1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  75   // The implementation is only non-empty for the InterpreterMacroAssembler,
  76   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  77   virtual void check_and_handle_popframe(Register java_thread);
  78   virtual void check_and_handle_earlyret(Register java_thread);
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // helpers for FPU flag access
  83   // tmp is a temporary register, if none is available use noreg
  84   void save_rax   (Register tmp);
  85   void restore_rax(Register tmp);
  86 
  87  public:
  88   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300   void resolve_jobject(Register value, Register thread, Register tmp);
 301 
 302 #if INCLUDE_ALL_GCS
 303 
 304   void g1_write_barrier_pre(Register obj,
 305                             Register pre_val,
 306                             Register thread,
 307                             Register tmp,
 308                             bool tosca_live,
 309                             bool expand_call);
 310 
 311   void g1_write_barrier_post(Register store_addr,
 312                              Register new_val,
 313                              Register thread,
 314                              Register tmp,
 315                              Register tmp2);
 316 
 317 #endif // INCLUDE_ALL_GCS
 318 
 319   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 320   void c2bool(Register x);
 321 
 322   // C++ bool manipulation
 323 
 324   void movbool(Register dst, Address src);
 325   void movbool(Address dst, bool boolconst);
 326   void movbool(Address dst, Register src);
 327   void testbool(Register dst);
 328 
 329   void load_mirror(Register mirror, Register method);
 330 
 331   // oop manipulations
 332   void load_klass(Register dst, Register src);
 333   void store_klass(Register dst, Register src);
 334 
 335   void load_heap_oop(Register dst, Address src);
 336   void load_heap_oop_not_null(Register dst, Address src);
 337   void store_heap_oop(Address dst, Register src);
 338   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 339 
 340   // Used for storing NULL. All other oop constants should be
 341   // stored using routines that take a jobject.
 342   void store_heap_oop_null(Address dst);
 343 
 344   void load_prototype_header(Register dst, Register src);
 345 
 346 #ifdef _LP64
 347   void store_klass_gap(Register dst, Register src);
 348 
 349   // This dummy is to prevent a call to store_heap_oop from
 350   // converting a zero (like NULL) into a Register by giving
 351   // the compiler two choices it can't resolve
 352 
 353   void store_heap_oop(Address dst, void* dummy);
 354 
 355   void encode_heap_oop(Register r);
 356   void decode_heap_oop(Register r);
 357   void encode_heap_oop_not_null(Register r);
 358   void decode_heap_oop_not_null(Register r);
 359   void encode_heap_oop_not_null(Register dst, Register src);
 360   void decode_heap_oop_not_null(Register dst, Register src);
 361 
 362   void set_narrow_oop(Register dst, jobject obj);
 363   void set_narrow_oop(Address dst, jobject obj);
 364   void cmp_narrow_oop(Register dst, jobject obj);
 365   void cmp_narrow_oop(Address dst, jobject obj);
 366 
 367   void encode_klass_not_null(Register r);
 368   void decode_klass_not_null(Register r);
 369   void encode_klass_not_null(Register dst, Register src);
 370   void decode_klass_not_null(Register dst, Register src);
 371   void set_narrow_klass(Register dst, Klass* k);
 372   void set_narrow_klass(Address dst, Klass* k);
 373   void cmp_narrow_klass(Register dst, Klass* k);
 374   void cmp_narrow_klass(Address dst, Klass* k);
 375 
 376   // Returns the byte size of the instructions generated by decode_klass_not_null()
 377   // when compressed klass pointers are being used.
 378   static int instr_size_for_decode_klass_not_null();
 379 
 380   // if heap base register is used - reinit it with the correct value
 381   void reinit_heapbase();
 382 
 383   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 384 
 385 #endif // _LP64
 386 
 387   // Int division/remainder for Java
 388   // (as idivl, but checks for special case as described in JVM spec.)
 389   // returns idivl instruction offset for implicit exception handling
 390   int corrected_idivl(Register reg);
 391 
 392   // Long division/remainder for Java
 393   // (as idivq, but checks for special case as described in JVM spec.)
 394   // returns idivq instruction offset for implicit exception handling
 395   int corrected_idivq(Register reg);
 396 
 397   void int3();
 398 
 399   // Long operation macros for a 32bit cpu
 400   // Long negation for Java
 401   void lneg(Register hi, Register lo);
 402 
 403   // Long multiplication for Java
 404   // (destroys contents of eax, ebx, ecx and edx)
 405   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 406 
 407   // Long shifts for Java
 408   // (semantics as described in JVM spec.)
 409   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 410   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 411 
 412   // Long compare for Java
 413   // (semantics as described in JVM spec.)
 414   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 415 
 416 
 417   // misc
 418 
 419   // Sign extension
 420   void sign_extend_short(Register reg);
 421   void sign_extend_byte(Register reg);
 422 
 423   // Division by power of 2, rounding towards 0
 424   void division_with_shift(Register reg, int shift_value);
 425 
 426   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 427   //
 428   // CF (corresponds to C0) if x < y
 429   // PF (corresponds to C2) if unordered
 430   // ZF (corresponds to C3) if x = y
 431   //
 432   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 433   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 434   void fcmp(Register tmp);
 435   // Variant of the above which allows y to be further down the stack
 436   // and which only pops x and y if specified. If pop_right is
 437   // specified then pop_left must also be specified.
 438   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 439 
 440   // Floating-point comparison for Java
 441   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 442   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 443   // (semantics as described in JVM spec.)
 444   void fcmp2int(Register dst, bool unordered_is_less);
 445   // Variant of the above which allows y to be further down the stack
 446   // and which only pops x and y if specified. If pop_right is
 447   // specified then pop_left must also be specified.
 448   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 449 
 450   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 451   // tmp is a temporary register, if none is available use noreg
 452   void fremr(Register tmp);
 453 
 454   // dst = c = a * b + c
 455   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 456   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 457 
 458 
 459   // same as fcmp2int, but using SSE2
 460   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 461   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 462 
 463   // branch to L if FPU flag C2 is set/not set
 464   // tmp is a temporary register, if none is available use noreg
 465   void jC2 (Register tmp, Label& L);
 466   void jnC2(Register tmp, Label& L);
 467 
 468   // Pop ST (ffree & fincstp combined)
 469   void fpop();
 470 
 471   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 472   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 473   void load_float(Address src);
 474 
 475   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 476   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 477   void store_float(Address dst);
 478 
 479   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 480   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 481   void load_double(Address src);
 482 
 483   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 484   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 485   void store_double(Address dst);
 486 
 487   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 488   void push_fTOS();
 489 
 490   // pops double TOS element from CPU stack and pushes on FPU stack
 491   void pop_fTOS();
 492 
 493   void empty_FPU_stack();
 494 
 495   void push_IU_state();
 496   void pop_IU_state();
 497 
 498   void push_FPU_state();
 499   void pop_FPU_state();
 500 
 501   void push_CPU_state();
 502   void pop_CPU_state();
 503 
 504   // Round up to a power of two
 505   void round_to(Register reg, int modulus);
 506 
 507   // Callee saved registers handling
 508   void push_callee_saved_registers();
 509   void pop_callee_saved_registers();
 510 
 511   // allocation
 512   void eden_allocate(
 513     Register obj,                      // result: pointer to object after successful allocation
 514     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 515     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 516     Register t1,                       // temp register
 517     Label&   slow_case                 // continuation point if fast allocation fails
 518   );
 519   void tlab_allocate(
 520     Register obj,                      // result: pointer to object after successful allocation
 521     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 522     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 523     Register t1,                       // temp register
 524     Register t2,                       // temp register
 525     Label&   slow_case                 // continuation point if fast allocation fails
 526   );
 527   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 528   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 529 
 530   void incr_allocated_bytes(Register thread,
 531                             Register var_size_in_bytes, int con_size_in_bytes,
 532                             Register t1 = noreg);
 533 
 534   // interface method calling
 535   void lookup_interface_method(Register recv_klass,
 536                                Register intf_klass,
 537                                RegisterOrConstant itable_index,
 538                                Register method_result,
 539                                Register scan_temp,
 540                                Label& no_such_interface);
 541 
 542   // virtual method calling
 543   void lookup_virtual_method(Register recv_klass,
 544                              RegisterOrConstant vtable_index,
 545                              Register method_result);
 546 
 547   // Test sub_klass against super_klass, with fast and slow paths.
 548 
 549   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 550   // One of the three labels can be NULL, meaning take the fall-through.
 551   // If super_check_offset is -1, the value is loaded up from super_klass.
 552   // No registers are killed, except temp_reg.
 553   void check_klass_subtype_fast_path(Register sub_klass,
 554                                      Register super_klass,
 555                                      Register temp_reg,
 556                                      Label* L_success,
 557                                      Label* L_failure,
 558                                      Label* L_slow_path,
 559                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 560 
 561   // The rest of the type check; must be wired to a corresponding fast path.
 562   // It does not repeat the fast path logic, so don't use it standalone.
 563   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 564   // Updates the sub's secondary super cache as necessary.
 565   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 566   void check_klass_subtype_slow_path(Register sub_klass,
 567                                      Register super_klass,
 568                                      Register temp_reg,
 569                                      Register temp2_reg,
 570                                      Label* L_success,
 571                                      Label* L_failure,
 572                                      bool set_cond_codes = false);
 573 
 574   // Simplified, combined version, good for typical uses.
 575   // Falls through on failure.
 576   void check_klass_subtype(Register sub_klass,
 577                            Register super_klass,
 578                            Register temp_reg,
 579                            Label& L_success);
 580 
 581   // method handles (JSR 292)
 582   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 583 
 584   //----
 585   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 586 
 587   // Debugging
 588 
 589   // only if +VerifyOops
 590   // TODO: Make these macros with file and line like sparc version!
 591   void verify_oop(Register reg, const char* s = "broken oop");
 592   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 593 
 594   // TODO: verify method and klass metadata (compare against vptr?)
 595   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 596   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 597 
 598 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 599 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 600 
 601   // only if +VerifyFPU
 602   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 603 
 604   // Verify or restore cpu control state after JNI call
 605   void restore_cpu_control_state_after_jni();
 606 
 607   // prints msg, dumps registers and stops execution
 608   void stop(const char* msg);
 609 
 610   // prints msg and continues
 611   void warn(const char* msg);
 612 
 613   // dumps registers and other state
 614   void print_state();
 615 
 616   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 617   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 618   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 619   static void print_state64(int64_t pc, int64_t regs[]);
 620 
 621   void os_breakpoint();
 622 
 623   void untested()                                { stop("untested"); }
 624 
 625   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 626 
 627   void should_not_reach_here()                   { stop("should not reach here"); }
 628 
 629   void print_CPU_state();
 630 
 631   // Stack overflow checking
 632   void bang_stack_with_offset(int offset) {
 633     // stack grows down, caller passes positive offset
 634     assert(offset > 0, "must bang with negative offset");
 635     movl(Address(rsp, (-offset)), rax);
 636   }
 637 
 638   // Writes to stack successive pages until offset reached to check for
 639   // stack overflow + shadow pages.  Also, clobbers tmp
 640   void bang_stack_size(Register size, Register tmp);
 641 
 642   // Check for reserved stack access in method being exited (for JIT)
 643   void reserved_stack_check();
 644 
 645   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 646                                                 Register tmp,
 647                                                 int offset);
 648 
 649   // Support for serializing memory accesses between threads
 650   void serialize_memory(Register thread, Register tmp);
 651 
 652   void verify_tlab();
 653 
 654   // Biased locking support
 655   // lock_reg and obj_reg must be loaded up with the appropriate values.
 656   // swap_reg must be rax, and is killed.
 657   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 658   // be killed; if not supplied, push/pop will be used internally to
 659   // allocate a temporary (inefficient, avoid if possible).
 660   // Optional slow case is for implementations (interpreter and C1) which branch to
 661   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 662   // Returns offset of first potentially-faulting instruction for null
 663   // check info (currently consumed only by C1). If
 664   // swap_reg_contains_mark is true then returns -1 as it is assumed
 665   // the calling code has already passed any potential faults.
 666   int biased_locking_enter(Register lock_reg, Register obj_reg,
 667                            Register swap_reg, Register tmp_reg,
 668                            bool swap_reg_contains_mark,
 669                            Label& done, Label* slow_case = NULL,
 670                            BiasedLockingCounters* counters = NULL);
 671   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 672 #ifdef COMPILER2
 673   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 674   // See full desription in macroAssembler_x86.cpp.
 675   void fast_lock(Register obj, Register box, Register tmp,
 676                  Register scr, Register cx1, Register cx2,
 677                  BiasedLockingCounters* counters,
 678                  RTMLockingCounters* rtm_counters,
 679                  RTMLockingCounters* stack_rtm_counters,
 680                  Metadata* method_data,
 681                  bool use_rtm, bool profile_rtm);
 682   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 683 #if INCLUDE_RTM_OPT
 684   void rtm_counters_update(Register abort_status, Register rtm_counters);
 685   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 686   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 687                                    RTMLockingCounters* rtm_counters,
 688                                    Metadata* method_data);
 689   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 690                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 691   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 692   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 693   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 694                          Register retry_on_abort_count,
 695                          RTMLockingCounters* stack_rtm_counters,
 696                          Metadata* method_data, bool profile_rtm,
 697                          Label& DONE_LABEL, Label& IsInflated);
 698   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 699                             Register scr, Register retry_on_busy_count,
 700                             Register retry_on_abort_count,
 701                             RTMLockingCounters* rtm_counters,
 702                             Metadata* method_data, bool profile_rtm,
 703                             Label& DONE_LABEL);
 704 #endif
 705 #endif
 706 
 707   Condition negate_condition(Condition cond);
 708 
 709   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 710   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 711   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 712   // here in MacroAssembler. The major exception to this rule is call
 713 
 714   // Arithmetics
 715 
 716 
 717   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 718   void addptr(Address dst, Register src);
 719 
 720   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 721   void addptr(Register dst, int32_t src);
 722   void addptr(Register dst, Register src);
 723   void addptr(Register dst, RegisterOrConstant src) {
 724     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 725     else                   addptr(dst,       src.as_register());
 726   }
 727 
 728   void andptr(Register dst, int32_t src);
 729   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 730 
 731   void cmp8(AddressLiteral src1, int imm);
 732 
 733   // renamed to drag out the casting of address to int32_t/intptr_t
 734   void cmp32(Register src1, int32_t imm);
 735 
 736   void cmp32(AddressLiteral src1, int32_t imm);
 737   // compare reg - mem, or reg - &mem
 738   void cmp32(Register src1, AddressLiteral src2);
 739 
 740   void cmp32(Register src1, Address src2);
 741 
 742 #ifndef _LP64
 743   void cmpklass(Address dst, Metadata* obj);
 744   void cmpklass(Register dst, Metadata* obj);
 745   void cmpoop(Address dst, jobject obj);
 746   void cmpoop(Register dst, jobject obj);
 747 #endif // _LP64
 748 
 749   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 750   void cmpptr(Address src1, AddressLiteral src2);
 751 
 752   void cmpptr(Register src1, AddressLiteral src2);
 753 
 754   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 755   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 756   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757 
 758   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 759   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 760 
 761   // cmp64 to avoild hiding cmpq
 762   void cmp64(Register src1, AddressLiteral src);
 763 
 764   void cmpxchgptr(Register reg, Address adr);
 765 
 766   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 767 
 768 
 769   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 770   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 771 
 772 
 773   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 774 
 775   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 776 
 777   void shlptr(Register dst, int32_t shift);
 778   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 779 
 780   void shrptr(Register dst, int32_t shift);
 781   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 782 
 783   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 784   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 785 
 786   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 787 
 788   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 789   void subptr(Register dst, int32_t src);
 790   // Force generation of a 4 byte immediate value even if it fits into 8bit
 791   void subptr_imm32(Register dst, int32_t src);
 792   void subptr(Register dst, Register src);
 793   void subptr(Register dst, RegisterOrConstant src) {
 794     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 795     else                   subptr(dst,       src.as_register());
 796   }
 797 
 798   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 799   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 800 
 801   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 802   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 803 
 804   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 805 
 806 
 807 
 808   // Helper functions for statistics gathering.
 809   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 810   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 811   // Unconditional atomic increment.
 812   void atomic_incl(Address counter_addr);
 813   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 814 #ifdef _LP64
 815   void atomic_incq(Address counter_addr);
 816   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 817 #endif
 818   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 819   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 820 
 821   void lea(Register dst, AddressLiteral adr);
 822   void lea(Address dst, AddressLiteral adr);
 823   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 824 
 825   void leal32(Register dst, Address src) { leal(dst, src); }
 826 
 827   // Import other testl() methods from the parent class or else
 828   // they will be hidden by the following overriding declaration.
 829   using Assembler::testl;
 830   void testl(Register dst, AddressLiteral src);
 831 
 832   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 833   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 834   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 835   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 836 
 837   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 838   void testptr(Register src1, Register src2);
 839 
 840   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 841   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 842 
 843   // Calls
 844 
 845   void call(Label& L, relocInfo::relocType rtype);
 846   void call(Register entry);
 847 
 848   // NOTE: this call transfers to the effective address of entry NOT
 849   // the address contained by entry. This is because this is more natural
 850   // for jumps/calls.
 851   void call(AddressLiteral entry);
 852 
 853   // Emit the CompiledIC call idiom
 854   void ic_call(address entry, jint method_index = 0);
 855 
 856   // Jumps
 857 
 858   // NOTE: these jumps tranfer to the effective address of dst NOT
 859   // the address contained by dst. This is because this is more natural
 860   // for jumps/calls.
 861   void jump(AddressLiteral dst);
 862   void jump_cc(Condition cc, AddressLiteral dst);
 863 
 864   // 32bit can do a case table jump in one instruction but we no longer allow the base
 865   // to be installed in the Address class. This jump will tranfers to the address
 866   // contained in the location described by entry (not the address of entry)
 867   void jump(ArrayAddress entry);
 868 
 869   // Floating
 870 
 871   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 872   void andpd(XMMRegister dst, AddressLiteral src);
 873   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 874 
 875   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 876   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 877   void andps(XMMRegister dst, AddressLiteral src);
 878 
 879   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 880   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 881   void comiss(XMMRegister dst, AddressLiteral src);
 882 
 883   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 884   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 885   void comisd(XMMRegister dst, AddressLiteral src);
 886 
 887   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 888   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 889 
 890   void fldcw(Address src) { Assembler::fldcw(src); }
 891   void fldcw(AddressLiteral src);
 892 
 893   void fld_s(int index)   { Assembler::fld_s(index); }
 894   void fld_s(Address src) { Assembler::fld_s(src); }
 895   void fld_s(AddressLiteral src);
 896 
 897   void fld_d(Address src) { Assembler::fld_d(src); }
 898   void fld_d(AddressLiteral src);
 899 
 900   void fld_x(Address src) { Assembler::fld_x(src); }
 901   void fld_x(AddressLiteral src);
 902 
 903   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 904   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 905 
 906   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 907   void ldmxcsr(AddressLiteral src);
 908 
 909 #ifdef _LP64
 910  private:
 911   void sha256_AVX2_one_round_compute(
 912     Register  reg_old_h,
 913     Register  reg_a,
 914     Register  reg_b,
 915     Register  reg_c,
 916     Register  reg_d,
 917     Register  reg_e,
 918     Register  reg_f,
 919     Register  reg_g,
 920     Register  reg_h,
 921     int iter);
 922   void sha256_AVX2_four_rounds_compute_first(int start);
 923   void sha256_AVX2_four_rounds_compute_last(int start);
 924   void sha256_AVX2_one_round_and_sched(
 925         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 926         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 927         XMMRegister xmm_2,     /* ymm6 */
 928         XMMRegister xmm_3,     /* ymm7 */
 929         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 930         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 931         Register    reg_c,      /* edi */
 932         Register    reg_d,      /* esi */
 933         Register    reg_e,      /* r8d */
 934         Register    reg_f,      /* r9d */
 935         Register    reg_g,      /* r10d */
 936         Register    reg_h,      /* r11d */
 937         int iter);
 938 
 939   void addm(int disp, Register r1, Register r2);
 940 
 941  public:
 942   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 943                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 944                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 945                    bool multi_block, XMMRegister shuf_mask);
 946 #endif
 947 
 948 #ifdef _LP64
 949  private:
 950   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 951                                      Register e, Register f, Register g, Register h, int iteration);
 952 
 953   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 954                                           Register a, Register b, Register c, Register d, Register e, Register f,
 955                                           Register g, Register h, int iteration);
 956 
 957   void addmq(int disp, Register r1, Register r2);
 958  public:
 959   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 960                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 961                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 962                    XMMRegister shuf_mask);
 963 #endif
 964 
 965   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 966                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 967                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 968                  bool multi_block);
 969 
 970 #ifdef _LP64
 971   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 972                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 973                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 974                    bool multi_block, XMMRegister shuf_mask);
 975 #else
 976   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 977                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 978                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 979                    bool multi_block);
 980 #endif
 981 
 982   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 983                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 984                 Register rax, Register rcx, Register rdx, Register tmp);
 985 
 986 #ifdef _LP64
 987   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 988                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 989                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 990 
 991   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 992                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 993                   Register rax, Register rcx, Register rdx, Register r11);
 994 
 995   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 996                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 997                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 998 
 999   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1000                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1001                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1002                 Register tmp3, Register tmp4);
1003 
1004   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1005                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1006                 Register rax, Register rcx, Register rdx, Register tmp1,
1007                 Register tmp2, Register tmp3, Register tmp4);
1008   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1009                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1010                 Register rax, Register rcx, Register rdx, Register tmp1,
1011                 Register tmp2, Register tmp3, Register tmp4);
1012 #else
1013   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1014                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1015                 Register rax, Register rcx, Register rdx, Register tmp1);
1016 
1017   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1018                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1019                 Register rax, Register rcx, Register rdx, Register tmp);
1020 
1021   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1022                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1023                 Register rdx, Register tmp);
1024 
1025   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1026                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1027                 Register rax, Register rbx, Register rdx);
1028 
1029   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1030                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1031                 Register rax, Register rcx, Register rdx, Register tmp);
1032 
1033   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1034                         Register edx, Register ebx, Register esi, Register edi,
1035                         Register ebp, Register esp);
1036 
1037   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1038                          Register esi, Register edi, Register ebp, Register esp);
1039 
1040   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1041                         Register edx, Register ebx, Register esi, Register edi,
1042                         Register ebp, Register esp);
1043 
1044   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1045                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1046                 Register rax, Register rcx, Register rdx, Register tmp);
1047 #endif
1048 
1049   void increase_precision();
1050   void restore_precision();
1051 
1052 private:
1053 
1054   // these are private because users should be doing movflt/movdbl
1055 
1056   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1057   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1058   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1059   void movss(XMMRegister dst, AddressLiteral src);
1060 
1061   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1062   void movlpd(XMMRegister dst, AddressLiteral src);
1063 
1064 public:
1065 
1066   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1067   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1068   void addsd(XMMRegister dst, AddressLiteral src);
1069 
1070   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1071   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1072   void addss(XMMRegister dst, AddressLiteral src);
1073 
1074   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1075   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1076   void addpd(XMMRegister dst, AddressLiteral src);
1077 
1078   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1079   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1080   void divsd(XMMRegister dst, AddressLiteral src);
1081 
1082   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1083   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1084   void divss(XMMRegister dst, AddressLiteral src);
1085 
1086   // Move Unaligned Double Quadword
1087   void movdqu(Address     dst, XMMRegister src);
1088   void movdqu(XMMRegister dst, Address src);
1089   void movdqu(XMMRegister dst, XMMRegister src);
1090   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1091   // AVX Unaligned forms
1092   void vmovdqu(Address     dst, XMMRegister src);
1093   void vmovdqu(XMMRegister dst, Address src);
1094   void vmovdqu(XMMRegister dst, XMMRegister src);
1095   void vmovdqu(XMMRegister dst, AddressLiteral src);
1096 
1097   // Move Aligned Double Quadword
1098   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1099   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1100   void movdqa(XMMRegister dst, AddressLiteral src);
1101 
1102   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1103   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1104   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1105   void movsd(XMMRegister dst, AddressLiteral src);
1106 
1107   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1108   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1109   void mulpd(XMMRegister dst, AddressLiteral src);
1110 
1111   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1112   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1113   void mulsd(XMMRegister dst, AddressLiteral src);
1114 
1115   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1116   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1117   void mulss(XMMRegister dst, AddressLiteral src);
1118 
1119   // Carry-Less Multiplication Quadword
1120   void pclmulldq(XMMRegister dst, XMMRegister src) {
1121     // 0x00 - multiply lower 64 bits [0:63]
1122     Assembler::pclmulqdq(dst, src, 0x00);
1123   }
1124   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1125     // 0x11 - multiply upper 64 bits [64:127]
1126     Assembler::pclmulqdq(dst, src, 0x11);
1127   }
1128 
1129   void pcmpeqb(XMMRegister dst, XMMRegister src);
1130   void pcmpeqw(XMMRegister dst, XMMRegister src);
1131 
1132   void pcmpestri(XMMRegister dst, Address src, int imm8);
1133   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1134 
1135   void pmovzxbw(XMMRegister dst, XMMRegister src);
1136   void pmovzxbw(XMMRegister dst, Address src);
1137 
1138   void pmovmskb(Register dst, XMMRegister src);
1139 
1140   void ptest(XMMRegister dst, XMMRegister src);
1141 
1142   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1143   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1144   void sqrtsd(XMMRegister dst, AddressLiteral src);
1145 
1146   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1147   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1148   void sqrtss(XMMRegister dst, AddressLiteral src);
1149 
1150   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1151   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1152   void subsd(XMMRegister dst, AddressLiteral src);
1153 
1154   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1155   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1156   void subss(XMMRegister dst, AddressLiteral src);
1157 
1158   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1159   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1160   void ucomiss(XMMRegister dst, AddressLiteral src);
1161 
1162   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1163   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1164   void ucomisd(XMMRegister dst, AddressLiteral src);
1165 
1166   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1167   void xorpd(XMMRegister dst, XMMRegister src);
1168   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1169   void xorpd(XMMRegister dst, AddressLiteral src);
1170 
1171   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1172   void xorps(XMMRegister dst, XMMRegister src);
1173   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1174   void xorps(XMMRegister dst, AddressLiteral src);
1175 
1176   // Shuffle Bytes
1177   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1178   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1179   void pshufb(XMMRegister dst, AddressLiteral src);
1180   // AVX 3-operands instructions
1181 
1182   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1183   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1184   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1185 
1186   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1187   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1188   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1189 
1190   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1191   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1192 
1193   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1194   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1195 
1196   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1197   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1198 
1199   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1200   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1201   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1202 
1203   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1204 
1205   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1206   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1207 
1208   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1209   void vpmovmskb(Register dst, XMMRegister src);
1210 
1211   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1212   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1213 
1214   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1215   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1216 
1217   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1218   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1219 
1220   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1221   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1222 
1223   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1224   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1225 
1226   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1227   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1228 
1229   void vptest(XMMRegister dst, XMMRegister src);
1230 
1231   void punpcklbw(XMMRegister dst, XMMRegister src);
1232   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1233 
1234   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1235   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1236 
1237   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1238   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1239   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1240 
1241   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1242   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1243   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1244 
1245   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1246   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1247   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1248 
1249   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1250   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1251   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1252 
1253   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1254   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1255   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1256 
1257   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1258   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1259   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1260 
1261   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1262   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1263   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1264 
1265   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1266   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1267   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1268 
1269   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1270   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1271 
1272   // AVX Vector instructions
1273 
1274   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1275   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1276   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1277 
1278   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1279   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1280   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1281 
1282   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1283     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1284       Assembler::vpxor(dst, nds, src, vector_len);
1285     else
1286       Assembler::vxorpd(dst, nds, src, vector_len);
1287   }
1288   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1289     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1290       Assembler::vpxor(dst, nds, src, vector_len);
1291     else
1292       Assembler::vxorpd(dst, nds, src, vector_len);
1293   }
1294 
1295   // Simple version for AVX2 256bit vectors
1296   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1297   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1298 
1299   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1300     if (UseAVX > 2) {
1301       Assembler::vinserti32x4(dst, dst, src, imm8);
1302     } else if (UseAVX > 1) {
1303       // vinserti128 is available only in AVX2
1304       Assembler::vinserti128(dst, nds, src, imm8);
1305     } else {
1306       Assembler::vinsertf128(dst, nds, src, imm8);
1307     }
1308   }
1309 
1310   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1311     if (UseAVX > 2) {
1312       Assembler::vinserti32x4(dst, dst, src, imm8);
1313     } else if (UseAVX > 1) {
1314       // vinserti128 is available only in AVX2
1315       Assembler::vinserti128(dst, nds, src, imm8);
1316     } else {
1317       Assembler::vinsertf128(dst, nds, src, imm8);
1318     }
1319   }
1320 
1321   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1322     if (UseAVX > 2) {
1323       Assembler::vextracti32x4(dst, src, imm8);
1324     } else if (UseAVX > 1) {
1325       // vextracti128 is available only in AVX2
1326       Assembler::vextracti128(dst, src, imm8);
1327     } else {
1328       Assembler::vextractf128(dst, src, imm8);
1329     }
1330   }
1331 
1332   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1333     if (UseAVX > 2) {
1334       Assembler::vextracti32x4(dst, src, imm8);
1335     } else if (UseAVX > 1) {
1336       // vextracti128 is available only in AVX2
1337       Assembler::vextracti128(dst, src, imm8);
1338     } else {
1339       Assembler::vextractf128(dst, src, imm8);
1340     }
1341   }
1342 
1343   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1344   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1345     vinserti128(dst, dst, src, 1);
1346   }
1347   void vinserti128_high(XMMRegister dst, Address src) {
1348     vinserti128(dst, dst, src, 1);
1349   }
1350   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1351     vextracti128(dst, src, 1);
1352   }
1353   void vextracti128_high(Address dst, XMMRegister src) {
1354     vextracti128(dst, src, 1);
1355   }
1356 
1357   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1358     if (UseAVX > 2) {
1359       Assembler::vinsertf32x4(dst, dst, src, 1);
1360     } else {
1361       Assembler::vinsertf128(dst, dst, src, 1);
1362     }
1363   }
1364 
1365   void vinsertf128_high(XMMRegister dst, Address src) {
1366     if (UseAVX > 2) {
1367       Assembler::vinsertf32x4(dst, dst, src, 1);
1368     } else {
1369       Assembler::vinsertf128(dst, dst, src, 1);
1370     }
1371   }
1372 
1373   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1374     if (UseAVX > 2) {
1375       Assembler::vextractf32x4(dst, src, 1);
1376     } else {
1377       Assembler::vextractf128(dst, src, 1);
1378     }
1379   }
1380 
1381   void vextractf128_high(Address dst, XMMRegister src) {
1382     if (UseAVX > 2) {
1383       Assembler::vextractf32x4(dst, src, 1);
1384     } else {
1385       Assembler::vextractf128(dst, src, 1);
1386     }
1387   }
1388 
1389   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1390   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1391     Assembler::vinserti64x4(dst, dst, src, 1);
1392   }
1393   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1394     Assembler::vinsertf64x4(dst, dst, src, 1);
1395   }
1396   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1397     Assembler::vextracti64x4(dst, src, 1);
1398   }
1399   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1400     Assembler::vextractf64x4(dst, src, 1);
1401   }
1402   void vextractf64x4_high(Address dst, XMMRegister src) {
1403     Assembler::vextractf64x4(dst, src, 1);
1404   }
1405   void vinsertf64x4_high(XMMRegister dst, Address src) {
1406     Assembler::vinsertf64x4(dst, dst, src, 1);
1407   }
1408 
1409   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1410   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1411     vinserti128(dst, dst, src, 0);
1412   }
1413   void vinserti128_low(XMMRegister dst, Address src) {
1414     vinserti128(dst, dst, src, 0);
1415   }
1416   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1417     vextracti128(dst, src, 0);
1418   }
1419   void vextracti128_low(Address dst, XMMRegister src) {
1420     vextracti128(dst, src, 0);
1421   }
1422 
1423   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1424     if (UseAVX > 2) {
1425       Assembler::vinsertf32x4(dst, dst, src, 0);
1426     } else {
1427       Assembler::vinsertf128(dst, dst, src, 0);
1428     }
1429   }
1430 
1431   void vinsertf128_low(XMMRegister dst, Address src) {
1432     if (UseAVX > 2) {
1433       Assembler::vinsertf32x4(dst, dst, src, 0);
1434     } else {
1435       Assembler::vinsertf128(dst, dst, src, 0);
1436     }
1437   }
1438 
1439   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1440     if (UseAVX > 2) {
1441       Assembler::vextractf32x4(dst, src, 0);
1442     } else {
1443       Assembler::vextractf128(dst, src, 0);
1444     }
1445   }
1446 
1447   void vextractf128_low(Address dst, XMMRegister src) {
1448     if (UseAVX > 2) {
1449       Assembler::vextractf32x4(dst, src, 0);
1450     } else {
1451       Assembler::vextractf128(dst, src, 0);
1452     }
1453   }
1454 
1455   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1456   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1457     Assembler::vinserti64x4(dst, dst, src, 0);
1458   }
1459   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1460     Assembler::vinsertf64x4(dst, dst, src, 0);
1461   }
1462   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1463     Assembler::vextracti64x4(dst, src, 0);
1464   }
1465   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1466     Assembler::vextractf64x4(dst, src, 0);
1467   }
1468   void vextractf64x4_low(Address dst, XMMRegister src) {
1469     Assembler::vextractf64x4(dst, src, 0);
1470   }
1471   void vinsertf64x4_low(XMMRegister dst, Address src) {
1472     Assembler::vinsertf64x4(dst, dst, src, 0);
1473   }
1474 
1475   // Carry-Less Multiplication Quadword
1476   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1477     // 0x00 - multiply lower 64 bits [0:63]
1478     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1479   }
1480   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1481     // 0x11 - multiply upper 64 bits [64:127]
1482     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1483   }
1484 
1485   // Data
1486 
1487   void cmov32( Condition cc, Register dst, Address  src);
1488   void cmov32( Condition cc, Register dst, Register src);
1489 
1490   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1491 
1492   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1493   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1494 
1495   void movoop(Register dst, jobject obj);
1496   void movoop(Address dst, jobject obj);
1497 
1498   void mov_metadata(Register dst, Metadata* obj);
1499   void mov_metadata(Address dst, Metadata* obj);
1500 
1501   void movptr(ArrayAddress dst, Register src);
1502   // can this do an lea?
1503   void movptr(Register dst, ArrayAddress src);
1504 
1505   void movptr(Register dst, Address src);
1506 
1507 #ifdef _LP64
1508   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1509 #else
1510   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1511 #endif
1512 
1513   void movptr(Register dst, intptr_t src);
1514   void movptr(Register dst, Register src);
1515   void movptr(Address dst, intptr_t src);
1516 
1517   void movptr(Address dst, Register src);
1518 
1519   void movptr(Register dst, RegisterOrConstant src) {
1520     if (src.is_constant()) movptr(dst, src.as_constant());
1521     else                   movptr(dst, src.as_register());
1522   }
1523 
1524 #ifdef _LP64
1525   // Generally the next two are only used for moving NULL
1526   // Although there are situations in initializing the mark word where
1527   // they could be used. They are dangerous.
1528 
1529   // They only exist on LP64 so that int32_t and intptr_t are not the same
1530   // and we have ambiguous declarations.
1531 
1532   void movptr(Address dst, int32_t imm32);
1533   void movptr(Register dst, int32_t imm32);
1534 #endif // _LP64
1535 
1536   // to avoid hiding movl
1537   void mov32(AddressLiteral dst, Register src);
1538   void mov32(Register dst, AddressLiteral src);
1539 
1540   // to avoid hiding movb
1541   void movbyte(ArrayAddress dst, int src);
1542 
1543   // Import other mov() methods from the parent class or else
1544   // they will be hidden by the following overriding declaration.
1545   using Assembler::movdl;
1546   using Assembler::movq;
1547   void movdl(XMMRegister dst, AddressLiteral src);
1548   void movq(XMMRegister dst, AddressLiteral src);
1549 
1550   // Can push value or effective address
1551   void pushptr(AddressLiteral src);
1552 
1553   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1554   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1555 
1556   void pushoop(jobject obj);
1557   void pushklass(Metadata* obj);
1558 
1559   // sign extend as need a l to ptr sized element
1560   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1561   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1562 
1563   // C2 compiled method's prolog code.
1564   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1565 
1566   // clear memory of size 'cnt' qwords, starting at 'base';
1567   // if 'is_large' is set, do not try to produce short loop
1568   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1569 
1570 #ifdef COMPILER2
1571   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1572                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1573 
1574   // IndexOf strings.
1575   // Small strings are loaded through stack if they cross page boundary.
1576   void string_indexof(Register str1, Register str2,
1577                       Register cnt1, Register cnt2,
1578                       int int_cnt2,  Register result,
1579                       XMMRegister vec, Register tmp,
1580                       int ae);
1581 
1582   // IndexOf for constant substrings with size >= 8 elements
1583   // which don't need to be loaded through stack.
1584   void string_indexofC8(Register str1, Register str2,
1585                       Register cnt1, Register cnt2,
1586                       int int_cnt2,  Register result,
1587                       XMMRegister vec, Register tmp,
1588                       int ae);
1589 
1590     // Smallest code: we don't need to load through stack,
1591     // check string tail.
1592 
1593   // helper function for string_compare
1594   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1595                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1596                           Address::ScaleFactor scale2, Register index, int ae);
1597   // Compare strings.
1598   void string_compare(Register str1, Register str2,
1599                       Register cnt1, Register cnt2, Register result,
1600                       XMMRegister vec1, int ae);
1601 
1602   // Search for Non-ASCII character (Negative byte value) in a byte array,
1603   // return true if it has any and false otherwise.
1604   void has_negatives(Register ary1, Register len,
1605                      Register result, Register tmp1,
1606                      XMMRegister vec1, XMMRegister vec2);
1607 
1608   // Compare char[] or byte[] arrays.
1609   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1610                      Register limit, Register result, Register chr,
1611                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1612 
1613 #endif
1614 
1615   // Fill primitive arrays
1616   void generate_fill(BasicType t, bool aligned,
1617                      Register to, Register value, Register count,
1618                      Register rtmp, XMMRegister xtmp);
1619 
1620   void encode_iso_array(Register src, Register dst, Register len,
1621                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1622                         XMMRegister tmp4, Register tmp5, Register result);
1623 
1624 #ifdef _LP64
1625   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1626   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1627                              Register y, Register y_idx, Register z,
1628                              Register carry, Register product,
1629                              Register idx, Register kdx);
1630   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1631                               Register yz_idx, Register idx,
1632                               Register carry, Register product, int offset);
1633   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1634                                     Register carry, Register carry2,
1635                                     Register idx, Register jdx,
1636                                     Register yz_idx1, Register yz_idx2,
1637                                     Register tmp, Register tmp3, Register tmp4);
1638   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1639                                Register yz_idx, Register idx, Register jdx,
1640                                Register carry, Register product,
1641                                Register carry2);
1642   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1643                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1644   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1645                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1646   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1647                             Register tmp2);
1648   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1649                        Register rdxReg, Register raxReg);
1650   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1651   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1652                        Register tmp3, Register tmp4);
1653   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1654                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1655 
1656   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1657                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1658                Register raxReg);
1659   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1660                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1661                Register raxReg);
1662   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1663                            Register result, Register tmp1, Register tmp2,
1664                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1665 #endif
1666 
1667   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1668   void update_byte_crc32(Register crc, Register val, Register table);
1669   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1670   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1671   // Note on a naming convention:
1672   // Prefix w = register only used on a Westmere+ architecture
1673   // Prefix n = register only used on a Nehalem architecture
1674 #ifdef _LP64
1675   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1676                        Register tmp1, Register tmp2, Register tmp3);
1677 #else
1678   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1679                        Register tmp1, Register tmp2, Register tmp3,
1680                        XMMRegister xtmp1, XMMRegister xtmp2);
1681 #endif
1682   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1683                         Register in_out,
1684                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1685                         XMMRegister w_xtmp2,
1686                         Register tmp1,
1687                         Register n_tmp2, Register n_tmp3);
1688   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1689                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1690                        Register tmp1, Register tmp2,
1691                        Register n_tmp3);
1692   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1693                          Register in_out1, Register in_out2, Register in_out3,
1694                          Register tmp1, Register tmp2, Register tmp3,
1695                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1696                          Register tmp4, Register tmp5,
1697                          Register n_tmp6);
1698   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1699                             Register tmp1, Register tmp2, Register tmp3,
1700                             Register tmp4, Register tmp5, Register tmp6,
1701                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1702                             bool is_pclmulqdq_supported);
1703   // Fold 128-bit data chunk
1704   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1705   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1706   // Fold 8-bit data
1707   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1708   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1709 
1710   // Compress char[] array to byte[].
1711   void char_array_compress(Register src, Register dst, Register len,
1712                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1713                            XMMRegister tmp4, Register tmp5, Register result);
1714 
1715   // Inflate byte[] array to char[].
1716   void byte_array_inflate(Register src, Register dst, Register len,
1717                           XMMRegister tmp1, Register tmp2);
1718 
1719 };
1720 
1721 /**
1722  * class SkipIfEqual:
1723  *
1724  * Instantiating this class will result in assembly code being output that will
1725  * jump around any code emitted between the creation of the instance and it's
1726  * automatic destruction at the end of a scope block, depending on the value of
1727  * the flag passed to the constructor, which will be checked at run-time.
1728  */
1729 class SkipIfEqual {
1730  private:
1731   MacroAssembler* _masm;
1732   Label _label;
1733 
1734  public:
1735    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1736    ~SkipIfEqual();
1737 };
1738 
1739 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP