1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1IHOPControl.hpp"
  33 #include "gc/g1/g1GCPhaseTimes.hpp"
  34 #include "gc/g1/g1Measurements.hpp"
  35 #include "gc/g1/g1YoungGenSizer.hpp"
  36 #include "gc/g1/heapRegion.inline.hpp"
  37 #include "gc/g1/heapRegionRemSet.hpp"
  38 #include "gc/shared/gcPolicyCounters.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/java.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "utilities/debug.hpp"
  43 #include "utilities/pair.hpp"
  44 
  45 G1CollectorPolicy::G1CollectorPolicy() :
  46   _predictor(G1ConfidencePercent / 100.0),
  47   _measurements(new G1Measurements(&_predictor)),
  48   _pause_time_target_ms((double) MaxGCPauseMillis),
  49   _rs_lengths_prediction(0),
  50   _max_survivor_regions(0),
  51   _survivors_age_table(true),
  52   _gc_overhead_perc(0.0),
  53 
  54   _bytes_allocated_in_old_since_last_gc(0),
  55   _ihop_control(NULL),
  56   _initial_mark_to_mixed() {
  57 
  58   // SurvRateGroups below must be initialized after the predictor because they
  59   // indirectly use it through this object passed to their constructor.
  60   _short_lived_surv_rate_group =
  61     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
  62   _survivor_surv_rate_group =
  63     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
  64 
  65   // Set up the region size and associated fields. Given that the
  66   // policy is created before the heap, we have to set this up here,
  67   // so it's done as soon as possible.
  68 
  69   // It would have been natural to pass initial_heap_byte_size() and
  70   // max_heap_byte_size() to setup_heap_region_size() but those have
  71   // not been set up at this point since they should be aligned with
  72   // the region size. So, there is a circular dependency here. We base
  73   // the region size on the heap size, but the heap size should be
  74   // aligned with the region size. To get around this we use the
  75   // unaligned values for the heap.
  76   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
  77   HeapRegionRemSet::setup_remset_size();
  78 
  79   clear_ratio_check_data();
  80 
  81   _phase_times = new G1GCPhaseTimes(ParallelGCThreads);
  82 
  83   // Below, we might need to calculate the pause time target based on
  84   // the pause interval. When we do so we are going to give G1 maximum
  85   // flexibility and allow it to do pauses when it needs to. So, we'll
  86   // arrange that the pause interval to be pause time target + 1 to
  87   // ensure that a) the pause time target is maximized with respect to
  88   // the pause interval and b) we maintain the invariant that pause
  89   // time target < pause interval. If the user does not want this
  90   // maximum flexibility, they will have to set the pause interval
  91   // explicitly.
  92 
  93   // First make sure that, if either parameter is set, its value is
  94   // reasonable.
  95   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
  96     if (MaxGCPauseMillis < 1) {
  97       vm_exit_during_initialization("MaxGCPauseMillis should be "
  98                                     "greater than 0");
  99     }
 100   }
 101   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 102     if (GCPauseIntervalMillis < 1) {
 103       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 104                                     "greater than 0");
 105     }
 106   }
 107 
 108   // Then, if the pause time target parameter was not set, set it to
 109   // the default value.
 110   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 111     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 112       // The default pause time target in G1 is 200ms
 113       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 114     } else {
 115       // We do not allow the pause interval to be set without the
 116       // pause time target
 117       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 118                                     "without setting MaxGCPauseMillis");
 119     }
 120   }
 121 
 122   // Then, if the interval parameter was not set, set it according to
 123   // the pause time target (this will also deal with the case when the
 124   // pause time target is the default value).
 125   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 126     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 127   }
 128 
 129   // Finally, make sure that the two parameters are consistent.
 130   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 131     char buffer[256];
 132     jio_snprintf(buffer, 256,
 133                  "MaxGCPauseMillis (%u) should be less than "
 134                  "GCPauseIntervalMillis (%u)",
 135                  MaxGCPauseMillis, GCPauseIntervalMillis);
 136     vm_exit_during_initialization(buffer);
 137   }
 138 
 139   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 140   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 141   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 142 
 143   _tenuring_threshold = MaxTenuringThreshold;
 144 
 145   assert(GCTimeRatio > 0,
 146          "we should have set it to a default value set_g1_gc_flags() "
 147          "if a user set it to 0");
 148   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 149 
 150   uintx reserve_perc = G1ReservePercent;
 151   // Put an artificial ceiling on this so that it's not set to a silly value.
 152   if (reserve_perc > 50) {
 153     reserve_perc = 50;
 154     warning("G1ReservePercent is set to a value that is too large, "
 155             "it's been updated to " UINTX_FORMAT, reserve_perc);
 156   }
 157   _reserve_factor = (double) reserve_perc / 100.0;
 158   // This will be set when the heap is expanded
 159   // for the first time during initialization.
 160   _reserve_regions = 0;
 161 
 162   _ihop_control = create_ihop_control();
 163 }
 164 
 165 G1CollectorPolicy::~G1CollectorPolicy() {
 166   delete _ihop_control;
 167 }
 168 
 169 void G1CollectorPolicy::initialize_alignments() {
 170   _space_alignment = HeapRegion::GrainBytes;
 171   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 172   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 173   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 174 }
 175 
 176 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 177 
 178 void G1CollectorPolicy::post_heap_initialize() {
 179   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 180   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 181   if (max_young_size != MaxNewSize) {
 182     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 183   }
 184 }
 185 
 186 void G1CollectorPolicy::initialize_flags() {
 187   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 188     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 189   }
 190 
 191   if (SurvivorRatio < 1) {
 192     vm_exit_during_initialization("Invalid survivor ratio specified");
 193   }
 194   CollectorPolicy::initialize_flags();
 195   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 196 }
 197 
 198 
 199 void G1CollectorPolicy::init() {
 200   // Set aside an initial future to_space.
 201   _g1 = G1CollectedHeap::heap();
 202   _collection_set = _g1->collection_set();
 203   _collection_set->set_policy(this);
 204 
 205   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 206 
 207   initialize_gc_policy_counters();
 208 
 209   if (adaptive_young_list_length()) {
 210     _young_list_fixed_length = 0;
 211   } else {
 212     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 213   }
 214   _free_regions_at_end_of_collection = _g1->num_free_regions();
 215 
 216   update_young_list_max_and_target_length();
 217   // We may immediately start allocating regions and placing them on the
 218   // collection set list. Initialize the per-collection set info
 219   _collection_set->start_incremental_building();
 220 }
 221 
 222 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 223   phase_times()->note_gc_start(num_active_workers);
 224 }
 225 
 226 // Create the jstat counters for the policy.
 227 void G1CollectorPolicy::initialize_gc_policy_counters() {
 228   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 229 }
 230 
 231 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 232                                          double base_time_ms,
 233                                          uint base_free_regions,
 234                                          double target_pause_time_ms) const {
 235   if (young_length >= base_free_regions) {
 236     // end condition 1: not enough space for the young regions
 237     return false;
 238   }
 239 
 240   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 241   size_t bytes_to_copy =
 242                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 243   double copy_time_ms = _measurements->predict_object_copy_time_ms(bytes_to_copy,
 244                                                                    collector_state()->during_concurrent_mark());
 245   double young_other_time_ms = _measurements->predict_young_other_time_ms(young_length);
 246   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 247   if (pause_time_ms > target_pause_time_ms) {
 248     // end condition 2: prediction is over the target pause time
 249     return false;
 250   }
 251 
 252   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 253 
 254   // When copying, we will likely need more bytes free than is live in the region.
 255   // Add some safety margin to factor in the confidence of our guess, and the
 256   // natural expected waste.
 257   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 258   // of the calculation: the lower the confidence, the more headroom.
 259   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 260   // copying due to anticipated waste in the PLABs.
 261   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 262   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 263 
 264   if (expected_bytes_to_copy > free_bytes) {
 265     // end condition 3: out-of-space
 266     return false;
 267   }
 268 
 269   // success!
 270   return true;
 271 }
 272 
 273 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 274   // re-calculate the necessary reserve
 275   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 276   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 277   // smaller than 1.0) we'll get 1.
 278   _reserve_regions = (uint) ceil(reserve_regions_d);
 279 
 280   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 281 
 282   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 283 }
 284 
 285 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 286                                                        uint base_min_length) const {
 287   uint desired_min_length = 0;
 288   if (adaptive_young_list_length()) {
 289     if (_measurements->num_alloc_rate_ms() > 3) {
 290       double now_sec = os::elapsedTime();
 291       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 292       double alloc_rate_ms = _measurements->predict_alloc_rate_ms();
 293       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 294     } else {
 295       // otherwise we don't have enough info to make the prediction
 296     }
 297   }
 298   desired_min_length += base_min_length;
 299   // make sure we don't go below any user-defined minimum bound
 300   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 301 }
 302 
 303 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 304   // Here, we might want to also take into account any additional
 305   // constraints (i.e., user-defined minimum bound). Currently, we
 306   // effectively don't set this bound.
 307   return _young_gen_sizer->max_desired_young_length();
 308 }
 309 
 310 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 311   return update_young_list_max_and_target_length(_measurements->predict_rs_lengths());
 312 }
 313 
 314 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 315   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 316   update_max_gc_locker_expansion();
 317   return unbounded_target_length;
 318 }
 319 
 320 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 321   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 322   _young_list_target_length = young_lengths.first;
 323   return young_lengths.second;
 324 }
 325 
 326 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 327   YoungTargetLengths result;
 328 
 329   // Calculate the absolute and desired min bounds first.
 330 
 331   // This is how many young regions we already have (currently: the survivors).
 332   const uint base_min_length = _g1->young_list()->survivor_length();
 333   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 334   // This is the absolute minimum young length. Ensure that we
 335   // will at least have one eden region available for allocation.
 336   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 337   // If we shrank the young list target it should not shrink below the current size.
 338   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 339   // Calculate the absolute and desired max bounds.
 340 
 341   uint desired_max_length = calculate_young_list_desired_max_length();
 342 
 343   uint young_list_target_length = 0;
 344   if (adaptive_young_list_length()) {
 345     if (collector_state()->gcs_are_young()) {
 346       young_list_target_length =
 347                         calculate_young_list_target_length(rs_lengths,
 348                                                            base_min_length,
 349                                                            desired_min_length,
 350                                                            desired_max_length);
 351     } else {
 352       // Don't calculate anything and let the code below bound it to
 353       // the desired_min_length, i.e., do the next GC as soon as
 354       // possible to maximize how many old regions we can add to it.
 355     }
 356   } else {
 357     // The user asked for a fixed young gen so we'll fix the young gen
 358     // whether the next GC is young or mixed.
 359     young_list_target_length = _young_list_fixed_length;
 360   }
 361 
 362   result.second = young_list_target_length;
 363 
 364   // We will try our best not to "eat" into the reserve.
 365   uint absolute_max_length = 0;
 366   if (_free_regions_at_end_of_collection > _reserve_regions) {
 367     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 368   }
 369   if (desired_max_length > absolute_max_length) {
 370     desired_max_length = absolute_max_length;
 371   }
 372 
 373   // Make sure we don't go over the desired max length, nor under the
 374   // desired min length. In case they clash, desired_min_length wins
 375   // which is why that test is second.
 376   if (young_list_target_length > desired_max_length) {
 377     young_list_target_length = desired_max_length;
 378   }
 379   if (young_list_target_length < desired_min_length) {
 380     young_list_target_length = desired_min_length;
 381   }
 382 
 383   assert(young_list_target_length > base_min_length,
 384          "we should be able to allocate at least one eden region");
 385   assert(young_list_target_length >= absolute_min_length, "post-condition");
 386 
 387   result.first = young_list_target_length;
 388   return result;
 389 }
 390 
 391 uint
 392 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 393                                                      uint base_min_length,
 394                                                      uint desired_min_length,
 395                                                      uint desired_max_length) const {
 396   assert(adaptive_young_list_length(), "pre-condition");
 397   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 398 
 399   // In case some edge-condition makes the desired max length too small...
 400   if (desired_max_length <= desired_min_length) {
 401     return desired_min_length;
 402   }
 403 
 404   // We'll adjust min_young_length and max_young_length not to include
 405   // the already allocated young regions (i.e., so they reflect the
 406   // min and max eden regions we'll allocate). The base_min_length
 407   // will be reflected in the predictions by the
 408   // survivor_regions_evac_time prediction.
