1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1POLICY_HPP
  26 #define SHARE_VM_GC_G1_G1POLICY_HPP
  27 
  28 #include "gc/g1/g1CollectorState.hpp"
  29 #include "gc/g1/g1GCPhaseTimes.hpp"
  30 #include "gc/g1/g1InCSetState.hpp"
  31 #include "gc/g1/g1InitialMarkToMixedTimeTracker.hpp"
  32 #include "gc/g1/g1MMUTracker.hpp"
  33 #include "gc/g1/g1Predictions.hpp"
  34 #include "gc/g1/g1YoungGenSizer.hpp"
  35 #include "gc/shared/gcCause.hpp"
  36 #include "utilities/pair.hpp"
  37 
  38 // A G1Policy makes policy decisions that determine the
  39 // characteristics of the collector.  Examples include:
  40 //   * choice of collection set.
  41 //   * when to collect.
  42 
  43 class HeapRegion;
  44 class G1CollectionSet;
  45 class CollectionSetChooser;
  46 class G1IHOPControl;
  47 class G1Analytics;
  48 class G1YoungGenSizer;
  49 class GCPolicyCounters;
  50 
  51 class G1Policy: public CHeapObj<mtGC> {
  52  private:
  53   G1IHOPControl* _ihop_control;
  54 
  55   G1IHOPControl* create_ihop_control() const;
  56   // Update the IHOP control with necessary statistics.
  57   void update_ihop_prediction(double mutator_time_s,
  58                               size_t mutator_alloc_bytes,
  59                               size_t young_gen_size);
  60   void report_ihop_statistics();
  61 
  62   G1Predictions _predictor;
  63   G1Analytics* _analytics;
  64   G1MMUTracker* _mmu_tracker;
  65 
  66   GCPolicyCounters* _policy_counters;
  67 
  68   double _full_collection_start_sec;
  69 
  70   uint _young_list_target_length;
  71   uint _young_list_fixed_length;
  72 
  73   // The max number of regions we can extend the eden by while the GC
  74   // locker is active. This should be >= _young_list_target_length;
  75   uint _young_list_max_length;
  76 
  77   SurvRateGroup* _short_lived_surv_rate_group;
  78   SurvRateGroup* _survivor_surv_rate_group;
  79 
  80   double _reserve_factor;
  81   uint   _reserve_regions;
  82 
  83   G1YoungGenSizer _young_gen_sizer;
  84 
  85   uint _free_regions_at_end_of_collection;
  86 
  87   size_t _max_rs_lengths;
  88 
  89   size_t _rs_lengths_prediction;
  90 
  91 #ifndef PRODUCT
  92   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
  93 #endif // PRODUCT
  94 
  95   double _pause_time_target_ms;
  96 
  97   size_t _pending_cards;
  98 
  99   // The amount of allocated bytes in old gen during the last mutator and the following
 100   // young GC phase.
 101   size_t _bytes_allocated_in_old_since_last_gc;
 102 
 103   G1InitialMarkToMixedTimeTracker _initial_mark_to_mixed;
 104 public:
 105   const G1Predictions& predictor() const { return _predictor; }
 106   const G1Analytics* analytics()   const { return const_cast<const G1Analytics*>(_analytics); }
 107 
 108   // Add the given number of bytes to the total number of allocated bytes in the old gen.
 109   void add_bytes_allocated_in_old_since_last_gc(size_t bytes) { _bytes_allocated_in_old_since_last_gc += bytes; }
 110 
 111   // Accessors
 112 
 113   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 114     hr->set_eden();
 115     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 116     hr->set_young_index_in_cset(young_index_in_cset);
 117   }
 118 
 119   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 120     assert(hr->is_survivor(), "pre-condition");
 121     hr->install_surv_rate_group(_survivor_surv_rate_group);
 122     hr->set_young_index_in_cset(young_index_in_cset);
 123   }
 124 
 125 #ifndef PRODUCT
 126   bool verify_young_ages();
 127 #endif // PRODUCT
 128 
 129   void record_max_rs_lengths(size_t rs_lengths) {
 130     _max_rs_lengths = rs_lengths;
 131   }
 132 
 133 
 134   double predict_base_elapsed_time_ms(size_t pending_cards) const;
 135   double predict_base_elapsed_time_ms(size_t pending_cards,
 136                                       size_t scanned_cards) const;
 137   size_t predict_bytes_to_copy(HeapRegion* hr) const;
 138   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const;
 139 
 140   double predict_survivor_regions_evac_time() const;
 141 
 142   bool should_update_surv_rate_group_predictors() {
 143     return collector_state()->last_gc_was_young() && !collector_state()->in_marking_window();
 144   }
 145 
 146   void cset_regions_freed() {
 147     bool update = should_update_surv_rate_group_predictors();
 148 
 149     _short_lived_surv_rate_group->all_surviving_words_recorded(update);
 150     _survivor_surv_rate_group->all_surviving_words_recorded(update);
 151   }
 152 
 153   G1MMUTracker* mmu_tracker() {
 154     return _mmu_tracker;
 155   }
 156 
 157   const G1MMUTracker* mmu_tracker() const {
 158     return _mmu_tracker;
 159   }
 160 
 161   double max_pause_time_ms() const {
 162     return _mmu_tracker->max_gc_time() * 1000.0;
 163   }
 164 
 165   // Returns an estimate of the survival rate of the region at yg-age
 166   // "yg_age".
