1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc/g1/g1CollectorState.hpp"
  29 #include "gc/g1/g1GCPhaseTimes.hpp"
  30 #include "gc/g1/g1InCSetState.hpp"
  31 #include "gc/g1/g1InitialMarkToMixedTimeTracker.hpp"
  32 #include "gc/g1/g1MMUTracker.hpp"
  33 #include "gc/g1/g1Predictions.hpp"
  34 #include "gc/shared/collectorPolicy.hpp"
  35 #include "utilities/pair.hpp"
  36 
  37 // A G1CollectorPolicy makes policy decisions that determine the
  38 // characteristics of the collector.  Examples include:
  39 //   * choice of collection set.
  40 //   * when to collect.
  41 
  42 class HeapRegion;
  43 class G1CollectionSet;
  44 class CollectionSetChooser;
  45 class G1IHOPControl;
  46 class G1Analytics;
  47 class G1YoungGenSizer;
  48 
  49 class G1CollectorPolicy: public CollectorPolicy {
  50  private:
  51   G1IHOPControl* _ihop_control;
  52 
  53   G1IHOPControl* create_ihop_control() const;
  54   // Update the IHOP control with necessary statistics.
  55   void update_ihop_prediction(double mutator_time_s,
  56                               size_t mutator_alloc_bytes,
  57                               size_t young_gen_size);
  58   void report_ihop_statistics();
  59 
  60   G1Predictions _predictor;
  61   G1Analytics* _analytics;
  62 
  63   G1MMUTracker* _mmu_tracker;
  64 
  65   void initialize_alignments();
  66   void initialize_flags();
  67 
  68   double _full_collection_start_sec;
  69 
  70   // Ratio check data for determining if heap growth is necessary.
  71   uint _ratio_over_threshold_count;
  72   double _ratio_over_threshold_sum;
  73   uint _pauses_since_start;
  74 
  75   uint _young_list_target_length;
  76   uint _young_list_fixed_length;
  77 
  78   // The max number of regions we can extend the eden by while the GC
  79   // locker is active. This should be >= _young_list_target_length;
  80   uint _young_list_max_length;
  81 
  82   SurvRateGroup* _short_lived_surv_rate_group;
  83   SurvRateGroup* _survivor_surv_rate_group;
  84 
  85   double _gc_overhead_perc;
  86 
  87   double _reserve_factor;
  88   uint   _reserve_regions;
  89 
  90   enum PredictionConstants {
  91     NumPrevPausesForHeuristics = 10,
  92     // MinOverThresholdForGrowth must be less than NumPrevPausesForHeuristics,
  93     // representing the minimum number of pause time ratios that exceed
  94     // GCTimeRatio before a heap expansion will be triggered.
  95     MinOverThresholdForGrowth = 4
  96   };
  97   G1YoungGenSizer* _young_gen_sizer;
  98 
  99   uint _free_regions_at_end_of_collection;
 100 
 101   size_t _max_rs_lengths;
 102 
 103   size_t _rs_lengths_prediction;
 104 
 105 #ifndef PRODUCT
 106   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 107 #endif // PRODUCT
 108 
 109   void adjust_concurrent_refinement(double update_rs_time,
 110                                     double update_rs_processed_buffers,
 111                                     double goal_ms);
 112 
 113   double _pause_time_target_ms;
 114 
 115   size_t _pending_cards;
 116 
 117   // The amount of allocated bytes in old gen during the last mutator and the following
 118   // young GC phase.
 119   size_t _bytes_allocated_in_old_since_last_gc;
 120 
 121   G1InitialMarkToMixedTimeTracker _initial_mark_to_mixed;
 122 public:
 123   const G1Predictions& predictor() const { return _predictor; }
 124   const G1Analytics* analytics()   const { return const_cast<const G1Analytics*>(_analytics); }
 125 
 126   // Add the given number of bytes to the total number of allocated bytes in the old gen.
 127   void add_bytes_allocated_in_old_since_last_gc(size_t bytes) { _bytes_allocated_in_old_since_last_gc += bytes; }
 128 
 129   // Accessors
 130 
 131   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 132     hr->set_eden();
 133     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 134     hr->set_young_index_in_cset(young_index_in_cset);
 135   }
 136 
 137   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 138     assert(hr->is_survivor(), "pre-condition");
 139     hr->install_surv_rate_group(_survivor_surv_rate_group);
 140     hr->set_young_index_in_cset(young_index_in_cset);
 141   }
 142 
 143 #ifndef PRODUCT
 144   bool verify_young_ages();
 145 #endif // PRODUCT
 146 
 147   void record_max_rs_lengths(size_t rs_lengths) {
 148     _max_rs_lengths = rs_lengths;
 149   }
 150 
 151 
 152   double predict_base_elapsed_time_ms(size_t pending_cards) const;
 153   double predict_base_elapsed_time_ms(size_t pending_cards,
 154                                       size_t scanned_cards) const;
 155   size_t predict_bytes_to_copy(HeapRegion* hr) const;
 156   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const;
 157 
 158   double predict_survivor_regions_evac_time() const;
 159 
 160   bool should_update_surv_rate_group_predictors() {
 161     return collector_state()->last_gc_was_young() && !collector_state()->in_marking_window();
 162   }
 163 
 164   void cset_regions_freed() {
 165     bool update = should_update_surv_rate_group_predictors();
 166 
 167     _short_lived_surv_rate_group->all_surviving_words_recorded(update);
 168     _survivor_surv_rate_group->all_surviving_words_recorded(update);
 169   }
 170 
 171   G1MMUTracker* mmu_tracker() {
 172     return _mmu_tracker;
 173   }
 174 
 175   const G1MMUTracker* mmu_tracker() const {
 176     return _mmu_tracker;
 177   }
 178 
 179   double max_pause_time_ms() const {
 180     return _mmu_tracker->max_gc_time() * 1000.0;
 181   }
 182 
 183   // Returns an estimate of the survival rate of the region at yg-age
 184   // "yg_age".
 185   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const;
 186 
 187   double predict_yg_surv_rate(int age) const;
 188 
 189   double accum_yg_surv_rate_pred(int age) const;
 190 
 191 protected:
 192   G1CollectionSet* _collection_set;
 193   virtual double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const;
 194   virtual double other_time_ms(double pause_time_ms) const;
 195 
 196   double young_other_time_ms() const;
 197   double non_young_other_time_ms() const;
 198   double constant_other_time_ms(double pause_time_ms) const;
 199 
 200   CollectionSetChooser* cset_chooser() const;
 201 private:
 202 
 203   // The number of bytes copied during the GC.
 204   size_t _bytes_copied_during_gc;
 205 
 206   // Stash a pointer to the g1 heap.
 207   G1CollectedHeap* _g1;
 208 
 209   G1GCPhaseTimes* _phase_times;
 210 
 211   // This set of variables tracks the collector efficiency, in order to
 212   // determine whether we should initiate a new marking.
 213   double _mark_remark_start_sec;
 214   double _mark_cleanup_start_sec;
 215 
 216   // Updates the internal young list maximum and target lengths. Returns the
 217   // unbounded young list target length.
 218   uint update_young_list_max_and_target_length();
 219   uint update_young_list_max_and_target_length(size_t rs_lengths);
 220 
 221   // Update the young list target length either by setting it to the
 222   // desired fixed value or by calculating it using G1's pause
 223   // prediction model. If no rs_lengths parameter is passed, predict
 224   // the RS lengths using the prediction model, otherwise use the
 225   // given rs_lengths as the prediction.
 226   // Returns the unbounded young list target length.
 227   uint update_young_list_target_length(size_t rs_lengths);
 228 
 229   // Calculate and return the minimum desired young list target
 230   // length. This is the minimum desired young list length according
 231   // to the user's inputs.
 232   uint calculate_young_list_desired_min_length(uint base_min_length) const;
 233 
 234   // Calculate and return the maximum desired young list target
 235   // length. This is the maximum desired young list length according
 236   // to the user's inputs.
 237   uint calculate_young_list_desired_max_length() const;
 238 
 239   // Calculate and return the maximum young list target length that
 240   // can fit into the pause time goal. The parameters are: rs_lengths
 241   // represent the prediction of how large the young RSet lengths will
 242   // be, base_min_length is the already existing number of regions in
 243   // the young list, min_length and max_length are the desired min and
 244   // max young list length according to the user's inputs.