 409   assert(desired_min_length > base_min_length, "invariant");
 410   uint min_young_length = desired_min_length - base_min_length;
 411   assert(desired_max_length > base_min_length, "invariant");
 412   uint max_young_length = desired_max_length - base_min_length;
 413 
 414   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 415   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 416   size_t pending_cards = _measurements->predict_pending_cards();
 417   size_t adj_rs_lengths = rs_lengths + _measurements->predict_rs_length_diff();
 418   size_t scanned_cards = _measurements->predict_card_num(adj_rs_lengths, /* gcs_are_young */ true);
 419   double base_time_ms =
 420     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 421     survivor_regions_evac_time;
 422   uint available_free_regions = _free_regions_at_end_of_collection;
 423   uint base_free_regions = 0;
 424   if (available_free_regions > _reserve_regions) {
 425     base_free_regions = available_free_regions - _reserve_regions;
 426   }
 427 
 428   // Here, we will make sure that the shortest young length that
 429   // makes sense fits within the target pause time.
 430 
 431   if (predict_will_fit(min_young_length, base_time_ms,
 432                        base_free_regions, target_pause_time_ms)) {
 433     // The shortest young length will fit into the target pause time;
 434     // we'll now check whether the absolute maximum number of young
 435     // regions will fit in the target pause time. If not, we'll do
 436     // a binary search between min_young_length and max_young_length.
 437     if (predict_will_fit(max_young_length, base_time_ms,
 438                          base_free_regions, target_pause_time_ms)) {
 439       // The maximum young length will fit into the target pause time.
 440       // We are done so set min young length to the maximum length (as
 441       // the result is assumed to be returned in min_young_length).
 442       min_young_length = max_young_length;
 443     } else {
 444       // The maximum possible number of young regions will not fit within
 445       // the target pause time so we'll search for the optimal
 446       // length. The loop invariants are:
 447       //
 448       // min_young_length < max_young_length
 449       // min_young_length is known to fit into the target pause time
 450       // max_young_length is known not to fit into the target pause time
 451       //
 452       // Going into the loop we know the above hold as we've just
 453       // checked them. Every time around the loop we check whether
 454       // the middle value between min_young_length and
 455       // max_young_length fits into the target pause time. If it
 456       // does, it becomes the new min. If it doesn't, it becomes
 457       // the new max. This way we maintain the loop invariants.
 458 
 459       assert(min_young_length < max_young_length, "invariant");
 460       uint diff = (max_young_length - min_young_length) / 2;
 461       while (diff > 0) {
 462         uint young_length = min_young_length + diff;
 463         if (predict_will_fit(young_length, base_time_ms,
 464                              base_free_regions, target_pause_time_ms)) {
 465           min_young_length = young_length;
 466         } else {
 467           max_young_length = young_length;
 468         }
 469         assert(min_young_length <  max_young_length, "invariant");
 470         diff = (max_young_length - min_young_length) / 2;
 471       }
 472       // The results is min_young_length which, according to the
 473       // loop invariants, should fit within the target pause time.
 474 
 475       // These are the post-conditions of the binary search above:
 476       assert(min_young_length < max_young_length,
 477              "otherwise we should have discovered that max_young_length "
 478              "fits into the pause target and not done the binary search");
 479       assert(predict_will_fit(min_young_length, base_time_ms,
 480                               base_free_regions, target_pause_time_ms),
 481              "min_young_length, the result of the binary search, should "
 482              "fit into the pause target");
 483       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 484                                base_free_regions, target_pause_time_ms),
 485              "min_young_length, the result of the binary search, should be "
 486              "optimal, so no larger length should fit into the pause target");
 487     }
 488   } else {
 489     // Even the minimum length doesn't fit into the pause time
 490     // target, return it as the result nevertheless.
 491   }
 492   return base_min_length + min_young_length;
 493 }
 494 
 495 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 496   double survivor_regions_evac_time = 0.0;
 497   for (HeapRegion * r = _g1->young_list()->first_survivor_region();
 498        r != NULL && r != _g1->young_list()->last_survivor_region()->get_next_young_region();
 499        r = r->get_next_young_region()) {
 500     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 501   }
 502   return survivor_regions_evac_time;
 503 }
 504 
 505 void G1CollectorPolicy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 506   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 507 
 508   if (rs_lengths > _rs_lengths_prediction) {
 509     // add 10% to avoid having to recalculate often
 510     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 511     update_rs_lengths_prediction(rs_lengths_prediction);
 512 
 513     update_young_list_max_and_target_length(rs_lengths_prediction);
 514   }
 515 }
 516 
 517 void G1CollectorPolicy::update_rs_lengths_prediction() {
 518   update_rs_lengths_prediction(_measurements->predict_rs_lengths());
 519 }
 520 
 521 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 522   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 523     _rs_lengths_prediction = prediction;
 524   }
 525 }
 526 
 527 #ifndef PRODUCT
 528 bool G1CollectorPolicy::verify_young_ages() {
 529   HeapRegion* head = _g1->young_list()->first_region();
 530   return
 531     verify_young_ages(head, _short_lived_surv_rate_group);
 532   // also call verify_young_ages on any additional surv rate groups
 533 }
 534 
 535 bool
 536 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 537                                      SurvRateGroup *surv_rate_group) {
 538   guarantee( surv_rate_group != NULL, "pre-condition" );
 539 
 540   const char* name = surv_rate_group->name();
 541   bool ret = true;
 542   int prev_age = -1;
 543 
 544   for (HeapRegion* curr = head;
 545        curr != NULL;
 546        curr = curr->get_next_young_region()) {
 547     SurvRateGroup* group = curr->surv_rate_group();
 548     if (group == NULL && !curr->is_survivor()) {
 549       log_error(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 550       ret = false;
 551     }
 552 
 553     if (surv_rate_group == group) {
 554       int age = curr->age_in_surv_rate_group();
 555 
 556       if (age < 0) {
 557         log_error(gc, verify)("## %s: encountered negative age", name);
 558         ret = false;
 559       }
 560 
 561       if (age <= prev_age) {
 562         log_error(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 563         ret = false;
 564       }
 565       prev_age = age;
 566     }
 567   }
 568 
 569   return ret;
 570 }
 571 #endif // PRODUCT
 572 
 573 void G1CollectorPolicy::record_full_collection_start() {
 574   _full_collection_start_sec = os::elapsedTime();
 575   // Release the future to-space so that it is available for compaction into.
 576   collector_state()->set_full_collection(true);
 577 }
 578 
 579 void G1CollectorPolicy::record_full_collection_end() {
 580   // Consider this like a collection pause for the purposes of allocation
 581   // since last pause.
