1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1Analytics.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectionSet.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1DefaultPolicy.hpp"
  33 #include "gc/g1/g1IHOPControl.hpp"
  34 #include "gc/g1/g1GCPhaseTimes.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1YoungGenSizer.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/shared/gcPolicyCounters.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/java.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "utilities/debug.hpp"
  44 #include "utilities/pair.hpp"
  45 
  46 G1DefaultPolicy::G1DefaultPolicy() :
  47   _predictor(G1ConfidencePercent / 100.0),
  48   _analytics(new G1Analytics(&_predictor)),
  49   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  50   _ihop_control(create_ihop_control(&_predictor)),
  51   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 3)),
  52   _young_list_fixed_length(0),
  53   _short_lived_surv_rate_group(new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary)),
  54   _survivor_surv_rate_group(new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary)),
  55   _reserve_factor((double) G1ReservePercent / 100.0),
  56   _reserve_regions(0),
  57   _rs_lengths_prediction(0),
  58   _bytes_allocated_in_old_since_last_gc(0),
  59   _initial_mark_to_mixed(),
  60   _collection_set(NULL),
  61   _g1(NULL),
  62   _phase_times(new G1GCPhaseTimes(ParallelGCThreads)),
  63   _tenuring_threshold(MaxTenuringThreshold),
  64   _max_survivor_regions(0),
  65   _survivors_age_table(true) { }
  66 
  67 G1DefaultPolicy::~G1DefaultPolicy() {
  68   delete _ihop_control;
  69 }
  70 
  71 G1CollectorState* G1DefaultPolicy::collector_state() const { return _g1->collector_state(); }
  72 
  73 void G1DefaultPolicy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
  74   _g1 = g1h;
  75   _collection_set = collection_set;
  76 
  77   assert(Heap_lock->owned_by_self(), "Locking discipline.");
  78 
  79   if (!adaptive_young_list_length()) {
  80     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
  81   }
  82   _young_gen_sizer.adjust_max_new_size(_g1->max_regions());
  83 
  84   _free_regions_at_end_of_collection = _g1->num_free_regions();
  85 
  86   update_young_list_max_and_target_length();
  87   // We may immediately start allocating regions and placing them on the
  88   // collection set list. Initialize the per-collection set info
  89   _collection_set->start_incremental_building();
  90 }
  91 
  92 void G1DefaultPolicy::note_gc_start() {
  93   phase_times()->note_gc_start();
  94 }
  95 
  96 bool G1DefaultPolicy::predict_will_fit(uint young_length,
  97                                        double base_time_ms,
  98                                        uint base_free_regions,
  99                                        double target_pause_time_ms) const {
 100   if (young_length >= base_free_regions) {
 101     // end condition 1: not enough space for the young regions
 102     return false;
 103   }
 104 
 105   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 106   size_t bytes_to_copy =
 107                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 108   double copy_time_ms = _analytics->predict_object_copy_time_ms(bytes_to_copy,
 109                                                                 collector_state()->during_concurrent_mark());
 110   double young_other_time_ms = _analytics->predict_young_other_time_ms(young_length);
 111   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 112   if (pause_time_ms > target_pause_time_ms) {
 113     // end condition 2: prediction is over the target pause time
 114     return false;
 115   }
 116 
 117   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 118 
 119   // When copying, we will likely need more bytes free than is live in the region.
 120   // Add some safety margin to factor in the confidence of our guess, and the
 121   // natural expected waste.
 122   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 123   // of the calculation: the lower the confidence, the more headroom.
 124   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 125   // copying due to anticipated waste in the PLABs.
 126   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 127   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 128 
 129   if (expected_bytes_to_copy > free_bytes) {
 130     // end condition 3: out-of-space
 131     return false;
 132   }
 133 
 134   // success!
 135   return true;
 136 }
 137 
 138 void G1DefaultPolicy::record_new_heap_size(uint new_number_of_regions) {
 139   // re-calculate the necessary reserve
 140   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 141   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 142   // smaller than 1.0) we'll get 1.
 143   _reserve_regions = (uint) ceil(reserve_regions_d);
 144 
 145   _young_gen_sizer.heap_size_changed(new_number_of_regions);
 146 
 147   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 148 }
 149 
 150 uint G1DefaultPolicy::calculate_young_list_desired_min_length(uint base_min_length) const {
 151   uint desired_min_length = 0;
 152   if (adaptive_young_list_length()) {
 153     if (_analytics->num_alloc_rate_ms() > 3) {
 154       double now_sec = os::elapsedTime();
 155       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 156       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 157       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 158     } else {
 159       // otherwise we don't have enough info to make the prediction
 160     }
 161   }
 162   desired_min_length += base_min_length;
 163   // make sure we don't go below any user-defined minimum bound
 164   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
 165 }
 166 
 167 uint G1DefaultPolicy::calculate_young_list_desired_max_length() const {
 168   // Here, we might want to also take into account any additional
 169   // constraints (i.e., user-defined minimum bound). Currently, we
 170   // effectively don't set this bound.
