1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1Analytics.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectionSet.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1DefaultPolicy.hpp"
  33 #include "gc/g1/g1IHOPControl.hpp"
  34 #include "gc/g1/g1GCPhaseTimes.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1YoungGenSizer.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/shared/gcPolicyCounters.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/java.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "utilities/debug.hpp"
  44 #include "utilities/growableArray.hpp"
  45 #include "utilities/pair.hpp"
  46 
  47 G1DefaultPolicy::G1DefaultPolicy() :
  48   _predictor(G1ConfidencePercent / 100.0),
  49   _analytics(new G1Analytics(&_predictor)),
  50   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
  51   _ihop_control(create_ihop_control(&_predictor)),
  52   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 3)),
  53   _young_list_fixed_length(0),
  54   _short_lived_surv_rate_group(new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary)),
  55   _survivor_surv_rate_group(new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary)),
  56   _reserve_factor((double) G1ReservePercent / 100.0),
  57   _reserve_regions(0),
  58   _rs_lengths_prediction(0),
  59   _bytes_allocated_in_old_since_last_gc(0),
  60   _initial_mark_to_mixed(),
  61   _collection_set(NULL),
  62   _g1(NULL),
  63   _phase_times(new G1GCPhaseTimes(ParallelGCThreads)),
  64   _tenuring_threshold(MaxTenuringThreshold),
  65   _max_survivor_regions(0),
  66   _survivors_age_table(true) { }
  67 
  68 G1DefaultPolicy::~G1DefaultPolicy() {
  69   delete _ihop_control;
  70 }
  71 
  72 G1CollectorState* G1DefaultPolicy::collector_state() const { return _g1->collector_state(); }
  73 
  74 void G1DefaultPolicy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
  75   _g1 = g1h;
  76   _collection_set = collection_set;
  77 
  78   assert(Heap_lock->owned_by_self(), "Locking discipline.");
  79 
  80   if (!adaptive_young_list_length()) {
  81     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
  82   }
  83   _young_gen_sizer.adjust_max_new_size(_g1->max_regions());
  84 
  85   _free_regions_at_end_of_collection = _g1->num_free_regions();
  86 
  87   update_young_list_max_and_target_length();
  88   // We may immediately start allocating regions and placing them on the
  89   // collection set list. Initialize the per-collection set info
  90   _collection_set->start_incremental_building();
  91 }
  92 
  93 void G1DefaultPolicy::note_gc_start() {
  94   phase_times()->note_gc_start();
  95 }
  96 
  97 bool G1DefaultPolicy::predict_will_fit(uint young_length,
  98                                        double base_time_ms,
  99                                        uint base_free_regions,
 100                                        double target_pause_time_ms) const {
 101   if (young_length >= base_free_regions) {
 102     // end condition 1: not enough space for the young regions
 103     return false;
 104   }
 105 
 106   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 107   size_t bytes_to_copy =
 108                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 109   double copy_time_ms = _analytics->predict_object_copy_time_ms(bytes_to_copy,
 110                                                                 collector_state()->during_concurrent_mark());
 111   double young_other_time_ms = _analytics->predict_young_other_time_ms(young_length);
 112   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 113   if (pause_time_ms > target_pause_time_ms) {
 114     // end condition 2: prediction is over the target pause time
 115     return false;
 116   }
 117 
 118   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 119 
 120   // When copying, we will likely need more bytes free than is live in the region.
 121   // Add some safety margin to factor in the confidence of our guess, and the
 122   // natural expected waste.
 123   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 124   // of the calculation: the lower the confidence, the more headroom.
 125   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 126   // copying due to anticipated waste in the PLABs.
 127   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 128   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 129 
 130   if (expected_bytes_to_copy > free_bytes) {
 131     // end condition 3: out-of-space
 132     return false;
 133   }
 134 
 135   // success!
 136   return true;
 137 }
 138 
 139 void G1DefaultPolicy::record_new_heap_size(uint new_number_of_regions) {
 140   // re-calculate the necessary reserve
 141   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 142   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 143   // smaller than 1.0) we'll get 1.
 144   _reserve_regions = (uint) ceil(reserve_regions_d);
 145 
 146   _young_gen_sizer.heap_size_changed(new_number_of_regions);
 147 
 148   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 149 }
 150 
 151 uint G1DefaultPolicy::calculate_young_list_desired_min_length(uint base_min_length) const {
 152   uint desired_min_length = 0;
 153   if (adaptive_young_list_length()) {
 154     if (_analytics->num_alloc_rate_ms() > 3) {
 155       double now_sec = os::elapsedTime();
 156       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 157       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
 158       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 159     } else {
 160       // otherwise we don't have enough info to make the prediction
 161     }
 162   }
 163   desired_min_length += base_min_length;
 164   // make sure we don't go below any user-defined minimum bound
 165   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
 166 }
 167 
 168 uint G1DefaultPolicy::calculate_young_list_desired_max_length() const {
 169   // Here, we might want to also take into account any additional
 170   // constraints (i.e., user-defined minimum bound). Currently, we
 171   // effectively don't set this bound.
