1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/templateTable.hpp"
  30 #include "memory/universe.inline.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/synchronizer.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #define __ _masm->
  41 
  42 // Misc helpers
  43 
  44 // Do an oop store like *(base + index + offset) = val
  45 // index can be noreg,
  46 static void do_oop_store(InterpreterMacroAssembler* _masm,
  47                          Register base,
  48                          Register index,
  49                          int offset,
  50                          Register val,
  51                          Register tmp,
  52                          BarrierSet::Name barrier,
  53                          bool precise) {
  54   assert(tmp != val && tmp != base && tmp != index, "register collision");
  55   assert(index == noreg || offset == 0, "only one offset");
  56   switch (barrier) {
  57 #if INCLUDE_ALL_GCS
  58     case BarrierSet::G1SATBCTLogging:
  59       {
  60         // Load and record the previous value.
  61         __ g1_write_barrier_pre(base, index, offset,
  62                                 noreg /* pre_val */,
  63                                 tmp, true /*preserve_o_regs*/);
  64 
  65         // G1 barrier needs uncompressed oop for region cross check.
  66         Register new_val = val;
  67         if (UseCompressedOops && val != G0) {
  68           new_val = tmp;
  69           __ mov(val, new_val);
  70         }
  71 
  72         if (index == noreg ) {
  73           assert(Assembler::is_simm13(offset), "fix this code");
  74           __ store_heap_oop(val, base, offset);
  75         } else {
  76           __ store_heap_oop(val, base, index);
  77         }
  78 
  79         // No need for post barrier if storing NULL
  80         if (val != G0) {
  81           if (precise) {
  82             if (index == noreg) {
  83               __ add(base, offset, base);
  84             } else {
  85               __ add(base, index, base);
  86             }
  87           }
  88           __ g1_write_barrier_post(base, new_val, tmp);
  89         }
  90       }
  91       break;
  92 #endif // INCLUDE_ALL_GCS
  93     case BarrierSet::CardTableForRS:
  94     case BarrierSet::CardTableExtension:
  95       {
  96         if (index == noreg ) {
  97           assert(Assembler::is_simm13(offset), "fix this code");
  98           __ store_heap_oop(val, base, offset);
  99         } else {
 100           __ store_heap_oop(val, base, index);
 101         }
 102         // No need for post barrier if storing NULL
 103         if (val != G0) {
 104           if (precise) {
 105             if (index == noreg) {
 106               __ add(base, offset, base);
 107             } else {
 108               __ add(base, index, base);
 109             }
 110           }
 111           __ card_write_barrier_post(base, val, tmp);
 112         }
 113       }
 114       break;
 115     case BarrierSet::ModRef:
 116       ShouldNotReachHere();
 117       break;
 118     default      :
 119       ShouldNotReachHere();
 120 
 121   }
 122 }
 123 
 124 
 125 //----------------------------------------------------------------------------------------------------
 126 // Platform-dependent initialization
 127 
 128 void TemplateTable::pd_initialize() {
 129   // (none)
 130 }
 131 
 132 
 133 //----------------------------------------------------------------------------------------------------
 134 // Condition conversion
 135 Assembler::Condition ccNot(TemplateTable::Condition cc) {
 136   switch (cc) {
 137     case TemplateTable::equal        : return Assembler::notEqual;
 138     case TemplateTable::not_equal    : return Assembler::equal;
 139     case TemplateTable::less         : return Assembler::greaterEqual;
 140     case TemplateTable::less_equal   : return Assembler::greater;
 141     case TemplateTable::greater      : return Assembler::lessEqual;
 142     case TemplateTable::greater_equal: return Assembler::less;
 143   }
 144   ShouldNotReachHere();
 145   return Assembler::zero;
 146 }
 147 
 148 //----------------------------------------------------------------------------------------------------
 149 // Miscelaneous helper routines
 150 
 151 
 152 Address TemplateTable::at_bcp(int offset) {
 153   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 154   return Address(Lbcp, offset);
 155 }
 156 
 157 
 158 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 159                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 160                                    int byte_no) {
 161   // With sharing on, may need to test Method* flag.
 162   if (!RewriteBytecodes)  return;
 163   Label L_patch_done;
 164 
 165   switch (bc) {
 166   case Bytecodes::_fast_aputfield:
 167   case Bytecodes::_fast_bputfield:
 168   case Bytecodes::_fast_cputfield:
 169   case Bytecodes::_fast_dputfield:
 170   case Bytecodes::_fast_fputfield:
 171   case Bytecodes::_fast_iputfield:
 172   case Bytecodes::_fast_lputfield:
 173   case Bytecodes::_fast_sputfield:
 174     {
 175       // We skip bytecode quickening for putfield instructions when
 176       // the put_code written to the constant pool cache is zero.
 177       // This is required so that every execution of this instruction
 178       // calls out to InterpreterRuntime::resolve_get_put to do
 179       // additional, required work.
 180       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 181       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 182       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 183       __ set(bc, bc_reg);
 184       __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done);  // don't patch
 185     }
 186     break;
 187   default:
 188     assert(byte_no == -1, "sanity");
 189     if (load_bc_into_bc_reg) {
 190       __ set(bc, bc_reg);
 191     }
 192   }
 193 
 194   if (JvmtiExport::can_post_breakpoint()) {
 195     Label L_fast_patch;
 196     __ ldub(at_bcp(0), temp_reg);
 197     __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch);
 198     // perform the quickening, slowly, in the bowels of the breakpoint table
 199     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg);
 200     __ ba_short(L_patch_done);
 201     __ bind(L_fast_patch);
 202   }
 203 
 204 #ifdef ASSERT
 205   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
 206   Label L_okay;
 207   __ ldub(at_bcp(0), temp_reg);
 208   __ cmp(temp_reg, orig_bytecode);
 209   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 210   __ delayed()->cmp(temp_reg, bc_reg);
 211   __ br(Assembler::equal, false, Assembler::pt, L_okay);
 212   __ delayed()->nop();
 213   __ stop("patching the wrong bytecode");
 214   __ bind(L_okay);
 215 #endif
 216 
 217   // patch bytecode
 218   __ stb(bc_reg, at_bcp(0));
 219   __ bind(L_patch_done);
 220 }
 221 
 222 //----------------------------------------------------------------------------------------------------
 223 // Individual instructions
 224 
 225 void TemplateTable::nop() {
 226   transition(vtos, vtos);
 227   // nothing to do
 228 }
 229 
 230 void TemplateTable::shouldnotreachhere() {
 231   transition(vtos, vtos);
 232   __ stop("shouldnotreachhere bytecode");
 233 }
 234 
 235 void TemplateTable::aconst_null() {
 236   transition(vtos, atos);
 237   __ clr(Otos_i);
 238 }
 239 
 240 
 241 void TemplateTable::iconst(int value) {
 242   transition(vtos, itos);
 243   __ set(value, Otos_i);
 244 }
 245 
 246 
 247 void TemplateTable::lconst(int value) {
 248   transition(vtos, ltos);
 249   assert(value >= 0, "check this code");
 250 #ifdef _LP64
 251   __ set(value, Otos_l);
 252 #else
 253   __ set(value, Otos_l2);
 254   __ clr( Otos_l1);
 255 #endif
 256 }
 257 
 258 
 259 void TemplateTable::fconst(int value) {
 260   transition(vtos, ftos);
 261   static float zero = 0.0, one = 1.0, two = 2.0;
 262   float* p;
 263   switch( value ) {
 264    default: ShouldNotReachHere();
 265    case 0:  p = &zero;  break;
 266    case 1:  p = &one;   break;
 267    case 2:  p = &two;   break;
 268   }
 269   AddressLiteral a(p);
 270   __ sethi(a, G3_scratch);
 271   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
 272 }
 273 
 274 
 275 void TemplateTable::dconst(int value) {
 276   transition(vtos, dtos);
 277   static double zero = 0.0, one = 1.0;
 278   double* p;
 279   switch( value ) {
 280    default: ShouldNotReachHere();
 281    case 0:  p = &zero;  break;
 282    case 1:  p = &one;   break;
 283   }
 284   AddressLiteral a(p);
 285   __ sethi(a, G3_scratch);
 286   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
 287 }
 288 
 289 
 290 // %%%%% Should factore most snippet templates across platforms
 291 
 292 void TemplateTable::bipush() {
 293   transition(vtos, itos);
 294   __ ldsb( at_bcp(1), Otos_i );
 295 }
 296 
 297 void TemplateTable::sipush() {
 298   transition(vtos, itos);
 299   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
 300 }
 301 
 302 void TemplateTable::ldc(bool wide) {
 303   transition(vtos, vtos);
 304   Label call_ldc, notInt, isString, notString, notClass, exit;
 305 
 306   if (wide) {
 307     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 308   } else {
 309     __ ldub(Lbcp, 1, O1);
 310   }
 311   __ get_cpool_and_tags(O0, O2);
 312 
 313   const int base_offset = ConstantPool::header_size() * wordSize;
 314   const int tags_offset = Array<u1>::base_offset_in_bytes();
 315 
 316   // get type from tags
 317   __ add(O2, tags_offset, O2);
 318   __ ldub(O2, O1, O2);
 319 
 320   // unresolved class? If so, must resolve
 321   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc);
 322 
 323   // unresolved class in error state
 324   __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc);
 325 
 326   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
 327   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
 328   __ delayed()->add(O0, base_offset, O0);
 329 
 330   __ bind(call_ldc);
 331   __ set(wide, O1);
 332   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
 333   __ push(atos);
 334   __ ba_short(exit);
 335 
 336   __ bind(notClass);
 337  // __ add(O0, base_offset, O0);
 338   __ sll(O1, LogBytesPerWord, O1);
 339   __ cmp(O2, JVM_CONSTANT_Integer);
 340   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
 341   __ delayed()->cmp(O2, JVM_CONSTANT_String);
 342   __ ld(O0, O1, Otos_i);
 343   __ push(itos);
 344   __ ba_short(exit);
 345 
 346   __ bind(notInt);
 347  // __ cmp(O2, JVM_CONSTANT_String);
 348   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
 349   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 350   __ bind(isString);
 351   __ stop("string should be rewritten to fast_aldc");
 352   __ ba_short(exit);
 353 
 354   __ bind(notString);
 355  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
 356   __ push(ftos);
 357 
 358   __ bind(exit);
 359 }
 360 
 361 // Fast path for caching oop constants.
 362 // %%% We should use this to handle Class and String constants also.
 363 // %%% It will simplify the ldc/primitive path considerably.
 364 void TemplateTable::fast_aldc(bool wide) {
 365   transition(vtos, atos);
 366 
 367   int index_size = wide ? sizeof(u2) : sizeof(u1);
 368   Label resolved;
 369 
 370   // We are resolved if the resolved reference cache entry contains a
 371   // non-null object (CallSite, etc.)
 372   assert_different_registers(Otos_i, G3_scratch);
 373   __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size);  // load index => G3_scratch
 374   __ load_resolved_reference_at_index(Otos_i, G3_scratch);
 375   __ tst(Otos_i);
 376   __ br(Assembler::notEqual, false, Assembler::pt, resolved);
 377   __ delayed()->set((int)bytecode(), O1);
 378 
 379   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 380 
 381   // first time invocation - must resolve first
 382   __ call_VM(Otos_i, entry, O1);
 383   __ bind(resolved);
 384   __ verify_oop(Otos_i);
 385 }
 386 
 387 void TemplateTable::ldc2_w() {
 388   transition(vtos, vtos);
 389   Label Long, exit;
 390 
 391   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
 392   __ get_cpool_and_tags(O0, O2);
 393 
 394   const int base_offset = ConstantPool::header_size() * wordSize;
 395   const int tags_offset = Array<u1>::base_offset_in_bytes();
 396   // get type from tags
 397   __ add(O2, tags_offset, O2);
 398   __ ldub(O2, O1, O2);
 399 
 400   __ sll(O1, LogBytesPerWord, O1);
 401   __ add(O0, O1, G3_scratch);
 402 
 403   __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long);
 404   // A double can be placed at word-aligned locations in the constant pool.
 405   // Check out Conversions.java for an example.
 406   // Also ConstantPool::header_size() is 20, which makes it very difficult
 407   // to double-align double on the constant pool.  SG, 11/7/97
 408 #ifdef _LP64
 409   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
 410 #else
 411   FloatRegister f = Ftos_d;
 412   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
 413   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
 414          f->successor());
 415 #endif
 416   __ push(dtos);
 417   __ ba_short(exit);
 418 
 419   __ bind(Long);
 420 #ifdef _LP64
 421   __ ldx(G3_scratch, base_offset, Otos_l);
 422 #else
 423   __ ld(G3_scratch, base_offset, Otos_l);
 424   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
 425 #endif
 426   __ push(ltos);
 427 
 428   __ bind(exit);
 429 }
 430 
 431 void TemplateTable::locals_index(Register reg, int offset) {
 432   __ ldub( at_bcp(offset), reg );
 433 }
 434 
 435 void TemplateTable::locals_index_wide(Register reg) {
 436   // offset is 2, not 1, because Lbcp points to wide prefix code
 437   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
 438 }
 439 
 440 void TemplateTable::iload() {
 441   iload_internal();
 442 }
 443 
 444 void TemplateTable::nofast_iload() {
 445   iload_internal(may_not_rewrite);
 446 }
 447 
 448 void TemplateTable::iload_internal(RewriteControl rc) {
 449   transition(vtos, itos);
 450   // Rewrite iload,iload  pair into fast_iload2
 451   //         iload,caload pair into fast_icaload
 452   if (RewriteFrequentPairs && rc == may_rewrite) {
 453     Label rewrite, done;
 454 
 455     // get next byte
 456     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
 457 
 458     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 459     // last two iloads in a pair.  Comparing against fast_iload means that
 460     // the next bytecode is neither an iload or a caload, and therefore
 461     // an iload pair.
 462     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done);
 463 
 464     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
 465     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 466     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
 467 
 468     __ cmp(G3_scratch, (int)Bytecodes::_caload);
 469     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 470     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
 471 
 472     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
 473     // rewrite
 474     // G4_scratch: fast bytecode
 475     __ bind(rewrite);
 476     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
 477     __ bind(done);
 478   }
 479 
 480   // Get the local value into tos
 481   locals_index(G3_scratch);
 482   __ access_local_int( G3_scratch, Otos_i );
 483 }
 484 
 485 void TemplateTable::fast_iload2() {
 486   transition(vtos, itos);
 487   locals_index(G3_scratch);
 488   __ access_local_int( G3_scratch, Otos_i );
 489   __ push_i();
 490   locals_index(G3_scratch, 3);  // get next bytecode's local index.
 491   __ access_local_int( G3_scratch, Otos_i );
 492 }
 493 
 494 void TemplateTable::fast_iload() {
 495   transition(vtos, itos);
 496   locals_index(G3_scratch);
 497   __ access_local_int( G3_scratch, Otos_i );
 498 }
 499 
 500 void TemplateTable::lload() {
 501   transition(vtos, ltos);
 502   locals_index(G3_scratch);
 503   __ access_local_long( G3_scratch, Otos_l );
 504 }
 505 
 506 
 507 void TemplateTable::fload() {
 508   transition(vtos, ftos);
 509   locals_index(G3_scratch);
 510   __ access_local_float( G3_scratch, Ftos_f );
 511 }
 512 
 513 
 514 void TemplateTable::dload() {
 515   transition(vtos, dtos);
 516   locals_index(G3_scratch);
 517   __ access_local_double( G3_scratch, Ftos_d );
 518 }
 519 
 520 
 521 void TemplateTable::aload() {
 522   transition(vtos, atos);
 523   locals_index(G3_scratch);
 524   __ access_local_ptr( G3_scratch, Otos_i);
 525 }
 526 
 527 
 528 void TemplateTable::wide_iload() {
 529   transition(vtos, itos);
 530   locals_index_wide(G3_scratch);
 531   __ access_local_int( G3_scratch, Otos_i );
 532 }
 533 
 534 
 535 void TemplateTable::wide_lload() {
 536   transition(vtos, ltos);
 537   locals_index_wide(G3_scratch);
 538   __ access_local_long( G3_scratch, Otos_l );
 539 }
 540 
 541 
 542 void TemplateTable::wide_fload() {
 543   transition(vtos, ftos);
 544   locals_index_wide(G3_scratch);
 545   __ access_local_float( G3_scratch, Ftos_f );
 546 }
 547 
 548 
 549 void TemplateTable::wide_dload() {
 550   transition(vtos, dtos);
 551   locals_index_wide(G3_scratch);
 552   __ access_local_double( G3_scratch, Ftos_d );
 553 }
 554 
 555 
 556 void TemplateTable::wide_aload() {
 557   transition(vtos, atos);
 558   locals_index_wide(G3_scratch);
 559   __ access_local_ptr( G3_scratch, Otos_i );
 560   __ verify_oop(Otos_i);
 561 }
 562 
 563 
 564 void TemplateTable::iaload() {
 565   transition(itos, itos);
 566   // Otos_i: index
 567   // tos: array
 568   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 569   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
 570 }
 571 
 572 
 573 void TemplateTable::laload() {
 574   transition(itos, ltos);
 575   // Otos_i: index
 576   // O2: array
 577   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 578   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
 579 }
 580 
 581 
 582 void TemplateTable::faload() {
 583   transition(itos, ftos);
 584   // Otos_i: index
 585   // O2: array
 586   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
 587   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
 588 }
 589 
 590 
 591 void TemplateTable::daload() {
 592   transition(itos, dtos);
 593   // Otos_i: index
 594   // O2: array
 595   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
 596   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
 597 }
 598 
 599 
 600 void TemplateTable::aaload() {
 601   transition(itos, atos);
 602   // Otos_i: index
 603   // tos: array
 604   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
 605   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
 606   __ verify_oop(Otos_i);
 607 }
 608 
 609 
 610 void TemplateTable::baload() {
 611   transition(itos, itos);
 612   // Otos_i: index
 613   // tos: array
 614   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
 615   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
 616 }
 617 
 618 
 619 void TemplateTable::caload() {
 620   transition(itos, itos);
 621   // Otos_i: index
 622   // tos: array
 623   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 624   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 625 }
 626 
 627 void TemplateTable::fast_icaload() {
 628   transition(vtos, itos);
 629   // Otos_i: index
 630   // tos: array
 631   locals_index(G3_scratch);
 632   __ access_local_int( G3_scratch, Otos_i );
 633   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 634   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
 635 }
 636 
 637 
 638 void TemplateTable::saload() {
 639   transition(itos, itos);
 640   // Otos_i: index
 641   // tos: array
 642   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
 643   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
 644 }
 645 
 646 
 647 void TemplateTable::iload(int n) {
 648   transition(vtos, itos);
 649   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 650 }
 651 
 652 
 653 void TemplateTable::lload(int n) {
 654   transition(vtos, ltos);
 655   assert(n+1 < Argument::n_register_parameters, "would need more code");
 656   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
 657 }
 658 
 659 
 660 void TemplateTable::fload(int n) {
 661   transition(vtos, ftos);
 662   assert(n < Argument::n_register_parameters, "would need more code");
 663   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
 664 }
 665 
 666 
 667 void TemplateTable::dload(int n) {
 668   transition(vtos, dtos);
 669   FloatRegister dst = Ftos_d;
 670   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
 671 }
 672 
 673 
 674 void TemplateTable::aload(int n) {
 675   transition(vtos, atos);
 676   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
 677 }
 678 
 679 void TemplateTable::aload_0() {
 680   aload_0_internal();
 681 }
 682 
 683 void TemplateTable::nofast_aload_0() {
 684   aload_0_internal(may_not_rewrite);
 685 }
 686 
 687 void TemplateTable::aload_0_internal(RewriteControl rc) {
 688   transition(vtos, atos);
 689 
 690   // According to bytecode histograms, the pairs:
 691   //
 692   // _aload_0, _fast_igetfield (itos)
 693   // _aload_0, _fast_agetfield (atos)
 694   // _aload_0, _fast_fgetfield (ftos)
 695   //
 696   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 697   // bytecode checks the next bytecode and then rewrites the current
 698   // bytecode into a pair bytecode; otherwise it rewrites the current
 699   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 700   //
 701   if (RewriteFrequentPairs && rc == may_rewrite) {
 702     Label rewrite, done;
 703 
 704     // get next byte
 705     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
 706 
 707     // do actual aload_0
 708     aload(0);
 709 
 710     // if _getfield then wait with rewrite
 711     __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done);
 712 
 713     // if _igetfield then rewrite to _fast_iaccess_0
 714     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 715     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
 716     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 717     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
 718 
 719     // if _agetfield then rewrite to _fast_aaccess_0
 720     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 721     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
 722     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 723     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
 724 
 725     // if _fgetfield then rewrite to _fast_faccess_0
 726     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 727     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
 728     __ br(Assembler::equal, false, Assembler::pn, rewrite);
 729     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
 730 
 731     // else rewrite to _fast_aload0
 732     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
 733     __ set(Bytecodes::_fast_aload_0, G4_scratch);
 734 
 735     // rewrite
 736     // G4_scratch: fast bytecode
 737     __ bind(rewrite);
 738     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
 739     __ bind(done);
 740   } else {
 741     aload(0);
 742   }
 743 }
 744 
 745 void TemplateTable::istore() {
 746   transition(itos, vtos);
 747   locals_index(G3_scratch);
 748   __ store_local_int( G3_scratch, Otos_i );
 749 }
 750 
 751 
 752 void TemplateTable::lstore() {
 753   transition(ltos, vtos);
 754   locals_index(G3_scratch);
 755   __ store_local_long( G3_scratch, Otos_l );
 756 }
 757 
 758 
 759 void TemplateTable::fstore() {
 760   transition(ftos, vtos);
 761   locals_index(G3_scratch);
 762   __ store_local_float( G3_scratch, Ftos_f );
 763 }
 764 
 765 
 766 void TemplateTable::dstore() {
 767   transition(dtos, vtos);
 768   locals_index(G3_scratch);
 769   __ store_local_double( G3_scratch, Ftos_d );
 770 }
 771 
 772 
 773 void TemplateTable::astore() {
 774   transition(vtos, vtos);
 775   __ load_ptr(0, Otos_i);
 776   __ inc(Lesp, Interpreter::stackElementSize);
 777   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 778   locals_index(G3_scratch);
 779   __ store_local_ptr(G3_scratch, Otos_i);
 780 }
 781 
 782 
 783 void TemplateTable::wide_istore() {
 784   transition(vtos, vtos);
 785   __ pop_i();
 786   locals_index_wide(G3_scratch);
 787   __ store_local_int( G3_scratch, Otos_i );
 788 }
 789 
 790 
 791 void TemplateTable::wide_lstore() {
 792   transition(vtos, vtos);
 793   __ pop_l();
 794   locals_index_wide(G3_scratch);
 795   __ store_local_long( G3_scratch, Otos_l );
 796 }
 797 
 798 
 799 void TemplateTable::wide_fstore() {
 800   transition(vtos, vtos);
 801   __ pop_f();
 802   locals_index_wide(G3_scratch);
 803   __ store_local_float( G3_scratch, Ftos_f );
 804 }
 805 
 806 
 807 void TemplateTable::wide_dstore() {
 808   transition(vtos, vtos);
 809   __ pop_d();
 810   locals_index_wide(G3_scratch);
 811   __ store_local_double( G3_scratch, Ftos_d );
 812 }
 813 
 814 
 815 void TemplateTable::wide_astore() {
 816   transition(vtos, vtos);
 817   __ load_ptr(0, Otos_i);
 818   __ inc(Lesp, Interpreter::stackElementSize);
 819   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 820   locals_index_wide(G3_scratch);
 821   __ store_local_ptr(G3_scratch, Otos_i);
 822 }
 823 
 824 
 825 void TemplateTable::iastore() {
 826   transition(itos, vtos);
 827   __ pop_i(O2); // index
 828   // Otos_i: val
 829   // O3: array
 830   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 831   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
 832 }
 833 
 834 
 835 void TemplateTable::lastore() {
 836   transition(ltos, vtos);
 837   __ pop_i(O2); // index
 838   // Otos_l: val
 839   // O3: array
 840   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 841   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
 842 }
 843 
 844 
 845 void TemplateTable::fastore() {
 846   transition(ftos, vtos);
 847   __ pop_i(O2); // index
 848   // Ftos_f: val
 849   // O3: array
 850   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
 851   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
 852 }
 853 
 854 
 855 void TemplateTable::dastore() {
 856   transition(dtos, vtos);
 857   __ pop_i(O2); // index
 858   // Fos_d: val
 859   // O3: array
 860   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
 861   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
 862 }
 863 
 864 
 865 void TemplateTable::aastore() {
 866   Label store_ok, is_null, done;
 867   transition(vtos, vtos);
 868   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
 869   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
 870   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
 871   // Otos_i: val
 872   // O2: index
 873   // O3: array
 874   __ verify_oop(Otos_i);
 875   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
 876 
 877   // do array store check - check for NULL value first
 878   __ br_null_short( Otos_i, Assembler::pn, is_null );
 879 
 880   __ load_klass(O3, O4); // get array klass
 881   __ load_klass(Otos_i, O5); // get value klass
 882 
 883   // do fast instanceof cache test
 884 
 885   __ ld_ptr(O4,     in_bytes(ObjArrayKlass::element_klass_offset()),  O4);
 886 
 887   assert(Otos_i == O0, "just checking");
 888 
 889   // Otos_i:    value
 890   // O1:        addr - offset
 891   // O2:        index
 892   // O3:        array
 893   // O4:        array element klass
 894   // O5:        value klass
 895 
 896   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 897 
 898   // Generate a fast subtype check.  Branch to store_ok if no
 899   // failure.  Throw if failure.
 900   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
 901 
 902   // Not a subtype; so must throw exception
 903   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
 904 
 905   // Store is OK.
 906   __ bind(store_ok);
 907   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
 908 
 909   __ ba(done);
 910   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
 911 
 912   __ bind(is_null);
 913   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
 914 
 915   __ profile_null_seen(G3_scratch);
 916   __ inc(Lesp, 3* Interpreter::stackElementSize);     // adj sp (pops array, index and value)
 917   __ bind(done);
 918 }
 919 
 920 
 921 void TemplateTable::bastore() {
 922   transition(itos, vtos);
 923   __ pop_i(O2); // index
 924   // Otos_i: val
 925   // O3: array
 926   __ index_check(O3, O2, 0, G3_scratch, O2);
 927   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
 928 }
 929 
 930 
 931 void TemplateTable::castore() {
 932   transition(itos, vtos);
 933   __ pop_i(O2); // index
 934   // Otos_i: val
 935   // O3: array
 936   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
 937   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
 938 }
 939 
 940 
 941 void TemplateTable::sastore() {
 942   // %%%%% Factor across platform
 943   castore();
 944 }
 945 
 946 
 947 void TemplateTable::istore(int n) {
 948   transition(itos, vtos);
 949   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
 950 }
 951 
 952 
 953 void TemplateTable::lstore(int n) {
 954   transition(ltos, vtos);
 955   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
 956   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
 957 
 958 }
 959 
 960 
 961 void TemplateTable::fstore(int n) {
 962   transition(ftos, vtos);
 963   assert(n < Argument::n_register_parameters, "only handle register cases");
 964   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
 965 }
 966 
 967 
 968 void TemplateTable::dstore(int n) {
 969   transition(dtos, vtos);
 970   FloatRegister src = Ftos_d;
 971   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
 972 }
 973 
 974 
 975 void TemplateTable::astore(int n) {
 976   transition(vtos, vtos);
 977   __ load_ptr(0, Otos_i);
 978   __ inc(Lesp, Interpreter::stackElementSize);
 979   __ verify_oop_or_return_address(Otos_i, G3_scratch);
 980   __ store_local_ptr(n, Otos_i);
 981 }
 982 
 983 
 984 void TemplateTable::pop() {
 985   transition(vtos, vtos);
 986   __ inc(Lesp, Interpreter::stackElementSize);
 987 }
 988 
 989 
 990 void TemplateTable::pop2() {
 991   transition(vtos, vtos);
 992   __ inc(Lesp, 2 * Interpreter::stackElementSize);
 993 }
 994 
 995 
 996 void TemplateTable::dup() {
 997   transition(vtos, vtos);
 998   // stack: ..., a
 999   // load a and tag
1000   __ load_ptr(0, Otos_i);
1001   __ push_ptr(Otos_i);
1002   // stack: ..., a, a
1003 }
1004 
1005 
1006 void TemplateTable::dup_x1() {
1007   transition(vtos, vtos);
1008   // stack: ..., a, b
1009   __ load_ptr( 1, G3_scratch);  // get a
1010   __ load_ptr( 0, Otos_l1);     // get b
1011   __ store_ptr(1, Otos_l1);     // put b
1012   __ store_ptr(0, G3_scratch);  // put a - like swap
1013   __ push_ptr(Otos_l1);         // push b
1014   // stack: ..., b, a, b
1015 }
1016 
1017 
1018 void TemplateTable::dup_x2() {
1019   transition(vtos, vtos);
1020   // stack: ..., a, b, c
1021   // get c and push on stack, reuse registers
1022   __ load_ptr( 0, G3_scratch);  // get c
1023   __ push_ptr(G3_scratch);      // push c with tag
1024   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
1025   // (stack offsets n+1 now)
1026   __ load_ptr( 3, Otos_l1);     // get a
1027   __ store_ptr(3, G3_scratch);  // put c at 3
1028   // stack: ..., c, b, c, c  (a in reg)
1029   __ load_ptr( 2, G3_scratch);  // get b
1030   __ store_ptr(2, Otos_l1);     // put a at 2
1031   // stack: ..., c, a, c, c  (b in reg)
1032   __ store_ptr(1, G3_scratch);  // put b at 1
1033   // stack: ..., c, a, b, c
1034 }
1035 
1036 
1037 void TemplateTable::dup2() {
1038   transition(vtos, vtos);
1039   __ load_ptr(1, G3_scratch);  // get a
1040   __ load_ptr(0, Otos_l1);     // get b
1041   __ push_ptr(G3_scratch);     // push a
1042   __ push_ptr(Otos_l1);        // push b
1043   // stack: ..., a, b, a, b
1044 }
1045 
1046 
1047 void TemplateTable::dup2_x1() {
1048   transition(vtos, vtos);
1049   // stack: ..., a, b, c
1050   __ load_ptr( 1, Lscratch);    // get b
1051   __ load_ptr( 2, Otos_l1);     // get a
1052   __ store_ptr(2, Lscratch);    // put b at a
1053   // stack: ..., b, b, c
1054   __ load_ptr( 0, G3_scratch);  // get c
1055   __ store_ptr(1, G3_scratch);  // put c at b
1056   // stack: ..., b, c, c
1057   __ store_ptr(0, Otos_l1);     // put a at c
1058   // stack: ..., b, c, a
1059   __ push_ptr(Lscratch);        // push b
1060   __ push_ptr(G3_scratch);      // push c
1061   // stack: ..., b, c, a, b, c
1062 }
1063 
1064 
1065 // The spec says that these types can be a mixture of category 1 (1 word)
1066 // types and/or category 2 types (long and doubles)
1067 void TemplateTable::dup2_x2() {
1068   transition(vtos, vtos);
1069   // stack: ..., a, b, c, d
1070   __ load_ptr( 1, Lscratch);    // get c
1071   __ load_ptr( 3, Otos_l1);     // get a
1072   __ store_ptr(3, Lscratch);    // put c at 3
1073   __ store_ptr(1, Otos_l1);     // put a at 1
1074   // stack: ..., c, b, a, d
1075   __ load_ptr( 2, G3_scratch);  // get b
1076   __ load_ptr( 0, Otos_l1);     // get d
1077   __ store_ptr(0, G3_scratch);  // put b at 0
1078   __ store_ptr(2, Otos_l1);     // put d at 2
1079   // stack: ..., c, d, a, b
1080   __ push_ptr(Lscratch);        // push c
1081   __ push_ptr(Otos_l1);         // push d
1082   // stack: ..., c, d, a, b, c, d
1083 }
1084 
1085 
1086 void TemplateTable::swap() {
1087   transition(vtos, vtos);
1088   // stack: ..., a, b
1089   __ load_ptr( 1, G3_scratch);  // get a
1090   __ load_ptr( 0, Otos_l1);     // get b
1091   __ store_ptr(0, G3_scratch);  // put b
1092   __ store_ptr(1, Otos_l1);     // put a
1093   // stack: ..., b, a
1094 }
1095 
1096 
1097 void TemplateTable::iop2(Operation op) {
1098   transition(itos, itos);
1099   __ pop_i(O1);
1100   switch (op) {
1101    case  add:  __  add(O1, Otos_i, Otos_i);  break;
1102    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
1103      // %%%%% Mul may not exist: better to call .mul?
1104    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
1105    case _and:  __ and3(O1, Otos_i, Otos_i);  break;
1106    case  _or:  __  or3(O1, Otos_i, Otos_i);  break;
1107    case _xor:  __ xor3(O1, Otos_i, Otos_i);  break;
1108    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
1109    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
1110    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
1111    default: ShouldNotReachHere();
1112   }
1113 }
1114 
1115 
1116 void TemplateTable::lop2(Operation op) {
1117   transition(ltos, ltos);
1118   __ pop_l(O2);
1119   switch (op) {
1120 #ifdef _LP64
1121    case  add:  __  add(O2, Otos_l, Otos_l);  break;
1122    case  sub:  __  sub(O2, Otos_l, Otos_l);  break;
1123    case _and:  __ and3(O2, Otos_l, Otos_l);  break;
1124    case  _or:  __  or3(O2, Otos_l, Otos_l);  break;
1125    case _xor:  __ xor3(O2, Otos_l, Otos_l);  break;
1126 #else
1127    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
1128    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
1129    case _and:  __  and3(O3, Otos_l2, Otos_l2);  __ and3(O2, Otos_l1, Otos_l1);  break;
1130    case  _or:  __   or3(O3, Otos_l2, Otos_l2);  __  or3(O2, Otos_l1, Otos_l1);  break;
1131    case _xor:  __  xor3(O3, Otos_l2, Otos_l2);  __ xor3(O2, Otos_l1, Otos_l1);  break;
1132 #endif
1133    default: ShouldNotReachHere();
1134   }
1135 }
1136 
1137 
1138 void TemplateTable::idiv() {
1139   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
1140   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
1141 
1142   transition(itos, itos);
1143   __ pop_i(O1); // get 1st op
1144 
1145   // Y contains upper 32 bits of result, set it to 0 or all ones
1146   __ wry(G0);
1147   __ mov(~0, G3_scratch);
1148 
1149   __ tst(O1);
1150      Label neg;
1151   __ br(Assembler::negative, true, Assembler::pn, neg);
1152   __ delayed()->wry(G3_scratch);
1153   __ bind(neg);
1154 
1155      Label ok;
1156   __ tst(Otos_i);
1157   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
1158 
1159   const int min_int = 0x80000000;
1160   Label regular;
1161   __ cmp(Otos_i, -1);
1162   __ br(Assembler::notEqual, false, Assembler::pt, regular);
1163 #ifdef _LP64
1164   // Don't put set in delay slot
1165   // Set will turn into multiple instructions in 64 bit mode
1166   __ delayed()->nop();
1167   __ set(min_int, G4_scratch);
1168 #else
1169   __ delayed()->set(min_int, G4_scratch);
1170 #endif
1171   Label done;
1172   __ cmp(O1, G4_scratch);
1173   __ br(Assembler::equal, true, Assembler::pt, done);
1174   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
1175 
1176   __ bind(regular);
1177   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
1178   __ bind(done);
1179 }
1180 
1181 
1182 void TemplateTable::irem() {
1183   transition(itos, itos);
1184   __ mov(Otos_i, O2); // save divisor
1185   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
1186   __ smul(Otos_i, O2, Otos_i);
1187   __ sub(O1, Otos_i, Otos_i);
1188 }
1189 
1190 
1191 void TemplateTable::lmul() {
1192   transition(ltos, ltos);
1193   __ pop_l(O2);
1194 #ifdef _LP64
1195   __ mulx(Otos_l, O2, Otos_l);
1196 #else
1197   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
1198 #endif
1199 
1200 }
1201 
1202 
1203 void TemplateTable::ldiv() {
1204   transition(ltos, ltos);
1205 
1206   // check for zero
1207   __ pop_l(O2);
1208 #ifdef _LP64
1209   __ tst(Otos_l);
1210   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1211   __ sdivx(O2, Otos_l, Otos_l);
1212 #else
1213   __ orcc(Otos_l1, Otos_l2, G0);
1214   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1215   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1216 #endif
1217 }
1218 
1219 
1220 void TemplateTable::lrem() {
1221   transition(ltos, ltos);
1222 
1223   // check for zero
1224   __ pop_l(O2);
1225 #ifdef _LP64
1226   __ tst(Otos_l);
1227   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1228   __ sdivx(O2, Otos_l, Otos_l2);
1229   __ mulx (Otos_l2, Otos_l, Otos_l2);
1230   __ sub  (O2, Otos_l2, Otos_l);
1231 #else
1232   __ orcc(Otos_l1, Otos_l2, G0);
1233   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
1234   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1235 #endif
1236 }
1237 
1238 
1239 void TemplateTable::lshl() {
1240   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
1241 
1242   __ pop_l(O2);                          // shift value in O2, O3
1243 #ifdef _LP64
1244   __ sllx(O2, Otos_i, Otos_l);
1245 #else
1246   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1247 #endif
1248 }
1249 
1250 
1251 void TemplateTable::lshr() {
1252   transition(itos, ltos); // %%%% see lshl comment
1253 
1254   __ pop_l(O2);                          // shift value in O2, O3
1255 #ifdef _LP64
1256   __ srax(O2, Otos_i, Otos_l);
1257 #else
1258   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1259 #endif
1260 }
1261 
1262 
1263 
1264 void TemplateTable::lushr() {
1265   transition(itos, ltos); // %%%% see lshl comment
1266 
1267   __ pop_l(O2);                          // shift value in O2, O3
1268 #ifdef _LP64
1269   __ srlx(O2, Otos_i, Otos_l);
1270 #else
1271   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
1272 #endif
1273 }
1274 
1275 
1276 void TemplateTable::fop2(Operation op) {
1277   transition(ftos, ftos);
1278   switch (op) {
1279    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1280    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1281    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1282    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
1283    case  rem:
1284      assert(Ftos_f == F0, "just checking");
1285 #ifdef _LP64
1286      // LP64 calling conventions use F1, F3 for passing 2 floats
1287      __ pop_f(F1);
1288      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
1289 #else
1290      __ pop_i(O0);
1291      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
1292      __ ld( __ d_tmp, O1 );
1293 #endif
1294      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1295      assert( Ftos_f == F0, "fix this code" );
1296      break;
1297 
1298    default: ShouldNotReachHere();
1299   }
1300 }
1301 
1302 
1303 void TemplateTable::dop2(Operation op) {
1304   transition(dtos, dtos);
1305   switch (op) {
1306    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1307    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1308    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1309    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
1310    case  rem:
1311 #ifdef _LP64
1312      // Pass arguments in D0, D2
1313      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
1314      __ pop_d( F0 );
1315 #else
1316      // Pass arguments in O0O1, O2O3
1317      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1318      __ ldd( __ d_tmp, O2 );
1319      __ pop_d(Ftos_f);
1320      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
1321      __ ldd( __ d_tmp, O0 );
1322 #endif
1323      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1324      assert( Ftos_d == F0, "fix this code" );
1325      break;
1326 
1327    default: ShouldNotReachHere();
1328   }
1329 }
1330 
1331 
1332 void TemplateTable::ineg() {
1333   transition(itos, itos);
1334   __ neg(Otos_i);
1335 }
1336 
1337 
1338 void TemplateTable::lneg() {
1339   transition(ltos, ltos);
1340 #ifdef _LP64
1341   __ sub(G0, Otos_l, Otos_l);
1342 #else
1343   __ lneg(Otos_l1, Otos_l2);
1344 #endif
1345 }
1346 
1347 
1348 void TemplateTable::fneg() {
1349   transition(ftos, ftos);
1350   __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f);
1351 }
1352 
1353 
1354 void TemplateTable::dneg() {
1355   transition(dtos, dtos);
1356   __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f);
1357 }
1358 
1359 
1360 void TemplateTable::iinc() {
1361   transition(vtos, vtos);
1362   locals_index(G3_scratch);
1363   __ ldsb(Lbcp, 2, O2);  // load constant
1364   __ access_local_int(G3_scratch, Otos_i);
1365   __ add(Otos_i, O2, Otos_i);
1366   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1367 }
1368 
1369 
1370 void TemplateTable::wide_iinc() {
1371   transition(vtos, vtos);
1372   locals_index_wide(G3_scratch);
1373   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
1374   __ access_local_int(G3_scratch, Otos_i);
1375   __ add(Otos_i, O3, Otos_i);
1376   __ st(Otos_i, G3_scratch, 0);    // access_local_int puts E.A. in G3_scratch
1377 }
1378 
1379 
1380 void TemplateTable::convert() {
1381 // %%%%% Factor this first part accross platforms
1382   #ifdef ASSERT
1383     TosState tos_in  = ilgl;
1384     TosState tos_out = ilgl;
1385     switch (bytecode()) {
1386       case Bytecodes::_i2l: // fall through
1387       case Bytecodes::_i2f: // fall through
1388       case Bytecodes::_i2d: // fall through
1389       case Bytecodes::_i2b: // fall through
1390       case Bytecodes::_i2c: // fall through
1391       case Bytecodes::_i2s: tos_in = itos; break;
1392       case Bytecodes::_l2i: // fall through
1393       case Bytecodes::_l2f: // fall through
1394       case Bytecodes::_l2d: tos_in = ltos; break;
1395       case Bytecodes::_f2i: // fall through
1396       case Bytecodes::_f2l: // fall through
1397       case Bytecodes::_f2d: tos_in = ftos; break;
1398       case Bytecodes::_d2i: // fall through
1399       case Bytecodes::_d2l: // fall through
1400       case Bytecodes::_d2f: tos_in = dtos; break;
1401       default             : ShouldNotReachHere();
1402     }
1403     switch (bytecode()) {
1404       case Bytecodes::_l2i: // fall through
1405       case Bytecodes::_f2i: // fall through
1406       case Bytecodes::_d2i: // fall through
1407       case Bytecodes::_i2b: // fall through
1408       case Bytecodes::_i2c: // fall through
1409       case Bytecodes::_i2s: tos_out = itos; break;
1410       case Bytecodes::_i2l: // fall through
1411       case Bytecodes::_f2l: // fall through
1412       case Bytecodes::_d2l: tos_out = ltos; break;
1413       case Bytecodes::_i2f: // fall through
1414       case Bytecodes::_l2f: // fall through
1415       case Bytecodes::_d2f: tos_out = ftos; break;
1416       case Bytecodes::_i2d: // fall through
1417       case Bytecodes::_l2d: // fall through
1418       case Bytecodes::_f2d: tos_out = dtos; break;
1419       default             : ShouldNotReachHere();
1420     }
1421     transition(tos_in, tos_out);
1422   #endif
1423 
1424 
1425   // Conversion
1426   Label done;
1427   switch (bytecode()) {
1428    case Bytecodes::_i2l:
1429 #ifdef _LP64
1430     // Sign extend the 32 bits
1431     __ sra ( Otos_i, 0, Otos_l );
1432 #else
1433     __ addcc(Otos_i, 0, Otos_l2);
1434     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
1435     __ delayed()->clr(Otos_l1);
1436     __ set(~0, Otos_l1);
1437 #endif
1438     break;
1439 
1440    case Bytecodes::_i2f:
1441     __ st(Otos_i, __ d_tmp );
1442     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1443     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
1444     break;
1445 
1446    case Bytecodes::_i2d:
1447     __ st(Otos_i, __ d_tmp);
1448     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
1449     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
1450     break;
1451 
1452    case Bytecodes::_i2b:
1453     __ sll(Otos_i, 24, Otos_i);
1454     __ sra(Otos_i, 24, Otos_i);
1455     break;
1456 
1457    case Bytecodes::_i2c:
1458     __ sll(Otos_i, 16, Otos_i);
1459     __ srl(Otos_i, 16, Otos_i);
1460     break;
1461 
1462    case Bytecodes::_i2s:
1463     __ sll(Otos_i, 16, Otos_i);
1464     __ sra(Otos_i, 16, Otos_i);
1465     break;
1466 
1467    case Bytecodes::_l2i:
1468 #ifndef _LP64
1469     __ mov(Otos_l2, Otos_i);
1470 #else
1471     // Sign-extend into the high 32 bits
1472     __ sra(Otos_l, 0, Otos_i);
1473 #endif
1474     break;
1475 
1476    case Bytecodes::_l2f:
1477    case Bytecodes::_l2d:
1478     __ st_long(Otos_l, __ d_tmp);
1479     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
1480 
1481     if (bytecode() == Bytecodes::_l2f) {
1482       __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
1483     } else {
1484       __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
1485     }
1486     break;
1487 
1488   case Bytecodes::_f2i:  {
1489       Label isNaN;
1490       // result must be 0 if value is NaN; test by comparing value to itself
1491       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
1492       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
1493       __ delayed()->clr(Otos_i);                                     // NaN
1494       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
1495       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
1496       __ ld(__ d_tmp, Otos_i);
1497       __ bind(isNaN);
1498     }
1499     break;
1500 
1501    case Bytecodes::_f2l:
1502     // must uncache tos
1503     __ push_f();
1504 #ifdef _LP64
1505     __ pop_f(F1);
1506 #else
1507     __ pop_i(O0);
1508 #endif
1509     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1510     break;
1511 
1512    case Bytecodes::_f2d:
1513     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
1514     break;
1515 
1516    case Bytecodes::_d2i:
1517    case Bytecodes::_d2l:
1518     // must uncache tos
1519     __ push_d();
1520 #ifdef _LP64
1521     // LP64 calling conventions pass first double arg in D0
1522     __ pop_d( Ftos_d );
1523 #else
1524     __ pop_i( O0 );
1525     __ pop_i( O1 );
1526 #endif
1527     __ call_VM_leaf(Lscratch,
1528         bytecode() == Bytecodes::_d2i
1529           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
1530           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1531     break;
1532 
1533     case Bytecodes::_d2f:
1534       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
1535     break;
1536 
1537     default: ShouldNotReachHere();
1538   }
1539   __ bind(done);
1540 }
1541 
1542 
1543 void TemplateTable::lcmp() {
1544   transition(ltos, itos);
1545 
1546 #ifdef _LP64
1547   __ pop_l(O1); // pop off value 1, value 2 is in O0
1548   __ lcmp( O1, Otos_l, Otos_i );
1549 #else
1550   __ pop_l(O2); // cmp O2,3 to O0,1
1551   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
1552 #endif
1553 }
1554 
1555 
1556 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1557 
1558   if (is_float) __ pop_f(F2);
1559   else          __ pop_d(F2);
1560 
1561   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
1562 
1563   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
1564 }
1565 
1566 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1567   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1568   __ verify_thread();
1569 
1570   const Register O2_bumped_count = O2;
1571   __ profile_taken_branch(G3_scratch, O2_bumped_count);
1572 
1573   // get (wide) offset to O1_disp
1574   const Register O1_disp = O1;
1575   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
1576   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
1577 
1578   // Handle all the JSR stuff here, then exit.
1579   // It's much shorter and cleaner than intermingling with the
1580   // non-JSR normal-branch stuff occurring below.
1581   if( is_jsr ) {
1582     // compute return address as bci in Otos_i
1583     __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1584     __ sub(Lbcp, G3_scratch, G3_scratch);
1585     __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
1586 
1587     // Bump Lbcp to target of JSR
1588     __ add(Lbcp, O1_disp, Lbcp);
1589     // Push returnAddress for "ret" on stack
1590     __ push_ptr(Otos_i);
1591     // And away we go!
1592     __ dispatch_next(vtos);
1593     return;
1594   }
1595 
1596   // Normal (non-jsr) branch handling
1597 
1598   // Save the current Lbcp
1599   const Register l_cur_bcp = Lscratch;
1600   __ mov( Lbcp, l_cur_bcp );
1601 
1602   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1603   if ( increment_invocation_counter_for_backward_branches ) {
1604     Label Lforward;
1605     // check branch direction
1606     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
1607     // Bump bytecode pointer by displacement (take the branch)
1608     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
1609 
1610     const Register G3_method_counters = G3_scratch;
1611     __ get_method_counters(Lmethod, G3_method_counters, Lforward);
1612 
1613     if (TieredCompilation) {
1614       Label Lno_mdo, Loverflow;
1615       int increment = InvocationCounter::count_increment;
1616       if (ProfileInterpreter) {
1617         // If no method data exists, go to profile_continue.
1618         __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
1619         __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo);
1620 
1621         // Increment backedge counter in the MDO
1622         Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) +
1623                                                  in_bytes(InvocationCounter::counter_offset()));
1624         Address mask(G4_scratch, in_bytes(MethodData::backedge_mask_offset()));
1625         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0,
1626                                    Assembler::notZero, &Lforward);
1627         __ ba_short(Loverflow);
1628       }
1629 
1630       // If there's no MDO, increment counter in MethodCounters*
1631       __ bind(Lno_mdo);
1632       Address backedge_counter(G3_method_counters,
1633               in_bytes(MethodCounters::backedge_counter_offset()) +
1634               in_bytes(InvocationCounter::counter_offset()));
1635       Address mask(G3_method_counters, in_bytes(MethodCounters::backedge_mask_offset()));
1636       __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0,
1637                                  Assembler::notZero, &Lforward);
1638       __ bind(Loverflow);
1639 
1640       // notify point for loop, pass branch bytecode
1641       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp);
1642 
1643       // Was an OSR adapter generated?
1644       // O0 = osr nmethod
1645       __ br_null_short(O0, Assembler::pn, Lforward);
1646 
1647       // Has the nmethod been invalidated already?
1648       __ ldub(O0, nmethod::state_offset(), O2);
1649       __ cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, Lforward);
1650 
1651       // migrate the interpreter frame off of the stack
1652 
1653       __ mov(G2_thread, L7);
1654       // save nmethod
1655       __ mov(O0, L6);
1656       __ set_last_Java_frame(SP, noreg);
1657       __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
1658       __ reset_last_Java_frame();
1659       __ mov(L7, G2_thread);
1660 
1661       // move OSR nmethod to I1
1662       __ mov(L6, I1);
1663 
1664       // OSR buffer to I0
1665       __ mov(O0, I0);
1666 
1667       // remove the interpreter frame
1668       __ restore(I5_savedSP, 0, SP);
1669 
1670       // Jump to the osr code.
1671       __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
1672       __ jmp(O2, G0);
1673       __ delayed()->nop();
1674 
1675     } else { // not TieredCompilation
1676       // Update Backedge branch separately from invocations
1677       const Register G4_invoke_ctr = G4;
1678       __ increment_backedge_counter(G3_method_counters, G4_invoke_ctr, G1_scratch);
1679       if (ProfileInterpreter) {
1680         __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_method_counters, G1_scratch, Lforward);
1681         if (UseOnStackReplacement) {
1682 
1683           __ test_backedge_count_for_osr(O2_bumped_count, G3_method_counters, l_cur_bcp, G1_scratch);
1684         }
1685       } else {
1686         if (UseOnStackReplacement) {
1687           __ test_backedge_count_for_osr(G4_invoke_ctr, G3_method_counters, l_cur_bcp, G1_scratch);
1688         }
1689       }
1690     }
1691 
1692     __ bind(Lforward);
1693   } else
1694     // Bump bytecode pointer by displacement (take the branch)
1695     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
1696 
1697   // continue with bytecode @ target
1698   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1699   // %%%%% and changing dispatch_next to dispatch_only
1700   __ dispatch_next(vtos);
1701 }
1702 
1703 
1704 // Note Condition in argument is TemplateTable::Condition
1705 // arg scope is within class scope
1706 
1707 void TemplateTable::if_0cmp(Condition cc) {
1708   // no pointers, integer only!
1709   transition(itos, vtos);
1710   // assume branch is more often taken than not (loops use backward branches)
1711   __ cmp( Otos_i, 0);
1712   __ if_cmp(ccNot(cc), false);
1713 }
1714 
1715 
1716 void TemplateTable::if_icmp(Condition cc) {
1717   transition(itos, vtos);
1718   __ pop_i(O1);
1719   __ cmp(O1, Otos_i);
1720   __ if_cmp(ccNot(cc), false);
1721 }
1722 
1723 
1724 void TemplateTable::if_nullcmp(Condition cc) {
1725   transition(atos, vtos);
1726   __ tst(Otos_i);
1727   __ if_cmp(ccNot(cc), true);
1728 }
1729 
1730 
1731 void TemplateTable::if_acmp(Condition cc) {
1732   transition(atos, vtos);
1733   __ pop_ptr(O1);
1734   __ verify_oop(O1);
1735   __ verify_oop(Otos_i);
1736   __ cmp(O1, Otos_i);
1737   __ if_cmp(ccNot(cc), true);
1738 }
1739 
1740 
1741 
1742 void TemplateTable::ret() {
1743   transition(vtos, vtos);
1744   locals_index(G3_scratch);
1745   __ access_local_returnAddress(G3_scratch, Otos_i);
1746   // Otos_i contains the bci, compute the bcp from that
1747 
1748 #ifdef _LP64
1749 #ifdef ASSERT
1750   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
1751   // the result.  The return address (really a BCI) was stored with an
1752   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
1753   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
1754   // loaded value.
1755   { Label zzz ;
1756      __ set (65536, G3_scratch) ;
1757      __ cmp (Otos_i, G3_scratch) ;
1758      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
1759      __ delayed()->nop();
1760      __ stop("BCI is in the wrong register half?");
1761      __ bind (zzz) ;
1762   }
1763 #endif
1764 #endif
1765 
1766   __ profile_ret(vtos, Otos_i, G4_scratch);
1767 
1768   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1769   __ add(G3_scratch, Otos_i, G3_scratch);
1770   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1771   __ dispatch_next(vtos);
1772 }
1773 
1774 
1775 void TemplateTable::wide_ret() {
1776   transition(vtos, vtos);
1777   locals_index_wide(G3_scratch);
1778   __ access_local_returnAddress(G3_scratch, Otos_i);
1779   // Otos_i contains the bci, compute the bcp from that
1780 
1781   __ profile_ret(vtos, Otos_i, G4_scratch);
1782 
1783   __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch);
1784   __ add(G3_scratch, Otos_i, G3_scratch);
1785   __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp);
1786   __ dispatch_next(vtos);
1787 }
1788 
1789 
1790 void TemplateTable::tableswitch() {
1791   transition(itos, vtos);
1792   Label default_case, continue_execution;
1793 
1794   // align bcp
1795   __ add(Lbcp, BytesPerInt, O1);
1796   __ and3(O1, -BytesPerInt, O1);
1797   // load lo, hi
1798   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
1799   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
1800 #ifdef _LP64
1801   // Sign extend the 32 bits
1802   __ sra ( Otos_i, 0, Otos_i );
1803 #endif /* _LP64 */
1804 
1805   // check against lo & hi
1806   __ cmp( Otos_i, O2);
1807   __ br( Assembler::less, false, Assembler::pn, default_case);
1808   __ delayed()->cmp( Otos_i, O3 );
1809   __ br( Assembler::greater, false, Assembler::pn, default_case);
1810   // lookup dispatch offset
1811   __ delayed()->sub(Otos_i, O2, O2);
1812   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
1813   __ sll(O2, LogBytesPerInt, O2);
1814   __ add(O2, 3 * BytesPerInt, O2);
1815   __ ba(continue_execution);
1816   __ delayed()->ld(O1, O2, O2);
1817   // handle default
1818   __ bind(default_case);
1819   __ profile_switch_default(O3);
1820   __ ld(O1, 0, O2); // get default offset
1821   // continue execution
1822   __ bind(continue_execution);
1823   __ add(Lbcp, O2, Lbcp);
1824   __ dispatch_next(vtos);
1825 }
1826 
1827 
1828 void TemplateTable::lookupswitch() {
1829   transition(itos, itos);
1830   __ stop("lookupswitch bytecode should have been rewritten");
1831 }
1832 
1833 void TemplateTable::fast_linearswitch() {
1834   transition(itos, vtos);
1835     Label loop_entry, loop, found, continue_execution;
1836   // align bcp
1837   __ add(Lbcp, BytesPerInt, O1);
1838   __ and3(O1, -BytesPerInt, O1);
1839  // set counter
1840   __ ld(O1, BytesPerInt, O2);
1841   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
1842   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
1843   __ ba(loop_entry);
1844   __ delayed()->add(O3, O2, O2); // counter now points past last pair
1845 
1846   // table search
1847   __ bind(loop);
1848   __ cmp(O4, Otos_i);
1849   __ br(Assembler::equal, true, Assembler::pn, found);
1850   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
1851   __ inc(O3, 2 * BytesPerInt);
1852 
1853   __ bind(loop_entry);
1854   __ cmp(O2, O3);
1855   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
1856   __ delayed()->ld(O3, 0, O4);
1857 
1858   // default case
1859   __ ld(O1, 0, O4); // get default offset
1860   if (ProfileInterpreter) {
1861     __ profile_switch_default(O3);
1862     __ ba_short(continue_execution);
1863   }
1864 
1865   // entry found -> get offset
1866   __ bind(found);
1867   if (ProfileInterpreter) {
1868     __ sub(O3, O1, O3);
1869     __ sub(O3, 2*BytesPerInt, O3);
1870     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
1871     __ profile_switch_case(O3, O1, O2, G3_scratch);
1872 
1873     __ bind(continue_execution);
1874   }
1875   __ add(Lbcp, O4, Lbcp);
1876   __ dispatch_next(vtos);
1877 }
1878 
1879 
1880 void TemplateTable::fast_binaryswitch() {
1881   transition(itos, vtos);
1882   // Implementation using the following core algorithm: (copied from Intel)
1883   //
1884   // int binary_search(int key, LookupswitchPair* array, int n) {
1885   //   // Binary search according to "Methodik des Programmierens" by
1886   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1887   //   int i = 0;
1888   //   int j = n;
1889   //   while (i+1 < j) {
1890   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1891   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1892   //     // where a stands for the array and assuming that the (inexisting)
1893   //     // element a[n] is infinitely big.
1894   //     int h = (i + j) >> 1;
1895   //     // i < h < j
1896   //     if (key < array[h].fast_match()) {
1897   //       j = h;
1898   //     } else {
1899   //       i = h;
1900   //     }
1901   //   }
1902   //   // R: a[i] <= key < a[i+1] or Q
1903   //   // (i.e., if key is within array, i is the correct index)
1904   //   return i;
1905   // }
1906 
1907   // register allocation
1908   assert(Otos_i == O0, "alias checking");
1909   const Register Rkey     = Otos_i;                    // already set (tosca)
1910   const Register Rarray   = O1;
1911   const Register Ri       = O2;
1912   const Register Rj       = O3;
1913   const Register Rh       = O4;
1914   const Register Rscratch = O5;
1915 
1916   const int log_entry_size = 3;
1917   const int entry_size = 1 << log_entry_size;
1918 
1919   Label found;
1920   // Find Array start
1921   __ add(Lbcp, 3 * BytesPerInt, Rarray);
1922   __ and3(Rarray, -BytesPerInt, Rarray);
1923   // initialize i & j (in delay slot)
1924   __ clr( Ri );
1925 
1926   // and start
1927   Label entry;
1928   __ ba(entry);
1929   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
1930   // (Rj is already in the native byte-ordering.)
1931 
1932   // binary search loop
1933   { Label loop;
1934     __ bind( loop );
1935     // int h = (i + j) >> 1;
1936     __ sra( Rh, 1, Rh );
1937     // if (key < array[h].fast_match()) {
1938     //   j = h;
1939     // } else {
1940     //   i = h;
1941     // }
1942     __ sll( Rh, log_entry_size, Rscratch );
1943     __ ld( Rarray, Rscratch, Rscratch );
1944     // (Rscratch is already in the native byte-ordering.)
1945     __ cmp( Rkey, Rscratch );
1946     __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
1947     __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
1948 
1949     // while (i+1 < j)
1950     __ bind( entry );
1951     __ add( Ri, 1, Rscratch );
1952     __ cmp(Rscratch, Rj);
1953     __ br( Assembler::less, true, Assembler::pt, loop );
1954     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
1955   }
1956 
1957   // end of binary search, result index is i (must check again!)
1958   Label default_case;
1959   Label continue_execution;
1960   if (ProfileInterpreter) {
1961     __ mov( Ri, Rh );              // Save index in i for profiling
1962   }
1963   __ sll( Ri, log_entry_size, Ri );
1964   __ ld( Rarray, Ri, Rscratch );
1965   // (Rscratch is already in the native byte-ordering.)
1966   __ cmp( Rkey, Rscratch );
1967   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
1968   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
1969 
1970   // entry found -> j = offset
1971   __ inc( Ri, BytesPerInt );
1972   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
1973   __ ld( Rarray, Ri, Rj );
1974   // (Rj is already in the native byte-ordering.)
1975 
1976   if (ProfileInterpreter) {
1977     __ ba_short(continue_execution);
1978   }
1979 
1980   __ bind(default_case); // fall through (if not profiling)
1981   __ profile_switch_default(Ri);
1982 
1983   __ bind(continue_execution);
1984   __ add( Lbcp, Rj, Lbcp );
1985   __ dispatch_next( vtos );
1986 }
1987 
1988 
1989 void TemplateTable::_return(TosState state) {
1990   transition(state, state);
1991   assert(_desc->calls_vm(), "inconsistent calls_vm information");
1992 
1993   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
1994     assert(state == vtos, "only valid state");
1995     __ mov(G0, G3_scratch);
1996     __ access_local_ptr(G3_scratch, Otos_i);
1997     __ load_klass(Otos_i, O2);
1998     __ set(JVM_ACC_HAS_FINALIZER, G3);
1999     __ ld(O2, in_bytes(Klass::access_flags_offset()), O2);
2000     __ andcc(G3, O2, G0);
2001     Label skip_register_finalizer;
2002     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
2003     __ delayed()->nop();
2004 
2005     // Call out to do finalizer registration
2006     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
2007 
2008     __ bind(skip_register_finalizer);
2009   }
2010 
2011   __ remove_activation(state, /* throw_monitor_exception */ true);
2012 
2013   // The caller's SP was adjusted upon method entry to accomodate
2014   // the callee's non-argument locals. Undo that adjustment.
2015   __ ret();                             // return to caller
2016   __ delayed()->restore(I5_savedSP, G0, SP);
2017 }
2018 
2019 
2020 // ----------------------------------------------------------------------------
2021 // Volatile variables demand their effects be made known to all CPU's in
2022 // order.  Store buffers on most chips allow reads & writes to reorder; the
2023 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2024 // memory barrier (i.e., it's not sufficient that the interpreter does not
2025 // reorder volatile references, the hardware also must not reorder them).
2026 //
2027 // According to the new Java Memory Model (JMM):
2028 // (1) All volatiles are serialized wrt to each other.
2029 // ALSO reads & writes act as aquire & release, so:
2030 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2031 // the read float up to before the read.  It's OK for non-volatile memory refs
2032 // that happen before the volatile read to float down below it.
2033 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2034 // that happen BEFORE the write float down to after the write.  It's OK for
2035 // non-volatile memory refs that happen after the volatile write to float up
2036 // before it.
2037 //
2038 // We only put in barriers around volatile refs (they are expensive), not
2039 // _between_ memory refs (that would require us to track the flavor of the
2040 // previous memory refs).  Requirements (2) and (3) require some barriers
2041 // before volatile stores and after volatile loads.  These nearly cover
2042 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2043 // case is placed after volatile-stores although it could just as well go
2044 // before volatile-loads.
2045 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
2046   // Helper function to insert a is-volatile test and memory barrier
2047   // All current sparc implementations run in TSO, needing only StoreLoad
2048   if ((order_constraint & Assembler::StoreLoad) == 0) return;
2049   __ membar( order_constraint );
2050 }
2051 
2052 // ----------------------------------------------------------------------------
2053 void TemplateTable::resolve_cache_and_index(int byte_no,
2054                                             Register Rcache,
2055                                             Register index,
2056                                             size_t index_size) {
2057   // Depends on cpCacheOop layout!
2058 
2059   Label resolved;
2060   Bytecodes::Code code = bytecode();
2061   switch (code) {
2062   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2063   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2064   }
2065 
2066   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2067   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size);
2068   __ cmp(Lbyte_code, code);  // have we resolved this bytecode?
2069   __ br(Assembler::equal, false, Assembler::pt, resolved);
2070   __ delayed()->set(code, O1);
2071 
2072   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2073   // first time invocation - must resolve first
2074   __ call_VM(noreg, entry, O1);
2075   // Update registers with resolved info
2076   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2077   __ bind(resolved);
2078 }
2079 
2080 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2081                                                Register method,
2082                                                Register itable_index,
2083                                                Register flags,
2084                                                bool is_invokevirtual,
2085                                                bool is_invokevfinal,
2086                                                bool is_invokedynamic) {
2087   // Uses both G3_scratch and G4_scratch
2088   Register cache = G3_scratch;
2089   Register index = G4_scratch;
2090   assert_different_registers(cache, method, itable_index);
2091 
2092   // determine constant pool cache field offsets
2093   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2094   const int method_offset = in_bytes(
2095       ConstantPoolCache::base_offset() +
2096       ((byte_no == f2_byte)
2097        ? ConstantPoolCacheEntry::f2_offset()
2098        : ConstantPoolCacheEntry::f1_offset()
2099       )
2100     );
2101   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2102                                     ConstantPoolCacheEntry::flags_offset());
2103   // access constant pool cache fields
2104   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2105                                     ConstantPoolCacheEntry::f2_offset());
2106 
2107   if (is_invokevfinal) {
2108     __ get_cache_and_index_at_bcp(cache, index, 1);
2109     __ ld_ptr(Address(cache, method_offset), method);
2110   } else {
2111     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2112     resolve_cache_and_index(byte_no, cache, index, index_size);
2113     __ ld_ptr(Address(cache, method_offset), method);
2114   }
2115 
2116   if (itable_index != noreg) {
2117     // pick up itable or appendix index from f2 also:
2118     __ ld_ptr(Address(cache, index_offset), itable_index);
2119   }
2120   __ ld_ptr(Address(cache, flags_offset), flags);
2121 }
2122 
2123 // The Rcache register must be set before call
2124 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2125                                               Register Rcache,
2126                                               Register index,
2127                                               Register Roffset,
2128                                               Register Rflags,
2129                                               bool is_static) {
2130   assert_different_registers(Rcache, Rflags, Roffset);
2131 
2132   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2133 
2134   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2135   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2136   if (is_static) {
2137     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
2138     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2139     __ ld_ptr( Robj, mirror_offset, Robj);
2140   }
2141 }
2142 
2143 // The registers Rcache and index expected to be set before call.
2144 // Correct values of the Rcache and index registers are preserved.
2145 void TemplateTable::jvmti_post_field_access(Register Rcache,
2146                                             Register index,
2147                                             bool is_static,
2148                                             bool has_tos) {
2149   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2150 
2151   if (JvmtiExport::can_post_field_access()) {
2152     // Check to see if a field access watch has been set before we take
2153     // the time to call into the VM.
2154     Label Label1;
2155     assert_different_registers(Rcache, index, G1_scratch);
2156     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
2157     __ load_contents(get_field_access_count_addr, G1_scratch);
2158     __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1);
2159 
2160     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
2161 
2162     if (is_static) {
2163       __ clr(Otos_i);
2164     } else {
2165       if (has_tos) {
2166       // save object pointer before call_VM() clobbers it
2167         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
2168       } else {
2169         // Load top of stack (do not pop the value off the stack);
2170         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
2171       }
2172       __ verify_oop(Otos_i);
2173     }
2174     // Otos_i: object pointer or NULL if static
2175     // Rcache: cache entry pointer
2176     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2177                Otos_i, Rcache);
2178     if (!is_static && has_tos) {
2179       __ pop_ptr(Otos_i);  // restore object pointer
2180       __ verify_oop(Otos_i);
2181     }
2182     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2183     __ bind(Label1);
2184   }
2185 }
2186 
2187 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2188   transition(vtos, vtos);
2189 
2190   Register Rcache = G3_scratch;
2191   Register index  = G4_scratch;
2192   Register Rclass = Rcache;
2193   Register Roffset= G4_scratch;
2194   Register Rflags = G1_scratch;
2195   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2196 
2197   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2198   jvmti_post_field_access(Rcache, index, is_static, false);
2199   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2200 
2201   if (!is_static) {
2202     pop_and_check_object(Rclass);
2203   } else {
2204     __ verify_oop(Rclass);
2205   }
2206 
2207   Label exit;
2208 
2209   Assembler::Membar_mask_bits membar_bits =
2210     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2211 
2212   if (__ membar_has_effect(membar_bits)) {
2213     // Get volatile flag
2214     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2215     __ and3(Rflags, Lscratch, Lscratch);
2216   }
2217 
2218   Label checkVolatile;
2219 
2220   // compute field type
2221   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
2222   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2223   // Make sure we don't need to mask Rflags after the above shift
2224   ConstantPoolCacheEntry::verify_tos_state_shift();
2225 
2226   // Check atos before itos for getstatic, more likely (in Queens at least)
2227   __ cmp(Rflags, atos);
2228   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2229   __ delayed() ->cmp(Rflags, itos);
2230 
2231   // atos
2232   __ load_heap_oop(Rclass, Roffset, Otos_i);
2233   __ verify_oop(Otos_i);
2234   __ push(atos);
2235   if (!is_static && rc == may_rewrite) {
2236     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
2237   }
2238   __ ba(checkVolatile);
2239   __ delayed()->tst(Lscratch);
2240 
2241   __ bind(notObj);
2242 
2243   // cmp(Rflags, itos);
2244   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2245   __ delayed() ->cmp(Rflags, ltos);
2246 
2247   // itos
2248   __ ld(Rclass, Roffset, Otos_i);
2249   __ push(itos);
2250   if (!is_static && rc == may_rewrite) {
2251     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
2252   }
2253   __ ba(checkVolatile);
2254   __ delayed()->tst(Lscratch);
2255 
2256   __ bind(notInt);
2257 
2258   // cmp(Rflags, ltos);
2259   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2260   __ delayed() ->cmp(Rflags, btos);
2261 
2262   // ltos
2263   // load must be atomic
2264   __ ld_long(Rclass, Roffset, Otos_l);
2265   __ push(ltos);
2266   if (!is_static && rc == may_rewrite) {
2267     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
2268   }
2269   __ ba(checkVolatile);
2270   __ delayed()->tst(Lscratch);
2271 
2272   __ bind(notLong);
2273 
2274   // cmp(Rflags, btos);
2275   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2276   __ delayed() ->cmp(Rflags, ctos);
2277 
2278   // btos
2279   __ ldsb(Rclass, Roffset, Otos_i);
2280   __ push(itos);
2281   if (!is_static && rc == may_rewrite) {
2282     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
2283   }
2284   __ ba(checkVolatile);
2285   __ delayed()->tst(Lscratch);
2286 
2287   __ bind(notByte);
2288 
2289   // cmp(Rflags, ctos);
2290   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2291   __ delayed() ->cmp(Rflags, stos);
2292 
2293   // ctos
2294   __ lduh(Rclass, Roffset, Otos_i);
2295   __ push(itos);
2296   if (!is_static && rc == may_rewrite) {
2297     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
2298   }
2299   __ ba(checkVolatile);
2300   __ delayed()->tst(Lscratch);
2301 
2302   __ bind(notChar);
2303 
2304   // cmp(Rflags, stos);
2305   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2306   __ delayed() ->cmp(Rflags, ftos);
2307 
2308   // stos
2309   __ ldsh(Rclass, Roffset, Otos_i);
2310   __ push(itos);
2311   if (!is_static && rc == may_rewrite) {
2312     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
2313   }
2314   __ ba(checkVolatile);
2315   __ delayed()->tst(Lscratch);
2316 
2317   __ bind(notShort);
2318 
2319 
2320   // cmp(Rflags, ftos);
2321   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
2322   __ delayed() ->tst(Lscratch);
2323 
2324   // ftos
2325   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
2326   __ push(ftos);
2327   if (!is_static && rc == may_rewrite) {
2328     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
2329   }
2330   __ ba(checkVolatile);
2331   __ delayed()->tst(Lscratch);
2332 
2333   __ bind(notFloat);
2334 
2335 
2336   // dtos
2337   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
2338   __ push(dtos);
2339   if (!is_static && rc == may_rewrite) {
2340     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
2341   }
2342 
2343   __ bind(checkVolatile);
2344   if (__ membar_has_effect(membar_bits)) {
2345     // __ tst(Lscratch); executed in delay slot
2346     __ br(Assembler::zero, false, Assembler::pt, exit);
2347     __ delayed()->nop();
2348     volatile_barrier(membar_bits);
2349   }
2350 
2351   __ bind(exit);
2352 }
2353 
2354 void TemplateTable::getfield(int byte_no) {
2355   getfield_or_static(byte_no, false);
2356 }
2357 
2358 void TemplateTable::nofast_getfield(int byte_no) {
2359   getfield_or_static(byte_no, false, may_not_rewrite);
2360 }
2361 
2362 void TemplateTable::getstatic(int byte_no) {
2363   getfield_or_static(byte_no, true);
2364 }
2365 
2366 void TemplateTable::fast_accessfield(TosState state) {
2367   transition(atos, state);
2368   Register Rcache  = G3_scratch;
2369   Register index   = G4_scratch;
2370   Register Roffset = G4_scratch;
2371   Register Rflags  = Rcache;
2372   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2373 
2374   __ get_cache_and_index_at_bcp(Rcache, index, 1);
2375   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
2376 
2377   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2378 
2379   __ null_check(Otos_i);
2380   __ verify_oop(Otos_i);
2381 
2382   Label exit;
2383 
2384   Assembler::Membar_mask_bits membar_bits =
2385     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2386   if (__ membar_has_effect(membar_bits)) {
2387     // Get volatile flag
2388     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
2389     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2390   }
2391 
2392   switch (bytecode()) {
2393     case Bytecodes::_fast_bgetfield:
2394       __ ldsb(Otos_i, Roffset, Otos_i);
2395       break;
2396     case Bytecodes::_fast_cgetfield:
2397       __ lduh(Otos_i, Roffset, Otos_i);
2398       break;
2399     case Bytecodes::_fast_sgetfield:
2400       __ ldsh(Otos_i, Roffset, Otos_i);
2401       break;
2402     case Bytecodes::_fast_igetfield:
2403       __ ld(Otos_i, Roffset, Otos_i);
2404       break;
2405     case Bytecodes::_fast_lgetfield:
2406       __ ld_long(Otos_i, Roffset, Otos_l);
2407       break;
2408     case Bytecodes::_fast_fgetfield:
2409       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
2410       break;
2411     case Bytecodes::_fast_dgetfield:
2412       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
2413       break;
2414     case Bytecodes::_fast_agetfield:
2415       __ load_heap_oop(Otos_i, Roffset, Otos_i);
2416       break;
2417     default:
2418       ShouldNotReachHere();
2419   }
2420 
2421   if (__ membar_has_effect(membar_bits)) {
2422     __ btst(Lscratch, Rflags);
2423     __ br(Assembler::zero, false, Assembler::pt, exit);
2424     __ delayed()->nop();
2425     volatile_barrier(membar_bits);
2426     __ bind(exit);
2427   }
2428 
2429   if (state == atos) {
2430     __ verify_oop(Otos_i);    // does not blow flags!
2431   }
2432 }
2433 
2434 void TemplateTable::jvmti_post_fast_field_mod() {
2435   if (JvmtiExport::can_post_field_modification()) {
2436     // Check to see if a field modification watch has been set before we take
2437     // the time to call into the VM.
2438     Label done;
2439     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2440     __ load_contents(get_field_modification_count_addr, G4_scratch);
2441     __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done);
2442     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
2443     __ verify_oop(G4_scratch);
2444     __ push_ptr(G4_scratch);    // put the object pointer back on tos
2445     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
2446     // Save tos values before call_VM() clobbers them. Since we have
2447     // to do it for every data type, we use the saved values as the
2448     // jvalue object.
2449     switch (bytecode()) {  // save tos values before call_VM() clobbers them
2450     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
2451     case Bytecodes::_fast_bputfield: // fall through
2452     case Bytecodes::_fast_sputfield: // fall through
2453     case Bytecodes::_fast_cputfield: // fall through
2454     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
2455     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
2456     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
2457     // get words in right order for use as jvalue object
2458     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
2459     }
2460     // setup pointer to jvalue object
2461     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
2462     // G4_scratch:  object pointer
2463     // G1_scratch: cache entry pointer
2464     // G3_scratch: jvalue object on the stack
2465     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
2466     switch (bytecode()) {             // restore tos values
2467     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
2468     case Bytecodes::_fast_bputfield: // fall through
2469     case Bytecodes::_fast_sputfield: // fall through
2470     case Bytecodes::_fast_cputfield: // fall through
2471     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
2472     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
2473     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
2474     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
2475     }
2476     __ bind(done);
2477   }
2478 }
2479 
2480 // The registers Rcache and index expected to be set before call.
2481 // The function may destroy various registers, just not the Rcache and index registers.
2482 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
2483   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2484 
2485   if (JvmtiExport::can_post_field_modification()) {
2486     // Check to see if a field modification watch has been set before we take
2487     // the time to call into the VM.
2488     Label Label1;
2489     assert_different_registers(Rcache, index, G1_scratch);
2490     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
2491     __ load_contents(get_field_modification_count_addr, G1_scratch);
2492     __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1);
2493 
2494     // The Rcache and index registers have been already set.
2495     // This allows to eliminate this call but the Rcache and index
2496     // registers must be correspondingly used after this line.
2497     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
2498 
2499     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
2500     if (is_static) {
2501       // Life is simple.  Null out the object pointer.
2502       __ clr(G4_scratch);
2503     } else {
2504       Register Rflags = G1_scratch;
2505       // Life is harder. The stack holds the value on top, followed by the
2506       // object.  We don't know the size of the value, though; it could be
2507       // one or two words depending on its type. As a result, we must find
2508       // the type to determine where the object is.
2509 
2510       Label two_word, valsizeknown;
2511       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2512       __ mov(Lesp, G4_scratch);
2513       __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2514       // Make sure we don't need to mask Rflags after the above shift
2515       ConstantPoolCacheEntry::verify_tos_state_shift();
2516       __ cmp(Rflags, ltos);
2517       __ br(Assembler::equal, false, Assembler::pt, two_word);
2518       __ delayed()->cmp(Rflags, dtos);
2519       __ br(Assembler::equal, false, Assembler::pt, two_word);
2520       __ delayed()->nop();
2521       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
2522       __ ba_short(valsizeknown);
2523       __ bind(two_word);
2524 
2525       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
2526 
2527       __ bind(valsizeknown);
2528       // setup object pointer
2529       __ ld_ptr(G4_scratch, 0, G4_scratch);
2530       __ verify_oop(G4_scratch);
2531     }
2532     // setup pointer to jvalue object
2533     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
2534     // G4_scratch:  object pointer or NULL if static
2535     // G3_scratch: cache entry pointer
2536     // G1_scratch: jvalue object on the stack
2537     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2538                G4_scratch, G3_scratch, G1_scratch);
2539     __ get_cache_and_index_at_bcp(Rcache, index, 1);
2540     __ bind(Label1);
2541   }
2542 }
2543 
2544 void TemplateTable::pop_and_check_object(Register r) {
2545   __ pop_ptr(r);
2546   __ null_check(r);  // for field access must check obj.
2547   __ verify_oop(r);
2548 }
2549 
2550 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2551   transition(vtos, vtos);
2552   Register Rcache = G3_scratch;
2553   Register index  = G4_scratch;
2554   Register Rclass = Rcache;
2555   Register Roffset= G4_scratch;
2556   Register Rflags = G1_scratch;
2557   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2558 
2559   resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2));
2560   jvmti_post_field_mod(Rcache, index, is_static);
2561   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
2562 
2563   Assembler::Membar_mask_bits read_bits =
2564     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2565   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2566 
2567   Label notVolatile, checkVolatile, exit;
2568   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2569     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2570     __ and3(Rflags, Lscratch, Lscratch);
2571 
2572     if (__ membar_has_effect(read_bits)) {
2573       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2574       volatile_barrier(read_bits);
2575       __ bind(notVolatile);
2576     }
2577   }
2578 
2579   __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
2580   // Make sure we don't need to mask Rflags after the above shift
2581   ConstantPoolCacheEntry::verify_tos_state_shift();
2582 
2583   // compute field type
2584   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
2585 
2586   if (is_static) {
2587     // putstatic with object type most likely, check that first
2588     __ cmp(Rflags, atos);
2589     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2590     __ delayed()->cmp(Rflags, itos);
2591 
2592     // atos
2593     {
2594       __ pop_ptr();
2595       __ verify_oop(Otos_i);
2596       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2597       __ ba(checkVolatile);
2598       __ delayed()->tst(Lscratch);
2599     }
2600 
2601     __ bind(notObj);
2602     // cmp(Rflags, itos);
2603     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2604     __ delayed()->cmp(Rflags, btos);
2605 
2606     // itos
2607     {
2608       __ pop_i();
2609       __ st(Otos_i, Rclass, Roffset);
2610       __ ba(checkVolatile);
2611       __ delayed()->tst(Lscratch);
2612     }
2613 
2614     __ bind(notInt);
2615   } else {
2616     // putfield with int type most likely, check that first
2617     __ cmp(Rflags, itos);
2618     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
2619     __ delayed()->cmp(Rflags, atos);
2620 
2621     // itos
2622     {
2623       __ pop_i();
2624       pop_and_check_object(Rclass);
2625       __ st(Otos_i, Rclass, Roffset);
2626       if (rc == may_rewrite) patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no);
2627       __ ba(checkVolatile);
2628       __ delayed()->tst(Lscratch);
2629     }
2630 
2631     __ bind(notInt);
2632     // cmp(Rflags, atos);
2633     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
2634     __ delayed()->cmp(Rflags, btos);
2635 
2636     // atos
2637     {
2638       __ pop_ptr();
2639       pop_and_check_object(Rclass);
2640       __ verify_oop(Otos_i);
2641       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2642       if (rc == may_rewrite) patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
2643       __ ba(checkVolatile);
2644       __ delayed()->tst(Lscratch);
2645     }
2646 
2647     __ bind(notObj);
2648   }
2649 
2650   // cmp(Rflags, btos);
2651   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
2652   __ delayed()->cmp(Rflags, ltos);
2653 
2654   // btos
2655   {
2656     __ pop_i();
2657     if (!is_static) pop_and_check_object(Rclass);
2658     __ stb(Otos_i, Rclass, Roffset);
2659     if (!is_static && rc == may_rewrite) {
2660       patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no);
2661     }
2662     __ ba(checkVolatile);
2663     __ delayed()->tst(Lscratch);
2664   }
2665 
2666   __ bind(notByte);
2667   // cmp(Rflags, ltos);
2668   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
2669   __ delayed()->cmp(Rflags, ctos);
2670 
2671   // ltos
2672   {
2673     __ pop_l();
2674     if (!is_static) pop_and_check_object(Rclass);
2675     __ st_long(Otos_l, Rclass, Roffset);
2676     if (!is_static && rc == may_rewrite) {
2677       patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no);
2678     }
2679     __ ba(checkVolatile);
2680     __ delayed()->tst(Lscratch);
2681   }
2682 
2683   __ bind(notLong);
2684   // cmp(Rflags, ctos);
2685   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
2686   __ delayed()->cmp(Rflags, stos);
2687 
2688   // ctos (char)
2689   {
2690     __ pop_i();
2691     if (!is_static) pop_and_check_object(Rclass);
2692     __ sth(Otos_i, Rclass, Roffset);
2693     if (!is_static && rc == may_rewrite) {
2694       patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no);
2695     }
2696     __ ba(checkVolatile);
2697     __ delayed()->tst(Lscratch);
2698   }
2699 
2700   __ bind(notChar);
2701   // cmp(Rflags, stos);
2702   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
2703   __ delayed()->cmp(Rflags, ftos);
2704 
2705   // stos (short)
2706   {
2707     __ pop_i();
2708     if (!is_static) pop_and_check_object(Rclass);
2709     __ sth(Otos_i, Rclass, Roffset);
2710     if (!is_static && rc == may_rewrite) {
2711       patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no);
2712     }
2713     __ ba(checkVolatile);
2714     __ delayed()->tst(Lscratch);
2715   }
2716 
2717   __ bind(notShort);
2718   // cmp(Rflags, ftos);
2719   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
2720   __ delayed()->nop();
2721 
2722   // ftos
2723   {
2724     __ pop_f();
2725     if (!is_static) pop_and_check_object(Rclass);
2726     __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2727     if (!is_static && rc == may_rewrite) {
2728       patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no);
2729     }
2730     __ ba(checkVolatile);
2731     __ delayed()->tst(Lscratch);
2732   }
2733 
2734   __ bind(notFloat);
2735 
2736   // dtos
2737   {
2738     __ pop_d();
2739     if (!is_static) pop_and_check_object(Rclass);
2740     __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2741     if (!is_static && rc == may_rewrite) {
2742       patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no);
2743     }
2744   }
2745 
2746   __ bind(checkVolatile);
2747   __ tst(Lscratch);
2748 
2749   if (__ membar_has_effect(write_bits)) {
2750     // __ tst(Lscratch); in delay slot
2751     __ br(Assembler::zero, false, Assembler::pt, exit);
2752     __ delayed()->nop();
2753     volatile_barrier(Assembler::StoreLoad);
2754     __ bind(exit);
2755   }
2756 }
2757 
2758 void TemplateTable::fast_storefield(TosState state) {
2759   transition(state, vtos);
2760   Register Rcache = G3_scratch;
2761   Register Rclass = Rcache;
2762   Register Roffset= G4_scratch;
2763   Register Rflags = G1_scratch;
2764   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2765 
2766   jvmti_post_fast_field_mod();
2767 
2768   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
2769 
2770   Assembler::Membar_mask_bits read_bits =
2771     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
2772   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
2773 
2774   Label notVolatile, checkVolatile, exit;
2775   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
2776     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
2777     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2778     __ and3(Rflags, Lscratch, Lscratch);
2779     if (__ membar_has_effect(read_bits)) {
2780       __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
2781       volatile_barrier(read_bits);
2782       __ bind(notVolatile);
2783     }
2784   }
2785 
2786   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
2787   pop_and_check_object(Rclass);
2788 
2789   switch (bytecode()) {
2790     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
2791     case Bytecodes::_fast_cputfield: /* fall through */
2792     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
2793     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
2794     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
2795     case Bytecodes::_fast_fputfield:
2796       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
2797       break;
2798     case Bytecodes::_fast_dputfield:
2799       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
2800       break;
2801     case Bytecodes::_fast_aputfield:
2802       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
2803       break;
2804     default:
2805       ShouldNotReachHere();
2806   }
2807 
2808   if (__ membar_has_effect(write_bits)) {
2809     __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit);
2810     volatile_barrier(Assembler::StoreLoad);
2811     __ bind(exit);
2812   }
2813 }
2814 
2815 void TemplateTable::putfield(int byte_no) {
2816   putfield_or_static(byte_no, false);
2817 }
2818 
2819 void TemplateTable::nofast_putfield(int byte_no) {
2820   putfield_or_static(byte_no, false, may_not_rewrite);
2821 }
2822 
2823 void TemplateTable::putstatic(int byte_no) {
2824   putfield_or_static(byte_no, true);
2825 }
2826 
2827 void TemplateTable::fast_xaccess(TosState state) {
2828   transition(vtos, state);
2829   Register Rcache = G3_scratch;
2830   Register Roffset = G4_scratch;
2831   Register Rflags  = G4_scratch;
2832   Register Rreceiver = Lscratch;
2833 
2834   __ ld_ptr(Llocals, 0, Rreceiver);
2835 
2836   // access constant pool cache  (is resolved)
2837   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
2838   __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
2839   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
2840 
2841   __ verify_oop(Rreceiver);
2842   __ null_check(Rreceiver);
2843   if (state == atos) {
2844     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
2845   } else if (state == itos) {
2846     __ ld (Rreceiver, Roffset, Otos_i) ;
2847   } else if (state == ftos) {
2848     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
2849   } else {
2850     ShouldNotReachHere();
2851   }
2852 
2853   Assembler::Membar_mask_bits membar_bits =
2854     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
2855   if (__ membar_has_effect(membar_bits)) {
2856 
2857     // Get is_volatile value in Rflags and check if membar is needed
2858     __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
2859 
2860     // Test volatile
2861     Label notVolatile;
2862     __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
2863     __ btst(Rflags, Lscratch);
2864     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
2865     __ delayed()->nop();
2866     volatile_barrier(membar_bits);
2867     __ bind(notVolatile);
2868   }
2869 
2870   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
2871   __ sub(Lbcp, 1, Lbcp);
2872 }
2873 
2874 //----------------------------------------------------------------------------------------------------
2875 // Calls
2876 
2877 void TemplateTable::count_calls(Register method, Register temp) {
2878   // implemented elsewhere
2879   ShouldNotReachHere();
2880 }
2881 
2882 void TemplateTable::prepare_invoke(int byte_no,
2883                                    Register method,  // linked method (or i-klass)
2884                                    Register ra,      // return address
2885                                    Register index,   // itable index, MethodType, etc.
2886                                    Register recv,    // if caller wants to see it
2887                                    Register flags    // if caller wants to test it
2888                                    ) {
2889   // determine flags
2890   const Bytecodes::Code code = bytecode();
2891   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2892   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2893   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2894   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2895   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2896   const bool load_receiver       = (recv != noreg);
2897   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2898   assert(recv  == noreg || recv  == O0, "");
2899   assert(flags == noreg || flags == O1, "");
2900 
2901   // setup registers & access constant pool cache
2902   if (recv  == noreg)  recv  = O0;
2903   if (flags == noreg)  flags = O1;
2904   const Register temp = O2;
2905   assert_different_registers(method, ra, index, recv, flags, temp);
2906 
2907   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2908 
2909   __ mov(SP, O5_savedSP);  // record SP that we wanted the callee to restore
2910 
2911   // maybe push appendix to arguments
2912   if (is_invokedynamic || is_invokehandle) {
2913     Label L_no_push;
2914     __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
2915     __ btst(flags, temp);
2916     __ br(Assembler::zero, false, Assembler::pt, L_no_push);
2917     __ delayed()->nop();
2918     // Push the appendix as a trailing parameter.
2919     // This must be done before we get the receiver,
2920     // since the parameter_size includes it.
2921     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2922     __ load_resolved_reference_at_index(temp, index);
2923     __ verify_oop(temp);
2924     __ push_ptr(temp);  // push appendix (MethodType, CallSite, etc.)
2925     __ bind(L_no_push);
2926   }
2927 
2928   // load receiver if needed (after appendix is pushed so parameter size is correct)
2929   if (load_receiver) {
2930     __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp);  // get parameter size
2931     __ load_receiver(temp, recv);  //  __ argument_address uses Gargs but we need Lesp
2932     __ verify_oop(recv);
2933   }
2934 
2935   // compute return type
2936   __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
2937   // Make sure we don't need to mask flags after the above shift
2938   ConstantPoolCacheEntry::verify_tos_state_shift();
2939   // load return address
2940   {
2941     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2942     AddressLiteral table(table_addr);
2943     __ set(table, temp);
2944     __ sll(ra, LogBytesPerWord, ra);
2945     __ ld_ptr(Address(temp, ra), ra);
2946   }
2947 }
2948 
2949 
2950 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
2951   Register Rtemp = G4_scratch;
2952   Register Rcall = Rindex;
2953   assert_different_registers(Rcall, G5_method, Gargs, Rret);
2954 
2955   // get target Method* & entry point
2956   __ lookup_virtual_method(Rrecv, Rindex, G5_method);
2957   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
2958   __ profile_called_method(G5_method, Rtemp);
2959   __ call_from_interpreter(Rcall, Gargs, Rret);
2960 }
2961 
2962 void TemplateTable::invokevirtual(int byte_no) {
2963   transition(vtos, vtos);
2964   assert(byte_no == f2_byte, "use this argument");
2965 
2966   Register Rscratch = G3_scratch;
2967   Register Rtemp    = G4_scratch;
2968   Register Rret     = Lscratch;
2969   Register O0_recv  = O0;
2970   Label notFinal;
2971 
2972   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
2973   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
2974 
2975   // Check for vfinal
2976   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
2977   __ btst(Rret, G4_scratch);
2978   __ br(Assembler::zero, false, Assembler::pt, notFinal);
2979   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
2980 
2981   if (RewriteBytecodes && !UseSharedSpaces) {
2982     patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
2983   }
2984 
2985   invokevfinal_helper(Rscratch, Rret);
2986 
2987   __ bind(notFinal);
2988 
2989   __ mov(G5_method, Rscratch);  // better scratch register
2990   __ load_receiver(G4_scratch, O0_recv);  // gets receiverOop
2991   // receiver is in O0_recv
2992   __ verify_oop(O0_recv);
2993 
2994   // get return address
2995   AddressLiteral table(Interpreter::invoke_return_entry_table());
2996   __ set(table, Rtemp);
2997   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
2998   // Make sure we don't need to mask Rret after the above shift
2999   ConstantPoolCacheEntry::verify_tos_state_shift();
3000   __ sll(Rret,  LogBytesPerWord, Rret);
3001   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3002 
3003   // get receiver klass
3004   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3005   __ load_klass(O0_recv, O0_recv);
3006   __ verify_klass_ptr(O0_recv);
3007 
3008   __ profile_virtual_call(O0_recv, O4);
3009 
3010   generate_vtable_call(O0_recv, Rscratch, Rret);
3011 }
3012 
3013 void TemplateTable::fast_invokevfinal(int byte_no) {
3014   transition(vtos, vtos);
3015   assert(byte_no == f2_byte, "use this argument");
3016 
3017   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
3018                              /*is_invokevfinal*/true, false);
3019   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
3020   invokevfinal_helper(G3_scratch, Lscratch);
3021 }
3022 
3023 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
3024   Register Rtemp = G4_scratch;
3025 
3026   // Load receiver from stack slot
3027   __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch);
3028   __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch);
3029   __ load_receiver(G4_scratch, O0);
3030 
3031   // receiver NULL check
3032   __ null_check(O0);
3033 
3034   __ profile_final_call(O4);
3035   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3036 
3037   // get return address
3038   AddressLiteral table(Interpreter::invoke_return_entry_table());
3039   __ set(table, Rtemp);
3040   __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret);          // get return type
3041   // Make sure we don't need to mask Rret after the above shift
3042   ConstantPoolCacheEntry::verify_tos_state_shift();
3043   __ sll(Rret,  LogBytesPerWord, Rret);
3044   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
3045 
3046 
3047   // do the call
3048   __ call_from_interpreter(Rscratch, Gargs, Rret);
3049 }
3050 
3051 
3052 void TemplateTable::invokespecial(int byte_no) {
3053   transition(vtos, vtos);
3054   assert(byte_no == f1_byte, "use this argument");
3055 
3056   const Register Rret     = Lscratch;
3057   const Register O0_recv  = O0;
3058   const Register Rscratch = G3_scratch;
3059 
3060   prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv);  // get receiver also for null check
3061   __ null_check(O0_recv);
3062 
3063   // do the call
3064   __ profile_call(O4);
3065   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3066   __ call_from_interpreter(Rscratch, Gargs, Rret);
3067 }
3068 
3069 
3070 void TemplateTable::invokestatic(int byte_no) {
3071   transition(vtos, vtos);
3072   assert(byte_no == f1_byte, "use this argument");
3073 
3074   const Register Rret     = Lscratch;
3075   const Register Rscratch = G3_scratch;
3076 
3077   prepare_invoke(byte_no, G5_method, Rret);  // get f1 Method*
3078 
3079   // do the call
3080   __ profile_call(O4);
3081   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3082   __ call_from_interpreter(Rscratch, Gargs, Rret);
3083 }
3084 
3085 void TemplateTable::invokeinterface_object_method(Register RKlass,
3086                                                   Register Rcall,
3087                                                   Register Rret,
3088                                                   Register Rflags) {
3089   Register Rscratch = G4_scratch;
3090   Register Rindex = Lscratch;
3091 
3092   assert_different_registers(Rscratch, Rindex, Rret);
3093 
3094   Label notFinal;
3095 
3096   // Check for vfinal
3097   __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
3098   __ btst(Rflags, Rscratch);
3099   __ br(Assembler::zero, false, Assembler::pt, notFinal);
3100   __ delayed()->nop();
3101 
3102   __ profile_final_call(O4);
3103 
3104   // do the call - the index (f2) contains the Method*
3105   assert_different_registers(G5_method, Gargs, Rcall);
3106   __ mov(Rindex, G5_method);
3107   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3108   __ call_from_interpreter(Rcall, Gargs, Rret);
3109   __ bind(notFinal);
3110 
3111   __ profile_virtual_call(RKlass, O4);
3112   generate_vtable_call(RKlass, Rindex, Rret);
3113 }
3114 
3115 
3116 void TemplateTable::invokeinterface(int byte_no) {
3117   transition(vtos, vtos);
3118   assert(byte_no == f1_byte, "use this argument");
3119 
3120   const Register Rinterface  = G1_scratch;
3121   const Register Rret        = G3_scratch;
3122   const Register Rindex      = Lscratch;
3123   const Register O0_recv     = O0;
3124   const Register O1_flags    = O1;
3125   const Register O2_Klass    = O2;
3126   const Register Rscratch    = G4_scratch;
3127   assert_different_registers(Rscratch, G5_method);
3128 
3129   prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
3130 
3131   // get receiver klass
3132   __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
3133   __ load_klass(O0_recv, O2_Klass);
3134 
3135   // Special case of invokeinterface called for virtual method of
3136   // java.lang.Object.  See cpCacheOop.cpp for details.
3137   // This code isn't produced by javac, but could be produced by
3138   // another compliant java compiler.
3139   Label notMethod;
3140   __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
3141   __ btst(O1_flags, Rscratch);
3142   __ br(Assembler::zero, false, Assembler::pt, notMethod);
3143   __ delayed()->nop();
3144 
3145   invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags);
3146 
3147   __ bind(notMethod);
3148 
3149   __ profile_virtual_call(O2_Klass, O4);
3150 
3151   //
3152   // find entry point to call
3153   //
3154 
3155   // compute start of first itableOffsetEntry (which is at end of vtable)
3156   const int base = in_bytes(InstanceKlass::vtable_start_offset());
3157   Label search;
3158   Register Rtemp = O1_flags;
3159 
3160   __ ld(O2_Klass, in_bytes(InstanceKlass::vtable_length_offset()), Rtemp);
3161   if (align_object_offset(1) > 1) {
3162     __ round_to(Rtemp, align_object_offset(1));
3163   }
3164   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
3165   if (Assembler::is_simm13(base)) {
3166     __ add(Rtemp, base, Rtemp);
3167   } else {
3168     __ set(base, Rscratch);
3169     __ add(Rscratch, Rtemp, Rtemp);
3170   }
3171   __ add(O2_Klass, Rtemp, Rscratch);
3172 
3173   __ bind(search);
3174 
3175   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
3176   {
3177     Label ok;
3178 
3179     // Check that entry is non-null.  Null entries are probably a bytecode
3180     // problem.  If the interface isn't implemented by the receiver class,
3181     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
3182     // this too but that's only if the entry isn't already resolved, so we
3183     // need to check again.
3184     __ br_notnull_short( Rtemp, Assembler::pt, ok);
3185     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3186     __ should_not_reach_here();
3187     __ bind(ok);
3188   }
3189 
3190   __ cmp(Rinterface, Rtemp);
3191   __ brx(Assembler::notEqual, true, Assembler::pn, search);
3192   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
3193 
3194   // entry found and Rscratch points to it
3195   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
3196 
3197   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
3198   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
3199   __ add(Rscratch, Rindex, Rscratch);
3200   __ ld_ptr(O2_Klass, Rscratch, G5_method);
3201 
3202   // Check for abstract method error.
3203   {
3204     Label ok;
3205     __ br_notnull_short(G5_method, Assembler::pt, ok);
3206     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3207     __ should_not_reach_here();
3208     __ bind(ok);
3209   }
3210 
3211   Register Rcall = Rinterface;
3212   assert_different_registers(Rcall, G5_method, Gargs, Rret);
3213 
3214   __ profile_arguments_type(G5_method, Rcall, Gargs, true);
3215   __ profile_called_method(G5_method, Rscratch);
3216   __ call_from_interpreter(Rcall, Gargs, Rret);
3217 }
3218 
3219 void TemplateTable::invokehandle(int byte_no) {
3220   transition(vtos, vtos);
3221   assert(byte_no == f1_byte, "use this argument");
3222 
3223   const Register Rret       = Lscratch;
3224   const Register G4_mtype   = G4_scratch;
3225   const Register O0_recv    = O0;
3226   const Register Rscratch   = G3_scratch;
3227 
3228   prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
3229   __ null_check(O0_recv);
3230 
3231   // G4: MethodType object (from cpool->resolved_references[f1], if necessary)
3232   // G5: MH.invokeExact_MT method (from f2)
3233 
3234   // Note:  G4_mtype is already pushed (if necessary) by prepare_invoke
3235 
3236   // do the call
3237   __ verify_oop(G4_mtype);
3238   __ profile_final_call(O4);  // FIXME: profile the LambdaForm also
3239   __ profile_arguments_type(G5_method, Rscratch, Gargs, true);
3240   __ call_from_interpreter(Rscratch, Gargs, Rret);
3241 }
3242 
3243 
3244 void TemplateTable::invokedynamic(int byte_no) {
3245   transition(vtos, vtos);
3246   assert(byte_no == f1_byte, "use this argument");
3247 
3248   const Register Rret        = Lscratch;
3249   const Register G4_callsite = G4_scratch;
3250   const Register Rscratch    = G3_scratch;
3251 
3252   prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
3253 
3254   // G4: CallSite object (from cpool->resolved_references[f1])
3255   // G5: MH.linkToCallSite method (from f2)
3256 
3257   // Note:  G4_callsite is already pushed by prepare_invoke
3258 
3259   // %%% should make a type profile for any invokedynamic that takes a ref argument
3260   // profile this call
3261   __ profile_call(O4);
3262 
3263   // do the call
3264   __ verify_oop(G4_callsite);
3265   __ profile_arguments_type(G5_method, Rscratch, Gargs, false);
3266   __ call_from_interpreter(Rscratch, Gargs, Rret);
3267 }
3268 
3269 
3270 //----------------------------------------------------------------------------------------------------
3271 // Allocation
3272 
3273 void TemplateTable::_new() {
3274   transition(vtos, atos);
3275 
3276   Label slow_case;
3277   Label done;
3278   Label initialize_header;
3279   Label initialize_object;  // including clearing the fields
3280 
3281   Register RallocatedObject = Otos_i;
3282   Register RinstanceKlass = O1;
3283   Register Roffset = O3;
3284   Register Rscratch = O4;
3285 
3286   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3287   __ get_cpool_and_tags(Rscratch, G3_scratch);
3288   // make sure the class we're about to instantiate has been resolved
3289   // This is done before loading InstanceKlass to be consistent with the order
3290   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3291   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3292   __ ldub(G3_scratch, Roffset, G3_scratch);
3293   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3294   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3295   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3296   // get InstanceKlass
3297   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
3298   __ add(Roffset, sizeof(ConstantPool), Roffset);
3299   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
3300 
3301   // make sure klass is fully initialized:
3302   __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch);
3303   __ cmp(G3_scratch, InstanceKlass::fully_initialized);
3304   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
3305   __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3306 
3307   // get instance_size in InstanceKlass (already aligned)
3308   //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset);
3309 
3310   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
3311   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
3312   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
3313   __ delayed()->nop();
3314 
3315   // allocate the instance
3316   // 1) Try to allocate in the TLAB
3317   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
3318   // 3) if the above fails (or is not applicable), go to a slow case
3319   // (creates a new TLAB, etc.)
3320 
3321   const bool allow_shared_alloc =
3322     Universe::heap()->supports_inline_contig_alloc();
3323 
3324   if(UseTLAB) {
3325     Register RoldTopValue = RallocatedObject;
3326     Register RtlabWasteLimitValue = G3_scratch;
3327     Register RnewTopValue = G1_scratch;
3328     Register RendValue = Rscratch;
3329     Register RfreeValue = RnewTopValue;
3330 
3331     // check if we can allocate in the TLAB
3332     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
3333     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
3334     __ add(RoldTopValue, Roffset, RnewTopValue);
3335 
3336     // if there is enough space, we do not CAS and do not clear
3337     __ cmp(RnewTopValue, RendValue);
3338     if(ZeroTLAB) {
3339       // the fields have already been cleared
3340       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
3341     } else {
3342       // initialize both the header and fields
3343       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
3344     }
3345     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3346 
3347     if (allow_shared_alloc) {
3348       // Check if tlab should be discarded (refill_waste_limit >= free)
3349       __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
3350       __ sub(RendValue, RoldTopValue, RfreeValue);
3351 #ifdef _LP64
3352       __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
3353 #else
3354       __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
3355 #endif
3356       __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small
3357 
3358       // increment waste limit to prevent getting stuck on this slow path
3359       if (Assembler::is_simm13(ThreadLocalAllocBuffer::refill_waste_limit_increment())) {
3360         __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
3361       } else {
3362         // set64 does not use the temp register if the given constant is 32 bit. So
3363         // we can just use any register; using G0 results in ignoring of the upper 32 bit
3364         // of that value.
3365         __ set64(ThreadLocalAllocBuffer::refill_waste_limit_increment(), G4_scratch, G0);
3366         __ add(RtlabWasteLimitValue, G4_scratch, RtlabWasteLimitValue);
3367       }
3368       __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3369     } else {
3370       // No allocation in the shared eden.
3371       __ ba_short(slow_case);
3372     }
3373   }
3374 
3375   // Allocation in the shared Eden
3376   if (allow_shared_alloc) {
3377     Register RoldTopValue = G1_scratch;
3378     Register RtopAddr = G3_scratch;
3379     Register RnewTopValue = RallocatedObject;
3380     Register RendValue = Rscratch;
3381 
3382     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
3383 
3384     Label retry;
3385     __ bind(retry);
3386     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
3387     __ ld_ptr(RendValue, 0, RendValue);
3388     __ ld_ptr(RtopAddr, 0, RoldTopValue);
3389     __ add(RoldTopValue, Roffset, RnewTopValue);
3390 
3391     // RnewTopValue contains the top address after the new object
3392     // has been allocated.
3393     __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case);
3394 
3395     __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue);
3396 
3397     // if someone beat us on the allocation, try again, otherwise continue
3398     __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry);
3399 
3400     // bump total bytes allocated by this thread
3401     // RoldTopValue and RtopAddr are dead, so can use G1 and G3
3402     __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch);
3403   }
3404 
3405   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3406     // clear object fields
3407     __ bind(initialize_object);
3408     __ deccc(Roffset, sizeof(oopDesc));
3409     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
3410     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
3411 
3412     // initialize remaining object fields
3413     if (UseBlockZeroing) {
3414       // Use BIS for zeroing
3415       __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header);
3416     } else {
3417       Label loop;
3418       __ subcc(Roffset, wordSize, Roffset);
3419       __ bind(loop);
3420       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
3421       __ st_ptr(G0, G3_scratch, Roffset);
3422       __ br(Assembler::notEqual, false, Assembler::pt, loop);
3423       __ delayed()->subcc(Roffset, wordSize, Roffset);
3424     }
3425     __ ba_short(initialize_header);
3426   }
3427 
3428   // slow case
3429   __ bind(slow_case);
3430   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
3431   __ get_constant_pool(O1);
3432 
3433   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
3434 
3435   __ ba_short(done);
3436 
3437   // Initialize the header: mark, klass
3438   __ bind(initialize_header);
3439 
3440   if (UseBiasedLocking) {
3441     __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch);
3442   } else {
3443     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
3444   }
3445   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
3446   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
3447   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
3448 
3449   {
3450     SkipIfEqual skip_if(
3451       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
3452     // Trigger dtrace event
3453     __ push(atos);
3454     __ call_VM_leaf(noreg,
3455        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
3456     __ pop(atos);
3457   }
3458 
3459   // continue
3460   __ bind(done);
3461 }
3462 
3463 
3464 
3465 void TemplateTable::newarray() {
3466   transition(itos, atos);
3467   __ ldub(Lbcp, 1, O1);
3468      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
3469 }
3470 
3471 
3472 void TemplateTable::anewarray() {
3473   transition(itos, atos);
3474   __ get_constant_pool(O1);
3475   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
3476      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
3477 }
3478 
3479 
3480 void TemplateTable::arraylength() {
3481   transition(atos, itos);
3482   Label ok;
3483   __ verify_oop(Otos_i);
3484   __ tst(Otos_i);
3485   __ throw_if_not_1_x( Assembler::notZero, ok );
3486   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
3487   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3488 }
3489 
3490 
3491 void TemplateTable::checkcast() {
3492   transition(atos, atos);
3493   Label done, is_null, quicked, cast_ok, resolved;
3494   Register Roffset = G1_scratch;
3495   Register RobjKlass = O5;
3496   Register RspecifiedKlass = O4;
3497 
3498   // Check for casting a NULL
3499   __ br_null(Otos_i, false, Assembler::pn, is_null);
3500   __ delayed()->nop();
3501 
3502   // Get value klass in RobjKlass
3503   __ load_klass(Otos_i, RobjKlass); // get value klass
3504 
3505   // Get constant pool tag
3506   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3507 
3508   // See if the checkcast has been quickened
3509   __ get_cpool_and_tags(Lscratch, G3_scratch);
3510   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3511   __ ldub(G3_scratch, Roffset, G3_scratch);
3512   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3513   __ br(Assembler::equal, true, Assembler::pt, quicked);
3514   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3515 
3516   __ push_ptr(); // save receiver for result, and for GC
3517   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3518   __ get_vm_result_2(RspecifiedKlass);
3519   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3520 
3521   __ ba_short(resolved);
3522 
3523   // Extract target class from constant pool
3524   __ bind(quicked);
3525   __ add(Roffset, sizeof(ConstantPool), Roffset);
3526   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3527   __ bind(resolved);
3528   __ load_klass(Otos_i, RobjKlass); // get value klass
3529 
3530   // Generate a fast subtype check.  Branch to cast_ok if no
3531   // failure.  Throw exception if failure.
3532   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
3533 
3534   // Not a subtype; so must throw exception
3535   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
3536 
3537   __ bind(cast_ok);
3538 
3539   if (ProfileInterpreter) {
3540     __ ba_short(done);
3541   }
3542   __ bind(is_null);
3543   __ profile_null_seen(G3_scratch);
3544   __ bind(done);
3545 }
3546 
3547 
3548 void TemplateTable::instanceof() {
3549   Label done, is_null, quicked, resolved;
3550   transition(atos, itos);
3551   Register Roffset = G1_scratch;
3552   Register RobjKlass = O5;
3553   Register RspecifiedKlass = O4;
3554 
3555   // Check for casting a NULL
3556   __ br_null(Otos_i, false, Assembler::pt, is_null);
3557   __ delayed()->nop();
3558 
3559   // Get value klass in RobjKlass
3560   __ load_klass(Otos_i, RobjKlass); // get value klass
3561 
3562   // Get constant pool tag
3563   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
3564 
3565   // See if the checkcast has been quickened
3566   __ get_cpool_and_tags(Lscratch, G3_scratch);
3567   __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch);
3568   __ ldub(G3_scratch, Roffset, G3_scratch);
3569   __ cmp(G3_scratch, JVM_CONSTANT_Class);
3570   __ br(Assembler::equal, true, Assembler::pt, quicked);
3571   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
3572 
3573   __ push_ptr(); // save receiver for result, and for GC
3574   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3575   __ get_vm_result_2(RspecifiedKlass);
3576   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
3577 
3578   __ ba_short(resolved);
3579 
3580   // Extract target class from constant pool
3581   __ bind(quicked);
3582   __ add(Roffset, sizeof(ConstantPool), Roffset);
3583   __ get_constant_pool(Lscratch);
3584   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
3585   __ bind(resolved);
3586   __ load_klass(Otos_i, RobjKlass); // get value klass
3587 
3588   // Generate a fast subtype check.  Branch to cast_ok if no
3589   // failure.  Return 0 if failure.
3590   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
3591   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
3592   // Not a subtype; return 0;
3593   __ clr( Otos_i );
3594 
3595   if (ProfileInterpreter) {
3596     __ ba_short(done);
3597   }
3598   __ bind(is_null);
3599   __ profile_null_seen(G3_scratch);
3600   __ bind(done);
3601 }
3602 
3603 void TemplateTable::_breakpoint() {
3604 
3605    // Note: We get here even if we are single stepping..
3606    // jbug inists on setting breakpoints at every bytecode
3607    // even if we are in single step mode.
3608 
3609    transition(vtos, vtos);
3610    // get the unpatched byte code
3611    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
3612    __ mov(O0, Lbyte_code);
3613 
3614    // post the breakpoint event
3615    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
3616 
3617    // complete the execution of original bytecode
3618    __ dispatch_normal(vtos);
3619 }
3620 
3621 
3622 //----------------------------------------------------------------------------------------------------
3623 // Exceptions
3624 
3625 void TemplateTable::athrow() {
3626   transition(atos, vtos);
3627 
3628   // This works because exception is cached in Otos_i which is same as O0,
3629   // which is same as what throw_exception_entry_expects
3630   assert(Otos_i == Oexception, "see explanation above");
3631 
3632   __ verify_oop(Otos_i);
3633   __ null_check(Otos_i);
3634   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
3635 }
3636 
3637 
3638 //----------------------------------------------------------------------------------------------------
3639 // Synchronization
3640 
3641 
3642 // See frame_sparc.hpp for monitor block layout.
3643 // Monitor elements are dynamically allocated by growing stack as needed.
3644 
3645 void TemplateTable::monitorenter() {
3646   transition(atos, vtos);
3647   __ verify_oop(Otos_i);
3648   // Try to acquire a lock on the object
3649   // Repeat until succeeded (i.e., until
3650   // monitorenter returns true).
3651 
3652   {   Label ok;
3653     __ tst(Otos_i);
3654     __ throw_if_not_1_x( Assembler::notZero,  ok);
3655     __ delayed()->mov(Otos_i, Lscratch); // save obj
3656     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
3657   }
3658 
3659   assert(O0 == Otos_i, "Be sure where the object to lock is");
3660 
3661   // find a free slot in the monitor block
3662 
3663 
3664   // initialize entry pointer
3665   __ clr(O1); // points to free slot or NULL
3666 
3667   {
3668     Label entry, loop, exit;
3669     __ add( __ top_most_monitor(), O2 ); // last one to check
3670     __ ba( entry );
3671     __ delayed()->mov( Lmonitors, O3 ); // first one to check
3672 
3673 
3674     __ bind( loop );
3675 
3676     __ verify_oop(O4);          // verify each monitor's oop
3677     __ tst(O4); // is this entry unused?
3678     __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
3679 
3680     __ cmp(O4, O0); // check if current entry is for same object
3681     __ brx( Assembler::equal, false, Assembler::pn, exit );
3682     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
3683 
3684     __ bind( entry );
3685 
3686     __ cmp( O3, O2 );
3687     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3688     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
3689 
3690     __ bind( exit );
3691   }
3692 
3693   { Label allocated;
3694 
3695     // found free slot?
3696     __ br_notnull_short(O1, Assembler::pn, allocated);
3697 
3698     __ add_monitor_to_stack( false, O2, O3 );
3699     __ mov(Lmonitors, O1);
3700 
3701     __ bind(allocated);
3702   }
3703 
3704   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3705   // The object has already been poped from the stack, so the expression stack looks correct.
3706   __ inc(Lbcp);
3707 
3708   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
3709   __ lock_object(O1, O0);
3710 
3711   // check if there's enough space on the stack for the monitors after locking
3712   __ generate_stack_overflow_check(0);
3713 
3714   // The bcp has already been incremented. Just need to dispatch to next instruction.
3715   __ dispatch_next(vtos);
3716 }
3717 
3718 
3719 void TemplateTable::monitorexit() {
3720   transition(atos, vtos);
3721   __ verify_oop(Otos_i);
3722   __ tst(Otos_i);
3723   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
3724 
3725   assert(O0 == Otos_i, "just checking");
3726 
3727   { Label entry, loop, found;
3728     __ add( __ top_most_monitor(), O2 ); // last one to check
3729     __ ba(entry);
3730     // use Lscratch to hold monitor elem to check, start with most recent monitor,
3731     // By using a local it survives the call to the C routine.
3732     __ delayed()->mov( Lmonitors, Lscratch );
3733 
3734     __ bind( loop );
3735 
3736     __ verify_oop(O4);          // verify each monitor's oop
3737     __ cmp(O4, O0); // check if current entry is for desired object
3738     __ brx( Assembler::equal, true, Assembler::pt, found );
3739     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
3740 
3741     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
3742 
3743     __ bind( entry );
3744 
3745     __ cmp( Lscratch, O2 );
3746     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
3747     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
3748 
3749     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3750     __ should_not_reach_here();
3751 
3752     __ bind(found);
3753   }
3754   __ unlock_object(O1);
3755 }
3756 
3757 
3758 //----------------------------------------------------------------------------------------------------
3759 // Wide instructions
3760 
3761 void TemplateTable::wide() {
3762   transition(vtos, vtos);
3763   __ ldub(Lbcp, 1, G3_scratch);// get next bc
3764   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
3765   AddressLiteral ep(Interpreter::_wentry_point);
3766   __ set(ep, G4_scratch);
3767   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
3768   __ jmp(G3_scratch, G0);
3769   __ delayed()->nop();
3770   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
3771 }
3772 
3773 
3774 //----------------------------------------------------------------------------------------------------
3775 // Multi arrays
3776 
3777 void TemplateTable::multianewarray() {
3778   transition(vtos, atos);
3779      // put ndims * wordSize into Lscratch
3780   __ ldub( Lbcp,     3,               Lscratch);
3781   __ sll(  Lscratch, Interpreter::logStackElementSize, Lscratch);
3782      // Lesp points past last_dim, so set to O1 to first_dim address
3783   __ add(  Lesp,     Lscratch,        O1);
3784      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
3785   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
3786 }