1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectionSet.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1ConcurrentMark.hpp"
  32 #include "gc/g1/g1IHOPControl.hpp"
  33 #include "gc/g1/g1GCPhaseTimes.hpp"
  34 #include "gc/g1/g1YoungGenSizer.hpp"
  35 #include "gc/g1/heapRegion.inline.hpp"
  36 #include "gc/g1/heapRegionRemSet.hpp"
  37 #include "gc/shared/gcPolicyCounters.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/mutexLocker.hpp"
  41 #include "utilities/debug.hpp"
  42 #include "utilities/pair.hpp"
  43 
  44 // Different defaults for different number of GC threads
  45 // They were chosen by running GCOld and SPECjbb on debris with different
  46 //   numbers of GC threads and choosing them based on the results
  47 
  48 // all the same
  49 static double rs_length_diff_defaults[] = {
  50   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  51 };
  52 
  53 static double cost_per_card_ms_defaults[] = {
  54   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  55 };
  56 
  57 // all the same
  58 static double young_cards_per_entry_ratio_defaults[] = {
  59   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  60 };
  61 
  62 static double cost_per_entry_ms_defaults[] = {
  63   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  64 };
  65 
  66 static double cost_per_byte_ms_defaults[] = {
  67   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  68 };
  69 
  70 // these should be pretty consistent
  71 static double constant_other_time_ms_defaults[] = {
  72   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  73 };
  74 
  75 
  76 static double young_other_cost_per_region_ms_defaults[] = {
  77   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  78 };
  79 
  80 static double non_young_other_cost_per_region_ms_defaults[] = {
  81   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  82 };
  83 
  84 G1CollectorPolicy::G1CollectorPolicy() :
  85   _predictor(G1ConfidencePercent / 100.0),
  86 
  87   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  88 
  89   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  90   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  91 
  92   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _prev_collection_pause_end_ms(0.0),
  94   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _non_young_other_cost_per_region_ms_seq(
 106                                          new TruncatedSeq(TruncatedSeqLength)),
 107 
 108   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 109   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 110 
 111   _pause_time_target_ms((double) MaxGCPauseMillis),
 112 
 113   _recent_prev_end_times_for_all_gcs_sec(
 114                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 115 
 116   _recent_avg_pause_time_ratio(0.0),
 117   _rs_lengths_prediction(0),
 118   _max_survivor_regions(0),
 119 
 120   // add here any more surv rate groups
 121   _survivors_age_table(true),
 122 
 123   _gc_overhead_perc(0.0),
 124 
 125   _bytes_allocated_in_old_since_last_gc(0),
 126   _ihop_control(NULL),
 127   _initial_mark_to_mixed() {
 128 
 129   // SurvRateGroups below must be initialized after the predictor because they
 130   // indirectly use it through this object passed to their constructor.
 131   _short_lived_surv_rate_group =
 132     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 133   _survivor_surv_rate_group =
 134     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 135 
 136   // Set up the region size and associated fields. Given that the
 137   // policy is created before the heap, we have to set this up here,
 138   // so it's done as soon as possible.
 139 
 140   // It would have been natural to pass initial_heap_byte_size() and
 141   // max_heap_byte_size() to setup_heap_region_size() but those have
 142   // not been set up at this point since they should be aligned with
 143   // the region size. So, there is a circular dependency here. We base
 144   // the region size on the heap size, but the heap size should be
 145   // aligned with the region size. To get around this we use the
 146   // unaligned values for the heap.
 147   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 148   HeapRegionRemSet::setup_remset_size();
 149 
 150   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 151   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 152   clear_ratio_check_data();
 153 
 154   _phase_times = new G1GCPhaseTimes(ParallelGCThreads);
 155 
 156   int index = MIN2(ParallelGCThreads - 1, 7u);
 157 
 158   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 159   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 160   _cost_scan_hcc_seq->add(0.0);
 161   _young_cards_per_entry_ratio_seq->add(
 162                                   young_cards_per_entry_ratio_defaults[index]);
 163   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 164   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 165   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 166   _young_other_cost_per_region_ms_seq->add(
 167                                young_other_cost_per_region_ms_defaults[index]);
 168   _non_young_other_cost_per_region_ms_seq->add(
 169                            non_young_other_cost_per_region_ms_defaults[index]);
 170 
 171   // Below, we might need to calculate the pause time target based on
 172   // the pause interval. When we do so we are going to give G1 maximum
 173   // flexibility and allow it to do pauses when it needs to. So, we'll
 174   // arrange that the pause interval to be pause time target + 1 to
 175   // ensure that a) the pause time target is maximized with respect to
 176   // the pause interval and b) we maintain the invariant that pause
 177   // time target < pause interval. If the user does not want this
 178   // maximum flexibility, they will have to set the pause interval
 179   // explicitly.
 180 
 181   // First make sure that, if either parameter is set, its value is
 182   // reasonable.
 183   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 184     if (MaxGCPauseMillis < 1) {
 185       vm_exit_during_initialization("MaxGCPauseMillis should be "
 186                                     "greater than 0");
 187     }
 188   }
 189   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 190     if (GCPauseIntervalMillis < 1) {
 191       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 192                                     "greater than 0");
 193     }
 194   }
 195 
 196   // Then, if the pause time target parameter was not set, set it to
 197   // the default value.
 198   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 199     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 200       // The default pause time target in G1 is 200ms
 201       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 202     } else {
 203       // We do not allow the pause interval to be set without the
 204       // pause time target
 205       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 206                                     "without setting MaxGCPauseMillis");
 207     }
 208   }
 209 
 210   // Then, if the interval parameter was not set, set it according to
 211   // the pause time target (this will also deal with the case when the
 212   // pause time target is the default value).
 213   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 214     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 215   }
 216 
 217   // Finally, make sure that the two parameters are consistent.
 218   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 219     char buffer[256];
 220     jio_snprintf(buffer, 256,
 221                  "MaxGCPauseMillis (%u) should be less than "
 222                  "GCPauseIntervalMillis (%u)",
 223                  MaxGCPauseMillis, GCPauseIntervalMillis);
 224     vm_exit_during_initialization(buffer);
 225   }
 226 
 227   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 228   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 229   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 230 
 231   // start conservatively (around 50ms is about right)
 232   _concurrent_mark_remark_times_ms->add(0.05);
 233   _concurrent_mark_cleanup_times_ms->add(0.20);
 234   _tenuring_threshold = MaxTenuringThreshold;
 235 
 236   assert(GCTimeRatio > 0,
 237          "we should have set it to a default value set_g1_gc_flags() "
 238          "if a user set it to 0");
 239   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 240 
 241   uintx reserve_perc = G1ReservePercent;
 242   // Put an artificial ceiling on this so that it's not set to a silly value.
 243   if (reserve_perc > 50) {
 244     reserve_perc = 50;
 245     warning("G1ReservePercent is set to a value that is too large, "
 246             "it's been updated to " UINTX_FORMAT, reserve_perc);
 247   }
 248   _reserve_factor = (double) reserve_perc / 100.0;
 249   // This will be set when the heap is expanded
 250   // for the first time during initialization.
 251   _reserve_regions = 0;
 252 
 253   _ihop_control = create_ihop_control();
 254 }
 255 
 256 G1CollectorPolicy::~G1CollectorPolicy() {
 257   delete _ihop_control;
 258 }
 259 
 260 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 261   return _predictor.get_new_prediction(seq);
 262 }
 263 
 264 size_t G1CollectorPolicy::get_new_size_prediction(TruncatedSeq const* seq) const {
 265   return (size_t)get_new_prediction(seq);
 266 }
 267 
 268 void G1CollectorPolicy::initialize_alignments() {
 269   _space_alignment = HeapRegion::GrainBytes;
 270   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 271   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 272   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 273 }
 274 
 275 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 276 
 277 void G1CollectorPolicy::post_heap_initialize() {
 278   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 279   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 280   if (max_young_size != MaxNewSize) {
 281     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 282   }
 283 }
 284 
 285 void G1CollectorPolicy::initialize_flags() {
 286   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 287     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 288   }
 289 
 290   if (SurvivorRatio < 1) {
 291     vm_exit_during_initialization("Invalid survivor ratio specified");
 292   }
 293   CollectorPolicy::initialize_flags();
 294   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 295 }
 296 
 297 
 298 void G1CollectorPolicy::init() {
 299   // Set aside an initial future to_space.
 300   _g1 = G1CollectedHeap::heap();
 301   _collection_set = _g1->collection_set();
 302   _collection_set->set_policy(this);
 303 
 304   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 305 
 306   initialize_gc_policy_counters();
 307 
 308   if (adaptive_young_list_length()) {
 309     _young_list_fixed_length = 0;
 310   } else {
 311     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 312   }
 313   _free_regions_at_end_of_collection = _g1->num_free_regions();
 314 
 315   update_young_list_max_and_target_length();
 316   // We may immediately start allocating regions and placing them on the
 317   // collection set list. Initialize the per-collection set info
 318   _collection_set->start_incremental_building();
 319 }
 320 
 321 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 322   phase_times()->note_gc_start(num_active_workers);
 323 }
 324 
 325 // Create the jstat counters for the policy.
 326 void G1CollectorPolicy::initialize_gc_policy_counters() {
 327   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 328 }
 329 
 330 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 331                                          double base_time_ms,
 332                                          uint base_free_regions,
 333                                          double target_pause_time_ms) const {
 334   if (young_length >= base_free_regions) {
 335     // end condition 1: not enough space for the young regions
 336     return false;
 337   }
 338 
 339   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 340   size_t bytes_to_copy =
 341                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 342   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 343   double young_other_time_ms = predict_young_other_time_ms(young_length);
 344   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 345   if (pause_time_ms > target_pause_time_ms) {
 346     // end condition 2: prediction is over the target pause time
 347     return false;
 348   }
 349 
 350   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 351 
 352   // When copying, we will likely need more bytes free than is live in the region.
 353   // Add some safety margin to factor in the confidence of our guess, and the
 354   // natural expected waste.
 355   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 356   // of the calculation: the lower the confidence, the more headroom.
 357   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 358   // copying due to anticipated waste in the PLABs.
 359   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 360   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 361 
 362   if (expected_bytes_to_copy > free_bytes) {
 363     // end condition 3: out-of-space
 364     return false;
 365   }
 366 
 367   // success!
 368   return true;
 369 }
 370 
 371 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 372   // re-calculate the necessary reserve
 373   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 374   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 375   // smaller than 1.0) we'll get 1.
 376   _reserve_regions = (uint) ceil(reserve_regions_d);
 377 
 378   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 379 
 380   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
 381 }
 382 
 383 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 384                                                        uint base_min_length) const {
 385   uint desired_min_length = 0;
 386   if (adaptive_young_list_length()) {
 387     if (_alloc_rate_ms_seq->num() > 3) {
 388       double now_sec = os::elapsedTime();
 389       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 390       double alloc_rate_ms = predict_alloc_rate_ms();
 391       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 392     } else {
 393       // otherwise we don't have enough info to make the prediction
 394     }
 395   }
 396   desired_min_length += base_min_length;
 397   // make sure we don't go below any user-defined minimum bound
 398   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 399 }
 400 
 401 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 402   // Here, we might want to also take into account any additional
 403   // constraints (i.e., user-defined minimum bound). Currently, we
 404   // effectively don't set this bound.
 405   return _young_gen_sizer->max_desired_young_length();
 406 }
 407 
 408 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 409   return update_young_list_max_and_target_length(predict_rs_lengths());
 410 }
 411 
 412 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 413   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 414   update_max_gc_locker_expansion();
 415   return unbounded_target_length;
 416 }
 417 
 418 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 419   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 420   _young_list_target_length = young_lengths.first;
 421   return young_lengths.second;
 422 }
 423 
 424 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 425   YoungTargetLengths result;
 426 
 427   // Calculate the absolute and desired min bounds first.
 428 
 429   // This is how many young regions we already have (currently: the survivors).
 430   const uint base_min_length = _g1->young_list()->survivor_length();
 431   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 432   // This is the absolute minimum young length. Ensure that we
 433   // will at least have one eden region available for allocation.
 434   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 435   // If we shrank the young list target it should not shrink below the current size.
 436   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 437   // Calculate the absolute and desired max bounds.
 438 
 439   uint desired_max_length = calculate_young_list_desired_max_length();
 440 
 441   uint young_list_target_length = 0;
 442   if (adaptive_young_list_length()) {
 443     if (collector_state()->gcs_are_young()) {
 444       young_list_target_length =
 445                         calculate_young_list_target_length(rs_lengths,
 446                                                            base_min_length,
 447                                                            desired_min_length,
 448                                                            desired_max_length);
 449     } else {
 450       // Don't calculate anything and let the code below bound it to
 451       // the desired_min_length, i.e., do the next GC as soon as
 452       // possible to maximize how many old regions we can add to it.
 453     }
 454   } else {
 455     // The user asked for a fixed young gen so we'll fix the young gen
 456     // whether the next GC is young or mixed.
 457     young_list_target_length = _young_list_fixed_length;
 458   }
 459 
 460   result.second = young_list_target_length;
 461 
 462   // We will try our best not to "eat" into the reserve.
 463   uint absolute_max_length = 0;
 464   if (_free_regions_at_end_of_collection > _reserve_regions) {
 465     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 466   }
 467   if (desired_max_length > absolute_max_length) {
 468     desired_max_length = absolute_max_length;
 469   }
 470 
 471   // Make sure we don't go over the desired max length, nor under the
 472   // desired min length. In case they clash, desired_min_length wins
 473   // which is why that test is second.