 172   return _young_gen_sizer.max_desired_young_length();
 173 }
 174 
 175 uint G1DefaultPolicy::update_young_list_max_and_target_length() {
 176   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
 177 }
 178 
 179 uint G1DefaultPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 180   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 181   update_max_gc_locker_expansion();
 182   return unbounded_target_length;
 183 }
 184 
 185 uint G1DefaultPolicy::update_young_list_target_length(size_t rs_lengths) {
 186   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 187   _young_list_target_length = young_lengths.first;
 188   return young_lengths.second;
 189 }
 190 
 191 G1DefaultPolicy::YoungTargetLengths G1DefaultPolicy::young_list_target_lengths(size_t rs_lengths) const {
 192   YoungTargetLengths result;
 193 
 194   // Calculate the absolute and desired min bounds first.
 195 
 196   // This is how many young regions we already have (currently: the survivors).
 197   const uint base_min_length = _g1->young_list()->survivor_length();
 198   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 199   // This is the absolute minimum young length. Ensure that we
 200   // will at least have one eden region available for allocation.
 201   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 202   // If we shrank the young list target it should not shrink below the current size.
 203   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 204   // Calculate the absolute and desired max bounds.
 205 
 206   uint desired_max_length = calculate_young_list_desired_max_length();
 207 
 208   uint young_list_target_length = 0;
 209   if (adaptive_young_list_length()) {
 210     if (collector_state()->gcs_are_young()) {
 211       young_list_target_length =
 212                         calculate_young_list_target_length(rs_lengths,
 213                                                            base_min_length,
 214                                                            desired_min_length,
 215                                                            desired_max_length);
 216     } else {
 217       // Don't calculate anything and let the code below bound it to
 218       // the desired_min_length, i.e., do the next GC as soon as
 219       // possible to maximize how many old regions we can add to it.
 220     }
 221   } else {
 222     // The user asked for a fixed young gen so we'll fix the young gen
 223     // whether the next GC is young or mixed.
 224     young_list_target_length = _young_list_fixed_length;
 225   }
 226 
 227   result.second = young_list_target_length;
 228 
 229   // We will try our best not to "eat" into the reserve.
 230   uint absolute_max_length = 0;
 231   if (_free_regions_at_end_of_collection > _reserve_regions) {
 232     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 233   }
 234   if (desired_max_length > absolute_max_length) {
 235     desired_max_length = absolute_max_length;
 236   }
 237 
 238   // Make sure we don't go over the desired max length, nor under the
 239   // desired min length. In case they clash, desired_min_length wins
 240   // which is why that test is second.
 241   if (young_list_target_length > desired_max_length) {
 242     young_list_target_length = desired_max_length;
 243   }
 244   if (young_list_target_length < desired_min_length) {
 245     young_list_target_length = desired_min_length;
 246   }
 247 
 248   assert(young_list_target_length > base_min_length,
 249          "we should be able to allocate at least one eden region");
 250   assert(young_list_target_length >= absolute_min_length, "post-condition");
 251 
 252   result.first = young_list_target_length;
 253   return result;
 254 }
 255 
 256 uint
 257 G1DefaultPolicy::calculate_young_list_target_length(size_t rs_lengths,
 258                                                     uint base_min_length,
 259                                                     uint desired_min_length,
 260                                                     uint desired_max_length) const {
 261   assert(adaptive_young_list_length(), "pre-condition");
 262   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 263 
 264   // In case some edge-condition makes the desired max length too small...
 265   if (desired_max_length <= desired_min_length) {
 266     return desired_min_length;
 267   }
 268 
 269   // We'll adjust min_young_length and max_young_length not to include
 270   // the already allocated young regions (i.e., so they reflect the
 271   // min and max eden regions we'll allocate). The base_min_length
 272   // will be reflected in the predictions by the
 273   // survivor_regions_evac_time prediction.
 274   assert(desired_min_length > base_min_length, "invariant");
 275   uint min_young_length = desired_min_length - base_min_length;
 276   assert(desired_max_length > base_min_length, "invariant");
 277   uint max_young_length = desired_max_length - base_min_length;
 278 
 279   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 280   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 281   size_t pending_cards = _analytics->predict_pending_cards();
 282   size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
 283   size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, /* gcs_are_young */ true);
 284   double base_time_ms =
 285     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 286     survivor_regions_evac_time;
 287   uint available_free_regions = _free_regions_at_end_of_collection;
 288   uint base_free_regions = 0;
 289   if (available_free_regions > _reserve_regions) {
 290     base_free_regions = available_free_regions - _reserve_regions;
 291   }
 292 
 293   // Here, we will make sure that the shortest young length that
 294   // makes sense fits within the target pause time.
 295 
 296   if (predict_will_fit(min_young_length, base_time_ms,
 297                        base_free_regions, target_pause_time_ms)) {
 298     // The shortest young length will fit into the target pause time;
 299     // we'll now check whether the absolute maximum number of young
 300     // regions will fit in the target pause time. If not, we'll do
 301     // a binary search between min_young_length and max_young_length.
 302     if (predict_will_fit(max_young_length, base_time_ms,
 303                          base_free_regions, target_pause_time_ms)) {
 304       // The maximum young length will fit into the target pause time.
 305       // We are done so set min young length to the maximum length (as
 306       // the result is assumed to be returned in min_young_length).
 307       min_young_length = max_young_length;
 308     } else {
 309       // The maximum possible number of young regions will not fit within
 310       // the target pause time so we'll search for the optimal
 311       // length. The loop invariants are:
 312       //
 313       // min_young_length < max_young_length
 314       // min_young_length is known to fit into the target pause time
 315       // max_young_length is known not to fit into the target pause time
 316       //
 317       // Going into the loop we know the above hold as we've just
 318       // checked them. Every time around the loop we check whether
 319       // the middle value between min_young_length and
 320       // max_young_length fits into the target pause time. If it
 321       // does, it becomes the new min. If it doesn't, it becomes
 322       // the new max. This way we maintain the loop invariants.
 323 
 324       assert(min_young_length < max_young_length, "invariant");
 325       uint diff = (max_young_length - min_young_length) / 2;
 326       while (diff > 0) {
 327         uint young_length = min_young_length + diff;
 328         if (predict_will_fit(young_length, base_time_ms,
 329                              base_free_regions, target_pause_time_ms)) {
 330           min_young_length = young_length;
 331         } else {
 332           max_young_length = young_length;
 333         }
 334         assert(min_young_length <  max_young_length, "invariant");
 335         diff = (max_young_length - min_young_length) / 2;
 336       }
 337       // The results is min_young_length which, according to the
 338       // loop invariants, should fit within the target pause time.
 339 
 340       // These are the post-conditions of the binary search above:
 341       assert(min_young_length < max_young_length,
 342              "otherwise we should have discovered that max_young_length "
 343              "fits into the pause target and not done the binary search");
 344       assert(predict_will_fit(min_young_length, base_time_ms,
 345                               base_free_regions, target_pause_time_ms),
 346              "min_young_length, the result of the binary search, should "
 347              "fit into the pause target");
 348       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 349                                base_free_regions, target_pause_time_ms),
 350              "min_young_length, the result of the binary search, should be "
 351              "optimal, so no larger length should fit into the pause target");
 352     }
 353   } else {
 354     // Even the minimum length doesn't fit into the pause time
 355     // target, return it as the result nevertheless.
 356   }
 357   return base_min_length + min_young_length;
 358 }
 359 
 360 double G1DefaultPolicy::predict_survivor_regions_evac_time() const {
 361   double survivor_regions_evac_time = 0.0;
 362   const GrowableArray<HeapRegion*>* survivor_regions = _g1->young_list()->survivor_regions();
 363 
 364   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
 365        it != survivor_regions->end();
 366        ++it) {
 367     survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->gcs_are_young());
 368   }
 369   return survivor_regions_evac_time;
 370 }
 371 
 372 void G1DefaultPolicy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 373   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 374 
 375   if (rs_lengths > _rs_lengths_prediction) {
 376     // add 10% to avoid having to recalculate often
 377     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 378     update_rs_lengths_prediction(rs_lengths_prediction);
 379 
 380     update_young_list_max_and_target_length(rs_lengths_prediction);
 381   }
 382 }
 383 
 384 void G1DefaultPolicy::update_rs_lengths_prediction() {
 385   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
 386 }
 387 
 388 void G1DefaultPolicy::update_rs_lengths_prediction(size_t prediction) {
 389   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 390     _rs_lengths_prediction = prediction;
 391   }
 392 }
 393 
 394 #ifndef PRODUCT
 395 bool G1DefaultPolicy::verify_young_ages() {
 396   HeapRegion* head = _g1->young_list()->first_region();
 397   return
 398     verify_young_ages(head, _short_lived_surv_rate_group);
 399   // also call verify_young_ages on any additional surv rate groups
 400 }
 401 
 402 bool G1DefaultPolicy::verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group) {
 403   guarantee( surv_rate_group != NULL, "pre-condition" );
 404 
 405   const char* name = surv_rate_group->name();
 406   bool ret = true;
 407   int prev_age = -1;
 408 
 409   for (HeapRegion* curr = head;
 410        curr != NULL;
 411        curr = curr->get_next_young_region()) {
 412     SurvRateGroup* group = curr->surv_rate_group();
 413     if (group == NULL && !curr->is_survivor()) {
 414       log_error(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 415       ret = false;
 416     }
 417 
 418     if (surv_rate_group == group) {
 419       int age = curr->age_in_surv_rate_group();
 420 
 421       if (age < 0) {
 422         log_error(gc, verify)("## %s: encountered negative age", name);
 423         ret = false;
 424       }
 425 
 426       if (age <= prev_age) {
 427         log_error(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 428         ret = false;
 429       }
 430       prev_age = age;
 431     }
 432   }
 433 
 434   return ret;
 435 }
 436 #endif // PRODUCT
 437 
 438 void G1DefaultPolicy::record_full_collection_start() {
 439   _full_collection_start_sec = os::elapsedTime();
 440   // Release the future to-space so that it is available for compaction into.
