/* * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP #define SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP #include "gc/g1/g1CollectorState.hpp" #include "gc/g1/g1GCPhaseTimes.hpp" #include "gc/g1/g1InCSetState.hpp" #include "gc/g1/g1InitialMarkToMixedTimeTracker.hpp" #include "gc/g1/g1MMUTracker.hpp" #include "gc/g1/g1Predictions.hpp" #include "gc/shared/collectorPolicy.hpp" #include "utilities/pair.hpp" // A G1CollectorPolicy makes policy decisions that determine the // characteristics of the collector. Examples include: // * choice of collection set. // * when to collect. class HeapRegion; class G1CollectionSet; class CollectionSetChooser; class G1IHOPControl; class G1Analytics; class G1YoungGenSizer; class G1CollectorPolicy: public CollectorPolicy { private: G1IHOPControl* _ihop_control; G1IHOPControl* create_ihop_control() const; // Update the IHOP control with necessary statistics. void update_ihop_prediction(double mutator_time_s, size_t mutator_alloc_bytes, size_t young_gen_size); void report_ihop_statistics(); G1Predictions _predictor; G1Analytics* _analytics; G1MMUTracker* _mmu_tracker; void initialize_alignments(); void initialize_flags(); double _full_collection_start_sec; // Ratio check data for determining if heap growth is necessary. uint _ratio_over_threshold_count; double _ratio_over_threshold_sum; uint _pauses_since_start; uint _young_list_target_length; uint _young_list_fixed_length; // The max number of regions we can extend the eden by while the GC // locker is active. This should be >= _young_list_target_length; uint _young_list_max_length; SurvRateGroup* _short_lived_surv_rate_group; SurvRateGroup* _survivor_surv_rate_group; double _gc_overhead_perc; double _reserve_factor; uint _reserve_regions; enum PredictionConstants { NumPrevPausesForHeuristics = 10, // MinOverThresholdForGrowth must be less than NumPrevPausesForHeuristics, // representing the minimum number of pause time ratios that exceed // GCTimeRatio before a heap expansion will be triggered. MinOverThresholdForGrowth = 4 }; G1YoungGenSizer* _young_gen_sizer; uint _free_regions_at_end_of_collection; size_t _max_rs_lengths; size_t _rs_lengths_prediction; #ifndef PRODUCT bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group); #endif // PRODUCT void adjust_concurrent_refinement(double update_rs_time, double update_rs_processed_buffers, double goal_ms); double _pause_time_target_ms; size_t _pending_cards; // The amount of allocated bytes in old gen during the last mutator and the following // young GC phase. size_t _bytes_allocated_in_old_since_last_gc; G1InitialMarkToMixedTimeTracker _initial_mark_to_mixed; public: const G1Predictions& predictor() const { return _predictor; } const G1Analytics* analytics() const { return const_cast(_analytics); } // Add the given number of bytes to the total number of allocated bytes in the old gen. void add_bytes_allocated_in_old_since_last_gc(size_t bytes) { _bytes_allocated_in_old_since_last_gc += bytes; } // Accessors void set_region_eden(HeapRegion* hr, int young_index_in_cset) { hr->set_eden(); hr->install_surv_rate_group(_short_lived_surv_rate_group); hr->set_young_index_in_cset(young_index_in_cset); } void set_region_survivor(HeapRegion* hr, int young_index_in_cset) { assert(hr->is_survivor(), "pre-condition"); hr->install_surv_rate_group(_survivor_surv_rate_group); hr->set_young_index_in_cset(young_index_in_cset); } #ifndef PRODUCT bool verify_young_ages(); #endif // PRODUCT void record_max_rs_lengths(size_t rs_lengths) { _max_rs_lengths = rs_lengths; } double predict_base_elapsed_time_ms(size_t pending_cards) const; double predict_base_elapsed_time_ms(size_t pending_cards, size_t scanned_cards) const; size_t predict_bytes_to_copy(HeapRegion* hr) const; double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const; double predict_survivor_regions_evac_time() const; bool should_update_surv_rate_group_predictors() { return collector_state()->last_gc_was_young() && !collector_state()->in_marking_window(); } void cset_regions_freed() { bool update = should_update_surv_rate_group_predictors(); _short_lived_surv_rate_group->all_surviving_words_recorded(update); _survivor_surv_rate_group->all_surviving_words_recorded(update); } G1MMUTracker* mmu_tracker() { return _mmu_tracker; } const G1MMUTracker* mmu_tracker() const { return _mmu_tracker; } double max_pause_time_ms() const { return _mmu_tracker->max_gc_time() * 1000.0; } // Returns an estimate of the survival rate of the region at yg-age // "yg_age". double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const; double predict_yg_surv_rate(int age) const; double accum_yg_surv_rate_pred(int age) const; protected: G1CollectionSet* _collection_set; virtual