 167   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const;
 168 
 169   double predict_yg_surv_rate(int age) const;
 170 
 171   double accum_yg_surv_rate_pred(int age) const;
 172 
 173 protected:
 174   G1CollectionSet* _collection_set;
 175   virtual double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const;
 176   virtual double other_time_ms(double pause_time_ms) const;
 177 
 178   double young_other_time_ms() const;
 179   double non_young_other_time_ms() const;
 180   double constant_other_time_ms(double pause_time_ms) const;
 181 
 182   CollectionSetChooser* cset_chooser() const;
 183 private:
 184 
 185   // The number of bytes copied during the GC.
 186   size_t _bytes_copied_during_gc;
 187 
 188   // Stash a pointer to the g1 heap.
 189   G1CollectedHeap* _g1;
 190 
 191   G1GCPhaseTimes* _phase_times;
 192 
 193   // This set of variables tracks the collector efficiency, in order to
 194   // determine whether we should initiate a new marking.
 195   double _mark_remark_start_sec;
 196   double _mark_cleanup_start_sec;
 197 
 198   // Updates the internal young list maximum and target lengths. Returns the
 199   // unbounded young list target length.
 200   uint update_young_list_max_and_target_length();
 201   uint update_young_list_max_and_target_length(size_t rs_lengths);
 202 
 203   // Update the young list target length either by setting it to the
 204   // desired fixed value or by calculating it using G1's pause
 205   // prediction model. If no rs_lengths parameter is passed, predict
 206   // the RS lengths using the prediction model, otherwise use the
 207   // given rs_lengths as the prediction.
 208   // Returns the unbounded young list target length.
 209   uint update_young_list_target_length(size_t rs_lengths);
 210 
 211   // Calculate and return the minimum desired young list target
 212   // length. This is the minimum desired young list length according
 213   // to the user's inputs.
 214   uint calculate_young_list_desired_min_length(uint base_min_length) const;
 215 
 216   // Calculate and return the maximum desired young list target
 217   // length. This is the maximum desired young list length according
 218   // to the user's inputs.
 219   uint calculate_young_list_desired_max_length() const;
 220 
 221   // Calculate and return the maximum young list target length that
 222   // can fit into the pause time goal. The parameters are: rs_lengths
 223   // represent the prediction of how large the young RSet lengths will
 224   // be, base_min_length is the already existing number of regions in
 225   // the young list, min_length and max_length are the desired min and
 226   // max young list length according to the user's inputs.
 227   uint calculate_young_list_target_length(size_t rs_lengths,
 228                                           uint base_min_length,
 229                                           uint desired_min_length,
 230                                           uint desired_max_length) const;
 231 
 232   // Result of the bounded_young_list_target_length() method, containing both the
 233   // bounded as well as the unbounded young list target lengths in this order.
 234   typedef Pair<uint, uint, StackObj> YoungTargetLengths;
 235   YoungTargetLengths young_list_target_lengths(size_t rs_lengths) const;
 236 
 237   void update_rs_lengths_prediction();
 238   void update_rs_lengths_prediction(size_t prediction);
 239 
 240   // Check whether a given young length (young_length) fits into the
 241   // given target pause time and whether the prediction for the amount
 242   // of objects to be copied for the given length will fit into the
 243   // given free space (expressed by base_free_regions).  It is used by
 244   // calculate_young_list_target_length().
 245   bool predict_will_fit(uint young_length, double base_time_ms,
 246                         uint base_free_regions, double target_pause_time_ms) const;
 247 
 248 public:
 249   size_t pending_cards() const { return _pending_cards; }
 250 
 251   // Calculate the minimum number of old regions we'll add to the CSet
 252   // during a mixed GC.
 253   uint calc_min_old_cset_length() const;
 254 
 255   // Calculate the maximum number of old regions we'll add to the CSet
 256   // during a mixed GC.
 257   uint calc_max_old_cset_length() const;
 258 
 259   // Returns the given amount of uncollected reclaimable space
 260   // as a percentage of the current heap capacity.
 261   double reclaimable_bytes_perc(size_t reclaimable_bytes) const;
 262 
 263 private:
 264   // Sets up marking if proper conditions are met.
 265   void maybe_start_marking();
 266 
 267   // The kind of STW pause.
 268   enum PauseKind {
 269     FullGC,
 270     YoungOnlyGC,
 271     MixedGC,
 272     LastYoungGC,
 273     InitialMarkGC,
 274     Cleanup,
 275     Remark
 276   };
 277 
 278   // Calculate PauseKind from internal state.
 279   PauseKind young_gc_pause_kind() const;
 280   // Record the given STW pause with the given start and end times (in s).
 281   void record_pause(PauseKind kind, double start, double end);
 282   // Indicate that we aborted marking before doing any mixed GCs.
 283   void abort_time_to_mixed_tracking();
 284 public:
 285 
 286   G1Policy();
 287 
 288   virtual ~G1Policy();
 289 
 290   G1CollectorState* collector_state() const;
 291 
 292   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 293 
 294   // Check the current value of the young list RSet lengths and
 295   // compare it against the last prediction. If the current value is
 296   // higher, recalculate the young list target length prediction.
 297   void revise_young_list_target_length_if_necessary(size_t rs_lengths);
 298 
 299   // This should be called after the heap is resized.
 300   void record_new_heap_size(uint new_number_of_regions);
 301 
 302   void init();
 303 
 304   virtual void note_gc_start();
 305 
 306   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 307 
 308   bool about_to_start_mixed_phase() const;
 309 
 310   // Record the start and end of an evacuation pause.
 311   void record_collection_pause_start(double start_time_sec);
 312   void record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc);
 313 
 314   // Record the start and end of a full collection.
 315   void record_full_collection_start();
 316   void record_full_collection_end();
 317 
 318   // Must currently be called while the world is stopped.
 319   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
 320 
 321   // Record start and end of remark.
 322   void record_concurrent_mark_remark_start();
 323   void record_concurrent_mark_remark_end();
 324 
 325   // Record start, end, and completion of cleanup.
 326   void record_concurrent_mark_cleanup_start();
 327   void record_concurrent_mark_cleanup_end();
 328   void record_concurrent_mark_cleanup_completed();
 329 
 330   virtual void print_phases();
 331 
 332   // Record how much space we copied during a GC. This is typically
 333   // called when a GC alloc region is being retired.
 334   void record_bytes_copied_during_gc(size_t bytes) {
 335     _bytes_copied_during_gc += bytes;
 336   }
 337 
 338   // The amount of space we copied during a GC.
 339   size_t bytes_copied_during_gc() const {
 340     return _bytes_copied_during_gc;
 341   }
 342 
 343   // Determine whether there are candidate regions so that the
 344   // next GC should be mixed. The two action strings are used
 345   // in the ergo output when the method returns true or false.
 346   bool next_gc_should_be_mixed(const char* true_action_str,
 347                                const char* false_action_str) const;
 348 
 349   virtual void finalize_collection_set(double target_pause_time_ms);
 350 private:
 351   // Set the state to start a concurrent marking cycle and clear
 352   // _initiate_conc_mark_if_possible because it has now been
 353   // acted on.
 354   void initiate_conc_mark();
 355 
 356 public:
 357   // This sets the initiate_conc_mark_if_possible() flag to start a
 358   // new cycle, as long as we are not already in one. It's best if it
 359   // is called during a safepoint when the test whether a cycle is in
 360   // progress or not is stable.
 361   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 362 
 363   // This is called at the very beginning of an evacuation pause (it
 364   // has to be the first thing that the pause does). If
 365   // initiate_conc_mark_if_possible() is true, and the concurrent
 366   // marking thread has completed its work during the previous cycle,
 367   // it will set during_initial_mark_pause() to so that the pause does
 368   // the initial-mark work and start a marking cycle.
 369   void decide_on_conc_mark_initiation();
 370 
 371   // Print stats on young survival ratio
 372   void print_yg_surv_rate_info() const;
 373 
 374   void finished_recalculating_age_indexes(bool is_survivors) {
 375     if (is_survivors) {
 376       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 377     } else {
 378       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 379     }
 380   }
 381 
 382   size_t young_list_target_length() const { return _young_list_target_length; }
 383 
 384   bool is_young_list_full() const;
 385 
 386   bool can_expand_young_list() const;
 387 
 388   uint young_list_max_length() const {
 389     return _young_list_max_length;
 390   }
 391 
 392   bool adaptive_young_list_length() const;
 393 
 394   virtual bool should_process_references() const {
 395     return true;
 396   }
 397 
 398 private:
 399   //
 400   // Survivor regions policy.
 401   //
 402 
 403   // Current tenuring threshold, set to 0 if the collector reaches the
 404   // maximum amount of survivors regions.
 405   uint _tenuring_threshold;
 406 
 407   // The limit on the number of regions allocated for survivors.
 408   uint _max_survivor_regions;
 409 
 410   AgeTable _survivors_age_table;
 411 
 412 public:
 413   uint tenuring_threshold() const { return _tenuring_threshold; }
 414 
 415   uint max_survivor_regions() {
 416     return _max_survivor_regions;
 417   }
 418 
 419   void note_start_adding_survivor_regions() {
 420     _survivor_surv_rate_group->start_adding_regions();
 421   }
 422 
 423   void note_stop_adding_survivor_regions() {
 424     _survivor_surv_rate_group->stop_adding_regions();
 425   }
 426 
 427   void record_age_table(AgeTable* age_table) {
 428     _survivors_age_table.merge(age_table);
 429   }
 430 
 431   void update_max_gc_locker_expansion();
 432 
 433   // Calculates survivor space parameters.
 434   void update_survivors_policy();
 435 };
 436 
 437 #endif // SHARE_VM_GC_G1_G1POLICY_HPP