 171   return _young_gen_sizer.max_desired_young_length();
 172 }
 173 
 174 uint G1DefaultPolicy::update_young_list_max_and_target_length() {
 175   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
 176 }
 177 
 178 uint G1DefaultPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 179   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 180   update_max_gc_locker_expansion();
 181   return unbounded_target_length;
 182 }
 183 
 184 uint G1DefaultPolicy::update_young_list_target_length(size_t rs_lengths) {
 185   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 186   _young_list_target_length = young_lengths.first;
 187   return young_lengths.second;
 188 }
 189 
 190 G1DefaultPolicy::YoungTargetLengths G1DefaultPolicy::young_list_target_lengths(size_t rs_lengths) const {
 191   YoungTargetLengths result;
 192 
 193   // Calculate the absolute and desired min bounds first.
 194 
 195   // This is how many young regions we already have (currently: the survivors).
 196   const uint base_min_length = _g1->young_list()->survivor_length();
 197   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 198   // This is the absolute minimum young length. Ensure that we
 199   // will at least have one eden region available for allocation.
 200   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 201   // If we shrank the young list target it should not shrink below the current size.
 202   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 203   // Calculate the absolute and desired max bounds.
 204 
 205   uint desired_max_length = calculate_young_list_desired_max_length();
 206 
 207   uint young_list_target_length = 0;
 208   if (adaptive_young_list_length()) {
 209     if (collector_state()->gcs_are_young()) {
 210       young_list_target_length =
 211                         calculate_young_list_target_length(rs_lengths,
 212                                                            base_min_length,
 213                                                            desired_min_length,
 214                                                            desired_max_length);
 215     } else {
 216       // Don't calculate anything and let the code below bound it to
 217       // the desired_min_length, i.e., do the next GC as soon as
 218       // possible to maximize how many old regions we can add to it.
 219     }
 220   } else {
 221     // The user asked for a fixed young gen so we'll fix the young gen
 222     // whether the next GC is young or mixed.
 223     young_list_target_length = _young_list_fixed_length;
 224   }
 225 
 226   result.second = young_list_target_length;
 227 
 228   // We will try our best not to "eat" into the reserve.
 229   uint absolute_max_length = 0;
 230   if (_free_regions_at_end_of_collection > _reserve_regions) {
 231     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 232   }
 233   if (desired_max_length > absolute_max_length) {
 234     desired_max_length = absolute_max_length;
 235   }
 236 
 237   // Make sure we don't go over the desired max length, nor under the
 238   // desired min length. In case they clash, desired_min_length wins
 239   // which is why that test is second.
 240   if (young_list_target_length > desired_max_length) {
 241     young_list_target_length = desired_max_length;
 242   }
 243   if (young_list_target_length < desired_min_length) {
 244     young_list_target_length = desired_min_length;
 245   }
 246 
 247   assert(young_list_target_length > base_min_length,
 248          "we should be able to allocate at least one eden region");
 249   assert(young_list_target_length >= absolute_min_length, "post-condition");
 250 
 251   result.first = young_list_target_length;
 252   return result;
 253 }
 254 
 255 uint
 256 G1DefaultPolicy::calculate_young_list_target_length(size_t rs_lengths,
 257                                                     uint base_min_length,
 258                                                     uint desired_min_length,
 259                                                     uint desired_max_length) const {
 260   assert(adaptive_young_list_length(), "pre-condition");
 261   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 262 
 263   // In case some edge-condition makes the desired max length too small...
 264   if (desired_max_length <= desired_min_length) {
 265     return desired_min_length;
 266   }
 267 
 268   // We'll adjust min_young_length and max_young_length not to include
 269   // the already allocated young regions (i.e., so they reflect the
 270   // min and max eden regions we'll allocate). The base_min_length
 271   // will be reflected in the predictions by the
 272   // survivor_regions_evac_time prediction.
 273   assert(desired_min_length > base_min_length, "invariant");
 274   uint min_young_length = desired_min_length - base_min_length;
 275   assert(desired_max_length > base_min_length, "invariant");
 276   uint max_young_length = desired_max_length - base_min_length;
 277 
 278   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 279   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 280   size_t pending_cards = _analytics->predict_pending_cards();
 281   size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
 282   size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, /* gcs_are_young */ true);
 283   double base_time_ms =
 284     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 285     survivor_regions_evac_time;
 286   uint available_free_regions = _free_regions_at_end_of_collection;
 287   uint base_free_regions = 0;
 288   if (available_free_regions > _reserve_regions) {
 289     base_free_regions = available_free_regions - _reserve_regions;
 290   }
 291 
 292   // Here, we will make sure that the shortest young length that
 293   // makes sense fits within the target pause time.
 294 
 295   if (predict_will_fit(min_young_length, base_time_ms,
 296                        base_free_regions, target_pause_time_ms)) {
 297     // The shortest young length will fit into the target pause time;
 298     // we'll now check whether the absolute maximum number of young
 299     // regions will fit in the target pause time. If not, we'll do
 300     // a binary search between min_young_length and max_young_length.
 301     if (predict_will_fit(max_young_length, base_time_ms,
 302                          base_free_regions, target_pause_time_ms)) {
 303       // The maximum young length will fit into the target pause time.
