bl will be patched later.
3462     __ bl((address) __ pc());
3463   %}
3464 
3465   // postalloc expand emitter for virtual calls.
3466   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
3467 
3468     // Create the nodes for loading the IC from the TOC.
3469     loadConLNodesTuple loadConLNodes_IC =
3470       loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong)Universe::non_oop_word()),
3471                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
3472 
3473     // Create the call node.
3474     CallDynamicJavaDirectSchedNode *call = new CallDynamicJavaDirectSchedNode();
3475     call->_method_handle_invoke = _method_handle_invoke;
3476     call->_vtable_index      = _vtable_index;
3477     call->_method            = _method;
3478     call->_bci               = _bci;
3479     call->_optimized_virtual = _optimized_virtual;
3480     call->_tf                = _tf;
3481     call->_entry_point       = _entry_point;
3482     call->_cnt               = _cnt;
3483     call->_argsize           = _argsize;
3484     call->_oop_map           = _oop_map;
3485     call->_jvms              = _jvms;
3486     call->_jvmadj            = _jvmadj;
3487     call->_in_rms            = _in_rms;
3488     call->_nesting           = _nesting;
3489     call->_override_symbolic_info = _override_symbolic_info;
3490 
3491     // New call needs all inputs of old call.
3492     // Req...
3493     for (uint i = 0; i < req(); ++i) {
3494       // The expanded node does not need toc any more.
3495       // Add the inline cache constant here instead. This expresses the
3496       // register of the inline cache must be live at the call.
3497       // Else we would have to adapt JVMState by -1.
3498       if (i == mach_constant_base_node_input()) {
3499         call->add_req(loadConLNodes_IC._last);
3500       } else {
3501         call->add_req(in(i));
3502       }
3503     }
3504     // ...as well as prec
3505     for (uint i = req(); i < len(); ++i) {
3506       call->add_prec(in(i));
3507     }
3508 
3509     // Remember nodes loading the inline cache into r19.
3510     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
3511     call->_load_ic_node    = loadConLNodes_IC._small;
3512 
3513     // Operands for new nodes.
3514     call->_opnds[0] = _opnds[0];
3515     call->_opnds[1] = _opnds[1];
3516 
3517     // Only the inline cache is associated with a register.
3518     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
3519 
3520     // Push new nodes.
3521     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
3522     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
3523     nodes->push(call);
3524   %}
3525 
3526   // Compound version of call dynamic
3527   // Toc is only passed so that it can be used in ins_encode statement.
3528   // In the code we have to use $constanttablebase.
3529   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
3530     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3531     MacroAssembler _masm(&cbuf);
3532     int start_offset = __ offset();
3533 
3534     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
3535 #if 0
3536     int vtable_index = this->_vtable_index;
3537     if (_vtable_index < 0) {
3538       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
3539       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
3540       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
3541 
3542       // Virtual call relocation will point to ic load.
3543       address virtual_call_meta_addr = __ pc();
3544       // Load a clear inline cache.
3545       AddressLiteral empty_ic((address) Universe::non_oop_word());
3546       bool success = __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc, /*fixed_size*/ true);
3547       if (!success) {
3548         ciEnv::current()->record_out_of_memory_failure();
3549         return;
3550       }
3551       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
3552       // to determine who we intended to call.
3553       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
3554       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
3555       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3556              "Fix constant in ret_addr_offset()");
3557     } else {
3558       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
3559       // Go thru the vtable. Get receiver klass. Receiver already
3560       // checked for non-null. If we'll go thru a C2I adapter, the
3561       // interpreter expects method in R19_method.
3562 
3563       __ load_klass(R11_scratch1, R3);
3564 
3565       int entry_offset = in_bytes(InstanceKlass::vtable_start_offset()) + _vtable_index * vtableEntry::size_in_bytes();
3566       int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
3567       __ li(R19_method, v_off);
3568       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
3569       // NOTE: for vtable dispatches, the vtable entry will never be
3570       // null. However it may very well end up in handle_wrong_method
3571       // if the method is abstract for the particular class.
3572       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
3573       // Call target. Either compiled code or C2I adapter.
3574       __ mtctr(R11_scratch1);
3575       __ bctrl();
3576       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
3577         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
3578       }
3579       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
3580              "Fix constant in ret_addr_offset()");
3581     }
3582 #endif
3583     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
3584   %}
3585 
3586   // a runtime call
3587   enc_class enc_java_to_runtime_call (method meth) %{
3588     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
3589 
3590     MacroAssembler _masm(&cbuf);
3591     const address start_pc = __ pc();
3592 
3593 #if defined(ABI_ELFv2)
3594     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
3595     __ call_c(entry, relocInfo::runtime_call_type);
3596 #else
3597     // The function we're going to call.
3598     FunctionDescriptor fdtemp;
3599     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
3600 
3601     Register Rtoc = R12_scratch2;
3602     // Calculate the method's TOC.
3603     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
3604     // Put entry, env, toc into the constant pool, this needs up to 3 constant
3605     // pool entries; call_c_using_toc will optimize the call.
3606     bool success = __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
3607     if (!success) {
3608       ciEnv::current()->record_out_of_memory_failure();
3609       return;
3610     }
3611 #endif
3612 
3613     // Check the ret_addr_offset.
3614     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
3615            "Fix constant in ret_addr_offset()");
3616   %}
3617 
3618   // Move to ctr for leaf call.
3619   // This enc_class is needed so that scheduler gets proper
3620   // input mapping for latency computation.
3621   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
3622     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
3623     MacroAssembler _masm(&cbuf);
3624     __ mtctr($src$$Register);
3625   %}
3626 
3627   // Postalloc expand emitter for runtime leaf calls.
3628   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
3629     loadConLNodesTuple loadConLNodes_Entry;
3630 #if defined(ABI_ELFv2)
3631     jlong entry_address = (jlong) this->entry_point();
3632     assert(entry_address, "need address here");
3633     loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
3634                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3635 #else
3636     // Get the struct that describes the function we are about to call.
3637     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
3638     assert(fd, "need fd here");
3639     jlong entry_address = (jlong) fd->entry();
3640     // new nodes
3641     loadConLNodesTuple loadConLNodes_Env;
3642     loadConLNodesTuple loadConLNodes_Toc;
3643 
3644     // Create nodes and operands for loading the entry point.
3645     loadConLNodes_Entry = loadConLNodesTuple_create(ra_, n_toc, new immLOper(entry_address),
3646                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
3647 
3648 
3649     // Create nodes and operands for loading the env pointer.
3650     if (fd->env() != NULL) {
3651       loadConLNodes_Env = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->env()),
3652                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3653     } else {
3654       loadConLNodes_Env._large_hi = NULL;
3655       loadConLNodes_Env._large_lo = NULL;
3656       loadConLNodes_Env._small    = NULL;
3657       loadConLNodes_Env._last = new loadConL16Node();
3658       loadConLNodes_Env._last->_opnds[0] = new iRegLdstOper();
3659       loadConLNodes_Env._last->_opnds[1] = new immL16Oper(0);
3660       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
3661     }
3662 
3663     // Create nodes and operands for loading the Toc point.
3664     loadConLNodes_Toc = loadConLNodesTuple_create(ra_, n_toc, new immLOper((jlong) fd->toc()),
3665                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
3666 #endif // ABI_ELFv2
3667     // mtctr node
3668     MachNode *mtctr = new CallLeafDirect_mtctrNode();
3669 
3670     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
3671     mtctr->add_req(0, loadConLNodes_Entry._last);
3672 
3673     mtctr->_opnds[0] = new iRegLdstOper();
3674     mtctr->_opnds[1] = new iRegLdstOper();
3675 
3676     // call node
3677     MachCallLeafNode *call = new CallLeafDirectNode();
3678 
3679     call->_opnds[0] = _opnds[0];
3680     call->_opnds[1] = new methodOper((intptr_t) entry_address); // May get set later.
3681 
3682     // Make the new call node look like the old one.
3683     call->_name        = _name;
3684     call->_tf          = _tf;
3685     call->_entry_point = _entry_point;
3686     call->_cnt         = _cnt;
3687     call->_argsize     = _argsize;
3688     call->_oop_map     = _oop_map;
3689     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
3690     call->_jvms        = NULL;
3691     call->_jvmadj      = _jvmadj;
3692     call->_in_rms      = _in_rms;
3693     call->_nesting     = _nesting;
3694 
3695 
3696     // New call needs all inputs of old call.
3697     // Req...
3698     for (uint i = 0; i < req(); ++i) {
3699       if (i != mach_constant_base_node_input()) {
3700         call->add_req(in(i));
3701       }
3702     }
3703 
3704     // These must be reqired edges, as the registers are live up to
3705     // the call. Else the constants are handled as kills.
3706     call->add_req(mtctr);
3707 #if !defined(ABI_ELFv2)
3708     call->add_req(loadConLNodes_Env._last);
3709     call->add_req(loadConLNodes_Toc._last);
3710 #endif
3711 
3712     // ...as well as prec
3713     for (uint i = req(); i < len(); ++i) {
3714       call->add_prec(in(i));
3715     }
3716 
3717     // registers
3718     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
3719 
3720     // Insert the new nodes.
3721     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
3722     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
3723 #if !defined(ABI_ELFv2)
3724     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
3725     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
3726     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
3727     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
3728 #endif
3729     nodes->push(mtctr);
3730     nodes->push(call);
3731   %}
3732 %}
3733 
3734 //----------FRAME--------------------------------------------------------------
3735 // Definition of frame structure and management information.
3736 
3737 frame %{
3738   // What direction does stack grow in (assumed to be same for native & Java).
3739   stack_direction(TOWARDS_LOW);
3740 
3741   // These two registers define part of the calling convention between
3742   // compiled code and the interpreter.
3743 
3744   // Inline Cache Register or method for I2C.
3745   inline_cache_reg(R19); // R19_method
3746 
3747   // Method Oop Register when calling interpreter.
3748   interpreter_method_oop_reg(R19); // R19_method
3749 
3750   // Optional: name the operand used by cisc-spilling to access
3751   // [stack_pointer + offset].
3752   cisc_spilling_operand_name(indOffset);
3753 
3754   // Number of stack slots consumed by a Monitor enter.
3755   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
3756 
3757   // Compiled code's Frame Pointer.
3758   frame_pointer(R1); // R1_SP
3759 
3760   // Interpreter stores its frame pointer in a register which is
3761   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
3762   // interpreted java to compiled java.
3763   //
3764   // R14_state holds pointer to caller's cInterpreter.
3765   interpreter_frame_pointer(R14); // R14_state
3766 
3767   stack_alignment(frame::alignment_in_bytes);
3768 
3769   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
3770 
3771   // Number of outgoing stack slots killed above the
3772   // out_preserve_stack_slots for calls to C. Supports the var-args
3773   // backing area for register parms.
3774   //
3775   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
3776 
3777   // The after-PROLOG location of the return address. Location of
3778   // return address specifies a type (REG or STACK) and a number
3779   // representing the register number (i.e. - use a register name) or
3780   // stack slot.
3781   //
3782   // A: Link register is stored in stack slot ...
3783   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
3784   // J: Therefore, we make sure that the link register is also in R11_scratch1
3785   //    at the end of the prolog.
3786   // B: We use R20, now.
3787   //return_addr(REG R20);
3788 
3789   // G: After reading the comments made by all the luminaries on their
3790   //    failure to tell the compiler where the return address really is,
3791   //    I hardly dare to try myself.  However, I'm convinced it's in slot
3792   //    4 what apparently works and saves us some spills.
3793   return_addr(STACK 4);
3794 
3795   // This is the body of the function
3796   //
3797   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
3798   //                                  uint length,      // length of array
3799   //                                  bool is_outgoing)
3800   //
3801   // The `sig' array is to be updated. sig[j] represents the location
3802   // of the j-th argument, either a register or a stack slot.
3803 
3804   // Comment taken from i486.ad:
3805   // Body of function which returns an integer array locating
3806   // arguments either in registers or in stack slots. Passed an array
3807   // of ideal registers called "sig" and a "length" count. Stack-slot
3808   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3809   // arguments for a CALLEE. Incoming stack arguments are
3810   // automatically biased by the preserve_stack_slots field above.
3811   calling_convention %{
3812     // No difference between ingoing/outgoing. Just pass false.
3813     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3814   %}
3815 
3816   // Comment taken from i486.ad:
3817   // Body of function which returns an integer array locating
3818   // arguments either in registers or in stack slots. Passed an array
3819   // of ideal registers called "sig" and a "length" count. Stack-slot
3820   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3821   // arguments for a CALLEE. Incoming stack arguments are
3822   // automatically biased by the preserve_stack_slots field above.
3823   c_calling_convention %{
3824     // This is obviously always outgoing.
3825     // C argument in register AND stack slot.
3826     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3827   %}
3828 
3829   // Location of native (C/C++) and interpreter return values. This
3830   // is specified to be the same as Java. In the 32-bit VM, long
3831   // values are actually returned from native calls in O0:O1 and
3832   // returned to the interpreter in I0:I1. The copying to and from
3833   // the register pairs is done by the appropriate call and epilog
3834   // opcodes. This simplifies the register allocator.
3835   c_return_value %{
3836     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3837             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3838             "only return normal values");
3839     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3840     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3841     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3842     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3843   %}
3844 
3845   // Location of compiled Java return values.  Same as C
3846   return_value %{
3847     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
3848             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
3849             "only return normal values");
3850     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
3851     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
3852     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
3853     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
3854   %}
3855 %}
3856 
3857 
3858 //----------ATTRIBUTES---------------------------------------------------------
3859 
3860 //----------Operand Attributes-------------------------------------------------
3861 op_attrib op_cost(1);          // Required cost attribute.
3862 
3863 //----------Instruction Attributes---------------------------------------------
3864 
3865 // Cost attribute. required.
3866 ins_attrib ins_cost(DEFAULT_COST);
3867 
3868 // Is this instruction a non-matching short branch variant of some
3869 // long branch? Not required.
3870 ins_attrib ins_short_branch(0);
3871 
3872 ins_attrib ins_is_TrapBasedCheckNode(true);
3873 
3874 // Number of constants.
3875 // This instruction uses the given number of constants
3876 // (optional attribute).
3877 // This is needed to determine in time whether the constant pool will
3878 // exceed 4000 entries. Before postalloc_expand the overall number of constants
3879 // is determined. It's also used to compute the constant pool size
3880 // in Output().
3881 ins_attrib ins_num_consts(0);
3882 
3883 // Required alignment attribute (must be a power of 2) specifies the
3884 // alignment that some part of the instruction (not necessarily the
3885 // start) requires. If > 1, a compute_padding() function must be
3886 // provided for the instruction.
3887 ins_attrib ins_alignment(1);
3888 
3889 // Enforce/prohibit rematerializations.
3890 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
3891 //   then rematerialization of that instruction is prohibited and the
3892 //   instruction's value will be spilled if necessary.
3893 //   Causes that MachNode::rematerialize() returns false.
3894 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
3895 //   then rematerialization should be enforced and a copy of the instruction
3896 //   should be inserted if possible; rematerialization is not guaranteed.
3897 //   Note: this may result in rematerializations in front of every use.
3898 //   Causes that MachNode::rematerialize() can return true.
3899 // (optional attribute)
3900 ins_attrib ins_cannot_rematerialize(false);
3901 ins_attrib ins_should_rematerialize(false);
3902 
3903 // Instruction has variable size depending on alignment.
3904 ins_attrib ins_variable_size_depending_on_alignment(false);
3905 
3906 // Instruction is a nop.
3907 ins_attrib ins_is_nop(false);
3908 
3909 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
3910 ins_attrib ins_use_mach_if_fast_lock_node(false);
3911 
3912 // Field for the toc offset of a constant.
3913 //
3914 // This is needed if the toc offset is not encodable as an immediate in
3915 // the PPC load instruction. If so, the upper (hi) bits of the offset are
3916 // added to the toc, and from this a load with immediate is performed.
3917 // With postalloc expand, we get two nodes that require the same offset
3918 // but which don't know about each other. The offset is only known
3919 // when the constant is added to the constant pool during emitting.
3920 // It is generated in the 'hi'-node adding the upper bits, and saved
3921 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
3922 // the offset from there when it gets encoded.
3923 ins_attrib ins_field_const_toc_offset(0);
3924 ins_attrib ins_field_const_toc_offset_hi_node(0);
3925 
3926 // A field that can hold the instructions offset in the code buffer.
3927 // Set in the nodes emitter.
3928 ins_attrib ins_field_cbuf_insts_offset(-1);
3929 
3930 // Fields for referencing a call's load-IC-node.
3931 // If the toc offset can not be encoded as an immediate in a load, we
3932 // use two nodes.
3933 ins_attrib ins_field_load_ic_hi_node(0);
3934 ins_attrib ins_field_load_ic_node(0);
3935 
3936 //----------OPERANDS-----------------------------------------------------------
3937 // Operand definitions must precede instruction definitions for correct
3938 // parsing in the ADLC because operands constitute user defined types
3939 // which are used in instruction definitions.
3940 //
3941 // Formats are generated automatically for constants and base registers.
3942 
3943 //----------Simple Operands----------------------------------------------------
3944 // Immediate Operands
3945 
3946 // Integer Immediate: 32-bit
3947 operand immI() %{
3948   match(ConI);
3949   op_cost(40);
3950   format %{ %}
3951   interface(CONST_INTER);
3952 %}
3953 
3954 operand immI8() %{
3955   predicate(Assembler::is_simm(n->get_int(), 8));
3956   op_cost(0);
3957   match(ConI);
3958   format %{ %}
3959   interface(CONST_INTER);
3960 %}
3961 
3962 // Integer Immediate: 16-bit
3963 operand immI16() %{
3964   predicate(Assembler::is_simm(n->get_int(), 16));
3965   op_cost(0);
3966   match(ConI);
3967   format %{ %}
3968   interface(CONST_INTER);
3969 %}
3970 
3971 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
3972 operand immIhi16() %{
3973   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
3974   match(ConI);
3975   op_cost(0);
3976   format %{ %}
3977   interface(CONST_INTER);
3978 %}
3979 
3980 operand immInegpow2() %{
3981   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
3982   match(ConI);
3983   op_cost(0);
3984   format %{ %}
3985   interface(CONST_INTER);
3986 %}
3987 
3988 operand immIpow2minus1() %{
3989   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
3990   match(ConI);
3991   op_cost(0);
3992   format %{ %}
3993   interface(CONST_INTER);
3994 %}
3995 
3996 operand immIpowerOf2() %{
3997   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
3998   match(ConI);
3999   op_cost(0);
4000   format %{ %}
4001   interface(CONST_INTER);
4002 %}
4003 
4004 // Unsigned Integer Immediate: the values 0-31
4005 operand uimmI5() %{
4006   predicate(Assembler::is_uimm(n->get_int(), 5));
4007   match(ConI);
4008   op_cost(0);
4009   format %{ %}
4010   interface(CONST_INTER);
4011 %}
4012 
4013 // Unsigned Integer Immediate: 6-bit
4014 operand uimmI6() %{
4015   predicate(Assembler::is_uimm(n->get_int(), 6));
4016   match(ConI);
4017   op_cost(0);
4018   format %{ %}
4019   interface(CONST_INTER);
4020 %}
4021 
4022 // Unsigned Integer Immediate:  6-bit int, greater than 32
4023 operand uimmI6_ge32() %{
4024   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
4025   match(ConI);
4026   op_cost(0);
4027   format %{ %}
4028   interface(CONST_INTER);
4029 %}
4030 
4031 // Unsigned Integer Immediate: 15-bit
4032 operand uimmI15() %{
4033   predicate(Assembler::is_uimm(n->get_int(), 15));
4034   match(ConI);
4035   op_cost(0);
4036   format %{ %}
4037   interface(CONST_INTER);
4038 %}
4039 
4040 // Unsigned Integer Immediate: 16-bit
4041 operand uimmI16() %{
4042   predicate(Assembler::is_uimm(n->get_int(), 16));
4043   match(ConI);
4044   op_cost(0);
4045   format %{ %}
4046   interface(CONST_INTER);
4047 %}
4048 
4049 // constant 'int 0'.
4050 operand immI_0() %{
4051   predicate(n->get_int() == 0);
4052   match(ConI);
4053   op_cost(0);
4054   format %{ %}
4055   interface(CONST_INTER);
4056 %}
4057 
4058 // constant 'int 1'.
4059 operand immI_1() %{
4060   predicate(n->get_int() == 1);
4061   match(ConI);
4062   op_cost(0);
4063   format %{ %}
4064   interface(CONST_INTER);
4065 %}
4066 
4067 // constant 'int -1'.
4068 operand immI_minus1() %{
4069   predicate(n->get_int() == -1);
4070   match(ConI);
4071   op_cost(0);
4072   format %{ %}
4073   interface(CONST_INTER);
4074 %}
4075 
4076 // int value 16.
4077 operand immI_16() %{
4078   predicate(n->get_int() == 16);
4079   match(ConI);
4080   op_cost(0);
4081   format %{ %}
4082   interface(CONST_INTER);
4083 %}
4084 
4085 // int value 24.
4086 operand immI_24() %{
4087   predicate(n->get_int() == 24);
4088   match(ConI);
4089   op_cost(0);
4090   format %{ %}
4091   interface(CONST_INTER);
4092 %}
4093 
4094 // Compressed oops constants
4095 // Pointer Immediate
4096 operand immN() %{
4097   match(ConN);
4098 
4099   op_cost(10);
4100   format %{ %}
4101   interface(CONST_INTER);
4102 %}
4103 
4104 // NULL Pointer Immediate
4105 operand immN_0() %{
4106   predicate(n->get_narrowcon() == 0);
4107   match(ConN);
4108 
4109   op_cost(0);
4110   format %{ %}
4111   interface(CONST_INTER);
4112 %}
4113 
4114 // Compressed klass constants
4115 operand immNKlass() %{
4116   match(ConNKlass);
4117 
4118   op_cost(0);
4119   format %{ %}
4120   interface(CONST_INTER);
4121 %}
4122 
4123 // This operand can be used to avoid matching of an instruct
4124 // with chain rule.
4125 operand immNKlass_NM() %{
4126   match(ConNKlass);
4127   predicate(false);
4128   op_cost(0);
4129   format %{ %}
4130   interface(CONST_INTER);
4131 %}
4132 
4133 // Pointer Immediate: 64-bit
4134 operand immP() %{
4135   match(ConP);
4136   op_cost(0);
4137   format %{ %}
4138   interface(CONST_INTER);
4139 %}
4140 
4141 // Operand to avoid match of loadConP.
4142 // This operand can be used to avoid matching of an instruct
4143 // with chain rule.
4144 operand immP_NM() %{
4145   match(ConP);
4146   predicate(false);
4147   op_cost(0);
4148   format %{ %}
4149   interface(CONST_INTER);
4150 %}
4151 
4152 // costant 'pointer 0'.
4153 operand immP_0() %{
4154   predicate(n->get_ptr() == 0);
4155   match(ConP);
4156   op_cost(0);
4157   format %{ %}
4158   interface(CONST_INTER);
4159 %}
4160 
4161 // pointer 0x0 or 0x1
4162 operand immP_0or1() %{
4163   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
4164   match(ConP);
4165   op_cost(0);
4166   format %{ %}
4167   interface(CONST_INTER);
4168 %}
4169 
4170 operand immL() %{
4171   match(ConL);
4172   op_cost(40);
4173   format %{ %}
4174   interface(CONST_INTER);
4175 %}
4176 
4177 // Long Immediate: 16-bit
4178 operand immL16() %{
4179   predicate(Assembler::is_simm(n->get_long(), 16));
4180   match(ConL);
4181   op_cost(0);
4182   format %{ %}
4183   interface(CONST_INTER);
4184 %}
4185 
4186 // Long Immediate: 16-bit, 4-aligned
4187 operand immL16Alg4() %{
4188   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
4189   match(ConL);
4190   op_cost(0);
4191   format %{ %}
4192   interface(CONST_INTER);
4193 %}
4194 
4195 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
4196 operand immL32hi16() %{
4197   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
4198   match(ConL);
4199   op_cost(0);
4200   format %{ %}
4201   interface(CONST_INTER);
4202 %}
4203 
4204 // Long Immediate: 32-bit
4205 operand immL32() %{
4206   predicate(Assembler::is_simm(n->get_long(), 32));
4207   match(ConL);
4208   op_cost(0);
4209   format %{ %}
4210   interface(CONST_INTER);
4211 %}
4212 
4213 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
4214 operand immLhighest16() %{
4215   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
4216   match(ConL);
4217   op_cost(0);
4218   format %{ %}
4219   interface(CONST_INTER);
4220 %}
4221 
4222 operand immLnegpow2() %{
4223   predicate(is_power_of_2_long((jlong)-(n->get_long())));
4224   match(ConL);
4225   op_cost(0);
4226   format %{ %}
4227   interface(CONST_INTER);
4228 %}
4229 
4230 operand immLpow2minus1() %{
4231   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
4232             (n->get_long() != (jlong)0xffffffffffffffffL));
4233   match(ConL);
4234   op_cost(0);
4235   format %{ %}
4236   interface(CONST_INTER);
4237 %}
4238 
4239 // constant 'long 0'.
4240 operand immL_0() %{
4241   predicate(n->get_long() == 0L);
4242   match(ConL);
4243   op_cost(0);
4244   format %{ %}
4245   interface(CONST_INTER);
4246 %}
4247 
4248 // constat ' long -1'.
4249 operand immL_minus1() %{
4250   predicate(n->get_long() == -1L);
4251   match(ConL);
4252   op_cost(0);
4253   format %{ %}
4254   interface(CONST_INTER);
4255 %}
4256 
4257 // Long Immediate: low 32-bit mask
4258 operand immL_32bits() %{
4259   predicate(n->get_long() == 0xFFFFFFFFL);
4260   match(ConL);
4261   op_cost(0);
4262   format %{ %}
4263   interface(CONST_INTER);
4264 %}
4265 
4266 // Unsigned Long Immediate: 16-bit
4267 operand uimmL16() %{
4268   predicate(Assembler::is_uimm(n->get_long(), 16));
4269   match(ConL);
4270   op_cost(0);
4271   format %{ %}
4272   interface(CONST_INTER);
4273 %}
4274 
4275 // Float Immediate
4276 operand immF() %{
4277   match(ConF);
4278   op_cost(40);
4279   format %{ %}
4280   interface(CONST_INTER);
4281 %}
4282 
4283 // Float Immediate: +0.0f.
4284 operand immF_0() %{
4285   predicate(jint_cast(n->getf()) == 0);
4286   match(ConF);
4287 
4288   op_cost(0);
4289   format %{ %}
4290   interface(CONST_INTER);
4291 %}
4292 
4293 // Double Immediate
4294 operand immD() %{
4295   match(ConD);
4296   op_cost(40);
4297   format %{ %}
4298   interface(CONST_INTER);
4299 %}
4300 
4301 // Integer Register Operands
4302 // Integer Destination Register
4303 // See definition of reg_class bits32_reg_rw.
4304 operand iRegIdst() %{
4305   constraint(ALLOC_IN_RC(bits32_reg_rw));
4306   match(RegI);
4307   match(rscratch1RegI);
4308   match(rscratch2RegI);
4309   match(rarg1RegI);
4310   match(rarg2RegI);
4311   match(rarg3RegI);
4312   match(rarg4RegI);
4313   format %{ %}
4314   interface(REG_INTER);
4315 %}
4316 
4317 // Integer Source Register
4318 // See definition of reg_class bits32_reg_ro.
4319 operand iRegIsrc() %{
4320   constraint(ALLOC_IN_RC(bits32_reg_ro));
4321   match(RegI);
4322   match(rscratch1RegI);
4323   match(rscratch2RegI);
4324   match(rarg1RegI);
4325   match(rarg2RegI);
4326   match(rarg3RegI);
4327   match(rarg4RegI);
4328   format %{ %}
4329   interface(REG_INTER);
4330 %}
4331 
4332 operand rscratch1RegI() %{
4333   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
4334   match(iRegIdst);
4335   format %{ %}
4336   interface(REG_INTER);
4337 %}
4338 
4339 operand rscratch2RegI() %{
4340   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
4341   match(iRegIdst);
4342   format %{ %}
4343   interface(REG_INTER);
4344 %}
4345 
4346 operand rarg1RegI() %{
4347   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
4348   match(iRegIdst);
4349   format %{ %}
4350   interface(REG_INTER);
4351 %}
4352 
4353 operand rarg2RegI() %{
4354   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
4355   match(iRegIdst);
4356   format %{ %}
4357   interface(REG_INTER);
4358 %}
4359 
4360 operand rarg3RegI() %{
4361   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
4362   match(iRegIdst);
4363   format %{ %}
4364   interface(REG_INTER);
4365 %}
4366 
4367 operand rarg4RegI() %{
4368   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
4369   match(iRegIdst);
4370   format %{ %}
4371   interface(REG_INTER);
4372 %}
4373 
4374 operand rarg1RegL() %{
4375   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4376   match(iRegLdst);
4377   format %{ %}
4378   interface(REG_INTER);
4379 %}
4380 
4381 operand rarg2RegL() %{
4382   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4383   match(iRegLdst);
4384   format %{ %}
4385   interface(REG_INTER);
4386 %}
4387 
4388 operand rarg3RegL() %{
4389   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4390   match(iRegLdst);
4391   format %{ %}
4392   interface(REG_INTER);
4393 %}
4394 
4395 operand rarg4RegL() %{
4396   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4397   match(iRegLdst);
4398   format %{ %}
4399   interface(REG_INTER);
4400 %}
4401 
4402 // Pointer Destination Register
4403 // See definition of reg_class bits64_reg_rw.
4404 operand iRegPdst() %{
4405   constraint(ALLOC_IN_RC(bits64_reg_rw));
4406   match(RegP);
4407   match(rscratch1RegP);
4408   match(rscratch2RegP);
4409   match(rarg1RegP);
4410   match(rarg2RegP);
4411   match(rarg3RegP);
4412   match(rarg4RegP);
4413   format %{ %}
4414   interface(REG_INTER);
4415 %}
4416 
4417 // Pointer Destination Register
4418 // Operand not using r11 and r12 (killed in epilog).
4419 operand iRegPdstNoScratch() %{
4420   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
4421   match(RegP);
4422   match(rarg1RegP);
4423   match(rarg2RegP);
4424   match(rarg3RegP);
4425   match(rarg4RegP);
4426   format %{ %}
4427   interface(REG_INTER);
4428 %}
4429 
4430 // Pointer Source Register
4431 // See definition of reg_class bits64_reg_ro.
4432 operand iRegPsrc() %{
4433   constraint(ALLOC_IN_RC(bits64_reg_ro));
4434   match(RegP);
4435   match(iRegPdst);
4436   match(rscratch1RegP);
4437   match(rscratch2RegP);
4438   match(rarg1RegP);
4439   match(rarg2RegP);
4440   match(rarg3RegP);
4441   match(rarg4RegP);
4442   match(threadRegP);
4443   format %{ %}
4444   interface(REG_INTER);
4445 %}
4446 
4447 // Thread operand.
4448 operand threadRegP() %{
4449   constraint(ALLOC_IN_RC(thread_bits64_reg));
4450   match(iRegPdst);
4451   format %{ "R16" %}
4452   interface(REG_INTER);
4453 %}
4454 
4455 operand rscratch1RegP() %{
4456   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4457   match(iRegPdst);
4458   format %{ "R11" %}
4459   interface(REG_INTER);
4460 %}
4461 
4462 operand rscratch2RegP() %{
4463   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4464   match(iRegPdst);
4465   format %{ %}
4466   interface(REG_INTER);
4467 %}
4468 
4469 operand rarg1RegP() %{
4470   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
4471   match(iRegPdst);
4472   format %{ %}
4473   interface(REG_INTER);
4474 %}
4475 
4476 operand rarg2RegP() %{
4477   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
4478   match(iRegPdst);
4479   format %{ %}
4480   interface(REG_INTER);
4481 %}
4482 
4483 operand rarg3RegP() %{
4484   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
4485   match(iRegPdst);
4486   format %{ %}
4487   interface(REG_INTER);
4488 %}
4489 
4490 operand rarg4RegP() %{
4491   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
4492   match(iRegPdst);
4493   format %{ %}
4494   interface(REG_INTER);
4495 %}
4496 
4497 operand iRegNsrc() %{
4498   constraint(ALLOC_IN_RC(bits32_reg_ro));
4499   match(RegN);
4500   match(iRegNdst);
4501 
4502   format %{ %}
4503   interface(REG_INTER);
4504 %}
4505 
4506 operand iRegNdst() %{
4507   constraint(ALLOC_IN_RC(bits32_reg_rw));
4508   match(RegN);
4509 
4510   format %{ %}
4511   interface(REG_INTER);
4512 %}
4513 
4514 // Long Destination Register
4515 // See definition of reg_class bits64_reg_rw.
4516 operand iRegLdst() %{
4517   constraint(ALLOC_IN_RC(bits64_reg_rw));
4518   match(RegL);
4519   match(rscratch1RegL);
4520   match(rscratch2RegL);
4521   format %{ %}
4522   interface(REG_INTER);
4523 %}
4524 
4525 // Long Source Register
4526 // See definition of reg_class bits64_reg_ro.
4527 operand iRegLsrc() %{
4528   constraint(ALLOC_IN_RC(bits64_reg_ro));
4529   match(RegL);
4530   match(iRegLdst);
4531   match(rscratch1RegL);
4532   match(rscratch2RegL);
4533   format %{ %}
4534   interface(REG_INTER);
4535 %}
4536 
4537 // Special operand for ConvL2I.
4538 operand iRegL2Isrc(iRegLsrc reg) %{
4539   constraint(ALLOC_IN_RC(bits64_reg_ro));
4540   match(ConvL2I reg);
4541   format %{ "ConvL2I($reg)" %}
4542   interface(REG_INTER)
4543 %}
4544 
4545 operand rscratch1RegL() %{
4546   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
4547   match(RegL);
4548   format %{ %}
4549   interface(REG_INTER);
4550 %}
4551 
4552 operand rscratch2RegL() %{
4553   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
4554   match(RegL);
4555   format %{ %}
4556   interface(REG_INTER);
4557 %}
4558 
4559 // Condition Code Flag Registers
4560 operand flagsReg() %{
4561   constraint(ALLOC_IN_RC(int_flags));
4562   match(RegFlags);
4563   format %{ %}
4564   interface(REG_INTER);
4565 %}
4566 
4567 operand flagsRegSrc() %{
4568   constraint(ALLOC_IN_RC(int_flags_ro));
4569   match(RegFlags);
4570   match(flagsReg);
4571   match(flagsRegCR0);
4572   format %{ %}
4573   interface(REG_INTER);
4574 %}
4575 
4576 // Condition Code Flag Register CR0
4577 operand flagsRegCR0() %{
4578   constraint(ALLOC_IN_RC(int_flags_CR0));
4579   match(RegFlags);
4580   format %{ "CR0" %}
4581   interface(REG_INTER);
4582 %}
4583 
4584 operand flagsRegCR1() %{
4585   constraint(ALLOC_IN_RC(int_flags_CR1));
4586   match(RegFlags);
4587   format %{ "CR1" %}
4588   interface(REG_INTER);
4589 %}
4590 
4591 operand flagsRegCR6() %{
4592   constraint(ALLOC_IN_RC(int_flags_CR6));
4593   match(RegFlags);
4594   format %{ "CR6" %}
4595   interface(REG_INTER);
4596 %}
4597 
4598 operand regCTR() %{
4599   constraint(ALLOC_IN_RC(ctr_reg));
4600   // RegFlags should work. Introducing a RegSpecial type would cause a
4601   // lot of changes.
4602   match(RegFlags);
4603   format %{"SR_CTR" %}
4604   interface(REG_INTER);
4605 %}
4606 
4607 operand regD() %{
4608   constraint(ALLOC_IN_RC(dbl_reg));
4609   match(RegD);
4610   format %{ %}
4611   interface(REG_INTER);
4612 %}
4613 
4614 operand regF() %{
4615   constraint(ALLOC_IN_RC(flt_reg));
4616   match(RegF);
4617   format %{ %}
4618   interface(REG_INTER);
4619 %}
4620 
4621 // Special Registers
4622 
4623 // Method Register
4624 operand inline_cache_regP(iRegPdst reg) %{
4625   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
4626   match(reg);
4627   format %{ %}
4628   interface(REG_INTER);
4629 %}
4630 
4631 operand compiler_method_oop_regP(iRegPdst reg) %{
4632   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
4633   match(reg);
4634   format %{ %}
4635   interface(REG_INTER);
4636 %}
4637 
4638 operand interpreter_method_oop_regP(iRegPdst reg) %{
4639   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
4640   match(reg);
4641   format %{ %}
4642   interface(REG_INTER);
4643 %}
4644 
4645 // Operands to remove register moves in unscaled mode.
4646 // Match read/write registers with an EncodeP node if neither shift nor add are required.
4647 operand iRegP2N(iRegPsrc reg) %{
4648   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
4649   constraint(ALLOC_IN_RC(bits64_reg_ro));
4650   match(EncodeP reg);
4651   format %{ "$reg" %}
4652   interface(REG_INTER)
4653 %}
4654 
4655 operand iRegN2P(iRegNsrc reg) %{
4656   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4657   constraint(ALLOC_IN_RC(bits32_reg_ro));
4658   match(DecodeN reg);
4659   format %{ "$reg" %}
4660   interface(REG_INTER)
4661 %}
4662 
4663 operand iRegN2P_klass(iRegNsrc reg) %{
4664   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
4665   constraint(ALLOC_IN_RC(bits32_reg_ro));
4666   match(DecodeNKlass reg);
4667   format %{ "$reg" %}
4668   interface(REG_INTER)
4669 %}
4670 
4671 //----------Complex Operands---------------------------------------------------
4672 // Indirect Memory Reference
4673 operand indirect(iRegPsrc reg) %{
4674   constraint(ALLOC_IN_RC(bits64_reg_ro));
4675   match(reg);
4676   op_cost(100);
4677   format %{ "[$reg]" %}
4678   interface(MEMORY_INTER) %{
4679     base($reg);
4680     index(0x0);
4681     scale(0x0);
4682     disp(0x0);
4683   %}
4684 %}
4685 
4686 // Indirect with Offset
4687 operand indOffset16(iRegPsrc reg, immL16 offset) %{
4688   constraint(ALLOC_IN_RC(bits64_reg_ro));
4689   match(AddP reg offset);
4690   op_cost(100);
4691   format %{ "[$reg + $offset]" %}
4692   interface(MEMORY_INTER) %{
4693     base($reg);
4694     index(0x0);
4695     scale(0x0);
4696     disp($offset);
4697   %}
4698 %}
4699 
4700 // Indirect with 4-aligned Offset
4701 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
4702   constraint(ALLOC_IN_RC(bits64_reg_ro));
4703   match(AddP reg offset);
4704   op_cost(100);
4705   format %{ "[$reg + $offset]" %}
4706   interface(MEMORY_INTER) %{
4707     base($reg);
4708     index(0x0);
4709     scale(0x0);
4710     disp($offset);
4711   %}
4712 %}
4713 
4714 //----------Complex Operands for Compressed OOPs-------------------------------
4715 // Compressed OOPs with narrow_oop_shift == 0.
4716 
4717 // Indirect Memory Reference, compressed OOP
4718 operand indirectNarrow(iRegNsrc reg) %{
4719   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4720   constraint(ALLOC_IN_RC(bits64_reg_ro));
4721   match(DecodeN reg);
4722   op_cost(100);
4723   format %{ "[$reg]" %}
4724   interface(MEMORY_INTER) %{
4725     base($reg);
4726     index(0x0);
4727     scale(0x0);
4728     disp(0x0);
4729   %}
4730 %}
4731 
4732 operand indirectNarrow_klass(iRegNsrc reg) %{
4733   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
4734   constraint(ALLOC_IN_RC(bits64_reg_ro));
4735   match(DecodeNKlass reg);
4736   op_cost(100);
4737   format %{ "[$reg]" %}
4738   interface(MEMORY_INTER) %{
4739     base($reg);
4740     index(0x0);
4741     scale(0x0);
4742     disp(0x0);
4743   %}
4744 %}
4745 
4746 // Indirect with Offset, compressed OOP
4747 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
4748   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4749   constraint(ALLOC_IN_RC(bits64_reg_ro));
4750   match(AddP (DecodeN reg) offset);
4751   op_cost(100);
4752   format %{ "[$reg + $offset]" %}
4753   interface(MEMORY_INTER) %{
4754     base($reg);
4755     index(0x0);
4756     scale(0x0);
4757     disp($offset);
4758   %}
4759 %}
4760 
4761 operand indOffset16Narrow_klass(iRegNsrc reg, immL16 offset) %{
4762   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
4763   constraint(ALLOC_IN_RC(bits64_reg_ro));
4764   match(AddP (DecodeNKlass reg) offset);
4765   op_cost(100);
4766   format %{ "[$reg + $offset]" %}
4767   interface(MEMORY_INTER) %{
4768     base($reg);
4769     index(0x0);
4770     scale(0x0);
4771     disp($offset);
4772   %}
4773 %}
4774 
4775 // Indirect with 4-aligned Offset, compressed OOP
4776 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
4777   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
4778   constraint(ALLOC_IN_RC(bits64_reg_ro));
4779   match(AddP (DecodeN reg) offset);
4780   op_cost(100);
4781   format %{ "[$reg + $offset]" %}
4782   interface(MEMORY_INTER) %{
4783     base($reg);
4784     index(0x0);
4785     scale(0x0);
4786     disp($offset);
4787   %}
4788 %}
4789 
4790 operand indOffset16NarrowAlg4_klass(iRegNsrc reg, immL16Alg4 offset) %{
4791   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0);
4792   constraint(ALLOC_IN_RC(bits64_reg_ro));
4793   match(AddP (DecodeNKlass reg) offset);
4794   op_cost(100);
4795   format %{ "[$reg + $offset]" %}
4796   interface(MEMORY_INTER) %{
4797     base($reg);
4798     index(0x0);
4799     scale(0x0);
4800     disp($offset);
4801   %}
4802 %}
4803 
4804 //----------Special Memory Operands--------------------------------------------
4805 // Stack Slot Operand
4806 //
4807 // This operand is used for loading and storing temporary values on
4808 // the stack where a match requires a value to flow through memory.
4809 operand stackSlotI(sRegI reg) %{
4810   constraint(ALLOC_IN_RC(stack_slots));
4811   op_cost(100);
4812   //match(RegI);
4813   format %{ "[sp+$reg]" %}
4814   interface(MEMORY_INTER) %{
4815     base(0x1);   // R1_SP
4816     index(0x0);
4817     scale(0x0);
4818     disp($reg);  // Stack Offset
4819   %}
4820 %}
4821 
4822 operand stackSlotL(sRegL reg) %{
4823   constraint(ALLOC_IN_RC(stack_slots));
4824   op_cost(100);
4825   //match(RegL);
4826   format %{ "[sp+$reg]" %}
4827   interface(MEMORY_INTER) %{
4828     base(0x1);   // R1_SP
4829     index(0x0);
4830     scale(0x0);
4831     disp($reg);  // Stack Offset
4832   %}
4833 %}
4834 
4835 operand stackSlotP(sRegP reg) %{
4836   constraint(ALLOC_IN_RC(stack_slots));
4837   op_cost(100);
4838   //match(RegP);
4839   format %{ "[sp+$reg]" %}
4840   interface(MEMORY_INTER) %{
4841     base(0x1);   // R1_SP
4842     index(0x0);
4843     scale(0x0);
4844     disp($reg);  // Stack Offset
4845   %}
4846 %}
4847 
4848 operand stackSlotF(sRegF reg) %{
4849   constraint(ALLOC_IN_RC(stack_slots));
4850   op_cost(100);
4851   //match(RegF);
4852   format %{ "[sp+$reg]" %}
4853   interface(MEMORY_INTER) %{
4854     base(0x1);   // R1_SP
4855     index(0x0);
4856     scale(0x0);
4857     disp($reg);  // Stack Offset
4858   %}
4859 %}
4860 
4861 operand stackSlotD(sRegD reg) %{
4862   constraint(ALLOC_IN_RC(stack_slots));
4863   op_cost(100);
4864   //match(RegD);
4865   format %{ "[sp+$reg]" %}
4866   interface(MEMORY_INTER) %{
4867     base(0x1);   // R1_SP
4868     index(0x0);
4869     scale(0x0);
4870     disp($reg);  // Stack Offset
4871   %}
4872 %}
4873 
4874 // Operands for expressing Control Flow
4875 // NOTE: Label is a predefined operand which should not be redefined in
4876 //       the AD file. It is generically handled within the ADLC.
4877 
4878 //----------Conditional Branch Operands----------------------------------------
4879 // Comparison Op
4880 //
4881 // This is the operation of the comparison, and is limited to the
4882 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
4883 // (!=).
4884 //
4885 // Other attributes of the comparison, such as unsignedness, are specified
4886 // by the comparison instruction that sets a condition code flags register.
4887 // That result is represented by a flags operand whose subtype is appropriate
4888 // to the unsignedness (etc.) of the comparison.
4889 //
4890 // Later, the instruction which matches both the Comparison Op (a Bool) and
4891 // the flags (produced by the Cmp) specifies the coding of the comparison op
4892 // by matching a specific subtype of Bool operand below.
4893 
4894 // When used for floating point comparisons: unordered same as less.
4895 operand cmpOp() %{
4896   match(Bool);
4897   format %{ "" %}
4898   interface(COND_INTER) %{
4899                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
4900                            //           BO          &  BI
4901     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
4902     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
4903     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
4904     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
4905     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
4906     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
4907     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
4908     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
4909   %}
4910 %}
4911 
4912 //----------OPERAND CLASSES----------------------------------------------------
4913 // Operand Classes are groups of operands that are used to simplify
4914 // instruction definitions by not requiring the AD writer to specify
4915 // seperate instructions for every form of operand when the
4916 // instruction accepts multiple operand types with the same basic
4917 // encoding and format. The classic case of this is memory operands.
4918 // Indirect is not included since its use is limited to Compare & Swap.
4919 
4920 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indirectNarrow_klass, indOffset16Narrow, indOffset16Narrow_klass);
4921 // Memory operand where offsets are 4-aligned. Required for ld, std.
4922 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4, indOffset16NarrowAlg4_klass);
4923 opclass indirectMemory(indirect, indirectNarrow);
4924 
4925 // Special opclass for I and ConvL2I.
4926 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
4927 
4928 // Operand classes to match encode and decode. iRegN_P2N is only used
4929 // for storeN. I have never seen an encode node elsewhere.
4930 opclass iRegN_P2N(iRegNsrc, iRegP2N);
4931 opclass iRegP_N2P(iRegPsrc, iRegN2P, iRegN2P_klass);
4932 
4933 //----------PIPELINE-----------------------------------------------------------
4934 
4935 pipeline %{
4936 
4937 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
4938 // J. Res. & Dev., No. 1, Jan. 2002.
4939 
4940 //----------ATTRIBUTES---------------------------------------------------------
4941 attributes %{
4942 
4943   // Power4 instructions are of fixed length.
4944   fixed_size_instructions;
4945 
4946   // TODO: if `bundle' means number of instructions fetched
4947   // per cycle, this is 8. If `bundle' means Power4 `group', that is
4948   // max instructions issued per cycle, this is 5.
4949   max_instructions_per_bundle = 8;
4950 
4951   // A Power4 instruction is 4 bytes long.
4952   instruction_unit_size = 4;
4953 
4954   // The Power4 processor fetches 64 bytes...
4955   instruction_fetch_unit_size = 64;
4956 
4957   // ...in one line
4958   instruction_fetch_units = 1
4959 
4960   // Unused, list one so that array generated by adlc is not empty.
4961   // Aix compiler chokes if _nop_count = 0.
4962   nops(fxNop);
4963 %}
4964 
4965 //----------RESOURCES----------------------------------------------------------
4966 // Resources are the functional units available to the machine
4967 resources(
4968    PPC_BR,         // branch unit
4969    PPC_CR,         // condition unit
4970    PPC_FX1,        // integer arithmetic unit 1
4971    PPC_FX2,        // integer arithmetic unit 2
4972    PPC_LDST1,      // load/store unit 1
4973    PPC_LDST2,      // load/store unit 2
4974    PPC_FP1,        // float arithmetic unit 1
4975    PPC_FP2,        // float arithmetic unit 2
4976    PPC_LDST = PPC_LDST1 | PPC_LDST2,
4977    PPC_FX = PPC_FX1 | PPC_FX2,
4978    PPC_FP = PPC_FP1 | PPC_FP2
4979  );
4980 
4981 //----------PIPELINE DESCRIPTION-----------------------------------------------
4982 // Pipeline Description specifies the stages in the machine's pipeline
4983 pipe_desc(
4984    // Power4 longest pipeline path
4985    PPC_IF,   // instruction fetch
4986    PPC_IC,
4987    //PPC_BP, // branch prediction
4988    PPC_D0,   // decode
4989    PPC_D1,   // decode
4990    PPC_D2,   // decode
4991    PPC_D3,   // decode
4992    PPC_Xfer1,
4993    PPC_GD,   // group definition
4994    PPC_MP,   // map
4995    PPC_ISS,  // issue
4996    PPC_RF,   // resource fetch
4997    PPC_EX1,  // execute (all units)
4998    PPC_EX2,  // execute (FP, LDST)
4999    PPC_EX3,  // execute (FP, LDST)
5000    PPC_EX4,  // execute (FP)
5001    PPC_EX5,  // execute (FP)
5002    PPC_EX6,  // execute (FP)
5003    PPC_WB,   // write back
5004    PPC_Xfer2,
5005    PPC_CP
5006  );
5007 
5008 //----------PIPELINE CLASSES---------------------------------------------------
5009 // Pipeline Classes describe the stages in which input and output are
5010 // referenced by the hardware pipeline.
5011 
5012 // Simple pipeline classes.
5013 
5014 // Default pipeline class.
5015 pipe_class pipe_class_default() %{
5016   single_instruction;
5017   fixed_latency(2);
5018 %}
5019 
5020 // Pipeline class for empty instructions.
5021 pipe_class pipe_class_empty() %{
5022   single_instruction;
5023   fixed_latency(0);
5024 %}
5025 
5026 // Pipeline class for compares.
5027 pipe_class pipe_class_compare() %{
5028   single_instruction;
5029   fixed_latency(16);
5030 %}
5031 
5032 // Pipeline class for traps.
5033 pipe_class pipe_class_trap() %{
5034   single_instruction;
5035   fixed_latency(100);
5036 %}
5037 
5038 // Pipeline class for memory operations.
5039 pipe_class pipe_class_memory() %{
5040   single_instruction;
5041   fixed_latency(16);
5042 %}
5043 
5044 // Pipeline class for call.
5045 pipe_class pipe_class_call() %{
5046   single_instruction;
5047   fixed_latency(100);
5048 %}
5049 
5050 // Define the class for the Nop node.
5051 define %{
5052    MachNop = pipe_class_default;
5053 %}
5054 
5055 %}
5056 
5057 //----------INSTRUCTIONS-------------------------------------------------------
5058 
5059 // Naming of instructions:
5060 //   opA_operB / opA_operB_operC:
5061 //     Operation 'op' with one or two source operands 'oper'. Result
5062 //     type is A, source operand types are B and C.
5063 //     Iff A == B == C, B and C are left out.
5064 //
5065 // The instructions are ordered according to the following scheme:
5066 //  - loads
5067 //  - load constants
5068 //  - prefetch
5069 //  - store
5070 //  - encode/decode
5071 //  - membar
5072 //  - conditional moves
5073 //  - compare & swap
5074 //  - arithmetic and logic operations
5075 //    * int: Add, Sub, Mul, Div, Mod
5076 //    * int: lShift, arShift, urShift, rot
5077 //    * float: Add, Sub, Mul, Div
5078 //    * and, or, xor ...
5079 //  - register moves: float <-> int, reg <-> stack, repl
5080 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
5081 //  - conv (low level type cast requiring bit changes (sign extend etc)
5082 //  - compares, range & zero checks.
5083 //  - branches
5084 //  - complex operations, intrinsics, min, max, replicate
5085 //  - lock
5086 //  - Calls
5087 //
5088 // If there are similar instructions with different types they are sorted:
5089 // int before float
5090 // small before big
5091 // signed before unsigned
5092 // e.g., loadS before loadUS before loadI before loadF.
5093 
5094 
5095 //----------Load/Store Instructions--------------------------------------------
5096 
5097 //----------Load Instructions--------------------------------------------------
5098 
5099 // Converts byte to int.
5100 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
5101 // reuses the 'amount' operand, but adlc expects that operand specification
5102 // and operands in match rule are equivalent.
5103 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
5104   effect(DEF dst, USE src);
5105   format %{ "EXTSB   $dst, $src \t// byte->int" %}
5106   size(4);
5107   ins_encode %{
5108     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
5109     __ extsb($dst$$Register, $src$$Register);
5110   %}
5111   ins_pipe(pipe_class_default);
5112 %}
5113 
5114 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
5115   // match-rule, false predicate
5116   match(Set dst (LoadB mem));
5117   predicate(false);
5118 
5119   format %{ "LBZ     $dst, $mem" %}
5120   size(4);
5121   ins_encode( enc_lbz(dst, mem) );
5122   ins_pipe(pipe_class_memory);
5123 %}
5124 
5125 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
5126   // match-rule, false predicate
5127   match(Set dst (LoadB mem));
5128   predicate(false);
5129 
5130   format %{ "LBZ     $dst, $mem\n\t"
5131             "TWI     $dst\n\t"
5132             "ISYNC" %}
5133   size(12);
5134   ins_encode( enc_lbz_ac(dst, mem) );
5135   ins_pipe(pipe_class_memory);
5136 %}
5137 
5138 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5139 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
5140   match(Set dst (LoadB mem));
5141   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5142   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5143   expand %{
5144     iRegIdst tmp;
5145     loadUB_indirect(tmp, mem);
5146     convB2I_reg_2(dst, tmp);
5147   %}
5148 %}
5149 
5150 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
5151   match(Set dst (LoadB mem));
5152   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5153   expand %{
5154     iRegIdst tmp;
5155     loadUB_indirect_ac(tmp, mem);
5156     convB2I_reg_2(dst, tmp);
5157   %}
5158 %}
5159 
5160 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
5161   // match-rule, false predicate
5162   match(Set dst (LoadB mem));
5163   predicate(false);
5164 
5165   format %{ "LBZ     $dst, $mem" %}
5166   size(4);
5167   ins_encode( enc_lbz(dst, mem) );
5168   ins_pipe(pipe_class_memory);
5169 %}
5170 
5171 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
5172   // match-rule, false predicate
5173   match(Set dst (LoadB mem));
5174   predicate(false);
5175 
5176   format %{ "LBZ     $dst, $mem\n\t"
5177             "TWI     $dst\n\t"
5178             "ISYNC" %}
5179   size(12);
5180   ins_encode( enc_lbz_ac(dst, mem) );
5181   ins_pipe(pipe_class_memory);
5182 %}
5183 
5184 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
5185 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
5186   match(Set dst (LoadB mem));
5187   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5188   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5189 
5190   expand %{
5191     iRegIdst tmp;
5192     loadUB_indOffset16(tmp, mem);
5193     convB2I_reg_2(dst, tmp);
5194   %}
5195 %}
5196 
5197 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
5198   match(Set dst (LoadB mem));
5199   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
5200 
5201   expand %{
5202     iRegIdst tmp;
5203     loadUB_indOffset16_ac(tmp, mem);
5204     convB2I_reg_2(dst, tmp);
5205   %}
5206 %}
5207 
5208 // Load Unsigned Byte (8bit UNsigned) into an int reg.
5209 instruct loadUB(iRegIdst dst, memory mem) %{
5210   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5211   match(Set dst (LoadUB mem));
5212   ins_cost(MEMORY_REF_COST);
5213 
5214   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
5215   size(4);
5216   ins_encode( enc_lbz(dst, mem) );
5217   ins_pipe(pipe_class_memory);
5218 %}
5219 
5220 // Load  Unsigned Byte (8bit UNsigned) acquire.
5221 instruct loadUB_ac(iRegIdst dst, memory mem) %{
5222   match(Set dst (LoadUB mem));
5223   ins_cost(3*MEMORY_REF_COST);
5224 
5225   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
5226             "TWI     $dst\n\t"
5227             "ISYNC" %}
5228   size(12);
5229   ins_encode( enc_lbz_ac(dst, mem) );
5230   ins_pipe(pipe_class_memory);
5231 %}
5232 
5233 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
5234 instruct loadUB2L(iRegLdst dst, memory mem) %{
5235   match(Set dst (ConvI2L (LoadUB mem)));
5236   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5237   ins_cost(MEMORY_REF_COST);
5238 
5239   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
5240   size(4);
5241   ins_encode( enc_lbz(dst, mem) );
5242   ins_pipe(pipe_class_memory);
5243 %}
5244 
5245 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
5246   match(Set dst (ConvI2L (LoadUB mem)));
5247   ins_cost(3*MEMORY_REF_COST);
5248 
5249   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
5250             "TWI     $dst\n\t"
5251             "ISYNC" %}
5252   size(12);
5253   ins_encode( enc_lbz_ac(dst, mem) );
5254   ins_pipe(pipe_class_memory);
5255 %}
5256 
5257 // Load Short (16bit signed)
5258 instruct loadS(iRegIdst dst, memory mem) %{
5259   match(Set dst (LoadS mem));
5260   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5261   ins_cost(MEMORY_REF_COST);
5262 
5263   format %{ "LHA     $dst, $mem" %}
5264   size(4);
5265   ins_encode %{
5266     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
5267     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5268     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5269   %}
5270   ins_pipe(pipe_class_memory);
5271 %}
5272 
5273 // Load Short (16bit signed) acquire.
5274 instruct loadS_ac(iRegIdst dst, memory mem) %{
5275   match(Set dst (LoadS mem));
5276   ins_cost(3*MEMORY_REF_COST);
5277 
5278   format %{ "LHA     $dst, $mem\t acquire\n\t"
5279             "TWI     $dst\n\t"
5280             "ISYNC" %}
5281   size(12);
5282   ins_encode %{
5283     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5284     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5285     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
5286     __ twi_0($dst$$Register);
5287     __ isync();
5288   %}
5289   ins_pipe(pipe_class_memory);
5290 %}
5291 
5292 // Load Char (16bit unsigned)
5293 instruct loadUS(iRegIdst dst, memory mem) %{
5294   match(Set dst (LoadUS mem));
5295   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5296   ins_cost(MEMORY_REF_COST);
5297 
5298   format %{ "LHZ     $dst, $mem" %}
5299   size(4);
5300   ins_encode( enc_lhz(dst, mem) );
5301   ins_pipe(pipe_class_memory);
5302 %}
5303 
5304 // Load Char (16bit unsigned) acquire.
5305 instruct loadUS_ac(iRegIdst dst, memory mem) %{
5306   match(Set dst (LoadUS mem));
5307   ins_cost(3*MEMORY_REF_COST);
5308 
5309   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
5310             "TWI     $dst\n\t"
5311             "ISYNC" %}
5312   size(12);
5313   ins_encode( enc_lhz_ac(dst, mem) );
5314   ins_pipe(pipe_class_memory);
5315 %}
5316 
5317 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
5318 instruct loadUS2L(iRegLdst dst, memory mem) %{
5319   match(Set dst (ConvI2L (LoadUS mem)));
5320   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
5321   ins_cost(MEMORY_REF_COST);
5322 
5323   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
5324   size(4);
5325   ins_encode( enc_lhz(dst, mem) );
5326   ins_pipe(pipe_class_memory);
5327 %}
5328 
5329 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
5330 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
5331   match(Set dst (ConvI2L (LoadUS mem)));
5332   ins_cost(3*MEMORY_REF_COST);
5333 
5334   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
5335             "TWI     $dst\n\t"
5336             "ISYNC" %}
5337   size(12);
5338   ins_encode( enc_lhz_ac(dst, mem) );
5339   ins_pipe(pipe_class_memory);
5340 %}
5341 
5342 // Load Integer.
5343 instruct loadI(iRegIdst dst, memory mem) %{
5344   match(Set dst (LoadI mem));
5345   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5346   ins_cost(MEMORY_REF_COST);
5347 
5348   format %{ "LWZ     $dst, $mem" %}
5349   size(4);
5350   ins_encode( enc_lwz(dst, mem) );
5351   ins_pipe(pipe_class_memory);
5352 %}
5353 
5354 // Load Integer acquire.
5355 instruct loadI_ac(iRegIdst dst, memory mem) %{
5356   match(Set dst (LoadI mem));
5357   ins_cost(3*MEMORY_REF_COST);
5358 
5359   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
5360             "TWI     $dst\n\t"
5361             "ISYNC" %}
5362   size(12);
5363   ins_encode( enc_lwz_ac(dst, mem) );
5364   ins_pipe(pipe_class_memory);
5365 %}
5366 
5367 // Match loading integer and casting it to unsigned int in
5368 // long register.
5369 // LoadI + ConvI2L + AndL 0xffffffff.
5370 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
5371   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5372   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
5373   ins_cost(MEMORY_REF_COST);
5374 
5375   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
5376   size(4);
5377   ins_encode( enc_lwz(dst, mem) );
5378   ins_pipe(pipe_class_memory);
5379 %}
5380 
5381 // Match loading integer and casting it to long.
5382 instruct loadI2L(iRegLdst dst, memory mem) %{
5383   match(Set dst (ConvI2L (LoadI mem)));
5384   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5385   ins_cost(MEMORY_REF_COST);
5386 
5387   format %{ "LWA     $dst, $mem \t// loadI2L" %}
5388   size(4);
5389   ins_encode %{
5390     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5391     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5392     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5393   %}
5394   ins_pipe(pipe_class_memory);
5395 %}
5396 
5397 // Match loading integer and casting it to long - acquire.
5398 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
5399   match(Set dst (ConvI2L (LoadI mem)));
5400   ins_cost(3*MEMORY_REF_COST);
5401 
5402   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
5403             "TWI     $dst\n\t"
5404             "ISYNC" %}
5405   size(12);
5406   ins_encode %{
5407     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
5408     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5409     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
5410     __ twi_0($dst$$Register);
5411     __ isync();
5412   %}
5413   ins_pipe(pipe_class_memory);
5414 %}
5415 
5416 // Load Long - aligned
5417 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
5418   match(Set dst (LoadL mem));
5419   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5420   ins_cost(MEMORY_REF_COST);
5421 
5422   format %{ "LD      $dst, $mem \t// long" %}
5423   size(4);
5424   ins_encode( enc_ld(dst, mem) );
5425   ins_pipe(pipe_class_memory);
5426 %}
5427 
5428 // Load Long - aligned acquire.
5429 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
5430   match(Set dst (LoadL mem));
5431   ins_cost(3*MEMORY_REF_COST);
5432 
5433   format %{ "LD      $dst, $mem \t// long acquire\n\t"
5434             "TWI     $dst\n\t"
5435             "ISYNC" %}
5436   size(12);
5437   ins_encode( enc_ld_ac(dst, mem) );
5438   ins_pipe(pipe_class_memory);
5439 %}
5440 
5441 // Load Long - UNaligned
5442 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
5443   match(Set dst (LoadL_unaligned mem));
5444   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5445   ins_cost(MEMORY_REF_COST);
5446 
5447   format %{ "LD      $dst, $mem \t// unaligned long" %}
5448   size(4);
5449   ins_encode( enc_ld(dst, mem) );
5450   ins_pipe(pipe_class_memory);
5451 %}
5452 
5453 // Load nodes for superwords
5454 
5455 // Load Aligned Packed Byte
5456 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
5457   predicate(n->as_LoadVector()->memory_size() == 8);
5458   match(Set dst (LoadVector mem));
5459   ins_cost(MEMORY_REF_COST);
5460 
5461   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
5462   size(4);
5463   ins_encode( enc_ld(dst, mem) );
5464   ins_pipe(pipe_class_memory);
5465 %}
5466 
5467 // Load Range, range = array length (=jint)
5468 instruct loadRange(iRegIdst dst, memory mem) %{
5469   match(Set dst (LoadRange mem));
5470   ins_cost(MEMORY_REF_COST);
5471 
5472   format %{ "LWZ     $dst, $mem \t// range" %}
5473   size(4);
5474   ins_encode( enc_lwz(dst, mem) );
5475   ins_pipe(pipe_class_memory);
5476 %}
5477 
5478 // Load Compressed Pointer
5479 instruct loadN(iRegNdst dst, memory mem) %{
5480   match(Set dst (LoadN mem));
5481   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5482   ins_cost(MEMORY_REF_COST);
5483 
5484   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
5485   size(4);
5486   ins_encode( enc_lwz(dst, mem) );
5487   ins_pipe(pipe_class_memory);
5488 %}
5489 
5490 // Load Compressed Pointer acquire.
5491 instruct loadN_ac(iRegNdst dst, memory mem) %{
5492   match(Set dst (LoadN mem));
5493   ins_cost(3*MEMORY_REF_COST);
5494 
5495   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
5496             "TWI     $dst\n\t"
5497             "ISYNC" %}
5498   size(12);
5499   ins_encode( enc_lwz_ac(dst, mem) );
5500   ins_pipe(pipe_class_memory);
5501 %}
5502 
5503 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
5504 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
5505   match(Set dst (DecodeN (LoadN mem)));
5506   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
5507   ins_cost(MEMORY_REF_COST);
5508 
5509   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
5510   size(4);
5511   ins_encode( enc_lwz(dst, mem) );
5512   ins_pipe(pipe_class_memory);
5513 %}
5514 
5515 instruct loadN2P_klass_unscaled(iRegPdst dst, memory mem) %{
5516   match(Set dst (DecodeNKlass (LoadNKlass mem)));
5517   predicate(Universe::narrow_klass_base() == NULL && Universe::narrow_klass_shift() == 0 &&
5518             _kids[0]->_leaf->as_Load()->is_unordered());
5519   ins_cost(MEMORY_REF_COST);
5520 
5521   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
5522   size(4);
5523   ins_encode( enc_lwz(dst, mem) );
5524   ins_pipe(pipe_class_memory);
5525 %}
5526 
5527 // Load Pointer
5528 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
5529   match(Set dst (LoadP mem));
5530   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5531   ins_cost(MEMORY_REF_COST);
5532 
5533   format %{ "LD      $dst, $mem \t// ptr" %}
5534   size(4);
5535   ins_encode( enc_ld(dst, mem) );
5536   ins_pipe(pipe_class_memory);
5537 %}
5538 
5539 // Load Pointer acquire.
5540 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
5541   match(Set dst (LoadP mem));
5542   ins_cost(3*MEMORY_REF_COST);
5543 
5544   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
5545             "TWI     $dst\n\t"
5546             "ISYNC" %}
5547   size(12);
5548   ins_encode( enc_ld_ac(dst, mem) );
5549   ins_pipe(pipe_class_memory);
5550 %}
5551 
5552 // LoadP + CastP2L
5553 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
5554   match(Set dst (CastP2X (LoadP mem)));
5555   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
5556   ins_cost(MEMORY_REF_COST);
5557 
5558   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
5559   size(4);
5560   ins_encode( enc_ld(dst, mem) );
5561   ins_pipe(pipe_class_memory);
5562 %}
5563 
5564 // Load compressed klass pointer.
5565 instruct loadNKlass(iRegNdst dst, memory mem) %{
5566   match(Set dst (LoadNKlass mem));
5567   ins_cost(MEMORY_REF_COST);
5568 
5569   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
5570   size(4);
5571   ins_encode( enc_lwz(dst, mem) );
5572   ins_pipe(pipe_class_memory);
5573 %}
5574 
5575 // Load Klass Pointer
5576 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
5577   match(Set dst (LoadKlass mem));
5578   ins_cost(MEMORY_REF_COST);
5579 
5580   format %{ "LD      $dst, $mem \t// klass ptr" %}
5581   size(4);
5582   ins_encode( enc_ld(dst, mem) );
5583   ins_pipe(pipe_class_memory);
5584 %}
5585 
5586 // Load Float
5587 instruct loadF(regF dst, memory mem) %{
5588   match(Set dst (LoadF mem));
5589   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5590   ins_cost(MEMORY_REF_COST);
5591 
5592   format %{ "LFS     $dst, $mem" %}
5593   size(4);
5594   ins_encode %{
5595     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
5596     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5597     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5598   %}
5599   ins_pipe(pipe_class_memory);
5600 %}
5601 
5602 // Load Float acquire.
5603 instruct loadF_ac(regF dst, memory mem, flagsRegCR0 cr0) %{
5604   match(Set dst (LoadF mem));
5605   effect(TEMP cr0);
5606   ins_cost(3*MEMORY_REF_COST);
5607 
5608   format %{ "LFS     $dst, $mem \t// acquire\n\t"
5609             "FCMPU   cr0, $dst, $dst\n\t"
5610             "BNE     cr0, next\n"
5611             "next:\n\t"
5612             "ISYNC" %}
5613   size(16);
5614   ins_encode %{
5615     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5616     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5617     Label next;
5618     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5619     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5620     __ bne(CCR0, next);
5621     __ bind(next);
5622     __ isync();
5623   %}
5624   ins_pipe(pipe_class_memory);
5625 %}
5626 
5627 // Load Double - aligned
5628 instruct loadD(regD dst, memory mem) %{
5629   match(Set dst (LoadD mem));
5630   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
5631   ins_cost(MEMORY_REF_COST);
5632 
5633   format %{ "LFD     $dst, $mem" %}
5634   size(4);
5635   ins_encode( enc_lfd(dst, mem) );
5636   ins_pipe(pipe_class_memory);
5637 %}
5638 
5639 // Load Double - aligned acquire.
5640 instruct loadD_ac(regD dst, memory mem, flagsRegCR0 cr0) %{
5641   match(Set dst (LoadD mem));
5642   effect(TEMP cr0);
5643   ins_cost(3*MEMORY_REF_COST);
5644 
5645   format %{ "LFD     $dst, $mem \t// acquire\n\t"
5646             "FCMPU   cr0, $dst, $dst\n\t"
5647             "BNE     cr0, next\n"
5648             "next:\n\t"
5649             "ISYNC" %}
5650   size(16);
5651   ins_encode %{
5652     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5653     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
5654     Label next;
5655     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
5656     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
5657     __ bne(CCR0, next);
5658     __ bind(next);
5659     __ isync();
5660   %}
5661   ins_pipe(pipe_class_memory);
5662 %}
5663 
5664 // Load Double - UNaligned
5665 instruct loadD_unaligned(regD dst, memory mem) %{
5666   match(Set dst (LoadD_unaligned mem));
5667   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
5668   ins_cost(MEMORY_REF_COST);
5669 
5670   format %{ "LFD     $dst, $mem" %}
5671   size(4);
5672   ins_encode( enc_lfd(dst, mem) );
5673   ins_pipe(pipe_class_memory);
5674 %}
5675 
5676 //----------Constants--------------------------------------------------------
5677 
5678 // Load MachConstantTableBase: add hi offset to global toc.
5679 // TODO: Handle hidden register r29 in bundler!
5680 instruct loadToc_hi(iRegLdst dst) %{
5681   effect(DEF dst);
5682   ins_cost(DEFAULT_COST);
5683 
5684   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
5685   size(4);
5686   ins_encode %{
5687     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5688     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
5689   %}
5690   ins_pipe(pipe_class_default);
5691 %}
5692 
5693 // Load MachConstantTableBase: add lo offset to global toc.
5694 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
5695   effect(DEF dst, USE src);
5696   ins_cost(DEFAULT_COST);
5697 
5698   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
5699   size(4);
5700   ins_encode %{
5701     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5702     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
5703   %}
5704   ins_pipe(pipe_class_default);
5705 %}
5706 
5707 // Load 16-bit integer constant 0xssss????
5708 instruct loadConI16(iRegIdst dst, immI16 src) %{
5709   match(Set dst src);
5710 
5711   format %{ "LI      $dst, $src" %}
5712   size(4);
5713   ins_encode %{
5714     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5715     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
5716   %}
5717   ins_pipe(pipe_class_default);
5718 %}
5719 
5720 // Load integer constant 0x????0000
5721 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
5722   match(Set dst src);
5723   ins_cost(DEFAULT_COST);
5724 
5725   format %{ "LIS     $dst, $src.hi" %}
5726   size(4);
5727   ins_encode %{
5728     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5729     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
5730     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5731   %}
5732   ins_pipe(pipe_class_default);
5733 %}
5734 
5735 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
5736 // and sign extended), this adds the low 16 bits.
5737 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
5738   // no match-rule, false predicate
5739   effect(DEF dst, USE src1, USE src2);
5740   predicate(false);
5741 
5742   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
5743   size(4);
5744   ins_encode %{
5745     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5746     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5747   %}
5748   ins_pipe(pipe_class_default);
5749 %}
5750 
5751 instruct loadConI_Ex(iRegIdst dst, immI src) %{
5752   match(Set dst src);
5753   ins_cost(DEFAULT_COST*2);
5754 
5755   expand %{
5756     // Would like to use $src$$constant.
5757     immI16 srcLo %{ _opnds[1]->constant() %}
5758     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5759     immIhi16 srcHi %{ _opnds[1]->constant() %}
5760     iRegIdst tmpI;
5761     loadConIhi16(tmpI, srcHi);
5762     loadConI32_lo16(dst, tmpI, srcLo);
5763   %}
5764 %}
5765 
5766 // No constant pool entries required.
5767 instruct loadConL16(iRegLdst dst, immL16 src) %{
5768   match(Set dst src);
5769 
5770   format %{ "LI      $dst, $src \t// long" %}
5771   size(4);
5772   ins_encode %{
5773     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5774     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
5775   %}
5776   ins_pipe(pipe_class_default);
5777 %}
5778 
5779 // Load long constant 0xssssssss????0000
5780 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
5781   match(Set dst src);
5782   ins_cost(DEFAULT_COST);
5783 
5784   format %{ "LIS     $dst, $src.hi \t// long" %}
5785   size(4);
5786   ins_encode %{
5787     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5788     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
5789   %}
5790   ins_pipe(pipe_class_default);
5791 %}
5792 
5793 // To load a 32 bit constant: merge lower 16 bits into already loaded
5794 // high 16 bits.
5795 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
5796   // no match-rule, false predicate
5797   effect(DEF dst, USE src1, USE src2);
5798   predicate(false);
5799 
5800   format %{ "ORI     $dst, $src1, $src2.lo" %}
5801   size(4);
5802   ins_encode %{
5803     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
5804     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
5805   %}
5806   ins_pipe(pipe_class_default);
5807 %}
5808 
5809 // Load 32-bit long constant
5810 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
5811   match(Set dst src);
5812   ins_cost(DEFAULT_COST*2);
5813 
5814   expand %{
5815     // Would like to use $src$$constant.
5816     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
5817     // srcHi can be 0000 if srcLo sign-extends to a negative number.
5818     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
5819     iRegLdst tmpL;
5820     loadConL32hi16(tmpL, srcHi);
5821     loadConL32_lo16(dst, tmpL, srcLo);
5822   %}
5823 %}
5824 
5825 // Load long constant 0x????000000000000.
5826 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
5827   match(Set dst src);
5828   ins_cost(DEFAULT_COST);
5829 
5830   expand %{
5831     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
5832     immI shift32 %{ 32 %}
5833     iRegLdst tmpL;
5834     loadConL32hi16(tmpL, srcHi);
5835     lshiftL_regL_immI(dst, tmpL, shift32);
5836   %}
5837 %}
5838 
5839 // Expand node for constant pool load: small offset.
5840 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
5841   effect(DEF dst, USE src, USE toc);
5842   ins_cost(MEMORY_REF_COST);
5843 
5844   ins_num_consts(1);
5845   // Needed so that CallDynamicJavaDirect can compute the address of this
5846   // instruction for relocation.
5847   ins_field_cbuf_insts_offset(int);
5848 
5849   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
5850   size(4);
5851   ins_encode( enc_load_long_constL(dst, src, toc) );
5852   ins_pipe(pipe_class_memory);
5853 %}
5854 
5855 // Expand node for constant pool load: large offset.
5856 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
5857   effect(DEF dst, USE src, USE toc);
5858   predicate(false);
5859 
5860   ins_num_consts(1);
5861   ins_field_const_toc_offset(int);
5862   // Needed so that CallDynamicJavaDirect can compute the address of this
5863   // instruction for relocation.
5864   ins_field_cbuf_insts_offset(int);
5865 
5866   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
5867   size(4);
5868   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
5869   ins_pipe(pipe_class_default);
5870 %}
5871 
5872 // Expand node for constant pool load: large offset.
5873 // No constant pool entries required.
5874 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
5875   effect(DEF dst, USE src, USE base);
5876   predicate(false);
5877 
5878   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
5879 
5880   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
5881   size(4);
5882   ins_encode %{
5883     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
5884     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
5885     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
5886   %}
5887   ins_pipe(pipe_class_memory);
5888 %}
5889 
5890 // Load long constant from constant table. Expand in case of
5891 // offset > 16 bit is needed.
5892 // Adlc adds toc node MachConstantTableBase.
5893 instruct loadConL_Ex(iRegLdst dst, immL src) %{
5894   match(Set dst src);
5895   ins_cost(MEMORY_REF_COST);
5896 
5897   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
5898   // We can not inline the enc_class for the expand as that does not support constanttablebase.
5899   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
5900 %}
5901 
5902 // Load NULL as compressed oop.
5903 instruct loadConN0(iRegNdst dst, immN_0 src) %{
5904   match(Set dst src);
5905   ins_cost(DEFAULT_COST);
5906 
5907   format %{ "LI      $dst, $src \t// compressed ptr" %}
5908   size(4);
5909   ins_encode %{
5910     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5911     __ li($dst$$Register, 0);
5912   %}
5913   ins_pipe(pipe_class_default);
5914 %}
5915 
5916 // Load hi part of compressed oop constant.
5917 instruct loadConN_hi(iRegNdst dst, immN src) %{
5918   effect(DEF dst, USE src);
5919   ins_cost(DEFAULT_COST);
5920 
5921   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
5922   size(4);
5923   ins_encode %{
5924     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
5925     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
5926   %}
5927   ins_pipe(pipe_class_default);
5928 %}
5929 
5930 // Add lo part of compressed oop constant to already loaded hi part.
5931 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
5932   effect(DEF dst, USE src1, USE src2);
5933   ins_cost(DEFAULT_COST);
5934 
5935   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
5936   size(4);
5937   ins_encode %{
5938     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
5939     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
5940     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
5941     RelocationHolder rspec = oop_Relocation::spec(oop_index);
5942     __ relocate(rspec, 1);
5943     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
5944   %}
5945   ins_pipe(pipe_class_default);
5946 %}
5947 
5948 // Needed to postalloc expand loadConN: ConN is loaded as ConI
5949 // leaving the upper 32 bits with sign-extension bits.
5950 // This clears these bits: dst = src & 0xFFFFFFFF.
5951 // TODO: Eventually call this maskN_regN_FFFFFFFF.
5952 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
5953   effect(DEF dst, USE src);
5954   predicate(false);
5955 
5956   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
5957   size(4);
5958   ins_encode %{
5959     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
5960     __ clrldi($dst$$Register, $src$$Register, 0x20);
5961   %}
5962   ins_pipe(pipe_class_default);
5963 %}
5964 
5965 // Optimize DecodeN for disjoint base.
5966 // Load base of compressed oops into a register
5967 instruct loadBase(iRegLdst dst) %{
5968   effect(DEF dst);
5969 
5970   format %{ "LoadConst $dst, heapbase" %}
5971   ins_encode %{
5972     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
5973     __ load_const_optimized($dst$$Register, Universe::narrow_oop_base(), R0);
5974   %}
5975   ins_pipe(pipe_class_default);
5976 %}
5977 
5978 // Loading ConN must be postalloc expanded so that edges between
5979 // the nodes are safe. They may not interfere with a safepoint.
5980 // GL TODO: This needs three instructions: better put this into the constant pool.
5981 instruct loadConN_Ex(iRegNdst dst, immN src) %{
5982   match(Set dst src);
5983   ins_cost(DEFAULT_COST*2);
5984 
5985   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
5986   postalloc_expand %{
5987     MachNode *m1 = new loadConN_hiNode();
5988     MachNode *m2 = new loadConN_loNode();
5989     MachNode *m3 = new clearMs32bNode();
5990     m1->add_req(NULL);
5991     m2->add_req(NULL, m1);
5992     m3->add_req(NULL, m2);
5993     m1->_opnds[0] = op_dst;
5994     m1->_opnds[1] = op_src;
5995     m2->_opnds[0] = op_dst;
5996     m2->_opnds[1] = op_dst;
5997     m2->_opnds[2] = op_src;
5998     m3->_opnds[0] = op_dst;
5999     m3->_opnds[1] = op_dst;
6000     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6001     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6002     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6003     nodes->push(m1);
6004     nodes->push(m2);
6005     nodes->push(m3);
6006   %}
6007 %}
6008 
6009 // We have seen a safepoint between the hi and lo parts, and this node was handled
6010 // as an oop. Therefore this needs a match rule so that build_oop_map knows this is
6011 // not a narrow oop.
6012 instruct loadConNKlass_hi(iRegNdst dst, immNKlass_NM src) %{
6013   match(Set dst src);
6014   effect(DEF dst, USE src);
6015   ins_cost(DEFAULT_COST);
6016 
6017   format %{ "LIS     $dst, $src \t// narrow klass hi" %}
6018   size(4);
6019   ins_encode %{
6020     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
6021     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
6022     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
6023   %}
6024   ins_pipe(pipe_class_default);
6025 %}
6026 
6027 // As loadConNKlass_hi this must be recognized as narrow klass, not oop!
6028 instruct loadConNKlass_mask(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6029   match(Set dst src1);
6030   effect(TEMP src2);
6031   ins_cost(DEFAULT_COST);
6032 
6033   format %{ "MASK    $dst, $src2, 0xFFFFFFFF" %} // mask
6034   size(4);
6035   ins_encode %{
6036     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6037     __ clrldi($dst$$Register, $src2$$Register, 0x20);
6038   %}
6039   ins_pipe(pipe_class_default);
6040 %}
6041 
6042 // This needs a match rule so that build_oop_map knows this is
6043 // not a narrow oop.
6044 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
6045   match(Set dst src1);
6046   effect(TEMP src2);
6047   ins_cost(DEFAULT_COST);
6048 
6049   format %{ "ORI     $dst, $src1, $src2 \t// narrow klass lo" %}
6050   size(4);
6051   ins_encode %{
6052     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
6053     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
6054     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
6055     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
6056     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6057 
6058     __ relocate(rspec, 1);
6059     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
6060   %}
6061   ins_pipe(pipe_class_default);
6062 %}
6063 
6064 // Loading ConNKlass must be postalloc expanded so that edges between
6065 // the nodes are safe. They may not interfere with a safepoint.
6066 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
6067   match(Set dst src);
6068   ins_cost(DEFAULT_COST*2);
6069 
6070   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
6071   postalloc_expand %{
6072     // Load high bits into register. Sign extended.
6073     MachNode *m1 = new loadConNKlass_hiNode();
6074     m1->add_req(NULL);
6075     m1->_opnds[0] = op_dst;
6076     m1->_opnds[1] = op_src;
6077     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6078     nodes->push(m1);
6079 
6080     MachNode *m2 = m1;
6081     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
6082       // Value might be 1-extended. Mask out these bits.
6083       m2 = new loadConNKlass_maskNode();
6084       m2->add_req(NULL, m1);
6085       m2->_opnds[0] = op_dst;
6086       m2->_opnds[1] = op_src;
6087       m2->_opnds[2] = op_dst;
6088       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6089       nodes->push(m2);
6090     }
6091 
6092     MachNode *m3 = new loadConNKlass_loNode();
6093     m3->add_req(NULL, m2);
6094     m3->_opnds[0] = op_dst;
6095     m3->_opnds[1] = op_src;
6096     m3->_opnds[2] = op_dst;
6097     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6098     nodes->push(m3);
6099   %}
6100 %}
6101 
6102 // 0x1 is used in object initialization (initial object header).
6103 // No constant pool entries required.
6104 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
6105   match(Set dst src);
6106 
6107   format %{ "LI      $dst, $src \t// ptr" %}
6108   size(4);
6109   ins_encode %{
6110     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
6111     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
6112   %}
6113   ins_pipe(pipe_class_default);
6114 %}
6115 
6116 // Expand node for constant pool load: small offset.
6117 // The match rule is needed to generate the correct bottom_type(),
6118 // however this node should never match. The use of predicate is not
6119 // possible since ADLC forbids predicates for chain rules. The higher
6120 // costs do not prevent matching in this case. For that reason the
6121 // operand immP_NM with predicate(false) is used.
6122 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6123   match(Set dst src);
6124   effect(TEMP toc);
6125 
6126   ins_num_consts(1);
6127 
6128   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
6129   size(4);
6130   ins_encode( enc_load_long_constP(dst, src, toc) );
6131   ins_pipe(pipe_class_memory);
6132 %}
6133 
6134 // Expand node for constant pool load: large offset.
6135 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
6136   effect(DEF dst, USE src, USE toc);
6137   predicate(false);
6138 
6139   ins_num_consts(1);
6140   ins_field_const_toc_offset(int);
6141 
6142   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
6143   size(4);
6144   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
6145   ins_pipe(pipe_class_default);
6146 %}
6147 
6148 // Expand node for constant pool load: large offset.
6149 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
6150   match(Set dst src);
6151   effect(TEMP base);
6152 
6153   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
6154 
6155   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
6156   size(4);
6157   ins_encode %{
6158     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
6159     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
6160     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
6161   %}
6162   ins_pipe(pipe_class_memory);
6163 %}
6164 
6165 // Load pointer constant from constant table. Expand in case an
6166 // offset > 16 bit is needed.
6167 // Adlc adds toc node MachConstantTableBase.
6168 instruct loadConP_Ex(iRegPdst dst, immP src) %{
6169   match(Set dst src);
6170   ins_cost(MEMORY_REF_COST);
6171 
6172   // This rule does not use "expand" because then
6173   // the result type is not known to be an Oop.  An ADLC
6174   // enhancement will be needed to make that work - not worth it!
6175 
6176   // If this instruction rematerializes, it prolongs the live range
6177   // of the toc node, causing illegal graphs.
6178   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
6179   ins_cannot_rematerialize(true);
6180 
6181   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
6182   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
6183 %}
6184 
6185 // Expand node for constant pool load: small offset.
6186 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
6187   effect(DEF dst, USE src, USE toc);
6188   ins_cost(MEMORY_REF_COST);
6189 
6190   ins_num_consts(1);
6191 
6192   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
6193   size(4);
6194   ins_encode %{
6195     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
6196     address float_address = __ float_constant($src$$constant);
6197     if (float_address == NULL) {
6198       ciEnv::current()->record_out_of_memory_failure();
6199       return;
6200     }
6201     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
6202   %}
6203   ins_pipe(pipe_class_memory);
6204 %}
6205 
6206 // Expand node for constant pool load: large offset.
6207 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
6208   effect(DEF dst, USE src, USE toc);
6209   ins_cost(MEMORY_REF_COST);
6210 
6211   ins_num_consts(1);
6212 
6213   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6214             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
6215             "ADDIS   $toc, $toc, -offset_hi"%}
6216   size(12);
6217   ins_encode %{
6218     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6219     FloatRegister Rdst    = $dst$$FloatRegister;
6220     Register Rtoc         = $toc$$Register;
6221     address float_address = __ float_constant($src$$constant);
6222     if (float_address == NULL) {
6223       ciEnv::current()->record_out_of_memory_failure();
6224       return;
6225     }
6226     int offset            = __ offset_to_method_toc(float_address);
6227     int hi = (offset + (1<<15))>>16;
6228     int lo = offset - hi * (1<<16);
6229 
6230     __ addis(Rtoc, Rtoc, hi);
6231     __ lfs(Rdst, lo, Rtoc);
6232     __ addis(Rtoc, Rtoc, -hi);
6233   %}
6234   ins_pipe(pipe_class_memory);
6235 %}
6236 
6237 // Adlc adds toc node MachConstantTableBase.
6238 instruct loadConF_Ex(regF dst, immF src) %{
6239   match(Set dst src);
6240   ins_cost(MEMORY_REF_COST);
6241 
6242   // See loadConP.
6243   ins_cannot_rematerialize(true);
6244 
6245   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6246   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
6247 %}
6248 
6249 // Expand node for constant pool load: small offset.
6250 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
6251   effect(DEF dst, USE src, USE toc);
6252   ins_cost(MEMORY_REF_COST);
6253 
6254   ins_num_consts(1);
6255 
6256   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
6257   size(4);
6258   ins_encode %{
6259     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
6260     address float_address = __ double_constant($src$$constant);
6261     if (float_address == NULL) {
6262       ciEnv::current()->record_out_of_memory_failure();
6263       return;
6264     }
6265     int offset =  __ offset_to_method_toc(float_address);
6266     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
6267   %}
6268   ins_pipe(pipe_class_memory);
6269 %}
6270 
6271 // Expand node for constant pool load: large offset.
6272 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
6273   effect(DEF dst, USE src, USE toc);
6274   ins_cost(MEMORY_REF_COST);
6275 
6276   ins_num_consts(1);
6277 
6278   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
6279             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
6280             "ADDIS   $toc, $toc, -offset_hi" %}
6281   size(12);
6282   ins_encode %{
6283     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6284     FloatRegister Rdst    = $dst$$FloatRegister;
6285     Register      Rtoc    = $toc$$Register;
6286     address float_address = __ double_constant($src$$constant);
6287     if (float_address == NULL) {
6288       ciEnv::current()->record_out_of_memory_failure();
6289       return;
6290     }
6291     int offset = __ offset_to_method_toc(float_address);
6292     int hi = (offset + (1<<15))>>16;
6293     int lo = offset - hi * (1<<16);
6294 
6295     __ addis(Rtoc, Rtoc, hi);
6296     __ lfd(Rdst, lo, Rtoc);
6297     __ addis(Rtoc, Rtoc, -hi);
6298   %}
6299   ins_pipe(pipe_class_memory);
6300 %}
6301 
6302 // Adlc adds toc node MachConstantTableBase.
6303 instruct loadConD_Ex(regD dst, immD src) %{
6304   match(Set dst src);
6305   ins_cost(MEMORY_REF_COST);
6306 
6307   // See loadConP.
6308   ins_cannot_rematerialize(true);
6309 
6310   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
6311   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
6312 %}
6313 
6314 // Prefetch instructions.
6315 // Must be safe to execute with invalid address (cannot fault).
6316 
6317 // Special prefetch versions which use the dcbz instruction.
6318 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
6319   match(PrefetchAllocation (AddP mem src));
6320   predicate(AllocatePrefetchStyle == 3);
6321   ins_cost(MEMORY_REF_COST);
6322 
6323   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
6324   size(4);
6325   ins_encode %{
6326     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6327     __ dcbz($src$$Register, $mem$$base$$Register);
6328   %}
6329   ins_pipe(pipe_class_memory);
6330 %}
6331 
6332 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
6333   match(PrefetchAllocation mem);
6334   predicate(AllocatePrefetchStyle == 3);
6335   ins_cost(MEMORY_REF_COST);
6336 
6337   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
6338   size(4);
6339   ins_encode %{
6340     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6341     __ dcbz($mem$$base$$Register);
6342   %}
6343   ins_pipe(pipe_class_memory);
6344 %}
6345 
6346 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
6347   match(PrefetchAllocation (AddP mem src));
6348   predicate(AllocatePrefetchStyle != 3);
6349   ins_cost(MEMORY_REF_COST);
6350 
6351   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
6352   size(4);
6353   ins_encode %{
6354     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6355     __ dcbtst($src$$Register, $mem$$base$$Register);
6356   %}
6357   ins_pipe(pipe_class_memory);
6358 %}
6359 
6360 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
6361   match(PrefetchAllocation mem);
6362   predicate(AllocatePrefetchStyle != 3);
6363   ins_cost(MEMORY_REF_COST);
6364 
6365   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
6366   size(4);
6367   ins_encode %{
6368     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
6369     __ dcbtst($mem$$base$$Register);
6370   %}
6371   ins_pipe(pipe_class_memory);
6372 %}
6373 
6374 //----------Store Instructions-------------------------------------------------
6375 
6376 // Store Byte
6377 instruct storeB(memory mem, iRegIsrc src) %{
6378   match(Set mem (StoreB mem src));
6379   ins_cost(MEMORY_REF_COST);
6380 
6381   format %{ "STB     $src, $mem \t// byte" %}
6382   size(4);
6383   ins_encode %{
6384     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
6385     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6386     __ stb($src$$Register, Idisp, $mem$$base$$Register);
6387   %}
6388   ins_pipe(pipe_class_memory);
6389 %}
6390 
6391 // Store Char/Short
6392 instruct storeC(memory mem, iRegIsrc src) %{
6393   match(Set mem (StoreC mem src));
6394   ins_cost(MEMORY_REF_COST);
6395 
6396   format %{ "STH     $src, $mem \t// short" %}
6397   size(4);
6398   ins_encode %{
6399     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
6400     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
6401     __ sth($src$$Register, Idisp, $mem$$base$$Register);
6402   %}
6403   ins_pipe(pipe_class_memory);
6404 %}
6405 
6406 // Store Integer
6407 instruct storeI(memory mem, iRegIsrc src) %{
6408   match(Set mem (StoreI mem src));
6409   ins_cost(MEMORY_REF_COST);
6410 
6411   format %{ "STW     $src, $mem" %}
6412   size(4);
6413   ins_encode( enc_stw(src, mem) );
6414   ins_pipe(pipe_class_memory);
6415 %}
6416 
6417 // ConvL2I + StoreI.
6418 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
6419   match(Set mem (StoreI mem (ConvL2I src)));
6420   ins_cost(MEMORY_REF_COST);
6421 
6422   format %{ "STW     l2i($src), $mem" %}
6423   size(4);
6424   ins_encode( enc_stw(src, mem) );
6425   ins_pipe(pipe_class_memory);
6426 %}
6427 
6428 // Store Long
6429 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
6430   match(Set mem (StoreL mem src));
6431   ins_cost(MEMORY_REF_COST);
6432 
6433   format %{ "STD     $src, $mem \t// long" %}
6434   size(4);
6435   ins_encode( enc_std(src, mem) );
6436   ins_pipe(pipe_class_memory);
6437 %}
6438 
6439 // Store super word nodes.
6440 
6441 // Store Aligned Packed Byte long register to memory
6442 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
6443   predicate(n->as_StoreVector()->memory_size() == 8);
6444   match(Set mem (StoreVector mem src));
6445   ins_cost(MEMORY_REF_COST);
6446 
6447   format %{ "STD     $mem, $src \t// packed8B" %}
6448   size(4);
6449   ins_encode( enc_std(src, mem) );
6450   ins_pipe(pipe_class_memory);
6451 %}
6452 
6453 // Store Compressed Oop
6454 instruct storeN(memory dst, iRegN_P2N src) %{
6455   match(Set dst (StoreN dst src));
6456   ins_cost(MEMORY_REF_COST);
6457 
6458   format %{ "STW     $src, $dst \t// compressed oop" %}
6459   size(4);
6460   ins_encode( enc_stw(src, dst) );
6461   ins_pipe(pipe_class_memory);
6462 %}
6463 
6464 // Store Compressed KLass
6465 instruct storeNKlass(memory dst, iRegN_P2N src) %{
6466   match(Set dst (StoreNKlass dst src));
6467   ins_cost(MEMORY_REF_COST);
6468 
6469   format %{ "STW     $src, $dst \t// compressed klass" %}
6470   size(4);
6471   ins_encode( enc_stw(src, dst) );
6472   ins_pipe(pipe_class_memory);
6473 %}
6474 
6475 // Store Pointer
6476 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
6477   match(Set dst (StoreP dst src));
6478   ins_cost(MEMORY_REF_COST);
6479 
6480   format %{ "STD     $src, $dst \t// ptr" %}
6481   size(4);
6482   ins_encode( enc_std(src, dst) );
6483   ins_pipe(pipe_class_memory);
6484 %}
6485 
6486 // Store Float
6487 instruct storeF(memory mem, regF src) %{
6488   match(Set mem (StoreF mem src));
6489   ins_cost(MEMORY_REF_COST);
6490 
6491   format %{ "STFS    $src, $mem" %}
6492   size(4);
6493   ins_encode( enc_stfs(src, mem) );
6494   ins_pipe(pipe_class_memory);
6495 %}
6496 
6497 // Store Double
6498 instruct storeD(memory mem, regD src) %{
6499   match(Set mem (StoreD mem src));
6500   ins_cost(MEMORY_REF_COST);
6501 
6502   format %{ "STFD    $src, $mem" %}
6503   size(4);
6504   ins_encode( enc_stfd(src, mem) );
6505   ins_pipe(pipe_class_memory);
6506 %}
6507 
6508 //----------Store Instructions With Zeros--------------------------------------
6509 
6510 // Card-mark for CMS garbage collection.
6511 // This cardmark does an optimization so that it must not always
6512 // do a releasing store. For this, it gets the address of
6513 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
6514 // (Using releaseFieldAddr in the match rule is a hack.)
6515 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr, flagsReg crx) %{
6516   match(Set mem (StoreCM mem releaseFieldAddr));
6517   effect(TEMP crx);
6518   predicate(false);
6519   ins_cost(MEMORY_REF_COST);
6520 
6521   // See loadConP.
6522   ins_cannot_rematerialize(true);
6523 
6524   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
6525   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr, crx) );
6526   ins_pipe(pipe_class_memory);
6527 %}
6528 
6529 // Card-mark for CMS garbage collection.
6530 // This cardmark does an optimization so that it must not always
6531 // do a releasing store. For this, it needs the constant address of
6532 // CMSCollectorCardTableModRefBSExt::_requires_release.
6533 // This constant address is split off here by expand so we can use
6534 // adlc / matcher functionality to load it from the constant section.
6535 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
6536   match(Set mem (StoreCM mem zero));
6537   predicate(UseConcMarkSweepGC);
6538 
6539   expand %{
6540     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
6541     iRegLdst releaseFieldAddress;
6542     flagsReg crx;
6543     loadConL_Ex(releaseFieldAddress, baseImm);
6544     storeCM_CMS(mem, releaseFieldAddress, crx);
6545   %}
6546 %}
6547 
6548 instruct storeCM_G1(memory mem, immI_0 zero) %{
6549   match(Set mem (StoreCM mem zero));
6550   predicate(UseG1GC);
6551   ins_cost(MEMORY_REF_COST);
6552 
6553   ins_cannot_rematerialize(true);
6554 
6555   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
6556   size(8);
6557   ins_encode %{
6558     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6559     __ li(R0, 0);
6560     //__ release(); // G1: oops are allowed to get visible after dirty marking
6561     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
6562     __ stb(R0, $mem$$disp, $mem$$base$$Register);
6563   %}
6564   ins_pipe(pipe_class_memory);
6565 %}
6566 
6567 // Convert oop pointer into compressed form.
6568 
6569 // Nodes for postalloc expand.
6570 
6571 // Shift node for expand.
6572 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
6573   // The match rule is needed to make it a 'MachTypeNode'!
6574   match(Set dst (EncodeP src));
6575   predicate(false);
6576 
6577   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6578   size(4);
6579   ins_encode %{
6580     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6581     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6582   %}
6583   ins_pipe(pipe_class_default);
6584 %}
6585 
6586 // Add node for expand.
6587 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
6588   // The match rule is needed to make it a 'MachTypeNode'!
6589   match(Set dst (EncodeP src));
6590   predicate(false);
6591 
6592   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
6593   ins_encode %{
6594     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6595     __ sub_const_optimized($dst$$Register, $src$$Register, Universe::narrow_oop_base(), R0);
6596   %}
6597   ins_pipe(pipe_class_default);
6598 %}
6599 
6600 // Conditional sub base.
6601 instruct cond_sub_base(iRegNdst dst, flagsRegSrc crx, iRegPsrc src1) %{
6602   // The match rule is needed to make it a 'MachTypeNode'!
6603   match(Set dst (EncodeP (Binary crx src1)));
6604   predicate(false);
6605 
6606   format %{ "BEQ     $crx, done\n\t"
6607             "SUB     $dst, $src1, heapbase \t// encode: subtract base if != NULL\n"
6608             "done:" %}
6609   ins_encode %{
6610     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6611     Label done;
6612     __ beq($crx$$CondRegister, done);
6613     __ sub_const_optimized($dst$$Register, $src1$$Register, Universe::narrow_oop_base(), R0);
6614     __ bind(done);
6615   %}
6616   ins_pipe(pipe_class_default);
6617 %}
6618 
6619 // Power 7 can use isel instruction
6620 instruct cond_set_0_oop(iRegNdst dst, flagsRegSrc crx, iRegPsrc src1) %{
6621   // The match rule is needed to make it a 'MachTypeNode'!
6622   match(Set dst (EncodeP (Binary crx src1)));
6623   predicate(false);
6624 
6625   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
6626   size(4);
6627   ins_encode %{
6628     // This is a Power7 instruction for which no machine description exists.
6629     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6630     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6631   %}
6632   ins_pipe(pipe_class_default);
6633 %}
6634 
6635 // Disjoint narrow oop base.
6636 instruct encodeP_Disjoint(iRegNdst dst, iRegPsrc src) %{
6637   match(Set dst (EncodeP src));
6638   predicate(Universe::narrow_oop_base_disjoint());
6639 
6640   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with disjoint base" %}
6641   size(4);
6642   ins_encode %{
6643     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6644     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
6645   %}
6646   ins_pipe(pipe_class_default);
6647 %}
6648 
6649 // shift != 0, base != 0
6650 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
6651   match(Set dst (EncodeP src));
6652   effect(TEMP crx);
6653   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
6654             Universe::narrow_oop_shift() != 0 &&
6655             Universe::narrow_oop_base_overlaps());
6656 
6657   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
6658   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
6659 %}
6660 
6661 // shift != 0, base != 0
6662 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
6663   match(Set dst (EncodeP src));
6664   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
6665             Universe::narrow_oop_shift() != 0 &&
6666             Universe::narrow_oop_base_overlaps());
6667 
6668   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
6669   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
6670 %}
6671 
6672 // shift != 0, base == 0
6673 // TODO: This is the same as encodeP_shift. Merge!
6674 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
6675   match(Set dst (EncodeP src));
6676   predicate(Universe::narrow_oop_shift() != 0 &&
6677             Universe::narrow_oop_base() ==0);
6678 
6679   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
6680   size(4);
6681   ins_encode %{
6682     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6683     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
6684   %}
6685   ins_pipe(pipe_class_default);
6686 %}
6687 
6688 // Compressed OOPs with narrow_oop_shift == 0.
6689 // shift == 0, base == 0
6690 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
6691   match(Set dst (EncodeP src));
6692   predicate(Universe::narrow_oop_shift() == 0);
6693 
6694   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
6695   // variable size, 0 or 4.
6696   ins_encode %{
6697     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6698     __ mr_if_needed($dst$$Register, $src$$Register);
6699   %}
6700   ins_pipe(pipe_class_default);
6701 %}
6702 
6703 // Decode nodes.
6704 
6705 // Shift node for expand.
6706 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
6707   // The match rule is needed to make it a 'MachTypeNode'!
6708   match(Set dst (DecodeN src));
6709   predicate(false);
6710 
6711   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
6712   size(4);
6713   ins_encode %{
6714     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6715     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6716   %}
6717   ins_pipe(pipe_class_default);
6718 %}
6719 
6720 // Add node for expand.
6721 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
6722   // The match rule is needed to make it a 'MachTypeNode'!
6723   match(Set dst (DecodeN src));
6724   predicate(false);
6725 
6726   format %{ "ADD     $dst, $src, heapbase \t// DecodeN, add oop base" %}
6727   ins_encode %{
6728     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6729     __ add_const_optimized($dst$$Register, $src$$Register, Universe::narrow_oop_base(), R0);
6730   %}
6731   ins_pipe(pipe_class_default);
6732 %}
6733 
6734 // conditianal add base for expand
6735 instruct cond_add_base(iRegPdst dst, flagsRegSrc crx, iRegPsrc src) %{
6736   // The match rule is needed to make it a 'MachTypeNode'!
6737   // NOTICE that the rule is nonsense - we just have to make sure that:
6738   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6739   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6740   match(Set dst (DecodeN (Binary crx src)));
6741   predicate(false);
6742 
6743   format %{ "BEQ     $crx, done\n\t"
6744             "ADD     $dst, $src, heapbase \t// DecodeN: add oop base if $src != NULL\n"
6745             "done:" %}
6746   ins_encode %{
6747     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6748     Label done;
6749     __ beq($crx$$CondRegister, done);
6750     __ add_const_optimized($dst$$Register, $src$$Register, Universe::narrow_oop_base(), R0);
6751     __ bind(done);
6752   %}
6753   ins_pipe(pipe_class_default);
6754 %}
6755 
6756 instruct cond_set_0_ptr(iRegPdst dst, flagsRegSrc crx, iRegPsrc src1) %{
6757   // The match rule is needed to make it a 'MachTypeNode'!
6758   // NOTICE that the rule is nonsense - we just have to make sure that:
6759   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
6760   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
6761   match(Set dst (DecodeN (Binary crx src1)));
6762   predicate(false);
6763 
6764   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
6765   size(4);
6766   ins_encode %{
6767     // This is a Power7 instruction for which no machine description exists.
6768     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
6769     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
6770   %}
6771   ins_pipe(pipe_class_default);
6772 %}
6773 
6774 //  shift != 0, base != 0
6775 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6776   match(Set dst (DecodeN src));
6777   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6778              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6779             Universe::narrow_oop_shift() != 0 &&
6780             Universe::narrow_oop_base() != 0);
6781   ins_cost(4 * DEFAULT_COST); // Should be more expensive than decodeN_Disjoint_isel_Ex.
6782   effect(TEMP crx);
6783 
6784   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
6785   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
6786 %}
6787 
6788 // shift != 0, base == 0
6789 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
6790   match(Set dst (DecodeN src));
6791   predicate(Universe::narrow_oop_shift() != 0 &&
6792             Universe::narrow_oop_base() == 0);
6793 
6794   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
6795   size(4);
6796   ins_encode %{
6797     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
6798     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
6799   %}
6800   ins_pipe(pipe_class_default);
6801 %}
6802 
6803 // Optimize DecodeN for disjoint base.
6804 // Shift narrow oop and or it into register that already contains the heap base.
6805 // Base == dst must hold, and is assured by construction in postaloc_expand.
6806 instruct decodeN_mergeDisjoint(iRegPdst dst, iRegNsrc src, iRegLsrc base) %{
6807   match(Set dst (DecodeN src));
6808   effect(TEMP base);
6809   predicate(false);
6810 
6811   format %{ "RLDIMI  $dst, $src, shift, 32-shift \t// DecodeN (disjoint base)" %}
6812   size(4);
6813   ins_encode %{
6814     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
6815     __ rldimi($dst$$Register, $src$$Register, Universe::narrow_oop_shift(), 32-Universe::narrow_oop_shift());
6816   %}
6817   ins_pipe(pipe_class_default);
6818 %}
6819 
6820 // Optimize DecodeN for disjoint base.
6821 // This node requires only one cycle on the critical path.
6822 // We must postalloc_expand as we can not express use_def effects where
6823 // the used register is L and the def'ed register P.
6824 instruct decodeN_Disjoint_notNull_Ex(iRegPdst dst, iRegNsrc src) %{
6825   match(Set dst (DecodeN src));
6826   effect(TEMP_DEF dst);
6827   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6828              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6829             Universe::narrow_oop_base_disjoint());
6830   ins_cost(DEFAULT_COST);
6831 
6832   format %{ "MOV     $dst, heapbase \t\n"
6833             "RLDIMI  $dst, $src, shift, 32-shift \t// decode with disjoint base" %}
6834   postalloc_expand %{
6835     loadBaseNode *n1 = new loadBaseNode();
6836     n1->add_req(NULL);
6837     n1->_opnds[0] = op_dst;
6838 
6839     decodeN_mergeDisjointNode *n2 = new decodeN_mergeDisjointNode();
6840     n2->add_req(n_region, n_src, n1);
6841     n2->_opnds[0] = op_dst;
6842     n2->_opnds[1] = op_src;
6843     n2->_opnds[2] = op_dst;
6844     n2->_bottom_type = _bottom_type;
6845 
6846     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6847     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6848 
6849     nodes->push(n1);
6850     nodes->push(n2);
6851   %}
6852 %}
6853 
6854 instruct decodeN_Disjoint_isel_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
6855   match(Set dst (DecodeN src));
6856   effect(TEMP_DEF dst, TEMP crx);
6857   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6858              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
6859             Universe::narrow_oop_base_disjoint() && VM_Version::has_isel());
6860   ins_cost(3 * DEFAULT_COST);
6861 
6862   format %{ "DecodeN  $dst, $src \t// decode with disjoint base using isel" %}
6863   postalloc_expand %{
6864     loadBaseNode *n1 = new loadBaseNode();
6865     n1->add_req(NULL);
6866     n1->_opnds[0] = op_dst;
6867 
6868     cmpN_reg_imm0Node *n_compare  = new cmpN_reg_imm0Node();
6869     n_compare->add_req(n_region, n_src);
6870     n_compare->_opnds[0] = op_crx;
6871     n_compare->_opnds[1] = op_src;
6872     n_compare->_opnds[2] = new immN_0Oper(TypeNarrowOop::NULL_PTR);
6873 
6874     decodeN_mergeDisjointNode *n2 = new decodeN_mergeDisjointNode();
6875     n2->add_req(n_region, n_src, n1);
6876     n2->_opnds[0] = op_dst;
6877     n2->_opnds[1] = op_src;
6878     n2->_opnds[2] = op_dst;
6879     n2->_bottom_type = _bottom_type;
6880 
6881     cond_set_0_ptrNode *n_cond_set = new cond_set_0_ptrNode();
6882     n_cond_set->add_req(n_region, n_compare, n2);
6883     n_cond_set->_opnds[0] = op_dst;
6884     n_cond_set->_opnds[1] = op_crx;
6885     n_cond_set->_opnds[2] = op_dst;
6886     n_cond_set->_bottom_type = _bottom_type;
6887 
6888     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
6889     ra_->set_oop(n_cond_set, true);
6890 
6891     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6892     ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
6893     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6894     ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
6895 
6896     nodes->push(n1);
6897     nodes->push(n_compare);
6898     nodes->push(n2);
6899     nodes->push(n_cond_set);
6900   %}
6901 %}
6902 
6903 // src != 0, shift != 0, base != 0
6904 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
6905   match(Set dst (DecodeN src));
6906   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6907              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
6908             Universe::narrow_oop_shift() != 0 &&
6909             Universe::narrow_oop_base() != 0);
6910   ins_cost(2 * DEFAULT_COST);
6911 
6912   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
6913   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
6914 %}
6915 
6916 // Compressed OOPs with narrow_oop_shift == 0.
6917 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
6918   match(Set dst (DecodeN src));
6919   predicate(Universe::narrow_oop_shift() == 0);
6920   ins_cost(DEFAULT_COST);
6921 
6922   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
6923   // variable size, 0 or 4.
6924   ins_encode %{
6925     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6926     __ mr_if_needed($dst$$Register, $src$$Register);
6927   %}
6928   ins_pipe(pipe_class_default);
6929 %}
6930 
6931 // Convert compressed oop into int for vectors alignment masking.
6932 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
6933   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6934   predicate(Universe::narrow_oop_shift() == 0);
6935   ins_cost(DEFAULT_COST);
6936 
6937   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
6938   // variable size, 0 or 4.
6939   ins_encode %{
6940     // TODO: PPC port $archOpcode(ppc64Opcode_or);
6941     __ mr_if_needed($dst$$Register, $src$$Register);
6942   %}
6943   ins_pipe(pipe_class_default);
6944 %}
6945 
6946 // Convert klass pointer into compressed form.
6947 
6948 // Nodes for postalloc expand.
6949 
6950 // Shift node for expand.
6951 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
6952   // The match rule is needed to make it a 'MachTypeNode'!
6953   match(Set dst (EncodePKlass src));
6954   predicate(false);
6955 
6956   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
6957   size(4);
6958   ins_encode %{
6959     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6960     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
6961   %}
6962   ins_pipe(pipe_class_default);
6963 %}
6964 
6965 // Add node for expand.
6966 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
6967   // The match rule is needed to make it a 'MachTypeNode'!
6968   match(Set dst (EncodePKlass (Binary base src)));
6969   predicate(false);
6970 
6971   format %{ "SUB     $dst, $base, $src \t// encode" %}
6972   size(4);
6973   ins_encode %{
6974     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
6975     __ subf($dst$$Register, $base$$Register, $src$$Register);
6976   %}
6977   ins_pipe(pipe_class_default);
6978 %}
6979 
6980 // Disjoint narrow oop base.
6981 instruct encodePKlass_Disjoint(iRegNdst dst, iRegPsrc src) %{
6982   match(Set dst (EncodePKlass src));
6983   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
6984 
6985   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with disjoint base" %}
6986   size(4);
6987   ins_encode %{
6988     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
6989     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_klass_shift(), 32);
6990   %}
6991   ins_pipe(pipe_class_default);
6992 %}
6993 
6994 // shift != 0, base != 0
6995 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
6996   match(Set dst (EncodePKlass (Binary base src)));
6997   predicate(false);
6998 
6999   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
7000   postalloc_expand %{
7001     encodePKlass_sub_baseNode *n1 = new encodePKlass_sub_baseNode();
7002     n1->add_req(n_region, n_base, n_src);
7003     n1->_opnds[0] = op_dst;
7004     n1->_opnds[1] = op_base;
7005     n1->_opnds[2] = op_src;
7006     n1->_bottom_type = _bottom_type;
7007 
7008     encodePKlass_shiftNode *n2 = new encodePKlass_shiftNode();
7009     n2->add_req(n_region, n1);
7010     n2->_opnds[0] = op_dst;
7011     n2->_opnds[1] = op_dst;
7012     n2->_bottom_type = _bottom_type;
7013     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7014     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7015 
7016     nodes->push(n1);
7017     nodes->push(n2);
7018   %}
7019 %}
7020 
7021 // shift != 0, base != 0
7022 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
7023   match(Set dst (EncodePKlass src));
7024   //predicate(Universe::narrow_klass_shift() != 0 &&
7025   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
7026 
7027   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
7028   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7029   expand %{
7030     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
7031     iRegLdst base;
7032     loadConL_Ex(base, baseImm);
7033     encodePKlass_not_null_Ex(dst, base, src);
7034   %}
7035 %}
7036 
7037 // Decode nodes.
7038 
7039 // Shift node for expand.
7040 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
7041   // The match rule is needed to make it a 'MachTypeNode'!
7042   match(Set dst (DecodeNKlass src));
7043   predicate(false);
7044 
7045   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
7046   size(4);
7047   ins_encode %{
7048     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
7049     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
7050   %}
7051   ins_pipe(pipe_class_default);
7052 %}
7053 
7054 // Add node for expand.
7055 
7056 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
7057   // The match rule is needed to make it a 'MachTypeNode'!
7058   match(Set dst (DecodeNKlass (Binary base src)));
7059   predicate(false);
7060 
7061   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
7062   size(4);
7063   ins_encode %{
7064     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7065     __ add($dst$$Register, $base$$Register, $src$$Register);
7066   %}
7067   ins_pipe(pipe_class_default);
7068 %}
7069 
7070 // src != 0, shift != 0, base != 0
7071 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
7072   match(Set dst (DecodeNKlass (Binary base src)));
7073   //effect(kill src); // We need a register for the immediate result after shifting.
7074   predicate(false);
7075 
7076   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
7077   postalloc_expand %{
7078     decodeNKlass_add_baseNode *n1 = new decodeNKlass_add_baseNode();
7079     n1->add_req(n_region, n_base, n_src);
7080     n1->_opnds[0] = op_dst;
7081     n1->_opnds[1] = op_base;
7082     n1->_opnds[2] = op_src;
7083     n1->_bottom_type = _bottom_type;
7084 
7085     decodeNKlass_shiftNode *n2 = new decodeNKlass_shiftNode();
7086     n2->add_req(n_region, n1);
7087     n2->_opnds[0] = op_dst;
7088     n2->_opnds[1] = op_dst;
7089     n2->_bottom_type = _bottom_type;
7090 
7091     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7092     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
7093 
7094     nodes->push(n1);
7095     nodes->push(n2);
7096   %}
7097 %}
7098 
7099 // src != 0, shift != 0, base != 0
7100 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
7101   match(Set dst (DecodeNKlass src));
7102   // predicate(Universe::narrow_klass_shift() != 0 &&
7103   //           Universe::narrow_klass_base() != 0);
7104 
7105   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
7106 
7107   ins_cost(DEFAULT_COST*2);  // Don't count constant.
7108   expand %{
7109     // We add first, then we shift. Like this, we can get along with one register less.
7110     // But we have to load the base pre-shifted.
7111     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
7112     iRegLdst base;
7113     loadConL_Ex(base, baseImm);
7114     decodeNKlass_notNull_addBase_Ex(dst, base, src);
7115   %}
7116 %}
7117 
7118 //----------MemBar Instructions-----------------------------------------------
7119 // Memory barrier flavors
7120 
7121 instruct membar_acquire() %{
7122   match(LoadFence);
7123   ins_cost(4*MEMORY_REF_COST);
7124 
7125   format %{ "MEMBAR-acquire" %}
7126   size(4);
7127   ins_encode %{
7128     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7129     __ acquire();
7130   %}
7131   ins_pipe(pipe_class_default);
7132 %}
7133 
7134 instruct unnecessary_membar_acquire() %{
7135   match(MemBarAcquire);
7136   ins_cost(0);
7137 
7138   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
7139   size(0);
7140   ins_encode( /*empty*/ );
7141   ins_pipe(pipe_class_default);
7142 %}
7143 
7144 instruct membar_acquire_lock() %{
7145   match(MemBarAcquireLock);
7146   ins_cost(0);
7147 
7148   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
7149   size(0);
7150   ins_encode( /*empty*/ );
7151   ins_pipe(pipe_class_default);
7152 %}
7153 
7154 instruct membar_release() %{
7155   match(MemBarRelease);
7156   match(StoreFence);
7157   ins_cost(4*MEMORY_REF_COST);
7158 
7159   format %{ "MEMBAR-release" %}
7160   size(4);
7161   ins_encode %{
7162     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7163     __ release();
7164   %}
7165   ins_pipe(pipe_class_default);
7166 %}
7167 
7168 instruct membar_storestore() %{
7169   match(MemBarStoreStore);
7170   ins_cost(4*MEMORY_REF_COST);
7171 
7172   format %{ "MEMBAR-store-store" %}
7173   size(4);
7174   ins_encode %{
7175     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
7176     __ membar(Assembler::StoreStore);
7177   %}
7178   ins_pipe(pipe_class_default);
7179 %}
7180 
7181 instruct membar_release_lock() %{
7182   match(MemBarReleaseLock);
7183   ins_cost(0);
7184 
7185   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
7186   size(0);
7187   ins_encode( /*empty*/ );
7188   ins_pipe(pipe_class_default);
7189 %}
7190 
7191 instruct membar_volatile() %{
7192   match(MemBarVolatile);
7193   ins_cost(4*MEMORY_REF_COST);
7194 
7195   format %{ "MEMBAR-volatile" %}
7196   size(4);
7197   ins_encode %{
7198     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
7199     __ fence();
7200   %}
7201   ins_pipe(pipe_class_default);
7202 %}
7203 
7204 // This optimization is wrong on PPC. The following pattern is not supported:
7205 //  MemBarVolatile
7206 //   ^        ^
7207 //   |        |
7208 //  CtrlProj MemProj
7209 //   ^        ^
7210 //   |        |
7211 //   |       Load
7212 //   |
7213 //  MemBarVolatile
7214 //
7215 //  The first MemBarVolatile could get optimized out! According to
7216 //  Vladimir, this pattern can not occur on Oracle platforms.
7217 //  However, it does occur on PPC64 (because of membars in
7218 //  inline_unsafe_load_store).
7219 //
7220 // Add this node again if we found a good solution for inline_unsafe_load_store().
7221 // Don't forget to look at the implementation of post_store_load_barrier again,
7222 // we did other fixes in that method.
7223 //instruct unnecessary_membar_volatile() %{
7224 //  match(MemBarVolatile);
7225 //  predicate(Matcher::post_store_load_barrier(n));
7226 //  ins_cost(0);
7227 //
7228 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
7229 //  size(0);
7230 //  ins_encode( /*empty*/ );
7231 //  ins_pipe(pipe_class_default);
7232 //%}
7233 
7234 instruct membar_CPUOrder() %{
7235   match(MemBarCPUOrder);
7236   ins_cost(0);
7237 
7238   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
7239   size(0);
7240   ins_encode( /*empty*/ );
7241   ins_pipe(pipe_class_default);
7242 %}
7243 
7244 //----------Conditional Move---------------------------------------------------
7245 
7246 // Cmove using isel.
7247 instruct cmovI_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegIdst dst, iRegIsrc src) %{
7248   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7249   predicate(VM_Version::has_isel());
7250   ins_cost(DEFAULT_COST);
7251 
7252   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7253   size(4);
7254   ins_encode %{
7255     // This is a Power7 instruction for which no machine description
7256     // exists. Anyways, the scheduler should be off on Power7.
7257     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7258     int cc        = $cmp$$cmpcode;
7259     __ isel($dst$$Register, $crx$$CondRegister,
7260             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7261   %}
7262   ins_pipe(pipe_class_default);
7263 %}
7264 
7265 instruct cmovI_reg(cmpOp cmp, flagsRegSrc crx, iRegIdst dst, iRegIsrc src) %{
7266   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7267   predicate(!VM_Version::has_isel());
7268   ins_cost(DEFAULT_COST+BRANCH_COST);
7269 
7270   ins_variable_size_depending_on_alignment(true);
7271 
7272   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7273   // Worst case is branch + move + stop, no stop without scheduler
7274   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7275   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7276   ins_pipe(pipe_class_default);
7277 %}
7278 
7279 instruct cmovI_imm(cmpOp cmp, flagsRegSrc crx, iRegIdst dst, immI16 src) %{
7280   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
7281   ins_cost(DEFAULT_COST+BRANCH_COST);
7282 
7283   ins_variable_size_depending_on_alignment(true);
7284 
7285   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7286   // Worst case is branch + move + stop, no stop without scheduler
7287   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7288   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7289   ins_pipe(pipe_class_default);
7290 %}
7291 
7292 // Cmove using isel.
7293 instruct cmovL_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegLdst dst, iRegLsrc src) %{
7294   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7295   predicate(VM_Version::has_isel());
7296   ins_cost(DEFAULT_COST);
7297 
7298   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7299   size(4);
7300   ins_encode %{
7301     // This is a Power7 instruction for which no machine description
7302     // exists. Anyways, the scheduler should be off on Power7.
7303     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7304     int cc        = $cmp$$cmpcode;
7305     __ isel($dst$$Register, $crx$$CondRegister,
7306             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7307   %}
7308   ins_pipe(pipe_class_default);
7309 %}
7310 
7311 instruct cmovL_reg(cmpOp cmp, flagsRegSrc crx, iRegLdst dst, iRegLsrc src) %{
7312   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7313   predicate(!VM_Version::has_isel());
7314   ins_cost(DEFAULT_COST+BRANCH_COST);
7315 
7316   ins_variable_size_depending_on_alignment(true);
7317 
7318   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7319   // Worst case is branch + move + stop, no stop without scheduler.
7320   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7321   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7322   ins_pipe(pipe_class_default);
7323 %}
7324 
7325 instruct cmovL_imm(cmpOp cmp, flagsRegSrc crx, iRegLdst dst, immL16 src) %{
7326   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
7327   ins_cost(DEFAULT_COST+BRANCH_COST);
7328 
7329   ins_variable_size_depending_on_alignment(true);
7330 
7331   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7332   // Worst case is branch + move + stop, no stop without scheduler.
7333   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7334   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7335   ins_pipe(pipe_class_default);
7336 %}
7337 
7338 // Cmove using isel.
7339 instruct cmovN_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegNdst dst, iRegNsrc src) %{
7340   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7341   predicate(VM_Version::has_isel());
7342   ins_cost(DEFAULT_COST);
7343 
7344   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7345   size(4);
7346   ins_encode %{
7347     // This is a Power7 instruction for which no machine description
7348     // exists. Anyways, the scheduler should be off on Power7.
7349     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7350     int cc        = $cmp$$cmpcode;
7351     __ isel($dst$$Register, $crx$$CondRegister,
7352             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7353   %}
7354   ins_pipe(pipe_class_default);
7355 %}
7356 
7357 // Conditional move for RegN. Only cmov(reg, reg).
7358 instruct cmovN_reg(cmpOp cmp, flagsRegSrc crx, iRegNdst dst, iRegNsrc src) %{
7359   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7360   predicate(!VM_Version::has_isel());
7361   ins_cost(DEFAULT_COST+BRANCH_COST);
7362 
7363   ins_variable_size_depending_on_alignment(true);
7364 
7365   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7366   // Worst case is branch + move + stop, no stop without scheduler.
7367   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7368   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7369   ins_pipe(pipe_class_default);
7370 %}
7371 
7372 instruct cmovN_imm(cmpOp cmp, flagsRegSrc crx, iRegNdst dst, immN_0 src) %{
7373   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
7374   ins_cost(DEFAULT_COST+BRANCH_COST);
7375 
7376   ins_variable_size_depending_on_alignment(true);
7377 
7378   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7379   // Worst case is branch + move + stop, no stop without scheduler.
7380   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7381   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7382   ins_pipe(pipe_class_default);
7383 %}
7384 
7385 // Cmove using isel.
7386 instruct cmovP_reg_isel(cmpOp cmp, flagsRegSrc crx, iRegPdst dst, iRegPsrc src) %{
7387   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7388   predicate(VM_Version::has_isel());
7389   ins_cost(DEFAULT_COST);
7390 
7391   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7392   size(4);
7393   ins_encode %{
7394     // This is a Power7 instruction for which no machine description
7395     // exists. Anyways, the scheduler should be off on Power7.
7396     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7397     int cc        = $cmp$$cmpcode;
7398     __ isel($dst$$Register, $crx$$CondRegister,
7399             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
7400   %}
7401   ins_pipe(pipe_class_default);
7402 %}
7403 
7404 instruct cmovP_reg(cmpOp cmp, flagsRegSrc crx, iRegPdst dst, iRegP_N2P src) %{
7405   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7406   predicate(!VM_Version::has_isel());
7407   ins_cost(DEFAULT_COST+BRANCH_COST);
7408 
7409   ins_variable_size_depending_on_alignment(true);
7410 
7411   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7412   // Worst case is branch + move + stop, no stop without scheduler.
7413   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7414   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
7415   ins_pipe(pipe_class_default);
7416 %}
7417 
7418 instruct cmovP_imm(cmpOp cmp, flagsRegSrc crx, iRegPdst dst, immP_0 src) %{
7419   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
7420   ins_cost(DEFAULT_COST+BRANCH_COST);
7421 
7422   ins_variable_size_depending_on_alignment(true);
7423 
7424   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
7425   // Worst case is branch + move + stop, no stop without scheduler.
7426   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
7427   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
7428   ins_pipe(pipe_class_default);
7429 %}
7430 
7431 instruct cmovF_reg(cmpOp cmp, flagsRegSrc crx, regF dst, regF src) %{
7432   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
7433   ins_cost(DEFAULT_COST+BRANCH_COST);
7434 
7435   ins_variable_size_depending_on_alignment(true);
7436 
7437   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7438   // Worst case is branch + move + stop, no stop without scheduler.
7439   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7440   ins_encode %{
7441     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7442     Label done;
7443     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7444     // Branch if not (cmp crx).
7445     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7446     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7447     // TODO PPC port __ endgroup_if_needed(_size == 12);
7448     __ bind(done);
7449   %}
7450   ins_pipe(pipe_class_default);
7451 %}
7452 
7453 instruct cmovD_reg(cmpOp cmp, flagsRegSrc crx, regD dst, regD src) %{
7454   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
7455   ins_cost(DEFAULT_COST+BRANCH_COST);
7456 
7457   ins_variable_size_depending_on_alignment(true);
7458 
7459   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
7460   // Worst case is branch + move + stop, no stop without scheduler.
7461   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
7462   ins_encode %{
7463     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
7464     Label done;
7465     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
7466     // Branch if not (cmp crx).
7467     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
7468     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
7469     // TODO PPC port __ endgroup_if_needed(_size == 12);
7470     __ bind(done);
7471   %}
7472   ins_pipe(pipe_class_default);
7473 %}
7474 
7475 //----------Conditional_store--------------------------------------------------
7476 // Conditional-store of the updated heap-top.
7477 // Used during allocation of the shared heap.
7478 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
7479 
7480 // As compareAndSwapL, but return flag register instead of boolean value in
7481 // int register.
7482 // Used by sun/misc/AtomicLongCSImpl.java.
7483 // Mem_ptr must be a memory operand, else this node does not get
7484 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7485 // can be rematerialized which leads to errors.
7486 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal, flagsRegCR0 cr0) %{
7487   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
7488   effect(TEMP cr0);
7489   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7490   ins_encode %{
7491     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7492     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
7493                 MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_atomic_update(),
7494                 noreg, NULL, true);
7495   %}
7496   ins_pipe(pipe_class_default);
7497 %}
7498 
7499 // As compareAndSwapP, but return flag register instead of boolean value in
7500 // int register.
7501 // This instruction is matched if UseTLAB is off.
7502 // Mem_ptr must be a memory operand, else this node does not get
7503 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
7504 // can be rematerialized which leads to errors.
7505 instruct storePConditional_regP_regP_regP(flagsRegCR0 cr0, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
7506   match(Set cr0 (StorePConditional mem_ptr (Binary oldVal newVal)));
7507   ins_cost(2*MEMORY_REF_COST);
7508 
7509   format %{ "STDCX_  if ($cr0 = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
7510   ins_encode %{
7511     // TODO: PPC port $archOpcode(ppc64Opcode_stdcx_);
7512     __ stdcx_($newVal$$Register, $mem_ptr$$Register);
7513   %}
7514   ins_pipe(pipe_class_memory);
7515 %}
7516 
7517 // Implement LoadPLocked. Must be ordered against changes of the memory location
7518 // by storePConditional.
7519 // Don't know whether this is ever used.
7520 instruct loadPLocked(iRegPdst dst, memory mem) %{
7521   match(Set dst (LoadPLocked mem));
7522   ins_cost(2*MEMORY_REF_COST);
7523 
7524   format %{ "LDARX   $dst, $mem \t// loadPLocked\n\t" %}
7525   size(4);
7526   ins_encode %{
7527     // TODO: PPC port $archOpcode(ppc64Opcode_ldarx);
7528     __ ldarx($dst$$Register, $mem$$Register, MacroAssembler::cmpxchgx_hint_atomic_update());
7529   %}
7530   ins_pipe(pipe_class_memory);
7531 %}
7532 
7533 //----------Compare-And-Swap---------------------------------------------------
7534 
7535 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
7536 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
7537 // matched.
7538 
7539 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2, flagsRegCR0 cr0) %{
7540   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
7541   effect(TEMP cr0);
7542   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7543   // Variable size: instruction count smaller if regs are disjoint.
7544   ins_encode %{
7545     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7546     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7547     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7548                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7549                 $res$$Register, true);
7550   %}
7551   ins_pipe(pipe_class_default);
7552 %}
7553 
7554 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2, flagsRegCR0 cr0) %{
7555   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
7556   effect(TEMP cr0);
7557   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
7558   // Variable size: instruction count smaller if regs are disjoint.
7559   ins_encode %{
7560     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7561     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7562     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7563                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7564                 $res$$Register, true);
7565   %}
7566   ins_pipe(pipe_class_default);
7567 %}
7568 
7569 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
7570   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
7571   effect(TEMP cr0);
7572   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
7573   // Variable size: instruction count smaller if regs are disjoint.
7574   ins_encode %{
7575     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7576     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7577     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7578                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7579                 $res$$Register, NULL, true);
7580   %}
7581   ins_pipe(pipe_class_default);
7582 %}
7583 
7584 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2, flagsRegCR0 cr0) %{
7585   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
7586   effect(TEMP cr0);
7587   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
7588   // Variable size: instruction count smaller if regs are disjoint.
7589   ins_encode %{
7590     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
7591     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
7592     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
7593                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
7594                 $res$$Register, NULL, true);
7595   %}
7596   ins_pipe(pipe_class_default);
7597 %}
7598 
7599 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src, flagsRegCR0 cr0) %{
7600   match(Set res (GetAndAddI mem_ptr src));
7601   effect(TEMP cr0);
7602   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
7603   // Variable size: instruction count smaller if regs are disjoint.
7604   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
7605   ins_pipe(pipe_class_default);
7606 %}
7607 
7608 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src, flagsRegCR0 cr0) %{
7609   match(Set res (GetAndAddL mem_ptr src));
7610   effect(TEMP cr0);
7611   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
7612   // Variable size: instruction count smaller if regs are disjoint.
7613   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
7614   ins_pipe(pipe_class_default);
7615 %}
7616 
7617 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src, flagsRegCR0 cr0) %{
7618   match(Set res (GetAndSetI mem_ptr src));
7619   effect(TEMP cr0);
7620   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
7621   // Variable size: instruction count smaller if regs are disjoint.
7622   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7623   ins_pipe(pipe_class_default);
7624 %}
7625 
7626 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src, flagsRegCR0 cr0) %{
7627   match(Set res (GetAndSetL mem_ptr src));
7628   effect(TEMP cr0);
7629   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
7630   // Variable size: instruction count smaller if regs are disjoint.
7631   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7632   ins_pipe(pipe_class_default);
7633 %}
7634 
7635 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src, flagsRegCR0 cr0) %{
7636   match(Set res (GetAndSetP mem_ptr src));
7637   effect(TEMP cr0);
7638   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
7639   // Variable size: instruction count smaller if regs are disjoint.
7640   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
7641   ins_pipe(pipe_class_default);
7642 %}
7643 
7644 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src, flagsRegCR0 cr0) %{
7645   match(Set res (GetAndSetN mem_ptr src));
7646   effect(TEMP cr0);
7647   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
7648   // Variable size: instruction count smaller if regs are disjoint.
7649   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
7650   ins_pipe(pipe_class_default);
7651 %}
7652 
7653 //----------Arithmetic Instructions--------------------------------------------
7654 // Addition Instructions
7655 
7656 // Register Addition
7657 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
7658   match(Set dst (AddI src1 src2));
7659   format %{ "ADD     $dst, $src1, $src2" %}
7660   size(4);
7661   ins_encode %{
7662     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7663     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7664   %}
7665   ins_pipe(pipe_class_default);
7666 %}
7667 
7668 // Expand does not work with above instruct. (??)
7669 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7670   // no match-rule
7671   effect(DEF dst, USE src1, USE src2);
7672   format %{ "ADD     $dst, $src1, $src2" %}
7673   size(4);
7674   ins_encode %{
7675     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7676     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7677   %}
7678   ins_pipe(pipe_class_default);
7679 %}
7680 
7681 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
7682   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
7683   ins_cost(DEFAULT_COST*3);
7684 
7685   expand %{
7686     // FIXME: we should do this in the ideal world.
7687     iRegIdst tmp1;
7688     iRegIdst tmp2;
7689     addI_reg_reg(tmp1, src1, src2);
7690     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
7691     addI_reg_reg(dst, tmp1, tmp2);
7692   %}
7693 %}
7694 
7695 // Immediate Addition
7696 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
7697   match(Set dst (AddI src1 src2));
7698   format %{ "ADDI    $dst, $src1, $src2" %}
7699   size(4);
7700   ins_encode %{
7701     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7702     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7703   %}
7704   ins_pipe(pipe_class_default);
7705 %}
7706 
7707 // Immediate Addition with 16-bit shifted operand
7708 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
7709   match(Set dst (AddI src1 src2));
7710   format %{ "ADDIS   $dst, $src1, $src2" %}
7711   size(4);
7712   ins_encode %{
7713     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7714     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7715   %}
7716   ins_pipe(pipe_class_default);
7717 %}
7718 
7719 // Long Addition
7720 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7721   match(Set dst (AddL src1 src2));
7722   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7723   size(4);
7724   ins_encode %{
7725     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7726     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7727   %}
7728   ins_pipe(pipe_class_default);
7729 %}
7730 
7731 // Expand does not work with above instruct. (??)
7732 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7733   // no match-rule
7734   effect(DEF dst, USE src1, USE src2);
7735   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
7736   size(4);
7737   ins_encode %{
7738     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7739     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7740   %}
7741   ins_pipe(pipe_class_default);
7742 %}
7743 
7744 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
7745   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
7746   ins_cost(DEFAULT_COST*3);
7747 
7748   expand %{
7749     // FIXME: we should do this in the ideal world.
7750     iRegLdst tmp1;
7751     iRegLdst tmp2;
7752     addL_reg_reg(tmp1, src1, src2);
7753     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
7754     addL_reg_reg(dst, tmp1, tmp2);
7755   %}
7756 %}
7757 
7758 // AddL + ConvL2I.
7759 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7760   match(Set dst (ConvL2I (AddL src1 src2)));
7761 
7762   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
7763   size(4);
7764   ins_encode %{
7765     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7766     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7767   %}
7768   ins_pipe(pipe_class_default);
7769 %}
7770 
7771 // No constant pool entries required.
7772 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
7773   match(Set dst (AddL src1 src2));
7774 
7775   format %{ "ADDI    $dst, $src1, $src2" %}
7776   size(4);
7777   ins_encode %{
7778     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7779     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7780   %}
7781   ins_pipe(pipe_class_default);
7782 %}
7783 
7784 // Long Immediate Addition with 16-bit shifted operand.
7785 // No constant pool entries required.
7786 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
7787   match(Set dst (AddL src1 src2));
7788 
7789   format %{ "ADDIS   $dst, $src1, $src2" %}
7790   size(4);
7791   ins_encode %{
7792     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7793     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7794   %}
7795   ins_pipe(pipe_class_default);
7796 %}
7797 
7798 // Pointer Register Addition
7799 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
7800   match(Set dst (AddP src1 src2));
7801   format %{ "ADD     $dst, $src1, $src2" %}
7802   size(4);
7803   ins_encode %{
7804     // TODO: PPC port $archOpcode(ppc64Opcode_add);
7805     __ add($dst$$Register, $src1$$Register, $src2$$Register);
7806   %}
7807   ins_pipe(pipe_class_default);
7808 %}
7809 
7810 // Pointer Immediate Addition
7811 // No constant pool entries required.
7812 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
7813   match(Set dst (AddP src1 src2));
7814 
7815   format %{ "ADDI    $dst, $src1, $src2" %}
7816   size(4);
7817   ins_encode %{
7818     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
7819     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
7820   %}
7821   ins_pipe(pipe_class_default);
7822 %}
7823 
7824 // Pointer Immediate Addition with 16-bit shifted operand.
7825 // No constant pool entries required.
7826 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
7827   match(Set dst (AddP src1 src2));
7828 
7829   format %{ "ADDIS   $dst, $src1, $src2" %}
7830   size(4);
7831   ins_encode %{
7832     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
7833     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
7834   %}
7835   ins_pipe(pipe_class_default);
7836 %}
7837 
7838 //---------------------
7839 // Subtraction Instructions
7840 
7841 // Register Subtraction
7842 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7843   match(Set dst (SubI src1 src2));
7844   format %{ "SUBF    $dst, $src2, $src1" %}
7845   size(4);
7846   ins_encode %{
7847     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7848     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7849   %}
7850   ins_pipe(pipe_class_default);
7851 %}
7852 
7853 // Immediate Subtraction
7854 // Immediate Subtraction: The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
7855 // Don't try to use addi with - $src2$$constant since it can overflow when $src2$$constant == minI16.
7856 
7857 // SubI from constant (using subfic).
7858 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
7859   match(Set dst (SubI src1 src2));
7860   format %{ "SUBI    $dst, $src1, $src2" %}
7861 
7862   size(4);
7863   ins_encode %{
7864     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
7865     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
7866   %}
7867   ins_pipe(pipe_class_default);
7868 %}
7869 
7870 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
7871 // positive integers and 0xF...F for negative ones.
7872 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
7873   // no match-rule, false predicate
7874   effect(DEF dst, USE src);
7875   predicate(false);
7876 
7877   format %{ "SRAWI   $dst, $src, #31" %}
7878   size(4);
7879   ins_encode %{
7880     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
7881     __ srawi($dst$$Register, $src$$Register, 0x1f);
7882   %}
7883   ins_pipe(pipe_class_default);
7884 %}
7885 
7886 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
7887   match(Set dst (AbsI src));
7888   ins_cost(DEFAULT_COST*3);
7889 
7890   expand %{
7891     iRegIdst tmp1;
7892     iRegIdst tmp2;
7893     signmask32I_regI(tmp1, src);
7894     xorI_reg_reg(tmp2, tmp1, src);
7895     subI_reg_reg(dst, tmp2, tmp1);
7896   %}
7897 %}
7898 
7899 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
7900   match(Set dst (SubI zero src2));
7901   format %{ "NEG     $dst, $src2" %}
7902   size(4);
7903   ins_encode %{
7904     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7905     __ neg($dst$$Register, $src2$$Register);
7906   %}
7907   ins_pipe(pipe_class_default);
7908 %}
7909 
7910 // Long subtraction
7911 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
7912   match(Set dst (SubL src1 src2));
7913   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
7914   size(4);
7915   ins_encode %{
7916     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7917     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7918   %}
7919   ins_pipe(pipe_class_default);
7920 %}
7921 
7922 // SubL + convL2I.
7923 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
7924   match(Set dst (ConvL2I (SubL src1 src2)));
7925 
7926   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
7927   size(4);
7928   ins_encode %{
7929     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
7930     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
7931   %}
7932   ins_pipe(pipe_class_default);
7933 %}
7934 
7935 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
7936 // positive longs and 0xF...F for negative ones.
7937 instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
7938   // no match-rule, false predicate
7939   effect(DEF dst, USE src);
7940   predicate(false);
7941 
7942   format %{ "SRADI   $dst, $src, #63" %}
7943   size(4);
7944   ins_encode %{
7945     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
7946     __ sradi($dst$$Register, $src$$Register, 0x3f);
7947   %}
7948   ins_pipe(pipe_class_default);
7949 %}
7950 
7951 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
7952 // positive longs and 0xF...F for negative ones.
7953 instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
7954   // no match-rule, false predicate
7955   effect(DEF dst, USE src);
7956   predicate(false);
7957 
7958   format %{ "SRADI   $dst, $src, #63" %}
7959   size(4);
7960   ins_encode %{
7961     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
7962     __ sradi($dst$$Register, $src$$Register, 0x3f);
7963   %}
7964   ins_pipe(pipe_class_default);
7965 %}
7966 
7967 // Long negation
7968 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
7969   match(Set dst (SubL zero src2));
7970   format %{ "NEG     $dst, $src2 \t// long" %}
7971   size(4);
7972   ins_encode %{
7973     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7974     __ neg($dst$$Register, $src2$$Register);
7975   %}
7976   ins_pipe(pipe_class_default);
7977 %}
7978 
7979 // NegL + ConvL2I.
7980 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
7981   match(Set dst (ConvL2I (SubL zero src2)));
7982 
7983   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
7984   size(4);
7985   ins_encode %{
7986     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
7987     __ neg($dst$$Register, $src2$$Register);
7988   %}
7989   ins_pipe(pipe_class_default);
7990 %}
7991 
7992 // Multiplication Instructions
7993 // Integer Multiplication
7994 
7995 // Register Multiplication
7996 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
7997   match(Set dst (MulI src1 src2));
7998   ins_cost(DEFAULT_COST);
7999 
8000   format %{ "MULLW   $dst, $src1, $src2" %}
8001   size(4);
8002   ins_encode %{
8003     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
8004     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
8005   %}
8006   ins_pipe(pipe_class_default);
8007 %}
8008 
8009 // Immediate Multiplication
8010 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
8011   match(Set dst (MulI src1 src2));
8012   ins_cost(DEFAULT_COST);
8013 
8014   format %{ "MULLI   $dst, $src1, $src2" %}
8015   size(4);
8016   ins_encode %{
8017     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
8018     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
8019   %}
8020   ins_pipe(pipe_class_default);
8021 %}
8022 
8023 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8024   match(Set dst (MulL src1 src2));
8025   ins_cost(DEFAULT_COST);
8026 
8027   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
8028   size(4);
8029   ins_encode %{
8030     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
8031     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
8032   %}
8033   ins_pipe(pipe_class_default);
8034 %}
8035 
8036 // Multiply high for optimized long division by constant.
8037 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8038   match(Set dst (MulHiL src1 src2));
8039   ins_cost(DEFAULT_COST);
8040 
8041   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
8042   size(4);
8043   ins_encode %{
8044     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
8045     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
8046   %}
8047   ins_pipe(pipe_class_default);
8048 %}
8049 
8050 // Immediate Multiplication
8051 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
8052   match(Set dst (MulL src1 src2));
8053   ins_cost(DEFAULT_COST);
8054 
8055   format %{ "MULLI   $dst, $src1, $src2" %}
8056   size(4);
8057   ins_encode %{
8058     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
8059     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
8060   %}
8061   ins_pipe(pipe_class_default);
8062 %}
8063 
8064 // Integer Division with Immediate -1: Negate.
8065 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
8066   match(Set dst (DivI src1 src2));
8067   ins_cost(DEFAULT_COST);
8068 
8069   format %{ "NEG     $dst, $src1 \t// /-1" %}
8070   size(4);
8071   ins_encode %{
8072     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8073     __ neg($dst$$Register, $src1$$Register);
8074   %}
8075   ins_pipe(pipe_class_default);
8076 %}
8077 
8078 // Integer Division with constant, but not -1.
8079 // We should be able to improve this by checking the type of src2.
8080 // It might well be that src2 is known to be positive.
8081 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8082   match(Set dst (DivI src1 src2));
8083   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
8084   ins_cost(2*DEFAULT_COST);
8085 
8086   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
8087   size(4);
8088   ins_encode %{
8089     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
8090     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
8091   %}
8092   ins_pipe(pipe_class_default);
8093 %}
8094 
8095 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsRegSrc crx, iRegIsrc src1) %{
8096   effect(USE_DEF dst, USE src1, USE crx);
8097   predicate(false);
8098 
8099   ins_variable_size_depending_on_alignment(true);
8100 
8101   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8102   // Worst case is branch + move + stop, no stop without scheduler.
8103   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8104   ins_encode %{
8105     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8106     Label done;
8107     __ bne($crx$$CondRegister, done);
8108     __ neg($dst$$Register, $src1$$Register);
8109     // TODO PPC port __ endgroup_if_needed(_size == 12);
8110     __ bind(done);
8111   %}
8112   ins_pipe(pipe_class_default);
8113 %}
8114 
8115 // Integer Division with Registers not containing constants.
8116 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8117   match(Set dst (DivI src1 src2));
8118   ins_cost(10*DEFAULT_COST);
8119 
8120   expand %{
8121     immI16 imm %{ (int)-1 %}
8122     flagsReg tmp1;
8123     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8124     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8125     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8126   %}
8127 %}
8128 
8129 // Long Division with Immediate -1: Negate.
8130 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
8131   match(Set dst (DivL src1 src2));
8132   ins_cost(DEFAULT_COST);
8133 
8134   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
8135   size(4);
8136   ins_encode %{
8137     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
8138     __ neg($dst$$Register, $src1$$Register);
8139   %}
8140   ins_pipe(pipe_class_default);
8141 %}
8142 
8143 // Long Division with constant, but not -1.
8144 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8145   match(Set dst (DivL src1 src2));
8146   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
8147   ins_cost(2*DEFAULT_COST);
8148 
8149   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
8150   size(4);
8151   ins_encode %{
8152     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
8153     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
8154   %}
8155   ins_pipe(pipe_class_default);
8156 %}
8157 
8158 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsRegSrc crx, iRegLsrc src1) %{
8159   effect(USE_DEF dst, USE src1, USE crx);
8160   predicate(false);
8161 
8162   ins_variable_size_depending_on_alignment(true);
8163 
8164   format %{ "CMOVE   $dst, neg($src1), $crx" %}
8165   // Worst case is branch + move + stop, no stop without scheduler.
8166   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
8167   ins_encode %{
8168     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
8169     Label done;
8170     __ bne($crx$$CondRegister, done);
8171     __ neg($dst$$Register, $src1$$Register);
8172     // TODO PPC port __ endgroup_if_needed(_size == 12);
8173     __ bind(done);
8174   %}
8175   ins_pipe(pipe_class_default);
8176 %}
8177 
8178 // Long Division with Registers not containing constants.
8179 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8180   match(Set dst (DivL src1 src2));
8181   ins_cost(10*DEFAULT_COST);
8182 
8183   expand %{
8184     immL16 imm %{ (int)-1 %}
8185     flagsReg tmp1;
8186     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
8187     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
8188     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
8189   %}
8190 %}
8191 
8192 // Integer Remainder with registers.
8193 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8194   match(Set dst (ModI src1 src2));
8195   ins_cost(10*DEFAULT_COST);
8196 
8197   expand %{
8198     immI16 imm %{ (int)-1 %}
8199     flagsReg tmp1;
8200     iRegIdst tmp2;
8201     iRegIdst tmp3;
8202     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
8203     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
8204     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
8205     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
8206     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
8207   %}
8208 %}
8209 
8210 // Long Remainder with registers
8211 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8212   match(Set dst (ModL src1 src2));
8213   ins_cost(10*DEFAULT_COST);
8214 
8215   expand %{
8216     immL16 imm %{ (int)-1 %}
8217     flagsReg tmp1;
8218     iRegLdst tmp2;
8219     iRegLdst tmp3;
8220     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
8221     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
8222     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
8223     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
8224     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
8225   %}
8226 %}
8227 
8228 // Integer Shift Instructions
8229 
8230 // Register Shift Left
8231 
8232 // Clear all but the lowest #mask bits.
8233 // Used to normalize shift amounts in registers.
8234 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
8235   // no match-rule, false predicate
8236   effect(DEF dst, USE src, USE mask);
8237   predicate(false);
8238 
8239   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
8240   size(4);
8241   ins_encode %{
8242     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8243     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
8244   %}
8245   ins_pipe(pipe_class_default);
8246 %}
8247 
8248 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8249   // no match-rule, false predicate
8250   effect(DEF dst, USE src1, USE src2);
8251   predicate(false);
8252 
8253   format %{ "SLW     $dst, $src1, $src2" %}
8254   size(4);
8255   ins_encode %{
8256     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
8257     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
8258   %}
8259   ins_pipe(pipe_class_default);
8260 %}
8261 
8262 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8263   match(Set dst (LShiftI src1 src2));
8264   ins_cost(DEFAULT_COST*2);
8265   expand %{
8266     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8267     iRegIdst tmpI;
8268     maskI_reg_imm(tmpI, src2, mask);
8269     lShiftI_reg_reg(dst, src1, tmpI);
8270   %}
8271 %}
8272 
8273 // Register Shift Left Immediate
8274 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8275   match(Set dst (LShiftI src1 src2));
8276 
8277   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
8278   size(4);
8279   ins_encode %{
8280     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8281     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8282   %}
8283   ins_pipe(pipe_class_default);
8284 %}
8285 
8286 // AndI with negpow2-constant + LShiftI
8287 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8288   match(Set dst (LShiftI (AndI src1 src2) src3));
8289   predicate(UseRotateAndMaskInstructionsPPC64);
8290 
8291   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
8292   size(4);
8293   ins_encode %{
8294     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8295     long src2      = $src2$$constant;
8296     long src3      = $src3$$constant;
8297     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8298     if (maskbits >= 32) {
8299       __ li($dst$$Register, 0); // addi
8300     } else {
8301       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
8302     }
8303   %}
8304   ins_pipe(pipe_class_default);
8305 %}
8306 
8307 // RShiftI + AndI with negpow2-constant + LShiftI
8308 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
8309   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
8310   predicate(UseRotateAndMaskInstructionsPPC64);
8311 
8312   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
8313   size(4);
8314   ins_encode %{
8315     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
8316     long src2      = $src2$$constant;
8317     long src3      = $src3$$constant;
8318     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
8319     if (maskbits >= 32) {
8320       __ li($dst$$Register, 0); // addi
8321     } else {
8322       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
8323     }
8324   %}
8325   ins_pipe(pipe_class_default);
8326 %}
8327 
8328 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8329   // no match-rule, false predicate
8330   effect(DEF dst, USE src1, USE src2);
8331   predicate(false);
8332 
8333   format %{ "SLD     $dst, $src1, $src2" %}
8334   size(4);
8335   ins_encode %{
8336     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
8337     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
8338   %}
8339   ins_pipe(pipe_class_default);
8340 %}
8341 
8342 // Register Shift Left
8343 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8344   match(Set dst (LShiftL src1 src2));
8345   ins_cost(DEFAULT_COST*2);
8346   expand %{
8347     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8348     iRegIdst tmpI;
8349     maskI_reg_imm(tmpI, src2, mask);
8350     lShiftL_regL_regI(dst, src1, tmpI);
8351   %}
8352 %}
8353 
8354 // Register Shift Left Immediate
8355 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8356   match(Set dst (LShiftL src1 src2));
8357   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
8358   size(4);
8359   ins_encode %{
8360     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8361     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8362   %}
8363   ins_pipe(pipe_class_default);
8364 %}
8365 
8366 // If we shift more than 32 bits, we need not convert I2L.
8367 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
8368   match(Set dst (LShiftL (ConvI2L src1) src2));
8369   ins_cost(DEFAULT_COST);
8370 
8371   size(4);
8372   format %{ "SLDI    $dst, i2l($src1), $src2" %}
8373   ins_encode %{
8374     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8375     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8376   %}
8377   ins_pipe(pipe_class_default);
8378 %}
8379 
8380 // Shift a postivie int to the left.
8381 // Clrlsldi clears the upper 32 bits and shifts.
8382 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
8383   match(Set dst (LShiftL (ConvI2L src1) src2));
8384   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
8385 
8386   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
8387   size(4);
8388   ins_encode %{
8389     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
8390     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
8391   %}
8392   ins_pipe(pipe_class_default);
8393 %}
8394 
8395 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8396   // no match-rule, false predicate
8397   effect(DEF dst, USE src1, USE src2);
8398   predicate(false);
8399 
8400   format %{ "SRAW    $dst, $src1, $src2" %}
8401   size(4);
8402   ins_encode %{
8403     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
8404     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
8405   %}
8406   ins_pipe(pipe_class_default);
8407 %}
8408 
8409 // Register Arithmetic Shift Right
8410 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8411   match(Set dst (RShiftI src1 src2));
8412   ins_cost(DEFAULT_COST*2);
8413   expand %{
8414     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8415     iRegIdst tmpI;
8416     maskI_reg_imm(tmpI, src2, mask);
8417     arShiftI_reg_reg(dst, src1, tmpI);
8418   %}
8419 %}
8420 
8421 // Register Arithmetic Shift Right Immediate
8422 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8423   match(Set dst (RShiftI src1 src2));
8424 
8425   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
8426   size(4);
8427   ins_encode %{
8428     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
8429     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8430   %}
8431   ins_pipe(pipe_class_default);
8432 %}
8433 
8434 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8435   // no match-rule, false predicate
8436   effect(DEF dst, USE src1, USE src2);
8437   predicate(false);
8438 
8439   format %{ "SRAD    $dst, $src1, $src2" %}
8440   size(4);
8441   ins_encode %{
8442     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
8443     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
8444   %}
8445   ins_pipe(pipe_class_default);
8446 %}
8447 
8448 // Register Shift Right Arithmetic Long
8449 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8450   match(Set dst (RShiftL src1 src2));
8451   ins_cost(DEFAULT_COST*2);
8452 
8453   expand %{
8454     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8455     iRegIdst tmpI;
8456     maskI_reg_imm(tmpI, src2, mask);
8457     arShiftL_regL_regI(dst, src1, tmpI);
8458   %}
8459 %}
8460 
8461 // Register Shift Right Immediate
8462 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8463   match(Set dst (RShiftL src1 src2));
8464 
8465   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
8466   size(4);
8467   ins_encode %{
8468     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8469     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8470   %}
8471   ins_pipe(pipe_class_default);
8472 %}
8473 
8474 // RShiftL + ConvL2I
8475 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8476   match(Set dst (ConvL2I (RShiftL src1 src2)));
8477 
8478   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8479   size(4);
8480   ins_encode %{
8481     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
8482     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8483   %}
8484   ins_pipe(pipe_class_default);
8485 %}
8486 
8487 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8488   // no match-rule, false predicate
8489   effect(DEF dst, USE src1, USE src2);
8490   predicate(false);
8491 
8492   format %{ "SRW     $dst, $src1, $src2" %}
8493   size(4);
8494   ins_encode %{
8495     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
8496     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
8497   %}
8498   ins_pipe(pipe_class_default);
8499 %}
8500 
8501 // Register Shift Right
8502 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8503   match(Set dst (URShiftI src1 src2));
8504   ins_cost(DEFAULT_COST*2);
8505 
8506   expand %{
8507     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
8508     iRegIdst tmpI;
8509     maskI_reg_imm(tmpI, src2, mask);
8510     urShiftI_reg_reg(dst, src1, tmpI);
8511   %}
8512 %}
8513 
8514 // Register Shift Right Immediate
8515 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
8516   match(Set dst (URShiftI src1 src2));
8517 
8518   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
8519   size(4);
8520   ins_encode %{
8521     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8522     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
8523   %}
8524   ins_pipe(pipe_class_default);
8525 %}
8526 
8527 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8528   // no match-rule, false predicate
8529   effect(DEF dst, USE src1, USE src2);
8530   predicate(false);
8531 
8532   format %{ "SRD     $dst, $src1, $src2" %}
8533   size(4);
8534   ins_encode %{
8535     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
8536     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
8537   %}
8538   ins_pipe(pipe_class_default);
8539 %}
8540 
8541 // Register Shift Right
8542 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
8543   match(Set dst (URShiftL src1 src2));
8544   ins_cost(DEFAULT_COST*2);
8545 
8546   expand %{
8547     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
8548     iRegIdst tmpI;
8549     maskI_reg_imm(tmpI, src2, mask);
8550     urShiftL_regL_regI(dst, src1, tmpI);
8551   %}
8552 %}
8553 
8554 // Register Shift Right Immediate
8555 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
8556   match(Set dst (URShiftL src1 src2));
8557 
8558   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
8559   size(4);
8560   ins_encode %{
8561     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8562     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8563   %}
8564   ins_pipe(pipe_class_default);
8565 %}
8566 
8567 // URShiftL + ConvL2I.
8568 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
8569   match(Set dst (ConvL2I (URShiftL src1 src2)));
8570 
8571   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
8572   size(4);
8573   ins_encode %{
8574     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8575     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8576   %}
8577   ins_pipe(pipe_class_default);
8578 %}
8579 
8580 // Register Shift Right Immediate with a CastP2X
8581 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
8582   match(Set dst (URShiftL (CastP2X src1) src2));
8583 
8584   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
8585   size(4);
8586   ins_encode %{
8587     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8588     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
8589   %}
8590   ins_pipe(pipe_class_default);
8591 %}
8592 
8593 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
8594   match(Set dst (ConvL2I (ConvI2L src)));
8595 
8596   format %{ "EXTSW   $dst, $src \t// int->int" %}
8597   size(4);
8598   ins_encode %{
8599     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
8600     __ extsw($dst$$Register, $src$$Register);
8601   %}
8602   ins_pipe(pipe_class_default);
8603 %}
8604 
8605 //----------Rotate Instructions------------------------------------------------
8606 
8607 // Rotate Left by 8-bit immediate
8608 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
8609   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
8610   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8611 
8612   format %{ "ROTLWI  $dst, $src, $lshift" %}
8613   size(4);
8614   ins_encode %{
8615     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8616     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
8617   %}
8618   ins_pipe(pipe_class_default);
8619 %}
8620 
8621 // Rotate Right by 8-bit immediate
8622 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
8623   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
8624   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8625 
8626   format %{ "ROTRWI  $dst, $rshift" %}
8627   size(4);
8628   ins_encode %{
8629     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8630     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
8631   %}
8632   ins_pipe(pipe_class_default);
8633 %}
8634 
8635 //----------Floating Point Arithmetic Instructions-----------------------------
8636 
8637 // Add float single precision
8638 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
8639   match(Set dst (AddF src1 src2));
8640 
8641   format %{ "FADDS   $dst, $src1, $src2" %}
8642   size(4);
8643   ins_encode %{
8644     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
8645     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8646   %}
8647   ins_pipe(pipe_class_default);
8648 %}
8649 
8650 // Add float double precision
8651 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
8652   match(Set dst (AddD src1 src2));
8653 
8654   format %{ "FADD    $dst, $src1, $src2" %}
8655   size(4);
8656   ins_encode %{
8657     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
8658     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8659   %}
8660   ins_pipe(pipe_class_default);
8661 %}
8662 
8663 // Sub float single precision
8664 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
8665   match(Set dst (SubF src1 src2));
8666 
8667   format %{ "FSUBS   $dst, $src1, $src2" %}
8668   size(4);
8669   ins_encode %{
8670     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
8671     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8672   %}
8673   ins_pipe(pipe_class_default);
8674 %}
8675 
8676 // Sub float double precision
8677 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
8678   match(Set dst (SubD src1 src2));
8679   format %{ "FSUB    $dst, $src1, $src2" %}
8680   size(4);
8681   ins_encode %{
8682     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
8683     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8684   %}
8685   ins_pipe(pipe_class_default);
8686 %}
8687 
8688 // Mul float single precision
8689 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
8690   match(Set dst (MulF src1 src2));
8691   format %{ "FMULS   $dst, $src1, $src2" %}
8692   size(4);
8693   ins_encode %{
8694     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
8695     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8696   %}
8697   ins_pipe(pipe_class_default);
8698 %}
8699 
8700 // Mul float double precision
8701 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
8702   match(Set dst (MulD src1 src2));
8703   format %{ "FMUL    $dst, $src1, $src2" %}
8704   size(4);
8705   ins_encode %{
8706     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
8707     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8708   %}
8709   ins_pipe(pipe_class_default);
8710 %}
8711 
8712 // Div float single precision
8713 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
8714   match(Set dst (DivF src1 src2));
8715   format %{ "FDIVS   $dst, $src1, $src2" %}
8716   size(4);
8717   ins_encode %{
8718     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
8719     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8720   %}
8721   ins_pipe(pipe_class_default);
8722 %}
8723 
8724 // Div float double precision
8725 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
8726   match(Set dst (DivD src1 src2));
8727   format %{ "FDIV    $dst, $src1, $src2" %}
8728   size(4);
8729   ins_encode %{
8730     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
8731     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
8732   %}
8733   ins_pipe(pipe_class_default);
8734 %}
8735 
8736 // Absolute float single precision
8737 instruct absF_reg(regF dst, regF src) %{
8738   match(Set dst (AbsF src));
8739   format %{ "FABS    $dst, $src \t// float" %}
8740   size(4);
8741   ins_encode %{
8742     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8743     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8744   %}
8745   ins_pipe(pipe_class_default);
8746 %}
8747 
8748 // Absolute float double precision
8749 instruct absD_reg(regD dst, regD src) %{
8750   match(Set dst (AbsD src));
8751   format %{ "FABS    $dst, $src \t// double" %}
8752   size(4);
8753   ins_encode %{
8754     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
8755     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
8756   %}
8757   ins_pipe(pipe_class_default);
8758 %}
8759 
8760 instruct negF_reg(regF dst, regF src) %{
8761   match(Set dst (NegF src));
8762   format %{ "FNEG    $dst, $src \t// float" %}
8763   size(4);
8764   ins_encode %{
8765     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8766     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8767   %}
8768   ins_pipe(pipe_class_default);
8769 %}
8770 
8771 instruct negD_reg(regD dst, regD src) %{
8772   match(Set dst (NegD src));
8773   format %{ "FNEG    $dst, $src \t// double" %}
8774   size(4);
8775   ins_encode %{
8776     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
8777     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
8778   %}
8779   ins_pipe(pipe_class_default);
8780 %}
8781 
8782 // AbsF + NegF.
8783 instruct negF_absF_reg(regF dst, regF src) %{
8784   match(Set dst (NegF (AbsF src)));
8785   format %{ "FNABS   $dst, $src \t// float" %}
8786   size(4);
8787   ins_encode %{
8788     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8789     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8790   %}
8791   ins_pipe(pipe_class_default);
8792 %}
8793 
8794 // AbsD + NegD.
8795 instruct negD_absD_reg(regD dst, regD src) %{
8796   match(Set dst (NegD (AbsD src)));
8797   format %{ "FNABS   $dst, $src \t// double" %}
8798   size(4);
8799   ins_encode %{
8800     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
8801     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
8802   %}
8803   ins_pipe(pipe_class_default);
8804 %}
8805 
8806 // VM_Version::has_fsqrt() decides if this node will be used.
8807 // Sqrt float double precision
8808 instruct sqrtD_reg(regD dst, regD src) %{
8809   match(Set dst (SqrtD src));
8810   format %{ "FSQRT   $dst, $src" %}
8811   size(4);
8812   ins_encode %{
8813     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
8814     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
8815   %}
8816   ins_pipe(pipe_class_default);
8817 %}
8818 
8819 // Single-precision sqrt.
8820 instruct sqrtF_reg(regF dst, regF src) %{
8821   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8822   predicate(VM_Version::has_fsqrts());
8823   ins_cost(DEFAULT_COST);
8824 
8825   format %{ "FSQRTS  $dst, $src" %}
8826   size(4);
8827   ins_encode %{
8828     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
8829     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
8830   %}
8831   ins_pipe(pipe_class_default);
8832 %}
8833 
8834 instruct roundDouble_nop(regD dst) %{
8835   match(Set dst (RoundDouble dst));
8836   ins_cost(0);
8837 
8838   format %{ " -- \t// RoundDouble not needed - empty" %}
8839   size(0);
8840   // PPC results are already "rounded" (i.e., normal-format IEEE).
8841   ins_encode( /*empty*/ );
8842   ins_pipe(pipe_class_default);
8843 %}
8844 
8845 instruct roundFloat_nop(regF dst) %{
8846   match(Set dst (RoundFloat dst));
8847   ins_cost(0);
8848 
8849   format %{ " -- \t// RoundFloat not needed - empty" %}
8850   size(0);
8851   // PPC results are already "rounded" (i.e., normal-format IEEE).
8852   ins_encode( /*empty*/ );
8853   ins_pipe(pipe_class_default);
8854 %}
8855 
8856 //----------Logical Instructions-----------------------------------------------
8857 
8858 // And Instructions
8859 
8860 // Register And
8861 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8862   match(Set dst (AndI src1 src2));
8863   format %{ "AND     $dst, $src1, $src2" %}
8864   size(4);
8865   ins_encode %{
8866     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8867     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8868   %}
8869   ins_pipe(pipe_class_default);
8870 %}
8871 
8872 // Immediate And
8873 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
8874   match(Set dst (AndI src1 src2));
8875   effect(KILL cr0);
8876 
8877   format %{ "ANDI    $dst, $src1, $src2" %}
8878   size(4);
8879   ins_encode %{
8880     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8881     // FIXME: avoid andi_ ?
8882     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8883   %}
8884   ins_pipe(pipe_class_default);
8885 %}
8886 
8887 // Immediate And where the immediate is a negative power of 2.
8888 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
8889   match(Set dst (AndI src1 src2));
8890   format %{ "ANDWI   $dst, $src1, $src2" %}
8891   size(4);
8892   ins_encode %{
8893     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8894     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
8895   %}
8896   ins_pipe(pipe_class_default);
8897 %}
8898 
8899 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
8900   match(Set dst (AndI src1 src2));
8901   format %{ "ANDWI   $dst, $src1, $src2" %}
8902   size(4);
8903   ins_encode %{
8904     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8905     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8906   %}
8907   ins_pipe(pipe_class_default);
8908 %}
8909 
8910 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
8911   match(Set dst (AndI src1 src2));
8912   predicate(UseRotateAndMaskInstructionsPPC64);
8913   format %{ "ANDWI   $dst, $src1, $src2" %}
8914   size(4);
8915   ins_encode %{
8916     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
8917     __ rlwinm($dst$$Register, $src1$$Register, 0,
8918               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
8919   %}
8920   ins_pipe(pipe_class_default);
8921 %}
8922 
8923 // Register And Long
8924 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
8925   match(Set dst (AndL src1 src2));
8926   ins_cost(DEFAULT_COST);
8927 
8928   format %{ "AND     $dst, $src1, $src2 \t// long" %}
8929   size(4);
8930   ins_encode %{
8931     // TODO: PPC port $archOpcode(ppc64Opcode_and);
8932     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
8933   %}
8934   ins_pipe(pipe_class_default);
8935 %}
8936 
8937 // Immediate And long
8938 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
8939   match(Set dst (AndL src1 src2));
8940   effect(KILL cr0);
8941 
8942   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
8943   size(4);
8944   ins_encode %{
8945     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
8946     // FIXME: avoid andi_ ?
8947     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
8948   %}
8949   ins_pipe(pipe_class_default);
8950 %}
8951 
8952 // Immediate And Long where the immediate is a negative power of 2.
8953 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
8954   match(Set dst (AndL src1 src2));
8955   format %{ "ANDDI   $dst, $src1, $src2" %}
8956   size(4);
8957   ins_encode %{
8958     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
8959     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
8960   %}
8961   ins_pipe(pipe_class_default);
8962 %}
8963 
8964 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8965   match(Set dst (AndL src1 src2));
8966   format %{ "ANDDI   $dst, $src1, $src2" %}
8967   size(4);
8968   ins_encode %{
8969     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8970     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8971   %}
8972   ins_pipe(pipe_class_default);
8973 %}
8974 
8975 // AndL + ConvL2I.
8976 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
8977   match(Set dst (ConvL2I (AndL src1 src2)));
8978   ins_cost(DEFAULT_COST);
8979 
8980   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
8981   size(4);
8982   ins_encode %{
8983     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
8984     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
8985   %}
8986   ins_pipe(pipe_class_default);
8987 %}
8988 
8989 // Or Instructions
8990 
8991 // Register Or
8992 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
8993   match(Set dst (OrI src1 src2));
8994   format %{ "OR      $dst, $src1, $src2" %}
8995   size(4);
8996   ins_encode %{
8997     // TODO: PPC port $archOpcode(ppc64Opcode_or);
8998     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
8999   %}
9000   ins_pipe(pipe_class_default);
9001 %}
9002 
9003 // Expand does not work with above instruct. (??)
9004 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9005   // no match-rule
9006   effect(DEF dst, USE src1, USE src2);
9007   format %{ "OR      $dst, $src1, $src2" %}
9008   size(4);
9009   ins_encode %{
9010     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9011     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9012   %}
9013   ins_pipe(pipe_class_default);
9014 %}
9015 
9016 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9017   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
9018   ins_cost(DEFAULT_COST*3);
9019 
9020   expand %{
9021     // FIXME: we should do this in the ideal world.
9022     iRegIdst tmp1;
9023     iRegIdst tmp2;
9024     orI_reg_reg(tmp1, src1, src2);
9025     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
9026     orI_reg_reg(dst, tmp1, tmp2);
9027   %}
9028 %}
9029 
9030 // Immediate Or
9031 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9032   match(Set dst (OrI src1 src2));
9033   format %{ "ORI     $dst, $src1, $src2" %}
9034   size(4);
9035   ins_encode %{
9036     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9037     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
9038   %}
9039   ins_pipe(pipe_class_default);
9040 %}
9041 
9042 // Register Or Long
9043 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9044   match(Set dst (OrL src1 src2));
9045   ins_cost(DEFAULT_COST);
9046 
9047   size(4);
9048   format %{ "OR      $dst, $src1, $src2 \t// long" %}
9049   ins_encode %{
9050     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9051     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9052   %}
9053   ins_pipe(pipe_class_default);
9054 %}
9055 
9056 // OrL + ConvL2I.
9057 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9058   match(Set dst (ConvL2I (OrL src1 src2)));
9059   ins_cost(DEFAULT_COST);
9060 
9061   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
9062   size(4);
9063   ins_encode %{
9064     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9065     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
9066   %}
9067   ins_pipe(pipe_class_default);
9068 %}
9069 
9070 // Immediate Or long
9071 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
9072   match(Set dst (OrL src1 con));
9073   ins_cost(DEFAULT_COST);
9074 
9075   format %{ "ORI     $dst, $src1, $con \t// long" %}
9076   size(4);
9077   ins_encode %{
9078     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
9079     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
9080   %}
9081   ins_pipe(pipe_class_default);
9082 %}
9083 
9084 // Xor Instructions
9085 
9086 // Register Xor
9087 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9088   match(Set dst (XorI src1 src2));
9089   format %{ "XOR     $dst, $src1, $src2" %}
9090   size(4);
9091   ins_encode %{
9092     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9093     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9094   %}
9095   ins_pipe(pipe_class_default);
9096 %}
9097 
9098 // Expand does not work with above instruct. (??)
9099 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9100   // no match-rule
9101   effect(DEF dst, USE src1, USE src2);
9102   format %{ "XOR     $dst, $src1, $src2" %}
9103   size(4);
9104   ins_encode %{
9105     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9106     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9107   %}
9108   ins_pipe(pipe_class_default);
9109 %}
9110 
9111 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
9112   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
9113   ins_cost(DEFAULT_COST*3);
9114 
9115   expand %{
9116     // FIXME: we should do this in the ideal world.
9117     iRegIdst tmp1;
9118     iRegIdst tmp2;
9119     xorI_reg_reg(tmp1, src1, src2);
9120     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
9121     xorI_reg_reg(dst, tmp1, tmp2);
9122   %}
9123 %}
9124 
9125 // Immediate Xor
9126 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
9127   match(Set dst (XorI src1 src2));
9128   format %{ "XORI    $dst, $src1, $src2" %}
9129   size(4);
9130   ins_encode %{
9131     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9132     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9133   %}
9134   ins_pipe(pipe_class_default);
9135 %}
9136 
9137 // Register Xor Long
9138 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9139   match(Set dst (XorL src1 src2));
9140   ins_cost(DEFAULT_COST);
9141 
9142   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
9143   size(4);
9144   ins_encode %{
9145     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9146     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9147   %}
9148   ins_pipe(pipe_class_default);
9149 %}
9150 
9151 // XorL + ConvL2I.
9152 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
9153   match(Set dst (ConvL2I (XorL src1 src2)));
9154   ins_cost(DEFAULT_COST);
9155 
9156   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
9157   size(4);
9158   ins_encode %{
9159     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
9160     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
9161   %}
9162   ins_pipe(pipe_class_default);
9163 %}
9164 
9165 // Immediate Xor Long
9166 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
9167   match(Set dst (XorL src1 src2));
9168   ins_cost(DEFAULT_COST);
9169 
9170   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
9171   size(4);
9172   ins_encode %{
9173     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
9174     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
9175   %}
9176   ins_pipe(pipe_class_default);
9177 %}
9178 
9179 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
9180   match(Set dst (XorI src1 src2));
9181   ins_cost(DEFAULT_COST);
9182 
9183   format %{ "NOT     $dst, $src1 ($src2)" %}
9184   size(4);
9185   ins_encode %{
9186     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9187     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9188   %}
9189   ins_pipe(pipe_class_default);
9190 %}
9191 
9192 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
9193   match(Set dst (XorL src1 src2));
9194   ins_cost(DEFAULT_COST);
9195 
9196   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
9197   size(4);
9198   ins_encode %{
9199     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
9200     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
9201   %}
9202   ins_pipe(pipe_class_default);
9203 %}
9204 
9205 // And-complement
9206 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
9207   match(Set dst (AndI (XorI src1 src2) src3));
9208   ins_cost(DEFAULT_COST);
9209 
9210   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
9211   size(4);
9212   ins_encode( enc_andc(dst, src3, src1) );
9213   ins_pipe(pipe_class_default);
9214 %}
9215 
9216 // And-complement
9217 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
9218   // no match-rule, false predicate
9219   effect(DEF dst, USE src1, USE src2);
9220   predicate(false);
9221 
9222   format %{ "ANDC    $dst, $src1, $src2" %}
9223   size(4);
9224   ins_encode %{
9225     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
9226     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
9227   %}
9228   ins_pipe(pipe_class_default);
9229 %}
9230 
9231 //----------Moves between int/long and float/double----------------------------
9232 //
9233 // The following rules move values from int/long registers/stack-locations
9234 // to float/double registers/stack-locations and vice versa, without doing any
9235 // conversions. These rules are used to implement the bit-conversion methods
9236 // of java.lang.Float etc., e.g.
9237 //   int   floatToIntBits(float value)
9238 //   float intBitsToFloat(int bits)
9239 //
9240 // Notes on the implementation on ppc64:
9241 // We only provide rules which move between a register and a stack-location,
9242 // because we always have to go through memory when moving between a float
9243 // register and an integer register.
9244 
9245 //---------- Chain stack slots between similar types --------
9246 
9247 // These are needed so that the rules below can match.
9248 
9249 // Load integer from stack slot
9250 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
9251   match(Set dst src);
9252   ins_cost(MEMORY_REF_COST);
9253 
9254   format %{ "LWZ     $dst, $src" %}
9255   size(4);
9256   ins_encode( enc_lwz(dst, src) );
9257   ins_pipe(pipe_class_memory);
9258 %}
9259 
9260 // Store integer to stack slot
9261 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
9262   match(Set dst src);
9263   ins_cost(MEMORY_REF_COST);
9264 
9265   format %{ "STW     $src, $dst \t// stk" %}
9266   size(4);
9267   ins_encode( enc_stw(src, dst) ); // rs=rt
9268   ins_pipe(pipe_class_memory);
9269 %}
9270 
9271 // Load long from stack slot
9272 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
9273   match(Set dst src);
9274   ins_cost(MEMORY_REF_COST);
9275 
9276   format %{ "LD      $dst, $src \t// long" %}
9277   size(4);
9278   ins_encode( enc_ld(dst, src) );
9279   ins_pipe(pipe_class_memory);
9280 %}
9281 
9282 // Store long to stack slot
9283 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
9284   match(Set dst src);
9285   ins_cost(MEMORY_REF_COST);
9286 
9287   format %{ "STD     $src, $dst \t// long" %}
9288   size(4);
9289   ins_encode( enc_std(src, dst) ); // rs=rt
9290   ins_pipe(pipe_class_memory);
9291 %}
9292 
9293 //----------Moves between int and float
9294 
9295 // Move float value from float stack-location to integer register.
9296 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
9297   match(Set dst (MoveF2I src));
9298   ins_cost(MEMORY_REF_COST);
9299 
9300   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
9301   size(4);
9302   ins_encode( enc_lwz(dst, src) );
9303   ins_pipe(pipe_class_memory);
9304 %}
9305 
9306 // Move float value from float register to integer stack-location.
9307 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
9308   match(Set dst (MoveF2I src));
9309   ins_cost(MEMORY_REF_COST);
9310 
9311   format %{ "STFS    $src, $dst \t// MoveF2I" %}
9312   size(4);
9313   ins_encode( enc_stfs(src, dst) );
9314   ins_pipe(pipe_class_memory);
9315 %}
9316 
9317 // Move integer value from integer stack-location to float register.
9318 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
9319   match(Set dst (MoveI2F src));
9320   ins_cost(MEMORY_REF_COST);
9321 
9322   format %{ "LFS     $dst, $src \t// MoveI2F" %}
9323   size(4);
9324   ins_encode %{
9325     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
9326     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
9327     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
9328   %}
9329   ins_pipe(pipe_class_memory);
9330 %}
9331 
9332 // Move integer value from integer register to float stack-location.
9333 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
9334   match(Set dst (MoveI2F src));
9335   ins_cost(MEMORY_REF_COST);
9336 
9337   format %{ "STW     $src, $dst \t// MoveI2F" %}
9338   size(4);
9339   ins_encode( enc_stw(src, dst) );
9340   ins_pipe(pipe_class_memory);
9341 %}
9342 
9343 //----------Moves between long and float
9344 
9345 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
9346   // no match-rule, false predicate
9347   effect(DEF dst, USE src);
9348   predicate(false);
9349 
9350   format %{ "storeD  $src, $dst \t// STACK" %}
9351   size(4);
9352   ins_encode( enc_stfd(src, dst) );
9353   ins_pipe(pipe_class_default);
9354 %}
9355 
9356 //----------Moves between long and double
9357 
9358 // Move double value from double stack-location to long register.
9359 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
9360   match(Set dst (MoveD2L src));
9361   ins_cost(MEMORY_REF_COST);
9362   size(4);
9363   format %{ "LD      $dst, $src \t// MoveD2L" %}
9364   ins_encode( enc_ld(dst, src) );
9365   ins_pipe(pipe_class_memory);
9366 %}
9367 
9368 // Move double value from double register to long stack-location.
9369 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
9370   match(Set dst (MoveD2L src));
9371   effect(DEF dst, USE src);
9372   ins_cost(MEMORY_REF_COST);
9373 
9374   format %{ "STFD    $src, $dst \t// MoveD2L" %}
9375   size(4);
9376   ins_encode( enc_stfd(src, dst) );
9377   ins_pipe(pipe_class_memory);
9378 %}
9379 
9380 // Move long value from long stack-location to double register.
9381 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
9382   match(Set dst (MoveL2D src));
9383   ins_cost(MEMORY_REF_COST);
9384 
9385   format %{ "LFD     $dst, $src \t// MoveL2D" %}
9386   size(4);
9387   ins_encode( enc_lfd(dst, src) );
9388   ins_pipe(pipe_class_memory);
9389 %}
9390 
9391 // Move long value from long register to double stack-location.
9392 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
9393   match(Set dst (MoveL2D src));
9394   ins_cost(MEMORY_REF_COST);
9395 
9396   format %{ "STD     $src, $dst \t// MoveL2D" %}
9397   size(4);
9398   ins_encode( enc_std(src, dst) );
9399   ins_pipe(pipe_class_memory);
9400 %}
9401 
9402 //----------Register Move Instructions-----------------------------------------
9403 
9404 // Replicate for Superword
9405 
9406 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
9407   predicate(false);
9408   effect(DEF dst, USE src);
9409 
9410   format %{ "MR      $dst, $src \t// replicate " %}
9411   // variable size, 0 or 4.
9412   ins_encode %{
9413     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9414     __ mr_if_needed($dst$$Register, $src$$Register);
9415   %}
9416   ins_pipe(pipe_class_default);
9417 %}
9418 
9419 //----------Cast instructions (Java-level type cast)---------------------------
9420 
9421 // Cast Long to Pointer for unsafe natives.
9422 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
9423   match(Set dst (CastX2P src));
9424 
9425   format %{ "MR      $dst, $src \t// Long->Ptr" %}
9426   // variable size, 0 or 4.
9427   ins_encode %{
9428     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9429     __ mr_if_needed($dst$$Register, $src$$Register);
9430   %}
9431  ins_pipe(pipe_class_default);
9432 %}
9433 
9434 // Cast Pointer to Long for unsafe natives.
9435 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
9436   match(Set dst (CastP2X src));
9437 
9438   format %{ "MR      $dst, $src \t// Ptr->Long" %}
9439   // variable size, 0 or 4.
9440   ins_encode %{
9441     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9442     __ mr_if_needed($dst$$Register, $src$$Register);
9443   %}
9444   ins_pipe(pipe_class_default);
9445 %}
9446 
9447 instruct castPP(iRegPdst dst) %{
9448   match(Set dst (CastPP dst));
9449   format %{ " -- \t// castPP of $dst" %}
9450   size(0);
9451   ins_encode( /*empty*/ );
9452   ins_pipe(pipe_class_default);
9453 %}
9454 
9455 instruct castII(iRegIdst dst) %{
9456   match(Set dst (CastII dst));
9457   format %{ " -- \t// castII of $dst" %}
9458   size(0);
9459   ins_encode( /*empty*/ );
9460   ins_pipe(pipe_class_default);
9461 %}
9462 
9463 instruct checkCastPP(iRegPdst dst) %{
9464   match(Set dst (CheckCastPP dst));
9465   format %{ " -- \t// checkcastPP of $dst" %}
9466   size(0);
9467   ins_encode( /*empty*/ );
9468   ins_pipe(pipe_class_default);
9469 %}
9470 
9471 //----------Convert instructions-----------------------------------------------
9472 
9473 // Convert to boolean.
9474 
9475 // int_to_bool(src) : { 1   if src != 0
9476 //                    { 0   else
9477 //
9478 // strategy:
9479 // 1) Count leading zeros of 32 bit-value src,
9480 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
9481 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9482 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9483 
9484 // convI2Bool
9485 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
9486   match(Set dst (Conv2B src));
9487   predicate(UseCountLeadingZerosInstructionsPPC64);
9488   ins_cost(DEFAULT_COST);
9489 
9490   expand %{
9491     immI shiftAmount %{ 0x5 %}
9492     uimmI16 mask %{ 0x1 %}
9493     iRegIdst tmp1;
9494     iRegIdst tmp2;
9495     countLeadingZerosI(tmp1, src);
9496     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9497     xorI_reg_uimm16(dst, tmp2, mask);
9498   %}
9499 %}
9500 
9501 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
9502   match(Set dst (Conv2B src));
9503   effect(TEMP crx);
9504   predicate(!UseCountLeadingZerosInstructionsPPC64);
9505   ins_cost(DEFAULT_COST);
9506 
9507   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
9508             "LI      $dst, #0\n\t"
9509             "BEQ     $crx, done\n\t"
9510             "LI      $dst, #1\n"
9511             "done:" %}
9512   size(16);
9513   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
9514   ins_pipe(pipe_class_compare);
9515 %}
9516 
9517 // ConvI2B + XorI
9518 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
9519   match(Set dst (XorI (Conv2B src) mask));
9520   predicate(UseCountLeadingZerosInstructionsPPC64);
9521   ins_cost(DEFAULT_COST);
9522 
9523   expand %{
9524     immI shiftAmount %{ 0x5 %}
9525     iRegIdst tmp1;
9526     countLeadingZerosI(tmp1, src);
9527     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9528   %}
9529 %}
9530 
9531 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
9532   match(Set dst (XorI (Conv2B src) mask));
9533   effect(TEMP crx);
9534   predicate(!UseCountLeadingZerosInstructionsPPC64);
9535   ins_cost(DEFAULT_COST);
9536 
9537   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
9538             "LI      $dst, #1\n\t"
9539             "BEQ     $crx, done\n\t"
9540             "LI      $dst, #0\n"
9541             "done:" %}
9542   size(16);
9543   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
9544   ins_pipe(pipe_class_compare);
9545 %}
9546 
9547 // AndI 0b0..010..0 + ConvI2B
9548 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
9549   match(Set dst (Conv2B (AndI src mask)));
9550   predicate(UseRotateAndMaskInstructionsPPC64);
9551   ins_cost(DEFAULT_COST);
9552 
9553   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
9554   size(4);
9555   ins_encode %{
9556     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
9557     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
9558   %}
9559   ins_pipe(pipe_class_default);
9560 %}
9561 
9562 // Convert pointer to boolean.
9563 //
9564 // ptr_to_bool(src) : { 1   if src != 0
9565 //                    { 0   else
9566 //
9567 // strategy:
9568 // 1) Count leading zeros of 64 bit-value src,
9569 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
9570 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
9571 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
9572 
9573 // ConvP2B
9574 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
9575   match(Set dst (Conv2B src));
9576   predicate(UseCountLeadingZerosInstructionsPPC64);
9577   ins_cost(DEFAULT_COST);
9578 
9579   expand %{
9580     immI shiftAmount %{ 0x6 %}
9581     uimmI16 mask %{ 0x1 %}
9582     iRegIdst tmp1;
9583     iRegIdst tmp2;
9584     countLeadingZerosP(tmp1, src);
9585     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
9586     xorI_reg_uimm16(dst, tmp2, mask);
9587   %}
9588 %}
9589 
9590 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
9591   match(Set dst (Conv2B src));
9592   effect(TEMP crx);
9593   predicate(!UseCountLeadingZerosInstructionsPPC64);
9594   ins_cost(DEFAULT_COST);
9595 
9596   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
9597             "LI      $dst, #0\n\t"
9598             "BEQ     $crx, done\n\t"
9599             "LI      $dst, #1\n"
9600             "done:" %}
9601   size(16);
9602   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
9603   ins_pipe(pipe_class_compare);
9604 %}
9605 
9606 // ConvP2B + XorI
9607 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
9608   match(Set dst (XorI (Conv2B src) mask));
9609   predicate(UseCountLeadingZerosInstructionsPPC64);
9610   ins_cost(DEFAULT_COST);
9611 
9612   expand %{
9613     immI shiftAmount %{ 0x6 %}
9614     iRegIdst tmp1;
9615     countLeadingZerosP(tmp1, src);
9616     urShiftI_reg_imm(dst, tmp1, shiftAmount);
9617   %}
9618 %}
9619 
9620 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
9621   match(Set dst (XorI (Conv2B src) mask));
9622   effect(TEMP crx);
9623   predicate(!UseCountLeadingZerosInstructionsPPC64);
9624   ins_cost(DEFAULT_COST);
9625 
9626   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
9627             "LI      $dst, #1\n\t"
9628             "BEQ     $crx, done\n\t"
9629             "LI      $dst, #0\n"
9630             "done:" %}
9631   size(16);
9632   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
9633   ins_pipe(pipe_class_compare);
9634 %}
9635 
9636 // if src1 < src2, return -1 else return 0
9637 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
9638   match(Set dst (CmpLTMask src1 src2));
9639   ins_cost(DEFAULT_COST*4);
9640 
9641   expand %{
9642     iRegLdst src1s;
9643     iRegLdst src2s;
9644     iRegLdst diff;
9645     convI2L_reg(src1s, src1); // Ensure proper sign extension.
9646     convI2L_reg(src2s, src2); // Ensure proper sign extension.
9647     subL_reg_reg(diff, src1s, src2s);
9648     // Need to consider >=33 bit result, therefore we need signmaskL.
9649     signmask64I_regL(dst, diff);
9650   %}
9651 %}
9652 
9653 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
9654   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
9655   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
9656   size(4);
9657   ins_encode %{
9658     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
9659     __ srawi($dst$$Register, $src1$$Register, 0x1f);
9660   %}
9661   ins_pipe(pipe_class_default);
9662 %}
9663 
9664 //----------Arithmetic Conversion Instructions---------------------------------
9665 
9666 // Convert to Byte  -- nop
9667 // Convert to Short -- nop
9668 
9669 // Convert to Int
9670 
9671 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
9672   match(Set dst (RShiftI (LShiftI src amount) amount));
9673   format %{ "EXTSB   $dst, $src \t// byte->int" %}
9674   size(4);
9675   ins_encode %{
9676     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
9677     __ extsb($dst$$Register, $src$$Register);
9678   %}
9679   ins_pipe(pipe_class_default);
9680 %}
9681 
9682 // LShiftI 16 + RShiftI 16 converts short to int.
9683 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
9684   match(Set dst (RShiftI (LShiftI src amount) amount));
9685   format %{ "EXTSH   $dst, $src \t// short->int" %}
9686   size(4);
9687   ins_encode %{
9688     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
9689     __ extsh($dst$$Register, $src$$Register);
9690   %}
9691   ins_pipe(pipe_class_default);
9692 %}
9693 
9694 // ConvL2I + ConvI2L: Sign extend int in long register.
9695 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
9696   match(Set dst (ConvI2L (ConvL2I src)));
9697 
9698   format %{ "EXTSW   $dst, $src \t// long->long" %}
9699   size(4);
9700   ins_encode %{
9701     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9702     __ extsw($dst$$Register, $src$$Register);
9703   %}
9704   ins_pipe(pipe_class_default);
9705 %}
9706 
9707 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
9708   match(Set dst (ConvL2I src));
9709   format %{ "MR      $dst, $src \t// long->int" %}
9710   // variable size, 0 or 4
9711   ins_encode %{
9712     // TODO: PPC port $archOpcode(ppc64Opcode_or);
9713     __ mr_if_needed($dst$$Register, $src$$Register);
9714   %}
9715   ins_pipe(pipe_class_default);
9716 %}
9717 
9718 instruct convD2IRaw_regD(regD dst, regD src) %{
9719   // no match-rule, false predicate
9720   effect(DEF dst, USE src);
9721   predicate(false);
9722 
9723   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
9724   size(4);
9725   ins_encode %{
9726     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
9727     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9728   %}
9729   ins_pipe(pipe_class_default);
9730 %}
9731 
9732 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsRegSrc crx, stackSlotL src) %{
9733   // no match-rule, false predicate
9734   effect(DEF dst, USE crx, USE src);
9735   predicate(false);
9736 
9737   ins_variable_size_depending_on_alignment(true);
9738 
9739   format %{ "cmovI   $crx, $dst, $src" %}
9740   // Worst case is branch + move + stop, no stop without scheduler.
9741   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
9742   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9743   ins_pipe(pipe_class_default);
9744 %}
9745 
9746 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsRegSrc crx, stackSlotL mem) %{
9747   // no match-rule, false predicate
9748   effect(DEF dst, USE crx, USE mem);
9749   predicate(false);
9750 
9751   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
9752   postalloc_expand %{
9753     //
9754     // replaces
9755     //
9756     //   region  dst  crx  mem
9757     //    \       |    |   /
9758     //     dst=cmovI_bso_stackSlotL_conLvalue0
9759     //
9760     // with
9761     //
9762     //   region  dst
9763     //    \       /
9764     //     dst=loadConI16(0)
9765     //      |
9766     //      ^  region  dst  crx  mem
9767     //      |   \       |    |    /
9768     //      dst=cmovI_bso_stackSlotL
9769     //
9770 
9771     // Create new nodes.
9772     MachNode *m1 = new loadConI16Node();
9773     MachNode *m2 = new cmovI_bso_stackSlotLNode();
9774 
9775     // inputs for new nodes
9776     m1->add_req(n_region);
9777     m2->add_req(n_region, n_crx, n_mem);
9778 
9779     // precedences for new nodes
9780     m2->add_prec(m1);
9781 
9782     // operands for new nodes
9783     m1->_opnds[0] = op_dst;
9784     m1->_opnds[1] = new immI16Oper(0);
9785 
9786     m2->_opnds[0] = op_dst;
9787     m2->_opnds[1] = op_crx;
9788     m2->_opnds[2] = op_mem;
9789 
9790     // registers for new nodes
9791     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9792     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9793 
9794     // Insert new nodes.
9795     nodes->push(m1);
9796     nodes->push(m2);
9797   %}
9798 %}
9799 
9800 // Double to Int conversion, NaN is mapped to 0.
9801 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
9802   match(Set dst (ConvD2I src));
9803   ins_cost(DEFAULT_COST);
9804 
9805   expand %{
9806     regD tmpD;
9807     stackSlotL tmpS;
9808     flagsReg crx;
9809     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9810     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
9811     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
9812     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9813   %}
9814 %}
9815 
9816 instruct convF2IRaw_regF(regF dst, regF src) %{
9817   // no match-rule, false predicate
9818   effect(DEF dst, USE src);
9819   predicate(false);
9820 
9821   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
9822   size(4);
9823   ins_encode %{
9824     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9825     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
9826   %}
9827   ins_pipe(pipe_class_default);
9828 %}
9829 
9830 // Float to Int conversion, NaN is mapped to 0.
9831 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
9832   match(Set dst (ConvF2I src));
9833   ins_cost(DEFAULT_COST);
9834 
9835   expand %{
9836     regF tmpF;
9837     stackSlotL tmpS;
9838     flagsReg crx;
9839     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9840     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
9841     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9842     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9843   %}
9844 %}
9845 
9846 // Convert to Long
9847 
9848 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
9849   match(Set dst (ConvI2L src));
9850   format %{ "EXTSW   $dst, $src \t// int->long" %}
9851   size(4);
9852   ins_encode %{
9853     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
9854     __ extsw($dst$$Register, $src$$Register);
9855   %}
9856   ins_pipe(pipe_class_default);
9857 %}
9858 
9859 // Zero-extend: convert unsigned int to long (convUI2L).
9860 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
9861   match(Set dst (AndL (ConvI2L src) mask));
9862   ins_cost(DEFAULT_COST);
9863 
9864   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9865   size(4);
9866   ins_encode %{
9867     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9868     __ clrldi($dst$$Register, $src$$Register, 32);
9869   %}
9870   ins_pipe(pipe_class_default);
9871 %}
9872 
9873 // Zero-extend: convert unsigned int to long in long register.
9874 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
9875   match(Set dst (AndL src mask));
9876   ins_cost(DEFAULT_COST);
9877 
9878   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
9879   size(4);
9880   ins_encode %{
9881     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
9882     __ clrldi($dst$$Register, $src$$Register, 32);
9883   %}
9884   ins_pipe(pipe_class_default);
9885 %}
9886 
9887 instruct convF2LRaw_regF(regF dst, regF src) %{
9888   // no match-rule, false predicate
9889   effect(DEF dst, USE src);
9890   predicate(false);
9891 
9892   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
9893   size(4);
9894   ins_encode %{
9895     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9896     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9897   %}
9898   ins_pipe(pipe_class_default);
9899 %}
9900 
9901 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsRegSrc crx, stackSlotL src) %{
9902   // no match-rule, false predicate
9903   effect(DEF dst, USE crx, USE src);
9904   predicate(false);
9905 
9906   ins_variable_size_depending_on_alignment(true);
9907 
9908   format %{ "cmovL   $crx, $dst, $src" %}
9909   // Worst case is branch + move + stop, no stop without scheduler.
9910   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
9911   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
9912   ins_pipe(pipe_class_default);
9913 %}
9914 
9915 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsRegSrc crx, stackSlotL mem) %{
9916   // no match-rule, false predicate
9917   effect(DEF dst, USE crx, USE mem);
9918   predicate(false);
9919 
9920   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
9921   postalloc_expand %{
9922     //
9923     // replaces
9924     //
9925     //   region  dst  crx  mem
9926     //    \       |    |   /
9927     //     dst=cmovL_bso_stackSlotL_conLvalue0
9928     //
9929     // with
9930     //
9931     //   region  dst
9932     //    \       /
9933     //     dst=loadConL16(0)
9934     //      |
9935     //      ^  region  dst  crx  mem
9936     //      |   \       |    |    /
9937     //      dst=cmovL_bso_stackSlotL
9938     //
9939 
9940     // Create new nodes.
9941     MachNode *m1 = new loadConL16Node();
9942     MachNode *m2 = new cmovL_bso_stackSlotLNode();
9943 
9944     // inputs for new nodes
9945     m1->add_req(n_region);
9946     m2->add_req(n_region, n_crx, n_mem);
9947     m2->add_prec(m1);
9948 
9949     // operands for new nodes
9950     m1->_opnds[0] = op_dst;
9951     m1->_opnds[1] = new immL16Oper(0);
9952     m2->_opnds[0] = op_dst;
9953     m2->_opnds[1] = op_crx;
9954     m2->_opnds[2] = op_mem;
9955 
9956     // registers for new nodes
9957     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9958     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
9959 
9960     // Insert new nodes.
9961     nodes->push(m1);
9962     nodes->push(m2);
9963   %}
9964 %}
9965 
9966 // Float to Long conversion, NaN is mapped to 0.
9967 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
9968   match(Set dst (ConvF2L src));
9969   ins_cost(DEFAULT_COST);
9970 
9971   expand %{
9972     regF tmpF;
9973     stackSlotL tmpS;
9974     flagsReg crx;
9975     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
9976     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
9977     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
9978     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
9979   %}
9980 %}
9981 
9982 instruct convD2LRaw_regD(regD dst, regD src) %{
9983   // no match-rule, false predicate
9984   effect(DEF dst, USE src);
9985   predicate(false);
9986 
9987   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
9988   size(4);
9989   ins_encode %{
9990     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
9991     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
9992   %}
9993   ins_pipe(pipe_class_default);
9994 %}
9995 
9996 // Double to Long conversion, NaN is mapped to 0.
9997 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
9998   match(Set dst (ConvD2L src));
9999   ins_cost(DEFAULT_COST);
10000 
10001   expand %{
10002     regD tmpD;
10003     stackSlotL tmpS;
10004     flagsReg crx;
10005     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
10006     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
10007     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
10008     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
10009   %}
10010 %}
10011 
10012 // Convert to Float
10013 
10014 // Placed here as needed in expand.
10015 instruct convL2DRaw_regD(regD dst, regD src) %{
10016   // no match-rule, false predicate
10017   effect(DEF dst, USE src);
10018   predicate(false);
10019 
10020   format %{ "FCFID $dst, $src \t// convL2D" %}
10021   size(4);
10022   ins_encode %{
10023     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10024     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
10025   %}
10026   ins_pipe(pipe_class_default);
10027 %}
10028 
10029 // Placed here as needed in expand.
10030 instruct convD2F_reg(regF dst, regD src) %{
10031   match(Set dst (ConvD2F src));
10032   format %{ "FRSP    $dst, $src \t// convD2F" %}
10033   size(4);
10034   ins_encode %{
10035     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
10036     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
10037   %}
10038   ins_pipe(pipe_class_default);
10039 %}
10040 
10041 // Integer to Float conversion.
10042 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
10043   match(Set dst (ConvI2F src));
10044   predicate(!VM_Version::has_fcfids());
10045   ins_cost(DEFAULT_COST);
10046 
10047   expand %{
10048     iRegLdst tmpL;
10049     stackSlotL tmpS;
10050     regD tmpD;
10051     regD tmpD2;
10052     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10053     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10054     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10055     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
10056     convD2F_reg(dst, tmpD2);             // Convert double to float.
10057   %}
10058 %}
10059 
10060 instruct convL2FRaw_regF(regF dst, regD src) %{
10061   // no match-rule, false predicate
10062   effect(DEF dst, USE src);
10063   predicate(false);
10064 
10065   format %{ "FCFIDS $dst, $src \t// convL2F" %}
10066   size(4);
10067   ins_encode %{
10068     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
10069     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
10070   %}
10071   ins_pipe(pipe_class_default);
10072 %}
10073 
10074 // Integer to Float conversion. Special version for Power7.
10075 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
10076   match(Set dst (ConvI2F src));
10077   predicate(VM_Version::has_fcfids());
10078   ins_cost(DEFAULT_COST);
10079 
10080   expand %{
10081     iRegLdst tmpL;
10082     stackSlotL tmpS;
10083     regD tmpD;
10084     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10085     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10086     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10087     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10088   %}
10089 %}
10090 
10091 // L2F to avoid runtime call.
10092 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
10093   match(Set dst (ConvL2F src));
10094   predicate(VM_Version::has_fcfids());
10095   ins_cost(DEFAULT_COST);
10096 
10097   expand %{
10098     stackSlotL tmpS;
10099     regD tmpD;
10100     regL_to_stkL(tmpS, src);             // Store long to stack.
10101     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10102     convL2FRaw_regF(dst, tmpD);          // Convert to float.
10103   %}
10104 %}
10105 
10106 // Moved up as used in expand.
10107 //instruct convD2F_reg(regF dst, regD src) %{%}
10108 
10109 // Convert to Double
10110 
10111 // Integer to Double conversion.
10112 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
10113   match(Set dst (ConvI2D src));
10114   ins_cost(DEFAULT_COST);
10115 
10116   expand %{
10117     iRegLdst tmpL;
10118     stackSlotL tmpS;
10119     regD tmpD;
10120     convI2L_reg(tmpL, src);              // Sign-extension int to long.
10121     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
10122     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
10123     convL2DRaw_regD(dst, tmpD);          // Convert to double.
10124   %}
10125 %}
10126 
10127 // Long to Double conversion
10128 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
10129   match(Set dst (ConvL2D src));
10130   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10131 
10132   expand %{
10133     regD tmpD;
10134     moveL2D_stack_reg(tmpD, src);
10135     convL2DRaw_regD(dst, tmpD);
10136   %}
10137 %}
10138 
10139 instruct convF2D_reg(regD dst, regF src) %{
10140   match(Set dst (ConvF2D src));
10141   format %{ "FMR     $dst, $src \t// float->double" %}
10142   // variable size, 0 or 4
10143   ins_encode %{
10144     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
10145     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
10146   %}
10147   ins_pipe(pipe_class_default);
10148 %}
10149 
10150 //----------Control Flow Instructions------------------------------------------
10151 // Compare Instructions
10152 
10153 // Compare Integers
10154 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10155   match(Set crx (CmpI src1 src2));
10156   size(4);
10157   format %{ "CMPW    $crx, $src1, $src2" %}
10158   ins_encode %{
10159     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10160     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10161   %}
10162   ins_pipe(pipe_class_compare);
10163 %}
10164 
10165 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
10166   match(Set crx (CmpI src1 src2));
10167   format %{ "CMPWI   $crx, $src1, $src2" %}
10168   size(4);
10169   ins_encode %{
10170     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10171     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10172   %}
10173   ins_pipe(pipe_class_compare);
10174 %}
10175 
10176 // (src1 & src2) == 0?
10177 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
10178   match(Set cr0 (CmpI (AndI src1 src2) zero));
10179   // r0 is killed
10180   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
10181   size(4);
10182   ins_encode %{
10183     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10184     __ andi_(R0, $src1$$Register, $src2$$constant);
10185   %}
10186   ins_pipe(pipe_class_compare);
10187 %}
10188 
10189 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
10190   match(Set crx (CmpL src1 src2));
10191   format %{ "CMPD    $crx, $src1, $src2" %}
10192   size(4);
10193   ins_encode %{
10194     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
10195     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
10196   %}
10197   ins_pipe(pipe_class_compare);
10198 %}
10199 
10200 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
10201   match(Set crx (CmpL src1 src2));
10202   format %{ "CMPDI   $crx, $src1, $src2" %}
10203   size(4);
10204   ins_encode %{
10205     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10206     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10207   %}
10208   ins_pipe(pipe_class_compare);
10209 %}
10210 
10211 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
10212   match(Set cr0 (CmpL (AndL src1 src2) zero));
10213   // r0 is killed
10214   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
10215   size(4);
10216   ins_encode %{
10217     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
10218     __ and_(R0, $src1$$Register, $src2$$Register);
10219   %}
10220   ins_pipe(pipe_class_compare);
10221 %}
10222 
10223 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
10224   match(Set cr0 (CmpL (AndL src1 src2) zero));
10225   // r0 is killed
10226   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
10227   size(4);
10228   ins_encode %{
10229     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
10230     __ andi_(R0, $src1$$Register, $src2$$constant);
10231   %}
10232   ins_pipe(pipe_class_compare);
10233 %}
10234 
10235 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsRegSrc crx) %{
10236   // no match-rule, false predicate
10237   effect(DEF dst, USE crx);
10238   predicate(false);
10239 
10240   ins_variable_size_depending_on_alignment(true);
10241 
10242   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
10243   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
10244   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
10245   ins_encode %{
10246     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
10247     Label done;
10248     // li(Rdst, 0);              // equal -> 0
10249     __ beq($crx$$CondRegister, done);
10250     __ li($dst$$Register, 1);    // greater -> +1
10251     __ bgt($crx$$CondRegister, done);
10252     __ li($dst$$Register, -1);   // unordered or less -> -1
10253     // TODO: PPC port__ endgroup_if_needed(_size == 20);
10254     __ bind(done);
10255   %}
10256   ins_pipe(pipe_class_compare);
10257 %}
10258 
10259 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsRegSrc crx) %{
10260   // no match-rule, false predicate
10261   effect(DEF dst, USE crx);
10262   predicate(false);
10263 
10264   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
10265   postalloc_expand %{
10266     //
10267     // replaces
10268     //
10269     //   region  crx
10270     //    \       |
10271     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
10272     //
10273     // with
10274     //
10275     //   region
10276     //    \
10277     //     dst=loadConI16(0)
10278     //      |
10279     //      ^  region  crx
10280     //      |   \       |
10281     //      dst=cmovI_conIvalueMinus1_conIvalue1
10282     //
10283 
10284     // Create new nodes.
10285     MachNode *m1 = new loadConI16Node();
10286     MachNode *m2 = new cmovI_conIvalueMinus1_conIvalue1Node();
10287 
10288     // inputs for new nodes
10289     m1->add_req(n_region);
10290     m2->add_req(n_region, n_crx);
10291     m2->add_prec(m1);
10292 
10293     // operands for new nodes
10294     m1->_opnds[0] = op_dst;
10295     m1->_opnds[1] = new immI16Oper(0);
10296     m2->_opnds[0] = op_dst;
10297     m2->_opnds[1] = op_crx;
10298 
10299     // registers for new nodes
10300     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10301     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
10302 
10303     // Insert new nodes.
10304     nodes->push(m1);
10305     nodes->push(m2);
10306   %}
10307 %}
10308 
10309 // Manifest a CmpL3 result in an integer register. Very painful.
10310 // This is the test to avoid.
10311 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
10312 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
10313   match(Set dst (CmpL3 src1 src2));
10314   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10315 
10316   expand %{
10317     flagsReg tmp1;
10318     cmpL_reg_reg(tmp1, src1, src2);
10319     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10320   %}
10321 %}
10322 
10323 // Implicit range checks.
10324 // A range check in the ideal world has one of the following shapes:
10325 //  - (If le (CmpU length index)), (IfTrue  throw exception)
10326 //  - (If lt (CmpU index length)), (IfFalse throw exception)
10327 //
10328 // Match range check 'If le (CmpU length index)'.
10329 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
10330   match(If cmp (CmpU src_length index));
10331   effect(USE labl);
10332   predicate(TrapBasedRangeChecks &&
10333             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
10334             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
10335             (Matcher::branches_to_uncommon_trap(_leaf)));
10336 
10337   ins_is_TrapBasedCheckNode(true);
10338 
10339   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
10340   size(4);
10341   ins_encode %{
10342     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10343     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
10344       __ trap_range_check_le($src_length$$Register, $index$$constant);
10345     } else {
10346       // Both successors are uncommon traps, probability is 0.
10347       // Node got flipped during fixup flow.
10348       assert($cmp$$cmpcode == 0x9, "must be greater");
10349       __ trap_range_check_g($src_length$$Register, $index$$constant);
10350     }
10351   %}
10352   ins_pipe(pipe_class_trap);
10353 %}
10354 
10355 // Match range check 'If lt (CmpU index length)'.
10356 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
10357   match(If cmp (CmpU src_index src_length));
10358   effect(USE labl);
10359   predicate(TrapBasedRangeChecks &&
10360             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10361             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10362             (Matcher::branches_to_uncommon_trap(_leaf)));
10363 
10364   ins_is_TrapBasedCheckNode(true);
10365 
10366   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
10367   size(4);
10368   ins_encode %{
10369     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
10370     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10371       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
10372     } else {
10373       // Both successors are uncommon traps, probability is 0.
10374       // Node got flipped during fixup flow.
10375       assert($cmp$$cmpcode == 0x8, "must be less");
10376       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
10377     }
10378   %}
10379   ins_pipe(pipe_class_trap);
10380 %}
10381 
10382 // Match range check 'If lt (CmpU index length)'.
10383 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
10384   match(If cmp (CmpU src_index length));
10385   effect(USE labl);
10386   predicate(TrapBasedRangeChecks &&
10387             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
10388             _leaf->as_If()->_prob >= PROB_ALWAYS &&
10389             (Matcher::branches_to_uncommon_trap(_leaf)));
10390 
10391   ins_is_TrapBasedCheckNode(true);
10392 
10393   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
10394   size(4);
10395   ins_encode %{
10396     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
10397     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
10398       __ trap_range_check_ge($src_index$$Register, $length$$constant);
10399     } else {
10400       // Both successors are uncommon traps, probability is 0.
10401       // Node got flipped during fixup flow.
10402       assert($cmp$$cmpcode == 0x8, "must be less");
10403       __ trap_range_check_l($src_index$$Register, $length$$constant);
10404     }
10405   %}
10406   ins_pipe(pipe_class_trap);
10407 %}
10408 
10409 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
10410   match(Set crx (CmpU src1 src2));
10411   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
10412   size(4);
10413   ins_encode %{
10414     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10415     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10416   %}
10417   ins_pipe(pipe_class_compare);
10418 %}
10419 
10420 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
10421   match(Set crx (CmpU src1 src2));
10422   size(4);
10423   format %{ "CMPLWI  $crx, $src1, $src2" %}
10424   ins_encode %{
10425     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10426     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10427   %}
10428   ins_pipe(pipe_class_compare);
10429 %}
10430 
10431 // Implicit zero checks (more implicit null checks).
10432 // No constant pool entries required.
10433 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
10434   match(If cmp (CmpN value zero));
10435   effect(USE labl);
10436   predicate(TrapBasedNullChecks &&
10437             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10438             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10439             Matcher::branches_to_uncommon_trap(_leaf));
10440   ins_cost(1);
10441 
10442   ins_is_TrapBasedCheckNode(true);
10443 
10444   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
10445   size(4);
10446   ins_encode %{
10447     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10448     if ($cmp$$cmpcode == 0xA) {
10449       __ trap_null_check($value$$Register);
10450     } else {
10451       // Both successors are uncommon traps, probability is 0.
10452       // Node got flipped during fixup flow.
10453       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10454       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10455     }
10456   %}
10457   ins_pipe(pipe_class_trap);
10458 %}
10459 
10460 // Compare narrow oops.
10461 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
10462   match(Set crx (CmpN src1 src2));
10463 
10464   size(4);
10465   ins_cost(2);
10466   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
10467   ins_encode %{
10468     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10469     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
10470   %}
10471   ins_pipe(pipe_class_compare);
10472 %}
10473 
10474 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
10475   match(Set crx (CmpN src1 src2));
10476   // Make this more expensive than zeroCheckN_iReg_imm0.
10477   ins_cost(2);
10478 
10479   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
10480   size(4);
10481   ins_encode %{
10482     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
10483     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10484   %}
10485   ins_pipe(pipe_class_compare);
10486 %}
10487 
10488 // Implicit zero checks (more implicit null checks).
10489 // No constant pool entries required.
10490 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
10491   match(If cmp (CmpP value zero));
10492   effect(USE labl);
10493   predicate(TrapBasedNullChecks &&
10494             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
10495             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
10496             Matcher::branches_to_uncommon_trap(_leaf));
10497   ins_cost(1); // Should not be cheaper than zeroCheckN.
10498 
10499   ins_is_TrapBasedCheckNode(true);
10500 
10501   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
10502   size(4);
10503   ins_encode %{
10504     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
10505     if ($cmp$$cmpcode == 0xA) {
10506       __ trap_null_check($value$$Register);
10507     } else {
10508       // Both successors are uncommon traps, probability is 0.
10509       // Node got flipped during fixup flow.
10510       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
10511       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
10512     }
10513   %}
10514   ins_pipe(pipe_class_trap);
10515 %}
10516 
10517 // Compare Pointers
10518 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
10519   match(Set crx (CmpP src1 src2));
10520   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
10521   size(4);
10522   ins_encode %{
10523     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
10524     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
10525   %}
10526   ins_pipe(pipe_class_compare);
10527 %}
10528 
10529 // Used in postalloc expand.
10530 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
10531   // This match rule prevents reordering of node before a safepoint.
10532   // This only makes sense if this instructions is used exclusively
10533   // for the expansion of EncodeP!
10534   match(Set crx (CmpP src1 src2));
10535   predicate(false);
10536 
10537   format %{ "CMPDI   $crx, $src1, $src2" %}
10538   size(4);
10539   ins_encode %{
10540     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
10541     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
10542   %}
10543   ins_pipe(pipe_class_compare);
10544 %}
10545 
10546 //----------Float Compares----------------------------------------------------
10547 
10548 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
10549   // Needs matchrule, see cmpDUnordered.
10550   match(Set crx (CmpF src1 src2));
10551   // no match-rule, false predicate
10552   predicate(false);
10553 
10554   format %{ "cmpFUrd $crx, $src1, $src2" %}
10555   size(4);
10556   ins_encode %{
10557     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10558     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10559   %}
10560   ins_pipe(pipe_class_default);
10561 %}
10562 
10563 instruct cmov_bns_less(flagsReg crx) %{
10564   // no match-rule, false predicate
10565   effect(DEF crx);
10566   predicate(false);
10567 
10568   ins_variable_size_depending_on_alignment(true);
10569 
10570   format %{ "cmov    $crx" %}
10571   // Worst case is branch + move + stop, no stop without scheduler.
10572   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
10573   ins_encode %{
10574     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
10575     Label done;
10576     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
10577     __ li(R0, 0);
10578     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
10579     // TODO PPC port __ endgroup_if_needed(_size == 16);
10580     __ bind(done);
10581   %}
10582   ins_pipe(pipe_class_default);
10583 %}
10584 
10585 // Compare floating, generate condition code.
10586 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
10587   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
10588   //
10589   // The following code sequence occurs a lot in mpegaudio:
10590   //
10591   // block BXX:
10592   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
10593   //    cmpFUrd CCR6, F11, F9
10594   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
10595   //    cmov CCR6
10596   // 8: instruct branchConSched:
10597   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
10598   match(Set crx (CmpF src1 src2));
10599   ins_cost(DEFAULT_COST+BRANCH_COST);
10600 
10601   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
10602   postalloc_expand %{
10603     //
10604     // replaces
10605     //
10606     //   region  src1  src2
10607     //    \       |     |
10608     //     crx=cmpF_reg_reg
10609     //
10610     // with
10611     //
10612     //   region  src1  src2
10613     //    \       |     |
10614     //     crx=cmpFUnordered_reg_reg
10615     //      |
10616     //      ^  region
10617     //      |   \
10618     //      crx=cmov_bns_less
10619     //
10620 
10621     // Create new nodes.
10622     MachNode *m1 = new cmpFUnordered_reg_regNode();
10623     MachNode *m2 = new cmov_bns_lessNode();
10624 
10625     // inputs for new nodes
10626     m1->add_req(n_region, n_src1, n_src2);
10627     m2->add_req(n_region);
10628     m2->add_prec(m1);
10629 
10630     // operands for new nodes
10631     m1->_opnds[0] = op_crx;
10632     m1->_opnds[1] = op_src1;
10633     m1->_opnds[2] = op_src2;
10634     m2->_opnds[0] = op_crx;
10635 
10636     // registers for new nodes
10637     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10638     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10639 
10640     // Insert new nodes.
10641     nodes->push(m1);
10642     nodes->push(m2);
10643   %}
10644 %}
10645 
10646 // Compare float, generate -1,0,1
10647 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
10648   match(Set dst (CmpF3 src1 src2));
10649   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10650 
10651   expand %{
10652     flagsReg tmp1;
10653     cmpFUnordered_reg_reg(tmp1, src1, src2);
10654     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10655   %}
10656 %}
10657 
10658 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
10659   // Needs matchrule so that ideal opcode is Cmp. This causes that gcm places the
10660   // node right before the conditional move using it.
10661   // In jck test api/java_awt/geom/QuadCurve2DFloat/index.html#SetCurveTesttestCase7,
10662   // compilation of java.awt.geom.RectangularShape::getBounds()Ljava/awt/Rectangle
10663   // crashed in register allocation where the flags Reg between cmpDUnoredered and a
10664   // conditional move was supposed to be spilled.
10665   match(Set crx (CmpD src1 src2));
10666   // False predicate, shall not be matched.
10667   predicate(false);
10668 
10669   format %{ "cmpFUrd $crx, $src1, $src2" %}
10670   size(4);
10671   ins_encode %{
10672     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
10673     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
10674   %}
10675   ins_pipe(pipe_class_default);
10676 %}
10677 
10678 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
10679   match(Set crx (CmpD src1 src2));
10680   ins_cost(DEFAULT_COST+BRANCH_COST);
10681 
10682   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
10683   postalloc_expand %{
10684     //
10685     // replaces
10686     //
10687     //   region  src1  src2
10688     //    \       |     |
10689     //     crx=cmpD_reg_reg
10690     //
10691     // with
10692     //
10693     //   region  src1  src2
10694     //    \       |     |
10695     //     crx=cmpDUnordered_reg_reg
10696     //      |
10697     //      ^  region
10698     //      |   \
10699     //      crx=cmov_bns_less
10700     //
10701 
10702     // create new nodes
10703     MachNode *m1 = new cmpDUnordered_reg_regNode();
10704     MachNode *m2 = new cmov_bns_lessNode();
10705 
10706     // inputs for new nodes
10707     m1->add_req(n_region, n_src1, n_src2);
10708     m2->add_req(n_region);
10709     m2->add_prec(m1);
10710 
10711     // operands for new nodes
10712     m1->_opnds[0] = op_crx;
10713     m1->_opnds[1] = op_src1;
10714     m1->_opnds[2] = op_src2;
10715     m2->_opnds[0] = op_crx;
10716 
10717     // registers for new nodes
10718     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10719     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
10720 
10721     // Insert new nodes.
10722     nodes->push(m1);
10723     nodes->push(m2);
10724   %}
10725 %}
10726 
10727 // Compare double, generate -1,0,1
10728 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
10729   match(Set dst (CmpD3 src1 src2));
10730   ins_cost(DEFAULT_COST*5+BRANCH_COST);
10731 
10732   expand %{
10733     flagsReg tmp1;
10734     cmpDUnordered_reg_reg(tmp1, src1, src2);
10735     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
10736   %}
10737 %}
10738 
10739 //----------Branches---------------------------------------------------------
10740 // Jump
10741 
10742 // Direct Branch.
10743 instruct branch(label labl) %{
10744   match(Goto);
10745   effect(USE labl);
10746   ins_cost(BRANCH_COST);
10747 
10748   format %{ "B       $labl" %}
10749   size(4);
10750   ins_encode %{
10751     // TODO: PPC port $archOpcode(ppc64Opcode_b);
10752      Label d;    // dummy
10753      __ bind(d);
10754      Label* p = $labl$$label;
10755      // `p' is `NULL' when this encoding class is used only to
10756      // determine the size of the encoded instruction.
10757      Label& l = (NULL == p)? d : *(p);
10758      __ b(l);
10759   %}
10760   ins_pipe(pipe_class_default);
10761 %}
10762 
10763 // Conditional Near Branch
10764 instruct branchCon(cmpOp cmp, flagsRegSrc crx, label lbl) %{
10765   // Same match rule as `branchConFar'.
10766   match(If cmp crx);
10767   effect(USE lbl);
10768   ins_cost(BRANCH_COST);
10769 
10770   // If set to 1 this indicates that the current instruction is a
10771   // short variant of a long branch. This avoids using this
10772   // instruction in first-pass matching. It will then only be used in
10773   // the `Shorten_branches' pass.
10774   ins_short_branch(1);
10775 
10776   format %{ "B$cmp     $crx, $lbl" %}
10777   size(4);
10778   ins_encode( enc_bc(crx, cmp, lbl) );
10779   ins_pipe(pipe_class_default);
10780 %}
10781 
10782 // This is for cases when the ppc64 `bc' instruction does not
10783 // reach far enough. So we emit a far branch here, which is more
10784 // expensive.
10785 //
10786 // Conditional Far Branch
10787 instruct branchConFar(cmpOp cmp, flagsRegSrc crx, label lbl) %{
10788   // Same match rule as `branchCon'.
10789   match(If cmp crx);
10790   effect(USE crx, USE lbl);
10791   predicate(!false /* TODO: PPC port HB_Schedule*/);
10792   // Higher cost than `branchCon'.
10793   ins_cost(5*BRANCH_COST);
10794 
10795   // This is not a short variant of a branch, but the long variant.
10796   ins_short_branch(0);
10797 
10798   format %{ "B_FAR$cmp $crx, $lbl" %}
10799   size(8);
10800   ins_encode( enc_bc_far(crx, cmp, lbl) );
10801   ins_pipe(pipe_class_default);
10802 %}
10803 
10804 // Conditional Branch used with Power6 scheduler (can be far or short).
10805 instruct branchConSched(cmpOp cmp, flagsRegSrc crx, label lbl) %{
10806   // Same match rule as `branchCon'.
10807   match(If cmp crx);
10808   effect(USE crx, USE lbl);
10809   predicate(false /* TODO: PPC port HB_Schedule*/);
10810   // Higher cost than `branchCon'.
10811   ins_cost(5*BRANCH_COST);
10812 
10813   // Actually size doesn't depend on alignment but on shortening.
10814   ins_variable_size_depending_on_alignment(true);
10815   // long variant.
10816   ins_short_branch(0);
10817 
10818   format %{ "B_FAR$cmp $crx, $lbl" %}
10819   size(8); // worst case
10820   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
10821   ins_pipe(pipe_class_default);
10822 %}
10823 
10824 instruct branchLoopEnd(cmpOp cmp, flagsRegSrc crx, label labl) %{
10825   match(CountedLoopEnd cmp crx);
10826   effect(USE labl);
10827   ins_cost(BRANCH_COST);
10828 
10829   // short variant.
10830   ins_short_branch(1);
10831 
10832   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
10833   size(4);
10834   ins_encode( enc_bc(crx, cmp, labl) );
10835   ins_pipe(pipe_class_default);
10836 %}
10837 
10838 instruct branchLoopEndFar(cmpOp cmp, flagsRegSrc crx, label labl) %{
10839   match(CountedLoopEnd cmp crx);
10840   effect(USE labl);
10841   predicate(!false /* TODO: PPC port HB_Schedule */);
10842   ins_cost(BRANCH_COST);
10843 
10844   // Long variant.
10845   ins_short_branch(0);
10846 
10847   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10848   size(8);
10849   ins_encode( enc_bc_far(crx, cmp, labl) );
10850   ins_pipe(pipe_class_default);
10851 %}
10852 
10853 // Conditional Branch used with Power6 scheduler (can be far or short).
10854 instruct branchLoopEndSched(cmpOp cmp, flagsRegSrc crx, label labl) %{
10855   match(CountedLoopEnd cmp crx);
10856   effect(USE labl);
10857   predicate(false /* TODO: PPC port HB_Schedule */);
10858   // Higher cost than `branchCon'.
10859   ins_cost(5*BRANCH_COST);
10860 
10861   // Actually size doesn't depend on alignment but on shortening.
10862   ins_variable_size_depending_on_alignment(true);
10863   // Long variant.
10864   ins_short_branch(0);
10865 
10866   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
10867   size(8); // worst case
10868   ins_encode( enc_bc_short_far(crx, cmp, labl) );
10869   ins_pipe(pipe_class_default);
10870 %}
10871 
10872 // ============================================================================
10873 // Java runtime operations, intrinsics and other complex operations.
10874 
10875 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
10876 // array for an instance of the superklass. Set a hidden internal cache on a
10877 // hit (cache is checked with exposed code in gen_subtype_check()). Return
10878 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
10879 //
10880 // GL TODO: Improve this.
10881 // - result should not be a TEMP
10882 // - Add match rule as on sparc avoiding additional Cmp.
10883 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
10884                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
10885   match(Set result (PartialSubtypeCheck subklass superklass));
10886   effect(TEMP_DEF result, TEMP tmp_klass, TEMP tmp_arrayptr);
10887   ins_cost(DEFAULT_COST*10);
10888 
10889   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
10890   ins_encode %{
10891     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10892     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
10893                                      $tmp_klass$$Register, NULL, $result$$Register);
10894   %}
10895   ins_pipe(pipe_class_default);
10896 %}
10897 
10898 // inlined locking and unlocking
10899 
10900 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2) %{
10901   match(Set crx (FastLock oop box));
10902   effect(TEMP tmp1, TEMP tmp2);
10903   predicate(!Compile::current()->use_rtm());
10904 
10905   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2" %}
10906   ins_encode %{
10907     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10908     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10909                                  $tmp1$$Register, $tmp2$$Register, /*tmp3*/ R0,
10910                                  UseBiasedLocking && !UseOptoBiasInlining);
10911     // If locking was successfull, crx should indicate 'EQ'.
10912     // The compiler generates a branch to the runtime call to
10913     // _complete_monitor_locking_Java for the case where crx is 'NE'.
10914   %}
10915   ins_pipe(pipe_class_compare);
10916 %}
10917 
10918 // Separate version for TM. Use bound register for box to enable USE_KILL.
10919 instruct cmpFastLock_tm(flagsReg crx, iRegPdst oop, rarg2RegP box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10920   match(Set crx (FastLock oop box));
10921   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, USE_KILL box);
10922   predicate(Compile::current()->use_rtm());
10923 
10924   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3 (TM)" %}
10925   ins_encode %{
10926     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10927     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10928                                  $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10929                                  /*Biased Locking*/ false,
10930                                  _rtm_counters, _stack_rtm_counters,
10931                                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
10932                                  /*TM*/ true, ra_->C->profile_rtm());
10933     // If locking was successfull, crx should indicate 'EQ'.
10934     // The compiler generates a branch to the runtime call to
10935     // _complete_monitor_locking_Java for the case where crx is 'NE'.
10936   %}
10937   ins_pipe(pipe_class_compare);
10938 %}
10939 
10940 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10941   match(Set crx (FastUnlock oop box));
10942   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10943   predicate(!Compile::current()->use_rtm());
10944 
10945   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
10946   ins_encode %{
10947     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10948     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10949                                    $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10950                                    UseBiasedLocking && !UseOptoBiasInlining,
10951                                    false);
10952     // If unlocking was successfull, crx should indicate 'EQ'.
10953     // The compiler generates a branch to the runtime call to
10954     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
10955   %}
10956   ins_pipe(pipe_class_compare);
10957 %}
10958 
10959 instruct cmpFastUnlock_tm(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
10960   match(Set crx (FastUnlock oop box));
10961   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
10962   predicate(Compile::current()->use_rtm());
10963 
10964   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2 (TM)" %}
10965   ins_encode %{
10966     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
10967     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
10968                                    $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
10969                                    /*Biased Locking*/ false, /*TM*/ true);
10970     // If unlocking was successfull, crx should indicate 'EQ'.
10971     // The compiler generates a branch to the runtime call to
10972     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
10973   %}
10974   ins_pipe(pipe_class_compare);
10975 %}
10976 
10977 // Align address.
10978 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
10979   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
10980 
10981   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
10982   size(4);
10983   ins_encode %{
10984     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
10985     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
10986   %}
10987   ins_pipe(pipe_class_default);
10988 %}
10989 
10990 // Array size computation.
10991 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
10992   match(Set dst (SubL (CastP2X end) (CastP2X start)));
10993 
10994   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
10995   size(4);
10996   ins_encode %{
10997     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
10998     __ subf($dst$$Register, $start$$Register, $end$$Register);
10999   %}
11000   ins_pipe(pipe_class_default);
11001 %}
11002 
11003 // Clear-array with dynamic array-size.
11004 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
11005   match(Set dummy (ClearArray cnt base));
11006   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
11007   ins_cost(MEMORY_REF_COST);
11008 
11009   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11010 
11011   format %{ "ClearArray $cnt, $base" %}
11012   ins_encode %{
11013     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11014     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
11015   %}
11016   ins_pipe(pipe_class_default);
11017 %}
11018 
11019 // String_IndexOf for needle of length 1.
11020 //
11021 // Match needle into immediate operands: no loadConP node needed. Saves one
11022 // register and two instructions over string_indexOf_imm1Node.
11023 //
11024 // Assumes register result differs from all input registers.
11025 //
11026 // Preserves registers haystack, haycnt
11027 // Kills     registers tmp1, tmp2
11028 // Defines   registers result
11029 //
11030 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11031 //
11032 // Unfortunately this does not match too often. In many situations the AddP is used
11033 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
11034 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
11035                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
11036                                   iRegIdst tmp1, iRegIdst tmp2,
11037                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
11038   predicate(SpecialStringIndexOf && !CompactStrings);  // type check implicit by parameter type, See Matcher::match_rule_supported
11039   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
11040 
11041   effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
11042 
11043   ins_cost(150);
11044   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
11045             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
11046 
11047   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
11048   ins_encode %{
11049     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11050     immPOper *needleOper = (immPOper *)$needleImm;
11051     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
11052     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
11053 
11054     __ string_indexof_1($result$$Register,
11055                         $haystack$$Register, $haycnt$$Register,
11056                         R0, needle_values->char_at(0),
11057                         $tmp1$$Register, $tmp2$$Register);
11058   %}
11059   ins_pipe(pipe_class_compare);
11060 %}
11061 
11062 // String_IndexOf for needle of length 1.
11063 //
11064 // Special case requires less registers and emits less instructions.
11065 //
11066 // Assumes register result differs from all input registers.
11067 //
11068 // Preserves registers haystack, haycnt
11069 // Kills     registers tmp1, tmp2, needle
11070 // Defines   registers result
11071 //
11072 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11073 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
11074                              rscratch2RegP needle, immI_1 needlecntImm,
11075                              iRegIdst tmp1, iRegIdst tmp2,
11076                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
11077   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11078   effect(USE_KILL needle, /* TDEF needle, */ TEMP_DEF result,
11079          TEMP tmp1, TEMP tmp2);
11080   // Required for EA: check if it is still a type_array.
11081   predicate(SpecialStringIndexOf && !CompactStrings && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11082             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11083   ins_cost(180);
11084 
11085   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11086 
11087   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11088             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
11089   ins_encode %{
11090     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11091     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11092     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11093     guarantee(needle_values, "sanity");
11094     if (needle_values != NULL) {
11095       __ string_indexof_1($result$$Register,
11096                           $haystack$$Register, $haycnt$$Register,
11097                           R0, needle_values->char_at(0),
11098                           $tmp1$$Register, $tmp2$$Register);
11099     } else {
11100       __ string_indexof_1($result$$Register,
11101                           $haystack$$Register, $haycnt$$Register,
11102                           $needle$$Register, 0,
11103                           $tmp1$$Register, $tmp2$$Register);
11104     }
11105   %}
11106   ins_pipe(pipe_class_compare);
11107 %}
11108 
11109 // String_IndexOf.
11110 //
11111 // Length of needle as immediate. This saves instruction loading constant needle
11112 // length.
11113 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
11114 // completely or do it in vector instruction. This should save registers for
11115 // needlecnt and needle.
11116 //
11117 // Assumes register result differs from all input registers.
11118 // Overwrites haycnt, needlecnt.
11119 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11120 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
11121                             iRegPsrc needle, uimmI15 needlecntImm,
11122                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
11123                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11124   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
11125   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP_DEF result,
11126          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
11127   // Required for EA: check if it is still a type_array.
11128   predicate(SpecialStringIndexOf && !CompactStrings && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
11129             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
11130   ins_cost(250);
11131 
11132   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11133 
11134   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
11135             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
11136   ins_encode %{
11137     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11138     Node *ndl = in(operand_index($needle));  // The node that defines needle.
11139     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
11140 
11141     __ string_indexof($result$$Register,
11142                       $haystack$$Register, $haycnt$$Register,
11143                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
11144                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11145   %}
11146   ins_pipe(pipe_class_compare);
11147 %}
11148 
11149 // StrIndexOf node.
11150 //
11151 // Assumes register result differs from all input registers.
11152 // Overwrites haycnt, needlecnt.
11153 // Use dst register classes if register gets killed, as it is the case for tmp registers!
11154 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
11155                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
11156                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
11157   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
11158   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
11159          TEMP_DEF result,
11160          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
11161   predicate(SpecialStringIndexOf && !CompactStrings);  // See Matcher::match_rule_supported.
11162   ins_cost(300);
11163 
11164   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11165 
11166   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
11167              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
11168   ins_encode %{
11169     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11170     __ string_indexof($result$$Register,
11171                       $haystack$$Register, $haycnt$$Register,
11172                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
11173                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
11174   %}
11175   ins_pipe(pipe_class_compare);
11176 %}
11177 
11178 // String equals with immediate.
11179 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
11180                            iRegPdst tmp1, iRegPdst tmp2,
11181                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
11182   match(Set result (StrEquals (Binary str1 str2) cntImm));
11183   effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2,
11184          KILL cr0, KILL cr6, KILL ctr);
11185   predicate(SpecialStringEquals && !CompactStrings);  // See Matcher::match_rule_supported.
11186   ins_cost(250);
11187 
11188   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11189 
11190   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
11191             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
11192   ins_encode %{
11193     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11194     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
11195                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
11196   %}
11197   ins_pipe(pipe_class_compare);
11198 %}
11199 
11200 // String equals.
11201 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11202 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
11203                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
11204                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
11205   match(Set result (StrEquals (Binary str1 str2) cnt));
11206   effect(TEMP_DEF result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
11207          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
11208   predicate(SpecialStringEquals && !CompactStrings);  // See Matcher::match_rule_supported.
11209   ins_cost(300);
11210 
11211   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11212 
11213   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
11214             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
11215   ins_encode %{
11216     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11217     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
11218                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
11219   %}
11220   ins_pipe(pipe_class_compare);
11221 %}
11222 
11223 // String compare.
11224 // Char[] pointers are passed in.
11225 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
11226 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
11227                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
11228   predicate(!CompactStrings);
11229   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11230   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP_DEF result, TEMP tmp, KILL cr0, KILL ctr);
11231   ins_cost(300);
11232 
11233   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
11234 
11235   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
11236             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
11237   ins_encode %{
11238     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11239     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
11240                       $result$$Register, $tmp$$Register);
11241   %}
11242   ins_pipe(pipe_class_compare);
11243 %}
11244 
11245 //---------- Min/Max Instructions ---------------------------------------------
11246 
11247 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11248   match(Set dst (MinI src1 src2));
11249   ins_cost(DEFAULT_COST*6);
11250 
11251   expand %{
11252     iRegLdst src1s;
11253     iRegLdst src2s;
11254     iRegLdst diff;
11255     iRegLdst sm;
11256     iRegLdst doz; // difference or zero
11257     convI2L_reg(src1s, src1); // Ensure proper sign extension.
11258     convI2L_reg(src2s, src2); // Ensure proper sign extension.
11259     subL_reg_reg(diff, src2s, src1s);
11260     // Need to consider >=33 bit result, therefore we need signmaskL.
11261     signmask64L_regL(sm, diff);
11262     andL_reg_reg(doz, diff, sm); // <=0
11263     addI_regL_regL(dst, doz, src1s);
11264   %}
11265 %}
11266 
11267 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
11268   match(Set dst (MaxI src1 src2));
11269   ins_cost(DEFAULT_COST*6);
11270 
11271   expand %{
11272     iRegLdst src1s;
11273     iRegLdst src2s;
11274     iRegLdst diff;
11275     iRegLdst sm;
11276     iRegLdst doz; // difference or zero
11277     convI2L_reg(src1s, src1); // Ensure proper sign extension.
11278     convI2L_reg(src2s, src2); // Ensure proper sign extension.
11279     subL_reg_reg(diff, src2s, src1s);
11280     // Need to consider >=33 bit result, therefore we need signmaskL.
11281     signmask64L_regL(sm, diff);
11282     andcL_reg_reg(doz, diff, sm); // >=0
11283     addI_regL_regL(dst, doz, src1s);
11284   %}
11285 %}
11286 
11287 //---------- Population Count Instructions ------------------------------------
11288 
11289 // Popcnt for Power7.
11290 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
11291   match(Set dst (PopCountI src));
11292   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11293   ins_cost(DEFAULT_COST);
11294 
11295   format %{ "POPCNTW $dst, $src" %}
11296   size(4);
11297   ins_encode %{
11298     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11299     __ popcntw($dst$$Register, $src$$Register);
11300   %}
11301   ins_pipe(pipe_class_default);
11302 %}
11303 
11304 // Popcnt for Power7.
11305 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
11306   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
11307   match(Set dst (PopCountL src));
11308   ins_cost(DEFAULT_COST);
11309 
11310   format %{ "POPCNTD $dst, $src" %}
11311   size(4);
11312   ins_encode %{
11313     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
11314     __ popcntd($dst$$Register, $src$$Register);
11315   %}
11316   ins_pipe(pipe_class_default);
11317 %}
11318 
11319 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
11320   match(Set dst (CountLeadingZerosI src));
11321   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11322   ins_cost(DEFAULT_COST);
11323 
11324   format %{ "CNTLZW  $dst, $src" %}
11325   size(4);
11326   ins_encode %{
11327     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
11328     __ cntlzw($dst$$Register, $src$$Register);
11329   %}
11330   ins_pipe(pipe_class_default);
11331 %}
11332 
11333 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
11334   match(Set dst (CountLeadingZerosL src));
11335   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
11336   ins_cost(DEFAULT_COST);
11337 
11338   format %{ "CNTLZD  $dst, $src" %}
11339   size(4);
11340   ins_encode %{
11341     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11342     __ cntlzd($dst$$Register, $src$$Register);
11343   %}
11344   ins_pipe(pipe_class_default);
11345 %}
11346 
11347 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
11348   // no match-rule, false predicate
11349   effect(DEF dst, USE src);
11350   predicate(false);
11351 
11352   format %{ "CNTLZD  $dst, $src" %}
11353   size(4);
11354   ins_encode %{
11355     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
11356     __ cntlzd($dst$$Register, $src$$Register);
11357   %}
11358   ins_pipe(pipe_class_default);
11359 %}
11360 
11361 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
11362   match(Set dst (CountTrailingZerosI src));
11363   predicate(UseCountLeadingZerosInstructionsPPC64);
11364   ins_cost(DEFAULT_COST);
11365 
11366   expand %{
11367     immI16 imm1 %{ (int)-1 %}
11368     immI16 imm2 %{ (int)32 %}
11369     immI_minus1 m1 %{ -1 %}
11370     iRegIdst tmpI1;
11371     iRegIdst tmpI2;
11372     iRegIdst tmpI3;
11373     addI_reg_imm16(tmpI1, src, imm1);
11374     andcI_reg_reg(tmpI2, src, m1, tmpI1);
11375     countLeadingZerosI(tmpI3, tmpI2);
11376     subI_imm16_reg(dst, imm2, tmpI3);
11377   %}
11378 %}
11379 
11380 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
11381   match(Set dst (CountTrailingZerosL src));
11382   predicate(UseCountLeadingZerosInstructionsPPC64);
11383   ins_cost(DEFAULT_COST);
11384 
11385   expand %{
11386     immL16 imm1 %{ (long)-1 %}
11387     immI16 imm2 %{ (int)64 %}
11388     iRegLdst tmpL1;
11389     iRegLdst tmpL2;
11390     iRegIdst tmpL3;
11391     addL_reg_imm16(tmpL1, src, imm1);
11392     andcL_reg_reg(tmpL2, tmpL1, src);
11393     countLeadingZerosL(tmpL3, tmpL2);
11394     subI_imm16_reg(dst, imm2, tmpL3);
11395  %}
11396 %}
11397 
11398 // Expand nodes for byte_reverse_int.
11399 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11400   effect(DEF dst, USE src, USE pos, USE shift);
11401   predicate(false);
11402 
11403   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11404   size(4);
11405   ins_encode %{
11406     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11407     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11408   %}
11409   ins_pipe(pipe_class_default);
11410 %}
11411 
11412 // As insrwi_a, but with USE_DEF.
11413 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
11414   effect(USE_DEF dst, USE src, USE pos, USE shift);
11415   predicate(false);
11416 
11417   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
11418   size(4);
11419   ins_encode %{
11420     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
11421     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
11422   %}
11423   ins_pipe(pipe_class_default);
11424 %}
11425 
11426 // Just slightly faster than java implementation.
11427 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
11428   match(Set dst (ReverseBytesI src));
11429   predicate(UseCountLeadingZerosInstructionsPPC64);
11430   ins_cost(DEFAULT_COST);
11431 
11432   expand %{
11433     immI16 imm24 %{ (int) 24 %}
11434     immI16 imm16 %{ (int) 16 %}
11435     immI16  imm8 %{ (int)  8 %}
11436     immI16  imm4 %{ (int)  4 %}
11437     immI16  imm0 %{ (int)  0 %}
11438     iRegLdst tmpI1;
11439     iRegLdst tmpI2;
11440     iRegLdst tmpI3;
11441 
11442     urShiftI_reg_imm(tmpI1, src, imm24);
11443     insrwi_a(dst, tmpI1, imm24, imm8);
11444     urShiftI_reg_imm(tmpI2, src, imm16);
11445     insrwi(dst, tmpI2, imm8, imm16);
11446     urShiftI_reg_imm(tmpI3, src, imm8);
11447     insrwi(dst, tmpI3, imm8, imm8);
11448     insrwi(dst, src, imm0, imm8);
11449   %}
11450 %}
11451 
11452 //---------- Replicate Vector Instructions ------------------------------------
11453 
11454 // Insrdi does replicate if src == dst.
11455 instruct repl32(iRegLdst dst) %{
11456   predicate(false);
11457   effect(USE_DEF dst);
11458 
11459   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
11460   size(4);
11461   ins_encode %{
11462     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11463     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
11464   %}
11465   ins_pipe(pipe_class_default);
11466 %}
11467 
11468 // Insrdi does replicate if src == dst.
11469 instruct repl48(iRegLdst dst) %{
11470   predicate(false);
11471   effect(USE_DEF dst);
11472 
11473   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
11474   size(4);
11475   ins_encode %{
11476     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11477     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
11478   %}
11479   ins_pipe(pipe_class_default);
11480 %}
11481 
11482 // Insrdi does replicate if src == dst.
11483 instruct repl56(iRegLdst dst) %{
11484   predicate(false);
11485   effect(USE_DEF dst);
11486 
11487   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
11488   size(4);
11489   ins_encode %{
11490     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
11491     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
11492   %}
11493   ins_pipe(pipe_class_default);
11494 %}
11495 
11496 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11497   match(Set dst (ReplicateB src));
11498   predicate(n->as_Vector()->length() == 8);
11499   expand %{
11500     moveReg(dst, src);
11501     repl56(dst);
11502     repl48(dst);
11503     repl32(dst);
11504   %}
11505 %}
11506 
11507 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
11508   match(Set dst (ReplicateB zero));
11509   predicate(n->as_Vector()->length() == 8);
11510   format %{ "LI      $dst, #0 \t// replicate8B" %}
11511   size(4);
11512   ins_encode %{
11513     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11514     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11515   %}
11516   ins_pipe(pipe_class_default);
11517 %}
11518 
11519 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
11520   match(Set dst (ReplicateB src));
11521   predicate(n->as_Vector()->length() == 8);
11522   format %{ "LI      $dst, #-1 \t// replicate8B" %}
11523   size(4);
11524   ins_encode %{
11525     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11526     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11527   %}
11528   ins_pipe(pipe_class_default);
11529 %}
11530 
11531 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11532   match(Set dst (ReplicateS src));
11533   predicate(n->as_Vector()->length() == 4);
11534   expand %{
11535     moveReg(dst, src);
11536     repl48(dst);
11537     repl32(dst);
11538   %}
11539 %}
11540 
11541 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
11542   match(Set dst (ReplicateS zero));
11543   predicate(n->as_Vector()->length() == 4);
11544   format %{ "LI      $dst, #0 \t// replicate4C" %}
11545   size(4);
11546   ins_encode %{
11547     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11548     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11549   %}
11550   ins_pipe(pipe_class_default);
11551 %}
11552 
11553 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
11554   match(Set dst (ReplicateS src));
11555   predicate(n->as_Vector()->length() == 4);
11556   format %{ "LI      $dst, -1 \t// replicate4C" %}
11557   size(4);
11558   ins_encode %{
11559     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11560     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11561   %}
11562   ins_pipe(pipe_class_default);
11563 %}
11564 
11565 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
11566   match(Set dst (ReplicateI src));
11567   predicate(n->as_Vector()->length() == 2);
11568   ins_cost(2 * DEFAULT_COST);
11569   expand %{
11570     moveReg(dst, src);
11571     repl32(dst);
11572   %}
11573 %}
11574 
11575 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
11576   match(Set dst (ReplicateI zero));
11577   predicate(n->as_Vector()->length() == 2);
11578   format %{ "LI      $dst, #0 \t// replicate4C" %}
11579   size(4);
11580   ins_encode %{
11581     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11582     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
11583   %}
11584   ins_pipe(pipe_class_default);
11585 %}
11586 
11587 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
11588   match(Set dst (ReplicateI src));
11589   predicate(n->as_Vector()->length() == 2);
11590   format %{ "LI      $dst, -1 \t// replicate4C" %}
11591   size(4);
11592   ins_encode %{
11593     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11594     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
11595   %}
11596   ins_pipe(pipe_class_default);
11597 %}
11598 
11599 // Move float to int register via stack, replicate.
11600 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
11601   match(Set dst (ReplicateF src));
11602   predicate(n->as_Vector()->length() == 2);
11603   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
11604   expand %{
11605     stackSlotL tmpS;
11606     iRegIdst tmpI;
11607     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
11608     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
11609     moveReg(dst, tmpI);             // Move int to long reg.
11610     repl32(dst);                    // Replicate bitpattern.
11611   %}
11612 %}
11613 
11614 // Replicate scalar constant to packed float values in Double register
11615 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
11616   match(Set dst (ReplicateF src));
11617   predicate(n->as_Vector()->length() == 2);
11618   ins_cost(5 * DEFAULT_COST);
11619 
11620   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
11621   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
11622 %}
11623 
11624 // Replicate scalar zero constant to packed float values in Double register
11625 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
11626   match(Set dst (ReplicateF zero));
11627   predicate(n->as_Vector()->length() == 2);
11628 
11629   format %{ "LI      $dst, #0 \t// replicate2F" %}
11630   ins_encode %{
11631     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
11632     __ li($dst$$Register, 0x0);
11633   %}
11634   ins_pipe(pipe_class_default);
11635 %}
11636 
11637 
11638 //----------Overflow Math Instructions-----------------------------------------
11639 
11640 // Note that we have to make sure that XER.SO is reset before using overflow instructions.
11641 // Simple Overflow operations can be matched by very few instructions (e.g. addExact: xor, and_, bc).
11642 // Seems like only Long intrinsincs have an advantage. (The only expensive one is OverflowMulL.)
11643 
11644 instruct overflowAddL_reg_reg(flagsRegCR0 cr0, iRegLsrc op1, iRegLsrc op2) %{
11645   match(Set cr0 (OverflowAddL op1 op2));
11646 
11647   format %{ "add_    $op1, $op2\t# overflow check long" %}
11648   ins_encode %{
11649     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11650     __ li(R0, 0);
11651     __ mtxer(R0); // clear XER.SO
11652     __ addo_(R0, $op1$$Register, $op2$$Register);
11653   %}
11654   ins_pipe(pipe_class_default);
11655 %}
11656 
11657 instruct overflowSubL_reg_reg(flagsRegCR0 cr0, iRegLsrc op1, iRegLsrc op2) %{
11658   match(Set cr0 (OverflowSubL op1 op2));
11659 
11660   format %{ "subfo_  R0, $op2, $op1\t# overflow check long" %}
11661   ins_encode %{
11662     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11663     __ li(R0, 0);
11664     __ mtxer(R0); // clear XER.SO
11665     __ subfo_(R0, $op2$$Register, $op1$$Register);
11666   %}
11667   ins_pipe(pipe_class_default);
11668 %}
11669 
11670 instruct overflowNegL_reg(flagsRegCR0 cr0, immL_0 zero, iRegLsrc op2) %{
11671   match(Set cr0 (OverflowSubL zero op2));
11672 
11673   format %{ "nego_   R0, $op2\t# overflow check long" %}
11674   ins_encode %{
11675     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11676     __ li(R0, 0);
11677     __ mtxer(R0); // clear XER.SO
11678     __ nego_(R0, $op2$$Register);
11679   %}
11680   ins_pipe(pipe_class_default);
11681 %}
11682 
11683 instruct overflowMulL_reg_reg(flagsRegCR0 cr0, iRegLsrc op1, iRegLsrc op2) %{
11684   match(Set cr0 (OverflowMulL op1 op2));
11685 
11686   format %{ "mulldo_ R0, $op1, $op2\t# overflow check long" %}
11687   ins_encode %{
11688     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11689     __ li(R0, 0);
11690     __ mtxer(R0); // clear XER.SO
11691     __ mulldo_(R0, $op1$$Register, $op2$$Register);
11692   %}
11693   ins_pipe(pipe_class_default);
11694 %}
11695 
11696 
11697 // ============================================================================
11698 // Safepoint Instruction
11699 
11700 instruct safePoint_poll(iRegPdst poll) %{
11701   match(SafePoint poll);
11702   predicate(LoadPollAddressFromThread);
11703 
11704   // It caused problems to add the effect that r0 is killed, but this
11705   // effect no longer needs to be mentioned, since r0 is not contained
11706   // in a reg_class.
11707 
11708   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
11709   size(4);
11710   ins_encode( enc_poll(0x0, poll) );
11711   ins_pipe(pipe_class_default);
11712 %}
11713 
11714 // Safepoint without per-thread support. Load address of page to poll
11715 // as constant.
11716 // Rscratch2RegP is R12.
11717 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
11718 // a seperate node so that the oop map is at the right location.
11719 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
11720   match(SafePoint poll);
11721   predicate(!LoadPollAddressFromThread);
11722 
11723   // It caused problems to add the effect that r0 is killed, but this
11724   // effect no longer needs to be mentioned, since r0 is not contained
11725   // in a reg_class.
11726 
11727   format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
11728   ins_encode( enc_poll(0x0, poll) );
11729   ins_pipe(pipe_class_default);
11730 %}
11731 
11732 // ============================================================================
11733 // Call Instructions
11734 
11735 // Call Java Static Instruction
11736 
11737 // Schedulable version of call static node.
11738 instruct CallStaticJavaDirect(method meth) %{
11739   match(CallStaticJava);
11740   effect(USE meth);
11741   ins_cost(CALL_COST);
11742 
11743   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
11744 
11745   format %{ "CALL,static $meth \t// ==> " %}
11746   size(4);
11747   ins_encode( enc_java_static_call(meth) );
11748   ins_pipe(pipe_class_call);
11749 %}
11750 
11751 // Call Java Dynamic Instruction
11752 
11753 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
11754 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
11755 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
11756 // The call destination must still be placed in the constant pool.
11757 instruct CallDynamicJavaDirectSched(method meth) %{
11758   match(CallDynamicJava); // To get all the data fields we need ...
11759   effect(USE meth);
11760   predicate(false);       // ... but never match.
11761 
11762   ins_field_load_ic_hi_node(loadConL_hiNode*);
11763   ins_field_load_ic_node(loadConLNode*);
11764   ins_num_consts(1 /* 1 patchable constant: call destination */);
11765 
11766   format %{ "BL        \t// dynamic $meth ==> " %}
11767   size(4);
11768   ins_encode( enc_java_dynamic_call_sched(meth) );
11769   ins_pipe(pipe_class_call);
11770 %}
11771 
11772 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
11773 // We use postalloc expanded calls if we use inline caches
11774 // and do not update method data.
11775 //
11776 // This instruction has two constants: inline cache (IC) and call destination.
11777 // Loading the inline cache will be postalloc expanded, thus leaving a call with
11778 // one constant.
11779 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
11780   match(CallDynamicJava);
11781   effect(USE meth);
11782   predicate(UseInlineCaches);
11783   ins_cost(CALL_COST);
11784 
11785   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
11786 
11787   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
11788   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
11789 %}
11790 
11791 // Compound version of call dynamic java
11792 // We use postalloc expanded calls if we use inline caches
11793 // and do not update method data.
11794 instruct CallDynamicJavaDirect(method meth) %{
11795   match(CallDynamicJava);
11796   effect(USE meth);
11797   predicate(!UseInlineCaches);
11798   ins_cost(CALL_COST);
11799 
11800   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
11801   ins_num_consts(4);
11802 
11803   format %{ "CALL,dynamic $meth \t// ==> " %}
11804   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
11805   ins_pipe(pipe_class_call);
11806 %}
11807 
11808 // Call Runtime Instruction
11809 
11810 instruct CallRuntimeDirect(method meth) %{
11811   match(CallRuntime);
11812   effect(USE meth);
11813   ins_cost(CALL_COST);
11814 
11815   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11816   // env for callee, C-toc.
11817   ins_num_consts(3);
11818 
11819   format %{ "CALL,runtime" %}
11820   ins_encode( enc_java_to_runtime_call(meth) );
11821   ins_pipe(pipe_class_call);
11822 %}
11823 
11824 // Call Leaf
11825 
11826 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
11827 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
11828   effect(DEF dst, USE src);
11829 
11830   ins_num_consts(1);
11831 
11832   format %{ "MTCTR   $src" %}
11833   size(4);
11834   ins_encode( enc_leaf_call_mtctr(src) );
11835   ins_pipe(pipe_class_default);
11836 %}
11837 
11838 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
11839 instruct CallLeafDirect(method meth) %{
11840   match(CallLeaf);   // To get the data all the data fields we need ...
11841   effect(USE meth);
11842   predicate(false);  // but never match.
11843 
11844   format %{ "BCTRL     \t// leaf call $meth ==> " %}
11845   size(4);
11846   ins_encode %{
11847     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
11848     __ bctrl();
11849   %}
11850   ins_pipe(pipe_class_call);
11851 %}
11852 
11853 // postalloc expand of CallLeafDirect.
11854 // Load adress to call from TOC, then bl to it.
11855 instruct CallLeafDirect_Ex(method meth) %{
11856   match(CallLeaf);
11857   effect(USE meth);
11858   ins_cost(CALL_COST);
11859 
11860   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
11861   // env for callee, C-toc.
11862   ins_num_consts(3);
11863 
11864   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
11865   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11866 %}
11867 
11868 // Call runtime without safepoint - same as CallLeaf.
11869 // postalloc expand of CallLeafNoFPDirect.
11870 // Load adress to call from TOC, then bl to it.
11871 instruct CallLeafNoFPDirect_Ex(method meth) %{
11872   match(CallLeafNoFP);
11873   effect(USE meth);
11874   ins_cost(CALL_COST);
11875 
11876   // Enc_java_to_runtime_call needs up to 3 constants: call target,
11877   // env for callee, C-toc.
11878   ins_num_consts(3);
11879 
11880   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
11881   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
11882 %}
11883 
11884 // Tail Call; Jump from runtime stub to Java code.
11885 // Also known as an 'interprocedural jump'.
11886 // Target of jump will eventually return to caller.
11887 // TailJump below removes the return address.
11888 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
11889   match(TailCall jump_target method_oop);
11890   ins_cost(CALL_COST);
11891 
11892   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
11893             "BCTR         \t// tail call" %}
11894   size(8);
11895   ins_encode %{
11896     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11897     __ mtctr($jump_target$$Register);
11898     __ bctr();
11899   %}
11900   ins_pipe(pipe_class_call);
11901 %}
11902 
11903 // Return Instruction
11904 instruct Ret() %{
11905   match(Return);
11906   format %{ "BLR      \t// branch to link register" %}
11907   size(4);
11908   ins_encode %{
11909     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
11910     // LR is restored in MachEpilogNode. Just do the RET here.
11911     __ blr();
11912   %}
11913   ins_pipe(pipe_class_default);
11914 %}
11915 
11916 // Tail Jump; remove the return address; jump to target.
11917 // TailCall above leaves the return address around.
11918 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
11919 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
11920 // "restore" before this instruction (in Epilogue), we need to materialize it
11921 // in %i0.
11922 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
11923   match(TailJump jump_target ex_oop);
11924   ins_cost(CALL_COST);
11925 
11926   format %{ "LD      R4_ARG2 = LR\n\t"
11927             "MTCTR   $jump_target\n\t"
11928             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
11929   size(12);
11930   ins_encode %{
11931     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11932     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
11933     __ mtctr($jump_target$$Register);
11934     __ bctr();
11935   %}
11936   ins_pipe(pipe_class_call);
11937 %}
11938 
11939 // Create exception oop: created by stack-crawling runtime code.
11940 // Created exception is now available to this handler, and is setup
11941 // just prior to jumping to this handler. No code emitted.
11942 instruct CreateException(rarg1RegP ex_oop) %{
11943   match(Set ex_oop (CreateEx));
11944   ins_cost(0);
11945 
11946   format %{ " -- \t// exception oop; no code emitted" %}
11947   size(0);
11948   ins_encode( /*empty*/ );
11949   ins_pipe(pipe_class_default);
11950 %}
11951 
11952 // Rethrow exception: The exception oop will come in the first
11953 // argument position. Then JUMP (not call) to the rethrow stub code.
11954 instruct RethrowException() %{
11955   match(Rethrow);
11956   ins_cost(CALL_COST);
11957 
11958   format %{ "Jmp     rethrow_stub" %}
11959   ins_encode %{
11960     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
11961     cbuf.set_insts_mark();
11962     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
11963   %}
11964   ins_pipe(pipe_class_call);
11965 %}
11966 
11967 // Die now.
11968 instruct ShouldNotReachHere() %{
11969   match(Halt);
11970   ins_cost(CALL_COST);
11971 
11972   format %{ "ShouldNotReachHere" %}
11973   size(4);
11974   ins_encode %{
11975     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
11976     __ trap_should_not_reach_here();
11977   %}
11978   ins_pipe(pipe_class_default);
11979 %}
11980 
11981 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
11982 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
11983 // Get a DEF on threadRegP, no costs, no encoding, use
11984 // 'ins_should_rematerialize(true)' to avoid spilling.
11985 instruct tlsLoadP(threadRegP dst) %{
11986   match(Set dst (ThreadLocal));
11987   ins_cost(0);
11988 
11989   ins_should_rematerialize(true);
11990 
11991   format %{ " -- \t// $dst=Thread::current(), empty" %}
11992   size(0);
11993   ins_encode( /*empty*/ );
11994   ins_pipe(pipe_class_empty);
11995 %}
11996 
11997 //---Some PPC specific nodes---------------------------------------------------
11998 
11999 // Stop a group.
12000 instruct endGroup() %{
12001   ins_cost(0);
12002 
12003   ins_is_nop(true);
12004 
12005   format %{ "End Bundle (ori r1, r1, 0)" %}
12006   size(4);
12007   ins_encode %{
12008     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
12009     __ endgroup();
12010   %}
12011   ins_pipe(pipe_class_default);
12012 %}
12013 
12014 // Nop instructions
12015 
12016 instruct fxNop() %{
12017   ins_cost(0);
12018 
12019   ins_is_nop(true);
12020 
12021   format %{ "fxNop" %}
12022   size(4);
12023   ins_encode %{
12024     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
12025     __ nop();
12026   %}
12027   ins_pipe(pipe_class_default);
12028 %}
12029 
12030 instruct fpNop0() %{
12031   ins_cost(0);
12032 
12033   ins_is_nop(true);
12034 
12035   format %{ "fpNop0" %}
12036   size(4);
12037   ins_encode %{
12038     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
12039     __ fpnop0();
12040   %}
12041   ins_pipe(pipe_class_default);
12042 %}
12043 
12044 instruct fpNop1() %{
12045   ins_cost(0);
12046 
12047   ins_is_nop(true);
12048 
12049   format %{ "fpNop1" %}
12050   size(4);
12051   ins_encode %{
12052     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
12053     __ fpnop1();
12054   %}
12055   ins_pipe(pipe_class_default);
12056 %}
12057 
12058 instruct brNop0() %{
12059   ins_cost(0);
12060   size(4);
12061   format %{ "brNop0" %}
12062   ins_encode %{
12063     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12064     __ brnop0();
12065   %}
12066   ins_is_nop(true);
12067   ins_pipe(pipe_class_default);
12068 %}
12069 
12070 instruct brNop1() %{
12071   ins_cost(0);
12072 
12073   ins_is_nop(true);
12074 
12075   format %{ "brNop1" %}
12076   size(4);
12077   ins_encode %{
12078     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12079     __ brnop1();
12080   %}
12081   ins_pipe(pipe_class_default);
12082 %}
12083 
12084 instruct brNop2() %{
12085   ins_cost(0);
12086 
12087   ins_is_nop(true);
12088 
12089   format %{ "brNop2" %}
12090   size(4);
12091   ins_encode %{
12092     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
12093     __ brnop2();
12094   %}
12095   ins_pipe(pipe_class_default);
12096 %}
12097 
12098 //----------PEEPHOLE RULES-----------------------------------------------------
12099 // These must follow all instruction definitions as they use the names
12100 // defined in the instructions definitions.
12101 //
12102 // peepmatch ( root_instr_name [preceeding_instruction]* );
12103 //
12104 // peepconstraint %{
12105 // (instruction_number.operand_name relational_op instruction_number.operand_name
12106 //  [, ...] );
12107 // // instruction numbers are zero-based using left to right order in peepmatch
12108 //
12109 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
12110 // // provide an instruction_number.operand_name for each operand that appears
12111 // // in the replacement instruction's match rule
12112 //
12113 // ---------VM FLAGS---------------------------------------------------------
12114 //
12115 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12116 //
12117 // Each peephole rule is given an identifying number starting with zero and
12118 // increasing by one in the order seen by the parser. An individual peephole
12119 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12120 // on the command-line.
12121 //
12122 // ---------CURRENT LIMITATIONS----------------------------------------------
12123 //
12124 // Only match adjacent instructions in same basic block
12125 // Only equality constraints
12126 // Only constraints between operands, not (0.dest_reg == EAX_enc)
12127 // Only one replacement instruction
12128 //
12129 // ---------EXAMPLE----------------------------------------------------------
12130 //
12131 // // pertinent parts of existing instructions in architecture description
12132 // instruct movI(eRegI dst, eRegI src) %{
12133 //   match(Set dst (CopyI src));
12134 // %}
12135 //
12136 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
12137 //   match(Set dst (AddI dst src));
12138 //   effect(KILL cr);
12139 // %}
12140 //
12141 // // Change (inc mov) to lea
12142 // peephole %{
12143 //   // increment preceeded by register-register move
12144 //   peepmatch ( incI_eReg movI );
12145 //   // require that the destination register of the increment
12146 //   // match the destination register of the move
12147 //   peepconstraint ( 0.dst == 1.dst );
12148 //   // construct a replacement instruction that sets
12149 //   // the destination to ( move's source register + one )
12150 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12151 // %}
12152 //
12153 // Implementation no longer uses movX instructions since
12154 // machine-independent system no longer uses CopyX nodes.
12155 //
12156 // peephole %{
12157 //   peepmatch ( incI_eReg movI );
12158 //   peepconstraint ( 0.dst == 1.dst );
12159 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12160 // %}
12161 //
12162 // peephole %{
12163 //   peepmatch ( decI_eReg movI );
12164 //   peepconstraint ( 0.dst == 1.dst );
12165 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12166 // %}
12167 //
12168 // peephole %{
12169 //   peepmatch ( addI_eReg_imm movI );
12170 //   peepconstraint ( 0.dst == 1.dst );
12171 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12172 // %}
12173 //
12174 // peephole %{
12175 //   peepmatch ( addP_eReg_imm movP );
12176 //   peepconstraint ( 0.dst == 1.dst );
12177 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12178 // %}
12179 
12180 // // Change load of spilled value to only a spill
12181 // instruct storeI(memory mem, eRegI src) %{
12182 //   match(Set mem (StoreI mem src));
12183 // %}
12184 //
12185 // instruct loadI(eRegI dst, memory mem) %{
12186 //   match(Set dst (LoadI mem));
12187 // %}
12188 //
12189 peephole %{
12190   peepmatch ( loadI storeI );
12191   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12192   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12193 %}
12194 
12195 peephole %{
12196   peepmatch ( loadL storeL );
12197   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12198   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
12199 %}
12200 
12201 peephole %{
12202   peepmatch ( loadP storeP );
12203   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
12204   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
12205 %}
12206 
12207 //----------SMARTSPILL RULES---------------------------------------------------
12208 // These must follow all instruction definitions as they use the names
12209 // defined in the instructions definitions.