 474   if (young_list_target_length > desired_max_length) {
 475     young_list_target_length = desired_max_length;
 476   }
 477   if (young_list_target_length < desired_min_length) {
 478     young_list_target_length = desired_min_length;
 479   }
 480 
 481   assert(young_list_target_length > base_min_length,
 482          "we should be able to allocate at least one eden region");
 483   assert(young_list_target_length >= absolute_min_length, "post-condition");
 484 
 485   result.first = young_list_target_length;
 486   return result;
 487 }
 488 
 489 uint
 490 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 491                                                      uint base_min_length,
 492                                                      uint desired_min_length,
 493                                                      uint desired_max_length) const {
 494   assert(adaptive_young_list_length(), "pre-condition");
 495   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 496 
 497   // In case some edge-condition makes the desired max length too small...
 498   if (desired_max_length <= desired_min_length) {
 499     return desired_min_length;
 500   }
 501 
 502   // We'll adjust min_young_length and max_young_length not to include
 503   // the already allocated young regions (i.e., so they reflect the
 504   // min and max eden regions we'll allocate). The base_min_length
 505   // will be reflected in the predictions by the
 506   // survivor_regions_evac_time prediction.
 507   assert(desired_min_length > base_min_length, "invariant");
 508   uint min_young_length = desired_min_length - base_min_length;
 509   assert(desired_max_length > base_min_length, "invariant");
 510   uint max_young_length = desired_max_length - base_min_length;
 511 
 512   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 513   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 514   size_t pending_cards = get_new_size_prediction(_pending_cards_seq);
 515   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 516   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 517   double base_time_ms =
 518     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 519     survivor_regions_evac_time;
 520   uint available_free_regions = _free_regions_at_end_of_collection;
 521   uint base_free_regions = 0;
 522   if (available_free_regions > _reserve_regions) {
 523     base_free_regions = available_free_regions - _reserve_regions;
 524   }
 525 
 526   // Here, we will make sure that the shortest young length that
 527   // makes sense fits within the target pause time.
 528 
 529   if (predict_will_fit(min_young_length, base_time_ms,
 530                        base_free_regions, target_pause_time_ms)) {
 531     // The shortest young length will fit into the target pause time;
 532     // we'll now check whether the absolute maximum number of young
 533     // regions will fit in the target pause time. If not, we'll do
 534     // a binary search between min_young_length and max_young_length.
 535     if (predict_will_fit(max_young_length, base_time_ms,
 536                          base_free_regions, target_pause_time_ms)) {
 537       // The maximum young length will fit into the target pause time.
 538       // We are done so set min young length to the maximum length (as
 539       // the result is assumed to be returned in min_young_length).
 540       min_young_length = max_young_length;
 541     } else {
 542       // The maximum possible number of young regions will not fit within
 543       // the target pause time so we'll search for the optimal
 544       // length. The loop invariants are:
 545       //
 546       // min_young_length < max_young_length
 547       // min_young_length is known to fit into the target pause time
 548       // max_young_length is known not to fit into the target pause time
 549       //
 550       // Going into the loop we know the above hold as we've just
 551       // checked them. Every time around the loop we check whether
 552       // the middle value between min_young_length and
 553       // max_young_length fits into the target pause time. If it
 554       // does, it becomes the new min. If it doesn't, it becomes
 555       // the new max. This way we maintain the loop invariants.
 556 
 557       assert(min_young_length < max_young_length, "invariant");
 558       uint diff = (max_young_length - min_young_length) / 2;
 559       while (diff > 0) {
 560         uint young_length = min_young_length + diff;
 561         if (predict_will_fit(young_length, base_time_ms,
 562                              base_free_regions, target_pause_time_ms)) {
 563           min_young_length = young_length;
 564         } else {
 565           max_young_length = young_length;
 566         }
 567         assert(min_young_length <  max_young_length, "invariant");
 568         diff = (max_young_length - min_young_length) / 2;
 569       }
 570       // The results is min_young_length which, according to the
 571       // loop invariants, should fit within the target pause time.
 572 
 573       // These are the post-conditions of the binary search above:
 574       assert(min_young_length < max_young_length,
 575              "otherwise we should have discovered that max_young_length "
 576              "fits into the pause target and not done the binary search");
 577       assert(predict_will_fit(min_young_length, base_time_ms,
 578                               base_free_regions, target_pause_time_ms),
 579              "min_young_length, the result of the binary search, should "
 580              "fit into the pause target");
 581       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 582                                base_free_regions, target_pause_time_ms),
 583              "min_young_length, the result of the binary search, should be "
 584              "optimal, so no larger length should fit into the pause target");
 585     }
 586   } else {
 587     // Even the minimum length doesn't fit into the pause time
 588     // target, return it as the result nevertheless.
 589   }
 590   return base_min_length + min_young_length;
 591 }
 592 
 593 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 594   double survivor_regions_evac_time = 0.0;
 595   for (HeapRegion * r = _g1->young_list()->first_survivor_region();
 596        r != NULL && r != _g1->young_list()->last_survivor_region()->get_next_young_region();
 597        r = r->get_next_young_region()) {
 598     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 599   }
 600   return survivor_regions_evac_time;
 601 }
 602 
 603 void G1CollectorPolicy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
 604   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 605 
 606   if (rs_lengths > _rs_lengths_prediction) {
 607     // add 10% to avoid having to recalculate often
 608     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 609     update_rs_lengths_prediction(rs_lengths_prediction);
 610 
 611     update_young_list_max_and_target_length(rs_lengths_prediction);
 612   }
 613 }
 614 
 615 void G1CollectorPolicy::update_rs_lengths_prediction() {
 616   update_rs_lengths_prediction(predict_rs_lengths());
 617 }
 618 
 619 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 620   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 621     _rs_lengths_prediction = prediction;
 622   }
 623 }
 624 
 625 #ifndef PRODUCT
 626 bool G1CollectorPolicy::verify_young_ages() {
 627   HeapRegion* head = _g1->young_list()->first_region();
 628   return
 629     verify_young_ages(head, _short_lived_surv_rate_group);
 630   // also call verify_young_ages on any additional surv rate groups
 631 }
 632 
 633 bool
 634 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 635                                      SurvRateGroup *surv_rate_group) {
 636   guarantee( surv_rate_group != NULL, "pre-condition" );
 637 
 638   const char* name = surv_rate_group->name();
 639   bool ret = true;
 640   int prev_age = -1;
 641 
 642   for (HeapRegion* curr = head;
 643        curr != NULL;
 644        curr = curr->get_next_young_region()) {
 645     SurvRateGroup* group = curr->surv_rate_group();
 646     if (group == NULL && !curr->is_survivor()) {
 647       log_error(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 648       ret = false;
 649     }
 650 
 651     if (surv_rate_group == group) {
 652       int age = curr->age_in_surv_rate_group();
 653 
 654       if (age < 0) {
 655         log_error(gc, verify)("## %s: encountered negative age", name);
 656         ret = false;
 657       }
 658 
 659       if (age <= prev_age) {
 660         log_error(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 661         ret = false;
 662       }
 663       prev_age = age;
 664     }
 665   }
 666 
 667   return ret;
 668 }
 669 #endif // PRODUCT
 670 
 671 void G1CollectorPolicy::record_full_collection_start() {
 672   _full_collection_start_sec = os::elapsedTime();
 673   // Release the future to-space so that it is available for compaction into.
 674   collector_state()->set_full_collection(true);
 675 }
 676 
 677 void G1CollectorPolicy::record_full_collection_end() {
 678   // Consider this like a collection pause for the purposes of allocation
 679   // since last pause.
 680   double end_sec = os::elapsedTime();
 681   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 682   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 683 
 684   update_recent_gc_times(end_sec, full_gc_time_ms);
 685 
 686   collector_state()->set_full_collection(false);
 687 
 688   // "Nuke" the heuristics that control the young/mixed GC
 689   // transitions and make sure we start with young GCs after the Full GC.
 690   collector_state()->set_gcs_are_young(true);
 691   collector_state()->set_last_young_gc(false);
 692   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 693   collector_state()->set_during_initial_mark_pause(false);
 694   collector_state()->set_in_marking_window(false);
 695   collector_state()->set_in_marking_window_im(false);
 696 
 697   _short_lived_surv_rate_group->start_adding_regions();
 698   // also call this on any additional surv rate groups
 699 
 700   _free_regions_at_end_of_collection = _g1->num_free_regions();
 701   // Reset survivors SurvRateGroup.
 702   _survivor_surv_rate_group->reset();
 703   update_young_list_max_and_target_length();
 704   update_rs_lengths_prediction();
 705   cset_chooser()->clear();
 706 
 707   _bytes_allocated_in_old_since_last_gc = 0;
 708 
 709   record_pause(FullGC, _full_collection_start_sec, end_sec);
 710 }
 711 
 712 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 713   // We only need to do this here as the policy will only be applied
 714   // to the GC we're about to start. so, no point is calculating this
 715   // every time we calculate / recalculate the target young length.
 716   update_survivors_policy();
 717 
 718   assert(_g1->used() == _g1->recalculate_used(),
 719          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 720          _g1->used(), _g1->recalculate_used());
 721 
 722   phase_times()->record_cur_collection_start_sec(start_time_sec);
 723   _pending_cards = _g1->pending_card_num();
 724 
 725   _collection_set->reset_bytes_used_before();
 726   _bytes_copied_during_gc = 0;
 727 
 728   collector_state()->set_last_gc_was_young(false);
 729 
 730   // do that for any other surv rate groups
 731   _short_lived_surv_rate_group->stop_adding_regions();
 732   _survivors_age_table.clear();
 733 
 734   assert( verify_young_ages(), "region age verification" );
 735 }
 736 
 737 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 738                                                    mark_init_elapsed_time_ms) {
 739   collector_state()->set_during_marking(true);
 740   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 741   collector_state()->set_during_initial_mark_pause(false);
 742 }
 743 
 744 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 745   _mark_remark_start_sec = os::elapsedTime();
 746   collector_state()->set_during_marking(false);
 747 }
 748 
 749 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 750   double end_time_sec = os::elapsedTime();
 751   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 752   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 753   _prev_collection_pause_end_ms += elapsed_time_ms;
 754 
 755   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 756 }
 757 
 758 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 759   _mark_cleanup_start_sec = os::elapsedTime();
 760 }
 761 
 762 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 763   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 764                                                               "skip last young-only gc");
 765   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 766   // We skip the marking phase.
 767   if (!should_continue_with_reclaim) {
 768     abort_time_to_mixed_tracking();
 769   }
 770   collector_state()->set_in_marking_window(false);
 771 }
 772 
 773 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 774   return phase_times()->average_time_ms(phase);
 775 }
 776 
 777 double G1CollectorPolicy::young_other_time_ms() const {
 778   return phase_times()->young_cset_choice_time_ms() +
 779          phase_times()->young_free_cset_time_ms();
 780 }
 781 
 782 double G1CollectorPolicy::non_young_other_time_ms() const {
 783   return phase_times()->non_young_cset_choice_time_ms() +
 784          phase_times()->non_young_free_cset_time_ms();
 785 
 786 }
 787 
 788 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 789   return pause_time_ms -
 790          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 791          average_time_ms(G1GCPhaseTimes::ScanRS) -
 792          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 793          average_time_ms(G1GCPhaseTimes::Termination);
 794 }
 795 
 796 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 797   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 798 }
 799 
 800 CollectionSetChooser* G1CollectorPolicy::cset_chooser() const {
 801   return _collection_set->cset_chooser();
 802 }
 803 
 804 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 805   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 806 }
 807 
 808 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 809   if (about_to_start_mixed_phase()) {
 810     return false;
 811   }
 812 
 813   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 814 
 815   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 816   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 817   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 818 
 819   bool result = false;
 820   if (marking_request_bytes > marking_initiating_used_threshold) {
 821     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 822     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 823                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 824                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 825   }
 826 
 827   return result;
 828 }
 829 
 830 // Anything below that is considered to be zero
 831 #define MIN_TIMER_GRANULARITY 0.0000001
 832 
 833 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 834   double end_time_sec = os::elapsedTime();
 835 
 836   size_t cur_used_bytes = _g1->used();
 837   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 838   bool last_pause_included_initial_mark = false;
 839   bool update_stats = !_g1->evacuation_failed();
 840 
 841   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 842 
 843   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 844 
 845   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 846   if (last_pause_included_initial_mark) {
 847     record_concurrent_mark_init_end(0.0);
 848   } else {
 849     maybe_start_marking();
 850   }
 851 
 852   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 853   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 854     // This usually happens due to the timer not having the required
 855     // granularity. Some Linuxes are the usual culprits.
 856     // We'll just set it to something (arbitrarily) small.
 857     app_time_ms = 1.0;
 858   }
 859 
 860   if (update_stats) {
 861     // We maintain the invariant that all objects allocated by mutator
 862     // threads will be allocated out of eden regions. So, we can use
 863     // the eden region number allocated since the previous GC to
 864     // calculate the application's allocate rate. The only exception
 865     // to that is humongous objects that are allocated separately. But
 866     // given that humongous object allocations do not really affect
 867     // either the pause's duration nor when the next pause will take
 868     // place we can safely ignore them here.
 869     uint regions_allocated = _collection_set->eden_region_length();
 870     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 871     _alloc_rate_ms_seq->add(alloc_rate_ms);
 872 
 873     double interval_ms =
 874       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
 875     update_recent_gc_times(end_time_sec, pause_time_ms);
 876     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
 877     if (recent_avg_pause_time_ratio() < 0.0 ||
 878         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
 879       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
 880       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
 881       if (_recent_avg_pause_time_ratio < 0.0) {
 882         _recent_avg_pause_time_ratio = 0.0;
 883       } else {
 884         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
 885         _recent_avg_pause_time_ratio = 1.0;
 886       }
 887     }
 888 
 889     // Compute the ratio of just this last pause time to the entire time range stored
 890     // in the vectors. Comparing this pause to the entire range, rather than only the
 891     // most recent interval, has the effect of smoothing over a possible transient 'burst'
 892     // of more frequent pauses that don't really reflect a change in heap occupancy.
 893     // This reduces the likelihood of a needless heap expansion being triggered.
 894     _last_pause_time_ratio =
 895       (pause_time_ms * _recent_prev_end_times_for_all_gcs_sec->num()) / interval_ms;
 896   }
 897 
 898   bool new_in_marking_window = collector_state()->in_marking_window();
 899   bool new_in_marking_window_im = false;
 900   if (last_pause_included_initial_mark) {
 901     new_in_marking_window = true;
 902     new_in_marking_window_im = true;
 903   }
 904 
 905   if (collector_state()->last_young_gc()) {
 906     // This is supposed to to be the "last young GC" before we start
 907     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
 908     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
 909 
 910     if (next_gc_should_be_mixed("start mixed GCs",
 911                                 "do not start mixed GCs")) {
 912       collector_state()->set_gcs_are_young(false);
 913     } else {
 914       // We aborted the mixed GC phase early.
 915       abort_time_to_mixed_tracking();
 916     }
 917 
 918     collector_state()->set_last_young_gc(false);
 919   }
 920 
 921   if (!collector_state()->last_gc_was_young()) {
 922     // This is a mixed GC. Here we decide whether to continue doing
 923     // mixed GCs or not.
 924     if (!next_gc_should_be_mixed("continue mixed GCs",
 925                                  "do not continue mixed GCs")) {
 926       collector_state()->set_gcs_are_young(true);
 927 
 928       maybe_start_marking();
 929     }
 930   }
 931 
 932   _short_lived_surv_rate_group->start_adding_regions();
 933   // Do that for any other surv rate groups
 934 
 935   double scan_hcc_time_ms = ConcurrentG1Refine::hot_card_cache_enabled() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
 936 
 937   if (update_stats) {
 938     double cost_per_card_ms = 0.0;
 939     if (_pending_cards > 0) {
 940       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
 941       _cost_per_card_ms_seq->add(cost_per_card_ms);
 942     }
 943     _cost_scan_hcc_seq->add(scan_hcc_time_ms);
 944 
 945     double cost_per_entry_ms = 0.0;
 946     if (cards_scanned > 10) {
 947       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
 948       if (collector_state()->last_gc_was_young()) {
 949         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
 950       } else {
 951         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
 952       }
 953     }
 954 
 955     if (_max_rs_lengths > 0) {
 956       double cards_per_entry_ratio =
 957         (double) cards_scanned / (double) _max_rs_lengths;
 958       if (collector_state()->last_gc_was_young()) {
 959         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
 960       } else {
 961         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
 962       }
 963     }
 964 
 965     // This is defensive. For a while _max_rs_lengths could get
 966     // smaller than _recorded_rs_lengths which was causing
 967     // rs_length_diff to get very large and mess up the RSet length
 968     // predictions. The reason was unsafe concurrent updates to the
 969     // _inc_cset_recorded_rs_lengths field which the code below guards
 970     // against (see CR 7118202). This bug has now been fixed (see CR
 971     // 7119027). However, I'm still worried that
 972     // _inc_cset_recorded_rs_lengths might still end up somewhat
 973     // inaccurate. The concurrent refinement thread calculates an
 974     // RSet's length concurrently with other CR threads updating it
 975     // which might cause it to calculate the length incorrectly (if,
 976     // say, it's in mid-coarsening). So I'll leave in the defensive
 977     // conditional below just in case.
 978     size_t rs_length_diff = 0;
 979     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
 980     if (_max_rs_lengths > recorded_rs_lengths) {
 981       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
 982     }
 983     _rs_length_diff_seq->add((double) rs_length_diff);
 984 
 985     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
 986     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
 987     double cost_per_byte_ms = 0.0;
 988 
 989     if (copied_bytes > 0) {
 990       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
 991       if (collector_state()->in_marking_window()) {
 992         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
 993       } else {
 994         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
 995       }
 996     }
 997 
 998     if (_collection_set->young_region_length() > 0) {
 999       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
1000                                                _collection_set->young_region_length());
1001     }
1002 
1003     if (_collection_set->old_region_length() > 0) {
1004       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
1005                                                    _collection_set->old_region_length());
1006     }
1007 
1008     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1009 
1010     _pending_cards_seq->add((double) _pending_cards);
1011     _rs_lengths_seq->add((double) _max_rs_lengths);
1012   }
1013 
1014   collector_state()->set_in_marking_window(new_in_marking_window);
1015   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1016   _free_regions_at_end_of_collection = _g1->num_free_regions();
1017   // IHOP control wants to know the expected young gen length if it were not
1018   // restrained by the heap reserve. Using the actual length would make the
1019   // prediction too small and the limit the young gen every time we get to the
1020   // predicted target occupancy.
1021   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
1022   update_rs_lengths_prediction();
1023 
1024   update_ihop_prediction(app_time_ms / 1000.0,
1025                          _bytes_allocated_in_old_since_last_gc,
1026                          last_unrestrained_young_length * HeapRegion::GrainBytes);
1027   _bytes_allocated_in_old_since_last_gc = 0;
1028 
1029   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
1030 
1031   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1032   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1033 
1034   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1035     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1036                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1037                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1038 
1039     update_rs_time_goal_ms = 0;
1040   } else {
1041     update_rs_time_goal_ms -= scan_hcc_time_ms;
1042   }
1043   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1044                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1045                                update_rs_time_goal_ms);
1046 
1047   cset_chooser()->verify();
1048 }
1049 
1050 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1051   if (G1UseAdaptiveIHOP) {
1052     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
1053                                      &_predictor,
1054                                      G1ReservePercent,
1055                                      G1HeapWastePercent);
1056   } else {
1057     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
1058   }
1059 }
1060 
1061 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
1062                                                size_t mutator_alloc_bytes,
1063                                                size_t young_gen_size) {
1064   // Always try to update IHOP prediction. Even evacuation failures give information
1065   // about e.g. whether to start IHOP earlier next time.
1066 
1067   // Avoid using really small application times that might create samples with
1068   // very high or very low values. They may be caused by e.g. back-to-back gcs.
1069   double const min_valid_time = 1e-6;
1070 
1071   bool report = false;
1072 
1073   double marking_to_mixed_time = -1.0;
1074   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1075     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1076     assert(marking_to_mixed_time > 0.0,
1077            "Initial mark to mixed time must be larger than zero but is %.3f",
1078            marking_to_mixed_time);
1079     if (marking_to_mixed_time > min_valid_time) {
1080       _ihop_control->update_marking_length(marking_to_mixed_time);
1081       report = true;
1082     }
1083   }
1084 
1085   // As an approximation for the young gc promotion rates during marking we use
1086   // all of them. In many applications there are only a few if any young gcs during
1087   // marking, which makes any prediction useless. This increases the accuracy of the
1088   // prediction.
1089   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1090     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1091     report = true;
1092   }
1093 
1094   if (report) {
1095     report_ihop_statistics();
1096   }
1097 }
1098 
1099 void G1CollectorPolicy::report_ihop_statistics() {
1100   _ihop_control->print();
1101 }
1102 
1103 void G1CollectorPolicy::print_phases() {
1104   phase_times()->print();
1105 }
1106 
1107 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1108                                                      double update_rs_processed_buffers,
1109                                                      double goal_ms) {
1110   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1111   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1112 
1113   if (G1UseAdaptiveConcRefinement) {
1114     const int k_gy = 3, k_gr = 6;
1115     const double inc_k = 1.1, dec_k = 0.9;
1116 
1117     size_t g = cg1r->green_zone();
1118     if (update_rs_time > goal_ms) {
1119       g = (size_t)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1120     } else {
1121       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1122         g = (size_t)MAX2(g * inc_k, g + 1.0);
1123       }
1124     }
1125     // Change the refinement threads params
1126     cg1r->set_green_zone(g);
1127     cg1r->set_yellow_zone(g * k_gy);
1128     cg1r->set_red_zone(g * k_gr);
1129     cg1r->reinitialize_threads();
1130 
1131     size_t processing_threshold_delta = MAX2<size_t>(cg1r->green_zone() * _predictor.sigma(), 1);
1132     size_t processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1133                                     cg1r->yellow_zone());
1134     // Change the barrier params
1135     dcqs.set_process_completed_threshold((int)processing_threshold);
1136     dcqs.set_max_completed_queue((int)cg1r->red_zone());
1137   }
1138 
1139   size_t curr_queue_size = dcqs.completed_buffers_num();
1140   if (curr_queue_size >= cg1r->yellow_zone()) {
1141     dcqs.set_completed_queue_padding(curr_queue_size);
1142   } else {
1143     dcqs.set_completed_queue_padding(0);
1144   }
1145   dcqs.notify_if_necessary();
1146 }
1147 
1148 size_t G1CollectorPolicy::predict_rs_lengths() const {
1149   return get_new_size_prediction(_rs_lengths_seq);
1150 }
1151 
1152 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1153   return get_new_size_prediction(_rs_length_diff_seq);
1154 }
1155 
1156 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1157   return get_new_prediction(_alloc_rate_ms_seq);
1158 }
1159 
1160 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1161   return get_new_prediction(_cost_per_card_ms_seq);
1162 }
1163 
1164 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1165   return get_new_prediction(_cost_scan_hcc_seq);
1166 }
1167 
1168 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1169   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1170 }
1171 
1172 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1173   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1174 }
1175 
1176 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1177   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1178     return predict_young_cards_per_entry_ratio();
1179   } else {
1180     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1181   }
1182 }
1183 
1184 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1185   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1186 }
1187 
1188 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1189   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1190 }
1191 
1192 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1193   if (collector_state()->gcs_are_young()) {
1194     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1195   } else {
1196     return predict_mixed_rs_scan_time_ms(card_num);
1197   }
1198 }
1199 
1200 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1201   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1202     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1203   } else {
1204     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1205   }
1206 }
1207 
1208 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1209   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1210     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1211   } else {
1212     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1213   }
1214 }
1215 
1216 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1217   if (collector_state()->during_concurrent_mark()) {
1218     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1219   } else {
1220     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1221   }
1222 }
1223 
1224 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1225   return get_new_prediction(_constant_other_time_ms_seq);
1226 }
1227 
1228 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1229   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1230 }
1231 
1232 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1233   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1234 }
1235 
1236 double G1CollectorPolicy::predict_remark_time_ms() const {
1237   return get_new_prediction(_concurrent_mark_remark_times_ms);
1238 }
1239 
1240 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1241   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1242 }
1243 
1244 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1245   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1246   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1247   double pred = get_new_prediction(seq);
1248   if (pred > 1.0) {
1249     pred = 1.0;
1250   }
1251   return pred;
1252 }
1253 
1254 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1255   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1256 }
1257 
1258 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1259   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1260 }
1261 
1262 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1263                                                        size_t scanned_cards) const {
1264   return
1265     predict_rs_update_time_ms(pending_cards) +
1266     predict_rs_scan_time_ms(scanned_cards) +
1267     predict_constant_other_time_ms();
1268 }
1269 
1270 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1271   size_t rs_length = predict_rs_lengths() + predict_rs_length_diff();
1272   size_t card_num;
1273   if (collector_state()->gcs_are_young()) {
1274     card_num = predict_young_card_num(rs_length);
1275   } else {
1276     card_num = predict_non_young_card_num(rs_length);
1277   }
1278   return predict_base_elapsed_time_ms(pending_cards, card_num);
1279 }
1280 
1281 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1282   size_t bytes_to_copy;
1283   if (hr->is_marked())
1284     bytes_to_copy = hr->max_live_bytes();
1285   else {
1286     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1287     int age = hr->age_in_surv_rate_group();
1288     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1289     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1290   }
1291   return bytes_to_copy;
1292 }
1293 
1294 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1295                                                          bool for_young_gc) const {
1296   size_t rs_length = hr->rem_set()->occupied();
1297   size_t card_num;
1298 
1299   // Predicting the number of cards is based on which type of GC
1300   // we're predicting for.
1301   if (for_young_gc) {
1302     card_num = predict_young_card_num(rs_length);
1303   } else {
1304     card_num = predict_non_young_card_num(rs_length);
1305   }
1306   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1307 
1308   double region_elapsed_time_ms =
1309     predict_rs_scan_time_ms(card_num) +
1310     predict_object_copy_time_ms(bytes_to_copy);
1311 
1312   // The prediction of the "other" time for this region is based
1313   // upon the region type and NOT the GC type.
1314   if (hr->is_young()) {
1315     region_elapsed_time_ms += predict_young_other_time_ms(1);
1316   } else {
1317     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1318   }
1319   return region_elapsed_time_ms;
1320 }
1321 
1322 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1323                                                double elapsed_ms) {
1324   _recent_gc_times_ms->add(elapsed_ms);
1325   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1326   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1327 }
1328 
1329 void G1CollectorPolicy::clear_ratio_check_data() {
1330   _ratio_over_threshold_count = 0;
1331   _ratio_over_threshold_sum = 0.0;
1332   _pauses_since_start = 0;
1333 }
1334 
1335 size_t G1CollectorPolicy::expansion_amount() {
1336   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1337   double last_gc_overhead = _last_pause_time_ratio * 100.0;
1338   double threshold = _gc_overhead_perc;
1339   size_t expand_bytes = 0;
1340 
1341   // If the heap is at less than half its maximum size, scale the threshold down,
1342   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1343   // though the scaling code will likely keep the increase small.
1344   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1345     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1346     threshold = MAX2(threshold, 1.0);
1347   }
1348 
1349   // If the last GC time ratio is over the threshold, increment the count of
1350   // times it has been exceeded, and add this ratio to the sum of exceeded
1351   // ratios.
1352   if (last_gc_overhead > threshold) {
1353     _ratio_over_threshold_count++;
1354     _ratio_over_threshold_sum += last_gc_overhead;
1355   }
1356 
1357   // Check if we've had enough GC time ratio checks that were over the
1358   // threshold to trigger an expansion. We'll also expand if we've
1359   // reached the end of the history buffer and the average of all entries
1360   // is still over the threshold. This indicates a smaller number of GCs were
1361   // long enough to make the average exceed the threshold.
1362   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1363   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1364       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1365     size_t min_expand_bytes = HeapRegion::GrainBytes;
1366     size_t reserved_bytes = _g1->max_capacity();
1367     size_t committed_bytes = _g1->capacity();
1368     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1369     size_t expand_bytes_via_pct =
1370       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1371     double scale_factor = 1.0;
1372 
1373     // If the current size is less than 1/4 of the Initial heap size, expand
1374     // by half of the delta between the current and Initial sizes. IE, grow
1375     // back quickly.
1376     //
1377     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1378     // the available expansion space, whichever is smaller, as the base
1379     // expansion size. Then possibly scale this size according to how much the
1380     // threshold has (on average) been exceeded by. If the delta is small
1381     // (less than the StartScaleDownAt value), scale the size down linearly, but
1382     // not by less than MinScaleDownFactor. If the delta is large (greater than
1383     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1384     // times the base size. The scaling will be linear in the range from
1385     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1386     // ScaleUpRange sets the rate of scaling up.
1387     if (committed_bytes < InitialHeapSize / 4) {
1388       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1389     } else {
1390       double const MinScaleDownFactor = 0.2;
1391       double const MaxScaleUpFactor = 2;
1392       double const StartScaleDownAt = _gc_overhead_perc;
1393       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1394       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1395 
1396       double ratio_delta;
1397       if (filled_history_buffer) {
1398         ratio_delta = recent_gc_overhead - threshold;
1399       } else {
1400         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1401       }
1402 
1403       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1404       if (ratio_delta < StartScaleDownAt) {
1405         scale_factor = ratio_delta / StartScaleDownAt;
1406         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1407       } else if (ratio_delta > StartScaleUpAt) {
1408         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1409         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1410       }
1411     }
1412 
1413     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1414                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1415                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1416 
1417     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1418 
1419     // Ensure the expansion size is at least the minimum growth amount
1420     // and at most the remaining uncommitted byte size.
1421     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1422     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1423 
1424     clear_ratio_check_data();
1425   } else {
1426     // An expansion was not triggered. If we've started counting, increment
1427     // the number of checks we've made in the current window.  If we've
1428     // reached the end of the window without resizing, clear the counters to
1429     // start again the next time we see a ratio above the threshold.
1430     if (_ratio_over_threshold_count > 0) {
1431       _pauses_since_start++;
1432       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1433         clear_ratio_check_data();
1434       }
1435     }
1436   }
1437 
1438   return expand_bytes;
1439 }
1440 
1441 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1442 #ifndef PRODUCT
1443   _short_lived_surv_rate_group->print_surv_rate_summary();
1444   // add this call for any other surv rate groups
1445 #endif // PRODUCT
1446 }
1447 
1448 bool G1CollectorPolicy::is_young_list_full() const {
1449   uint young_list_length = _g1->young_list()->length();
1450   uint young_list_target_length = _young_list_target_length;
1451   return young_list_length >= young_list_target_length;
1452 }
1453 
1454 bool G1CollectorPolicy::can_expand_young_list() const {
1455   uint young_list_length = _g1->young_list()->length();
1456   uint young_list_max_length = _young_list_max_length;
1457   return young_list_length < young_list_max_length;
1458 }
1459 
1460 bool G1CollectorPolicy::adaptive_young_list_length() const {
1461   return _young_gen_sizer->adaptive_young_list_length();
1462 }
1463 
1464 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1465   uint expansion_region_num = 0;
1466   if (GCLockerEdenExpansionPercent > 0) {
1467     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1468     double expansion_region_num_d = perc * (double) _young_list_target_length;
1469     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1470     // less than 1.0) we'll get 1.
1471     expansion_region_num = (uint) ceil(expansion_region_num_d);
1472   } else {
1473     assert(expansion_region_num == 0, "sanity");
1474   }
1475   _young_list_max_length = _young_list_target_length + expansion_region_num;
1476   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1477 }
1478 
1479 // Calculates survivor space parameters.
1480 void G1CollectorPolicy::update_survivors_policy() {
1481   double max_survivor_regions_d =
1482                  (double) _young_list_target_length / (double) SurvivorRatio;
1483   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1484   // smaller than 1.0) we'll get 1.
1485   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1486 
1487   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1488         HeapRegion::GrainWords * _max_survivor_regions, counters());
1489 }
1490 
1491 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1492   // We actually check whether we are marking here and not if we are in a
1493   // reclamation phase. This means that we will schedule a concurrent mark
1494   // even while we are still in the process of reclaiming memory.
1495   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1496   if (!during_cycle) {
1497     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1498     collector_state()->set_initiate_conc_mark_if_possible(true);
1499     return true;
1500   } else {
1501     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1502     return false;
1503   }
1504 }
1505 
1506 void G1CollectorPolicy::initiate_conc_mark() {
1507   collector_state()->set_during_initial_mark_pause(true);
1508   collector_state()->set_initiate_conc_mark_if_possible(false);
1509 }
1510 
1511 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1512   // We are about to decide on whether this pause will be an
1513   // initial-mark pause.
1514 
1515   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1516   // will set it here if we have to. However, it should be cleared by
1517   // the end of the pause (it's only set for the duration of an
1518   // initial-mark pause).
1519   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1520 
1521   if (collector_state()->initiate_conc_mark_if_possible()) {
1522     // We had noticed on a previous pause that the heap occupancy has
1523     // gone over the initiating threshold and we should start a
1524     // concurrent marking cycle. So we might initiate one.
1525 
1526     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1527       // Initiate a new initial mark if there is no marking or reclamation going on.
1528       initiate_conc_mark();
1529       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1530     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1531       // Initiate a user requested initial mark. An initial mark must be young only
1532       // GC, so the collector state must be updated to reflect this.
1533       collector_state()->set_gcs_are_young(true);
1534       collector_state()->set_last_young_gc(false);
1535 
1536       abort_time_to_mixed_tracking();
1537       initiate_conc_mark();
1538       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1539     } else {
1540       // The concurrent marking thread is still finishing up the
1541       // previous cycle. If we start one right now the two cycles
1542       // overlap. In particular, the concurrent marking thread might
1543       // be in the process of clearing the next marking bitmap (which
1544       // we will use for the next cycle if we start one). Starting a
1545       // cycle now will be bad given that parts of the marking
1546       // information might get cleared by the marking thread. And we
1547       // cannot wait for the marking thread to finish the cycle as it
1548       // periodically yields while clearing the next marking bitmap
1549       // and, if it's in a yield point, it's waiting for us to
1550       // finish. So, at this point we will not start a cycle and we'll
1551       // let the concurrent marking thread complete the last one.
1552       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1553     }
1554   }
1555 }
1556 
1557 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1558   G1CollectedHeap* _g1h;
1559   CSetChooserParUpdater _cset_updater;
1560 
1561 public:
1562   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1563                            uint chunk_size) :
1564     _g1h(G1CollectedHeap::heap()),
1565     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1566 
1567   bool doHeapRegion(HeapRegion* r) {
1568     // Do we have any marking information for this region?
1569     if (r->is_marked()) {
1570       // We will skip any region that's currently used as an old GC
1571       // alloc region (we should not consider those for collection
1572       // before we fill them up).
1573       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1574         _cset_updater.add_region(r);
1575       }
1576     }
1577     return false;
1578   }
1579 };
1580 
1581 class ParKnownGarbageTask: public AbstractGangTask {
1582   CollectionSetChooser* _hrSorted;
1583   uint _chunk_size;
1584   G1CollectedHeap* _g1;
1585   HeapRegionClaimer _hrclaimer;
1586 
1587 public:
1588   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1589       AbstractGangTask("ParKnownGarbageTask"),
1590       _hrSorted(hrSorted), _chunk_size(chunk_size),
1591       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1592 
1593   void work(uint worker_id) {
1594     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1595     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1596   }
1597 };
1598 
1599 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1600   assert(n_workers > 0, "Active gc workers should be greater than 0");
1601   const uint overpartition_factor = 4;
1602   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1603   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1604 }
1605 
1606 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1607   cset_chooser()->clear();
1608 
1609   WorkGang* workers = _g1->workers();
1610   uint n_workers = workers->active_workers();
1611 
1612   uint n_regions = _g1->num_regions();
1613   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1614   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1615   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1616   workers->run_task(&par_known_garbage_task);
1617 
1618   cset_chooser()->sort_regions();
1619 
1620   double end_sec = os::elapsedTime();
1621   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1622   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1623   _prev_collection_pause_end_ms += elapsed_time_ms;
1624 
1625   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1626 }
1627 
1628 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1629   // Returns the given amount of reclaimable bytes (that represents
1630   // the amount of reclaimable space still to be collected) as a
1631   // percentage of the current heap capacity.
1632   size_t capacity_bytes = _g1->capacity();
1633   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1634 }
1635 
1636 void G1CollectorPolicy::maybe_start_marking() {
1637   if (need_to_start_conc_mark("end of GC")) {
1638     // Note: this might have already been set, if during the last
1639     // pause we decided to start a cycle but at the beginning of
1640     // this pause we decided to postpone it. That's OK.
1641     collector_state()->set_initiate_conc_mark_if_possible(true);
1642   }
1643 }
1644 
1645 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
1646   assert(!collector_state()->full_collection(), "must be");
1647   if (collector_state()->during_initial_mark_pause()) {
1648     assert(collector_state()->last_gc_was_young(), "must be");
1649     assert(!collector_state()->last_young_gc(), "must be");
1650     return InitialMarkGC;
1651   } else if (collector_state()->last_young_gc()) {
1652     assert(!collector_state()->during_initial_mark_pause(), "must be");
1653     assert(collector_state()->last_gc_was_young(), "must be");
1654     return LastYoungGC;
1655   } else if (!collector_state()->last_gc_was_young()) {
1656     assert(!collector_state()->during_initial_mark_pause(), "must be");
1657     assert(!collector_state()->last_young_gc(), "must be");
1658     return MixedGC;
1659   } else {
1660     assert(collector_state()->last_gc_was_young(), "must be");
1661     assert(!collector_state()->during_initial_mark_pause(), "must be");
1662     assert(!collector_state()->last_young_gc(), "must be");
1663     return YoungOnlyGC;
1664   }
1665 }
1666 
1667 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
1668   // Manage the MMU tracker. For some reason it ignores Full GCs.
1669   if (kind != FullGC) {
1670     _mmu_tracker->add_pause(start, end);
1671   }
1672   // Manage the mutator time tracking from initial mark to first mixed gc.
1673   switch (kind) {
1674     case FullGC:
1675       abort_time_to_mixed_tracking();
1676       break;
1677     case Cleanup:
1678     case Remark:
1679     case YoungOnlyGC:
1680     case LastYoungGC:
1681       _initial_mark_to_mixed.add_pause(end - start);
1682       break;
1683     case InitialMarkGC:
1684       _initial_mark_to_mixed.record_initial_mark_end(end);
1685       break;
1686     case MixedGC:
1687       _initial_mark_to_mixed.record_mixed_gc_start(start);
1688       break;
1689     default:
1690       ShouldNotReachHere();
1691   }
1692 }
1693 
1694 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
1695   _initial_mark_to_mixed.reset();
1696 }
1697 
1698 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1699                                                 const char* false_action_str) const {
1700   if (cset_chooser()->is_empty()) {
1701     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
1702     return false;
1703   }
1704 
1705   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1706   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
1707   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1708   double threshold = (double) G1HeapWastePercent;
1709   if (reclaimable_perc <= threshold) {
1710     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1711                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1712     return false;
1713   }
1714   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
1715                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
1716   return true;
1717 }
1718 
1719 uint G1CollectorPolicy::calc_min_old_cset_length() const {
1720   // The min old CSet region bound is based on the maximum desired
1721   // number of mixed GCs after a cycle. I.e., even if some old regions
1722   // look expensive, we should add them to the CSet anyway to make
1723   // sure we go through the available old regions in no more than the
1724   // maximum desired number of mixed GCs.
1725   //
1726   // The calculation is based on the number of marked regions we added
1727   // to the CSet chooser in the first place, not how many remain, so
1728   // that the result is the same during all mixed GCs that follow a cycle.
1729 
1730   const size_t region_num = (size_t) cset_chooser()->length();
1731   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1732   size_t result = region_num / gc_num;
1733   // emulate ceiling
1734   if (result * gc_num < region_num) {
1735     result += 1;
1736   }
1737   return (uint) result;
1738 }
1739 
1740 uint G1CollectorPolicy::calc_max_old_cset_length() const {
1741   // The max old CSet region bound is based on the threshold expressed
1742   // as a percentage of the heap size. I.e., it should bound the
1743   // number of old regions added to the CSet irrespective of how many
1744   // of them are available.
1745 
1746   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
1747   const size_t region_num = g1h->num_regions();
1748   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1749   size_t result = region_num * perc / 100;
1750   // emulate ceiling
1751   if (100 * result < region_num * perc) {
1752     result += 1;
1753   }
1754   return (uint) result;
1755 }
1756 
1757 void G1CollectorPolicy::finalize_collection_set(double target_pause_time_ms) {
1758   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms);
1759   _collection_set->finalize_old_part(time_remaining_ms);
1760 }
1761