 441   collector_state()->set_full_collection(true);
 442 }
 443 
 444 void G1DefaultPolicy::record_full_collection_end() {
 445   // Consider this like a collection pause for the purposes of allocation
 446   // since last pause.
 447   double end_sec = os::elapsedTime();
 448   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 449   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 450 
 451   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
 452 
 453   collector_state()->set_full_collection(false);
 454 
 455   // "Nuke" the heuristics that control the young/mixed GC
 456   // transitions and make sure we start with young GCs after the Full GC.
 457   collector_state()->set_gcs_are_young(true);
 458   collector_state()->set_last_young_gc(false);
 459   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 460   collector_state()->set_during_initial_mark_pause(false);
 461   collector_state()->set_in_marking_window(false);
 462   collector_state()->set_in_marking_window_im(false);
 463 
 464   _short_lived_surv_rate_group->start_adding_regions();
 465   // also call this on any additional surv rate groups
 466 
 467   _free_regions_at_end_of_collection = _g1->num_free_regions();
 468   // Reset survivors SurvRateGroup.
 469   _survivor_surv_rate_group->reset();
 470   update_young_list_max_and_target_length();
 471   update_rs_lengths_prediction();
 472   cset_chooser()->clear();
 473 
 474   _bytes_allocated_in_old_since_last_gc = 0;
 475 
 476   record_pause(FullGC, _full_collection_start_sec, end_sec);
 477 }
 478 
 479 void G1DefaultPolicy::record_collection_pause_start(double start_time_sec) {
 480   // We only need to do this here as the policy will only be applied
 481   // to the GC we're about to start. so, no point is calculating this
 482   // every time we calculate / recalculate the target young length.
 483   update_survivors_policy();
 484 
 485   assert(_g1->used() == _g1->recalculate_used(),
 486          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 487          _g1->used(), _g1->recalculate_used());
 488 
 489   phase_times()->record_cur_collection_start_sec(start_time_sec);
 490   _pending_cards = _g1->pending_card_num();
 491 
 492   _collection_set->reset_bytes_used_before();
 493   _bytes_copied_during_gc = 0;
 494 
 495   collector_state()->set_last_gc_was_young(false);
 496 
 497   // do that for any other surv rate groups
 498   _short_lived_surv_rate_group->stop_adding_regions();
 499   _survivors_age_table.clear();
 500 
 501   assert( verify_young_ages(), "region age verification" );
 502 }
 503 
 504 void G1DefaultPolicy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
 505   collector_state()->set_during_marking(true);
 506   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 507   collector_state()->set_during_initial_mark_pause(false);
 508 }
 509 
 510 void G1DefaultPolicy::record_concurrent_mark_remark_start() {
 511   _mark_remark_start_sec = os::elapsedTime();
 512   collector_state()->set_during_marking(false);
 513 }
 514 
 515 void G1DefaultPolicy::record_concurrent_mark_remark_end() {
 516   double end_time_sec = os::elapsedTime();
 517   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 518   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 519   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
 520 
 521   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 522 }
 523 
 524 void G1DefaultPolicy::record_concurrent_mark_cleanup_start() {
 525   _mark_cleanup_start_sec = os::elapsedTime();
 526 }
 527 
 528 void G1DefaultPolicy::record_concurrent_mark_cleanup_completed() {
 529   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 530                                                               "skip last young-only gc");
 531   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 532   // We skip the marking phase.
 533   if (!should_continue_with_reclaim) {
 534     abort_time_to_mixed_tracking();
 535   }
 536   collector_state()->set_in_marking_window(false);
 537 }
 538 
 539 double G1DefaultPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 540   return phase_times()->average_time_ms(phase);
 541 }
 542 
 543 double G1DefaultPolicy::young_other_time_ms() const {
 544   return phase_times()->young_cset_choice_time_ms() +
 545          phase_times()->young_free_cset_time_ms();
 546 }
 547 
 548 double G1DefaultPolicy::non_young_other_time_ms() const {
 549   return phase_times()->non_young_cset_choice_time_ms() +
 550          phase_times()->non_young_free_cset_time_ms();
 551 
 552 }
 553 
 554 double G1DefaultPolicy::other_time_ms(double pause_time_ms) const {
 555   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
 556 }
 557 
 558 double G1DefaultPolicy::constant_other_time_ms(double pause_time_ms) const {
 559   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 560 }
 561 
 562 CollectionSetChooser* G1DefaultPolicy::cset_chooser() const {
 563   return _collection_set->cset_chooser();
 564 }
 565 
 566 bool G1DefaultPolicy::about_to_start_mixed_phase() const {
 567   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 568 }
 569 
 570 bool G1DefaultPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 571   if (about_to_start_mixed_phase()) {
 572     return false;
 573   }
 574 
 575   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 576 
 577   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 578   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 579   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 580 
 581   bool result = false;
 582   if (marking_request_bytes > marking_initiating_used_threshold) {
 583     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 584     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 585                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 586                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 587   }
 588 
 589   return result;
 590 }
 591 
 592 // Anything below that is considered to be zero
 593 #define MIN_TIMER_GRANULARITY 0.0000001
 594 
 595 void G1DefaultPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 596   double end_time_sec = os::elapsedTime();
 597 
 598   size_t cur_used_bytes = _g1->used();
 599   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 600   bool last_pause_included_initial_mark = false;
 601   bool update_stats = !_g1->evacuation_failed();
 602 
 603   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 604 
 605   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 606 
 607   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 608   if (last_pause_included_initial_mark) {
 609     record_concurrent_mark_init_end(0.0);
 610   } else {
 611     maybe_start_marking();
 612   }
 613 
 614   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
 615   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 616     // This usually happens due to the timer not having the required
 617     // granularity. Some Linuxes are the usual culprits.
 618     // We'll just set it to something (arbitrarily) small.
 619     app_time_ms = 1.0;
 620   }
 621 
 622   if (update_stats) {
 623     // We maintain the invariant that all objects allocated by mutator
 624     // threads will be allocated out of eden regions. So, we can use
 625     // the eden region number allocated since the previous GC to
 626     // calculate the application's allocate rate. The only exception
 627     // to that is humongous objects that are allocated separately. But
 628     // given that humongous object allocations do not really affect
 629     // either the pause's duration nor when the next pause will take
 630     // place we can safely ignore them here.
 631     uint regions_allocated = _collection_set->eden_region_length();
 632     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 633     _analytics->report_alloc_rate_ms(alloc_rate_ms);
 634 
 635     double interval_ms =
 636       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
 637     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
 638     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
 639   }
 640 
 641   bool new_in_marking_window = collector_state()->in_marking_window();
 642   bool new_in_marking_window_im = false;
 643   if (last_pause_included_initial_mark) {
 644     new_in_marking_window = true;
 645     new_in_marking_window_im = true;
 646   }
 647 
 648   if (collector_state()->last_young_gc()) {
 649     // This is supposed to to be the "last young GC" before we start
 650     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
 651     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
 652 
 653     if (next_gc_should_be_mixed("start mixed GCs",
 654                                 "do not start mixed GCs")) {
 655       collector_state()->set_gcs_are_young(false);
 656     } else {
 657       // We aborted the mixed GC phase early.
 658       abort_time_to_mixed_tracking();
 659     }
 660 
 661     collector_state()->set_last_young_gc(false);
 662   }
 663 
 664   if (!collector_state()->last_gc_was_young()) {
 665     // This is a mixed GC. Here we decide whether to continue doing
 666     // mixed GCs or not.
 667     if (!next_gc_should_be_mixed("continue mixed GCs",
 668                                  "do not continue mixed GCs")) {
 669       collector_state()->set_gcs_are_young(true);
 670 
 671       maybe_start_marking();
 672     }
 673   }
 674 
 675   _short_lived_surv_rate_group->start_adding_regions();
 676   // Do that for any other surv rate groups
 677 
 678   double scan_hcc_time_ms = ConcurrentG1Refine::hot_card_cache_enabled() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 679 
 680   if (update_stats) {
 681     double cost_per_card_ms = 0.0;
 682     if (_pending_cards > 0) {
 683       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 684       _analytics->report_cost_per_card_ms(cost_per_card_ms);
 685     }
 686     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
 687 
 688     double cost_per_entry_ms = 0.0;
 689     if (cards_scanned > 10) {
 690       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 691       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, collector_state()->last_gc_was_young());
 692     }
 693 
 694     if (_max_rs_lengths > 0) {
 695       double cards_per_entry_ratio =
 696         (double) cards_scanned / (double) _max_rs_lengths;
 697       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, collector_state()->last_gc_was_young());
 698     }
 699 
 700     // This is defensive. For a while _max_rs_lengths could get
 701     // smaller than _recorded_rs_lengths which was causing
 702     // rs_length_diff to get very large and mess up the RSet length
 703     // predictions. The reason was unsafe concurrent updates to the
 704     // _inc_cset_recorded_rs_lengths field which the code below guards
 705     // against (see CR 7118202). This bug has now been fixed (see CR
 706     // 7119027). However, I'm still worried that
 707     // _inc_cset_recorded_rs_lengths might still end up somewhat
 708     // inaccurate. The concurrent refinement thread calculates an
 709     // RSet's length concurrently with other CR threads updating it
 710     // which might cause it to calculate the length incorrectly (if,
 711     // say, it's in mid-coarsening). So I'll leave in the defensive
 712     // conditional below just in case.
 713     size_t rs_length_diff = 0;
 714     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 715     if (_max_rs_lengths > recorded_rs_lengths) {
 716       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 717     }
 718     _analytics->report_rs_length_diff((double) rs_length_diff);
 719 
 720     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 721     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 722     double cost_per_byte_ms = 0.0;
 723 
 724     if (copied_bytes > 0) {
 725       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 726       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->in_marking_window());
 727     }
 728 
 729     if (_collection_set->young_region_length() > 0) {
 730       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
 731                                                         _collection_set->young_region_length());
 732     }
 733 
 734     if (_collection_set->old_region_length() > 0) {
 735       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 736                                                             _collection_set->old_region_length());
 737     }
 738 
 739     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 740 
 741     _analytics->report_pending_cards((double) _pending_cards);
 742     _analytics->report_rs_lengths((double) _max_rs_lengths);
 743   }
 744 
 745   collector_state()->set_in_marking_window(new_in_marking_window);
 746   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
 747   _free_regions_at_end_of_collection = _g1->num_free_regions();
 748   // IHOP control wants to know the expected young gen length if it were not
 749   // restrained by the heap reserve. Using the actual length would make the
 750   // prediction too small and the limit the young gen every time we get to the
 751   // predicted target occupancy.
