1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMark.inline.hpp"
  30 #include "gc/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc/g1/g1CollectorPolicy.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/heapRegionSet.inline.hpp"
  40 #include "gc/g1/suspendibleThreadSet.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/taskqueue.inline.hpp"
  49 #include "gc/shared/vmGCOperations.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/prefetch.inline.hpp"
  58 #include "services/memTracker.hpp"
  59 
  60 // Concurrent marking bit map wrapper
  61 
  62 CMBitMapRO::CMBitMapRO(int shifter) :
  63   _bm(),
  64   _shifter(shifter) {
  65   _bmStartWord = 0;
  66   _bmWordSize = 0;
  67 }
  68 
  69 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  70                                                const HeapWord* limit) const {
  71   // First we must round addr *up* to a possible object boundary.
  72   addr = (HeapWord*)align_size_up((intptr_t)addr,
  73                                   HeapWordSize << _shifter);
  74   size_t addrOffset = heapWordToOffset(addr);
  75   assert(limit != NULL, "limit must not be NULL");
  76   size_t limitOffset = heapWordToOffset(limit);
  77   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  78   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  79   assert(nextAddr >= addr, "get_next_one postcondition");
  80   assert(nextAddr == limit || isMarked(nextAddr),
  81          "get_next_one postcondition");
  82   return nextAddr;
  83 }
  84 
  85 #ifndef PRODUCT
  86 bool CMBitMapRO::covers(MemRegion heap_rs) const {
  87   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  88   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  89          "size inconsistency");
  90   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  91          _bmWordSize  == heap_rs.word_size();
  92 }
  93 #endif
  94 
  95 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  96   _bm.print_on_error(st, prefix);
  97 }
  98 
  99 size_t CMBitMap::compute_size(size_t heap_size) {
 100   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 101 }
 102 
 103 size_t CMBitMap::mark_distance() {
 104   return MinObjAlignmentInBytes * BitsPerByte;
 105 }
 106 
 107 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 108   _bmStartWord = heap.start();
 109   _bmWordSize = heap.word_size();
 110 
 111   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 112   _bm.set_size(_bmWordSize >> _shifter);
 113 
 114   storage->set_mapping_changed_listener(&_listener);
 115 }
 116 
 117 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 118   if (zero_filled) {
 119     return;
 120   }
 121   // We need to clear the bitmap on commit, removing any existing information.
 122   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 123   _bm->clearRange(mr);
 124 }
 125 
 126 // Closure used for clearing the given mark bitmap.
 127 class ClearBitmapHRClosure : public HeapRegionClosure {
 128  private:
 129   ConcurrentMark* _cm;
 130   CMBitMap* _bitmap;
 131   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 132  public:
 133   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 134     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 135   }
 136 
 137   virtual bool doHeapRegion(HeapRegion* r) {
 138     size_t const chunk_size_in_words = M / HeapWordSize;
 139 
 140     HeapWord* cur = r->bottom();
 141     HeapWord* const end = r->end();
 142 
 143     while (cur < end) {
 144       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 145       _bitmap->clearRange(mr);
 146 
 147       cur += chunk_size_in_words;
 148 
 149       // Abort iteration if after yielding the marking has been aborted.
 150       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 151         return true;
 152       }
 153       // Repeat the asserts from before the start of the closure. We will do them
 154       // as asserts here to minimize their overhead on the product. However, we
 155       // will have them as guarantees at the beginning / end of the bitmap
 156       // clearing to get some checking in the product.
 157       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 158       assert(!_may_yield || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 159     }
 160 
 161     return false;
 162   }
 163 };
 164 
 165 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 166   ClearBitmapHRClosure* _cl;
 167   HeapRegionClaimer     _hrclaimer;
 168   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 169 
 170 public:
 171   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 172       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 173 
 174   void work(uint worker_id) {
 175     SuspendibleThreadSetJoiner sts_join(_suspendible);
 176     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 177   }
 178 };
 179 
 180 void CMBitMap::clearAll() {
 181   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 182   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 183   uint n_workers = g1h->workers()->active_workers();
 184   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 185   g1h->workers()->run_task(&task);
 186   guarantee(cl.complete(), "Must have completed iteration.");
 187   return;
 188 }
 189 
 190 void CMBitMap::clearRange(MemRegion mr) {
 191   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 192   assert(!mr.is_empty(), "unexpected empty region");
 193   // convert address range into offset range
 194   _bm.at_put_range(heapWordToOffset(mr.start()),
 195                    heapWordToOffset(mr.end()), false);
 196 }
 197 
 198 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 199   _base(NULL), _cm(cm)
 200 {}
 201 
 202 bool CMMarkStack::allocate(size_t capacity) {
 203   // allocate a stack of the requisite depth
 204   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 205   if (!rs.is_reserved()) {
 206     warning("ConcurrentMark MarkStack allocation failure");
 207     return false;
 208   }
 209   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 210   if (!_virtual_space.initialize(rs, rs.size())) {
 211     warning("ConcurrentMark MarkStack backing store failure");
 212     // Release the virtual memory reserved for the marking stack
 213     rs.release();
 214     return false;
 215   }
 216   assert(_virtual_space.committed_size() == rs.size(),
 217          "Didn't reserve backing store for all of ConcurrentMark stack?");
 218   _base = (oop*) _virtual_space.low();
 219   setEmpty();
 220   _capacity = (jint) capacity;
 221   _saved_index = -1;
 222   _should_expand = false;
 223   return true;
 224 }
 225 
 226 void CMMarkStack::expand() {
 227   // Called, during remark, if we've overflown the marking stack during marking.
 228   assert(isEmpty(), "stack should been emptied while handling overflow");
 229   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 230   // Clear expansion flag
 231   _should_expand = false;
 232   if (_capacity == (jint) MarkStackSizeMax) {
 233     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 234     return;
 235   }
 236   // Double capacity if possible
 237   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 238   // Do not give up existing stack until we have managed to
 239   // get the double capacity that we desired.
 240   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 241                                                            sizeof(oop)));
 242   if (rs.is_reserved()) {
 243     // Release the backing store associated with old stack
 244     _virtual_space.release();
 245     // Reinitialize virtual space for new stack
 246     if (!_virtual_space.initialize(rs, rs.size())) {
 247       fatal("Not enough swap for expanded marking stack capacity");
 248     }
 249     _base = (oop*)(_virtual_space.low());
 250     _index = 0;
 251     _capacity = new_capacity;
 252   } else {
 253     // Failed to double capacity, continue;
 254     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 255                   _capacity / K, new_capacity / K);
 256   }
 257 }
 258 
 259 void CMMarkStack::set_should_expand() {
 260   // If we're resetting the marking state because of an
 261   // marking stack overflow, record that we should, if
 262   // possible, expand the stack.
 263   _should_expand = _cm->has_overflown();
 264 }
 265 
 266 CMMarkStack::~CMMarkStack() {
 267   if (_base != NULL) {
 268     _base = NULL;
 269     _virtual_space.release();
 270   }
 271 }
 272 
 273 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 274   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 275   jint start = _index;
 276   jint next_index = start + n;
 277   if (next_index > _capacity) {
 278     _overflow = true;
 279     return;
 280   }
 281   // Otherwise.
 282   _index = next_index;
 283   for (int i = 0; i < n; i++) {
 284     int ind = start + i;
 285     assert(ind < _capacity, "By overflow test above.");
 286     _base[ind] = ptr_arr[i];
 287   }
 288 }
 289 
 290 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 291   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 292   jint index = _index;
 293   if (index == 0) {
 294     *n = 0;
 295     return false;
 296   } else {
 297     int k = MIN2(max, index);
 298     jint  new_ind = index - k;
 299     for (int j = 0; j < k; j++) {
 300       ptr_arr[j] = _base[new_ind + j];
 301     }
 302     _index = new_ind;
 303     *n = k;
 304     return true;
 305   }
 306 }
 307 
 308 void CMMarkStack::note_start_of_gc() {
 309   assert(_saved_index == -1,
 310          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 311   _saved_index = _index;
 312 }
 313 
 314 void CMMarkStack::note_end_of_gc() {
 315   // This is intentionally a guarantee, instead of an assert. If we
 316   // accidentally add something to the mark stack during GC, it
 317   // will be a correctness issue so it's better if we crash. we'll
 318   // only check this once per GC anyway, so it won't be a performance
 319   // issue in any way.
 320   guarantee(_saved_index == _index,
 321             "saved index: %d index: %d", _saved_index, _index);
 322   _saved_index = -1;
 323 }
 324 
 325 CMRootRegions::CMRootRegions() :
 326   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 327   _should_abort(false),  _next_survivor(NULL) { }
 328 
 329 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 330   _young_list = g1h->young_list();
 331   _cm = cm;
 332 }
 333 
 334 void CMRootRegions::prepare_for_scan() {
 335   assert(!scan_in_progress(), "pre-condition");
 336 
 337   // Currently, only survivors can be root regions.
 338   assert(_next_survivor == NULL, "pre-condition");
 339   _next_survivor = _young_list->first_survivor_region();
 340   _scan_in_progress = (_next_survivor != NULL);
 341   _should_abort = false;
 342 }
 343 
 344 HeapRegion* CMRootRegions::claim_next() {
 345   if (_should_abort) {
 346     // If someone has set the should_abort flag, we return NULL to
 347     // force the caller to bail out of their loop.
 348     return NULL;
 349   }
 350 
 351   // Currently, only survivors can be root regions.
 352   HeapRegion* res = _next_survivor;
 353   if (res != NULL) {
 354     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 355     // Read it again in case it changed while we were waiting for the lock.
 356     res = _next_survivor;
 357     if (res != NULL) {
 358       if (res == _young_list->last_survivor_region()) {
 359         // We just claimed the last survivor so store NULL to indicate
 360         // that we're done.
 361         _next_survivor = NULL;
 362       } else {
 363         _next_survivor = res->get_next_young_region();
 364       }
 365     } else {
 366       // Someone else claimed the last survivor while we were trying
 367       // to take the lock so nothing else to do.
 368     }
 369   }
 370   assert(res == NULL || res->is_survivor(), "post-condition");
 371 
 372   return res;
 373 }
 374 
 375 void CMRootRegions::scan_finished() {
 376   assert(scan_in_progress(), "pre-condition");
 377 
 378   // Currently, only survivors can be root regions.
 379   if (!_should_abort) {
 380     assert(_next_survivor == NULL, "we should have claimed all survivors");
 381   }
 382   _next_survivor = NULL;
 383 
 384   {
 385     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 386     _scan_in_progress = false;
 387     RootRegionScan_lock->notify_all();
 388   }
 389 }
 390 
 391 bool CMRootRegions::wait_until_scan_finished() {
 392   if (!scan_in_progress()) return false;
 393 
 394   {
 395     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 396     while (scan_in_progress()) {
 397       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 398     }
 399   }
 400   return true;
 401 }
 402 
 403 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 404   return MAX2((n_par_threads + 2) / 4, 1U);
 405 }
 406 
 407 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 408   _g1h(g1h),
 409   _markBitMap1(),
 410   _markBitMap2(),
 411   _parallel_marking_threads(0),
 412   _max_parallel_marking_threads(0),
 413   _sleep_factor(0.0),
 414   _marking_task_overhead(1.0),
 415   _cleanup_list("Cleanup List"),
 416   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 417   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 418             CardTableModRefBS::card_shift,
 419             false /* in_resource_area*/),
 420 
 421   _prevMarkBitMap(&_markBitMap1),
 422   _nextMarkBitMap(&_markBitMap2),
 423 
 424   _markStack(this),
 425   // _finger set in set_non_marking_state
 426 
 427   _max_worker_id(ParallelGCThreads),
 428   // _active_tasks set in set_non_marking_state
 429   // _tasks set inside the constructor
 430   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 431   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 432 
 433   _has_overflown(false),
 434   _concurrent(false),
 435   _has_aborted(false),
 436   _restart_for_overflow(false),
 437   _concurrent_marking_in_progress(false),
 438   _concurrent_phase_started(false),
 439 
 440   // _verbose_level set below
 441 
 442   _init_times(),
 443   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 444   _cleanup_times(),
 445   _total_counting_time(0.0),
 446   _total_rs_scrub_time(0.0),
 447 
 448   _parallel_workers(NULL),
 449 
 450   _count_card_bitmaps(NULL),
 451   _count_marked_bytes(NULL),
 452   _completed_initialization(false) {
 453 
 454   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 455   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 456 
 457   // Create & start a ConcurrentMark thread.
 458   _cmThread = new ConcurrentMarkThread(this);
 459   assert(cmThread() != NULL, "CM Thread should have been created");
 460   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 461   if (_cmThread->osthread() == NULL) {
 462       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 463   }
 464 
 465   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 466   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 467   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 468 
 469   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 470   satb_qs.set_buffer_size(G1SATBBufferSize);
 471 
 472   _root_regions.init(_g1h, this);
 473 
 474   if (ConcGCThreads > ParallelGCThreads) {
 475     warning("Can't have more ConcGCThreads (%u) "
 476             "than ParallelGCThreads (%u).",
 477             ConcGCThreads, ParallelGCThreads);
 478     return;
 479   }
 480   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 481     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 482     // if both are set
 483     _sleep_factor             = 0.0;
 484     _marking_task_overhead    = 1.0;
 485   } else if (G1MarkingOverheadPercent > 0) {
 486     // We will calculate the number of parallel marking threads based
 487     // on a target overhead with respect to the soft real-time goal
 488     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 489     double overall_cm_overhead =
 490       (double) MaxGCPauseMillis * marking_overhead /
 491       (double) GCPauseIntervalMillis;
 492     double cpu_ratio = 1.0 / (double) os::processor_count();
 493     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 494     double marking_task_overhead =
 495       overall_cm_overhead / marking_thread_num *
 496                                               (double) os::processor_count();
 497     double sleep_factor =
 498                        (1.0 - marking_task_overhead) / marking_task_overhead;
 499 
 500     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 501     _sleep_factor             = sleep_factor;
 502     _marking_task_overhead    = marking_task_overhead;
 503   } else {
 504     // Calculate the number of parallel marking threads by scaling
 505     // the number of parallel GC threads.
 506     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 507     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 508     _sleep_factor             = 0.0;
 509     _marking_task_overhead    = 1.0;
 510   }
 511 
 512   assert(ConcGCThreads > 0, "Should have been set");
 513   _parallel_marking_threads = ConcGCThreads;
 514   _max_parallel_marking_threads = _parallel_marking_threads;
 515 
 516   _parallel_workers = new WorkGang("G1 Marker",
 517        _max_parallel_marking_threads, false, true);
 518   if (_parallel_workers == NULL) {
 519     vm_exit_during_initialization("Failed necessary allocation.");
 520   } else {
 521     _parallel_workers->initialize_workers();
 522   }
 523 
 524   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 525     size_t mark_stack_size =
 526       MIN2(MarkStackSizeMax,
 527           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 528     // Verify that the calculated value for MarkStackSize is in range.
 529     // It would be nice to use the private utility routine from Arguments.
 530     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 531       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 532               "must be between 1 and " SIZE_FORMAT,
 533               mark_stack_size, MarkStackSizeMax);
 534       return;
 535     }
 536     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 537   } else {
 538     // Verify MarkStackSize is in range.
 539     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 540       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 541         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 542           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 543                   "must be between 1 and " SIZE_FORMAT,
 544                   MarkStackSize, MarkStackSizeMax);
 545           return;
 546         }
 547       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 548         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 549           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 550                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 551                   MarkStackSize, MarkStackSizeMax);
 552           return;
 553         }
 554       }
 555     }
 556   }
 557 
 558   if (!_markStack.allocate(MarkStackSize)) {
 559     warning("Failed to allocate CM marking stack");
 560     return;
 561   }
 562 
 563   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 564   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 565 
 566   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 567   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 568 
 569   BitMap::idx_t card_bm_size = _card_bm.size();
 570 
 571   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 572   _active_tasks = _max_worker_id;
 573 
 574   uint max_regions = _g1h->max_regions();
 575   for (uint i = 0; i < _max_worker_id; ++i) {
 576     CMTaskQueue* task_queue = new CMTaskQueue();
 577     task_queue->initialize();
 578     _task_queues->register_queue(i, task_queue);
 579 
 580     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 581     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 582 
 583     _tasks[i] = new CMTask(i, this,
 584                            _count_marked_bytes[i],
 585                            &_count_card_bitmaps[i],
 586                            task_queue, _task_queues);
 587 
 588     _accum_task_vtime[i] = 0.0;
 589   }
 590 
 591   // Calculate the card number for the bottom of the heap. Used
 592   // in biasing indexes into the accounting card bitmaps.
 593   _heap_bottom_card_num =
 594     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 595                                 CardTableModRefBS::card_shift);
 596 
 597   // Clear all the liveness counting data
 598   clear_all_count_data();
 599 
 600   // so that the call below can read a sensible value
 601   _heap_start = g1h->reserved_region().start();
 602   set_non_marking_state();
 603   _completed_initialization = true;
 604 }
 605 
 606 void ConcurrentMark::reset() {
 607   // Starting values for these two. This should be called in a STW
 608   // phase.
 609   MemRegion reserved = _g1h->g1_reserved();
 610   _heap_start = reserved.start();
 611   _heap_end   = reserved.end();
 612 
 613   // Separated the asserts so that we know which one fires.
 614   assert(_heap_start != NULL, "heap bounds should look ok");
 615   assert(_heap_end != NULL, "heap bounds should look ok");
 616   assert(_heap_start < _heap_end, "heap bounds should look ok");
 617 
 618   // Reset all the marking data structures and any necessary flags
 619   reset_marking_state();
 620 
 621   // We do reset all of them, since different phases will use
 622   // different number of active threads. So, it's easiest to have all
 623   // of them ready.
 624   for (uint i = 0; i < _max_worker_id; ++i) {
 625     _tasks[i]->reset(_nextMarkBitMap);
 626   }
 627 
 628   // we need this to make sure that the flag is on during the evac
 629   // pause with initial mark piggy-backed
 630   set_concurrent_marking_in_progress();
 631 }
 632 
 633 
 634 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 635   _markStack.set_should_expand();
 636   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 637   if (clear_overflow) {
 638     clear_has_overflown();
 639   } else {
 640     assert(has_overflown(), "pre-condition");
 641   }
 642   _finger = _heap_start;
 643 
 644   for (uint i = 0; i < _max_worker_id; ++i) {
 645     CMTaskQueue* queue = _task_queues->queue(i);
 646     queue->set_empty();
 647   }
 648 }
 649 
 650 void ConcurrentMark::set_concurrency(uint active_tasks) {
 651   assert(active_tasks <= _max_worker_id, "we should not have more");
 652 
 653   _active_tasks = active_tasks;
 654   // Need to update the three data structures below according to the
 655   // number of active threads for this phase.
 656   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 657   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 658   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 659 }
 660 
 661 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 662   set_concurrency(active_tasks);
 663 
 664   _concurrent = concurrent;
 665   // We propagate this to all tasks, not just the active ones.
 666   for (uint i = 0; i < _max_worker_id; ++i)
 667     _tasks[i]->set_concurrent(concurrent);
 668 
 669   if (concurrent) {
 670     set_concurrent_marking_in_progress();
 671   } else {
 672     // We currently assume that the concurrent flag has been set to
 673     // false before we start remark. At this point we should also be
 674     // in a STW phase.
 675     assert(!concurrent_marking_in_progress(), "invariant");
 676     assert(out_of_regions(),
 677            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 678            p2i(_finger), p2i(_heap_end));
 679   }
 680 }
 681 
 682 void ConcurrentMark::set_non_marking_state() {
 683   // We set the global marking state to some default values when we're
 684   // not doing marking.
 685   reset_marking_state();
 686   _active_tasks = 0;
 687   clear_concurrent_marking_in_progress();
 688 }
 689 
 690 ConcurrentMark::~ConcurrentMark() {
 691   // The ConcurrentMark instance is never freed.
 692   ShouldNotReachHere();
 693 }
 694 
 695 void ConcurrentMark::clearNextBitmap() {
 696   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 697 
 698   // Make sure that the concurrent mark thread looks to still be in
 699   // the current cycle.
 700   guarantee(cmThread()->during_cycle(), "invariant");
 701 
 702   // We are finishing up the current cycle by clearing the next
 703   // marking bitmap and getting it ready for the next cycle. During
 704   // this time no other cycle can start. So, let's make sure that this
 705   // is the case.
 706   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 707 
 708   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 709   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 710   _parallel_workers->run_task(&task);
 711 
 712   // Clear the liveness counting data. If the marking has been aborted, the abort()
 713   // call already did that.
 714   if (cl.complete()) {
 715     clear_all_count_data();
 716   }
 717 
 718   // Repeat the asserts from above.
 719   guarantee(cmThread()->during_cycle(), "invariant");
 720   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 721 }
 722 
 723 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 724   CMBitMap* _bitmap;
 725   bool _error;
 726  public:
 727   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 728   }
 729 
 730   virtual bool doHeapRegion(HeapRegion* r) {
 731     // This closure can be called concurrently to the mutator, so we must make sure
 732     // that the result of the getNextMarkedWordAddress() call is compared to the
 733     // value passed to it as limit to detect any found bits.
 734     // end never changes in G1.
 735     HeapWord* end = r->end();
 736     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 737   }
 738 };
 739 
 740 bool ConcurrentMark::nextMarkBitmapIsClear() {
 741   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 742   _g1h->heap_region_iterate(&cl);
 743   return cl.complete();
 744 }
 745 
 746 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 747 public:
 748   bool doHeapRegion(HeapRegion* r) {
 749     r->note_start_of_marking();
 750     return false;
 751   }
 752 };
 753 
 754 void ConcurrentMark::checkpointRootsInitialPre() {
 755   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 756   G1CollectorPolicy* g1p = g1h->g1_policy();
 757 
 758   _has_aborted = false;
 759 
 760   // Initialize marking structures. This has to be done in a STW phase.
 761   reset();
 762 
 763   // For each region note start of marking.
 764   NoteStartOfMarkHRClosure startcl;
 765   g1h->heap_region_iterate(&startcl);
 766 }
 767 
 768 
 769 void ConcurrentMark::checkpointRootsInitialPost() {
 770   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 771 
 772   // Start Concurrent Marking weak-reference discovery.
 773   ReferenceProcessor* rp = g1h->ref_processor_cm();
 774   // enable ("weak") refs discovery
 775   rp->enable_discovery();
 776   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 777 
 778   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 779   // This is the start of  the marking cycle, we're expected all
 780   // threads to have SATB queues with active set to false.
 781   satb_mq_set.set_active_all_threads(true, /* new active value */
 782                                      false /* expected_active */);
 783 
 784   _root_regions.prepare_for_scan();
 785 
 786   // update_g1_committed() will be called at the end of an evac pause
 787   // when marking is on. So, it's also called at the end of the
 788   // initial-mark pause to update the heap end, if the heap expands
 789   // during it. No need to call it here.
 790 }
 791 
 792 /*
 793  * Notice that in the next two methods, we actually leave the STS
 794  * during the barrier sync and join it immediately afterwards. If we
 795  * do not do this, the following deadlock can occur: one thread could
 796  * be in the barrier sync code, waiting for the other thread to also
 797  * sync up, whereas another one could be trying to yield, while also
 798  * waiting for the other threads to sync up too.
 799  *
 800  * Note, however, that this code is also used during remark and in
 801  * this case we should not attempt to leave / enter the STS, otherwise
 802  * we'll either hit an assert (debug / fastdebug) or deadlock
 803  * (product). So we should only leave / enter the STS if we are
 804  * operating concurrently.
 805  *
 806  * Because the thread that does the sync barrier has left the STS, it
 807  * is possible to be suspended for a Full GC or an evacuation pause
 808  * could occur. This is actually safe, since the entering the sync
 809  * barrier is one of the last things do_marking_step() does, and it
 810  * doesn't manipulate any data structures afterwards.
 811  */
 812 
 813 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 814   bool barrier_aborted;
 815   {
 816     SuspendibleThreadSetLeaver sts_leave(concurrent());
 817     barrier_aborted = !_first_overflow_barrier_sync.enter();
 818   }
 819 
 820   // at this point everyone should have synced up and not be doing any
 821   // more work
 822 
 823   if (barrier_aborted) {
 824     // If the barrier aborted we ignore the overflow condition and
 825     // just abort the whole marking phase as quickly as possible.
 826     return;
 827   }
 828 
 829   // If we're executing the concurrent phase of marking, reset the marking
 830   // state; otherwise the marking state is reset after reference processing,
 831   // during the remark pause.
 832   // If we reset here as a result of an overflow during the remark we will
 833   // see assertion failures from any subsequent set_concurrency_and_phase()
 834   // calls.
 835   if (concurrent()) {
 836     // let the task associated with with worker 0 do this
 837     if (worker_id == 0) {
 838       // task 0 is responsible for clearing the global data structures
 839       // We should be here because of an overflow. During STW we should
 840       // not clear the overflow flag since we rely on it being true when
 841       // we exit this method to abort the pause and restart concurrent
 842       // marking.
 843       reset_marking_state(true /* clear_overflow */);
 844 
 845       log_info(gc)("Concurrent Mark reset for overflow");
 846     }
 847   }
 848 
 849   // after this, each task should reset its own data structures then
 850   // then go into the second barrier
 851 }
 852 
 853 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 854   SuspendibleThreadSetLeaver sts_leave(concurrent());
 855   _second_overflow_barrier_sync.enter();
 856 
 857   // at this point everything should be re-initialized and ready to go
 858 }
 859 
 860 class CMConcurrentMarkingTask: public AbstractGangTask {
 861 private:
 862   ConcurrentMark*       _cm;
 863   ConcurrentMarkThread* _cmt;
 864 
 865 public:
 866   void work(uint worker_id) {
 867     assert(Thread::current()->is_ConcurrentGC_thread(),
 868            "this should only be done by a conc GC thread");
 869     ResourceMark rm;
 870 
 871     double start_vtime = os::elapsedVTime();
 872 
 873     {
 874       SuspendibleThreadSetJoiner sts_join;
 875 
 876       assert(worker_id < _cm->active_tasks(), "invariant");
 877       CMTask* the_task = _cm->task(worker_id);
 878       the_task->record_start_time();
 879       if (!_cm->has_aborted()) {
 880         do {
 881           double start_vtime_sec = os::elapsedVTime();
 882           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 883 
 884           the_task->do_marking_step(mark_step_duration_ms,
 885                                     true  /* do_termination */,
 886                                     false /* is_serial*/);
 887 
 888           double end_vtime_sec = os::elapsedVTime();
 889           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 890           _cm->clear_has_overflown();
 891 
 892           _cm->do_yield_check(worker_id);
 893 
 894           jlong sleep_time_ms;
 895           if (!_cm->has_aborted() && the_task->has_aborted()) {
 896             sleep_time_ms =
 897               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 898             {
 899               SuspendibleThreadSetLeaver sts_leave;
 900               os::sleep(Thread::current(), sleep_time_ms, false);
 901             }
 902           }
 903         } while (!_cm->has_aborted() && the_task->has_aborted());
 904       }
 905       the_task->record_end_time();
 906       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 907     }
 908 
 909     double end_vtime = os::elapsedVTime();
 910     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 911   }
 912 
 913   CMConcurrentMarkingTask(ConcurrentMark* cm,
 914                           ConcurrentMarkThread* cmt) :
 915       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 916 
 917   ~CMConcurrentMarkingTask() { }
 918 };
 919 
 920 // Calculates the number of active workers for a concurrent
 921 // phase.
 922 uint ConcurrentMark::calc_parallel_marking_threads() {
 923   uint n_conc_workers = 0;
 924   if (!UseDynamicNumberOfGCThreads ||
 925       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 926        !ForceDynamicNumberOfGCThreads)) {
 927     n_conc_workers = max_parallel_marking_threads();
 928   } else {
 929     n_conc_workers =
 930       AdaptiveSizePolicy::calc_default_active_workers(
 931                                    max_parallel_marking_threads(),
 932                                    1, /* Minimum workers */
 933                                    parallel_marking_threads(),
 934                                    Threads::number_of_non_daemon_threads());
 935     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 936     // that scaling has already gone into "_max_parallel_marking_threads".
 937   }
 938   assert(n_conc_workers > 0, "Always need at least 1");
 939   return n_conc_workers;
 940 }
 941 
 942 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
 943   // Currently, only survivors can be root regions.
 944   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 945   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 946 
 947   const uintx interval = PrefetchScanIntervalInBytes;
 948   HeapWord* curr = hr->bottom();
 949   const HeapWord* end = hr->top();
 950   while (curr < end) {
 951     Prefetch::read(curr, interval);
 952     oop obj = oop(curr);
 953     int size = obj->oop_iterate_size(&cl);
 954     assert(size == obj->size(), "sanity");
 955     curr += size;
 956   }
 957 }
 958 
 959 class CMRootRegionScanTask : public AbstractGangTask {
 960 private:
 961   ConcurrentMark* _cm;
 962 
 963 public:
 964   CMRootRegionScanTask(ConcurrentMark* cm) :
 965     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 966 
 967   void work(uint worker_id) {
 968     assert(Thread::current()->is_ConcurrentGC_thread(),
 969            "this should only be done by a conc GC thread");
 970 
 971     CMRootRegions* root_regions = _cm->root_regions();
 972     HeapRegion* hr = root_regions->claim_next();
 973     while (hr != NULL) {
 974       _cm->scanRootRegion(hr, worker_id);
 975       hr = root_regions->claim_next();
 976     }
 977   }
 978 };
 979 
 980 void ConcurrentMark::scanRootRegions() {
 981   // Start of concurrent marking.
 982   ClassLoaderDataGraph::clear_claimed_marks();
 983 
 984   // scan_in_progress() will have been set to true only if there was
 985   // at least one root region to scan. So, if it's false, we
 986   // should not attempt to do any further work.
 987   if (root_regions()->scan_in_progress()) {
 988     GCTraceConcTime(Info, gc) tt("Concurrent Root Region Scan");
 989 
 990     _parallel_marking_threads = calc_parallel_marking_threads();
 991     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 992            "Maximum number of marking threads exceeded");
 993     uint active_workers = MAX2(1U, parallel_marking_threads());
 994 
 995     CMRootRegionScanTask task(this);
 996     _parallel_workers->set_active_workers(active_workers);
 997     _parallel_workers->run_task(&task);
 998 
 999     // It's possible that has_aborted() is true here without actually
1000     // aborting the survivor scan earlier. This is OK as it's
1001     // mainly used for sanity checking.
1002     root_regions()->scan_finished();
1003   }
1004 }
1005 
1006 void ConcurrentMark::register_concurrent_phase_start(const char* title) {
1007   assert(!_concurrent_phase_started, "Sanity");
1008   _concurrent_phase_started = true;
1009   _g1h->gc_timer_cm()->register_gc_concurrent_start(title);
1010 }
1011 
1012 void ConcurrentMark::register_concurrent_phase_end() {
1013   if (_concurrent_phase_started) {
1014     _concurrent_phase_started = false;
1015     _g1h->gc_timer_cm()->register_gc_concurrent_end();
1016   }
1017 }
1018 
1019 void ConcurrentMark::markFromRoots() {
1020   // we might be tempted to assert that:
1021   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1022   //        "inconsistent argument?");
1023   // However that wouldn't be right, because it's possible that
1024   // a safepoint is indeed in progress as a younger generation
1025   // stop-the-world GC happens even as we mark in this generation.
1026 
1027   _restart_for_overflow = false;
1028 
1029   // _g1h has _n_par_threads
1030   _parallel_marking_threads = calc_parallel_marking_threads();
1031   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1032     "Maximum number of marking threads exceeded");
1033 
1034   uint active_workers = MAX2(1U, parallel_marking_threads());
1035   assert(active_workers > 0, "Should have been set");
1036 
1037   // Parallel task terminator is set in "set_concurrency_and_phase()"
1038   set_concurrency_and_phase(active_workers, true /* concurrent */);
1039 
1040   CMConcurrentMarkingTask markingTask(this, cmThread());
1041   _parallel_workers->set_active_workers(active_workers);
1042   _parallel_workers->run_task(&markingTask);
1043   print_stats();
1044 }
1045 
1046 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1047   // world is stopped at this checkpoint
1048   assert(SafepointSynchronize::is_at_safepoint(),
1049          "world should be stopped");
1050 
1051   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1052 
1053   // If a full collection has happened, we shouldn't do this.
1054   if (has_aborted()) {
1055     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1056     return;
1057   }
1058 
1059   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1060 
1061   if (VerifyDuringGC) {
1062     HandleMark hm;  // handle scope
1063     g1h->prepare_for_verify();
1064     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1065   }
1066   g1h->verifier()->check_bitmaps("Remark Start");
1067 
1068   G1CollectorPolicy* g1p = g1h->g1_policy();
1069   g1p->record_concurrent_mark_remark_start();
1070 
1071   double start = os::elapsedTime();
1072 
1073   checkpointRootsFinalWork();
1074 
1075   double mark_work_end = os::elapsedTime();
1076 
1077   weakRefsWork(clear_all_soft_refs);
1078 
1079   if (has_overflown()) {
1080     // Oops.  We overflowed.  Restart concurrent marking.
1081     _restart_for_overflow = true;
1082     log_develop_trace(gc)("Remark led to restart for overflow.");
1083 
1084     // Verify the heap w.r.t. the previous marking bitmap.
1085     if (VerifyDuringGC) {
1086       HandleMark hm;  // handle scope
1087       g1h->prepare_for_verify();
1088       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1089     }
1090 
1091     // Clear the marking state because we will be restarting
1092     // marking due to overflowing the global mark stack.
1093     reset_marking_state();
1094   } else {
1095     {
1096       GCTraceTime(Debug, gc) trace("GC Aggregate Data", g1h->gc_timer_cm());
1097 
1098       // Aggregate the per-task counting data that we have accumulated
1099       // while marking.
1100       aggregate_count_data();
1101     }
1102 
1103     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1104     // We're done with marking.
1105     // This is the end of  the marking cycle, we're expected all
1106     // threads to have SATB queues with active set to true.
1107     satb_mq_set.set_active_all_threads(false, /* new active value */
1108                                        true /* expected_active */);
1109 
1110     if (VerifyDuringGC) {
1111       HandleMark hm;  // handle scope
1112       g1h->prepare_for_verify();
1113       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1114     }
1115     g1h->verifier()->check_bitmaps("Remark End");
1116     assert(!restart_for_overflow(), "sanity");
1117     // Completely reset the marking state since marking completed
1118     set_non_marking_state();
1119   }
1120 
1121   // Expand the marking stack, if we have to and if we can.
1122   if (_markStack.should_expand()) {
1123     _markStack.expand();
1124   }
1125 
1126   // Statistics
1127   double now = os::elapsedTime();
1128   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1129   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1130   _remark_times.add((now - start) * 1000.0);
1131 
1132   g1p->record_concurrent_mark_remark_end();
1133 
1134   G1CMIsAliveClosure is_alive(g1h);
1135   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1136 }
1137 
1138 // Base class of the closures that finalize and verify the
1139 // liveness counting data.
1140 class CMCountDataClosureBase: public HeapRegionClosure {
1141 protected:
1142   G1CollectedHeap* _g1h;
1143   ConcurrentMark* _cm;
1144   CardTableModRefBS* _ct_bs;
1145 
1146   BitMap* _region_bm;
1147   BitMap* _card_bm;
1148 
1149   // Takes a region that's not empty (i.e., it has at least one
1150   // live object in it and sets its corresponding bit on the region
1151   // bitmap to 1.
1152   void set_bit_for_region(HeapRegion* hr) {
1153     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1154     _region_bm->par_at_put(index, true);
1155   }
1156 
1157 public:
1158   CMCountDataClosureBase(G1CollectedHeap* g1h,
1159                          BitMap* region_bm, BitMap* card_bm):
1160     _g1h(g1h), _cm(g1h->concurrent_mark()),
1161     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1162     _region_bm(region_bm), _card_bm(card_bm) { }
1163 };
1164 
1165 // Closure that calculates the # live objects per region. Used
1166 // for verification purposes during the cleanup pause.
1167 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1168   CMBitMapRO* _bm;
1169   size_t _region_marked_bytes;
1170 
1171 public:
1172   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1173                          BitMap* region_bm, BitMap* card_bm) :
1174     CMCountDataClosureBase(g1h, region_bm, card_bm),
1175     _bm(bm), _region_marked_bytes(0) { }
1176 
1177   bool doHeapRegion(HeapRegion* hr) {
1178     HeapWord* ntams = hr->next_top_at_mark_start();
1179     HeapWord* start = hr->bottom();
1180 
1181     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1182            "Preconditions not met - "
1183            "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1184            p2i(start), p2i(ntams), p2i(hr->end()));
1185 
1186     // Find the first marked object at or after "start".
1187     start = _bm->getNextMarkedWordAddress(start, ntams);
1188 
1189     size_t marked_bytes = 0;
1190 
1191     while (start < ntams) {
1192       oop obj = oop(start);
1193       int obj_sz = obj->size();
1194       HeapWord* obj_end = start + obj_sz;
1195 
1196       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1197       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1198 
1199       // Note: if we're looking at the last region in heap - obj_end
1200       // could be actually just beyond the end of the heap; end_idx
1201       // will then correspond to a (non-existent) card that is also
1202       // just beyond the heap.
1203       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1204         // end of object is not card aligned - increment to cover
1205         // all the cards spanned by the object
1206         end_idx += 1;
1207       }
1208 
1209       // Set the bits in the card BM for the cards spanned by this object.
1210       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1211 
1212       // Add the size of this object to the number of marked bytes.
1213       marked_bytes += (size_t)obj_sz * HeapWordSize;
1214 
1215       // This will happen if we are handling a humongous object that spans
1216       // several heap regions.
1217       if (obj_end > hr->end()) {
1218         break;
1219       }
1220       // Find the next marked object after this one.
1221       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1222     }
1223 
1224     // Mark the allocated-since-marking portion...
1225     HeapWord* top = hr->top();
1226     if (ntams < top) {
1227       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1228       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1229 
1230       // Note: if we're looking at the last region in heap - top
1231       // could be actually just beyond the end of the heap; end_idx
1232       // will then correspond to a (non-existent) card that is also
1233       // just beyond the heap.
1234       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1235         // end of object is not card aligned - increment to cover
1236         // all the cards spanned by the object
1237         end_idx += 1;
1238       }
1239       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1240 
1241       // This definitely means the region has live objects.
1242       set_bit_for_region(hr);
1243     }
1244 
1245     // Update the live region bitmap.
1246     if (marked_bytes > 0) {
1247       set_bit_for_region(hr);
1248     }
1249 
1250     // Set the marked bytes for the current region so that
1251     // it can be queried by a calling verification routine
1252     _region_marked_bytes = marked_bytes;
1253 
1254     return false;
1255   }
1256 
1257   size_t region_marked_bytes() const { return _region_marked_bytes; }
1258 };
1259 
1260 // Heap region closure used for verifying the counting data
1261 // that was accumulated concurrently and aggregated during
1262 // the remark pause. This closure is applied to the heap
1263 // regions during the STW cleanup pause.
1264 
1265 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1266   G1CollectedHeap* _g1h;
1267   ConcurrentMark* _cm;
1268   CalcLiveObjectsClosure _calc_cl;
1269   BitMap* _region_bm;   // Region BM to be verified
1270   BitMap* _card_bm;     // Card BM to be verified
1271 
1272   BitMap* _exp_region_bm; // Expected Region BM values
1273   BitMap* _exp_card_bm;   // Expected card BM values
1274 
1275   int _failures;
1276 
1277 public:
1278   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1279                                 BitMap* region_bm,
1280                                 BitMap* card_bm,
1281                                 BitMap* exp_region_bm,
1282                                 BitMap* exp_card_bm) :
1283     _g1h(g1h), _cm(g1h->concurrent_mark()),
1284     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1285     _region_bm(region_bm), _card_bm(card_bm),
1286     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1287     _failures(0) { }
1288 
1289   int failures() const { return _failures; }
1290 
1291   bool doHeapRegion(HeapRegion* hr) {
1292     int failures = 0;
1293 
1294     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1295     // this region and set the corresponding bits in the expected region
1296     // and card bitmaps.
1297     bool res = _calc_cl.doHeapRegion(hr);
1298     assert(res == false, "should be continuing");
1299 
1300     // Verify the marked bytes for this region.
1301     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1302     size_t act_marked_bytes = hr->next_marked_bytes();
1303 
1304     if (exp_marked_bytes > act_marked_bytes) {
1305       if (hr->is_starts_humongous()) {
1306         // For start_humongous regions, the size of the whole object will be
1307         // in exp_marked_bytes.
1308         HeapRegion* region = hr;
1309         int num_regions;
1310         for (num_regions = 0; region != NULL; num_regions++) {
1311           region = _g1h->next_region_in_humongous(region);
1312         }
1313         if ((num_regions-1) * HeapRegion::GrainBytes >= exp_marked_bytes) {
1314           failures += 1;
1315         } else if (num_regions * HeapRegion::GrainBytes < exp_marked_bytes) {
1316           failures += 1;
1317         }
1318       } else {
1319         // We're not OK if expected marked bytes > actual marked bytes. It means
1320         // we have missed accounting some objects during the actual marking.
1321         failures += 1;
1322       }
1323     }
1324 
1325     // Verify the bit, for this region, in the actual and expected
1326     // (which was just calculated) region bit maps.
1327     // We're not OK if the bit in the calculated expected region
1328     // bitmap is set and the bit in the actual region bitmap is not.
1329     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1330 
1331     bool expected = _exp_region_bm->at(index);
1332     bool actual = _region_bm->at(index);
1333     if (expected && !actual) {
1334       failures += 1;
1335     }
1336 
1337     // Verify that the card bit maps for the cards spanned by the current
1338     // region match. We have an error if we have a set bit in the expected
1339     // bit map and the corresponding bit in the actual bitmap is not set.
1340 
1341     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1342     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1343 
1344     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1345       expected = _exp_card_bm->at(i);
1346       actual = _card_bm->at(i);
1347 
1348       if (expected && !actual) {
1349         failures += 1;
1350       }
1351     }
1352 
1353     _failures += failures;
1354 
1355     // We could stop iteration over the heap when we
1356     // find the first violating region by returning true.
1357     return false;
1358   }
1359 };
1360 
1361 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1362 protected:
1363   G1CollectedHeap* _g1h;
1364   ConcurrentMark* _cm;
1365   BitMap* _actual_region_bm;
1366   BitMap* _actual_card_bm;
1367 
1368   uint    _n_workers;
1369 
1370   BitMap* _expected_region_bm;
1371   BitMap* _expected_card_bm;
1372 
1373   int  _failures;
1374 
1375   HeapRegionClaimer _hrclaimer;
1376 
1377 public:
1378   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1379                             BitMap* region_bm, BitMap* card_bm,
1380                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1381     : AbstractGangTask("G1 verify final counting"),
1382       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1383       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1384       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1385       _failures(0),
1386       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1387     assert(VerifyDuringGC, "don't call this otherwise");
1388     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1389     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1390   }
1391 
1392   void work(uint worker_id) {
1393     assert(worker_id < _n_workers, "invariant");
1394 
1395     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1396                                             _actual_region_bm, _actual_card_bm,
1397                                             _expected_region_bm,
1398                                             _expected_card_bm);
1399 
1400     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1401 
1402     Atomic::add(verify_cl.failures(), &_failures);
1403   }
1404 
1405   int failures() const { return _failures; }
1406 };
1407 
1408 // Closure that finalizes the liveness counting data.
1409 // Used during the cleanup pause.
1410 // Sets the bits corresponding to the interval [NTAMS, top]
1411 // (which contains the implicitly live objects) in the
1412 // card liveness bitmap. Also sets the bit for each region,
1413 // containing live data, in the region liveness bitmap.
1414 
1415 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1416  public:
1417   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1418                               BitMap* region_bm,
1419                               BitMap* card_bm) :
1420     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1421 
1422   bool doHeapRegion(HeapRegion* hr) {
1423     HeapWord* ntams = hr->next_top_at_mark_start();
1424     HeapWord* top   = hr->top();
1425 
1426     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1427 
1428     // Mark the allocated-since-marking portion...
1429     if (ntams < top) {
1430       // This definitely means the region has live objects.
1431       set_bit_for_region(hr);
1432 
1433       // Now set the bits in the card bitmap for [ntams, top)
1434       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1435       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1436 
1437       // Note: if we're looking at the last region in heap - top
1438       // could be actually just beyond the end of the heap; end_idx
1439       // will then correspond to a (non-existent) card that is also
1440       // just beyond the heap.
1441       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1442         // end of object is not card aligned - increment to cover
1443         // all the cards spanned by the object
1444         end_idx += 1;
1445       }
1446 
1447       assert(end_idx <= _card_bm->size(),
1448              "oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1449              end_idx, _card_bm->size());
1450       assert(start_idx < _card_bm->size(),
1451              "oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1452              start_idx, _card_bm->size());
1453 
1454       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1455     }
1456 
1457     // Set the bit for the region if it contains live data
1458     if (hr->next_marked_bytes() > 0) {
1459       set_bit_for_region(hr);
1460     }
1461 
1462     return false;
1463   }
1464 };
1465 
1466 class G1ParFinalCountTask: public AbstractGangTask {
1467 protected:
1468   G1CollectedHeap* _g1h;
1469   ConcurrentMark* _cm;
1470   BitMap* _actual_region_bm;
1471   BitMap* _actual_card_bm;
1472 
1473   uint    _n_workers;
1474   HeapRegionClaimer _hrclaimer;
1475 
1476 public:
1477   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1478     : AbstractGangTask("G1 final counting"),
1479       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1480       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1481       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1482   }
1483 
1484   void work(uint worker_id) {
1485     assert(worker_id < _n_workers, "invariant");
1486 
1487     FinalCountDataUpdateClosure final_update_cl(_g1h,
1488                                                 _actual_region_bm,
1489                                                 _actual_card_bm);
1490 
1491     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1492   }
1493 };
1494 
1495 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1496   G1CollectedHeap* _g1;
1497   size_t _freed_bytes;
1498   FreeRegionList* _local_cleanup_list;
1499   uint _old_regions_removed;
1500   uint _humongous_regions_removed;
1501   HRRSCleanupTask* _hrrs_cleanup_task;
1502 
1503 public:
1504   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1505                              FreeRegionList* local_cleanup_list,
1506                              HRRSCleanupTask* hrrs_cleanup_task) :
1507     _g1(g1),
1508     _freed_bytes(0),
1509     _local_cleanup_list(local_cleanup_list),
1510     _old_regions_removed(0),
1511     _humongous_regions_removed(0),
1512     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1513 
1514   size_t freed_bytes() { return _freed_bytes; }
1515   const uint old_regions_removed() { return _old_regions_removed; }
1516   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1517 
1518   bool doHeapRegion(HeapRegion *hr) {
1519     if (hr->is_archive()) {
1520       return false;
1521     }
1522     // We use a claim value of zero here because all regions
1523     // were claimed with value 1 in the FinalCount task.
1524     _g1->reset_gc_time_stamps(hr);
1525     hr->note_end_of_marking();
1526 
1527     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1528       _freed_bytes += hr->used();
1529       hr->set_containing_set(NULL);
1530       if (hr->is_humongous()) {
1531         _humongous_regions_removed++;
1532         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1533       } else {
1534         _old_regions_removed++;
1535         _g1->free_region(hr, _local_cleanup_list, true);
1536       }
1537     } else {
1538       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1539     }
1540 
1541     return false;
1542   }
1543 };
1544 
1545 class G1ParNoteEndTask: public AbstractGangTask {
1546   friend class G1NoteEndOfConcMarkClosure;
1547 
1548 protected:
1549   G1CollectedHeap* _g1h;
1550   FreeRegionList* _cleanup_list;
1551   HeapRegionClaimer _hrclaimer;
1552 
1553 public:
1554   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1555       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1556   }
1557 
1558   void work(uint worker_id) {
1559     FreeRegionList local_cleanup_list("Local Cleanup List");
1560     HRRSCleanupTask hrrs_cleanup_task;
1561     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1562                                            &hrrs_cleanup_task);
1563     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1564     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1565 
1566     // Now update the lists
1567     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1568     {
1569       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1570       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1571 
1572       // If we iterate over the global cleanup list at the end of
1573       // cleanup to do this printing we will not guarantee to only
1574       // generate output for the newly-reclaimed regions (the list
1575       // might not be empty at the beginning of cleanup; we might
1576       // still be working on its previous contents). So we do the
1577       // printing here, before we append the new regions to the global
1578       // cleanup list.
1579 
1580       G1HRPrinter* hr_printer = _g1h->hr_printer();
1581       if (hr_printer->is_active()) {
1582         FreeRegionListIterator iter(&local_cleanup_list);
1583         while (iter.more_available()) {
1584           HeapRegion* hr = iter.get_next();
1585           hr_printer->cleanup(hr);
1586         }
1587       }
1588 
1589       _cleanup_list->add_ordered(&local_cleanup_list);
1590       assert(local_cleanup_list.is_empty(), "post-condition");
1591 
1592       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1593     }
1594   }
1595 };
1596 
1597 void ConcurrentMark::cleanup() {
1598   // world is stopped at this checkpoint
1599   assert(SafepointSynchronize::is_at_safepoint(),
1600          "world should be stopped");
1601   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1602 
1603   // If a full collection has happened, we shouldn't do this.
1604   if (has_aborted()) {
1605     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1606     return;
1607   }
1608 
1609   g1h->verifier()->verify_region_sets_optional();
1610 
1611   if (VerifyDuringGC) {
1612     HandleMark hm;  // handle scope
1613     g1h->prepare_for_verify();
1614     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1615   }
1616   g1h->verifier()->check_bitmaps("Cleanup Start");
1617 
1618   G1CollectorPolicy* g1p = g1h->g1_policy();
1619   g1p->record_concurrent_mark_cleanup_start();
1620 
1621   double start = os::elapsedTime();
1622 
1623   HeapRegionRemSet::reset_for_cleanup_tasks();
1624 
1625   // Do counting once more with the world stopped for good measure.
1626   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1627 
1628   g1h->workers()->run_task(&g1_par_count_task);
1629 
1630   if (VerifyDuringGC) {
1631     // Verify that the counting data accumulated during marking matches
1632     // that calculated by walking the marking bitmap.
1633 
1634     // Bitmaps to hold expected values
1635     BitMap expected_region_bm(_region_bm.size(), true);
1636     BitMap expected_card_bm(_card_bm.size(), true);
1637 
1638     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1639                                                  &_region_bm,
1640                                                  &_card_bm,
1641                                                  &expected_region_bm,
1642                                                  &expected_card_bm);
1643 
1644     g1h->workers()->run_task(&g1_par_verify_task);
1645 
1646     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1647   }
1648 
1649   size_t start_used_bytes = g1h->used();
1650   g1h->collector_state()->set_mark_in_progress(false);
1651 
1652   double count_end = os::elapsedTime();
1653   double this_final_counting_time = (count_end - start);
1654   _total_counting_time += this_final_counting_time;
1655 
1656   if (log_is_enabled(Trace, gc, liveness)) {
1657     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1658     _g1h->heap_region_iterate(&cl);
1659   }
1660 
1661   // Install newly created mark bitMap as "prev".
1662   swapMarkBitMaps();
1663 
1664   g1h->reset_gc_time_stamp();
1665 
1666   uint n_workers = _g1h->workers()->active_workers();
1667 
1668   // Note end of marking in all heap regions.
1669   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1670   g1h->workers()->run_task(&g1_par_note_end_task);
1671   g1h->check_gc_time_stamps();
1672 
1673   if (!cleanup_list_is_empty()) {
1674     // The cleanup list is not empty, so we'll have to process it
1675     // concurrently. Notify anyone else that might be wanting free
1676     // regions that there will be more free regions coming soon.
1677     g1h->set_free_regions_coming();
1678   }
1679 
1680   // call below, since it affects the metric by which we sort the heap
1681   // regions.
1682   if (G1ScrubRemSets) {
1683     double rs_scrub_start = os::elapsedTime();
1684     g1h->scrub_rem_set(&_region_bm, &_card_bm);
1685     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1686   }
1687 
1688   // this will also free any regions totally full of garbage objects,
1689   // and sort the regions.
1690   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1691 
1692   // Statistics.
1693   double end = os::elapsedTime();
1694   _cleanup_times.add((end - start) * 1000.0);
1695 
1696   // Clean up will have freed any regions completely full of garbage.
1697   // Update the soft reference policy with the new heap occupancy.
1698   Universe::update_heap_info_at_gc();
1699 
1700   if (VerifyDuringGC) {
1701     HandleMark hm;  // handle scope
1702     g1h->prepare_for_verify();
1703     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1704   }
1705 
1706   g1h->verifier()->check_bitmaps("Cleanup End");
1707 
1708   g1h->verifier()->verify_region_sets_optional();
1709 
1710   // We need to make this be a "collection" so any collection pause that
1711   // races with it goes around and waits for completeCleanup to finish.
1712   g1h->increment_total_collections();
1713 
1714   // Clean out dead classes and update Metaspace sizes.
1715   if (ClassUnloadingWithConcurrentMark) {
1716     ClassLoaderDataGraph::purge();
1717   }
1718   MetaspaceGC::compute_new_size();
1719 
1720   // We reclaimed old regions so we should calculate the sizes to make
1721   // sure we update the old gen/space data.
1722   g1h->g1mm()->update_sizes();
1723   g1h->allocation_context_stats().update_after_mark();
1724 
1725   g1h->trace_heap_after_concurrent_cycle();
1726 }
1727 
1728 void ConcurrentMark::completeCleanup() {
1729   if (has_aborted()) return;
1730 
1731   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1732 
1733   _cleanup_list.verify_optional();
1734   FreeRegionList tmp_free_list("Tmp Free List");
1735 
1736   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1737                                   "cleanup list has %u entries",
1738                                   _cleanup_list.length());
1739 
1740   // No one else should be accessing the _cleanup_list at this point,
1741   // so it is not necessary to take any locks
1742   while (!_cleanup_list.is_empty()) {
1743     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1744     assert(hr != NULL, "Got NULL from a non-empty list");
1745     hr->par_clear();
1746     tmp_free_list.add_ordered(hr);
1747 
1748     // Instead of adding one region at a time to the secondary_free_list,
1749     // we accumulate them in the local list and move them a few at a
1750     // time. This also cuts down on the number of notify_all() calls
1751     // we do during this process. We'll also append the local list when
1752     // _cleanup_list is empty (which means we just removed the last
1753     // region from the _cleanup_list).
1754     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1755         _cleanup_list.is_empty()) {
1756       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1757                                       "appending %u entries to the secondary_free_list, "
1758                                       "cleanup list still has %u entries",
1759                                       tmp_free_list.length(),
1760                                       _cleanup_list.length());
1761 
1762       {
1763         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1764         g1h->secondary_free_list_add(&tmp_free_list);
1765         SecondaryFreeList_lock->notify_all();
1766       }
1767 #ifndef PRODUCT
1768       if (G1StressConcRegionFreeing) {
1769         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1770           os::sleep(Thread::current(), (jlong) 1, false);
1771         }
1772       }
1773 #endif
1774     }
1775   }
1776   assert(tmp_free_list.is_empty(), "post-condition");
1777 }
1778 
1779 // Supporting Object and Oop closures for reference discovery
1780 // and processing in during marking
1781 
1782 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1783   HeapWord* addr = (HeapWord*)obj;
1784   return addr != NULL &&
1785          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1786 }
1787 
1788 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1789 // Uses the CMTask associated with a worker thread (for serial reference
1790 // processing the CMTask for worker 0 is used) to preserve (mark) and
1791 // trace referent objects.
1792 //
1793 // Using the CMTask and embedded local queues avoids having the worker
1794 // threads operating on the global mark stack. This reduces the risk
1795 // of overflowing the stack - which we would rather avoid at this late
1796 // state. Also using the tasks' local queues removes the potential
1797 // of the workers interfering with each other that could occur if
1798 // operating on the global stack.
1799 
1800 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1801   ConcurrentMark* _cm;
1802   CMTask*         _task;
1803   int             _ref_counter_limit;
1804   int             _ref_counter;
1805   bool            _is_serial;
1806  public:
1807   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
1808     _cm(cm), _task(task), _is_serial(is_serial),
1809     _ref_counter_limit(G1RefProcDrainInterval) {
1810     assert(_ref_counter_limit > 0, "sanity");
1811     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1812     _ref_counter = _ref_counter_limit;
1813   }
1814 
1815   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1816   virtual void do_oop(      oop* p) { do_oop_work(p); }
1817 
1818   template <class T> void do_oop_work(T* p) {
1819     if (!_cm->has_overflown()) {
1820       oop obj = oopDesc::load_decode_heap_oop(p);
1821       _task->deal_with_reference(obj);
1822       _ref_counter--;
1823 
1824       if (_ref_counter == 0) {
1825         // We have dealt with _ref_counter_limit references, pushing them
1826         // and objects reachable from them on to the local stack (and
1827         // possibly the global stack). Call CMTask::do_marking_step() to
1828         // process these entries.
1829         //
1830         // We call CMTask::do_marking_step() in a loop, which we'll exit if
1831         // there's nothing more to do (i.e. we're done with the entries that
1832         // were pushed as a result of the CMTask::deal_with_reference() calls
1833         // above) or we overflow.
1834         //
1835         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
1836         // flag while there may still be some work to do. (See the comment at
1837         // the beginning of CMTask::do_marking_step() for those conditions -
1838         // one of which is reaching the specified time target.) It is only
1839         // when CMTask::do_marking_step() returns without setting the
1840         // has_aborted() flag that the marking step has completed.
1841         do {
1842           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1843           _task->do_marking_step(mark_step_duration_ms,
1844                                  false      /* do_termination */,
1845                                  _is_serial);
1846         } while (_task->has_aborted() && !_cm->has_overflown());
1847         _ref_counter = _ref_counter_limit;
1848       }
1849     }
1850   }
1851 };
1852 
1853 // 'Drain' oop closure used by both serial and parallel reference processing.
1854 // Uses the CMTask associated with a given worker thread (for serial
1855 // reference processing the CMtask for worker 0 is used). Calls the
1856 // do_marking_step routine, with an unbelievably large timeout value,
1857 // to drain the marking data structures of the remaining entries
1858 // added by the 'keep alive' oop closure above.
1859 
1860 class G1CMDrainMarkingStackClosure: public VoidClosure {
1861   ConcurrentMark* _cm;
1862   CMTask*         _task;
1863   bool            _is_serial;
1864  public:
1865   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
1866     _cm(cm), _task(task), _is_serial(is_serial) {
1867     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1868   }
1869 
1870   void do_void() {
1871     do {
1872       // We call CMTask::do_marking_step() to completely drain the local
1873       // and global marking stacks of entries pushed by the 'keep alive'
1874       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1875       //
1876       // CMTask::do_marking_step() is called in a loop, which we'll exit
1877       // if there's nothing more to do (i.e. we've completely drained the
1878       // entries that were pushed as a a result of applying the 'keep alive'
1879       // closure to the entries on the discovered ref lists) or we overflow
1880       // the global marking stack.
1881       //
1882       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
1883       // flag while there may still be some work to do. (See the comment at
1884       // the beginning of CMTask::do_marking_step() for those conditions -
1885       // one of which is reaching the specified time target.) It is only
1886       // when CMTask::do_marking_step() returns without setting the
1887       // has_aborted() flag that the marking step has completed.
1888 
1889       _task->do_marking_step(1000000000.0 /* something very large */,
1890                              true         /* do_termination */,
1891                              _is_serial);
1892     } while (_task->has_aborted() && !_cm->has_overflown());
1893   }
1894 };
1895 
1896 // Implementation of AbstractRefProcTaskExecutor for parallel
1897 // reference processing at the end of G1 concurrent marking
1898 
1899 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1900 private:
1901   G1CollectedHeap* _g1h;
1902   ConcurrentMark*  _cm;
1903   WorkGang*        _workers;
1904   uint             _active_workers;
1905 
1906 public:
1907   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1908                           ConcurrentMark* cm,
1909                           WorkGang* workers,
1910                           uint n_workers) :
1911     _g1h(g1h), _cm(cm),
1912     _workers(workers), _active_workers(n_workers) { }
1913 
1914   // Executes the given task using concurrent marking worker threads.
1915   virtual void execute(ProcessTask& task);
1916   virtual void execute(EnqueueTask& task);
1917 };
1918 
1919 class G1CMRefProcTaskProxy: public AbstractGangTask {
1920   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1921   ProcessTask&     _proc_task;
1922   G1CollectedHeap* _g1h;
1923   ConcurrentMark*  _cm;
1924 
1925 public:
1926   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1927                      G1CollectedHeap* g1h,
1928                      ConcurrentMark* cm) :
1929     AbstractGangTask("Process reference objects in parallel"),
1930     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1931     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1932     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1933   }
1934 
1935   virtual void work(uint worker_id) {
1936     ResourceMark rm;
1937     HandleMark hm;
1938     CMTask* task = _cm->task(worker_id);
1939     G1CMIsAliveClosure g1_is_alive(_g1h);
1940     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1941     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1942 
1943     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1944   }
1945 };
1946 
1947 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1948   assert(_workers != NULL, "Need parallel worker threads.");
1949   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1950 
1951   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1952 
1953   // We need to reset the concurrency level before each
1954   // proxy task execution, so that the termination protocol
1955   // and overflow handling in CMTask::do_marking_step() knows
1956   // how many workers to wait for.
1957   _cm->set_concurrency(_active_workers);
1958   _workers->run_task(&proc_task_proxy);
1959 }
1960 
1961 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1962   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1963   EnqueueTask& _enq_task;
1964 
1965 public:
1966   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1967     AbstractGangTask("Enqueue reference objects in parallel"),
1968     _enq_task(enq_task) { }
1969 
1970   virtual void work(uint worker_id) {
1971     _enq_task.work(worker_id);
1972   }
1973 };
1974 
1975 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1976   assert(_workers != NULL, "Need parallel worker threads.");
1977   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1978 
1979   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1980 
1981   // Not strictly necessary but...
1982   //
1983   // We need to reset the concurrency level before each
1984   // proxy task execution, so that the termination protocol
1985   // and overflow handling in CMTask::do_marking_step() knows
1986   // how many workers to wait for.
1987   _cm->set_concurrency(_active_workers);
1988   _workers->run_task(&enq_task_proxy);
1989 }
1990 
1991 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
1992   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
1993 }
1994 
1995 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1996   if (has_overflown()) {
1997     // Skip processing the discovered references if we have
1998     // overflown the global marking stack. Reference objects
1999     // only get discovered once so it is OK to not
2000     // de-populate the discovered reference lists. We could have,
2001     // but the only benefit would be that, when marking restarts,
2002     // less reference objects are discovered.
2003     return;
2004   }
2005 
2006   ResourceMark rm;
2007   HandleMark   hm;
2008 
2009   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2010 
2011   // Is alive closure.
2012   G1CMIsAliveClosure g1_is_alive(g1h);
2013 
2014   // Inner scope to exclude the cleaning of the string and symbol
2015   // tables from the displayed time.
2016   {
2017     GCTraceTime(Debug, gc) trace("GC Ref Proc", g1h->gc_timer_cm());
2018 
2019     ReferenceProcessor* rp = g1h->ref_processor_cm();
2020 
2021     // See the comment in G1CollectedHeap::ref_processing_init()
2022     // about how reference processing currently works in G1.
2023 
2024     // Set the soft reference policy
2025     rp->setup_policy(clear_all_soft_refs);
2026     assert(_markStack.isEmpty(), "mark stack should be empty");
2027 
2028     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2029     // in serial reference processing. Note these closures are also
2030     // used for serially processing (by the the current thread) the
2031     // JNI references during parallel reference processing.
2032     //
2033     // These closures do not need to synchronize with the worker
2034     // threads involved in parallel reference processing as these
2035     // instances are executed serially by the current thread (e.g.
2036     // reference processing is not multi-threaded and is thus
2037     // performed by the current thread instead of a gang worker).
2038     //
2039     // The gang tasks involved in parallel reference processing create
2040     // their own instances of these closures, which do their own
2041     // synchronization among themselves.
2042     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2043     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2044 
2045     // We need at least one active thread. If reference processing
2046     // is not multi-threaded we use the current (VMThread) thread,
2047     // otherwise we use the work gang from the G1CollectedHeap and
2048     // we utilize all the worker threads we can.
2049     bool processing_is_mt = rp->processing_is_mt();
2050     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2051     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2052 
2053     // Parallel processing task executor.
2054     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2055                                               g1h->workers(), active_workers);
2056     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2057 
2058     // Set the concurrency level. The phase was already set prior to
2059     // executing the remark task.
2060     set_concurrency(active_workers);
2061 
2062     // Set the degree of MT processing here.  If the discovery was done MT,
2063     // the number of threads involved during discovery could differ from
2064     // the number of active workers.  This is OK as long as the discovered
2065     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2066     rp->set_active_mt_degree(active_workers);
2067 
2068     // Process the weak references.
2069     const ReferenceProcessorStats& stats =
2070         rp->process_discovered_references(&g1_is_alive,
2071                                           &g1_keep_alive,
2072                                           &g1_drain_mark_stack,
2073                                           executor,
2074                                           g1h->gc_timer_cm());
2075     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2076 
2077     // The do_oop work routines of the keep_alive and drain_marking_stack
2078     // oop closures will set the has_overflown flag if we overflow the
2079     // global marking stack.
2080 
2081     assert(_markStack.overflow() || _markStack.isEmpty(),
2082             "mark stack should be empty (unless it overflowed)");
2083 
2084     if (_markStack.overflow()) {
2085       // This should have been done already when we tried to push an
2086       // entry on to the global mark stack. But let's do it again.
2087       set_has_overflown();
2088     }
2089 
2090     assert(rp->num_q() == active_workers, "why not");
2091 
2092     rp->enqueue_discovered_references(executor);
2093 
2094     rp->verify_no_references_recorded();
2095     assert(!rp->discovery_enabled(), "Post condition");
2096   }
2097 
2098   if (has_overflown()) {
2099     // We can not trust g1_is_alive if the marking stack overflowed
2100     return;
2101   }
2102 
2103   assert(_markStack.isEmpty(), "Marking should have completed");
2104 
2105   // Unload Klasses, String, Symbols, Code Cache, etc.
2106   {
2107     GCTraceTime(Debug, gc) trace("Unloading", g1h->gc_timer_cm());
2108 
2109     if (ClassUnloadingWithConcurrentMark) {
2110       bool purged_classes;
2111 
2112       {
2113         GCTraceTime(Trace, gc) trace("System Dictionary Unloading", g1h->gc_timer_cm());
2114         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2115       }
2116 
2117       {
2118         GCTraceTime(Trace, gc) trace("Parallel Unloading", g1h->gc_timer_cm());
2119         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2120       }
2121     }
2122 
2123     if (G1StringDedup::is_enabled()) {
2124       GCTraceTime(Trace, gc) trace("String Deduplication Unlink", g1h->gc_timer_cm());
2125       G1StringDedup::unlink(&g1_is_alive);
2126     }
2127   }
2128 }
2129 
2130 void ConcurrentMark::swapMarkBitMaps() {
2131   CMBitMapRO* temp = _prevMarkBitMap;
2132   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2133   _nextMarkBitMap  = (CMBitMap*)  temp;
2134 }
2135 
2136 // Closure for marking entries in SATB buffers.
2137 class CMSATBBufferClosure : public SATBBufferClosure {
2138 private:
2139   CMTask* _task;
2140   G1CollectedHeap* _g1h;
2141 
2142   // This is very similar to CMTask::deal_with_reference, but with
2143   // more relaxed requirements for the argument, so this must be more
2144   // circumspect about treating the argument as an object.
2145   void do_entry(void* entry) const {
2146     _task->increment_refs_reached();
2147     HeapRegion* hr = _g1h->heap_region_containing(entry);
2148     if (entry < hr->next_top_at_mark_start()) {
2149       // Until we get here, we don't know whether entry refers to a valid
2150       // object; it could instead have been a stale reference.
2151       oop obj = static_cast<oop>(entry);
2152       assert(obj->is_oop(true /* ignore mark word */),
2153              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
2154       _task->make_reference_grey(obj, hr);
2155     }
2156   }
2157 
2158 public:
2159   CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
2160     : _task(task), _g1h(g1h) { }
2161 
2162   virtual void do_buffer(void** buffer, size_t size) {
2163     for (size_t i = 0; i < size; ++i) {
2164       do_entry(buffer[i]);
2165     }
2166   }
2167 };
2168 
2169 class G1RemarkThreadsClosure : public ThreadClosure {
2170   CMSATBBufferClosure _cm_satb_cl;
2171   G1CMOopClosure _cm_cl;
2172   MarkingCodeBlobClosure _code_cl;
2173   int _thread_parity;
2174 
2175  public:
2176   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2177     _cm_satb_cl(task, g1h),
2178     _cm_cl(g1h, g1h->concurrent_mark(), task),
2179     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2180     _thread_parity(Threads::thread_claim_parity()) {}
2181 
2182   void do_thread(Thread* thread) {
2183     if (thread->is_Java_thread()) {
2184       if (thread->claim_oops_do(true, _thread_parity)) {
2185         JavaThread* jt = (JavaThread*)thread;
2186 
2187         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2188         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2189         // * Alive if on the stack of an executing method
2190         // * Weakly reachable otherwise
2191         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2192         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2193         jt->nmethods_do(&_code_cl);
2194 
2195         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2196       }
2197     } else if (thread->is_VM_thread()) {
2198       if (thread->claim_oops_do(true, _thread_parity)) {
2199         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2200       }
2201     }
2202   }
2203 };
2204 
2205 class CMRemarkTask: public AbstractGangTask {
2206 private:
2207   ConcurrentMark* _cm;
2208 public:
2209   void work(uint worker_id) {
2210     // Since all available tasks are actually started, we should
2211     // only proceed if we're supposed to be active.
2212     if (worker_id < _cm->active_tasks()) {
2213       CMTask* task = _cm->task(worker_id);
2214       task->record_start_time();
2215       {
2216         ResourceMark rm;
2217         HandleMark hm;
2218 
2219         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2220         Threads::threads_do(&threads_f);
2221       }
2222 
2223       do {
2224         task->do_marking_step(1000000000.0 /* something very large */,
2225                               true         /* do_termination       */,
2226                               false        /* is_serial            */);
2227       } while (task->has_aborted() && !_cm->has_overflown());
2228       // If we overflow, then we do not want to restart. We instead
2229       // want to abort remark and do concurrent marking again.
2230       task->record_end_time();
2231     }
2232   }
2233 
2234   CMRemarkTask(ConcurrentMark* cm, uint active_workers) :
2235     AbstractGangTask("Par Remark"), _cm(cm) {
2236     _cm->terminator()->reset_for_reuse(active_workers);
2237   }
2238 };
2239 
2240 void ConcurrentMark::checkpointRootsFinalWork() {
2241   ResourceMark rm;
2242   HandleMark   hm;
2243   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2244 
2245   GCTraceTime(Debug, gc) trace("Finalize Marking", g1h->gc_timer_cm());
2246 
2247   g1h->ensure_parsability(false);
2248 
2249   // this is remark, so we'll use up all active threads
2250   uint active_workers = g1h->workers()->active_workers();
2251   set_concurrency_and_phase(active_workers, false /* concurrent */);
2252   // Leave _parallel_marking_threads at it's
2253   // value originally calculated in the ConcurrentMark
2254   // constructor and pass values of the active workers
2255   // through the gang in the task.
2256 
2257   {
2258     StrongRootsScope srs(active_workers);
2259 
2260     CMRemarkTask remarkTask(this, active_workers);
2261     // We will start all available threads, even if we decide that the
2262     // active_workers will be fewer. The extra ones will just bail out
2263     // immediately.
2264     g1h->workers()->run_task(&remarkTask);
2265   }
2266 
2267   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2268   guarantee(has_overflown() ||
2269             satb_mq_set.completed_buffers_num() == 0,
2270             "Invariant: has_overflown = %s, num buffers = %d",
2271             BOOL_TO_STR(has_overflown()),
2272             satb_mq_set.completed_buffers_num());
2273 
2274   print_stats();
2275 }
2276 
2277 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2278   // Note we are overriding the read-only view of the prev map here, via
2279   // the cast.
2280   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2281 }
2282 
2283 HeapRegion*
2284 ConcurrentMark::claim_region(uint worker_id) {
2285   // "checkpoint" the finger
2286   HeapWord* finger = _finger;
2287 
2288   // _heap_end will not change underneath our feet; it only changes at
2289   // yield points.
2290   while (finger < _heap_end) {
2291     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2292 
2293     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
2294 
2295     // Above heap_region_containing may return NULL as we always scan claim
2296     // until the end of the heap. In this case, just jump to the next region.
2297     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2298 
2299     // Is the gap between reading the finger and doing the CAS too long?
2300     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2301     if (res == finger && curr_region != NULL) {
2302       // we succeeded
2303       HeapWord*   bottom        = curr_region->bottom();
2304       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2305 
2306       // notice that _finger == end cannot be guaranteed here since,
2307       // someone else might have moved the finger even further
2308       assert(_finger >= end, "the finger should have moved forward");
2309 
2310       if (limit > bottom) {
2311         return curr_region;
2312       } else {
2313         assert(limit == bottom,
2314                "the region limit should be at bottom");
2315         // we return NULL and the caller should try calling
2316         // claim_region() again.
2317         return NULL;
2318       }
2319     } else {
2320       assert(_finger > finger, "the finger should have moved forward");
2321       // read it again
2322       finger = _finger;
2323     }
2324   }
2325 
2326   return NULL;
2327 }
2328 
2329 #ifndef PRODUCT
2330 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2331 private:
2332   G1CollectedHeap* _g1h;
2333   const char* _phase;
2334   int _info;
2335 
2336 public:
2337   VerifyNoCSetOops(const char* phase, int info = -1) :
2338     _g1h(G1CollectedHeap::heap()),
2339     _phase(phase),
2340     _info(info)
2341   { }
2342 
2343   void operator()(oop obj) const {
2344     guarantee(obj->is_oop(),
2345               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2346               p2i(obj), _phase, _info);
2347     guarantee(!_g1h->obj_in_cs(obj),
2348               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2349               p2i(obj), _phase, _info);
2350   }
2351 };
2352 
2353 void ConcurrentMark::verify_no_cset_oops() {
2354   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2355   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2356     return;
2357   }
2358 
2359   // Verify entries on the global mark stack
2360   _markStack.iterate(VerifyNoCSetOops("Stack"));
2361 
2362   // Verify entries on the task queues
2363   for (uint i = 0; i < _max_worker_id; ++i) {
2364     CMTaskQueue* queue = _task_queues->queue(i);
2365     queue->iterate(VerifyNoCSetOops("Queue", i));
2366   }
2367 
2368   // Verify the global finger
2369   HeapWord* global_finger = finger();
2370   if (global_finger != NULL && global_finger < _heap_end) {
2371     // Since we always iterate over all regions, we might get a NULL HeapRegion
2372     // here.
2373     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2374     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2375               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2376               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2377   }
2378 
2379   // Verify the task fingers
2380   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2381   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2382     CMTask* task = _tasks[i];
2383     HeapWord* task_finger = task->finger();
2384     if (task_finger != NULL && task_finger < _heap_end) {
2385       // See above note on the global finger verification.
2386       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2387       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2388                 !task_hr->in_collection_set(),
2389                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2390                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2391     }
2392   }
2393 }
2394 #endif // PRODUCT
2395 
2396 // Aggregate the counting data that was constructed concurrently
2397 // with marking.
2398 class AggregateCountDataHRClosure: public HeapRegionClosure {
2399   G1CollectedHeap* _g1h;
2400   ConcurrentMark* _cm;
2401   CardTableModRefBS* _ct_bs;
2402   BitMap* _cm_card_bm;
2403   uint _max_worker_id;
2404 
2405  public:
2406   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2407                               BitMap* cm_card_bm,
2408                               uint max_worker_id) :
2409     _g1h(g1h), _cm(g1h->concurrent_mark()),
2410     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2411     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2412 
2413   bool doHeapRegion(HeapRegion* hr) {
2414     HeapWord* start = hr->bottom();
2415     HeapWord* limit = hr->next_top_at_mark_start();
2416     HeapWord* end = hr->end();
2417 
2418     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2419            "Preconditions not met - "
2420            "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
2421            "top: " PTR_FORMAT ", end: " PTR_FORMAT,
2422            p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end()));
2423 
2424     assert(hr->next_marked_bytes() == 0, "Precondition");
2425 
2426     if (start == limit) {
2427       // NTAMS of this region has not been set so nothing to do.
2428       return false;
2429     }
2430 
2431     // 'start' should be in the heap.
2432     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2433     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2434     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2435 
2436     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2437     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2438     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2439 
2440     // If ntams is not card aligned then we bump card bitmap index
2441     // for limit so that we get the all the cards spanned by
2442     // the object ending at ntams.
2443     // Note: if this is the last region in the heap then ntams
2444     // could be actually just beyond the end of the the heap;
2445     // limit_idx will then  correspond to a (non-existent) card
2446     // that is also outside the heap.
2447     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2448       limit_idx += 1;
2449     }
2450 
2451     assert(limit_idx <= end_idx, "or else use atomics");
2452 
2453     // Aggregate the "stripe" in the count data associated with hr.
2454     uint hrm_index = hr->hrm_index();
2455     size_t marked_bytes = 0;
2456 
2457     for (uint i = 0; i < _max_worker_id; i += 1) {
2458       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2459       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2460 
2461       // Fetch the marked_bytes in this region for task i and
2462       // add it to the running total for this region.
2463       marked_bytes += marked_bytes_array[hrm_index];
2464 
2465       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2466       // into the global card bitmap.
2467       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2468 
2469       while (scan_idx < limit_idx) {
2470         assert(task_card_bm->at(scan_idx) == true, "should be");
2471         _cm_card_bm->set_bit(scan_idx);
2472         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2473 
2474         // BitMap::get_next_one_offset() can handle the case when
2475         // its left_offset parameter is greater than its right_offset
2476         // parameter. It does, however, have an early exit if
2477         // left_offset == right_offset. So let's limit the value
2478         // passed in for left offset here.
2479         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2480         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2481       }
2482     }
2483 
2484     // Update the marked bytes for this region.
2485     hr->add_to_marked_bytes(marked_bytes);
2486 
2487     // Next heap region
2488     return false;
2489   }
2490 };
2491 
2492 class G1AggregateCountDataTask: public AbstractGangTask {
2493 protected:
2494   G1CollectedHeap* _g1h;
2495   ConcurrentMark* _cm;
2496   BitMap* _cm_card_bm;
2497   uint _max_worker_id;
2498   uint _active_workers;
2499   HeapRegionClaimer _hrclaimer;
2500 
2501 public:
2502   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2503                            ConcurrentMark* cm,
2504                            BitMap* cm_card_bm,
2505                            uint max_worker_id,
2506                            uint n_workers) :
2507       AbstractGangTask("Count Aggregation"),
2508       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2509       _max_worker_id(max_worker_id),
2510       _active_workers(n_workers),
2511       _hrclaimer(_active_workers) {
2512   }
2513 
2514   void work(uint worker_id) {
2515     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2516 
2517     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2518   }
2519 };
2520 
2521 
2522 void ConcurrentMark::aggregate_count_data() {
2523   uint n_workers = _g1h->workers()->active_workers();
2524 
2525   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2526                                            _max_worker_id, n_workers);
2527 
2528   _g1h->workers()->run_task(&g1_par_agg_task);
2529 }
2530 
2531 // Clear the per-worker arrays used to store the per-region counting data
2532 void ConcurrentMark::clear_all_count_data() {
2533   // Clear the global card bitmap - it will be filled during
2534   // liveness count aggregation (during remark) and the
2535   // final counting task.
2536   _card_bm.clear();
2537 
2538   // Clear the global region bitmap - it will be filled as part
2539   // of the final counting task.
2540   _region_bm.clear();
2541 
2542   uint max_regions = _g1h->max_regions();
2543   assert(_max_worker_id > 0, "uninitialized");
2544 
2545   for (uint i = 0; i < _max_worker_id; i += 1) {
2546     BitMap* task_card_bm = count_card_bitmap_for(i);
2547     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2548 
2549     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2550     assert(marked_bytes_array != NULL, "uninitialized");
2551 
2552     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2553     task_card_bm->clear();
2554   }
2555 }
2556 
2557 void ConcurrentMark::print_stats() {
2558   if (!log_is_enabled(Debug, gc, stats)) {
2559     return;
2560   }
2561   log_debug(gc, stats)("---------------------------------------------------------------------");
2562   for (size_t i = 0; i < _active_tasks; ++i) {
2563     _tasks[i]->print_stats();
2564     log_debug(gc, stats)("---------------------------------------------------------------------");
2565   }
2566 }
2567 
2568 // abandon current marking iteration due to a Full GC
2569 void ConcurrentMark::abort() {
2570   if (!cmThread()->during_cycle() || _has_aborted) {
2571     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2572     return;
2573   }
2574 
2575   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2576   // concurrent bitmap clearing.
2577   _nextMarkBitMap->clearAll();
2578 
2579   // Note we cannot clear the previous marking bitmap here
2580   // since VerifyDuringGC verifies the objects marked during
2581   // a full GC against the previous bitmap.
2582 
2583   // Clear the liveness counting data
2584   clear_all_count_data();
2585   // Empty mark stack
2586   reset_marking_state();
2587   for (uint i = 0; i < _max_worker_id; ++i) {
2588     _tasks[i]->clear_region_fields();
2589   }
2590   _first_overflow_barrier_sync.abort();
2591   _second_overflow_barrier_sync.abort();
2592   _has_aborted = true;
2593 
2594   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2595   satb_mq_set.abandon_partial_marking();
2596   // This can be called either during or outside marking, we'll read
2597   // the expected_active value from the SATB queue set.
2598   satb_mq_set.set_active_all_threads(
2599                                  false, /* new active value */
2600                                  satb_mq_set.is_active() /* expected_active */);
2601 
2602   _g1h->trace_heap_after_concurrent_cycle();
2603 
2604   // Close any open concurrent phase timing
2605   register_concurrent_phase_end();
2606 
2607   _g1h->register_concurrent_cycle_end();
2608 }
2609 
2610 static void print_ms_time_info(const char* prefix, const char* name,
2611                                NumberSeq& ns) {
2612   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2613                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2614   if (ns.num() > 0) {
2615     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2616                            prefix, ns.sd(), ns.maximum());
2617   }
2618 }
2619 
2620 void ConcurrentMark::print_summary_info() {
2621   LogHandle(gc, marking) log;
2622   if (!log.is_trace()) {
2623     return;
2624   }
2625 
2626   log.trace(" Concurrent marking:");
2627   print_ms_time_info("  ", "init marks", _init_times);
2628   print_ms_time_info("  ", "remarks", _remark_times);
2629   {
2630     print_ms_time_info("     ", "final marks", _remark_mark_times);
2631     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2632 
2633   }
2634   print_ms_time_info("  ", "cleanups", _cleanup_times);
2635   log.trace("    Final counting total time = %8.2f s (avg = %8.2f ms).",
2636             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2637   if (G1ScrubRemSets) {
2638     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2639               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2640   }
2641   log.trace("  Total stop_world time = %8.2f s.",
2642             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2643   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2644             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2645 }
2646 
2647 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2648   _parallel_workers->print_worker_threads_on(st);
2649 }
2650 
2651 void ConcurrentMark::print_on_error(outputStream* st) const {
2652   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2653       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2654   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2655   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2656 }
2657 
2658 // We take a break if someone is trying to stop the world.
2659 bool ConcurrentMark::do_yield_check(uint worker_id) {
2660   if (SuspendibleThreadSet::should_yield()) {
2661     if (worker_id == 0) {
2662       _g1h->g1_policy()->record_concurrent_pause();
2663     }
2664     SuspendibleThreadSet::yield();
2665     return true;
2666   } else {
2667     return false;
2668   }
2669 }
2670 
2671 // Closure for iteration over bitmaps
2672 class CMBitMapClosure : public BitMapClosure {
2673 private:
2674   // the bitmap that is being iterated over
2675   CMBitMap*                   _nextMarkBitMap;
2676   ConcurrentMark*             _cm;
2677   CMTask*                     _task;
2678 
2679 public:
2680   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
2681     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2682 
2683   bool do_bit(size_t offset) {
2684     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2685     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2686     assert( addr < _cm->finger(), "invariant");
2687     assert(addr >= _task->finger(), "invariant");
2688 
2689     // We move that task's local finger along.
2690     _task->move_finger_to(addr);
2691 
2692     _task->scan_object(oop(addr));
2693     // we only partially drain the local queue and global stack
2694     _task->drain_local_queue(true);
2695     _task->drain_global_stack(true);
2696 
2697     // if the has_aborted flag has been raised, we need to bail out of
2698     // the iteration
2699     return !_task->has_aborted();
2700   }
2701 };
2702 
2703 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2704   ReferenceProcessor* result = NULL;
2705   if (G1UseConcMarkReferenceProcessing) {
2706     result = g1h->ref_processor_cm();
2707     assert(result != NULL, "should not be NULL");
2708   }
2709   return result;
2710 }
2711 
2712 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2713                                ConcurrentMark* cm,
2714                                CMTask* task)
2715   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2716     _g1h(g1h), _cm(cm), _task(task)
2717 { }
2718 
2719 void CMTask::setup_for_region(HeapRegion* hr) {
2720   assert(hr != NULL,
2721         "claim_region() should have filtered out NULL regions");
2722   _curr_region  = hr;
2723   _finger       = hr->bottom();
2724   update_region_limit();
2725 }
2726 
2727 void CMTask::update_region_limit() {
2728   HeapRegion* hr            = _curr_region;
2729   HeapWord* bottom          = hr->bottom();
2730   HeapWord* limit           = hr->next_top_at_mark_start();
2731 
2732   if (limit == bottom) {
2733     // The region was collected underneath our feet.
2734     // We set the finger to bottom to ensure that the bitmap
2735     // iteration that will follow this will not do anything.
2736     // (this is not a condition that holds when we set the region up,
2737     // as the region is not supposed to be empty in the first place)
2738     _finger = bottom;
2739   } else if (limit >= _region_limit) {
2740     assert(limit >= _finger, "peace of mind");
2741   } else {
2742     assert(limit < _region_limit, "only way to get here");
2743     // This can happen under some pretty unusual circumstances.  An
2744     // evacuation pause empties the region underneath our feet (NTAMS
2745     // at bottom). We then do some allocation in the region (NTAMS
2746     // stays at bottom), followed by the region being used as a GC
2747     // alloc region (NTAMS will move to top() and the objects
2748     // originally below it will be grayed). All objects now marked in
2749     // the region are explicitly grayed, if below the global finger,
2750     // and we do not need in fact to scan anything else. So, we simply
2751     // set _finger to be limit to ensure that the bitmap iteration
2752     // doesn't do anything.
2753     _finger = limit;
2754   }
2755 
2756   _region_limit = limit;
2757 }
2758 
2759 void CMTask::giveup_current_region() {
2760   assert(_curr_region != NULL, "invariant");
2761   clear_region_fields();
2762 }
2763 
2764 void CMTask::clear_region_fields() {
2765   // Values for these three fields that indicate that we're not
2766   // holding on to a region.
2767   _curr_region   = NULL;
2768   _finger        = NULL;
2769   _region_limit  = NULL;
2770 }
2771 
2772 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2773   if (cm_oop_closure == NULL) {
2774     assert(_cm_oop_closure != NULL, "invariant");
2775   } else {
2776     assert(_cm_oop_closure == NULL, "invariant");
2777   }
2778   _cm_oop_closure = cm_oop_closure;
2779 }
2780 
2781 void CMTask::reset(CMBitMap* nextMarkBitMap) {
2782   guarantee(nextMarkBitMap != NULL, "invariant");
2783   _nextMarkBitMap                = nextMarkBitMap;
2784   clear_region_fields();
2785 
2786   _calls                         = 0;
2787   _elapsed_time_ms               = 0.0;
2788   _termination_time_ms           = 0.0;
2789   _termination_start_time_ms     = 0.0;
2790 }
2791 
2792 bool CMTask::should_exit_termination() {
2793   regular_clock_call();
2794   // This is called when we are in the termination protocol. We should
2795   // quit if, for some reason, this task wants to abort or the global
2796   // stack is not empty (this means that we can get work from it).
2797   return !_cm->mark_stack_empty() || has_aborted();
2798 }
2799 
2800 void CMTask::reached_limit() {
2801   assert(_words_scanned >= _words_scanned_limit ||
2802          _refs_reached >= _refs_reached_limit ,
2803          "shouldn't have been called otherwise");
2804   regular_clock_call();
2805 }
2806 
2807 void CMTask::regular_clock_call() {
2808   if (has_aborted()) return;
2809 
2810   // First, we need to recalculate the words scanned and refs reached
2811   // limits for the next clock call.
2812   recalculate_limits();
2813 
2814   // During the regular clock call we do the following
2815 
2816   // (1) If an overflow has been flagged, then we abort.
2817   if (_cm->has_overflown()) {
2818     set_has_aborted();
2819     return;
2820   }
2821 
2822   // If we are not concurrent (i.e. we're doing remark) we don't need
2823   // to check anything else. The other steps are only needed during
2824   // the concurrent marking phase.
2825   if (!concurrent()) return;
2826 
2827   // (2) If marking has been aborted for Full GC, then we also abort.
2828   if (_cm->has_aborted()) {
2829     set_has_aborted();
2830     return;
2831   }
2832 
2833   double curr_time_ms = os::elapsedVTime() * 1000.0;
2834 
2835   // (4) We check whether we should yield. If we have to, then we abort.
2836   if (SuspendibleThreadSet::should_yield()) {
2837     // We should yield. To do this we abort the task. The caller is
2838     // responsible for yielding.
2839     set_has_aborted();
2840     return;
2841   }
2842 
2843   // (5) We check whether we've reached our time quota. If we have,
2844   // then we abort.
2845   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2846   if (elapsed_time_ms > _time_target_ms) {
2847     set_has_aborted();
2848     _has_timed_out = true;
2849     return;
2850   }
2851 
2852   // (6) Finally, we check whether there are enough completed STAB
2853   // buffers available for processing. If there are, we abort.
2854   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2855   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2856     // we do need to process SATB buffers, we'll abort and restart
2857     // the marking task to do so
2858     set_has_aborted();
2859     return;
2860   }
2861 }
2862 
2863 void CMTask::recalculate_limits() {
2864   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2865   _words_scanned_limit      = _real_words_scanned_limit;
2866 
2867   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2868   _refs_reached_limit       = _real_refs_reached_limit;
2869 }
2870 
2871 void CMTask::decrease_limits() {
2872   // This is called when we believe that we're going to do an infrequent
2873   // operation which will increase the per byte scanned cost (i.e. move
2874   // entries to/from the global stack). It basically tries to decrease the
2875   // scanning limit so that the clock is called earlier.
2876 
2877   _words_scanned_limit = _real_words_scanned_limit -
2878     3 * words_scanned_period / 4;
2879   _refs_reached_limit  = _real_refs_reached_limit -
2880     3 * refs_reached_period / 4;
2881 }
2882 
2883 void CMTask::move_entries_to_global_stack() {
2884   // local array where we'll store the entries that will be popped
2885   // from the local queue
2886   oop buffer[global_stack_transfer_size];
2887 
2888   int n = 0;
2889   oop obj;
2890   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2891     buffer[n] = obj;
2892     ++n;
2893   }
2894 
2895   if (n > 0) {
2896     // we popped at least one entry from the local queue
2897 
2898     if (!_cm->mark_stack_push(buffer, n)) {
2899       set_has_aborted();
2900     }
2901   }
2902 
2903   // this operation was quite expensive, so decrease the limits
2904   decrease_limits();
2905 }
2906 
2907 void CMTask::get_entries_from_global_stack() {
2908   // local array where we'll store the entries that will be popped
2909   // from the global stack.
2910   oop buffer[global_stack_transfer_size];
2911   int n;
2912   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2913   assert(n <= global_stack_transfer_size,
2914          "we should not pop more than the given limit");
2915   if (n > 0) {
2916     // yes, we did actually pop at least one entry
2917     for (int i = 0; i < n; ++i) {
2918       bool success = _task_queue->push(buffer[i]);
2919       // We only call this when the local queue is empty or under a
2920       // given target limit. So, we do not expect this push to fail.
2921       assert(success, "invariant");
2922     }
2923   }
2924 
2925   // this operation was quite expensive, so decrease the limits
2926   decrease_limits();
2927 }
2928 
2929 void CMTask::drain_local_queue(bool partially) {
2930   if (has_aborted()) return;
2931 
2932   // Decide what the target size is, depending whether we're going to
2933   // drain it partially (so that other tasks can steal if they run out
2934   // of things to do) or totally (at the very end).
2935   size_t target_size;
2936   if (partially) {
2937     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2938   } else {
2939     target_size = 0;
2940   }
2941 
2942   if (_task_queue->size() > target_size) {
2943     oop obj;
2944     bool ret = _task_queue->pop_local(obj);
2945     while (ret) {
2946       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2947       assert(!_g1h->is_on_master_free_list(
2948                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2949 
2950       scan_object(obj);
2951 
2952       if (_task_queue->size() <= target_size || has_aborted()) {
2953         ret = false;
2954       } else {
2955         ret = _task_queue->pop_local(obj);
2956       }
2957     }
2958   }
2959 }
2960 
2961 void CMTask::drain_global_stack(bool partially) {
2962   if (has_aborted()) return;
2963 
2964   // We have a policy to drain the local queue before we attempt to
2965   // drain the global stack.
2966   assert(partially || _task_queue->size() == 0, "invariant");
2967 
2968   // Decide what the target size is, depending whether we're going to
2969   // drain it partially (so that other tasks can steal if they run out
2970   // of things to do) or totally (at the very end).  Notice that,
2971   // because we move entries from the global stack in chunks or
2972   // because another task might be doing the same, we might in fact
2973   // drop below the target. But, this is not a problem.
2974   size_t target_size;
2975   if (partially) {
2976     target_size = _cm->partial_mark_stack_size_target();
2977   } else {
2978     target_size = 0;
2979   }
2980 
2981   if (_cm->mark_stack_size() > target_size) {
2982     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2983       get_entries_from_global_stack();
2984       drain_local_queue(partially);
2985     }
2986   }
2987 }
2988 
2989 // SATB Queue has several assumptions on whether to call the par or
2990 // non-par versions of the methods. this is why some of the code is
2991 // replicated. We should really get rid of the single-threaded version
2992 // of the code to simplify things.
2993 void CMTask::drain_satb_buffers() {
2994   if (has_aborted()) return;
2995 
2996   // We set this so that the regular clock knows that we're in the
2997   // middle of draining buffers and doesn't set the abort flag when it
2998   // notices that SATB buffers are available for draining. It'd be
2999   // very counter productive if it did that. :-)
3000   _draining_satb_buffers = true;
3001 
3002   CMSATBBufferClosure satb_cl(this, _g1h);
3003   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3004 
3005   // This keeps claiming and applying the closure to completed buffers
3006   // until we run out of buffers or we need to abort.
3007   while (!has_aborted() &&
3008          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3009     regular_clock_call();
3010   }
3011 
3012   _draining_satb_buffers = false;
3013 
3014   assert(has_aborted() ||
3015          concurrent() ||
3016          satb_mq_set.completed_buffers_num() == 0, "invariant");
3017 
3018   // again, this was a potentially expensive operation, decrease the
3019   // limits to get the regular clock call early
3020   decrease_limits();
3021 }
3022 
3023 void CMTask::print_stats() {
3024   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
3025                        _worker_id, _calls);
3026   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3027                        _elapsed_time_ms, _termination_time_ms);
3028   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3029                        _step_times_ms.num(), _step_times_ms.avg(),
3030                        _step_times_ms.sd());
3031   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
3032                        _step_times_ms.maximum(), _step_times_ms.sum());
3033 }
3034 
3035 bool ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3036   return _task_queues->steal(worker_id, hash_seed, obj);
3037 }
3038 
3039 /*****************************************************************************
3040 
3041     The do_marking_step(time_target_ms, ...) method is the building
3042     block of the parallel marking framework. It can be called in parallel
3043     with other invocations of do_marking_step() on different tasks
3044     (but only one per task, obviously) and concurrently with the
3045     mutator threads, or during remark, hence it eliminates the need
3046     for two versions of the code. When called during remark, it will
3047     pick up from where the task left off during the concurrent marking
3048     phase. Interestingly, tasks are also claimable during evacuation
3049     pauses too, since do_marking_step() ensures that it aborts before
3050     it needs to yield.
3051 
3052     The data structures that it uses to do marking work are the
3053     following:
3054 
3055       (1) Marking Bitmap. If there are gray objects that appear only
3056       on the bitmap (this happens either when dealing with an overflow
3057       or when the initial marking phase has simply marked the roots
3058       and didn't push them on the stack), then tasks claim heap
3059       regions whose bitmap they then scan to find gray objects. A
3060       global finger indicates where the end of the last claimed region
3061       is. A local finger indicates how far into the region a task has
3062       scanned. The two fingers are used to determine how to gray an
3063       object (i.e. whether simply marking it is OK, as it will be
3064       visited by a task in the future, or whether it needs to be also
3065       pushed on a stack).
3066 
3067       (2) Local Queue. The local queue of the task which is accessed
3068       reasonably efficiently by the task. Other tasks can steal from
3069       it when they run out of work. Throughout the marking phase, a
3070       task attempts to keep its local queue short but not totally
3071       empty, so that entries are available for stealing by other
3072       tasks. Only when there is no more work, a task will totally
3073       drain its local queue.
3074 
3075       (3) Global Mark Stack. This handles local queue overflow. During
3076       marking only sets of entries are moved between it and the local
3077       queues, as access to it requires a mutex and more fine-grain
3078       interaction with it which might cause contention. If it
3079       overflows, then the marking phase should restart and iterate
3080       over the bitmap to identify gray objects. Throughout the marking
3081       phase, tasks attempt to keep the global mark stack at a small
3082       length but not totally empty, so that entries are available for
3083       popping by other tasks. Only when there is no more work, tasks
3084       will totally drain the global mark stack.
3085 
3086       (4) SATB Buffer Queue. This is where completed SATB buffers are
3087       made available. Buffers are regularly removed from this queue
3088       and scanned for roots, so that the queue doesn't get too
3089       long. During remark, all completed buffers are processed, as
3090       well as the filled in parts of any uncompleted buffers.
3091 
3092     The do_marking_step() method tries to abort when the time target
3093     has been reached. There are a few other cases when the
3094     do_marking_step() method also aborts:
3095 
3096       (1) When the marking phase has been aborted (after a Full GC).
3097 
3098       (2) When a global overflow (on the global stack) has been
3099       triggered. Before the task aborts, it will actually sync up with
3100       the other tasks to ensure that all the marking data structures
3101       (local queues, stacks, fingers etc.)  are re-initialized so that
3102       when do_marking_step() completes, the marking phase can
3103       immediately restart.
3104 
3105       (3) When enough completed SATB buffers are available. The
3106       do_marking_step() method only tries to drain SATB buffers right
3107       at the beginning. So, if enough buffers are available, the
3108       marking step aborts and the SATB buffers are processed at
3109       the beginning of the next invocation.
3110 
3111       (4) To yield. when we have to yield then we abort and yield
3112       right at the end of do_marking_step(). This saves us from a lot
3113       of hassle as, by yielding we might allow a Full GC. If this
3114       happens then objects will be compacted underneath our feet, the
3115       heap might shrink, etc. We save checking for this by just
3116       aborting and doing the yield right at the end.
3117 
3118     From the above it follows that the do_marking_step() method should
3119     be called in a loop (or, otherwise, regularly) until it completes.
3120 
3121     If a marking step completes without its has_aborted() flag being
3122     true, it means it has completed the current marking phase (and
3123     also all other marking tasks have done so and have all synced up).
3124 
3125     A method called regular_clock_call() is invoked "regularly" (in
3126     sub ms intervals) throughout marking. It is this clock method that
3127     checks all the abort conditions which were mentioned above and
3128     decides when the task should abort. A work-based scheme is used to
3129     trigger this clock method: when the number of object words the
3130     marking phase has scanned or the number of references the marking
3131     phase has visited reach a given limit. Additional invocations to
3132     the method clock have been planted in a few other strategic places
3133     too. The initial reason for the clock method was to avoid calling
3134     vtime too regularly, as it is quite expensive. So, once it was in
3135     place, it was natural to piggy-back all the other conditions on it
3136     too and not constantly check them throughout the code.
3137 
3138     If do_termination is true then do_marking_step will enter its
3139     termination protocol.
3140 
3141     The value of is_serial must be true when do_marking_step is being
3142     called serially (i.e. by the VMThread) and do_marking_step should
3143     skip any synchronization in the termination and overflow code.
3144     Examples include the serial remark code and the serial reference
3145     processing closures.
3146 
3147     The value of is_serial must be false when do_marking_step is
3148     being called by any of the worker threads in a work gang.
3149     Examples include the concurrent marking code (CMMarkingTask),
3150     the MT remark code, and the MT reference processing closures.
3151 
3152  *****************************************************************************/
3153 
3154 void CMTask::do_marking_step(double time_target_ms,
3155                              bool do_termination,
3156                              bool is_serial) {
3157   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3158   assert(concurrent() == _cm->concurrent(), "they should be the same");
3159 
3160   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3161   assert(_task_queues != NULL, "invariant");
3162   assert(_task_queue != NULL, "invariant");
3163   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3164 
3165   assert(!_claimed,
3166          "only one thread should claim this task at any one time");
3167 
3168   // OK, this doesn't safeguard again all possible scenarios, as it is
3169   // possible for two threads to set the _claimed flag at the same
3170   // time. But it is only for debugging purposes anyway and it will
3171   // catch most problems.
3172   _claimed = true;
3173 
3174   _start_time_ms = os::elapsedVTime() * 1000.0;
3175 
3176   // If do_stealing is true then do_marking_step will attempt to
3177   // steal work from the other CMTasks. It only makes sense to
3178   // enable stealing when the termination protocol is enabled
3179   // and do_marking_step() is not being called serially.
3180   bool do_stealing = do_termination && !is_serial;
3181 
3182   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
3183   _time_target_ms = time_target_ms - diff_prediction_ms;
3184 
3185   // set up the variables that are used in the work-based scheme to
3186   // call the regular clock method
3187   _words_scanned = 0;
3188   _refs_reached  = 0;
3189   recalculate_limits();
3190 
3191   // clear all flags
3192   clear_has_aborted();
3193   _has_timed_out = false;
3194   _draining_satb_buffers = false;
3195 
3196   ++_calls;
3197 
3198   // Set up the bitmap and oop closures. Anything that uses them is
3199   // eventually called from this method, so it is OK to allocate these
3200   // statically.
3201   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3202   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3203   set_cm_oop_closure(&cm_oop_closure);
3204 
3205   if (_cm->has_overflown()) {
3206     // This can happen if the mark stack overflows during a GC pause
3207     // and this task, after a yield point, restarts. We have to abort
3208     // as we need to get into the overflow protocol which happens
3209     // right at the end of this task.
3210     set_has_aborted();
3211   }
3212 
3213   // First drain any available SATB buffers. After this, we will not
3214   // look at SATB buffers before the next invocation of this method.
3215   // If enough completed SATB buffers are queued up, the regular clock
3216   // will abort this task so that it restarts.
3217   drain_satb_buffers();
3218   // ...then partially drain the local queue and the global stack
3219   drain_local_queue(true);
3220   drain_global_stack(true);
3221 
3222   do {
3223     if (!has_aborted() && _curr_region != NULL) {
3224       // This means that we're already holding on to a region.
3225       assert(_finger != NULL, "if region is not NULL, then the finger "
3226              "should not be NULL either");
3227 
3228       // We might have restarted this task after an evacuation pause
3229       // which might have evacuated the region we're holding on to
3230       // underneath our feet. Let's read its limit again to make sure
3231       // that we do not iterate over a region of the heap that
3232       // contains garbage (update_region_limit() will also move
3233       // _finger to the start of the region if it is found empty).
3234       update_region_limit();
3235       // We will start from _finger not from the start of the region,
3236       // as we might be restarting this task after aborting half-way
3237       // through scanning this region. In this case, _finger points to
3238       // the address where we last found a marked object. If this is a
3239       // fresh region, _finger points to start().
3240       MemRegion mr = MemRegion(_finger, _region_limit);
3241 
3242       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3243              "humongous regions should go around loop once only");
3244 
3245       // Some special cases:
3246       // If the memory region is empty, we can just give up the region.
3247       // If the current region is humongous then we only need to check
3248       // the bitmap for the bit associated with the start of the object,
3249       // scan the object if it's live, and give up the region.
3250       // Otherwise, let's iterate over the bitmap of the part of the region
3251       // that is left.
3252       // If the iteration is successful, give up the region.
3253       if (mr.is_empty()) {
3254         giveup_current_region();
3255         regular_clock_call();
3256       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3257         if (_nextMarkBitMap->isMarked(mr.start())) {
3258           // The object is marked - apply the closure
3259           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3260           bitmap_closure.do_bit(offset);
3261         }
3262         // Even if this task aborted while scanning the humongous object
3263         // we can (and should) give up the current region.
3264         giveup_current_region();
3265         regular_clock_call();
3266       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3267         giveup_current_region();
3268         regular_clock_call();
3269       } else {
3270         assert(has_aborted(), "currently the only way to do so");
3271         // The only way to abort the bitmap iteration is to return
3272         // false from the do_bit() method. However, inside the
3273         // do_bit() method we move the _finger to point to the
3274         // object currently being looked at. So, if we bail out, we
3275         // have definitely set _finger to something non-null.
3276         assert(_finger != NULL, "invariant");
3277 
3278         // Region iteration was actually aborted. So now _finger
3279         // points to the address of the object we last scanned. If we
3280         // leave it there, when we restart this task, we will rescan
3281         // the object. It is easy to avoid this. We move the finger by
3282         // enough to point to the next possible object header (the
3283         // bitmap knows by how much we need to move it as it knows its
3284         // granularity).
3285         assert(_finger < _region_limit, "invariant");
3286         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3287         // Check if bitmap iteration was aborted while scanning the last object
3288         if (new_finger >= _region_limit) {
3289           giveup_current_region();
3290         } else {
3291           move_finger_to(new_finger);
3292         }
3293       }
3294     }
3295     // At this point we have either completed iterating over the
3296     // region we were holding on to, or we have aborted.
3297 
3298     // We then partially drain the local queue and the global stack.
3299     // (Do we really need this?)
3300     drain_local_queue(true);
3301     drain_global_stack(true);
3302 
3303     // Read the note on the claim_region() method on why it might
3304     // return NULL with potentially more regions available for
3305     // claiming and why we have to check out_of_regions() to determine
3306     // whether we're done or not.
3307     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3308       // We are going to try to claim a new region. We should have
3309       // given up on the previous one.
3310       // Separated the asserts so that we know which one fires.
3311       assert(_curr_region  == NULL, "invariant");
3312       assert(_finger       == NULL, "invariant");
3313       assert(_region_limit == NULL, "invariant");
3314       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3315       if (claimed_region != NULL) {
3316         // Yes, we managed to claim one
3317         setup_for_region(claimed_region);
3318         assert(_curr_region == claimed_region, "invariant");
3319       }
3320       // It is important to call the regular clock here. It might take
3321       // a while to claim a region if, for example, we hit a large
3322       // block of empty regions. So we need to call the regular clock
3323       // method once round the loop to make sure it's called
3324       // frequently enough.
3325       regular_clock_call();
3326     }
3327 
3328     if (!has_aborted() && _curr_region == NULL) {
3329       assert(_cm->out_of_regions(),
3330              "at this point we should be out of regions");
3331     }
3332   } while ( _curr_region != NULL && !has_aborted());
3333 
3334   if (!has_aborted()) {
3335     // We cannot check whether the global stack is empty, since other
3336     // tasks might be pushing objects to it concurrently.
3337     assert(_cm->out_of_regions(),
3338            "at this point we should be out of regions");
3339     // Try to reduce the number of available SATB buffers so that
3340     // remark has less work to do.
3341     drain_satb_buffers();
3342   }
3343 
3344   // Since we've done everything else, we can now totally drain the
3345   // local queue and global stack.
3346   drain_local_queue(false);
3347   drain_global_stack(false);
3348 
3349   // Attempt at work stealing from other task's queues.
3350   if (do_stealing && !has_aborted()) {
3351     // We have not aborted. This means that we have finished all that
3352     // we could. Let's try to do some stealing...
3353 
3354     // We cannot check whether the global stack is empty, since other
3355     // tasks might be pushing objects to it concurrently.
3356     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3357            "only way to reach here");
3358     while (!has_aborted()) {
3359       oop obj;
3360       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3361         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3362                "any stolen object should be marked");
3363         scan_object(obj);
3364 
3365         // And since we're towards the end, let's totally drain the
3366         // local queue and global stack.
3367         drain_local_queue(false);
3368         drain_global_stack(false);
3369       } else {
3370         break;
3371       }
3372     }
3373   }
3374 
3375   // We still haven't aborted. Now, let's try to get into the
3376   // termination protocol.
3377   if (do_termination && !has_aborted()) {
3378     // We cannot check whether the global stack is empty, since other
3379     // tasks might be concurrently pushing objects on it.
3380     // Separated the asserts so that we know which one fires.
3381     assert(_cm->out_of_regions(), "only way to reach here");
3382     assert(_task_queue->size() == 0, "only way to reach here");
3383     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
3384 
3385     // The CMTask class also extends the TerminatorTerminator class,
3386     // hence its should_exit_termination() method will also decide
3387     // whether to exit the termination protocol or not.
3388     bool finished = (is_serial ||
3389                      _cm->terminator()->offer_termination(this));
3390     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
3391     _termination_time_ms +=
3392       termination_end_time_ms - _termination_start_time_ms;
3393 
3394     if (finished) {
3395       // We're all done.
3396 
3397       if (_worker_id == 0) {
3398         // let's allow task 0 to do this
3399         if (concurrent()) {
3400           assert(_cm->concurrent_marking_in_progress(), "invariant");
3401           // we need to set this to false before the next
3402           // safepoint. This way we ensure that the marking phase
3403           // doesn't observe any more heap expansions.
3404           _cm->clear_concurrent_marking_in_progress();
3405         }
3406       }
3407 
3408       // We can now guarantee that the global stack is empty, since
3409       // all other tasks have finished. We separated the guarantees so
3410       // that, if a condition is false, we can immediately find out
3411       // which one.
3412       guarantee(_cm->out_of_regions(), "only way to reach here");
3413       guarantee(_cm->mark_stack_empty(), "only way to reach here");
3414       guarantee(_task_queue->size() == 0, "only way to reach here");
3415       guarantee(!_cm->has_overflown(), "only way to reach here");
3416       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
3417     } else {
3418       // Apparently there's more work to do. Let's abort this task. It
3419       // will restart it and we can hopefully find more things to do.
3420       set_has_aborted();
3421     }
3422   }
3423 
3424   // Mainly for debugging purposes to make sure that a pointer to the
3425   // closure which was statically allocated in this frame doesn't
3426   // escape it by accident.
3427   set_cm_oop_closure(NULL);
3428   double end_time_ms = os::elapsedVTime() * 1000.0;
3429   double elapsed_time_ms = end_time_ms - _start_time_ms;
3430   // Update the step history.
3431   _step_times_ms.add(elapsed_time_ms);
3432 
3433   if (has_aborted()) {
3434     // The task was aborted for some reason.
3435     if (_has_timed_out) {
3436       double diff_ms = elapsed_time_ms - _time_target_ms;
3437       // Keep statistics of how well we did with respect to hitting
3438       // our target only if we actually timed out (if we aborted for
3439       // other reasons, then the results might get skewed).
3440       _marking_step_diffs_ms.add(diff_ms);
3441     }
3442 
3443     if (_cm->has_overflown()) {
3444       // This is the interesting one. We aborted because a global
3445       // overflow was raised. This means we have to restart the
3446       // marking phase and start iterating over regions. However, in
3447       // order to do this we have to make sure that all tasks stop
3448       // what they are doing and re-initialize in a safe manner. We
3449       // will achieve this with the use of two barrier sync points.
3450 
3451       if (!is_serial) {
3452         // We only need to enter the sync barrier if being called
3453         // from a parallel context
3454         _cm->enter_first_sync_barrier(_worker_id);
3455 
3456         // When we exit this sync barrier we know that all tasks have
3457         // stopped doing marking work. So, it's now safe to
3458         // re-initialize our data structures. At the end of this method,
3459         // task 0 will clear the global data structures.
3460       }
3461 
3462       // We clear the local state of this task...
3463       clear_region_fields();
3464 
3465       if (!is_serial) {
3466         // ...and enter the second barrier.
3467         _cm->enter_second_sync_barrier(_worker_id);
3468       }
3469       // At this point, if we're during the concurrent phase of
3470       // marking, everything has been re-initialized and we're
3471       // ready to restart.
3472     }
3473   }
3474 
3475   _claimed = false;
3476 }
3477 
3478 CMTask::CMTask(uint worker_id,
3479                ConcurrentMark* cm,
3480                size_t* marked_bytes,
3481                BitMap* card_bm,
3482                CMTaskQueue* task_queue,
3483                CMTaskQueueSet* task_queues)
3484   : _g1h(G1CollectedHeap::heap()),
3485     _worker_id(worker_id), _cm(cm),
3486     _claimed(false),
3487     _nextMarkBitMap(NULL), _hash_seed(17),
3488     _task_queue(task_queue),
3489     _task_queues(task_queues),
3490     _cm_oop_closure(NULL),
3491     _marked_bytes_array(marked_bytes),
3492     _card_bm(card_bm) {
3493   guarantee(task_queue != NULL, "invariant");
3494   guarantee(task_queues != NULL, "invariant");
3495 
3496   _marking_step_diffs_ms.add(0.5);
3497 }
3498 
3499 // These are formatting macros that are used below to ensure
3500 // consistent formatting. The *_H_* versions are used to format the
3501 // header for a particular value and they should be kept consistent
3502 // with the corresponding macro. Also note that most of the macros add
3503 // the necessary white space (as a prefix) which makes them a bit
3504 // easier to compose.
3505 
3506 // All the output lines are prefixed with this string to be able to
3507 // identify them easily in a large log file.
3508 #define G1PPRL_LINE_PREFIX            "###"
3509 
3510 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3511 #ifdef _LP64
3512 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3513 #else // _LP64
3514 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3515 #endif // _LP64
3516 
3517 // For per-region info
3518 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3519 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3520 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3521 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3522 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3523 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3524 
3525 // For summary info
3526 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3527 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3528 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3529 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3530 
3531 G1PrintRegionLivenessInfoClosure::
3532 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3533   : _total_used_bytes(0), _total_capacity_bytes(0),
3534     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3535     _hum_used_bytes(0), _hum_capacity_bytes(0),
3536     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
3537     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3538   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3539   MemRegion g1_reserved = g1h->g1_reserved();
3540   double now = os::elapsedTime();
3541 
3542   // Print the header of the output.
3543   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3544   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3545                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3546                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3547                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3548                           HeapRegion::GrainBytes);
3549   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3550   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3551                           G1PPRL_TYPE_H_FORMAT
3552                           G1PPRL_ADDR_BASE_H_FORMAT
3553                           G1PPRL_BYTE_H_FORMAT
3554                           G1PPRL_BYTE_H_FORMAT
3555                           G1PPRL_BYTE_H_FORMAT
3556                           G1PPRL_DOUBLE_H_FORMAT
3557                           G1PPRL_BYTE_H_FORMAT
3558                           G1PPRL_BYTE_H_FORMAT,
3559                           "type", "address-range",
3560                           "used", "prev-live", "next-live", "gc-eff",
3561                           "remset", "code-roots");
3562   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3563                           G1PPRL_TYPE_H_FORMAT
3564                           G1PPRL_ADDR_BASE_H_FORMAT
3565                           G1PPRL_BYTE_H_FORMAT
3566                           G1PPRL_BYTE_H_FORMAT
3567                           G1PPRL_BYTE_H_FORMAT
3568                           G1PPRL_DOUBLE_H_FORMAT
3569                           G1PPRL_BYTE_H_FORMAT
3570                           G1PPRL_BYTE_H_FORMAT,
3571                           "", "",
3572                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3573                           "(bytes)", "(bytes)");
3574 }
3575 
3576 // It takes as a parameter a reference to one of the _hum_* fields, it
3577 // deduces the corresponding value for a region in a humongous region
3578 // series (either the region size, or what's left if the _hum_* field
3579 // is < the region size), and updates the _hum_* field accordingly.
3580 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
3581   size_t bytes = 0;
3582   // The > 0 check is to deal with the prev and next live bytes which
3583   // could be 0.
3584   if (*hum_bytes > 0) {
3585     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
3586     *hum_bytes -= bytes;
3587   }
3588   return bytes;
3589 }
3590 
3591 // It deduces the values for a region in a humongous region series
3592 // from the _hum_* fields and updates those accordingly. It assumes
3593 // that that _hum_* fields have already been set up from the "starts
3594 // humongous" region and we visit the regions in address order.
3595 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
3596                                                      size_t* capacity_bytes,
3597                                                      size_t* prev_live_bytes,
3598                                                      size_t* next_live_bytes) {
3599   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
3600   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
3601   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
3602   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
3603   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
3604 }
3605 
3606 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3607   const char* type       = r->get_type_str();
3608   HeapWord* bottom       = r->bottom();
3609   HeapWord* end          = r->end();
3610   size_t capacity_bytes  = r->capacity();
3611   size_t used_bytes      = r->used();
3612   size_t prev_live_bytes = r->live_bytes();
3613   size_t next_live_bytes = r->next_live_bytes();
3614   double gc_eff          = r->gc_efficiency();
3615   size_t remset_bytes    = r->rem_set()->mem_size();
3616   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3617 
3618   if (r->is_starts_humongous()) {
3619     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
3620            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
3621            "they should have been zeroed after the last time we used them");
3622     // Set up the _hum_* fields.
3623     _hum_capacity_bytes  = capacity_bytes;
3624     _hum_used_bytes      = used_bytes;
3625     _hum_prev_live_bytes = prev_live_bytes;
3626     _hum_next_live_bytes = next_live_bytes;
3627     get_hum_bytes(&used_bytes, &capacity_bytes,
3628                   &prev_live_bytes, &next_live_bytes);
3629     end = bottom + HeapRegion::GrainWords;
3630   } else if (r->is_continues_humongous()) {
3631     get_hum_bytes(&used_bytes, &capacity_bytes,
3632                   &prev_live_bytes, &next_live_bytes);
3633     assert(end == bottom + HeapRegion::GrainWords, "invariant");
3634   }
3635 
3636   _total_used_bytes      += used_bytes;
3637   _total_capacity_bytes  += capacity_bytes;
3638   _total_prev_live_bytes += prev_live_bytes;
3639   _total_next_live_bytes += next_live_bytes;
3640   _total_remset_bytes    += remset_bytes;
3641   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3642 
3643   // Print a line for this particular region.
3644   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3645                           G1PPRL_TYPE_FORMAT
3646                           G1PPRL_ADDR_BASE_FORMAT
3647                           G1PPRL_BYTE_FORMAT
3648                           G1PPRL_BYTE_FORMAT
3649                           G1PPRL_BYTE_FORMAT
3650                           G1PPRL_DOUBLE_FORMAT
3651                           G1PPRL_BYTE_FORMAT
3652                           G1PPRL_BYTE_FORMAT,
3653                           type, p2i(bottom), p2i(end),
3654                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3655                           remset_bytes, strong_code_roots_bytes);
3656 
3657   return false;
3658 }
3659 
3660 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3661   // add static memory usages to remembered set sizes
3662   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3663   // Print the footer of the output.
3664   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3665   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3666                          " SUMMARY"
3667                          G1PPRL_SUM_MB_FORMAT("capacity")
3668                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3669                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3670                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3671                          G1PPRL_SUM_MB_FORMAT("remset")
3672                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3673                          bytes_to_mb(_total_capacity_bytes),
3674                          bytes_to_mb(_total_used_bytes),
3675                          perc(_total_used_bytes, _total_capacity_bytes),
3676                          bytes_to_mb(_total_prev_live_bytes),
3677                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3678                          bytes_to_mb(_total_next_live_bytes),
3679                          perc(_total_next_live_bytes, _total_capacity_bytes),
3680                          bytes_to_mb(_total_remset_bytes),
3681                          bytes_to_mb(_total_strong_code_roots_bytes));
3682 }