 582   double end_sec = os::elapsedTime();
 583   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 584   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 585 
 586   _measurements->update_recent_gc_times(end_sec, full_gc_time_ms);
 587 
 588   collector_state()->set_full_collection(false);
 589 
 590   // "Nuke" the heuristics that control the young/mixed GC
 591   // transitions and make sure we start with young GCs after the Full GC.
 592   collector_state()->set_gcs_are_young(true);
 593   collector_state()->set_last_young_gc(false);
 594   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 595   collector_state()->set_during_initial_mark_pause(false);
 596   collector_state()->set_in_marking_window(false);
 597   collector_state()->set_in_marking_window_im(false);
 598 
 599   _short_lived_surv_rate_group->start_adding_regions();
 600   // also call this on any additional surv rate groups
 601 
 602   _free_regions_at_end_of_collection = _g1->num_free_regions();
 603   // Reset survivors SurvRateGroup.
 604   _survivor_surv_rate_group->reset();
 605   update_young_list_max_and_target_length();
 606   update_rs_lengths_prediction();
 607   cset_chooser()->clear();
 608 
 609   _bytes_allocated_in_old_since_last_gc = 0;
 610 
 611   record_pause(FullGC, _full_collection_start_sec, end_sec);
 612 }
 613 
 614 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 615   // We only need to do this here as the policy will only be applied
 616   // to the GC we're about to start. so, no point is calculating this
 617   // every time we calculate / recalculate the target young length.
 618   update_survivors_policy();
 619 
 620   assert(_g1->used() == _g1->recalculate_used(),
 621          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 622          _g1->used(), _g1->recalculate_used());
 623 
 624   phase_times()->record_cur_collection_start_sec(start_time_sec);
 625   _pending_cards = _g1->pending_card_num();
 626 
 627   _collection_set->reset_bytes_used_before();
 628   _bytes_copied_during_gc = 0;
 629 
 630   collector_state()->set_last_gc_was_young(false);
 631 
 632   // do that for any other surv rate groups
 633   _short_lived_surv_rate_group->stop_adding_regions();
 634   _survivors_age_table.clear();
 635 
 636   assert( verify_young_ages(), "region age verification" );
 637 }
 638 
 639 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 640                                                    mark_init_elapsed_time_ms) {
 641   collector_state()->set_during_marking(true);
 642   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 643   collector_state()->set_during_initial_mark_pause(false);
 644 }
 645 
 646 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 647   _mark_remark_start_sec = os::elapsedTime();
 648   collector_state()->set_during_marking(false);
 649 }
 650 
 651 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 652   double end_time_sec = os::elapsedTime();
 653   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 654   _measurements->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
 655   _measurements->append_prev_collection_pause_end_ms(elapsed_time_ms);
 656 
 657   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 658 }
 659 
 660 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 661   _mark_cleanup_start_sec = os::elapsedTime();
 662 }
 663 
 664 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 665   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 666                                                               "skip last young-only gc");
 667   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 668   // We skip the marking phase.
 669   if (!should_continue_with_reclaim) {
 670     abort_time_to_mixed_tracking();
 671   }
 672   collector_state()->set_in_marking_window(false);
 673 }
 674 
 675 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 676   return phase_times()->average_time_ms(phase);
 677 }
 678 
 679 double G1CollectorPolicy::young_other_time_ms() const {
 680   return phase_times()->young_cset_choice_time_ms() +
 681          phase_times()->young_free_cset_time_ms();
 682 }
 683 
 684 double G1CollectorPolicy::non_young_other_time_ms() const {
 685   return phase_times()->non_young_cset_choice_time_ms() +
 686          phase_times()->non_young_free_cset_time_ms();
 687 
 688 }
 689 
 690 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 691   return pause_time_ms -
 692          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 693          average_time_ms(G1GCPhaseTimes::ScanRS) -
 694          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 695          average_time_ms(G1GCPhaseTimes::Termination);
 696 }
 697 
 698 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 699   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 700 }
 701 
 702 CollectionSetChooser* G1CollectorPolicy::cset_chooser() const {
 703   return _collection_set->cset_chooser();
 704 }
 705 
 706 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 707   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 708 }
 709 
 710 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 711   if (about_to_start_mixed_phase()) {
 712     return false;
 713   }
 714 
 715   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 716 
 717   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 718   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 719   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 720 
 721   bool result = false;
 722   if (marking_request_bytes > marking_initiating_used_threshold) {
 723     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 724     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 725                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 726                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 727   }
 728 
 729   return result;
 730 }
 731 
 732 // Anything below that is considered to be zero
 733 #define MIN_TIMER_GRANULARITY 0.0000001
 734 
 735 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 736   double end_time_sec = os::elapsedTime();
 737 
 738   size_t cur_used_bytes = _g1->used();
 739   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 740   bool last_pause_included_initial_mark = false;
 741   bool update_stats = !_g1->evacuation_failed();
 742 
 743   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 744 
 745   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 746 
 747   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 748   if (last_pause_included_initial_mark) {
 749     record_concurrent_mark_init_end(0.0);
 750   } else {
 751     maybe_start_marking();
 752   }
 753 
 754   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _measurements->prev_collection_pause_end_ms());
 755   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 756     // This usually happens due to the timer not having the required
 757     // granularity. Some Linuxes are the usual culprits.
 758     // We'll just set it to something (arbitrarily) small.
 759     app_time_ms = 1.0;
 760   }
 761 
 762   if (update_stats) {
 763     // We maintain the invariant that all objects allocated by mutator
 764     // threads will be allocated out of eden regions. So, we can use
 765     // the eden region number allocated since the previous GC to
 766     // calculate the application's allocate rate. The only exception
 767     // to that is humongous objects that are allocated separately. But
 768     // given that humongous object allocations do not really affect
 769     // either the pause's duration nor when the next pause will take
 770     // place we can safely ignore them here.
 771     uint regions_allocated = _collection_set->eden_region_length();
 772     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 773     _measurements->report_alloc_rate_ms(alloc_rate_ms);
 774 
 775     _measurements->update_recent_gc_times(end_time_sec, pause_time_ms);
 776   }
 777 
 778   bool new_in_marking_window = collector_state()->in_marking_window();
 779   bool new_in_marking_window_im = false;
 780   if (last_pause_included_initial_mark) {
 781     new_in_marking_window = true;
 782     new_in_marking_window_im = true;
 783   }
 784 
 785   if (collector_state()->last_young_gc()) {
 786     // This is supposed to to be the "last young GC" before we start
 787     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
 788     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
 789 
 790     if (next_gc_should_be_mixed("start mixed GCs",
 791                                 "do not start mixed GCs")) {
 792       collector_state()->set_gcs_are_young(false);
 793     } else {
 794       // We aborted the mixed GC phase early.
 795       abort_time_to_mixed_tracking();
 796     }
 797 
 798     collector_state()->set_last_young_gc(false);
 799   }
 800 
 801   if (!collector_state()->last_gc_was_young()) {
 802     // This is a mixed GC. Here we decide whether to continue doing
 803     // mixed GCs or not.
 804     if (!next_gc_should_be_mixed("continue mixed GCs",
 805                                  "do not continue mixed GCs")) {
 806       collector_state()->set_gcs_are_young(true);
 807 
 808       maybe_start_marking();
 809     }
 810   }
 811 
 812   _short_lived_surv_rate_group->start_adding_regions();
 813   // Do that for any other surv rate groups
 814 
 815   double scan_hcc_time_ms = ConcurrentG1Refine::hot_card_cache_enabled() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 816 
 817   if (update_stats) {
 818     double cost_per_card_ms = 0.0;
 819     if (_pending_cards > 0) {
 820       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 821       _measurements->report_cost_per_card_ms(cost_per_card_ms);
 822     }
 823     _measurements->report_cost_scan_hcc(scan_hcc_time_ms);
 824 
 825     double cost_per_entry_ms = 0.0;
 826     if (cards_scanned > 10) {
 827       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 828       _measurements->report_cost_per_entry_ms(cost_per_entry_ms, collector_state()->last_gc_was_young());
 829     }
 830 
 831     if (_max_rs_lengths > 0) {
 832       double cards_per_entry_ratio =
 833         (double) cards_scanned / (double) _max_rs_lengths;
 834       _measurements->report_cards_per_entry_ratio(cards_per_entry_ratio, collector_state()->last_gc_was_young());
 835     }
 836 
 837     // This is defensive. For a while _max_rs_lengths could get
 838     // smaller than _recorded_rs_lengths which was causing
 839     // rs_length_diff to get very large and mess up the RSet length
 840     // predictions. The reason was unsafe concurrent updates to the
 841     // _inc_cset_recorded_rs_lengths field which the code below guards
 842     // against (see CR 7118202). This bug has now been fixed (see CR
 843     // 7119027). However, I'm still worried that
 844     // _inc_cset_recorded_rs_lengths might still end up somewhat
 845     // inaccurate. The concurrent refinement thread calculates an
 846     // RSet's length concurrently with other CR threads updating it
 847     // which might cause it to calculate the length incorrectly (if,
 848     // say, it's in mid-coarsening). So I'll leave in the defensive
 849     // conditional below just in case.
 850     size_t rs_length_diff = 0;
 851     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 852     if (_max_rs_lengths > recorded_rs_lengths) {
 853       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 854     }
 855     _measurements->report_rs_length_diff((double) rs_length_diff);
 856 
 857     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 858     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 859     double cost_per_byte_ms = 0.0;
 860 
 861     if (copied_bytes > 0) {
 862       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 863       _measurements->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->in_marking_window());
 864     }
 865 
 866     if (_collection_set->young_region_length() > 0) {
 867       _measurements->report_young_other_cost_per_region_ms(young_other_time_ms() /
 868                                                            _collection_set->young_region_length());
 869     }
 870 
 871     if (_collection_set->old_region_length() > 0) {
 872       _measurements->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
 873                                                                _collection_set->old_region_length());
 874     }
 875 
 876     _measurements->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
 877 
 878     _measurements->report_pending_cards((double) _pending_cards);
 879     _measurements->report_rs_lengths((double) _max_rs_lengths);
 880   }
 881 
 882   collector_state()->set_in_marking_window(new_in_marking_window);
 883   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
 884   _free_regions_at_end_of_collection = _g1->num_free_regions();
 885   // IHOP control wants to know the expected young gen length if it were not
 886   // restrained by the heap reserve. Using the actual length would make the
 887   // prediction too small and the limit the young gen every time we get to the
 888   // predicted target occupancy.
 889   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
 890   update_rs_lengths_prediction();
 891 
 892   update_ihop_prediction(app_time_ms / 1000.0,
 893                          _bytes_allocated_in_old_since_last_gc,
 894                          last_unrestrained_young_length * HeapRegion::GrainBytes);
 895   _bytes_allocated_in_old_since_last_gc = 0;
 896 
 897   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
 898 
 899   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
 900   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
 901 
 902   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
 903     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
 904                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
 905                                 update_rs_time_goal_ms, scan_hcc_time_ms);
 906 
 907     update_rs_time_goal_ms = 0;
 908   } else {
 909     update_rs_time_goal_ms -= scan_hcc_time_ms;
 910   }
 911   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
 912                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
 913                                update_rs_time_goal_ms);
 914 
 915   cset_chooser()->verify();
 916 }
 917 
 918 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
 919   if (G1UseAdaptiveIHOP) {
 920     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
 921                                      &_predictor,
 922                                      G1ReservePercent,
 923                                      G1HeapWastePercent);
 924   } else {
 925     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
 926   }
 927 }
 928 
 929 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
 930                                                size_t mutator_alloc_bytes,
 931                                                size_t young_gen_size) {
 932   // Always try to update IHOP prediction. Even evacuation failures give information
 933   // about e.g. whether to start IHOP earlier next time.
 934 
 935   // Avoid using really small application times that might create samples with
 936   // very high or very low values. They may be caused by e.g. back-to-back gcs.
 937   double const min_valid_time = 1e-6;
 938 
 939   bool report = false;
 940 
 941   double marking_to_mixed_time = -1.0;
 942   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
 943     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
 944     assert(marking_to_mixed_time > 0.0,
 945            "Initial mark to mixed time must be larger than zero but is %.3f",
 946            marking_to_mixed_time);
 947     if (marking_to_mixed_time > min_valid_time) {
 948       _ihop_control->update_marking_length(marking_to_mixed_time);
 949       report = true;
 950     }
 951   }
 952 
 953   // As an approximation for the young gc promotion rates during marking we use
 954   // all of them. In many applications there are only a few if any young gcs during
 955   // marking, which makes any prediction useless. This increases the accuracy of the
 956   // prediction.
 957   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
 958     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
 959     report = true;
 960   }
 961 
 962   if (report) {
 963     report_ihop_statistics();
 964   }
 965 }
 966 
 967 void G1CollectorPolicy::report_ihop_statistics() {
 968   _ihop_control->print();
 969 }
 970 
 971 void G1CollectorPolicy::print_phases() {
 972   phase_times()->print();
 973 }
 974 
 975 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
 976                                                      double update_rs_processed_buffers,
 977                                                      double goal_ms) {
 978   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 979   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
 980 
 981   if (G1UseAdaptiveConcRefinement) {
 982     const int k_gy = 3, k_gr = 6;
 983     const double inc_k = 1.1, dec_k = 0.9;
 984 
 985     size_t g = cg1r->green_zone();
 986     if (update_rs_time > goal_ms) {
 987       g = (size_t)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
 988     } else {
 989       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
 990         g = (size_t)MAX2(g * inc_k, g + 1.0);
 991       }
 992     }
 993     // Change the refinement threads params
 994     cg1r->set_green_zone(g);
 995     cg1r->set_yellow_zone(g * k_gy);
 996     cg1r->set_red_zone(g * k_gr);
 997     cg1r->reinitialize_threads();
 998 
 999     size_t processing_threshold_delta = MAX2<size_t>(cg1r->green_zone() * _predictor.sigma(), 1);
1000     size_t processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1001                                     cg1r->yellow_zone());
1002     // Change the barrier params
1003     dcqs.set_process_completed_threshold((int)processing_threshold);
1004     dcqs.set_max_completed_queue((int)cg1r->red_zone());
1005   }
1006 
1007   size_t curr_queue_size = dcqs.completed_buffers_num();
1008   if (curr_queue_size >= cg1r->yellow_zone()) {
1009     dcqs.set_completed_queue_padding(curr_queue_size);
1010   } else {
1011     dcqs.set_completed_queue_padding(0);
1012   }
1013   dcqs.notify_if_necessary();
1014 }
1015 
1016 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1017   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1018   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1019   double pred = _predictor.get_new_prediction(seq);
1020   if (pred > 1.0) {
1021     pred = 1.0;
1022   }
1023   return pred;
1024 }
1025 
1026 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1027   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1028 }
1029 
1030 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1031   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1032 }
1033 
1034 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1035                                                        size_t scanned_cards) const {
1036   return
1037     _measurements->predict_rs_update_time_ms(pending_cards) +
1038     _measurements->predict_rs_scan_time_ms(scanned_cards, collector_state()->gcs_are_young()) +
1039     _measurements->predict_constant_other_time_ms();
1040 }
1041 
1042 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1043   size_t rs_length = _measurements->predict_rs_lengths() + _measurements->predict_rs_length_diff();
1044   size_t card_num = _measurements->predict_card_num(rs_length, collector_state()->gcs_are_young());
1045   return predict_base_elapsed_time_ms(pending_cards, card_num);
1046 }
1047 
1048 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1049   size_t bytes_to_copy;
1050   if (hr->is_marked())
1051     bytes_to_copy = hr->max_live_bytes();
1052   else {
1053     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1054     int age = hr->age_in_surv_rate_group();
1055     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1056     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1057   }
1058   return bytes_to_copy;
1059 }
1060 
1061 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1062                                                          bool for_young_gc) const {
1063   size_t rs_length = hr->rem_set()->occupied();
1064   // Predicting the number of cards is based on which type of GC
1065   // we're predicting for.
1066   size_t card_num = _measurements->predict_card_num(rs_length, for_young_gc);
1067   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1068 
1069   double region_elapsed_time_ms =
1070     _measurements->predict_rs_scan_time_ms(card_num, collector_state()->gcs_are_young()) +
1071     _measurements->predict_object_copy_time_ms(bytes_to_copy ,collector_state()->during_concurrent_mark());
1072 
1073   // The prediction of the "other" time for this region is based
1074   // upon the region type and NOT the GC type.
1075   if (hr->is_young()) {
1076     region_elapsed_time_ms += _measurements->predict_young_other_time_ms(1);
1077   } else {
1078     region_elapsed_time_ms += _measurements->predict_non_young_other_time_ms(1);
1079   }
1080   return region_elapsed_time_ms;
1081 }
1082 
1083 void G1CollectorPolicy::clear_ratio_check_data() {
1084   _ratio_over_threshold_count = 0;
1085   _ratio_over_threshold_sum = 0.0;
1086   _pauses_since_start = 0;
1087 }
1088 
1089 size_t G1CollectorPolicy::expansion_amount() {
1090   double recent_gc_overhead = _measurements->recent_avg_pause_time_ratio() * 100.0;
1091   double last_gc_overhead = _measurements->last_pause_time_ratio() * 100.0;
1092   double threshold = _gc_overhead_perc;
1093   size_t expand_bytes = 0;
1094 
1095   // If the heap is at less than half its maximum size, scale the threshold down,
1096   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1097   // though the scaling code will likely keep the increase small.
1098   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1099     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1100     threshold = MAX2(threshold, 1.0);
1101   }
1102 
1103   // If the last GC time ratio is over the threshold, increment the count of
1104   // times it has been exceeded, and add this ratio to the sum of exceeded
1105   // ratios.
1106   if (last_gc_overhead > threshold) {
1107     _ratio_over_threshold_count++;
1108     _ratio_over_threshold_sum += last_gc_overhead;
1109   }
1110 
1111   // Check if we've had enough GC time ratio checks that were over the
1112   // threshold to trigger an expansion. We'll also expand if we've
1113   // reached the end of the history buffer and the average of all entries
1114   // is still over the threshold. This indicates a smaller number of GCs were
1115   // long enough to make the average exceed the threshold.
1116   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1117   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1118       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1119     size_t min_expand_bytes = HeapRegion::GrainBytes;
1120     size_t reserved_bytes = _g1->max_capacity();
1121     size_t committed_bytes = _g1->capacity();
1122     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1123     size_t expand_bytes_via_pct =
1124       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1125     double scale_factor = 1.0;
1126 
1127     // If the current size is less than 1/4 of the Initial heap size, expand
1128     // by half of the delta between the current and Initial sizes. IE, grow
1129     // back quickly.
1130     //
1131     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1132     // the available expansion space, whichever is smaller, as the base
1133     // expansion size. Then possibly scale this size according to how much the
1134     // threshold has (on average) been exceeded by. If the delta is small
1135     // (less than the StartScaleDownAt value), scale the size down linearly, but
1136     // not by less than MinScaleDownFactor. If the delta is large (greater than
1137     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1138     // times the base size. The scaling will be linear in the range from
1139     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1140     // ScaleUpRange sets the rate of scaling up.
1141     if (committed_bytes < InitialHeapSize / 4) {
1142       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1143     } else {
1144       double const MinScaleDownFactor = 0.2;
1145       double const MaxScaleUpFactor = 2;
1146       double const StartScaleDownAt = _gc_overhead_perc;
1147       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1148       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1149 
1150       double ratio_delta;
1151       if (filled_history_buffer) {
1152         ratio_delta = recent_gc_overhead - threshold;
1153       } else {
1154         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1155       }
1156 
1157       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1158       if (ratio_delta < StartScaleDownAt) {
1159         scale_factor = ratio_delta / StartScaleDownAt;
1160         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1161       } else if (ratio_delta > StartScaleUpAt) {
1162         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1163         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1164       }
1165     }
1166 
1167     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1168                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1169                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1170 
1171     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1172 
1173     // Ensure the expansion size is at least the minimum growth amount
1174     // and at most the remaining uncommitted byte size.
1175     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1176     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1177 
1178     clear_ratio_check_data();
1179   } else {
1180     // An expansion was not triggered. If we've started counting, increment
1181     // the number of checks we've made in the current window.  If we've
1182     // reached the end of the window without resizing, clear the counters to
1183     // start again the next time we see a ratio above the threshold.
1184     if (_ratio_over_threshold_count > 0) {
1185       _pauses_since_start++;
1186       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1187         clear_ratio_check_data();
1188       }
1189     }
1190   }
1191 
1192   return expand_bytes;
1193 }
1194 
1195 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1196 #ifndef PRODUCT
1197   _short_lived_surv_rate_group->print_surv_rate_summary();
1198   // add this call for any other surv rate groups
1199 #endif // PRODUCT
1200 }
1201 
1202 bool G1CollectorPolicy::is_young_list_full() const {
1203   uint young_list_length = _g1->young_list()->length();
1204   uint young_list_target_length = _young_list_target_length;
1205   return young_list_length >= young_list_target_length;
1206 }
1207 
1208 bool G1CollectorPolicy::can_expand_young_list() const {
1209   uint young_list_length = _g1->young_list()->length();
1210   uint young_list_max_length = _young_list_max_length;
1211   return young_list_length < young_list_max_length;
1212 }
1213 
1214 bool G1CollectorPolicy::adaptive_young_list_length() const {
1215   return _young_gen_sizer->adaptive_young_list_length();
1216 }
1217 
1218 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1219   uint expansion_region_num = 0;
1220   if (GCLockerEdenExpansionPercent > 0) {
1221     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1222     double expansion_region_num_d = perc * (double) _young_list_target_length;
1223     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1224     // less than 1.0) we'll get 1.
1225     expansion_region_num = (uint) ceil(expansion_region_num_d);
1226   } else {
1227     assert(expansion_region_num == 0, "sanity");
1228   }
1229   _young_list_max_length = _young_list_target_length + expansion_region_num;
1230   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1231 }
1232 
1233 // Calculates survivor space parameters.
1234 void G1CollectorPolicy::update_survivors_policy() {
1235   double max_survivor_regions_d =
1236                  (double) _young_list_target_length / (double) SurvivorRatio;
1237   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1238   // smaller than 1.0) we'll get 1.
1239   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1240 
1241   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1242         HeapRegion::GrainWords * _max_survivor_regions, counters());
1243 }
1244 
1245 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1246   // We actually check whether we are marking here and not if we are in a
1247   // reclamation phase. This means that we will schedule a concurrent mark
1248   // even while we are still in the process of reclaiming memory.
1249   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1250   if (!during_cycle) {
1251     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1252     collector_state()->set_initiate_conc_mark_if_possible(true);
1253     return true;
1254   } else {
1255     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1256     return false;
1257   }
1258 }
1259 
1260 void G1CollectorPolicy::initiate_conc_mark() {
1261   collector_state()->set_during_initial_mark_pause(true);
1262   collector_state()->set_initiate_conc_mark_if_possible(false);
1263 }
1264 
1265 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1266   // We are about to decide on whether this pause will be an
1267   // initial-mark pause.
1268 
1269   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1270   // will set it here if we have to. However, it should be cleared by
1271   // the end of the pause (it's only set for the duration of an
1272   // initial-mark pause).
1273   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1274 
1275   if (collector_state()->initiate_conc_mark_if_possible()) {
1276     // We had noticed on a previous pause that the heap occupancy has
1277     // gone over the initiating threshold and we should start a
1278     // concurrent marking cycle. So we might initiate one.
1279 
1280     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1281       // Initiate a new initial mark if there is no marking or reclamation going on.
1282       initiate_conc_mark();
1283       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1284     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1285       // Initiate a user requested initial mark. An initial mark must be young only
1286       // GC, so the collector state must be updated to reflect this.
1287       collector_state()->set_gcs_are_young(true);
1288       collector_state()->set_last_young_gc(false);
1289 
1290       abort_time_to_mixed_tracking();
1291       initiate_conc_mark();
1292       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1293     } else {
1294       // The concurrent marking thread is still finishing up the
1295       // previous cycle. If we start one right now the two cycles
1296       // overlap. In particular, the concurrent marking thread might
1297       // be in the process of clearing the next marking bitmap (which
1298       // we will use for the next cycle if we start one). Starting a
1299       // cycle now will be bad given that parts of the marking
1300       // information might get cleared by the marking thread. And we
1301       // cannot wait for the marking thread to finish the cycle as it
1302       // periodically yields while clearing the next marking bitmap
1303       // and, if it's in a yield point, it's waiting for us to
1304       // finish. So, at this point we will not start a cycle and we'll
1305       // let the concurrent marking thread complete the last one.
1306       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1307     }
1308   }
1309 }
1310 
1311 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1312   G1CollectedHeap* _g1h;
1313   CSetChooserParUpdater _cset_updater;
1314 
1315 public:
1316   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1317                            uint chunk_size) :
1318     _g1h(G1CollectedHeap::heap()),
1319     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1320 
1321   bool doHeapRegion(HeapRegion* r) {
1322     // Do we have any marking information for this region?
1323     if (r->is_marked()) {
1324       // We will skip any region that's currently used as an old GC
1325       // alloc region (we should not consider those for collection
1326       // before we fill them up).
1327       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1328         _cset_updater.add_region(r);
1329       }
1330     }
1331     return false;
1332   }
1333 };
1334 
1335 class ParKnownGarbageTask: public AbstractGangTask {
1336   CollectionSetChooser* _hrSorted;
1337   uint _chunk_size;
1338   G1CollectedHeap* _g1;
1339   HeapRegionClaimer _hrclaimer;
1340 
1341 public:
1342   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1343       AbstractGangTask("ParKnownGarbageTask"),
1344       _hrSorted(hrSorted), _chunk_size(chunk_size),
1345       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1346 
1347   void work(uint worker_id) {
1348     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1349     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1350   }
1351 };
1352 
1353 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1354   assert(n_workers > 0, "Active gc workers should be greater than 0");
1355   const uint overpartition_factor = 4;
1356   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1357   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1358 }
1359 
1360 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1361   cset_chooser()->clear();
1362 
1363   WorkGang* workers = _g1->workers();
1364   uint n_workers = workers->active_workers();
1365 
1366   uint n_regions = _g1->num_regions();
1367   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1368   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1369   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1370   workers->run_task(&par_known_garbage_task);
1371 
1372   cset_chooser()->sort_regions();
1373 
1374   double end_sec = os::elapsedTime();
1375   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1376   _measurements->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
1377   _measurements->append_prev_collection_pause_end_ms(elapsed_time_ms);
1378 
1379   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1380 }
1381 
1382 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1383   // Returns the given amount of reclaimable bytes (that represents
1384   // the amount of reclaimable space still to be collected) as a
1385   // percentage of the current heap capacity.
1386   size_t capacity_bytes = _g1->capacity();
1387   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1388 }
1389 
1390 void G1CollectorPolicy::maybe_start_marking() {
1391   if (need_to_start_conc_mark("end of GC")) {
1392     // Note: this might have already been set, if during the last
1393     // pause we decided to start a cycle but at the beginning of
1394     // this pause we decided to postpone it. That's OK.
1395     collector_state()->set_initiate_conc_mark_if_possible(true);
1396   }
1397 }
1398 
1399 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
1400   assert(!collector_state()->full_collection(), "must be");
1401   if (collector_state()->during_initial_mark_pause()) {
1402     assert(collector_state()->last_gc_was_young(), "must be");
1403     assert(!collector_state()->last_young_gc(), "must be");
1404     return InitialMarkGC;
1405   } else if (collector_state()->last_young_gc()) {
1406     assert(!collector_state()->during_initial_mark_pause(), "must be");
1407     assert(collector_state()->last_gc_was_young(), "must be");
1408     return LastYoungGC;
1409   } else if (!collector_state()->last_gc_was_young()) {
1410     assert(!collector_state()->during_initial_mark_pause(), "must be");
1411     assert(!collector_state()->last_young_gc(), "must be");
1412     return MixedGC;
1413   } else {
1414     assert(collector_state()->last_gc_was_young(), "must be");
1415     assert(!collector_state()->during_initial_mark_pause(), "must be");
1416     assert(!collector_state()->last_young_gc(), "must be");
1417     return YoungOnlyGC;
1418   }
1419 }
1420 
1421 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
1422   // Manage the MMU tracker. For some reason it ignores Full GCs.
1423   if (kind != FullGC) {
1424     _mmu_tracker->add_pause(start, end);
1425   }
1426   // Manage the mutator time tracking from initial mark to first mixed gc.
1427   switch (kind) {
1428     case FullGC:
1429       abort_time_to_mixed_tracking();
1430       break;
1431     case Cleanup:
1432     case Remark:
1433     case YoungOnlyGC:
1434     case LastYoungGC:
1435       _initial_mark_to_mixed.add_pause(end - start);
1436       break;
1437     case InitialMarkGC:
1438       _initial_mark_to_mixed.record_initial_mark_end(end);
1439       break;
1440     case MixedGC:
1441       _initial_mark_to_mixed.record_mixed_gc_start(start);
1442       break;
1443     default:
1444       ShouldNotReachHere();
1445   }
1446 }
1447 
1448 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
1449   _initial_mark_to_mixed.reset();
1450 }
1451 
1452 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1453                                                 const char* false_action_str) const {
1454   if (cset_chooser()->is_empty()) {
1455     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1456     return false;
1457   }
1458 
1459   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1460   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1461   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1462   double threshold = (double) G1HeapWastePercent;
1463   if (reclaimable_perc <= threshold) {
1464     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1465                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1466     return false;
1467   }
1468   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1469                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1470   return true;
1471 }
1472 
1473 uint G1CollectorPolicy::calc_min_old_cset_length() const {
1474   // The min old CSet region bound is based on the maximum desired
1475   // number of mixed GCs after a cycle. I.e., even if some old regions
1476   // look expensive, we should add them to the CSet anyway to make
1477   // sure we go through the available old regions in no more than the
1478   // maximum desired number of mixed GCs.
1479   //
1480   // The calculation is based on the number of marked regions we added
1481   // to the CSet chooser in the first place, not how many remain, so
1482   // that the result is the same during all mixed GCs that follow a cycle.
1483 
1484   const size_t region_num = (size_t) cset_chooser()->length();
1485   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1486   size_t result = region_num / gc_num;
1487   // emulate ceiling
1488   if (result * gc_num < region_num) {
1489     result += 1;
1490   }
1491   return (uint) result;
1492 }
1493 
1494 uint G1CollectorPolicy::calc_max_old_cset_length() const {
1495   // The max old CSet region bound is based on the threshold expressed
1496   // as a percentage of the heap size. I.e., it should bound the
1497   // number of old regions added to the CSet irrespective of how many
1498   // of them are available.
1499 
1500   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1501   const size_t region_num = g1h->num_regions();
1502   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1503   size_t result = region_num * perc / 100;
1504   // emulate ceiling
1505   if (100 * result < region_num * perc) {
1506     result += 1;
1507   }
1508   return (uint) result;
1509 }
1510 
1511 void G1CollectorPolicy::finalize_collection_set(double target_pause_time_ms) {
1512   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms);
1513   _collection_set->finalize_old_part(time_remaining_ms);
1514 }