 245   uint calculate_young_list_target_length(size_t rs_lengths,
 246                                           uint base_min_length,
 247                                           uint desired_min_length,
 248                                           uint desired_max_length) const;
 249 
 250   // Result of the bounded_young_list_target_length() method, containing both the
 251   // bounded as well as the unbounded young list target lengths in this order.
 252   typedef Pair<uint, uint, StackObj> YoungTargetLengths;
 253   YoungTargetLengths young_list_target_lengths(size_t rs_lengths) const;
 254 
 255   void update_rs_lengths_prediction();
 256   void update_rs_lengths_prediction(size_t prediction);
 257 
 258   // Calculate and return chunk size (in number of regions) for parallel
 259   // concurrent mark cleanup.
 260   uint calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const;
 261 
 262   // Check whether a given young length (young_length) fits into the
 263   // given target pause time and whether the prediction for the amount
 264   // of objects to be copied for the given length will fit into the
 265   // given free space (expressed by base_free_regions).  It is used by
 266   // calculate_young_list_target_length().
 267   bool predict_will_fit(uint young_length, double base_time_ms,
 268                         uint base_free_regions, double target_pause_time_ms) const;
 269 
 270 public:
 271   size_t pending_cards() const { return _pending_cards; }
 272 
 273   // Calculate the minimum number of old regions we'll add to the CSet
 274   // during a mixed GC.
 275   uint calc_min_old_cset_length() const;
 276 
 277   // Calculate the maximum number of old regions we'll add to the CSet
 278   // during a mixed GC.
 279   uint calc_max_old_cset_length() const;
 280 
 281   // Returns the given amount of uncollected reclaimable space
 282   // as a percentage of the current heap capacity.
 283   double reclaimable_bytes_perc(size_t reclaimable_bytes) const;
 284 
 285 private:
 286   // Sets up marking if proper conditions are met.
 287   void maybe_start_marking();
 288 
 289   // The kind of STW pause.
 290   enum PauseKind {
 291     FullGC,
 292     YoungOnlyGC,
 293     MixedGC,
 294     LastYoungGC,
 295     InitialMarkGC,
 296     Cleanup,
 297     Remark
 298   };
 299 
 300   // Calculate PauseKind from internal state.
 301   PauseKind young_gc_pause_kind() const;
 302   // Record the given STW pause with the given start and end times (in s).
 303   void record_pause(PauseKind kind, double start, double end);
 304   // Indicate that we aborted marking before doing any mixed GCs.
 305   void abort_time_to_mixed_tracking();
 306 public:
 307 
 308   G1CollectorPolicy();
 309 
 310   virtual ~G1CollectorPolicy();
 311 
 312   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 313 
 314   G1CollectorState* collector_state() const;
 315 
 316   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 317 
 318   // Check the current value of the young list RSet lengths and
 319   // compare it against the last prediction. If the current value is
 320   // higher, recalculate the young list target length prediction.
 321   void revise_young_list_target_length_if_necessary(size_t rs_lengths);
 322 
 323   // This should be called after the heap is resized.
 324   void record_new_heap_size(uint new_number_of_regions);
 325 
 326   void init();
 327 
 328   virtual void note_gc_start(uint num_active_workers);
 329 
 330   // Create jstat counters for the policy.
 331   virtual void initialize_gc_policy_counters();
 332 
 333   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 334 
 335   bool about_to_start_mixed_phase() const;
 336 
 337   // Record the start and end of an evacuation pause.
 338   void record_collection_pause_start(double start_time_sec);
 339   void record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc);
 340 
 341   // Record the start and end of a full collection.
 342   void record_full_collection_start();
 343   void record_full_collection_end();
 344 
 345   // Must currently be called while the world is stopped.
 346   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
 347 
 348   // Record start and end of remark.
 349   void record_concurrent_mark_remark_start();
 350   void record_concurrent_mark_remark_end();
 351 
 352   // Record start, end, and completion of cleanup.
 353   void record_concurrent_mark_cleanup_start();
 354   void record_concurrent_mark_cleanup_end();
 355   void record_concurrent_mark_cleanup_completed();
 356 
 357   virtual void print_phases();
 358 
 359   // Record how much space we copied during a GC. This is typically
 360   // called when a GC alloc region is being retired.