 304       // We are done so set min young length to the maximum length (as
 305       // the result is assumed to be returned in min_young_length).
 306       min_young_length = max_young_length;
 307     } else {
 308       // The maximum possible number of young regions will not fit within
 309       // the target pause time so we'll search for the optimal
 310       // length. The loop invariants are:
 311       //
 312       // min_young_length < max_young_length
 313       // min_young_length is known to fit into the target pause time
 314       // max_young_length is known not to fit into the target pause time
 315       //
 316       // Going into the loop we know the above hold as we've just
 317       // checked them. Every time around the loop we check whether
 318       // the middle value between min_young_length and
 319       // max_young_length fits into the target pause time. If it
 320       // does, it becomes the new min. If it doesn't, it becomes
 321       // the new max. This way we maintain the loop invariants.
 322 
 323       assert(min_young_length < max_young_length, "invariant");
 324       uint diff = (max_young_length - min_young_length) / 2;
 325       while (diff > 0) {
 326         uint young_length = min_young_length + diff;
 327         if (predict_will_fit(young_length, base_time_ms,
 328                              base_free_regions, target_pause_time_ms)) {
 329           min_young_length = young_length;
 330         } else {
 331           max_young_length = young_length;
 332         }
 333         assert(min_young_length <  max_young_length, "invariant");
 334         diff = (max_young_length - min_young_length) / 2;
 335       }
 336       // The results is min_young_length which, according to the
 337       // loop invariants, should fit within the target pause time.
 338 
 339       // These are the post-conditions of the binary search above:
 340       assert(min_young_length < max_young_length,
 341              "otherwise we should have discovered that max_young_length "
 342              "fits into the pause target and not done the binary search");
 343       assert(predict_will_fit(min_young_length, base_time_ms,
 344                               base_free_regions, target_pause_time_ms),
 345              "min_young_length, the result of the binary search, should "
 346              "fit into the pause target");
 347       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 348                                base_free_regions, target_pause_time_ms),
 349              "min_young_length, the result of the binary search, should be "
 350              "optimal, so no larger length should fit into the pause target");
 351     }
 352   } else {
 353     // Even the minimum length doesn't fit into the pause time
 354     // target, return it as the result nevertheless.
 355   }
 356   return base_min_length + min_young_length;
 357 }
 358 
 359 double G1DefaultPolicy::predict_survivor_regions_evac_time() const {
 360   double survivor_regions_evac_time = 0.0;
 361   for (HeapRegion * r = _g1->young_list()->first_survivor_region();
 362        r != NULL && r != _g1->young_list()->last_survivor_region()->get_next_young_region();
 363        r = r->get_next_young_region()) {
 364     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 365   }
 366   return survivor_regions_evac_time;
 367 }
 368 
 369 void G1DefaultPolicy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 370   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 371 
 372   if (rs_lengths > _rs_lengths_prediction) {
 373     // add 10% to avoid having to recalculate often
 374     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 375     update_rs_lengths_prediction(rs_lengths_prediction);
 376 
 377     update_young_list_max_and_target_length(rs_lengths_prediction);
 378   }
 379 }
 380 
 381 void G1DefaultPolicy::update_rs_lengths_prediction() {
 382   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
 383 }
 384 
 385 void G1DefaultPolicy::update_rs_lengths_prediction(size_t prediction) {
 386   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 387     _rs_lengths_prediction = prediction;
 388   }
 389 }
 390 
 391 #ifndef PRODUCT
 392 bool G1DefaultPolicy::verify_young_ages() {
 393   HeapRegion* head = _g1->young_list()->first_region();
 394   return
 395     verify_young_ages(head, _short_lived_surv_rate_group);
 396   // also call verify_young_ages on any additional surv rate groups
 397 }
 398 
 399 bool G1DefaultPolicy::verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group) {
 400   guarantee( surv_rate_group != NULL, "pre-condition" );
 401 
 402   const char* name = surv_rate_group->name();
 403   bool ret = true;
 404   int prev_age = -1;
 405 
 406   for (HeapRegion* curr = head;
 407        curr != NULL;
 408        curr = curr->get_next_young_region()) {
 409     SurvRateGroup* group = curr->surv_rate_group();
 410     if (group == NULL && !curr->is_survivor()) {
 411       log_error(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 412       ret = false;
 413     }
 414 
 415     if (surv_rate_group == group) {
 416       int age = curr->age_in_surv_rate_group();
 417 
 418       if (age < 0) {
 419         log_error(gc, verify)("## %s: encountered negative age", name);
 420         ret = false;
 421       }
 422 
 423       if (age <= prev_age) {
 424         log_error(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 425         ret = false;
 426       }
 427       prev_age = age;
 428     }
 429   }
 430 
 431   return ret;
 432 }
 433 #endif // PRODUCT
 434 
 435 void G1DefaultPolicy::record_full_collection_start() {
 436   _full_collection_start_sec = os::elapsedTime();
 437   // Release the future to-space so that it is available for compaction into.
 438   collector_state()->set_full_collection(true);
 439 }
 440 
 441 void G1DefaultPolicy::record_full_collection_end() {
 442   // Consider this like a collection pause for the purposes of allocation
 443   // since last pause.
 444   double end_sec = os::elapsedTime();
 445   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 446   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 447 
 448   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 449 
 450   collector_state()->set_full_collection(false);
 451 
 452   // "Nuke" the heuristics that control the young/mixed GC
 453   // transitions and make sure we start with young GCs after the Full GC.
 454   collector_state()->set_gcs_are_young(true);
 455   collector_state()->set_last_young_gc(false);
 456   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 457   collector_state()->set_during_initial_mark_pause(false);
 458   collector_state()->set_in_marking_window(false);
 459   collector_state()->set_in_marking_window_im(false);
 460 
 461   _short_lived_surv_rate_group->start_adding_regions();
 462   // also call this on any additional surv rate groups
 463 
 464   _free_regions_at_end_of_collection = _g1->num_free_regions();
 465   // Reset survivors SurvRateGroup.
 466   _survivor_surv_rate_group->reset();
 467   update_young_list_max_and_target_length();
 468   update_rs_lengths_prediction();
 469   cset_chooser()->clear();
 470 
 471   _bytes_allocated_in_old_since_last_gc = 0;
 472 
 473   record_pause(FullGC, _full_collection_start_sec, end_sec);
 474 }
 475 
 476 void G1DefaultPolicy::record_collection_pause_start(double start_time_sec) {
 477   // We only need to do this here as the policy will only be applied
 478   // to the GC we're about to start. so, no point is calculating this
 479   // every time we calculate / recalculate the target young length.
 480   update_survivors_policy();
 481 
 482   assert(_g1->used() == _g1->recalculate_used(),
 483          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 484          _g1->used(), _g1->recalculate_used());
 485 
 486   phase_times()->record_cur_collection_start_sec(start_time_sec);
 487   _pending_cards = _g1->pending_card_num();
 488 
 489   _collection_set->reset_bytes_used_before();
 490   _bytes_copied_during_gc = 0;
 491 
 492   collector_state()->set_last_gc_was_young(false);
 493 
 494   // do that for any other surv rate groups
 495   _short_lived_surv_rate_group->stop_adding_regions();
 496   _survivors_age_table.clear();
 497 
 498   assert( verify_young_ages(), "region age verification" );
 499 }
 500 
 501 void G1DefaultPolicy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 502   collector_state()->set_during_marking(true);
 503   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 504   collector_state()->set_during_initial_mark_pause(false);
 505 }
 506 
 507 void G1DefaultPolicy::record_concurrent_mark_remark_start() {
 508   _mark_remark_start_sec = os::elapsedTime();
 509   collector_state()->set_during_marking(false);
 510 }
 511 
 512 void G1DefaultPolicy::record_concurrent_mark_remark_end() {
 513   double end_time_sec = os::elapsedTime();
 514   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 515   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 516   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 517 
 518   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 519 }
 520 
 521 void G1DefaultPolicy::record_concurrent_mark_cleanup_start() {
 522   _mark_cleanup_start_sec = os::elapsedTime();
 523 }
 524 
 525 void G1DefaultPolicy::record_concurrent_mark_cleanup_completed() {
 526   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 527                                                               "skip last young-only gc");
 528   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 529   // We skip the marking phase.
 530   if (!should_continue_with_reclaim) {
 531     abort_time_to_mixed_tracking();
 532   }
 533   collector_state()->set_in_marking_window(false);
 534 }
 535 
 536 double G1DefaultPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 537   return phase_times()->average_time_ms(phase);
 538 }
 539 
 540 double G1DefaultPolicy::young_other_time_ms() const {
 541   return phase_times()->young_cset_choice_time_ms() +
 542          phase_times()->young_free_cset_time_ms();
 543 }
 544 
 545 double G1DefaultPolicy::non_young_other_time_ms() const {
 546   return phase_times()->non_young_cset_choice_time_ms() +
 547          phase_times()->non_young_free_cset_time_ms();
 548 
 549 }
 550 
 551 double G1DefaultPolicy::other_time_ms(double pause_time_ms) const {
 552   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 553 }
 554 
 555 double G1DefaultPolicy::constant_other_time_ms(double pause_time_ms) const {
 556   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 557 }
 558 
 559 CollectionSetChooser* G1DefaultPolicy::cset_chooser() const {
 560   return _collection_set->cset_chooser();
 561 }
 562 
 563 bool G1DefaultPolicy::about_to_start_mixed_phase() const {
 564   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 565 }
 566 
 567 bool G1DefaultPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 568   if (about_to_start_mixed_phase()) {
 569     return false;
 570   }
 571 
 572   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 573 
 574   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 575   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 576   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 577 
 578   bool result = false;
 579   if (marking_request_bytes > marking_initiating_used_threshold) {
 580     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 581     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 582                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 583                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 584   }
 585 
 586   return result;
 587 }
 588 
 589 // Anything below that is considered to be zero
 590 #define MIN_TIMER_GRANULARITY 0.0000001
 591 
 592 void G1DefaultPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 593   double end_time_sec = os::elapsedTime();
 594 
 595   size_t cur_used_bytes = _g1->used();
 596   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 597   bool last_pause_included_initial_mark = false;
 598   bool update_stats = !_g1->evacuation_failed();
 599 
 600   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 601 
 602   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 603 
 604   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 605   if (last_pause_included_initial_mark) {
 606     record_concurrent_mark_init_end(0.0);
 607   } else {
 608     maybe_start_marking();
 609   }
 610 
 611   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 612   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 613     // This usually happens due to the timer not having the required
 614     // granularity. Some Linuxes are the usual culprits.
 615     // We'll just set it to something (arbitrarily) small.
 616     app_time_ms = 1.0;
 617   }
 618 
 619   if (update_stats) {
 620     // We maintain the invariant that all objects allocated by mutator
 621     // threads will be allocated out of eden regions. So, we can use
 622     // the eden region number allocated since the previous GC to
 623     // calculate the application's allocate rate. The only exception
 624     // to that is humongous objects that are allocated separately. But
 625     // given that humongous object allocations do not really affect
 626     // either the pause's duration nor when the next pause will take
 627     // place we can safely ignore them here.
 628     uint regions_allocated = _collection_set->eden_region_length();
 629     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 630     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 631 
 632     double interval_ms =
 633       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 634     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 635     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 636   }
 637 
 638   bool new_in_marking_window = collector_state()->in_marking_window();
 639   bool new_in_marking_window_im = false;
 640   if (last_pause_included_initial_mark) {
 641     new_in_marking_window = true;
 642     new_in_marking_window_im = true;
 643   }
 644 
 645   if (collector_state()->last_young_gc()) {
 646     // This is supposed to to be the "last young GC" before we start
 647     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
 648     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
 649 
 650     if (next_gc_should_be_mixed("start mixed GCs",
 651                                 "do not start mixed GCs")) {
 652       collector_state()->set_gcs_are_young(false);
 653     } else {
 654       // We aborted the mixed GC phase early.
 655       abort_time_to_mixed_tracking();
 656     }
 657 
 658     collector_state()->set_last_young_gc(false);
 659   }
 660 
 661   if (!collector_state()->last_gc_was_young()) {
 662     // This is a mixed GC. Here we decide whether to continue doing
 663     // mixed GCs or not.
 664     if (!next_gc_should_be_mixed("continue mixed GCs",
 665                                  "do not continue mixed GCs")) {
 666       collector_state()->set_gcs_are_young(true);
 667 
 668       maybe_start_marking();
 669     }
 670   }
 671 
 672   _short_lived_surv_rate_group->start_adding_regions();
 673   // Do that for any other surv rate groups
 674 
 675   double scan_hcc_time_ms = ConcurrentG1Refine::hot_card_cache_enabled() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 676 
 677   if (update_stats) {
 678     double cost_per_card_ms = 0.0;
 679     if (_pending_cards > 0) {
 680       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 681       _analytics->report_cost_per_card_ms(cost_per_card_ms);
 682     }
 683     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
 684 
 685     double cost_per_entry_ms = 0.0;
 686     if (cards_scanned > 10) {
 687       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 688       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, collector_state()->last_gc_was_young());
 689     }
 690 
 691     if (_max_rs_lengths > 0) {
 692       double cards_per_entry_ratio =
 693         (double) cards_scanned / (double) _max_rs_lengths;
 694       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, collector_state()->last_gc_was_young());
 695     }
 696 
 697     // This is defensive. For a while _max_rs_lengths could get
 698     // smaller than _recorded_rs_lengths which was causing
 699     // rs_length_diff to get very large and mess up the RSet length
 700     // predictions. The reason was unsafe concurrent updates to the
 701     // _inc_cset_recorded_rs_lengths field which the code below guards
 702     // against (see CR 7118202). This bug has now been fixed (see CR
 703     // 7119027). However, I'm still worried that
 704     // _inc_cset_recorded_rs_lengths might still end up somewhat
 705     // inaccurate. The concurrent refinement thread calculates an
 706     // RSet's length concurrently with other CR threads updating it
 707     // which might cause it to calculate the length incorrectly (if,
 708     // say, it's in mid-coarsening). So I'll leave in the defensive
 709     // conditional below just in case.
 710     size_t rs_length_diff = 0;
 711     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 712     if (_max_rs_lengths > recorded_rs_lengths) {
 713       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 714     }
 715     _analytics->report_rs_length_diff((double) rs_length_diff);
 716 
 717     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 718     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 719     double cost_per_byte_ms = 0.0;
 720 
 721     if (copied_bytes > 0) {
 722       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 723       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->in_marking_window());
 724     }
 725 
 726     if (_collection_set->young_region_length() > 0) {
 727       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 728                                                         _collection_set->young_region_length());
 729     }
 730 
 731     if (_collection_set->old_region_length() > 0) {
 732       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 733                                                             _collection_set->old_region_length());
 734     }
 735 
 736     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 737 
 738     _analytics->report_pending_cards((double) _pending_cards);
 739     _analytics->report_rs_lengths((double) _max_rs_lengths);
 740   }
 741 
 742   collector_state()->set_in_marking_window(new_in_marking_window);
 743   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
 744   _free_regions_at_end_of_collection = _g1->num_free_regions();
 745   // IHOP control wants to know the expected young gen length if it were not
 746   // restrained by the heap reserve. Using the actual length would make the
 747   // prediction too small and the limit the young gen every time we get to the
 748   // predicted target occupancy.
 749   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 750   update_rs_lengths_prediction();
 751 
 752   update_ihop_prediction(app_time_ms / 1000.0,
 753                          _bytes_allocated_in_old_since_last_gc,
 754                          last_unrestrained_young_length * HeapRegion::GrainBytes);
 755   _bytes_allocated_in_old_since_last_gc = 0;
 756 
 757   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
 758 
 759   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 760   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 761 
 762   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
 763     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 764                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
 765                                 update_rs_time_goal_ms, scan_hcc_time_ms);
 766 
 767     update_rs_time_goal_ms = 0;
 768   } else {
 769     update_rs_time_goal_ms -= scan_hcc_time_ms;
 770   }
 771   _g1->concurrent_g1_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
 772                                       phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
 773                                       update_rs_time_goal_ms);
 774 
 775   cset_chooser()->verify();
 776 }
 777 
 778 G1IHOPControl* G1DefaultPolicy::create_ihop_control(const G1Predictions* predictor){
 779   if (G1UseAdaptiveIHOP) {
 780     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 781                                      predictor,
 782                                      G1ReservePercent,
 783                                      G1HeapWastePercent);
 784   } else {
 785     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 786   }
 787 }
 788 
 789 void G1DefaultPolicy::update_ihop_prediction(double mutator_time_s,
 790                                       size_t mutator_alloc_bytes,
 791                                       size_t young_gen_size) {
 792   // Always try to update IHOP prediction. Even evacuation failures give information
 793   // about e.g. whether to start IHOP earlier next time.
 794 
 795   // Avoid using really small application times that might create samples with
 796   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 797   double const min_valid_time = 1e-6;
 798 
 799   bool report = false;
 800 
 801   double marking_to_mixed_time = -1.0;
 802   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
 803     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 804     assert(marking_to_mixed_time > 0.0,
 805            "Initial mark to mixed time must be larger than zero but is %.3f",
 806            marking_to_mixed_time);
 807     if (marking_to_mixed_time > min_valid_time) {
 808       _ihop_control->update_marking_length(marking_to_mixed_time);
 809       report = true;
 810     }
 811   }
 812 
 813   // As an approximation for the young gc promotion rates during marking we use
 814   // all of them. In many applications there are only a few if any young gcs during
 815   // marking, which makes any prediction useless. This increases the accuracy of the
 816   // prediction.
 817   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
 818     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 819     report = true;
 820   }
 821 
 822   if (report) {
 823     report_ihop_statistics();
 824   }
 825 }
 826 
 827 void G1DefaultPolicy::report_ihop_statistics() {
 828   _ihop_control->print();
 829 }
 830 
 831 void G1DefaultPolicy::print_phases() {
 832   phase_times()->print();
 833 }
 834 
 835 double G1DefaultPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
 836   TruncatedSeq* seq = surv_rate_group->get_seq(age);
 837   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
 838   double pred = _predictor.get_new_prediction(seq);
 839   if (pred > 1.0) {
 840     pred = 1.0;
 841   }
 842   return pred;
 843 }
 844 
 845 double G1DefaultPolicy::predict_yg_surv_rate(int age) const {
 846   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 847 }
 848 
 849 double G1DefaultPolicy::accum_yg_surv_rate_pred(int age) const {
 850   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 851 }
 852 
 853 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
 854                                               size_t scanned_cards) const {
 855   return
 856     _analytics->predict_rs_update_time_ms(pending_cards) +
 857     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->gcs_are_young()) +
 858     _analytics->predict_constant_other_time_ms();
 859 }
 860 
 861 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 862   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
 863   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->gcs_are_young());
 864   return predict_base_elapsed_time_ms(pending_cards, card_num);
 865 }
 866 
 867 size_t G1DefaultPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
 868   size_t bytes_to_copy;
 869   if (hr->is_marked())
 870     bytes_to_copy = hr->max_live_bytes();
 871   else {
 872     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
 873     int age = hr->age_in_surv_rate_group();
 874     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
 875     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
 876   }
 877   return bytes_to_copy;
 878 }
 879 
 880 double G1DefaultPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
 881                                                 bool for_young_gc) const {
 882   size_t rs_length = hr->rem_set()->occupied();
 883   // Predicting the number of cards is based on which type of GC
 884   // we're predicting for.
 885   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
 886   size_t bytes_to_copy = predict_bytes_to_copy(hr);
 887 
 888   double region_elapsed_time_ms =
 889     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->gcs_are_young()) +
 890     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->during_concurrent_mark());
 891 
 892   // The prediction of the "other" time for this region is based
 893   // upon the region type and NOT the GC type.
 894   if (hr->is_young()) {
 895     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 896   } else {
 897     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 898   }
 899   return region_elapsed_time_ms;
 900 }
 901 
 902 
 903 void G1DefaultPolicy::print_yg_surv_rate_info() const {
 904 #ifndef PRODUCT
 905   _short_lived_surv_rate_group->print_surv_rate_summary();
 906   // add this call for any other surv rate groups
 907 #endif // PRODUCT
 908 }
 909 
 910 bool G1DefaultPolicy::should_allocate_mutator_region() const {
 911   uint young_list_length = _g1->young_list()->length();
 912   uint young_list_target_length = _young_list_target_length;
 913   return young_list_length < young_list_target_length;
 914 }
 915 
 916 bool G1DefaultPolicy::can_expand_young_list() const {
 917   uint young_list_length = _g1->young_list()->length();
 918   uint young_list_max_length = _young_list_max_length;
 919   return young_list_length < young_list_max_length;
 920 }
 921 
 922 bool G1DefaultPolicy::adaptive_young_list_length() const {
 923   return _young_gen_sizer.adaptive_young_list_length();
 924 }
 925 
 926 void G1DefaultPolicy::update_max_gc_locker_expansion() {
 927   uint expansion_region_num = 0;
 928   if (GCLockerEdenExpansionPercent > 0) {
 929     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 930     double expansion_region_num_d = perc * (double) _young_list_target_length;
 931     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 932     // less than 1.0) we'll get 1.
 933     expansion_region_num = (uint) ceil(expansion_region_num_d);
 934   } else {
 935     assert(expansion_region_num == 0, "sanity");
 936   }
 937   _young_list_max_length = _young_list_target_length + expansion_region_num;
 938   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
 939 }
 940 
 941 // Calculates survivor space parameters.
 942 void G1DefaultPolicy::update_survivors_policy() {
 943   double max_survivor_regions_d =
 944                  (double) _young_list_target_length / (double) SurvivorRatio;
 945   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
 946   // smaller than 1.0) we'll get 1.
 947   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
 948 
 949   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
 950       HeapRegion::GrainWords * _max_survivor_regions, _policy_counters);
 951 }
 952 
 953 bool G1DefaultPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
 954   // We actually check whether we are marking here and not if we are in a
 955   // reclamation phase. This means that we will schedule a concurrent mark
 956   // even while we are still in the process of reclaiming memory.
 957   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
 958   if (!during_cycle) {
 959     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
 960     collector_state()->set_initiate_conc_mark_if_possible(true);
 961     return true;
 962   } else {
 963     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
 964     return false;
 965   }
 966 }
 967 
 968 void G1DefaultPolicy::initiate_conc_mark() {
 969   collector_state()->set_during_initial_mark_pause(true);
 970   collector_state()->set_initiate_conc_mark_if_possible(false);
 971 }
 972 
 973 void G1DefaultPolicy::decide_on_conc_mark_initiation() {
 974   // We are about to decide on whether this pause will be an
 975   // initial-mark pause.
 976 
 977   // First, collector_state()->during_initial_mark_pause() should not be already set. We
 978   // will set it here if we have to. However, it should be cleared by
 979   // the end of the pause (it's only set for the duration of an
 980   // initial-mark pause).
 981   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
 982 
 983   if (collector_state()->initiate_conc_mark_if_possible()) {
 984     // We had noticed on a previous pause that the heap occupancy has
 985     // gone over the initiating threshold and we should start a
 986     // concurrent marking cycle. So we might initiate one.
 987 
 988     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
 989       // Initiate a new initial mark if there is no marking or reclamation going on.
 990       initiate_conc_mark();
 991       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
 992     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
 993       // Initiate a user requested initial mark. An initial mark must be young only
 994       // GC, so the collector state must be updated to reflect this.
 995       collector_state()->set_gcs_are_young(true);
 996       collector_state()->set_last_young_gc(false);
 997 
 998       abort_time_to_mixed_tracking();
 999       initiate_conc_mark();
1000       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1001     } else {
1002       // The concurrent marking thread is still finishing up the
1003       // previous cycle. If we start one right now the two cycles
1004       // overlap. In particular, the concurrent marking thread might
1005       // be in the process of clearing the next marking bitmap (which
1006       // we will use for the next cycle if we start one). Starting a
1007       // cycle now will be bad given that parts of the marking
1008       // information might get cleared by the marking thread. And we
1009       // cannot wait for the marking thread to finish the cycle as it
1010       // periodically yields while clearing the next marking bitmap
1011       // and, if it's in a yield point, it's waiting for us to
1012       // finish. So, at this point we will not start a cycle and we'll
1013       // let the concurrent marking thread complete the last one.
1014       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1015     }
1016   }
1017 }
1018 
1019 void G1DefaultPolicy::record_concurrent_mark_cleanup_end() {
1020   cset_chooser()->rebuild(_g1->workers(), _g1->num_regions());
1021 
1022   double end_sec = os::elapsedTime();
1023   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1024   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1025   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1026 
1027   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1028 }
1029 
1030 double G1DefaultPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1031   // Returns the given amount of reclaimable bytes (that represents
1032   // the amount of reclaimable space still to be collected) as a
1033   // percentage of the current heap capacity.
1034   size_t capacity_bytes = _g1->capacity();
1035   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1036 }
1037 
1038 void G1DefaultPolicy::maybe_start_marking() {
1039   if (need_to_start_conc_mark("end of GC")) {
1040     // Note: this might have already been set, if during the last
1041     // pause we decided to start a cycle but at the beginning of
1042     // this pause we decided to postpone it. That's OK.
1043     collector_state()->set_initiate_conc_mark_if_possible(true);
1044   }
1045 }
1046 
1047 G1DefaultPolicy::PauseKind G1DefaultPolicy::young_gc_pause_kind() const {
1048   assert(!collector_state()->full_collection(), "must be");
1049   if (collector_state()->during_initial_mark_pause()) {
1050     assert(collector_state()->last_gc_was_young(), "must be");
1051     assert(!collector_state()->last_young_gc(), "must be");
1052     return InitialMarkGC;
1053   } else if (collector_state()->last_young_gc()) {
1054     assert(!collector_state()->during_initial_mark_pause(), "must be");
1055     assert(collector_state()->last_gc_was_young(), "must be");
1056     return LastYoungGC;
1057   } else if (!collector_state()->last_gc_was_young()) {
1058     assert(!collector_state()->during_initial_mark_pause(), "must be");
1059     assert(!collector_state()->last_young_gc(), "must be");
1060     return MixedGC;
1061   } else {
1062     assert(collector_state()->last_gc_was_young(), "must be");
1063     assert(!collector_state()->during_initial_mark_pause(), "must be");
1064     assert(!collector_state()->last_young_gc(), "must be");
1065     return YoungOnlyGC;
1066   }
1067 }
1068 
1069 void G1DefaultPolicy::record_pause(PauseKind kind, double start, double end) {
1070   // Manage the MMU tracker. For some reason it ignores Full GCs.
1071   if (kind != FullGC) {
1072     _mmu_tracker->add_pause(start, end);
1073   }
1074   // Manage the mutator time tracking from initial mark to first mixed gc.
1075   switch (kind) {
1076     case FullGC:
1077       abort_time_to_mixed_tracking();
1078       break;
1079     case Cleanup:
1080     case Remark:
1081     case YoungOnlyGC:
1082     case LastYoungGC:
1083       _initial_mark_to_mixed.add_pause(end - start);
1084       break;
1085     case InitialMarkGC:
1086       _initial_mark_to_mixed.record_initial_mark_end(end);
1087       break;
1088     case MixedGC:
1089       _initial_mark_to_mixed.record_mixed_gc_start(start);
1090       break;
1091     default:
1092       ShouldNotReachHere();
1093   }
1094 }
1095 
1096 void G1DefaultPolicy::abort_time_to_mixed_tracking() {
1097   _initial_mark_to_mixed.reset();
1098 }
1099 
1100 bool G1DefaultPolicy::next_gc_should_be_mixed(const char* true_action_str,
1101                                        const char* false_action_str) const {
1102   if (cset_chooser()->is_empty()) {
1103     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1104     return false;
1105   }
1106 
1107   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1108   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1109   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1110   double threshold = (double) G1HeapWastePercent;
1111   if (reclaimable_perc <= threshold) {
1112     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1113                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1114     return false;
1115   }
1116   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1117                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1118   return true;
1119 }
1120 
1121 uint G1DefaultPolicy::calc_min_old_cset_length() const {
1122   // The min old CSet region bound is based on the maximum desired
1123   // number of mixed GCs after a cycle. I.e., even if some old regions
1124   // look expensive, we should add them to the CSet anyway to make
1125   // sure we go through the available old regions in no more than the
1126   // maximum desired number of mixed GCs.
1127   //
1128   // The calculation is based on the number of marked regions we added
1129   // to the CSet chooser in the first place, not how many remain, so
1130   // that the result is the same during all mixed GCs that follow a cycle.
1131 
1132   const size_t region_num = (size_t) cset_chooser()->length();
1133   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1134   size_t result = region_num / gc_num;
1135   // emulate ceiling
1136   if (result * gc_num < region_num) {
1137     result += 1;
1138   }
1139   return (uint) result;
1140 }
1141 
1142 uint G1DefaultPolicy::calc_max_old_cset_length() const {
1143   // The max old CSet region bound is based on the threshold expressed
1144   // as a percentage of the heap size. I.e., it should bound the
1145   // number of old regions added to the CSet irrespective of how many
1146   // of them are available.
1147 
1148   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1149   const size_t region_num = g1h->num_regions();
1150   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1151   size_t result = region_num * perc / 100;
1152   // emulate ceiling
1153   if (100 * result < region_num * perc) {
1154     result += 1;
1155   }
1156   return (uint) result;
1157 }
1158 
1159 void G1DefaultPolicy::finalize_collection_set(double target_pause_time_ms) {
1160   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms);
1161   _collection_set->finalize_old_part(time_remaining_ms);
1162 }