 752   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 753   update_rs_lengths_prediction();
 754 
 755   update_ihop_prediction(app_time_ms / 1000.0,
 756                          _bytes_allocated_in_old_since_last_gc,
 757                          last_unrestrained_young_length * HeapRegion::GrainBytes);
 758   _bytes_allocated_in_old_since_last_gc = 0;
 759 
 760   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
 761 
 762   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 763   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 764 
 765   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
 766     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 767                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
 768                                 update_rs_time_goal_ms, scan_hcc_time_ms);
 769 
 770     update_rs_time_goal_ms = 0;
 771   } else {
 772     update_rs_time_goal_ms -= scan_hcc_time_ms;
 773   }
 774   _g1->concurrent_g1_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
 775                                       phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
 776                                       update_rs_time_goal_ms);
 777 
 778   cset_chooser()->verify();
 779 }
 780 
 781 G1IHOPControl* G1DefaultPolicy::create_ihop_control(const G1Predictions* predictor){
 782   if (G1UseAdaptiveIHOP) {
 783     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 784                                      predictor,
 785                                      G1ReservePercent,
 786                                      G1HeapWastePercent);
 787   } else {
 788     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 789   }
 790 }
 791 
 792 void G1DefaultPolicy::update_ihop_prediction(double mutator_time_s,
 793                                       size_t mutator_alloc_bytes,
 794                                       size_t young_gen_size) {
 795   // Always try to update IHOP prediction. Even evacuation failures give information
 796   // about e.g. whether to start IHOP earlier next time.
 797 
 798   // Avoid using really small application times that might create samples with
 799   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 800   double const min_valid_time = 1e-6;
 801 
 802   bool report = false;
 803 
 804   double marking_to_mixed_time = -1.0;
 805   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
 806     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 807     assert(marking_to_mixed_time > 0.0,
 808            "Initial mark to mixed time must be larger than zero but is %.3f",
 809            marking_to_mixed_time);
 810     if (marking_to_mixed_time > min_valid_time) {
 811       _ihop_control->update_marking_length(marking_to_mixed_time);
 812       report = true;
 813     }
 814   }
 815 
 816   // As an approximation for the young gc promotion rates during marking we use
 817   // all of them. In many applications there are only a few if any young gcs during
 818   // marking, which makes any prediction useless. This increases the accuracy of the
 819   // prediction.
 820   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
 821     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 822     report = true;
 823   }
 824 
 825   if (report) {
 826     report_ihop_statistics();
 827   }
 828 }
 829 
 830 void G1DefaultPolicy::report_ihop_statistics() {
 831   _ihop_control->print();
 832 }
 833 
 834 void G1DefaultPolicy::print_phases() {
 835   phase_times()->print();
 836 }
 837 
 838 double G1DefaultPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
 839   TruncatedSeq* seq = surv_rate_group->get_seq(age);
 840   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
 841   double pred = _predictor.get_new_prediction(seq);
 842   if (pred > 1.0) {
 843     pred = 1.0;
 844   }
 845   return pred;
 846 }
 847 
 848 double G1DefaultPolicy::predict_yg_surv_rate(int age) const {
 849   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 850 }
 851 
 852 double G1DefaultPolicy::accum_yg_surv_rate_pred(int age) const {
 853   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 854 }
 855 
 856 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
 857                                               size_t scanned_cards) const {
 858   return
 859     _analytics->predict_rs_update_time_ms(pending_cards) +
 860     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->gcs_are_young()) +
 861     _analytics->predict_constant_other_time_ms();
 862 }
 863 
 864 double G1DefaultPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
 865   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
 866   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->gcs_are_young());
 867   return predict_base_elapsed_time_ms(pending_cards, card_num);
 868 }
 869 
 870 size_t G1DefaultPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
 871   size_t bytes_to_copy;
 872   if (hr->is_marked())
 873     bytes_to_copy = hr->max_live_bytes();
 874   else {
 875     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
 876     int age = hr->age_in_surv_rate_group();
 877     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
 878     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
 879   }
 880   return bytes_to_copy;
 881 }
 882 
 883 double G1DefaultPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
 884                                                 bool for_young_gc) const {
 885   size_t rs_length = hr->rem_set()->occupied();
 886   // Predicting the number of cards is based on which type of GC
 887   // we're predicting for.
 888   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
 889   size_t bytes_to_copy = predict_bytes_to_copy(hr);
 890 
 891   double region_elapsed_time_ms =
 892     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->gcs_are_young()) +
 893     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->during_concurrent_mark());
 894 
 895   // The prediction of the "other" time for this region is based
 896   // upon the region type and NOT the GC type.
 897   if (hr->is_young()) {
 898     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
 899   } else {
 900     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
 901   }
 902   return region_elapsed_time_ms;
 903 }
 904 
 905 
 906 void G1DefaultPolicy::print_yg_surv_rate_info() const {
 907 #ifndef PRODUCT
 908   _short_lived_surv_rate_group->print_surv_rate_summary();
 909   // add this call for any other surv rate groups
 910 #endif // PRODUCT
 911 }
 912 
 913 bool G1DefaultPolicy::should_allocate_mutator_region() const {
 914   uint young_list_length = _g1->young_list()->length();
 915   uint young_list_target_length = _young_list_target_length;
 916   return young_list_length < young_list_target_length;
 917 }
 918 
 919 bool G1DefaultPolicy::can_expand_young_list() const {
 920   uint young_list_length = _g1->young_list()->length();
 921   uint young_list_max_length = _young_list_max_length;
 922   return young_list_length < young_list_max_length;
 923 }
 924 
 925 bool G1DefaultPolicy::adaptive_young_list_length() const {
 926   return _young_gen_sizer.adaptive_young_list_length();
 927 }
 928 
 929 void G1DefaultPolicy::update_max_gc_locker_expansion() {
 930   uint expansion_region_num = 0;
 931   if (GCLockerEdenExpansionPercent > 0) {
 932     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
 933     double expansion_region_num_d = perc * (double) _young_list_target_length;
 934     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
 935     // less than 1.0) we'll get 1.
 936     expansion_region_num = (uint) ceil(expansion_region_num_d);
 937   } else {
 938     assert(expansion_region_num == 0, "sanity");
 939   }
 940   _young_list_max_length = _young_list_target_length + expansion_region_num;
 941   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
 942 }
 943 
 944 // Calculates survivor space parameters.
 945 void G1DefaultPolicy::update_survivors_policy() {
 946   double max_survivor_regions_d =
 947                  (double) _young_list_target_length / (double) SurvivorRatio;
 948   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
 949   // smaller than 1.0) we'll get 1.
 950   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
 951 
 952   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
 953       HeapRegion::GrainWords * _max_survivor_regions, _policy_counters);
 954 }
 955 
 956 bool G1DefaultPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
 957   // We actually check whether we are marking here and not if we are in a
 958   // reclamation phase. This means that we will schedule a concurrent mark
 959   // even while we are still in the process of reclaiming memory.
 960   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
 961   if (!during_cycle) {
 962     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
 963     collector_state()->set_initiate_conc_mark_if_possible(true);
 964     return true;
 965   } else {
 966     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
 967     return false;
 968   }
 969 }
 970 
 971 void G1DefaultPolicy::initiate_conc_mark() {
 972   collector_state()->set_during_initial_mark_pause(true);
 973   collector_state()->set_initiate_conc_mark_if_possible(false);
 974 }
 975 
 976 void G1DefaultPolicy::decide_on_conc_mark_initiation() {
 977   // We are about to decide on whether this pause will be an
 978   // initial-mark pause.
 979 
 980   // First, collector_state()->during_initial_mark_pause() should not be already set. We
 981   // will set it here if we have to. However, it should be cleared by
 982   // the end of the pause (it's only set for the duration of an
 983   // initial-mark pause).
 984   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
 985 
 986   if (collector_state()->initiate_conc_mark_if_possible()) {
 987     // We had noticed on a previous pause that the heap occupancy has
 988     // gone over the initiating threshold and we should start a
 989     // concurrent marking cycle. So we might initiate one.
 990 
 991     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
 992       // Initiate a new initial mark if there is no marking or reclamation going on.
 993       initiate_conc_mark();
 994       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
 995     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
 996       // Initiate a user requested initial mark. An initial mark must be young only
 997       // GC, so the collector state must be updated to reflect this.
 998       collector_state()->set_gcs_are_young(true);
 999       collector_state()->set_last_young_gc(false);
1000 
1001       abort_time_to_mixed_tracking();
1002       initiate_conc_mark();
1003       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1004     } else {
1005       // The concurrent marking thread is still finishing up the
1006       // previous cycle. If we start one right now the two cycles
1007       // overlap. In particular, the concurrent marking thread might
1008       // be in the process of clearing the next marking bitmap (which
1009       // we will use for the next cycle if we start one). Starting a
1010       // cycle now will be bad given that parts of the marking
1011       // information might get cleared by the marking thread. And we
1012       // cannot wait for the marking thread to finish the cycle as it
1013       // periodically yields while clearing the next marking bitmap
1014       // and, if it's in a yield point, it's waiting for us to
1015       // finish. So, at this point we will not start a cycle and we'll
1016       // let the concurrent marking thread complete the last one.
1017       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1018     }
1019   }
1020 }
1021 
1022 void G1DefaultPolicy::record_concurrent_mark_cleanup_end() {
1023   cset_chooser()->rebuild(_g1->workers(), _g1->num_regions());
1024 
1025   double end_sec = os::elapsedTime();
1026   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1027   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1028   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
1029 
1030   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1031 }
1032 
1033 double G1DefaultPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1034   // Returns the given amount of reclaimable bytes (that represents
1035   // the amount of reclaimable space still to be collected) as a
1036   // percentage of the current heap capacity.
1037   size_t capacity_bytes = _g1->capacity();
1038   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1039 }
1040 
1041 void G1DefaultPolicy::maybe_start_marking() {
1042   if (need_to_start_conc_mark("end of GC")) {
1043     // Note: this might have already been set, if during the last
1044     // pause we decided to start a cycle but at the beginning of
1045     // this pause we decided to postpone it. That's OK.
1046     collector_state()->set_initiate_conc_mark_if_possible(true);
1047   }
1048 }
1049 
1050 G1DefaultPolicy::PauseKind G1DefaultPolicy::young_gc_pause_kind() const {
1051   assert(!collector_state()->full_collection(), "must be");
1052   if (collector_state()->during_initial_mark_pause()) {
1053     assert(collector_state()->last_gc_was_young(), "must be");
1054     assert(!collector_state()->last_young_gc(), "must be");
1055     return InitialMarkGC;
1056   } else if (collector_state()->last_young_gc()) {
1057     assert(!collector_state()->during_initial_mark_pause(), "must be");
1058     assert(collector_state()->last_gc_was_young(), "must be");
1059     return LastYoungGC;
1060   } else if (!collector_state()->last_gc_was_young()) {
1061     assert(!collector_state()->during_initial_mark_pause(), "must be");
1062     assert(!collector_state()->last_young_gc(), "must be");
1063     return MixedGC;
1064   } else {
1065     assert(collector_state()->last_gc_was_young(), "must be");
1066     assert(!collector_state()->during_initial_mark_pause(), "must be");
1067     assert(!collector_state()->last_young_gc(), "must be");
1068     return YoungOnlyGC;
1069   }
1070 }
1071 
1072 void G1DefaultPolicy::record_pause(PauseKind kind, double start, double end) {
1073   // Manage the MMU tracker. For some reason it ignores Full GCs.
1074   if (kind != FullGC) {
1075     _mmu_tracker->add_pause(start, end);
1076   }
1077   // Manage the mutator time tracking from initial mark to first mixed gc.
1078   switch (kind) {
1079     case FullGC:
1080       abort_time_to_mixed_tracking();
1081       break;
1082     case Cleanup:
1083     case Remark:
1084     case YoungOnlyGC:
1085     case LastYoungGC:
1086       _initial_mark_to_mixed.add_pause(end - start);
1087       break;
1088     case InitialMarkGC:
1089       _initial_mark_to_mixed.record_initial_mark_end(end);
1090       break;
1091     case MixedGC:
1092       _initial_mark_to_mixed.record_mixed_gc_start(start);
1093       break;
1094     default:
1095       ShouldNotReachHere();
1096   }
1097 }
1098 
1099 void G1DefaultPolicy::abort_time_to_mixed_tracking() {
1100   _initial_mark_to_mixed.reset();
1101 }
1102 
1103 bool G1DefaultPolicy::next_gc_should_be_mixed(const char* true_action_str,
1104                                        const char* false_action_str) const {
1105   if (cset_chooser()->is_empty()) {
1106     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1107     return false;
1108   }
1109 
1110   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1111   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1112   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1113   double threshold = (double) G1HeapWastePercent;
1114   if (reclaimable_perc <= threshold) {
1115     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1116                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1117     return false;
1118   }
1119   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1120                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1121   return true;
1122 }
1123 
1124 uint G1DefaultPolicy::calc_min_old_cset_length() const {
1125   // The min old CSet region bound is based on the maximum desired
1126   // number of mixed GCs after a cycle. I.e., even if some old regions
1127   // look expensive, we should add them to the CSet anyway to make
1128   // sure we go through the available old regions in no more than the
1129   // maximum desired number of mixed GCs.
1130   //
1131   // The calculation is based on the number of marked regions we added
1132   // to the CSet chooser in the first place, not how many remain, so
1133   // that the result is the same during all mixed GCs that follow a cycle.
1134 
1135   const size_t region_num = (size_t) cset_chooser()->length();
1136   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1137   size_t result = region_num / gc_num;
1138   // emulate ceiling
1139   if (result * gc_num < region_num) {
1140     result += 1;
1141   }
1142   return (uint) result;
1143 }
1144 
1145 uint G1DefaultPolicy::calc_max_old_cset_length() const {
1146   // The max old CSet region bound is based on the threshold expressed
1147   // as a percentage of the heap size. I.e., it should bound the
1148   // number of old regions added to the CSet irrespective of how many
1149   // of them are available.
1150 
1151   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1152   const size_t region_num = g1h->num_regions();
1153   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1154   size_t result = region_num * perc / 100;
1155   // emulate ceiling
1156   if (100 * result < region_num * perc) {
1157     result += 1;
1158   }
1159   return (uint) result;
1160 }
1161 
1162 void G1DefaultPolicy::finalize_collection_set(double target_pause_time_ms) {
1163   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms);
1164   _collection_set->finalize_old_part(time_remaining_ms);
1165 }