 361   void record_bytes_copied_during_gc(size_t bytes) {
 362     _bytes_copied_during_gc += bytes;
 363   }
 364 
 365   // The amount of space we copied during a GC.
 366   size_t bytes_copied_during_gc() const {
 367     return _bytes_copied_during_gc;
 368   }
 369 
 370   // Determine whether there are candidate regions so that the
 371   // next GC should be mixed. The two action strings are used
 372   // in the ergo output when the method returns true or false.
 373   bool next_gc_should_be_mixed(const char* true_action_str,
 374                                const char* false_action_str) const;
 375 
 376   virtual void finalize_collection_set(double target_pause_time_ms);
 377 private:
 378   // Set the state to start a concurrent marking cycle and clear
 379   // _initiate_conc_mark_if_possible because it has now been
 380   // acted on.
 381   void initiate_conc_mark();
 382 
 383 public:
 384   // This sets the initiate_conc_mark_if_possible() flag to start a
 385   // new cycle, as long as we are not already in one. It's best if it
 386   // is called during a safepoint when the test whether a cycle is in
 387   // progress or not is stable.
 388   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 389 
 390   // This is called at the very beginning of an evacuation pause (it
 391   // has to be the first thing that the pause does). If
 392   // initiate_conc_mark_if_possible() is true, and the concurrent
 393   // marking thread has completed its work during the previous cycle,
 394   // it will set during_initial_mark_pause() to so that the pause does
 395   // the initial-mark work and start a marking cycle.
 396   void decide_on_conc_mark_initiation();
 397 
 398   // If an expansion would be appropriate, because recent GC overhead had
 399   // exceeded the desired limit, return an amount to expand by.
 400   virtual size_t expansion_amount();
 401 
 402   // Clear ratio tracking data used by expansion_amount().
 403   void clear_ratio_check_data();
 404 
 405   // Print stats on young survival ratio
 406   void print_yg_surv_rate_info() const;
 407 
 408   void finished_recalculating_age_indexes(bool is_survivors) {
 409     if (is_survivors) {
 410       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 411     } else {
 412       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 413     }
 414   }
 415 
 416   size_t young_list_target_length() const { return _young_list_target_length; }
 417 
 418   bool is_young_list_full() const;
 419 
 420   bool can_expand_young_list() const;
 421 
 422   uint young_list_max_length() const {
 423     return _young_list_max_length;
 424   }
 425 
 426   bool adaptive_young_list_length() const;
 427 
 428   virtual bool should_process_references() const {
 429     return true;
 430   }
 431 
 432 private:
 433   //
 434   // Survivor regions policy.
 435   //
 436 
 437   // Current tenuring threshold, set to 0 if the collector reaches the
 438   // maximum amount of survivors regions.
 439   uint _tenuring_threshold;
 440 
 441   // The limit on the number of regions allocated for survivors.
 442   uint _max_survivor_regions;
 443 
 444   AgeTable _survivors_age_table;
 445 
 446 public:
 447   uint tenuring_threshold() const { return _tenuring_threshold; }
 448 
 449   uint max_survivor_regions() {
 450     return _max_survivor_regions;
 451   }
 452 
 453   static const uint REGIONS_UNLIMITED = (uint) -1;
 454 
 455   uint max_regions(InCSetState dest) const {
 456     switch (dest.value()) {
 457       case InCSetState::Young:
 458         return _max_survivor_regions;
 459       case InCSetState::Old:
 460         return REGIONS_UNLIMITED;
 461       default:
 462         assert(false, "Unknown dest state: " CSETSTATE_FORMAT, dest.value());
 463         break;
 464     }
 465     // keep some compilers happy
 466     return 0;
 467   }
 468 
 469   void note_start_adding_survivor_regions() {
 470     _survivor_surv_rate_group->start_adding_regions();
 471   }
 472 
 473   void note_stop_adding_survivor_regions() {
 474     _survivor_surv_rate_group->stop_adding_regions();
 475   }
 476 
 477   void record_age_table(AgeTable* age_table) {
 478     _survivors_age_table.merge(age_table);
 479   }
 480 
 481   void update_max_gc_locker_expansion();
 482 
 483   // Calculates survivor space parameters.
 484   void update_survivors_policy();
 485 
 486   virtual void post_heap_initialize();
 487 };
 488 
 489 #endif // SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP