1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/shared/collectedHeap.inline.hpp"
  32 #include "gc/shared/collectorCounters.hpp"
  33 #include "gc/shared/gcId.hpp"
  34 #include "gc/shared/gcLocker.inline.hpp"
  35 #include "gc/shared/gcTrace.hpp"
  36 #include "gc/shared/gcTraceTime.inline.hpp"
  37 #include "gc/shared/genCollectedHeap.hpp"
  38 #include "gc/shared/genOopClosures.inline.hpp"
  39 #include "gc/shared/generationSpec.hpp"
  40 #include "gc/shared/space.hpp"
  41 #include "gc/shared/strongRootsScope.hpp"
  42 #include "gc/shared/vmGCOperations.hpp"
  43 #include "gc/shared/workgroup.hpp"
  44 #include "memory/filemap.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/fprofiler.hpp"
  49 #include "runtime/handles.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/management.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "utilities/macros.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 #include "utilities/vmError.hpp"
  58 #if INCLUDE_ALL_GCS
  59 #include "gc/cms/concurrentMarkSweepThread.hpp"
  60 #include "gc/cms/vmCMSOperations.hpp"
  61 #endif // INCLUDE_ALL_GCS
  62 
  63 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  64 
  65 // The set of potentially parallel tasks in root scanning.
  66 enum GCH_strong_roots_tasks {
  67   GCH_PS_Universe_oops_do,
  68   GCH_PS_JNIHandles_oops_do,
  69   GCH_PS_ObjectSynchronizer_oops_do,
  70   GCH_PS_FlatProfiler_oops_do,
  71   GCH_PS_Management_oops_do,
  72   GCH_PS_SystemDictionary_oops_do,
  73   GCH_PS_ClassLoaderDataGraph_oops_do,
  74   GCH_PS_jvmti_oops_do,
  75   GCH_PS_CodeCache_oops_do,
  76   GCH_PS_younger_gens,
  77   // Leave this one last.
  78   GCH_PS_NumElements
  79 };
  80 
  81 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  82   CollectedHeap(),
  83   _rem_set(NULL),
  84   _gen_policy(policy),
  85   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  86   _full_collections_completed(0)
  87 {
  88   assert(policy != NULL, "Sanity check");
  89   if (UseConcMarkSweepGC) {
  90     _workers = new WorkGang("GC Thread", ParallelGCThreads,
  91                             /* are_GC_task_threads */true,
  92                             /* are_ConcurrentGC_threads */false);
  93     _workers->initialize_workers();
  94   } else {
  95     // Serial GC does not use workers.
  96     _workers = NULL;
  97   }
  98 }
  99 
 100 jint GenCollectedHeap::initialize() {
 101   CollectedHeap::pre_initialize();
 102 
 103   // While there are no constraints in the GC code that HeapWordSize
 104   // be any particular value, there are multiple other areas in the
 105   // system which believe this to be true (e.g. oop->object_size in some
 106   // cases incorrectly returns the size in wordSize units rather than
 107   // HeapWordSize).
 108   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 109 
 110   // Allocate space for the heap.
 111 
 112   char* heap_address;
 113   ReservedSpace heap_rs;
 114 
 115   size_t heap_alignment = collector_policy()->heap_alignment();
 116 
 117   heap_address = allocate(heap_alignment, &heap_rs);
 118 
 119   if (!heap_rs.is_reserved()) {
 120     vm_shutdown_during_initialization(
 121       "Could not reserve enough space for object heap");
 122     return JNI_ENOMEM;
 123   }
 124 
 125   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 126 
 127   _rem_set = collector_policy()->create_rem_set(reserved_region());
 128   set_barrier_set(rem_set()->bs());
 129 
 130   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 131   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 132   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 133 
 134   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 135   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 136   clear_incremental_collection_failed();
 137 
 138 #if INCLUDE_ALL_GCS
 139   // If we are running CMS, create the collector responsible
 140   // for collecting the CMS generations.
 141   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 142     bool success = create_cms_collector();
 143     if (!success) return JNI_ENOMEM;
 144   }
 145 #endif // INCLUDE_ALL_GCS
 146 
 147   return JNI_OK;
 148 }
 149 
 150 char* GenCollectedHeap::allocate(size_t alignment,
 151                                  ReservedSpace* heap_rs){
 152   // Now figure out the total size.
 153   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 154   assert(alignment % pageSize == 0, "Must be");
 155 
 156   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 157   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 158 
 159   // Check for overflow.
 160   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 161   if (total_reserved < young_spec->max_size()) {
 162     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 163                                   "the maximum representable size");
 164   }
 165   assert(total_reserved % alignment == 0,
 166          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 167          SIZE_FORMAT, total_reserved, alignment);
 168 
 169   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 170   return heap_rs->base();
 171 }
 172 
 173 void GenCollectedHeap::post_initialize() {
 174   CollectedHeap::post_initialize();
 175   ref_processing_init();
 176   assert((_young_gen->kind() == Generation::DefNew) ||
 177          (_young_gen->kind() == Generation::ParNew),
 178     "Wrong youngest generation type");
 179   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 180 
 181   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 182          _old_gen->kind() == Generation::MarkSweepCompact,
 183     "Wrong generation kind");
 184 
 185   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 186                                       _old_gen->capacity(),
 187                                       def_new_gen->from()->capacity());
 188   _gen_policy->initialize_gc_policy_counters();
 189 }
 190 
 191 void GenCollectedHeap::ref_processing_init() {
 192   _young_gen->ref_processor_init();
 193   _old_gen->ref_processor_init();
 194 }
 195 
 196 size_t GenCollectedHeap::capacity() const {
 197   return _young_gen->capacity() + _old_gen->capacity();
 198 }
 199 
 200 size_t GenCollectedHeap::used() const {
 201   return _young_gen->used() + _old_gen->used();
 202 }
 203 
 204 void GenCollectedHeap::save_used_regions() {
 205   _old_gen->save_used_region();
 206   _young_gen->save_used_region();
 207 }
 208 
 209 size_t GenCollectedHeap::max_capacity() const {
 210   return _young_gen->max_capacity() + _old_gen->max_capacity();
 211 }
 212 
 213 // Update the _full_collections_completed counter
 214 // at the end of a stop-world full GC.
 215 unsigned int GenCollectedHeap::update_full_collections_completed() {
 216   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 217   assert(_full_collections_completed <= _total_full_collections,
 218          "Can't complete more collections than were started");
 219   _full_collections_completed = _total_full_collections;
 220   ml.notify_all();
 221   return _full_collections_completed;
 222 }
 223 
 224 // Update the _full_collections_completed counter, as appropriate,
 225 // at the end of a concurrent GC cycle. Note the conditional update
 226 // below to allow this method to be called by a concurrent collector
 227 // without synchronizing in any manner with the VM thread (which
 228 // may already have initiated a STW full collection "concurrently").
 229 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 230   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 231   assert((_full_collections_completed <= _total_full_collections) &&
 232          (count <= _total_full_collections),
 233          "Can't complete more collections than were started");
 234   if (count > _full_collections_completed) {
 235     _full_collections_completed = count;
 236     ml.notify_all();
 237   }
 238   return _full_collections_completed;
 239 }
 240 
 241 
 242 #ifndef PRODUCT
 243 // Override of memory state checking method in CollectedHeap:
 244 // Some collectors (CMS for example) can't have badHeapWordVal written
 245 // in the first two words of an object. (For instance , in the case of
 246 // CMS these words hold state used to synchronize between certain
 247 // (concurrent) GC steps and direct allocating mutators.)
 248 // The skip_header_HeapWords() method below, allows us to skip
 249 // over the requisite number of HeapWord's. Note that (for
 250 // generational collectors) this means that those many words are
 251 // skipped in each object, irrespective of the generation in which
 252 // that object lives. The resultant loss of precision seems to be
 253 // harmless and the pain of avoiding that imprecision appears somewhat
 254 // higher than we are prepared to pay for such rudimentary debugging
 255 // support.
 256 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 257                                                          size_t size) {
 258   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 259     // We are asked to check a size in HeapWords,
 260     // but the memory is mangled in juint words.
 261     juint* start = (juint*) (addr + skip_header_HeapWords());
 262     juint* end   = (juint*) (addr + size);
 263     for (juint* slot = start; slot < end; slot += 1) {
 264       assert(*slot == badHeapWordVal,
 265              "Found non badHeapWordValue in pre-allocation check");
 266     }
 267   }
 268 }
 269 #endif
 270 
 271 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 272                                                bool is_tlab,
 273                                                bool first_only) {
 274   HeapWord* res = NULL;
 275 
 276   if (_young_gen->should_allocate(size, is_tlab)) {
 277     res = _young_gen->allocate(size, is_tlab);
 278     if (res != NULL || first_only) {
 279       return res;
 280     }
 281   }
 282 
 283   if (_old_gen->should_allocate(size, is_tlab)) {
 284     res = _old_gen->allocate(size, is_tlab);
 285   }
 286 
 287   return res;
 288 }
 289 
 290 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 291                                          bool* gc_overhead_limit_was_exceeded) {
 292   return collector_policy()->mem_allocate_work(size,
 293                                                false /* is_tlab */,
 294                                                gc_overhead_limit_was_exceeded);
 295 }
 296 
 297 bool GenCollectedHeap::must_clear_all_soft_refs() {
 298   return _gc_cause == GCCause::_last_ditch_collection;
 299 }
 300 
 301 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 302   if (!UseConcMarkSweepGC) {
 303     return false;
 304   }
 305 
 306   switch (cause) {
 307     case GCCause::_gc_locker:           return GCLockerInvokesConcurrent;
 308     case GCCause::_java_lang_system_gc:
 309     case GCCause::_dcmd_gc_run:         return ExplicitGCInvokesConcurrent;
 310     default:                            return false;
 311   }
 312 }
 313 
 314 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 315                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 316                                           bool restore_marks_for_biased_locking) {
 317   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 318   GCTraceTime(Debug, gc) t1(title);
 319   TraceCollectorStats tcs(gen->counters());
 320   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 321 
 322   gen->stat_record()->invocations++;
 323   gen->stat_record()->accumulated_time.start();
 324 
 325   // Must be done anew before each collection because
 326   // a previous collection will do mangling and will
 327   // change top of some spaces.
 328   record_gen_tops_before_GC();
 329 
 330   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 331 
 332   if (run_verification && VerifyBeforeGC) {
 333     HandleMark hm;  // Discard invalid handles created during verification
 334     Universe::verify("Before GC");
 335   }
 336   COMPILER2_PRESENT(DerivedPointerTable::clear());
 337 
 338   if (restore_marks_for_biased_locking) {
 339     // We perform this mark word preservation work lazily
 340     // because it's only at this point that we know whether we
 341     // absolutely have to do it; we want to avoid doing it for
 342     // scavenge-only collections where it's unnecessary
 343     BiasedLocking::preserve_marks();
 344   }
 345 
 346   // Do collection work
 347   {
 348     // Note on ref discovery: For what appear to be historical reasons,
 349     // GCH enables and disabled (by enqueing) refs discovery.
 350     // In the future this should be moved into the generation's
 351     // collect method so that ref discovery and enqueueing concerns
 352     // are local to a generation. The collect method could return
 353     // an appropriate indication in the case that notification on
 354     // the ref lock was needed. This will make the treatment of
 355     // weak refs more uniform (and indeed remove such concerns
 356     // from GCH). XXX
 357 
 358     HandleMark hm;  // Discard invalid handles created during gc
 359     save_marks();   // save marks for all gens
 360     // We want to discover references, but not process them yet.
 361     // This mode is disabled in process_discovered_references if the
 362     // generation does some collection work, or in
 363     // enqueue_discovered_references if the generation returns
 364     // without doing any work.
 365     ReferenceProcessor* rp = gen->ref_processor();
 366     // If the discovery of ("weak") refs in this generation is
 367     // atomic wrt other collectors in this configuration, we
 368     // are guaranteed to have empty discovered ref lists.
 369     if (rp->discovery_is_atomic()) {
 370       rp->enable_discovery();
 371       rp->setup_policy(clear_soft_refs);
 372     } else {
 373       // collect() below will enable discovery as appropriate
 374     }
 375     gen->collect(full, clear_soft_refs, size, is_tlab);
 376     if (!rp->enqueuing_is_done()) {
 377       rp->enqueue_discovered_references();
 378     } else {
 379       rp->set_enqueuing_is_done(false);
 380     }
 381     rp->verify_no_references_recorded();
 382   }
 383 
 384   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 385 
 386   gen->stat_record()->accumulated_time.stop();
 387 
 388   update_gc_stats(gen, full);
 389 
 390   if (run_verification && VerifyAfterGC) {
 391     HandleMark hm;  // Discard invalid handles created during verification
 392     Universe::verify("After GC");
 393   }
 394 }
 395 
 396 void GenCollectedHeap::do_collection(bool           full,
 397                                      bool           clear_all_soft_refs,
 398                                      size_t         size,
 399                                      bool           is_tlab,
 400                                      GenerationType max_generation) {
 401   ResourceMark rm;
 402   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 403 
 404   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 405   assert(my_thread->is_VM_thread() ||
 406          my_thread->is_ConcurrentGC_thread(),
 407          "incorrect thread type capability");
 408   assert(Heap_lock->is_locked(),
 409          "the requesting thread should have the Heap_lock");
 410   guarantee(!is_gc_active(), "collection is not reentrant");
 411 
 412   if (GCLocker::check_active_before_gc()) {
 413     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 414   }
 415 
 416   GCIdMarkAndRestore gc_id_mark;
 417 
 418   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 419                           collector_policy()->should_clear_all_soft_refs();
 420 
 421   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 422 
 423   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 424 
 425   print_heap_before_gc();
 426 
 427   {
 428     FlagSetting fl(_is_gc_active, true);
 429 
 430     bool complete = full && (max_generation == OldGen);
 431     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 432     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 433 
 434     FormatBuffer<> gc_string("%s", "Pause ");
 435     if (do_young_collection) {
 436       gc_string.append("Young");
 437     } else {
 438       gc_string.append("Full");
 439     }
 440 
 441     GCTraceCPUTime tcpu;
 442     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 443 
 444     gc_prologue(complete);
 445     increment_total_collections(complete);
 446 
 447     size_t young_prev_used = _young_gen->used();
 448     size_t old_prev_used = _old_gen->used();
 449 
 450     bool run_verification = total_collections() >= VerifyGCStartAt;
 451 
 452     bool prepared_for_verification = false;
 453     bool collected_old = false;
 454 
 455     if (do_young_collection) {
 456       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 457         prepare_for_verify();
 458         prepared_for_verification = true;
 459       }
 460 
 461       assert(!_young_gen->performs_in_place_marking(), "No young generation do in place marking");
 462       collect_generation(_young_gen,
 463                          full,
 464                          size,
 465                          is_tlab,
 466                          run_verification && VerifyGCLevel <= 0,
 467                          do_clear_all_soft_refs,
 468                          false);
 469 
 470       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 471           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 472         // Allocation request was met by young GC.
 473         size = 0;
 474       }
 475     }
 476 
 477     bool must_restore_marks_for_biased_locking = false;
 478 
 479     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 480       if (!complete) {
 481         // The full_collections increment was missed above.
 482         increment_total_full_collections();
 483       }
 484 
 485       pre_full_gc_dump(NULL);    // do any pre full gc dumps
 486 
 487       if (!prepared_for_verification && run_verification &&
 488           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 489         prepare_for_verify();
 490       }
 491 
 492       assert(_old_gen->performs_in_place_marking(), "All old generations do in place marking");
 493 
 494       if (do_young_collection) {
 495         // We did a young GC. Need a new GC id for the old GC.
 496         GCIdMarkAndRestore gc_id_mark;
 497         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 498         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 499       } else {
 500         // No young GC done. Use the same GC id as was set up earlier in this method.
 501         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 502       }
 503 
 504       must_restore_marks_for_biased_locking = true;
 505       collected_old = true;
 506     }
 507 
 508     // Update "complete" boolean wrt what actually transpired --
 509     // for instance, a promotion failure could have led to
 510     // a whole heap collection.
 511     complete = complete || collected_old;
 512 
 513     if (complete) { // We did a full collection
 514       // FIXME: See comment at pre_full_gc_dump call
 515       post_full_gc_dump(NULL);   // do any post full gc dumps
 516     }
 517 
 518     print_heap_change(young_prev_used, old_prev_used);
 519     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 520 
 521     // Adjust generation sizes.
 522     if (collected_old) {
 523       _old_gen->compute_new_size();
 524     }
 525     _young_gen->compute_new_size();
 526 
 527     if (complete) {
 528       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 529       ClassLoaderDataGraph::purge();
 530       MetaspaceAux::verify_metrics();
 531       // Resize the metaspace capacity after full collections
 532       MetaspaceGC::compute_new_size();
 533       update_full_collections_completed();
 534     }
 535 
 536     // Track memory usage and detect low memory after GC finishes
 537     MemoryService::track_memory_usage();
 538 
 539     gc_epilogue(complete);
 540 
 541     if (must_restore_marks_for_biased_locking) {
 542       BiasedLocking::restore_marks();
 543     }
 544   }
 545 
 546   print_heap_after_gc();
 547 
 548 #ifdef TRACESPINNING
 549   ParallelTaskTerminator::print_termination_counts();
 550 #endif
 551 }
 552 
 553 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 554   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 555 }
 556 
 557 #ifdef ASSERT
 558 class AssertNonScavengableClosure: public OopClosure {
 559 public:
 560   virtual void do_oop(oop* p) {
 561     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 562       "Referent should not be scavengable.");  }
 563   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 564 };
 565 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 566 #endif
 567 
 568 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 569                                      ScanningOption so,
 570                                      OopClosure* strong_roots,
 571                                      OopClosure* weak_roots,
 572                                      CLDClosure* strong_cld_closure,
 573                                      CLDClosure* weak_cld_closure,
 574                                      CodeBlobClosure* code_roots) {
 575   // General roots.
 576   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 577   assert(code_roots != NULL, "code root closure should always be set");
 578   // _n_termination for _process_strong_tasks should be set up stream
 579   // in a method not running in a GC worker.  Otherwise the GC worker
 580   // could be trying to change the termination condition while the task
 581   // is executing in another GC worker.
 582 
 583   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 584     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 585   }
 586 
 587   // Some CLDs contained in the thread frames should be considered strong.
 588   // Don't process them if they will be processed during the ClassLoaderDataGraph phase.
 589   CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
 590   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 591   CodeBlobClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 592 
 593   bool is_par = scope->n_threads() > 1;
 594   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_clds_p, roots_from_code_p);
 595 
 596   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 597     Universe::oops_do(strong_roots);
 598   }
 599   // Global (strong) JNI handles
 600   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 601     JNIHandles::oops_do(strong_roots);
 602   }
 603 
 604   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 605     ObjectSynchronizer::oops_do(strong_roots);
 606   }
 607   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 608     FlatProfiler::oops_do(strong_roots);
 609   }
 610   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 611     Management::oops_do(strong_roots);
 612   }
 613   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 614     JvmtiExport::oops_do(strong_roots);
 615   }
 616 
 617   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 618     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 619   }
 620 
 621   // All threads execute the following. A specific chunk of buckets
 622   // from the StringTable are the individual tasks.
 623   if (weak_roots != NULL) {
 624     if (is_par) {
 625       StringTable::possibly_parallel_oops_do(weak_roots);
 626     } else {
 627       StringTable::oops_do(weak_roots);
 628     }
 629   }
 630 
 631   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 632     if (so & SO_ScavengeCodeCache) {
 633       assert(code_roots != NULL, "must supply closure for code cache");
 634 
 635       // We only visit parts of the CodeCache when scavenging.
 636       CodeCache::scavenge_root_nmethods_do(code_roots);
 637     }
 638     if (so & SO_AllCodeCache) {
 639       assert(code_roots != NULL, "must supply closure for code cache");
 640 
 641       // CMSCollector uses this to do intermediate-strength collections.
 642       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 643       CodeCache::blobs_do(code_roots);
 644     }
 645     // Verify that the code cache contents are not subject to
 646     // movement by a scavenging collection.
 647     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 648     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 649   }
 650 }
 651 
 652 void GenCollectedHeap::gen_process_roots(StrongRootsScope* scope,
 653                                          GenerationType type,
 654                                          bool young_gen_as_roots,
 655                                          ScanningOption so,
 656                                          bool only_strong_roots,
 657                                          OopsInGenClosure* not_older_gens,
 658                                          OopsInGenClosure* older_gens,
 659                                          CLDClosure* cld_closure) {
 660   const bool is_adjust_phase = !only_strong_roots && !young_gen_as_roots;
 661 
 662   bool is_moving_collection = false;
 663   if (type == YoungGen || is_adjust_phase) {
 664     // young collections are always moving
 665     is_moving_collection = true;
 666   }
 667 
 668   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 669   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
 670   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 671 
 672   process_roots(scope, so,
 673                 not_older_gens, weak_roots,
 674                 cld_closure, weak_cld_closure,
 675                 &mark_code_closure);
 676 
 677   if (young_gen_as_roots) {
 678     if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 679       if (type == OldGen) {
 680         not_older_gens->set_generation(_young_gen);
 681         _young_gen->oop_iterate(not_older_gens);
 682       }
 683       not_older_gens->reset_generation();
 684     }
 685   }
 686   // When collection is parallel, all threads get to cooperate to do
 687   // old generation scanning.
 688   if (type == YoungGen) {
 689     older_gens->set_generation(_old_gen);
 690     rem_set()->younger_refs_iterate(_old_gen, older_gens, scope->n_threads());
 691     older_gens->reset_generation();
 692   }
 693 
 694   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 695 }
 696 
 697 
 698 class AlwaysTrueClosure: public BoolObjectClosure {
 699 public:
 700   bool do_object_b(oop p) { return true; }
 701 };
 702 static AlwaysTrueClosure always_true;
 703 
 704 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 705   JNIHandles::weak_oops_do(&always_true, root_closure);
 706   _young_gen->ref_processor()->weak_oops_do(root_closure);
 707   _old_gen->ref_processor()->weak_oops_do(root_closure);
 708 }
 709 
 710 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 711 void GenCollectedHeap::                                                 \
 712 oop_since_save_marks_iterate(GenerationType gen,                        \
 713                              OopClosureType* cur,                       \
 714                              OopClosureType* older) {                   \
 715   if (gen == YoungGen) {                              \
 716     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 717     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 718   } else {                                                              \
 719     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 720   }                                                                     \
 721 }
 722 
 723 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 724 
 725 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 726 
 727 bool GenCollectedHeap::no_allocs_since_save_marks() {
 728   return _young_gen->no_allocs_since_save_marks() &&
 729          _old_gen->no_allocs_since_save_marks();
 730 }
 731 
 732 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 733   return _young_gen->supports_inline_contig_alloc();
 734 }
 735 
 736 HeapWord** GenCollectedHeap::top_addr() const {
 737   return _young_gen->top_addr();
 738 }
 739 
 740 HeapWord** GenCollectedHeap::end_addr() const {
 741   return _young_gen->end_addr();
 742 }
 743 
 744 // public collection interfaces
 745 
 746 void GenCollectedHeap::collect(GCCause::Cause cause) {
 747   if (should_do_concurrent_full_gc(cause)) {
 748 #if INCLUDE_ALL_GCS
 749     // Mostly concurrent full collection.
 750     collect_mostly_concurrent(cause);
 751 #else  // INCLUDE_ALL_GCS
 752     ShouldNotReachHere();
 753 #endif // INCLUDE_ALL_GCS
 754   } else if (cause == GCCause::_wb_young_gc) {
 755     // Young collection for the WhiteBox API.
 756     collect(cause, YoungGen);
 757   } else {
 758 #ifdef ASSERT
 759   if (cause == GCCause::_scavenge_alot) {
 760     // Young collection only.
 761     collect(cause, YoungGen);
 762   } else {
 763     // Stop-the-world full collection.
 764     collect(cause, OldGen);
 765   }
 766 #else
 767     // Stop-the-world full collection.
 768     collect(cause, OldGen);
 769 #endif
 770   }
 771 }
 772 
 773 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 774   // The caller doesn't have the Heap_lock
 775   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 776   MutexLocker ml(Heap_lock);
 777   collect_locked(cause, max_generation);
 778 }
 779 
 780 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 781   // The caller has the Heap_lock
 782   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 783   collect_locked(cause, OldGen);
 784 }
 785 
 786 // this is the private collection interface
 787 // The Heap_lock is expected to be held on entry.
 788 
 789 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 790   // Read the GC count while holding the Heap_lock
 791   unsigned int gc_count_before      = total_collections();
 792   unsigned int full_gc_count_before = total_full_collections();
 793   {
 794     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 795     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 796                          cause, max_generation);
 797     VMThread::execute(&op);
 798   }
 799 }
 800 
 801 #if INCLUDE_ALL_GCS
 802 bool GenCollectedHeap::create_cms_collector() {
 803 
 804   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 805          "Unexpected generation kinds");
 806   // Skip two header words in the block content verification
 807   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 808   assert(_gen_policy->is_concurrent_mark_sweep_policy(), "Unexpected policy type");
 809   CMSCollector* collector =
 810     new CMSCollector((ConcurrentMarkSweepGeneration*)_old_gen,
 811                      _rem_set,
 812                      _gen_policy->as_concurrent_mark_sweep_policy());
 813 
 814   if (collector == NULL || !collector->completed_initialization()) {
 815     if (collector) {
 816       delete collector;  // Be nice in embedded situation
 817     }
 818     vm_shutdown_during_initialization("Could not create CMS collector");
 819     return false;
 820   }
 821   return true;  // success
 822 }
 823 
 824 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 825   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 826 
 827   MutexLocker ml(Heap_lock);
 828   // Read the GC counts while holding the Heap_lock
 829   unsigned int full_gc_count_before = total_full_collections();
 830   unsigned int gc_count_before      = total_collections();
 831   {
 832     MutexUnlocker mu(Heap_lock);
 833     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 834     VMThread::execute(&op);
 835   }
 836 }
 837 #endif // INCLUDE_ALL_GCS
 838 
 839 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 840    do_full_collection(clear_all_soft_refs, OldGen);
 841 }
 842 
 843 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 844                                           GenerationType last_generation) {
 845   GenerationType local_last_generation;
 846   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 847       gc_cause() == GCCause::_gc_locker) {
 848     local_last_generation = YoungGen;
 849   } else {
 850     local_last_generation = last_generation;
 851   }
 852 
 853   do_collection(true,                   // full
 854                 clear_all_soft_refs,    // clear_all_soft_refs
 855                 0,                      // size
 856                 false,                  // is_tlab
 857                 local_last_generation); // last_generation
 858   // Hack XXX FIX ME !!!
 859   // A scavenge may not have been attempted, or may have
 860   // been attempted and failed, because the old gen was too full
 861   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 862       incremental_collection_will_fail(false /* don't consult_young */)) {
 863     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 864     // This time allow the old gen to be collected as well
 865     do_collection(true,                // full
 866                   clear_all_soft_refs, // clear_all_soft_refs
 867                   0,                   // size
 868                   false,               // is_tlab
 869                   OldGen);             // last_generation
 870   }
 871 }
 872 
 873 bool GenCollectedHeap::is_in_young(oop p) {
 874   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 875   assert(result == _young_gen->is_in_reserved(p),
 876          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 877   return result;
 878 }
 879 
 880 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 881 bool GenCollectedHeap::is_in(const void* p) const {
 882   return _young_gen->is_in(p) || _old_gen->is_in(p);
 883 }
 884 
 885 #ifdef ASSERT
 886 // Don't implement this by using is_in_young().  This method is used
 887 // in some cases to check that is_in_young() is correct.
 888 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 889   assert(is_in_reserved(p) || p == NULL,
 890     "Does not work if address is non-null and outside of the heap");
 891   return p < _young_gen->reserved().end() && p != NULL;
 892 }
 893 #endif
 894 
 895 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 896   NoHeaderExtendedOopClosure no_header_cl(cl);
 897   oop_iterate(&no_header_cl);
 898 }
 899 
 900 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 901   _young_gen->oop_iterate(cl);
 902   _old_gen->oop_iterate(cl);
 903 }
 904 
 905 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 906   _young_gen->object_iterate(cl);
 907   _old_gen->object_iterate(cl);
 908 }
 909 
 910 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 911   _young_gen->safe_object_iterate(cl);
 912   _old_gen->safe_object_iterate(cl);
 913 }
 914 
 915 Space* GenCollectedHeap::space_containing(const void* addr) const {
 916   Space* res = _young_gen->space_containing(addr);
 917   if (res != NULL) {
 918     return res;
 919   }
 920   res = _old_gen->space_containing(addr);
 921   assert(res != NULL, "Could not find containing space");
 922   return res;
 923 }
 924 
 925 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 926   assert(is_in_reserved(addr), "block_start of address outside of heap");
 927   if (_young_gen->is_in_reserved(addr)) {
 928     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 929     return _young_gen->block_start(addr);
 930   }
 931 
 932   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 933   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 934   return _old_gen->block_start(addr);
 935 }
 936 
 937 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 938   assert(is_in_reserved(addr), "block_size of address outside of heap");
 939   if (_young_gen->is_in_reserved(addr)) {
 940     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 941     return _young_gen->block_size(addr);
 942   }
 943 
 944   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 945   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 946   return _old_gen->block_size(addr);
 947 }
 948 
 949 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 950   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 951   assert(block_start(addr) == addr, "addr must be a block start");
 952   if (_young_gen->is_in_reserved(addr)) {
 953     return _young_gen->block_is_obj(addr);
 954   }
 955 
 956   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 957   return _old_gen->block_is_obj(addr);
 958 }
 959 
 960 bool GenCollectedHeap::supports_tlab_allocation() const {
 961   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 962   return _young_gen->supports_tlab_allocation();
 963 }
 964 
 965 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 966   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 967   if (_young_gen->supports_tlab_allocation()) {
 968     return _young_gen->tlab_capacity();
 969   }
 970   return 0;
 971 }
 972 
 973 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 974   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 975   if (_young_gen->supports_tlab_allocation()) {
 976     return _young_gen->tlab_used();
 977   }
 978   return 0;
 979 }
 980 
 981 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 982   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 983   if (_young_gen->supports_tlab_allocation()) {
 984     return _young_gen->unsafe_max_tlab_alloc();
 985   }
 986   return 0;
 987 }
 988 
 989 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 990   bool gc_overhead_limit_was_exceeded;
 991   return collector_policy()->mem_allocate_work(size /* size */,
 992                                                true /* is_tlab */,
 993                                                &gc_overhead_limit_was_exceeded);
 994 }
 995 
 996 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 997 // from the list headed by "*prev_ptr".
 998 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 999   bool first = true;
1000   size_t min_size = 0;   // "first" makes this conceptually infinite.
1001   ScratchBlock **smallest_ptr, *smallest;
1002   ScratchBlock  *cur = *prev_ptr;
1003   while (cur) {
1004     assert(*prev_ptr == cur, "just checking");
1005     if (first || cur->num_words < min_size) {
1006       smallest_ptr = prev_ptr;
1007       smallest     = cur;
1008       min_size     = smallest->num_words;
1009       first        = false;
1010     }
1011     prev_ptr = &cur->next;
1012     cur     =  cur->next;
1013   }
1014   smallest      = *smallest_ptr;
1015   *smallest_ptr = smallest->next;
1016   return smallest;
1017 }
1018 
1019 // Sort the scratch block list headed by res into decreasing size order,
1020 // and set "res" to the result.
1021 static void sort_scratch_list(ScratchBlock*& list) {
1022   ScratchBlock* sorted = NULL;
1023   ScratchBlock* unsorted = list;
1024   while (unsorted) {
1025     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1026     smallest->next  = sorted;
1027     sorted          = smallest;
1028   }
1029   list = sorted;
1030 }
1031 
1032 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1033                                                size_t max_alloc_words) {
1034   ScratchBlock* res = NULL;
1035   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1036   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1037   sort_scratch_list(res);
1038   return res;
1039 }
1040 
1041 void GenCollectedHeap::release_scratch() {
1042   _young_gen->reset_scratch();
1043   _old_gen->reset_scratch();
1044 }
1045 
1046 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1047   void do_generation(Generation* gen) {
1048     gen->prepare_for_verify();
1049   }
1050 };
1051 
1052 void GenCollectedHeap::prepare_for_verify() {
1053   ensure_parsability(false);        // no need to retire TLABs
1054   GenPrepareForVerifyClosure blk;
1055   generation_iterate(&blk, false);
1056 }
1057 
1058 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1059                                           bool old_to_young) {
1060   if (old_to_young) {
1061     cl->do_generation(_old_gen);
1062     cl->do_generation(_young_gen);
1063   } else {
1064     cl->do_generation(_young_gen);
1065     cl->do_generation(_old_gen);
1066   }
1067 }
1068 
1069 bool GenCollectedHeap::is_maximal_no_gc() const {
1070   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1071 }
1072 
1073 void GenCollectedHeap::save_marks() {
1074   _young_gen->save_marks();
1075   _old_gen->save_marks();
1076 }
1077 
1078 GenCollectedHeap* GenCollectedHeap::heap() {
1079   CollectedHeap* heap = Universe::heap();
1080   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1081   assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Not a GenCollectedHeap");
1082   return (GenCollectedHeap*)heap;
1083 }
1084 
1085 void GenCollectedHeap::prepare_for_compaction() {
1086   // Start by compacting into same gen.
1087   CompactPoint cp(_old_gen);
1088   _old_gen->prepare_for_compaction(&cp);
1089   _young_gen->prepare_for_compaction(&cp);
1090 }
1091 
1092 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1093   log_debug(gc, verify)("%s", _old_gen->name());
1094   _old_gen->verify();
1095 
1096   log_debug(gc, verify)("%s", _old_gen->name());
1097   _young_gen->verify();
1098 
1099   log_debug(gc, verify)("RemSet");
1100   rem_set()->verify();
1101 }
1102 
1103 void GenCollectedHeap::print_on(outputStream* st) const {
1104   _young_gen->print_on(st);
1105   _old_gen->print_on(st);
1106   MetaspaceAux::print_on(st);
1107 }
1108 
1109 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1110   if (workers() != NULL) {
1111     workers()->threads_do(tc);
1112   }
1113 #if INCLUDE_ALL_GCS
1114   if (UseConcMarkSweepGC) {
1115     ConcurrentMarkSweepThread::threads_do(tc);
1116   }
1117 #endif // INCLUDE_ALL_GCS
1118 }
1119 
1120 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1121 #if INCLUDE_ALL_GCS
1122   if (UseConcMarkSweepGC) {
1123     workers()->print_worker_threads_on(st);
1124     ConcurrentMarkSweepThread::print_all_on(st);
1125   }
1126 #endif // INCLUDE_ALL_GCS
1127 }
1128 
1129 void GenCollectedHeap::print_on_error(outputStream* st) const {
1130   this->CollectedHeap::print_on_error(st);
1131 
1132 #if INCLUDE_ALL_GCS
1133   if (UseConcMarkSweepGC) {
1134     st->cr();
1135     CMSCollector::print_on_error(st);
1136   }
1137 #endif // INCLUDE_ALL_GCS
1138 }
1139 
1140 void GenCollectedHeap::print_tracing_info() const {
1141   if (TraceYoungGenTime) {
1142     _young_gen->print_summary_info();
1143   }
1144   if (TraceOldGenTime) {
1145     _old_gen->print_summary_info();
1146   }
1147 }
1148 
1149 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1150   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1151                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1152   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1153                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1154 }
1155 
1156 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1157  private:
1158   bool _full;
1159  public:
1160   void do_generation(Generation* gen) {
1161     gen->gc_prologue(_full);
1162   }
1163   GenGCPrologueClosure(bool full) : _full(full) {};
1164 };
1165 
1166 void GenCollectedHeap::gc_prologue(bool full) {
1167   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1168 
1169   always_do_update_barrier = false;
1170   // Fill TLAB's and such
1171   CollectedHeap::accumulate_statistics_all_tlabs();
1172   ensure_parsability(true);   // retire TLABs
1173 
1174   // Walk generations
1175   GenGCPrologueClosure blk(full);
1176   generation_iterate(&blk, false);  // not old-to-young.
1177 };
1178 
1179 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1180  private:
1181   bool _full;
1182  public:
1183   void do_generation(Generation* gen) {
1184     gen->gc_epilogue(_full);
1185   }
1186   GenGCEpilogueClosure(bool full) : _full(full) {};
1187 };
1188 
1189 void GenCollectedHeap::gc_epilogue(bool full) {
1190 #if defined(COMPILER2) || INCLUDE_JVMCI
1191   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1192   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1193   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1194 #endif /* COMPILER2 || INCLUDE_JVMCI */
1195 
1196   resize_all_tlabs();
1197 
1198   GenGCEpilogueClosure blk(full);
1199   generation_iterate(&blk, false);  // not old-to-young.
1200 
1201   if (!CleanChunkPoolAsync) {
1202     Chunk::clean_chunk_pool();
1203   }
1204 
1205   MetaspaceCounters::update_performance_counters();
1206   CompressedClassSpaceCounters::update_performance_counters();
1207 
1208   always_do_update_barrier = UseConcMarkSweepGC;
1209 };
1210 
1211 #ifndef PRODUCT
1212 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1213  private:
1214  public:
1215   void do_generation(Generation* gen) {
1216     gen->record_spaces_top();
1217   }
1218 };
1219 
1220 void GenCollectedHeap::record_gen_tops_before_GC() {
1221   if (ZapUnusedHeapArea) {
1222     GenGCSaveTopsBeforeGCClosure blk;
1223     generation_iterate(&blk, false);  // not old-to-young.
1224   }
1225 }
1226 #endif  // not PRODUCT
1227 
1228 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1229  public:
1230   void do_generation(Generation* gen) {
1231     gen->ensure_parsability();
1232   }
1233 };
1234 
1235 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1236   CollectedHeap::ensure_parsability(retire_tlabs);
1237   GenEnsureParsabilityClosure ep_cl;
1238   generation_iterate(&ep_cl, false);
1239 }
1240 
1241 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1242                                               oop obj,
1243                                               size_t obj_size) {
1244   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1245   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1246   HeapWord* result = NULL;
1247 
1248   result = old_gen->expand_and_allocate(obj_size, false);
1249 
1250   if (result != NULL) {
1251     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1252   }
1253   return oop(result);
1254 }
1255 
1256 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1257   jlong _time;   // in ms
1258   jlong _now;    // in ms
1259 
1260  public:
1261   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1262 
1263   jlong time() { return _time; }
1264 
1265   void do_generation(Generation* gen) {
1266     _time = MIN2(_time, gen->time_of_last_gc(_now));
1267   }
1268 };
1269 
1270 jlong GenCollectedHeap::millis_since_last_gc() {
1271   // We need a monotonically non-decreasing time in ms but
1272   // os::javaTimeMillis() does not guarantee monotonicity.
1273   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1274   GenTimeOfLastGCClosure tolgc_cl(now);
1275   // iterate over generations getting the oldest
1276   // time that a generation was collected
1277   generation_iterate(&tolgc_cl, false);
1278 
1279   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1280   // provided the underlying platform provides such a time source
1281   // (and it is bug free). So we still have to guard against getting
1282   // back a time later than 'now'.
1283   jlong retVal = now - tolgc_cl.time();
1284   if (retVal < 0) {
1285     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, retVal);)
1286     return 0;
1287   }
1288   return retVal;
1289 }
1290 
1291 void GenCollectedHeap::stop() {
1292 #if INCLUDE_ALL_GCS
1293   if (UseConcMarkSweepGC) {
1294     ConcurrentMarkSweepThread::stop();
1295   }
1296 #endif
1297 }