double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const; virtual double other_time_ms(double pause_time_ms) const; double young_other_time_ms() const; double non_young_other_time_ms() const; double constant_other_time_ms(double pause_time_ms) const; CollectionSetChooser* cset_chooser() const; private: // The number of bytes copied during the GC. size_t _bytes_copied_during_gc; // Stash a pointer to the g1 heap. G1CollectedHeap* _g1; G1GCPhaseTimes* _phase_times; // This set of variables tracks the collector efficiency, in order to // determine whether we should initiate a new marking. double _mark_remark_start_sec; double _mark_cleanup_start_sec; // Updates the internal young list maximum and target lengths. Returns the // unbounded young list target length. uint update_young_list_max_and_target_length(); uint update_young_list_max_and_target_length(size_t rs_lengths); // Update the young list target length either by setting it to the // desired fixed value or by calculating it using G1's pause // prediction model. If no rs_lengths parameter is passed, predict // the RS lengths using the prediction model, otherwise use the // given rs_lengths as the prediction. // Returns the unbounded young list target length. uint update_young_list_target_length(size_t rs_lengths); // Calculate and return the minimum desired young list target // length. This is the minimum desired young list length according // to the user's inputs. uint calculate_young_list_desired_min_length(uint base_min_length) const; // Calculate and return the maximum desired young list target // length. This is the maximum desired young list length according // to the user's inputs. uint calculate_young_list_desired_max_length() const; // Calculate and return the maximum young list target length that // can fit into the pause time goal. The parameters are: rs_lengths // represent the prediction of how large the young RSet lengths will // be, base_min_length is the already existing number of regions in // the young list, min_length and max_length are the desired min and // max young list length according to the user's inputs. uint calculate_young_list_target_length(size_t rs_lengths, uint base_min_length, uint desired_min_length, uint desired_max_length) const; // Result of the bounded_young_list_target_length() method, containing both the // bounded as well as the unbounded young list target lengths in this order. typedef Pair YoungTargetLengths; YoungTargetLengths young_list_target_lengths(size_t rs_lengths) const; void update_rs_lengths_prediction(); void update_rs_lengths_prediction(size_t prediction); // Calculate and return chunk size (in number of regions) for parallel // concurrent mark cleanup. uint calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const; // Check whether a given young length (young_length) fits into the // given target pause time and whether the prediction for the amount // of objects to be copied for the given length will fit into the // given free space (expressed by base_free_regions). It is used by // calculate_young_list_target_length(). bool predict_will_fit(uint young_length, double base_time_ms, uint base_free_regions, double target_pause_time_ms) const; public: size_t pending_cards() const { return _pending_cards; } // Calculate the minimum number of old regions we'll add to the CSet // during a mixed GC. uint calc_min_old_cset_length() const; // Calculate the maximum number of old regions we'll add to the CSet // during a mixed GC. uint calc_max_old_cset_length() const; // Returns the given amount of uncollected reclaimable space // as a percentage of the current heap capacity. double reclaimable_bytes_perc(size_t reclaimable_bytes) const; private: // Sets up marking if proper conditions are met. void maybe_start_marking(); // The kind of STW pause. enum PauseKind { FullGC, YoungOnlyGC, MixedGC, LastYoungGC, InitialMarkGC, Cleanup, Remark }; // Calculate PauseKind from internal state. PauseKind young_gc_pause_kind() const; // Record the given STW pause with the given start and end times (in s). void record_pause(PauseKind kind, double start, double end); // Indicate that we aborted marking before doing any mixed GCs. void abort_time_to_mixed_tracking(); public: G1CollectorPolicy(); virtual ~G1CollectorPolicy(); virtual G1CollectorPolicy* as_g1_policy() { return this; } G1CollectorState* collector_state() const; G1GCPhaseTimes* phase_times() const { return _phase_times; } // Check the current value of the young list RSet lengths and // compare it against the last prediction. If the current value is // higher, recalculate the young list target length prediction. void revise_young_list_target_length_if_necessary(size_t rs_lengths); // This should be called after the heap is resized. void record_new_heap_size(uint new_number_of_regions); void init(); virtual void note_gc_start(uint num_active_workers); // Create jstat counters for the policy. virtual void initialize_gc_policy_counters(); bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0); bool about_to_start_mixed_phase() const; // Record the start and end of an evacuation pause. void record_collection_pause_start(double start_time_sec); void record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc); // Record the start and end of a full collection. void record_full_collection_start(); void record_full_collection_end(); // Must currently be called while the world is stopped. void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms); // Record start and end of remark. void record_concurrent_mark_remark_start(); void record_concurrent_mark_remark_end(); // Record start, end, and completion of cleanup. void record_concurrent_mark_cleanup_start(); void record_concurrent_mark_cleanup_end(); void record_concurrent_mark_cleanup_completed(); virtual void print_phases(); // Record how much space we copied during a GC. This is typically // called when a GC alloc region is being retired. void record_bytes_copied_during_gc(size_t bytes) { _bytes_copied_during_gc += bytes; } // The amount of space we copied during a GC. size_t bytes_copied_during_gc() const { return _bytes_copied_during_gc; } // Determine whether there are candidate regions so that the // next GC should be mixed. The two action strings are used // in the ergo output when the method returns true or false. bool next_gc_should_be_mixed(const char* true_action_str, const char* false_action_str) const; virtual void finalize_collection_set(double target_pause_time_ms); private: // Set the state to start a concurrent marking cycle and clear // _initiate_conc_mark_if_possible because it has now been // acted on. void initiate_conc_mark(); public: // This sets the initiate_conc_mark_if_possible() flag to start a // new cycle, as long as we are not already in one. It's best if it // is called during a safepoint when the test whether a cycle is in // progress or not is stable. bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause); // This is called at the very beginning of an evacuation pause (it // has to be the first thing that the pause does). If // initiate_conc_mark_if_possible() is true, and the concurrent // marking thread has completed its work during the previous cycle, // it will set during_initial_mark_pause() to so that the pause does // the initial-mark work and start a marking cycle. void decide_on_conc_mark_initiation(); // If an expansion would be appropriate, because recent GC overhead had // exceeded the desired limit, return an amount to expand by. virtual size_t expansion_amount(); // Clear ratio tracking data used by expansion_amount(). void clear_ratio_check_data(); // Print stats on young survival ratio void print_yg_surv_rate_info() const; void finished_recalculating_age_indexes(bool is_survivors) { if (is_survivors) { _survivor_surv_rate_group->finished_recalculating_age_indexes(); } else { _short_lived_surv_rate_group->finished_recalculating_age_indexes(); } } size_t young_list_target_length() const { return _young_list_target_length; } bool is_young_list_full() const; bool can_expand_young_list() const; uint young_list_max_length() const { return _young_list_max_length; } bool adaptive_young_list_length() const; virtual bool should_process_references() const { return true; } private: // // Survivor regions policy. // // Current tenuring threshold, set to 0 if the collector reaches the // maximum amount of survivors regions. uint _tenuring_threshold; // The limit on the number of regions allocated for survivors. uint _max_survivor_regions; AgeTable _survivors_age_table; public: uint tenuring_threshold() const { return _tenuring_threshold; } uint max_survivor_regions() { return _max_survivor_regions; } static const uint REGIONS_UNLIMITED = (uint) -1; uint max_regions(InCSetState dest) const { switch (dest.value()) { case InCSetState::Young: return _max_survivor_regions; case InCSetState::Old: return REGIONS_UNLIMITED; default: assert(false, "Unknown dest state: " CSETSTATE_FORMAT, dest.value()); break; } // keep some compilers happy return 0; } void note_start_adding_survivor_regions() { _survivor_surv_rate_group->start_adding_regions(); } void note_stop_adding_survivor_regions() { _survivor_surv_rate_group->stop_adding_regions(); } void record_age_table(AgeTable* age_table) { _survivors_age_table.merge(age_table); } void update_max_gc_locker_expansion(); // Calculates survivor space parameters. void update_survivors_policy(); virtual void post_heap_initialize(); }; #endif // SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP