/* * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/ptrQueue.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "runtime/mutex.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/thread.inline.hpp" PtrQueue::PtrQueue(PtrQueueSet* qset, bool perm, bool active) : _qset(qset), _buf(NULL), _index(0), _active(active), _perm(perm), _lock(NULL) {} void PtrQueue::flush() { if (!_perm && _buf != NULL) { if (_index == _sz) { // No work to do. qset()->deallocate_buffer(_buf); } else { // We must NULL out the unused entries, then enqueue. for (size_t i = 0; i < _index; i += oopSize) { _buf[byte_index_to_index((int)i)] = NULL; } assert(_buf != NULL, "must be non-null"); qset()->enqueue_complete_buffer(_buf); } _buf = NULL; _index = 0; } } void PtrQueue::enqueue_known_active(void* ptr) { assert(0 <= _index && _index <= _sz, "Invariant."); assert(_index == 0 || _buf != NULL, "invariant"); while (_index == 0) { handle_zero_index(); } assert(_index > 0, "postcondition"); _index -= oopSize; _buf[byte_index_to_index((int)_index)] = ptr; assert(0 <= _index && _index <= _sz, "Invariant."); } void PtrQueue::locking_enqueue_completed_buffer(void** buf) { assert(_lock->owned_by_self(), "Required."); // We have to unlock _lock (which may be Shared_DirtyCardQ_lock) before // we acquire DirtyCardQ_CBL_mon inside enqeue_complete_buffer as they // have the same rank and we may get the "possible deadlock" message _lock->unlock(); qset()->enqueue_complete_buffer(buf); // We must relock only because the caller will unlock, for the normal // case. _lock->lock_without_safepoint_check(); } PtrQueueSet::PtrQueueSet(bool notify_when_complete) : _max_completed_queue(0), _cbl_mon(NULL), _fl_lock(NULL), _notify_when_complete(notify_when_complete), _sz(0), _completed_buffers_head(NULL), _completed_buffers_tail(NULL), _n_completed_buffers(0), _process_completed_threshold(0), _process_completed(false), _buf_free_list(NULL), _buf_free_list_sz(0) { _fl_owner = this; } void** PtrQueueSet::allocate_buffer() { assert(_sz > 0, "Didn't set a buffer size."); MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag); if (_fl_owner->_buf_free_list != NULL) { void** res = BufferNode::make_buffer_from_node(_fl_owner->_buf_free_list); _fl_owner->_buf_free_list = _fl_owner->_buf_free_list->next(); _fl_owner->_buf_free_list_sz--; return res; } else { // Allocate space for the BufferNode in front of the buffer. char *b = NEW_C_HEAP_ARRAY(char, _sz + BufferNode::aligned_size(), mtGC); return BufferNode::make_buffer_from_block(b); } } void PtrQueueSet::deallocate_buffer(void** buf) { assert(_sz > 0, "Didn't set a buffer size."); MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag); BufferNode *node = BufferNode::make_node_from_buffer(buf); node->set_next(_fl_owner->_buf_free_list); _fl_owner->_buf_free_list = node; _fl_owner->_buf_free_list_sz++; } void PtrQueueSet::reduce_free_list() { assert(_fl_owner == this, "Free list reduction is allowed only for the owner"); // For now we'll adopt the strategy of deleting half. MutexLockerEx x(_fl_lock, Mutex::_no_safepoint_check_flag); size_t n = _buf_free_list_sz / 2; while (n > 0) { assert(_buf_free_list != NULL, "_buf_free_list_sz must be wrong."); void* b = BufferNode::make_block_from_node(_buf_free_list); _buf_free_list = _buf_free_list->next(); FREE_C_HEAP_ARRAY(char, b, mtGC); _buf_free_list_sz --; n--; } } void PtrQueue::handle_zero_index() { assert(_index == 0, "Precondition."); // This thread records the full buffer and allocates a new one (while // holding the lock if there is one). if (_buf != NULL) { if (!should_enqueue_buffer()) { assert(_index > 0, "the buffer can only be re-used if it's not full"); return; } if (_lock) { assert(_lock->owned_by_self(), "Required."); // The current PtrQ may be the shared dirty card queue and // may be being manipulated by more than one worker thread // during a pause. Since the enqueuing of the completed // buffer unlocks the Shared_DirtyCardQ_lock more than one // worker thread can 'race' on reading the shared queue attributes // (_buf and _index) and multiple threads can call into this // routine for the same buffer. This will cause the completed // buffer to be added to the CBL multiple times. // We "claim" the current buffer by caching value of _buf in // a local and clearing the field while holding _lock. When // _lock is released (while enqueueing the completed buffer) // the thread that acquires _lock will skip this code, // preventing the subsequent the multiple enqueue, and // install a newly allocated buffer below. void** buf = _buf; // local pointer to completed buffer _buf = NULL; // clear shared _buf field locking_enqueue_completed_buffer(buf); // enqueue completed buffer // While the current thread was enqueuing the buffer another thread // may have a allocated a new buffer and inserted it into this pointer // queue. If that happens then we just return so that the current // thread doesn't overwrite the buffer allocated by the other thread // and potentially losing some dirtied cards. if (_buf != NULL) return; } else { if (qset()->process_or_enqueue_complete_buffer(_buf)) { // Recycle the buffer. No allocation. _sz = qset()->buffer_size(); _index = _sz; return; } } } // Reallocate the buffer _buf = qset()->allocate_buffer(); _sz = qset()->buffer_size(); _index = _sz; assert(0 <= _index && _index <= _sz, "Invariant."); } bool PtrQueueSet::process_or_enqueue_complete_buffer(void** buf) { if (Thread::current()->is_Java_thread()) { // We don't lock. It is fine to be epsilon-precise here. if (_max_completed_queue == 0 || _max_completed_queue > 0 && _n_completed_buffers >= _max_completed_queue + _completed_queue_padding) { bool b = mut_process_buffer(buf); if (b) { // True here means that the buffer hasn't been deallocated and the caller may reuse it. return true; } } } // The buffer will be enqueued. The caller will have to get a new one. enqueue_complete_buffer(buf); return false; } void PtrQueueSet::enqueue_complete_buffer(void** buf, size_t index) { assert(buf != NULL, "must be non-null"); MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); BufferNode* cbn = BufferNode::new_from_buffer(buf); cbn->set_index(index); if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = cbn; _completed_buffers_tail = cbn; } else { _completed_buffers_tail->set_next(cbn); _completed_buffers_tail = cbn; } _n_completed_buffers++; if (!_process_completed && _process_completed_threshold >= 0 && _n_completed_buffers >= _process_completed_threshold) { _process_completed = true; if (_notify_when_complete) _cbl_mon->notify(); } debug_only(assert_completed_buffer_list_len_correct_locked()); } int PtrQueueSet::completed_buffers_list_length() { int n = 0; BufferNode* cbn = _completed_buffers_head; while (cbn != NULL) { n++; cbn = cbn->next(); } return n; } void PtrQueueSet::assert_completed_buffer_list_len_correct() { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); assert_completed_buffer_list_len_correct_locked(); } void PtrQueueSet::assert_completed_buffer_list_len_correct_locked() { guarantee(completed_buffers_list_length() == _n_completed_buffers, "Completed buffer length is wrong."); } void PtrQueueSet::set_buffer_size(size_t sz) { assert(_sz == 0 && sz > 0, "Should be called only once."); _sz = sz * oopSize; } // Merge lists of buffers. Notify the processing threads. // The source queue is emptied as a result. The queues // must share the monitor. void PtrQueueSet::merge_bufferlists(PtrQueueSet *src) { assert(_cbl_mon == src->_cbl_mon, "Should share the same lock"); MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = src->_completed_buffers_head; _completed_buffers_tail = src->_completed_buffers_tail; } else { assert(_completed_buffers_head != NULL, "Well formedness"); if (src->_completed_buffers_head != NULL) { _completed_buffers_tail->set_next(src->_completed_buffers_head); _completed_buffers_tail = src->_completed_buffers_tail; } } _n_completed_buffers += src->_n_completed_buffers; src->_n_completed_buffers = 0; src->_completed_buffers_head = NULL; src->_completed_buffers_tail = NULL; assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL || _completed_buffers_head != NULL && _completed_buffers_tail != NULL, "Sanity"); } void PtrQueueSet::notify_if_necessary() { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); if (_n_completed_buffers >= _process_completed_threshold || _max_completed_queue == 0) { _process_completed = true; if (_notify_when_complete) _cbl_mon->notify(); } }