1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/g1YCTypes.hpp"
  42 #include "gc_implementation/g1/heapRegion.inline.hpp"
  43 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  44 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  45 #include "gc_implementation/g1/vm_operations_g1.hpp"
  46 #include "gc_implementation/shared/gcHeapSummary.hpp"
  47 #include "gc_implementation/shared/gcTimer.hpp"
  48 #include "gc_implementation/shared/gcTrace.hpp"
  49 #include "gc_implementation/shared/gcTraceTime.hpp"
  50 #include "gc_implementation/shared/isGCActiveMark.hpp"
  51 #include "memory/gcLocker.inline.hpp"
  52 #include "memory/genOopClosures.inline.hpp"
  53 #include "memory/generationSpec.hpp"
  54 #include "memory/referenceProcessor.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/oop.pcgc.inline.hpp"
  57 #include "runtime/vmThread.hpp"
  58 
  59 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  60 
  61 // turn it on so that the contents of the young list (scan-only /
  62 // to-be-collected) are printed at "strategic" points before / during
  63 // / after the collection --- this is useful for debugging
  64 #define YOUNG_LIST_VERBOSE 0
  65 // CURRENT STATUS
  66 // This file is under construction.  Search for "FIXME".
  67 
  68 // INVARIANTS/NOTES
  69 //
  70 // All allocation activity covered by the G1CollectedHeap interface is
  71 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  72 // and allocate_new_tlab, which are the "entry" points to the
  73 // allocation code from the rest of the JVM.  (Note that this does not
  74 // apply to TLAB allocation, which is not part of this interface: it
  75 // is done by clients of this interface.)
  76 
  77 // Notes on implementation of parallelism in different tasks.
  78 //
  79 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  80 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  81 // It does use run_task() which sets _n_workers in the task.
  82 // G1ParTask executes g1_process_strong_roots() ->
  83 // SharedHeap::process_strong_roots() which calls eventually to
  84 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  85 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  86 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  87 //
  88 
  89 // Local to this file.
  90 
  91 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  92   SuspendibleThreadSet* _sts;
  93   G1RemSet* _g1rs;
  94   bool _concurrent;
  95 public:
  96   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  97                               G1RemSet* g1rs) :
  98     _sts(sts), _g1rs(g1rs), _concurrent(true)
  99   {}
 100   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 101     bool oops_into_cset;
 102     if (_concurrent) {
 103       oops_into_cset = _g1rs->refine_card_without_check(card_ptr, worker_i, false);
 104     } else {
 105       assert(SafepointSynchronize::is_at_safepoint(), "only safe if at safepoint");
 106       oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 107     }
 108     // This path is executed by the concurrent refine or mutator threads,
 109     // concurrently, and so we do not care if card_ptr contains references
 110     // that point into the collection set.
 111     assert(!oops_into_cset, "should be");
 112 
 113     if (_concurrent && _sts->should_yield()) {
 114       // Caller will actually yield.
 115       return false;
 116     }
 117     // Otherwise, we finished successfully; return true.
 118     return true;
 119   }
 120   void set_concurrent(bool b) { _concurrent = b; }
 121 };
 122 
 123 class TransferDirtyCardsToRefinementClosure: public CardTableEntryClosure {
 124  public:
 125   class FlushTransferClosure: public VoidClosure {
 126     friend class TransferDirtyCardsToRefinementClosure;
 127     TransferDirtyCardsToRefinementClosure* _cl;
 128    public:
 129     void do_void() {
 130       assert(_cl != NULL, "should be inited");
 131       _cl->_dcq.flush();
 132     }
 133   };
 134 
 135  private:
 136   FlushTransferClosure _flush_cl;
 137   DirtyCardQueue _dcq;
 138  public:
 139   TransferDirtyCardsToRefinementClosure(DirtyCardQueueSet& target) : _dcq(&target) {
 140     _flush_cl._cl = this;
 141   }
 142 
 143   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 144     assert(SafepointSynchronize::is_at_safepoint(), "only safe to transfer/clean cards at safepoint");
 145     assert(!G1CollectedHeap::heap()->is_gc_active(), "should not get here if doing a gc");
 146     _dcq.enqueue(card_ptr);
 147     *card_ptr = CardTableModRefBS::clean_card_val();
 148     return true;
 149   }
 150 
 151  public:
 152   FlushTransferClosure* flush_cl() { return &_flush_cl; }
 153 };
 154 
 155 
 156 
 157 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 158   int _calls;
 159   G1CollectedHeap* _g1h;
 160   CardTableModRefBS* _ctbs;
 161   int _histo[256];
 162 public:
 163   ClearLoggedCardTableEntryClosure() :
 164     _calls(0)
 165   {
 166     _g1h = G1CollectedHeap::heap();
 167     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 168     for (int i = 0; i < 256; i++) _histo[i] = 0;
 169   }
 170   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 171     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 172       _calls++;
 173       unsigned char* ujb = (unsigned char*)card_ptr;
 174       int ind = (int)(*ujb);
 175       _histo[ind]++;
 176       *card_ptr = -1;
 177     }
 178     return true;
 179   }
 180   int calls() { return _calls; }
 181   void print_histo() {
 182     gclog_or_tty->print_cr("Card table value histogram:");
 183     for (int i = 0; i < 256; i++) {
 184       if (_histo[i] != 0) {
 185         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 186       }
 187     }
 188   }
 189 };
 190 
 191 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 192   int _calls;
 193   G1CollectedHeap* _g1h;
 194   CardTableModRefBS* _ctbs;
 195 public:
 196   RedirtyLoggedCardTableEntryClosure() :
 197     _calls(0)
 198   {
 199     _g1h = G1CollectedHeap::heap();
 200     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 201   }
 202   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 203     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 204       _calls++;
 205       *card_ptr = 0;
 206     }
 207     return true;
 208   }
 209   int calls() { return _calls; }
 210 };
 211 
 212 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 213 public:
 214   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 215     *card_ptr = CardTableModRefBS::dirty_card_val();
 216     return true;
 217   }
 218 };
 219 
 220 YoungList::YoungList(G1CollectedHeap* g1h) :
 221     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 222     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 223   guarantee(check_list_empty(false), "just making sure...");
 224 }
 225 
 226 void YoungList::push_region(HeapRegion *hr) {
 227   assert(!hr->is_young(), "should not already be young");
 228   assert(hr->get_next_young_region() == NULL, "cause it should!");
 229 
 230   hr->set_next_young_region(_head);
 231   _head = hr;
 232 
 233   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 234   ++_length;
 235 }
 236 
 237 void YoungList::add_survivor_region(HeapRegion* hr) {
 238   assert(hr->is_survivor(), "should be flagged as survivor region");
 239   assert(hr->get_next_young_region() == NULL, "cause it should!");
 240 
 241   hr->set_next_young_region(_survivor_head);
 242   if (_survivor_head == NULL) {
 243     _survivor_tail = hr;
 244   }
 245   _survivor_head = hr;
 246   ++_survivor_length;
 247 }
 248 
 249 void YoungList::empty_list(HeapRegion* list) {
 250   while (list != NULL) {
 251     HeapRegion* next = list->get_next_young_region();
 252     list->set_next_young_region(NULL);
 253     list->uninstall_surv_rate_group();
 254     list->set_not_young();
 255     list = next;
 256   }
 257 }
 258 
 259 void YoungList::empty_list() {
 260   assert(check_list_well_formed(), "young list should be well formed");
 261 
 262   empty_list(_head);
 263   _head = NULL;
 264   _length = 0;
 265 
 266   empty_list(_survivor_head);
 267   _survivor_head = NULL;
 268   _survivor_tail = NULL;
 269   _survivor_length = 0;
 270 
 271   _last_sampled_rs_lengths = 0;
 272 
 273   assert(check_list_empty(false), "just making sure...");
 274 }
 275 
 276 bool YoungList::check_list_well_formed() {
 277   bool ret = true;
 278 
 279   uint length = 0;
 280   HeapRegion* curr = _head;
 281   HeapRegion* last = NULL;
 282   while (curr != NULL) {
 283     if (!curr->is_young()) {
 284       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 285                              "incorrectly tagged (y: %d, surv: %d)",
 286                              curr->bottom(), curr->end(),
 287                              curr->is_young(), curr->is_survivor());
 288       ret = false;
 289     }
 290     ++length;
 291     last = curr;
 292     curr = curr->get_next_young_region();
 293   }
 294   ret = ret && (length == _length);
 295 
 296   if (!ret) {
 297     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 298     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 299                            length, _length);
 300   }
 301 
 302   return ret;
 303 }
 304 
 305 bool YoungList::check_list_empty(bool check_sample) {
 306   bool ret = true;
 307 
 308   if (_length != 0) {
 309     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 310                   _length);
 311     ret = false;
 312   }
 313   if (check_sample && _last_sampled_rs_lengths != 0) {
 314     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 315     ret = false;
 316   }
 317   if (_head != NULL) {
 318     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 319     ret = false;
 320   }
 321   if (!ret) {
 322     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 323   }
 324 
 325   return ret;
 326 }
 327 
 328 void
 329 YoungList::rs_length_sampling_init() {
 330   _sampled_rs_lengths = 0;
 331   _curr               = _head;
 332 }
 333 
 334 bool
 335 YoungList::rs_length_sampling_more() {
 336   return _curr != NULL;
 337 }
 338 
 339 void
 340 YoungList::rs_length_sampling_next() {
 341   assert( _curr != NULL, "invariant" );
 342   size_t rs_length = _curr->rem_set()->occupied();
 343 
 344   _sampled_rs_lengths += rs_length;
 345 
 346   // The current region may not yet have been added to the
 347   // incremental collection set (it gets added when it is
 348   // retired as the current allocation region).
 349   if (_curr->in_collection_set()) {
 350     // Update the collection set policy information for this region
 351     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 352   }
 353 
 354   _curr = _curr->get_next_young_region();
 355   if (_curr == NULL) {
 356     _last_sampled_rs_lengths = _sampled_rs_lengths;
 357     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 358   }
 359 }
 360 
 361 void
 362 YoungList::reset_auxilary_lists() {
 363   guarantee( is_empty(), "young list should be empty" );
 364   assert(check_list_well_formed(), "young list should be well formed");
 365 
 366   // Add survivor regions to SurvRateGroup.
 367   _g1h->g1_policy()->note_start_adding_survivor_regions();
 368   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 369 
 370   int young_index_in_cset = 0;
 371   for (HeapRegion* curr = _survivor_head;
 372        curr != NULL;
 373        curr = curr->get_next_young_region()) {
 374     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 375 
 376     // The region is a non-empty survivor so let's add it to
 377     // the incremental collection set for the next evacuation
 378     // pause.
 379     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 380     young_index_in_cset += 1;
 381   }
 382   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 383   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 384 
 385   _head   = _survivor_head;
 386   _length = _survivor_length;
 387   if (_survivor_head != NULL) {
 388     assert(_survivor_tail != NULL, "cause it shouldn't be");
 389     assert(_survivor_length > 0, "invariant");
 390     _survivor_tail->set_next_young_region(NULL);
 391   }
 392 
 393   // Don't clear the survivor list handles until the start of
 394   // the next evacuation pause - we need it in order to re-tag
 395   // the survivor regions from this evacuation pause as 'young'
 396   // at the start of the next.
 397 
 398   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 399 
 400   assert(check_list_well_formed(), "young list should be well formed");
 401 }
 402 
 403 void YoungList::print() {
 404   HeapRegion* lists[] = {_head,   _survivor_head};
 405   const char* names[] = {"YOUNG", "SURVIVOR"};
 406 
 407   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 408     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 409     HeapRegion *curr = lists[list];
 410     if (curr == NULL)
 411       gclog_or_tty->print_cr("  empty");
 412     while (curr != NULL) {
 413       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 414                              HR_FORMAT_PARAMS(curr),
 415                              curr->prev_top_at_mark_start(),
 416                              curr->next_top_at_mark_start(),
 417                              curr->age_in_surv_rate_group_cond());
 418       curr = curr->get_next_young_region();
 419     }
 420   }
 421 
 422   gclog_or_tty->print_cr("");
 423 }
 424 
 425 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 426 {
 427   // Claim the right to put the region on the dirty cards region list
 428   // by installing a self pointer.
 429   HeapRegion* next = hr->get_next_dirty_cards_region();
 430   if (next == NULL) {
 431     HeapRegion* res = (HeapRegion*)
 432       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 433                           NULL);
 434     if (res == NULL) {
 435       HeapRegion* head;
 436       do {
 437         // Put the region to the dirty cards region list.
 438         head = _dirty_cards_region_list;
 439         next = (HeapRegion*)
 440           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 441         if (next == head) {
 442           assert(hr->get_next_dirty_cards_region() == hr,
 443                  "hr->get_next_dirty_cards_region() != hr");
 444           if (next == NULL) {
 445             // The last region in the list points to itself.
 446             hr->set_next_dirty_cards_region(hr);
 447           } else {
 448             hr->set_next_dirty_cards_region(next);
 449           }
 450         }
 451       } while (next != head);
 452     }
 453   }
 454 }
 455 
 456 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 457 {
 458   HeapRegion* head;
 459   HeapRegion* hr;
 460   do {
 461     head = _dirty_cards_region_list;
 462     if (head == NULL) {
 463       return NULL;
 464     }
 465     HeapRegion* new_head = head->get_next_dirty_cards_region();
 466     if (head == new_head) {
 467       // The last region.
 468       new_head = NULL;
 469     }
 470     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 471                                           head);
 472   } while (hr != head);
 473   assert(hr != NULL, "invariant");
 474   hr->set_next_dirty_cards_region(NULL);
 475   return hr;
 476 }
 477 
 478 void G1CollectedHeap::stop_conc_gc_threads() {
 479   _cg1r->stop();
 480   _cmThread->stop();
 481 }
 482 
 483 #ifdef ASSERT
 484 // A region is added to the collection set as it is retired
 485 // so an address p can point to a region which will be in the
 486 // collection set but has not yet been retired.  This method
 487 // therefore is only accurate during a GC pause after all
 488 // regions have been retired.  It is used for debugging
 489 // to check if an nmethod has references to objects that can
 490 // be move during a partial collection.  Though it can be
 491 // inaccurate, it is sufficient for G1 because the conservative
 492 // implementation of is_scavengable() for G1 will indicate that
 493 // all nmethods must be scanned during a partial collection.
 494 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 495   HeapRegion* hr = heap_region_containing(p);
 496   return hr != NULL && hr->in_collection_set();
 497 }
 498 #endif
 499 
 500 // Returns true if the reference points to an object that
 501 // can move in an incremental collection.
 502 bool G1CollectedHeap::is_scavengable(const void* p) {
 503   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 504   G1CollectorPolicy* g1p = g1h->g1_policy();
 505   HeapRegion* hr = heap_region_containing(p);
 506   if (hr == NULL) {
 507      // null
 508      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 509      return false;
 510   } else {
 511     return !hr->isHumongous();
 512   }
 513 }
 514 
 515 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 516   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 517   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 518 
 519   // Count the dirty cards at the start.
 520   CountNonCleanMemRegionClosure count1(this);
 521   ct_bs->mod_card_iterate(&count1);
 522   int orig_count = count1.n();
 523 
 524   // First clear the logged cards.
 525   ClearLoggedCardTableEntryClosure clear;
 526   dcqs.set_closure(&clear);
 527   dcqs.apply_closure_to_all_completed_buffers();
 528   dcqs.iterate_closure_all_threads(false);
 529   clear.print_histo();
 530 
 531   // Now ensure that there's no dirty cards.
 532   CountNonCleanMemRegionClosure count2(this);
 533   ct_bs->mod_card_iterate(&count2);
 534   if (count2.n() != 0) {
 535     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 536                            count2.n(), orig_count);
 537   }
 538   guarantee(count2.n() == 0, "Card table should be clean.");
 539 
 540   RedirtyLoggedCardTableEntryClosure redirty;
 541   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 542   dcqs.apply_closure_to_all_completed_buffers();
 543   dcqs.iterate_closure_all_threads(false);
 544   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 545                          clear.calls(), orig_count);
 546   guarantee(redirty.calls() == clear.calls(),
 547             "Or else mechanism is broken.");
 548 
 549   CountNonCleanMemRegionClosure count3(this);
 550   ct_bs->mod_card_iterate(&count3);
 551   if (count3.n() != orig_count) {
 552     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 553                            orig_count, count3.n());
 554     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 555   }
 556 
 557   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 558 }
 559 
 560 // Private class members.
 561 
 562 G1CollectedHeap* G1CollectedHeap::_g1h;
 563 
 564 // Private methods.
 565 
 566 HeapRegion*
 567 G1CollectedHeap::new_region_try_secondary_free_list() {
 568   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 569   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 570     if (!_secondary_free_list.is_empty()) {
 571       if (G1ConcRegionFreeingVerbose) {
 572         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 573                                "secondary_free_list has %u entries",
 574                                _secondary_free_list.length());
 575       }
 576       // It looks as if there are free regions available on the
 577       // secondary_free_list. Let's move them to the free_list and try
 578       // again to allocate from it.
 579       append_secondary_free_list();
 580 
 581       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 582              "empty we should have moved at least one entry to the free_list");
 583       HeapRegion* res = _free_list.remove_head();
 584       if (G1ConcRegionFreeingVerbose) {
 585         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 586                                "allocated "HR_FORMAT" from secondary_free_list",
 587                                HR_FORMAT_PARAMS(res));
 588       }
 589       return res;
 590     }
 591 
 592     // Wait here until we get notified either when (a) there are no
 593     // more free regions coming or (b) some regions have been moved on
 594     // the secondary_free_list.
 595     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 596   }
 597 
 598   if (G1ConcRegionFreeingVerbose) {
 599     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 600                            "could not allocate from secondary_free_list");
 601   }
 602   return NULL;
 603 }
 604 
 605 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 606   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 607          "the only time we use this to allocate a humongous region is "
 608          "when we are allocating a single humongous region");
 609 
 610   HeapRegion* res;
 611   if (G1StressConcRegionFreeing) {
 612     if (!_secondary_free_list.is_empty()) {
 613       if (G1ConcRegionFreeingVerbose) {
 614         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 615                                "forced to look at the secondary_free_list");
 616       }
 617       res = new_region_try_secondary_free_list();
 618       if (res != NULL) {
 619         return res;
 620       }
 621     }
 622   }
 623   res = _free_list.remove_head_or_null();
 624   if (res == NULL) {
 625     if (G1ConcRegionFreeingVerbose) {
 626       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 627                              "res == NULL, trying the secondary_free_list");
 628     }
 629     res = new_region_try_secondary_free_list();
 630   }
 631   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 632     // Currently, only attempts to allocate GC alloc regions set
 633     // do_expand to true. So, we should only reach here during a
 634     // safepoint. If this assumption changes we might have to
 635     // reconsider the use of _expand_heap_after_alloc_failure.
 636     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 637 
 638     ergo_verbose1(ErgoHeapSizing,
 639                   "attempt heap expansion",
 640                   ergo_format_reason("region allocation request failed")
 641                   ergo_format_byte("allocation request"),
 642                   word_size * HeapWordSize);
 643     if (expand(word_size * HeapWordSize)) {
 644       // Given that expand() succeeded in expanding the heap, and we
 645       // always expand the heap by an amount aligned to the heap
 646       // region size, the free list should in theory not be empty. So
 647       // it would probably be OK to use remove_head(). But the extra
 648       // check for NULL is unlikely to be a performance issue here (we
 649       // just expanded the heap!) so let's just be conservative and
 650       // use remove_head_or_null().
 651       res = _free_list.remove_head_or_null();
 652     } else {
 653       _expand_heap_after_alloc_failure = false;
 654     }
 655   }
 656   return res;
 657 }
 658 
 659 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 660                                                         size_t word_size) {
 661   assert(isHumongous(word_size), "word_size should be humongous");
 662   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 663 
 664   uint first = G1_NULL_HRS_INDEX;
 665   if (num_regions == 1) {
 666     // Only one region to allocate, no need to go through the slower
 667     // path. The caller will attempt the expansion if this fails, so
 668     // let's not try to expand here too.
 669     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 670     if (hr != NULL) {
 671       first = hr->hrs_index();
 672     } else {
 673       first = G1_NULL_HRS_INDEX;
 674     }
 675   } else {
 676     // We can't allocate humongous regions while cleanupComplete() is
 677     // running, since some of the regions we find to be empty might not
 678     // yet be added to the free list and it is not straightforward to
 679     // know which list they are on so that we can remove them. Note
 680     // that we only need to do this if we need to allocate more than
 681     // one region to satisfy the current humongous allocation
 682     // request. If we are only allocating one region we use the common
 683     // region allocation code (see above).
 684     wait_while_free_regions_coming();
 685     append_secondary_free_list_if_not_empty_with_lock();
 686 
 687     if (free_regions() >= num_regions) {
 688       first = _hrs.find_contiguous(num_regions);
 689       if (first != G1_NULL_HRS_INDEX) {
 690         for (uint i = first; i < first + num_regions; ++i) {
 691           HeapRegion* hr = region_at(i);
 692           assert(hr->is_empty(), "sanity");
 693           assert(is_on_master_free_list(hr), "sanity");
 694           hr->set_pending_removal(true);
 695         }
 696         _free_list.remove_all_pending(num_regions);
 697       }
 698     }
 699   }
 700   return first;
 701 }
 702 
 703 HeapWord*
 704 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 705                                                            uint num_regions,
 706                                                            size_t word_size) {
 707   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 708   assert(isHumongous(word_size), "word_size should be humongous");
 709   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 710 
 711   // Index of last region in the series + 1.
 712   uint last = first + num_regions;
 713 
 714   // We need to initialize the region(s) we just discovered. This is
 715   // a bit tricky given that it can happen concurrently with
 716   // refinement threads refining cards on these regions and
 717   // potentially wanting to refine the BOT as they are scanning
 718   // those cards (this can happen shortly after a cleanup; see CR
 719   // 6991377). So we have to set up the region(s) carefully and in
 720   // a specific order.
 721 
 722   // The word size sum of all the regions we will allocate.
 723   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 724   assert(word_size <= word_size_sum, "sanity");
 725 
 726   // This will be the "starts humongous" region.
 727   HeapRegion* first_hr = region_at(first);
 728   // The header of the new object will be placed at the bottom of
 729   // the first region.
 730   HeapWord* new_obj = first_hr->bottom();
 731   // This will be the new end of the first region in the series that
 732   // should also match the end of the last region in the series.
 733   HeapWord* new_end = new_obj + word_size_sum;
 734   // This will be the new top of the first region that will reflect
 735   // this allocation.
 736   HeapWord* new_top = new_obj + word_size;
 737 
 738   // First, we need to zero the header of the space that we will be
 739   // allocating. When we update top further down, some refinement
 740   // threads might try to scan the region. By zeroing the header we
 741   // ensure that any thread that will try to scan the region will
 742   // come across the zero klass word and bail out.
 743   //
 744   // NOTE: It would not have been correct to have used
 745   // CollectedHeap::fill_with_object() and make the space look like
 746   // an int array. The thread that is doing the allocation will
 747   // later update the object header to a potentially different array
 748   // type and, for a very short period of time, the klass and length
 749   // fields will be inconsistent. This could cause a refinement
 750   // thread to calculate the object size incorrectly.
 751   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 752 
 753   // We will set up the first region as "starts humongous". This
 754   // will also update the BOT covering all the regions to reflect
 755   // that there is a single object that starts at the bottom of the
 756   // first region.
 757   first_hr->set_startsHumongous(new_top, new_end);
 758 
 759   // Then, if there are any, we will set up the "continues
 760   // humongous" regions.
 761   HeapRegion* hr = NULL;
 762   for (uint i = first + 1; i < last; ++i) {
 763     hr = region_at(i);
 764     hr->set_continuesHumongous(first_hr);
 765   }
 766   // If we have "continues humongous" regions (hr != NULL), then the
 767   // end of the last one should match new_end.
 768   assert(hr == NULL || hr->end() == new_end, "sanity");
 769 
 770   // Up to this point no concurrent thread would have been able to
 771   // do any scanning on any region in this series. All the top
 772   // fields still point to bottom, so the intersection between
 773   // [bottom,top] and [card_start,card_end] will be empty. Before we
 774   // update the top fields, we'll do a storestore to make sure that
 775   // no thread sees the update to top before the zeroing of the
 776   // object header and the BOT initialization.
 777   OrderAccess::storestore();
 778 
 779   // Now that the BOT and the object header have been initialized,
 780   // we can update top of the "starts humongous" region.
 781   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 782          "new_top should be in this region");
 783   first_hr->set_top(new_top);
 784   if (_hr_printer.is_active()) {
 785     HeapWord* bottom = first_hr->bottom();
 786     HeapWord* end = first_hr->orig_end();
 787     if ((first + 1) == last) {
 788       // the series has a single humongous region
 789       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 790     } else {
 791       // the series has more than one humongous regions
 792       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 793     }
 794   }
 795 
 796   // Now, we will update the top fields of the "continues humongous"
 797   // regions. The reason we need to do this is that, otherwise,
 798   // these regions would look empty and this will confuse parts of
 799   // G1. For example, the code that looks for a consecutive number
 800   // of empty regions will consider them empty and try to
 801   // re-allocate them. We can extend is_empty() to also include
 802   // !continuesHumongous(), but it is easier to just update the top
 803   // fields here. The way we set top for all regions (i.e., top ==
 804   // end for all regions but the last one, top == new_top for the
 805   // last one) is actually used when we will free up the humongous
 806   // region in free_humongous_region().
 807   hr = NULL;
 808   for (uint i = first + 1; i < last; ++i) {
 809     hr = region_at(i);
 810     if ((i + 1) == last) {
 811       // last continues humongous region
 812       assert(hr->bottom() < new_top && new_top <= hr->end(),
 813              "new_top should fall on this region");
 814       hr->set_top(new_top);
 815       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 816     } else {
 817       // not last one
 818       assert(new_top > hr->end(), "new_top should be above this region");
 819       hr->set_top(hr->end());
 820       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 821     }
 822   }
 823   // If we have continues humongous regions (hr != NULL), then the
 824   // end of the last one should match new_end and its top should
 825   // match new_top.
 826   assert(hr == NULL ||
 827          (hr->end() == new_end && hr->top() == new_top), "sanity");
 828 
 829   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 830   _summary_bytes_used += first_hr->used();
 831   _humongous_set.add(first_hr);
 832 
 833   return new_obj;
 834 }
 835 
 836 // If could fit into free regions w/o expansion, try.
 837 // Otherwise, if can expand, do so.
 838 // Otherwise, if using ex regions might help, try with ex given back.
 839 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 840   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 841 
 842   verify_region_sets_optional();
 843 
 844   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 845   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 846   uint x_num = expansion_regions();
 847   uint fs = _hrs.free_suffix();
 848   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 849   if (first == G1_NULL_HRS_INDEX) {
 850     // The only thing we can do now is attempt expansion.
 851     if (fs + x_num >= num_regions) {
 852       // If the number of regions we're trying to allocate for this
 853       // object is at most the number of regions in the free suffix,
 854       // then the call to humongous_obj_allocate_find_first() above
 855       // should have succeeded and we wouldn't be here.
 856       //
 857       // We should only be trying to expand when the free suffix is
 858       // not sufficient for the object _and_ we have some expansion
 859       // room available.
 860       assert(num_regions > fs, "earlier allocation should have succeeded");
 861 
 862       ergo_verbose1(ErgoHeapSizing,
 863                     "attempt heap expansion",
 864                     ergo_format_reason("humongous allocation request failed")
 865                     ergo_format_byte("allocation request"),
 866                     word_size * HeapWordSize);
 867       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 868         // Even though the heap was expanded, it might not have
 869         // reached the desired size. So, we cannot assume that the
 870         // allocation will succeed.
 871         first = humongous_obj_allocate_find_first(num_regions, word_size);
 872       }
 873     }
 874   }
 875 
 876   HeapWord* result = NULL;
 877   if (first != G1_NULL_HRS_INDEX) {
 878     result =
 879       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 880     assert(result != NULL, "it should always return a valid result");
 881 
 882     // A successful humongous object allocation changes the used space
 883     // information of the old generation so we need to recalculate the
 884     // sizes and update the jstat counters here.
 885     g1mm()->update_sizes();
 886   }
 887 
 888   verify_region_sets_optional();
 889 
 890   return result;
 891 }
 892 
 893 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 894   assert_heap_not_locked_and_not_at_safepoint();
 895   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 896 
 897   unsigned int dummy_gc_count_before;
 898   int dummy_gclocker_retry_count = 0;
 899   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 900 }
 901 
 902 HeapWord*
 903 G1CollectedHeap::mem_allocate(size_t word_size,
 904                               bool*  gc_overhead_limit_was_exceeded) {
 905   assert_heap_not_locked_and_not_at_safepoint();
 906 
 907   // Loop until the allocation is satisfied, or unsatisfied after GC.
 908   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 909     unsigned int gc_count_before;
 910 
 911     HeapWord* result = NULL;
 912     if (!isHumongous(word_size)) {
 913       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 914     } else {
 915       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 916     }
 917     if (result != NULL) {
 918       return result;
 919     }
 920 
 921     // Create the garbage collection operation...
 922     VM_G1CollectForAllocation op(gc_count_before, word_size);
 923     // ...and get the VM thread to execute it.
 924     VMThread::execute(&op);
 925 
 926     if (op.prologue_succeeded() && op.pause_succeeded()) {
 927       // If the operation was successful we'll return the result even
 928       // if it is NULL. If the allocation attempt failed immediately
 929       // after a Full GC, it's unlikely we'll be able to allocate now.
 930       HeapWord* result = op.result();
 931       if (result != NULL && !isHumongous(word_size)) {
 932         // Allocations that take place on VM operations do not do any
 933         // card dirtying and we have to do it here. We only have to do
 934         // this for non-humongous allocations, though.
 935         dirty_young_block(result, word_size);
 936       }
 937       return result;
 938     } else {
 939       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 940         return NULL;
 941       }
 942       assert(op.result() == NULL,
 943              "the result should be NULL if the VM op did not succeed");
 944     }
 945 
 946     // Give a warning if we seem to be looping forever.
 947     if ((QueuedAllocationWarningCount > 0) &&
 948         (try_count % QueuedAllocationWarningCount == 0)) {
 949       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 950     }
 951   }
 952 
 953   ShouldNotReachHere();
 954   return NULL;
 955 }
 956 
 957 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 958                                            unsigned int *gc_count_before_ret,
 959                                            int* gclocker_retry_count_ret) {
 960   // Make sure you read the note in attempt_allocation_humongous().
 961 
 962   assert_heap_not_locked_and_not_at_safepoint();
 963   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 964          "be called for humongous allocation requests");
 965 
 966   // We should only get here after the first-level allocation attempt
 967   // (attempt_allocation()) failed to allocate.
 968 
 969   // We will loop until a) we manage to successfully perform the
 970   // allocation or b) we successfully schedule a collection which
 971   // fails to perform the allocation. b) is the only case when we'll
 972   // return NULL.
 973   HeapWord* result = NULL;
 974   for (int try_count = 1; /* we'll return */; try_count += 1) {
 975     bool should_try_gc;
 976     unsigned int gc_count_before;
 977 
 978     {
 979       MutexLockerEx x(Heap_lock);
 980 
 981       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 982                                                       false /* bot_updates */);
 983       if (result != NULL) {
 984         return result;
 985       }
 986 
 987       // If we reach here, attempt_allocation_locked() above failed to
 988       // allocate a new region. So the mutator alloc region should be NULL.
 989       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 990 
 991       if (GC_locker::is_active_and_needs_gc()) {
 992         if (g1_policy()->can_expand_young_list()) {
 993           // No need for an ergo verbose message here,
 994           // can_expand_young_list() does this when it returns true.
 995           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 996                                                       false /* bot_updates */);
 997           if (result != NULL) {
 998             return result;
 999           }
1000         }
1001         should_try_gc = false;
1002       } else {
1003         // The GCLocker may not be active but the GCLocker initiated
1004         // GC may not yet have been performed (GCLocker::needs_gc()
1005         // returns true). In this case we do not try this GC and
1006         // wait until the GCLocker initiated GC is performed, and
1007         // then retry the allocation.
1008         if (GC_locker::needs_gc()) {
1009           should_try_gc = false;
1010         } else {
1011           // Read the GC count while still holding the Heap_lock.
1012           gc_count_before = total_collections();
1013           should_try_gc = true;
1014         }
1015       }
1016     }
1017 
1018     if (should_try_gc) {
1019       bool succeeded;
1020       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1021       if (result != NULL) {
1022         assert(succeeded, "only way to get back a non-NULL result");
1023         return result;
1024       }
1025 
1026       if (succeeded) {
1027         // If we get here we successfully scheduled a collection which
1028         // failed to allocate. No point in trying to allocate
1029         // further. We'll just return NULL.
1030         MutexLockerEx x(Heap_lock);
1031         *gc_count_before_ret = total_collections();
1032         return NULL;
1033       }
1034     } else {
1035       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1036         MutexLockerEx x(Heap_lock);
1037         *gc_count_before_ret = total_collections();
1038         return NULL;
1039       }
1040       // The GCLocker is either active or the GCLocker initiated
1041       // GC has not yet been performed. Stall until it is and
1042       // then retry the allocation.
1043       GC_locker::stall_until_clear();
1044       (*gclocker_retry_count_ret) += 1;
1045     }
1046 
1047     // We can reach here if we were unsuccessful in scheduling a
1048     // collection (because another thread beat us to it) or if we were
1049     // stalled due to the GC locker. In either can we should retry the
1050     // allocation attempt in case another thread successfully
1051     // performed a collection and reclaimed enough space. We do the
1052     // first attempt (without holding the Heap_lock) here and the
1053     // follow-on attempt will be at the start of the next loop
1054     // iteration (after taking the Heap_lock).
1055     result = _mutator_alloc_region.attempt_allocation(word_size,
1056                                                       false /* bot_updates */);
1057     if (result != NULL) {
1058       return result;
1059     }
1060 
1061     // Give a warning if we seem to be looping forever.
1062     if ((QueuedAllocationWarningCount > 0) &&
1063         (try_count % QueuedAllocationWarningCount == 0)) {
1064       warning("G1CollectedHeap::attempt_allocation_slow() "
1065               "retries %d times", try_count);
1066     }
1067   }
1068 
1069   ShouldNotReachHere();
1070   return NULL;
1071 }
1072 
1073 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1074                                           unsigned int * gc_count_before_ret,
1075                                           int* gclocker_retry_count_ret) {
1076   // The structure of this method has a lot of similarities to
1077   // attempt_allocation_slow(). The reason these two were not merged
1078   // into a single one is that such a method would require several "if
1079   // allocation is not humongous do this, otherwise do that"
1080   // conditional paths which would obscure its flow. In fact, an early
1081   // version of this code did use a unified method which was harder to
1082   // follow and, as a result, it had subtle bugs that were hard to
1083   // track down. So keeping these two methods separate allows each to
1084   // be more readable. It will be good to keep these two in sync as
1085   // much as possible.
1086 
1087   assert_heap_not_locked_and_not_at_safepoint();
1088   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1089          "should only be called for humongous allocations");
1090 
1091   // Humongous objects can exhaust the heap quickly, so we should check if we
1092   // need to start a marking cycle at each humongous object allocation. We do
1093   // the check before we do the actual allocation. The reason for doing it
1094   // before the allocation is that we avoid having to keep track of the newly
1095   // allocated memory while we do a GC.
1096   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1097                                            word_size)) {
1098     collect(GCCause::_g1_humongous_allocation);
1099   }
1100 
1101   // We will loop until a) we manage to successfully perform the
1102   // allocation or b) we successfully schedule a collection which
1103   // fails to perform the allocation. b) is the only case when we'll
1104   // return NULL.
1105   HeapWord* result = NULL;
1106   for (int try_count = 1; /* we'll return */; try_count += 1) {
1107     bool should_try_gc;
1108     unsigned int gc_count_before;
1109 
1110     {
1111       MutexLockerEx x(Heap_lock);
1112 
1113       // Given that humongous objects are not allocated in young
1114       // regions, we'll first try to do the allocation without doing a
1115       // collection hoping that there's enough space in the heap.
1116       result = humongous_obj_allocate(word_size);
1117       if (result != NULL) {
1118         return result;
1119       }
1120 
1121       if (GC_locker::is_active_and_needs_gc()) {
1122         should_try_gc = false;
1123       } else {
1124          // The GCLocker may not be active but the GCLocker initiated
1125         // GC may not yet have been performed (GCLocker::needs_gc()
1126         // returns true). In this case we do not try this GC and
1127         // wait until the GCLocker initiated GC is performed, and
1128         // then retry the allocation.
1129         if (GC_locker::needs_gc()) {
1130           should_try_gc = false;
1131         } else {
1132           // Read the GC count while still holding the Heap_lock.
1133           gc_count_before = total_collections();
1134           should_try_gc = true;
1135         }
1136       }
1137     }
1138 
1139     if (should_try_gc) {
1140       // If we failed to allocate the humongous object, we should try to
1141       // do a collection pause (if we're allowed) in case it reclaims
1142       // enough space for the allocation to succeed after the pause.
1143 
1144       bool succeeded;
1145       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1146       if (result != NULL) {
1147         assert(succeeded, "only way to get back a non-NULL result");
1148         return result;
1149       }
1150 
1151       if (succeeded) {
1152         // If we get here we successfully scheduled a collection which
1153         // failed to allocate. No point in trying to allocate
1154         // further. We'll just return NULL.
1155         MutexLockerEx x(Heap_lock);
1156         *gc_count_before_ret = total_collections();
1157         return NULL;
1158       }
1159     } else {
1160       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1161         MutexLockerEx x(Heap_lock);
1162         *gc_count_before_ret = total_collections();
1163         return NULL;
1164       }
1165       // The GCLocker is either active or the GCLocker initiated
1166       // GC has not yet been performed. Stall until it is and
1167       // then retry the allocation.
1168       GC_locker::stall_until_clear();
1169       (*gclocker_retry_count_ret) += 1;
1170     }
1171 
1172     // We can reach here if we were unsuccessful in scheduling a
1173     // collection (because another thread beat us to it) or if we were
1174     // stalled due to the GC locker. In either can we should retry the
1175     // allocation attempt in case another thread successfully
1176     // performed a collection and reclaimed enough space.  Give a
1177     // warning if we seem to be looping forever.
1178 
1179     if ((QueuedAllocationWarningCount > 0) &&
1180         (try_count % QueuedAllocationWarningCount == 0)) {
1181       warning("G1CollectedHeap::attempt_allocation_humongous() "
1182               "retries %d times", try_count);
1183     }
1184   }
1185 
1186   ShouldNotReachHere();
1187   return NULL;
1188 }
1189 
1190 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1191                                        bool expect_null_mutator_alloc_region) {
1192   assert_at_safepoint(true /* should_be_vm_thread */);
1193   assert(_mutator_alloc_region.get() == NULL ||
1194                                              !expect_null_mutator_alloc_region,
1195          "the current alloc region was unexpectedly found to be non-NULL");
1196 
1197   if (!isHumongous(word_size)) {
1198     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1199                                                       false /* bot_updates */);
1200   } else {
1201     HeapWord* result = humongous_obj_allocate(word_size);
1202     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1203       g1_policy()->set_initiate_conc_mark_if_possible();
1204     }
1205     return result;
1206   }
1207 
1208   ShouldNotReachHere();
1209 }
1210 
1211 class PostMCRemSetClearClosure: public HeapRegionClosure {
1212   G1CollectedHeap* _g1h;
1213   ModRefBarrierSet* _mr_bs;
1214 public:
1215   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1216     _g1h(g1h), _mr_bs(mr_bs) { }
1217   bool doHeapRegion(HeapRegion* r) {
1218     if (r->continuesHumongous()) {
1219       return false;
1220     }
1221     _g1h->reset_gc_time_stamps(r);
1222     HeapRegionRemSet* hrrs = r->rem_set();
1223     if (hrrs != NULL) hrrs->clear();
1224     // You might think here that we could clear just the cards
1225     // corresponding to the used region.  But no: if we leave a dirty card
1226     // in a region we might allocate into, then it would prevent that card
1227     // from being enqueued, and cause it to be missed.
1228     // Re: the performance cost: we shouldn't be doing full GC anyway!
1229     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1230     return false;
1231   }
1232 };
1233 
1234 void G1CollectedHeap::clear_rsets_post_compaction() {
1235   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1236   heap_region_iterate(&rs_clear);
1237 }
1238 
1239 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1240   G1CollectedHeap*   _g1h;
1241   UpdateRSOopClosure _cl;
1242   int                _worker_i;
1243 public:
1244   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1245     _cl(g1->g1_rem_set(), worker_i),
1246     _worker_i(worker_i),
1247     _g1h(g1)
1248   { }
1249 
1250   bool doHeapRegion(HeapRegion* r) {
1251     if (!r->continuesHumongous()) {
1252       _cl.set_from(r);
1253       r->oop_iterate(&_cl);
1254     }
1255     return false;
1256   }
1257 };
1258 
1259 class ParRebuildRSTask: public AbstractGangTask {
1260   G1CollectedHeap* _g1;
1261 public:
1262   ParRebuildRSTask(G1CollectedHeap* g1)
1263     : AbstractGangTask("ParRebuildRSTask"),
1264       _g1(g1)
1265   { }
1266 
1267   void work(uint worker_id) {
1268     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1269     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1270                                           _g1->workers()->active_workers(),
1271                                          HeapRegion::RebuildRSClaimValue);
1272   }
1273 };
1274 
1275 class PostCompactionPrinterClosure: public HeapRegionClosure {
1276 private:
1277   G1HRPrinter* _hr_printer;
1278 public:
1279   bool doHeapRegion(HeapRegion* hr) {
1280     assert(!hr->is_young(), "not expecting to find young regions");
1281     // We only generate output for non-empty regions.
1282     if (!hr->is_empty()) {
1283       if (!hr->isHumongous()) {
1284         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1285       } else if (hr->startsHumongous()) {
1286         if (hr->region_num() == 1) {
1287           // single humongous region
1288           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1289         } else {
1290           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1291         }
1292       } else {
1293         assert(hr->continuesHumongous(), "only way to get here");
1294         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1295       }
1296     }
1297     return false;
1298   }
1299 
1300   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1301     : _hr_printer(hr_printer) { }
1302 };
1303 
1304 void G1CollectedHeap::print_hrs_post_compaction() {
1305   PostCompactionPrinterClosure cl(hr_printer());
1306   heap_region_iterate(&cl);
1307 }
1308 
1309 double G1CollectedHeap::verify(bool guard, const char* msg) {
1310   double verify_time_ms = 0.0;
1311 
1312   if (guard && total_collections() >= VerifyGCStartAt) {
1313     double verify_start = os::elapsedTime();
1314     HandleMark hm;  // Discard invalid handles created during verification
1315     prepare_for_verify();
1316     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
1317     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1318   }
1319 
1320   return verify_time_ms;
1321 }
1322 
1323 void G1CollectedHeap::verify_before_gc() {
1324   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1325   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1326 }
1327 
1328 void G1CollectedHeap::verify_after_gc() {
1329   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1330   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1331 }
1332 
1333 bool G1CollectedHeap::do_collection(bool explicit_gc,
1334                                     bool clear_all_soft_refs,
1335                                     size_t word_size) {
1336   assert_at_safepoint(true /* should_be_vm_thread */);
1337 
1338   if (GC_locker::check_active_before_gc()) {
1339     return false;
1340   }
1341 
1342   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1343   gc_timer->register_gc_start(os::elapsed_counter());
1344 
1345   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1346   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1347 
1348   SvcGCMarker sgcm(SvcGCMarker::FULL);
1349   ResourceMark rm;
1350 
1351   print_heap_before_gc();
1352   trace_heap_before_gc(gc_tracer);
1353 
1354   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1355 
1356   HRSPhaseSetter x(HRSPhaseFullGC);
1357   verify_region_sets_optional();
1358 
1359   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1360                            collector_policy()->should_clear_all_soft_refs();
1361 
1362   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1363 
1364   {
1365     IsGCActiveMark x;
1366 
1367     // Timing
1368     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1369     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1370     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1371 
1372     {
1373       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1374       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1375       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1376 
1377       double start = os::elapsedTime();
1378       g1_policy()->record_full_collection_start();
1379 
1380       // Note: When we have a more flexible GC logging framework that
1381       // allows us to add optional attributes to a GC log record we
1382       // could consider timing and reporting how long we wait in the
1383       // following two methods.
1384       wait_while_free_regions_coming();
1385       // If we start the compaction before the CM threads finish
1386       // scanning the root regions we might trip them over as we'll
1387       // be moving objects / updating references. So let's wait until
1388       // they are done. By telling them to abort, they should complete
1389       // early.
1390       _cm->root_regions()->abort();
1391       _cm->root_regions()->wait_until_scan_finished();
1392       append_secondary_free_list_if_not_empty_with_lock();
1393 
1394       gc_prologue(true);
1395       increment_total_collections(true /* full gc */);
1396       increment_old_marking_cycles_started();
1397 
1398       assert(used() == recalculate_used(), "Should be equal");
1399 
1400       verify_before_gc();
1401 
1402       pre_full_gc_dump(gc_timer);
1403 
1404       COMPILER2_PRESENT(DerivedPointerTable::clear());
1405 
1406       // Disable discovery and empty the discovered lists
1407       // for the CM ref processor.
1408       ref_processor_cm()->disable_discovery();
1409       ref_processor_cm()->abandon_partial_discovery();
1410       ref_processor_cm()->verify_no_references_recorded();
1411 
1412       // Abandon current iterations of concurrent marking and concurrent
1413       // refinement, if any are in progress. We have to do this before
1414       // wait_until_scan_finished() below.
1415       concurrent_mark()->abort();
1416 
1417       // Make sure we'll choose a new allocation region afterwards.
1418       release_mutator_alloc_region();
1419       abandon_gc_alloc_regions();
1420       g1_rem_set()->cleanupHRRS();
1421 
1422       // We should call this after we retire any currently active alloc
1423       // regions so that all the ALLOC / RETIRE events are generated
1424       // before the start GC event.
1425       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1426 
1427       // We may have added regions to the current incremental collection
1428       // set between the last GC or pause and now. We need to clear the
1429       // incremental collection set and then start rebuilding it afresh
1430       // after this full GC.
1431       abandon_collection_set(g1_policy()->inc_cset_head());
1432       g1_policy()->clear_incremental_cset();
1433       g1_policy()->stop_incremental_cset_building();
1434 
1435       tear_down_region_sets(false /* free_list_only */);
1436       g1_policy()->set_gcs_are_young(true);
1437 
1438       // See the comments in g1CollectedHeap.hpp and
1439       // G1CollectedHeap::ref_processing_init() about
1440       // how reference processing currently works in G1.
1441 
1442       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1443       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1444 
1445       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1446       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1447 
1448       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1449       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1450 
1451       // Do collection work
1452       {
1453         HandleMark hm;  // Discard invalid handles created during gc
1454         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1455       }
1456 
1457       assert(free_regions() == 0, "we should not have added any free regions");
1458       rebuild_region_sets(false /* free_list_only */);
1459 
1460       // Enqueue any discovered reference objects that have
1461       // not been removed from the discovered lists.
1462       ref_processor_stw()->enqueue_discovered_references();
1463 
1464       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1465 
1466       MemoryService::track_memory_usage();
1467 
1468       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1469       ref_processor_stw()->verify_no_references_recorded();
1470 
1471       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1472       ClassLoaderDataGraph::purge();
1473     MetaspaceAux::verify_metrics();
1474 
1475       // Note: since we've just done a full GC, concurrent
1476       // marking is no longer active. Therefore we need not
1477       // re-enable reference discovery for the CM ref processor.
1478       // That will be done at the start of the next marking cycle.
1479       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1480       ref_processor_cm()->verify_no_references_recorded();
1481 
1482       reset_gc_time_stamp();
1483       // Since everything potentially moved, we will clear all remembered
1484       // sets, and clear all cards.  Later we will rebuild remembered
1485       // sets. We will also reset the GC time stamps of the regions.
1486       clear_rsets_post_compaction();
1487       check_gc_time_stamps();
1488 
1489       // Resize the heap if necessary.
1490       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1491 
1492       if (_hr_printer.is_active()) {
1493         // We should do this after we potentially resize the heap so
1494         // that all the COMMIT / UNCOMMIT events are generated before
1495         // the end GC event.
1496 
1497         print_hrs_post_compaction();
1498         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1499       }
1500 
1501       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1502       if (hot_card_cache->use_cache()) {
1503         hot_card_cache->reset_card_counts();
1504         hot_card_cache->reset_hot_cache();
1505       }
1506 
1507       // Rebuild remembered sets of all regions.
1508       if (G1CollectedHeap::use_parallel_gc_threads()) {
1509         uint n_workers =
1510           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1511                                                   workers()->active_workers(),
1512                                                   Threads::number_of_non_daemon_threads());
1513         assert(UseDynamicNumberOfGCThreads ||
1514                n_workers == workers()->total_workers(),
1515                "If not dynamic should be using all the  workers");
1516         workers()->set_active_workers(n_workers);
1517         // Set parallel threads in the heap (_n_par_threads) only
1518         // before a parallel phase and always reset it to 0 after
1519         // the phase so that the number of parallel threads does
1520         // no get carried forward to a serial phase where there
1521         // may be code that is "possibly_parallel".
1522         set_par_threads(n_workers);
1523 
1524         ParRebuildRSTask rebuild_rs_task(this);
1525         assert(check_heap_region_claim_values(
1526                HeapRegion::InitialClaimValue), "sanity check");
1527         assert(UseDynamicNumberOfGCThreads ||
1528                workers()->active_workers() == workers()->total_workers(),
1529                "Unless dynamic should use total workers");
1530         // Use the most recent number of  active workers
1531         assert(workers()->active_workers() > 0,
1532                "Active workers not properly set");
1533         set_par_threads(workers()->active_workers());
1534         workers()->run_task(&rebuild_rs_task);
1535         set_par_threads(0);
1536         assert(check_heap_region_claim_values(
1537                HeapRegion::RebuildRSClaimValue), "sanity check");
1538         reset_heap_region_claim_values();
1539       } else {
1540         RebuildRSOutOfRegionClosure rebuild_rs(this);
1541         heap_region_iterate(&rebuild_rs);
1542       }
1543 
1544       if (true) { // FIXME
1545         MetaspaceGC::compute_new_size();
1546       }
1547 
1548 #ifdef TRACESPINNING
1549       ParallelTaskTerminator::print_termination_counts();
1550 #endif
1551 
1552       // Discard all rset updates
1553       JavaThread::dirty_card_queue_set().abandon_logs();
1554       assert(!G1DeferredRSUpdate
1555              || (G1DeferredRSUpdate &&
1556                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1557 
1558       _young_list->reset_sampled_info();
1559       // At this point there should be no regions in the
1560       // entire heap tagged as young.
1561       assert(check_young_list_empty(true /* check_heap */),
1562              "young list should be empty at this point");
1563 
1564       // Update the number of full collections that have been completed.
1565       increment_old_marking_cycles_completed(false /* concurrent */);
1566 
1567       _hrs.verify_optional();
1568       verify_region_sets_optional();
1569 
1570       verify_after_gc();
1571 
1572       // Start a new incremental collection set for the next pause
1573       assert(g1_policy()->collection_set() == NULL, "must be");
1574       g1_policy()->start_incremental_cset_building();
1575 
1576       // Clear the _cset_fast_test bitmap in anticipation of adding
1577       // regions to the incremental collection set for the next
1578       // evacuation pause.
1579       clear_cset_fast_test();
1580 
1581       init_mutator_alloc_region();
1582 
1583       double end = os::elapsedTime();
1584       g1_policy()->record_full_collection_end();
1585 
1586       if (G1Log::fine()) {
1587         g1_policy()->print_heap_transition();
1588       }
1589 
1590       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1591       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1592       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1593       // before any GC notifications are raised.
1594       g1mm()->update_sizes();
1595 
1596       gc_epilogue(true);
1597     }
1598 
1599     if (G1Log::finer()) {
1600       g1_policy()->print_detailed_heap_transition(true /* full */);
1601     }
1602 
1603     print_heap_after_gc();
1604     trace_heap_after_gc(gc_tracer);
1605 
1606     post_full_gc_dump(gc_timer);
1607 
1608     gc_timer->register_gc_end(os::elapsed_counter());
1609     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1610   }
1611 
1612   return true;
1613 }
1614 
1615 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1616   // do_collection() will return whether it succeeded in performing
1617   // the GC. Currently, there is no facility on the
1618   // do_full_collection() API to notify the caller than the collection
1619   // did not succeed (e.g., because it was locked out by the GC
1620   // locker). So, right now, we'll ignore the return value.
1621   bool dummy = do_collection(true,                /* explicit_gc */
1622                              clear_all_soft_refs,
1623                              0                    /* word_size */);
1624 }
1625 
1626 // This code is mostly copied from TenuredGeneration.
1627 void
1628 G1CollectedHeap::
1629 resize_if_necessary_after_full_collection(size_t word_size) {
1630   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1631 
1632   // Include the current allocation, if any, and bytes that will be
1633   // pre-allocated to support collections, as "used".
1634   const size_t used_after_gc = used();
1635   const size_t capacity_after_gc = capacity();
1636   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1637 
1638   // This is enforced in arguments.cpp.
1639   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1640          "otherwise the code below doesn't make sense");
1641 
1642   // We don't have floating point command-line arguments
1643   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1644   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1645   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1646   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1647 
1648   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1649   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1650 
1651   // We have to be careful here as these two calculations can overflow
1652   // 32-bit size_t's.
1653   double used_after_gc_d = (double) used_after_gc;
1654   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1655   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1656 
1657   // Let's make sure that they are both under the max heap size, which
1658   // by default will make them fit into a size_t.
1659   double desired_capacity_upper_bound = (double) max_heap_size;
1660   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1661                                     desired_capacity_upper_bound);
1662   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1663                                     desired_capacity_upper_bound);
1664 
1665   // We can now safely turn them into size_t's.
1666   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1667   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1668 
1669   // This assert only makes sense here, before we adjust them
1670   // with respect to the min and max heap size.
1671   assert(minimum_desired_capacity <= maximum_desired_capacity,
1672          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1673                  "maximum_desired_capacity = "SIZE_FORMAT,
1674                  minimum_desired_capacity, maximum_desired_capacity));
1675 
1676   // Should not be greater than the heap max size. No need to adjust
1677   // it with respect to the heap min size as it's a lower bound (i.e.,
1678   // we'll try to make the capacity larger than it, not smaller).
1679   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1680   // Should not be less than the heap min size. No need to adjust it
1681   // with respect to the heap max size as it's an upper bound (i.e.,
1682   // we'll try to make the capacity smaller than it, not greater).
1683   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1684 
1685   if (capacity_after_gc < minimum_desired_capacity) {
1686     // Don't expand unless it's significant
1687     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1688     ergo_verbose4(ErgoHeapSizing,
1689                   "attempt heap expansion",
1690                   ergo_format_reason("capacity lower than "
1691                                      "min desired capacity after Full GC")
1692                   ergo_format_byte("capacity")
1693                   ergo_format_byte("occupancy")
1694                   ergo_format_byte_perc("min desired capacity"),
1695                   capacity_after_gc, used_after_gc,
1696                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1697     expand(expand_bytes);
1698 
1699     // No expansion, now see if we want to shrink
1700   } else if (capacity_after_gc > maximum_desired_capacity) {
1701     // Capacity too large, compute shrinking size
1702     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1703     ergo_verbose4(ErgoHeapSizing,
1704                   "attempt heap shrinking",
1705                   ergo_format_reason("capacity higher than "
1706                                      "max desired capacity after Full GC")
1707                   ergo_format_byte("capacity")
1708                   ergo_format_byte("occupancy")
1709                   ergo_format_byte_perc("max desired capacity"),
1710                   capacity_after_gc, used_after_gc,
1711                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1712     shrink(shrink_bytes);
1713   }
1714 }
1715 
1716 
1717 HeapWord*
1718 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1719                                            bool* succeeded) {
1720   assert_at_safepoint(true /* should_be_vm_thread */);
1721 
1722   *succeeded = true;
1723   // Let's attempt the allocation first.
1724   HeapWord* result =
1725     attempt_allocation_at_safepoint(word_size,
1726                                  false /* expect_null_mutator_alloc_region */);
1727   if (result != NULL) {
1728     assert(*succeeded, "sanity");
1729     return result;
1730   }
1731 
1732   // In a G1 heap, we're supposed to keep allocation from failing by
1733   // incremental pauses.  Therefore, at least for now, we'll favor
1734   // expansion over collection.  (This might change in the future if we can
1735   // do something smarter than full collection to satisfy a failed alloc.)
1736   result = expand_and_allocate(word_size);
1737   if (result != NULL) {
1738     assert(*succeeded, "sanity");
1739     return result;
1740   }
1741 
1742   // Expansion didn't work, we'll try to do a Full GC.
1743   bool gc_succeeded = do_collection(false, /* explicit_gc */
1744                                     false, /* clear_all_soft_refs */
1745                                     word_size);
1746   if (!gc_succeeded) {
1747     *succeeded = false;
1748     return NULL;
1749   }
1750 
1751   // Retry the allocation
1752   result = attempt_allocation_at_safepoint(word_size,
1753                                   true /* expect_null_mutator_alloc_region */);
1754   if (result != NULL) {
1755     assert(*succeeded, "sanity");
1756     return result;
1757   }
1758 
1759   // Then, try a Full GC that will collect all soft references.
1760   gc_succeeded = do_collection(false, /* explicit_gc */
1761                                true,  /* clear_all_soft_refs */
1762                                word_size);
1763   if (!gc_succeeded) {
1764     *succeeded = false;
1765     return NULL;
1766   }
1767 
1768   // Retry the allocation once more
1769   result = attempt_allocation_at_safepoint(word_size,
1770                                   true /* expect_null_mutator_alloc_region */);
1771   if (result != NULL) {
1772     assert(*succeeded, "sanity");
1773     return result;
1774   }
1775 
1776   assert(!collector_policy()->should_clear_all_soft_refs(),
1777          "Flag should have been handled and cleared prior to this point");
1778 
1779   // What else?  We might try synchronous finalization later.  If the total
1780   // space available is large enough for the allocation, then a more
1781   // complete compaction phase than we've tried so far might be
1782   // appropriate.
1783   assert(*succeeded, "sanity");
1784   return NULL;
1785 }
1786 
1787 // Attempting to expand the heap sufficiently
1788 // to support an allocation of the given "word_size".  If
1789 // successful, perform the allocation and return the address of the
1790 // allocated block, or else "NULL".
1791 
1792 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1793   assert_at_safepoint(true /* should_be_vm_thread */);
1794 
1795   verify_region_sets_optional();
1796 
1797   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1798   ergo_verbose1(ErgoHeapSizing,
1799                 "attempt heap expansion",
1800                 ergo_format_reason("allocation request failed")
1801                 ergo_format_byte("allocation request"),
1802                 word_size * HeapWordSize);
1803   if (expand(expand_bytes)) {
1804     _hrs.verify_optional();
1805     verify_region_sets_optional();
1806     return attempt_allocation_at_safepoint(word_size,
1807                                  false /* expect_null_mutator_alloc_region */);
1808   }
1809   return NULL;
1810 }
1811 
1812 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1813                                              HeapWord* new_end) {
1814   assert(old_end != new_end, "don't call this otherwise");
1815   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1816 
1817   // Update the committed mem region.
1818   _g1_committed.set_end(new_end);
1819   // Tell the card table about the update.
1820   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1821   // Tell the BOT about the update.
1822   _bot_shared->resize(_g1_committed.word_size());
1823   // Tell the hot card cache about the update
1824   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1825 }
1826 
1827 bool G1CollectedHeap::expand(size_t expand_bytes) {
1828   size_t old_mem_size = _g1_storage.committed_size();
1829   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1830   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1831                                        HeapRegion::GrainBytes);
1832   ergo_verbose2(ErgoHeapSizing,
1833                 "expand the heap",
1834                 ergo_format_byte("requested expansion amount")
1835                 ergo_format_byte("attempted expansion amount"),
1836                 expand_bytes, aligned_expand_bytes);
1837 
1838   // First commit the memory.
1839   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1840   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1841   if (successful) {
1842     // Then propagate this update to the necessary data structures.
1843     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1844     update_committed_space(old_end, new_end);
1845 
1846     FreeRegionList expansion_list("Local Expansion List");
1847     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1848     assert(mr.start() == old_end, "post-condition");
1849     // mr might be a smaller region than what was requested if
1850     // expand_by() was unable to allocate the HeapRegion instances
1851     assert(mr.end() <= new_end, "post-condition");
1852 
1853     size_t actual_expand_bytes = mr.byte_size();
1854     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1855     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1856            "post-condition");
1857     if (actual_expand_bytes < aligned_expand_bytes) {
1858       // We could not expand _hrs to the desired size. In this case we
1859       // need to shrink the committed space accordingly.
1860       assert(mr.end() < new_end, "invariant");
1861 
1862       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1863       // First uncommit the memory.
1864       _g1_storage.shrink_by(diff_bytes);
1865       // Then propagate this update to the necessary data structures.
1866       update_committed_space(new_end, mr.end());
1867     }
1868     _free_list.add_as_tail(&expansion_list);
1869 
1870     if (_hr_printer.is_active()) {
1871       HeapWord* curr = mr.start();
1872       while (curr < mr.end()) {
1873         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1874         _hr_printer.commit(curr, curr_end);
1875         curr = curr_end;
1876       }
1877       assert(curr == mr.end(), "post-condition");
1878     }
1879     g1_policy()->record_new_heap_size(n_regions());
1880   } else {
1881     ergo_verbose0(ErgoHeapSizing,
1882                   "did not expand the heap",
1883                   ergo_format_reason("heap expansion operation failed"));
1884     // The expansion of the virtual storage space was unsuccessful.
1885     // Let's see if it was because we ran out of swap.
1886     if (G1ExitOnExpansionFailure &&
1887         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1888       // We had head room...
1889       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1890     }
1891   }
1892   return successful;
1893 }
1894 
1895 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1896   size_t old_mem_size = _g1_storage.committed_size();
1897   size_t aligned_shrink_bytes =
1898     ReservedSpace::page_align_size_down(shrink_bytes);
1899   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1900                                          HeapRegion::GrainBytes);
1901   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1902 
1903   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1904   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1905   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1906 
1907   ergo_verbose3(ErgoHeapSizing,
1908                 "shrink the heap",
1909                 ergo_format_byte("requested shrinking amount")
1910                 ergo_format_byte("aligned shrinking amount")
1911                 ergo_format_byte("attempted shrinking amount"),
1912                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1913   if (num_regions_removed > 0) {
1914     _g1_storage.shrink_by(shrunk_bytes);
1915     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1916 
1917     if (_hr_printer.is_active()) {
1918       HeapWord* curr = old_end;
1919       while (curr > new_end) {
1920         HeapWord* curr_end = curr;
1921         curr -= HeapRegion::GrainWords;
1922         _hr_printer.uncommit(curr, curr_end);
1923       }
1924     }
1925 
1926     _expansion_regions += num_regions_removed;
1927     update_committed_space(old_end, new_end);
1928     HeapRegionRemSet::shrink_heap(n_regions());
1929     g1_policy()->record_new_heap_size(n_regions());
1930   } else {
1931     ergo_verbose0(ErgoHeapSizing,
1932                   "did not shrink the heap",
1933                   ergo_format_reason("heap shrinking operation failed"));
1934   }
1935 }
1936 
1937 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1938   verify_region_sets_optional();
1939 
1940   // We should only reach here at the end of a Full GC which means we
1941   // should not not be holding to any GC alloc regions. The method
1942   // below will make sure of that and do any remaining clean up.
1943   abandon_gc_alloc_regions();
1944 
1945   // Instead of tearing down / rebuilding the free lists here, we
1946   // could instead use the remove_all_pending() method on free_list to
1947   // remove only the ones that we need to remove.
1948   tear_down_region_sets(true /* free_list_only */);
1949   shrink_helper(shrink_bytes);
1950   rebuild_region_sets(true /* free_list_only */);
1951 
1952   _hrs.verify_optional();
1953   verify_region_sets_optional();
1954 }
1955 
1956 // Public methods.
1957 
1958 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1959 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1960 #endif // _MSC_VER
1961 
1962 
1963 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1964   SharedHeap(policy_),
1965   _g1_policy(policy_),
1966   _dirty_card_queue_set(false),
1967   _into_cset_dirty_card_queue_set(false),
1968   _is_alive_closure_cm(this),
1969   _is_alive_closure_stw(this),
1970   _ref_processor_cm(NULL),
1971   _ref_processor_stw(NULL),
1972   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1973   _bot_shared(NULL),
1974   _evac_failure_scan_stack(NULL),
1975   _mark_in_progress(false),
1976   _cg1r(NULL), _summary_bytes_used(0),
1977   _g1mm(NULL),
1978   _refine_cte_cl(NULL),
1979   _transfer_cte_cl(NULL),
1980   _full_collection(false),
1981   _free_list("Master Free List"),
1982   _secondary_free_list("Secondary Free List"),
1983   _old_set("Old Set"),
1984   _humongous_set("Master Humongous Set"),
1985   _free_regions_coming(false),
1986   _young_list(new YoungList(this)),
1987   _gc_time_stamp(0),
1988   _retained_old_gc_alloc_region(NULL),
1989   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1990   _old_plab_stats(OldPLABSize, PLABWeight),
1991   _expand_heap_after_alloc_failure(true),
1992   _surviving_young_words(NULL),
1993   _old_marking_cycles_started(0),
1994   _old_marking_cycles_completed(0),
1995   _concurrent_cycle_started(false),
1996   _in_cset_fast_test(NULL),
1997   _in_cset_fast_test_base(NULL),
1998   _dirty_cards_region_list(NULL),
1999   _worker_cset_start_region(NULL),
2000   _worker_cset_start_region_time_stamp(NULL),
2001   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
2002   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
2003   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
2004   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
2005 
2006   _g1h = this;
2007   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
2008     vm_exit_during_initialization("Failed necessary allocation.");
2009   }
2010 
2011   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
2012 
2013   int n_queues = MAX2((int)ParallelGCThreads, 1);
2014   _task_queues = new RefToScanQueueSet(n_queues);
2015 
2016   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
2017   assert(n_rem_sets > 0, "Invariant.");
2018 
2019   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
2020   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
2021   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
2022 
2023   for (int i = 0; i < n_queues; i++) {
2024     RefToScanQueue* q = new RefToScanQueue();
2025     q->initialize();
2026     _task_queues->register_queue(i, q);
2027     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
2028   }
2029   clear_cset_start_regions();
2030 
2031   // Initialize the G1EvacuationFailureALot counters and flags.
2032   NOT_PRODUCT(reset_evacuation_should_fail();)
2033 
2034   guarantee(_task_queues != NULL, "task_queues allocation failure.");
2035 }
2036 
2037 jint G1CollectedHeap::initialize() {
2038   CollectedHeap::pre_initialize();
2039   os::enable_vtime();
2040 
2041   G1Log::init();
2042 
2043   // Necessary to satisfy locking discipline assertions.
2044 
2045   MutexLocker x(Heap_lock);
2046 
2047   // We have to initialize the printer before committing the heap, as
2048   // it will be used then.
2049   _hr_printer.set_active(G1PrintHeapRegions);
2050 
2051   // While there are no constraints in the GC code that HeapWordSize
2052   // be any particular value, there are multiple other areas in the
2053   // system which believe this to be true (e.g. oop->object_size in some
2054   // cases incorrectly returns the size in wordSize units rather than
2055   // HeapWordSize).
2056   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2057 
2058   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2059   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2060 
2061   // Ensure that the sizes are properly aligned.
2062   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2063   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2064 
2065   _cg1r = new ConcurrentG1Refine(this);
2066 
2067   // Reserve the maximum.
2068 
2069   // When compressed oops are enabled, the preferred heap base
2070   // is calculated by subtracting the requested size from the
2071   // 32Gb boundary and using the result as the base address for
2072   // heap reservation. If the requested size is not aligned to
2073   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2074   // into the ReservedHeapSpace constructor) then the actual
2075   // base of the reserved heap may end up differing from the
2076   // address that was requested (i.e. the preferred heap base).
2077   // If this happens then we could end up using a non-optimal
2078   // compressed oops mode.
2079 
2080   // Since max_byte_size is aligned to the size of a heap region (checked
2081   // above).
2082   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2083 
2084   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2085                                                  HeapRegion::GrainBytes);
2086 
2087   // It is important to do this in a way such that concurrent readers can't
2088   // temporarily think something is in the heap.  (I've actually seen this
2089   // happen in asserts: DLD.)
2090   _reserved.set_word_size(0);
2091   _reserved.set_start((HeapWord*)heap_rs.base());
2092   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2093 
2094   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2095 
2096   // Create the gen rem set (and barrier set) for the entire reserved region.
2097   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2098   set_barrier_set(rem_set()->bs());
2099   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2100     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2101   } else {
2102     vm_exit_during_initialization("G1 requires a mod ref bs.");
2103     return JNI_ENOMEM;
2104   }
2105 
2106   // Also create a G1 rem set.
2107   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2108     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2109   } else {
2110     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2111     return JNI_ENOMEM;
2112   }
2113 
2114   // Carve out the G1 part of the heap.
2115 
2116   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2117   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2118                            g1_rs.size()/HeapWordSize);
2119 
2120   _g1_storage.initialize(g1_rs, 0);
2121   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2122   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2123                   (HeapWord*) _g1_reserved.end(),
2124                   _expansion_regions);
2125 
2126   // Do later initialization work for concurrent refinement.
2127   _cg1r->init();
2128 
2129   // 6843694 - ensure that the maximum region index can fit
2130   // in the remembered set structures.
2131   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2132   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2133 
2134   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2135   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2136   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2137             "too many cards per region");
2138 
2139   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2140 
2141   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2142                                              heap_word_size(init_byte_size));
2143 
2144   _g1h = this;
2145 
2146   _in_cset_fast_test_length = max_regions();
2147   _in_cset_fast_test_base =
2148                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2149 
2150   // We're biasing _in_cset_fast_test to avoid subtracting the
2151   // beginning of the heap every time we want to index; basically
2152   // it's the same with what we do with the card table.
2153   _in_cset_fast_test = _in_cset_fast_test_base -
2154                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2155 
2156   // Clear the _cset_fast_test bitmap in anticipation of adding
2157   // regions to the incremental collection set for the first
2158   // evacuation pause.
2159   clear_cset_fast_test();
2160 
2161   // Create the ConcurrentMark data structure and thread.
2162   // (Must do this late, so that "max_regions" is defined.)
2163   _cm = new ConcurrentMark(this, heap_rs);
2164   if (_cm == NULL || !_cm->completed_initialization()) {
2165     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2166     return JNI_ENOMEM;
2167   }
2168   _cmThread = _cm->cmThread();
2169 
2170   // Initialize the from_card cache structure of HeapRegionRemSet.
2171   HeapRegionRemSet::init_heap(max_regions());
2172 
2173   // Now expand into the initial heap size.
2174   if (!expand(init_byte_size)) {
2175     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2176     return JNI_ENOMEM;
2177   }
2178 
2179   // Perform any initialization actions delegated to the policy.
2180   g1_policy()->init();
2181 
2182   _refine_cte_cl =
2183     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2184                                     g1_rem_set());
2185   _transfer_cte_cl =
2186     new TransferDirtyCardsToRefinementClosure(concurrent_g1_refine()->cards_ready_for_refinement());
2187 
2188   concurrent_g1_refine()->set_card_refinement_closure(_refine_cte_cl);
2189   concurrent_g1_refine()->set_flush_transfer_closure(_transfer_cte_cl->flush_cl());
2190 
2191   JavaThread::dirty_card_queue_set().set_closure(_transfer_cte_cl);
2192 
2193   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2194                                                SATB_Q_FL_lock,
2195                                                G1SATBProcessCompletedThreshold,
2196                                                Shared_SATB_Q_lock);
2197 
2198   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2199                                                 DirtyCardQ_FL_lock,
2200                                                 concurrent_g1_refine()->yellow_zone(),
2201                                                 concurrent_g1_refine()->red_zone(),
2202                                                 Shared_DirtyCardQ_lock);
2203 
2204   if (G1DeferredRSUpdate) {
2205     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2206                                       DirtyCardQ_FL_lock,
2207                                       -1, // never trigger processing
2208                                       -1, // no limit on length
2209                                       Shared_DirtyCardQ_lock,
2210                                       &JavaThread::dirty_card_queue_set());
2211   }
2212 
2213   // Initialize the card queue set used to hold cards containing
2214   // references into the collection set.
2215   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2216                                              DirtyCardQ_FL_lock,
2217                                              -1, // never trigger processing
2218                                              -1, // no limit on length
2219                                              Shared_DirtyCardQ_lock,
2220                                              &JavaThread::dirty_card_queue_set());
2221 
2222   // In case we're keeping closure specialization stats, initialize those
2223   // counts and that mechanism.
2224   SpecializationStats::clear();
2225 
2226   // Here we allocate the dummy full region that is required by the
2227   // G1AllocRegion class. If we don't pass an address in the reserved
2228   // space here, lots of asserts fire.
2229 
2230   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2231                                              _g1_reserved.start());
2232   // We'll re-use the same region whether the alloc region will
2233   // require BOT updates or not and, if it doesn't, then a non-young
2234   // region will complain that it cannot support allocations without
2235   // BOT updates. So we'll tag the dummy region as young to avoid that.
2236   dummy_region->set_young();
2237   // Make sure it's full.
2238   dummy_region->set_top(dummy_region->end());
2239   G1AllocRegion::setup(this, dummy_region);
2240 
2241   init_mutator_alloc_region();
2242 
2243   // Do create of the monitoring and management support so that
2244   // values in the heap have been properly initialized.
2245   _g1mm = new G1MonitoringSupport(this);
2246 
2247   return JNI_OK;
2248 }
2249 
2250 void G1CollectedHeap::ref_processing_init() {
2251   // Reference processing in G1 currently works as follows:
2252   //
2253   // * There are two reference processor instances. One is
2254   //   used to record and process discovered references
2255   //   during concurrent marking; the other is used to
2256   //   record and process references during STW pauses
2257   //   (both full and incremental).
2258   // * Both ref processors need to 'span' the entire heap as
2259   //   the regions in the collection set may be dotted around.
2260   //
2261   // * For the concurrent marking ref processor:
2262   //   * Reference discovery is enabled at initial marking.
2263   //   * Reference discovery is disabled and the discovered
2264   //     references processed etc during remarking.
2265   //   * Reference discovery is MT (see below).
2266   //   * Reference discovery requires a barrier (see below).
2267   //   * Reference processing may or may not be MT
2268   //     (depending on the value of ParallelRefProcEnabled
2269   //     and ParallelGCThreads).
2270   //   * A full GC disables reference discovery by the CM
2271   //     ref processor and abandons any entries on it's
2272   //     discovered lists.
2273   //
2274   // * For the STW processor:
2275   //   * Non MT discovery is enabled at the start of a full GC.
2276   //   * Processing and enqueueing during a full GC is non-MT.
2277   //   * During a full GC, references are processed after marking.
2278   //
2279   //   * Discovery (may or may not be MT) is enabled at the start
2280   //     of an incremental evacuation pause.
2281   //   * References are processed near the end of a STW evacuation pause.
2282   //   * For both types of GC:
2283   //     * Discovery is atomic - i.e. not concurrent.
2284   //     * Reference discovery will not need a barrier.
2285 
2286   SharedHeap::ref_processing_init();
2287   MemRegion mr = reserved_region();
2288 
2289   // Concurrent Mark ref processor
2290   _ref_processor_cm =
2291     new ReferenceProcessor(mr,    // span
2292                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2293                                 // mt processing
2294                            (int) ParallelGCThreads,
2295                                 // degree of mt processing
2296                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2297                                 // mt discovery
2298                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2299                                 // degree of mt discovery
2300                            false,
2301                                 // Reference discovery is not atomic
2302                            &_is_alive_closure_cm,
2303                                 // is alive closure
2304                                 // (for efficiency/performance)
2305                            true);
2306                                 // Setting next fields of discovered
2307                                 // lists requires a barrier.
2308 
2309   // STW ref processor
2310   _ref_processor_stw =
2311     new ReferenceProcessor(mr,    // span
2312                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2313                                 // mt processing
2314                            MAX2((int)ParallelGCThreads, 1),
2315                                 // degree of mt processing
2316                            (ParallelGCThreads > 1),
2317                                 // mt discovery
2318                            MAX2((int)ParallelGCThreads, 1),
2319                                 // degree of mt discovery
2320                            true,
2321                                 // Reference discovery is atomic
2322                            &_is_alive_closure_stw,
2323                                 // is alive closure
2324                                 // (for efficiency/performance)
2325                            false);
2326                                 // Setting next fields of discovered
2327                                 // lists requires a barrier.
2328 }
2329 
2330 size_t G1CollectedHeap::capacity() const {
2331   return _g1_committed.byte_size();
2332 }
2333 
2334 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2335   assert(!hr->continuesHumongous(), "pre-condition");
2336   hr->reset_gc_time_stamp();
2337   if (hr->startsHumongous()) {
2338     uint first_index = hr->hrs_index() + 1;
2339     uint last_index = hr->last_hc_index();
2340     for (uint i = first_index; i < last_index; i += 1) {
2341       HeapRegion* chr = region_at(i);
2342       assert(chr->continuesHumongous(), "sanity");
2343       chr->reset_gc_time_stamp();
2344     }
2345   }
2346 }
2347 
2348 #ifndef PRODUCT
2349 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2350 private:
2351   unsigned _gc_time_stamp;
2352   bool _failures;
2353 
2354 public:
2355   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2356     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2357 
2358   virtual bool doHeapRegion(HeapRegion* hr) {
2359     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2360     if (_gc_time_stamp != region_gc_time_stamp) {
2361       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2362                              "expected %d", HR_FORMAT_PARAMS(hr),
2363                              region_gc_time_stamp, _gc_time_stamp);
2364       _failures = true;
2365     }
2366     return false;
2367   }
2368 
2369   bool failures() { return _failures; }
2370 };
2371 
2372 void G1CollectedHeap::check_gc_time_stamps() {
2373   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2374   heap_region_iterate(&cl);
2375   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2376 }
2377 #endif // PRODUCT
2378 
2379 int G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2380                                                  CardTableEntryClosure* cleaned_cl,
2381                                                  DirtyCardQueue* into_cset_dcq,
2382                                                  bool concurrent,
2383                                                  int worker_i) {
2384   // Clean cards in the hot card cache
2385   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2386   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2387 
2388   int n_completed_buffers = 0;
2389   if (worker_i == 0) {
2390     concurrent_g1_refine()->flush_cards_in_buffers();
2391   }
2392   DirtyCardQueueSet& refinement_dcqs = concurrent_g1_refine()->cards_ready_for_refinement();
2393   while (refinement_dcqs.apply_closure_to_completed_buffer(cleaned_cl, worker_i, 0, true)) {
2394     n_completed_buffers++;
2395   }
2396 
2397   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2398   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2399     n_completed_buffers++;
2400   }
2401 
2402   dcqs.clear_n_completed_buffers();
2403   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2404   return n_completed_buffers;
2405 }
2406 
2407 
2408 // Computes the sum of the storage used by the various regions.
2409 
2410 size_t G1CollectedHeap::used() const {
2411   assert(Heap_lock->owner() != NULL,
2412          "Should be owned on this thread's behalf.");
2413   size_t result = _summary_bytes_used;
2414   // Read only once in case it is set to NULL concurrently
2415   HeapRegion* hr = _mutator_alloc_region.get();
2416   if (hr != NULL)
2417     result += hr->used();
2418   return result;
2419 }
2420 
2421 size_t G1CollectedHeap::used_unlocked() const {
2422   size_t result = _summary_bytes_used;
2423   return result;
2424 }
2425 
2426 class SumUsedClosure: public HeapRegionClosure {
2427   size_t _used;
2428 public:
2429   SumUsedClosure() : _used(0) {}
2430   bool doHeapRegion(HeapRegion* r) {
2431     if (!r->continuesHumongous()) {
2432       _used += r->used();
2433     }
2434     return false;
2435   }
2436   size_t result() { return _used; }
2437 };
2438 
2439 size_t G1CollectedHeap::recalculate_used() const {
2440   SumUsedClosure blk;
2441   heap_region_iterate(&blk);
2442   return blk.result();
2443 }
2444 
2445 size_t G1CollectedHeap::unsafe_max_alloc() {
2446   if (free_regions() > 0) return HeapRegion::GrainBytes;
2447   // otherwise, is there space in the current allocation region?
2448 
2449   // We need to store the current allocation region in a local variable
2450   // here. The problem is that this method doesn't take any locks and
2451   // there may be other threads which overwrite the current allocation
2452   // region field. attempt_allocation(), for example, sets it to NULL
2453   // and this can happen *after* the NULL check here but before the call
2454   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2455   // to be a problem in the optimized build, since the two loads of the
2456   // current allocation region field are optimized away.
2457   HeapRegion* hr = _mutator_alloc_region.get();
2458   if (hr == NULL) {
2459     return 0;
2460   }
2461   return hr->free();
2462 }
2463 
2464 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2465   switch (cause) {
2466     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2467     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2468     case GCCause::_g1_humongous_allocation: return true;
2469     default:                                return false;
2470   }
2471 }
2472 
2473 #ifndef PRODUCT
2474 void G1CollectedHeap::allocate_dummy_regions() {
2475   // Let's fill up most of the region
2476   size_t word_size = HeapRegion::GrainWords - 1024;
2477   // And as a result the region we'll allocate will be humongous.
2478   guarantee(isHumongous(word_size), "sanity");
2479 
2480   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2481     // Let's use the existing mechanism for the allocation
2482     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2483     if (dummy_obj != NULL) {
2484       MemRegion mr(dummy_obj, word_size);
2485       CollectedHeap::fill_with_object(mr);
2486     } else {
2487       // If we can't allocate once, we probably cannot allocate
2488       // again. Let's get out of the loop.
2489       break;
2490     }
2491   }
2492 }
2493 #endif // !PRODUCT
2494 
2495 void G1CollectedHeap::increment_old_marking_cycles_started() {
2496   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2497     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2498     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2499     _old_marking_cycles_started, _old_marking_cycles_completed));
2500 
2501   _old_marking_cycles_started++;
2502 }
2503 
2504 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2505   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2506 
2507   // We assume that if concurrent == true, then the caller is a
2508   // concurrent thread that was joined the Suspendible Thread
2509   // Set. If there's ever a cheap way to check this, we should add an
2510   // assert here.
2511 
2512   // Given that this method is called at the end of a Full GC or of a
2513   // concurrent cycle, and those can be nested (i.e., a Full GC can
2514   // interrupt a concurrent cycle), the number of full collections
2515   // completed should be either one (in the case where there was no
2516   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2517   // behind the number of full collections started.
2518 
2519   // This is the case for the inner caller, i.e. a Full GC.
2520   assert(concurrent ||
2521          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2522          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2523          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2524                  "is inconsistent with _old_marking_cycles_completed = %u",
2525                  _old_marking_cycles_started, _old_marking_cycles_completed));
2526 
2527   // This is the case for the outer caller, i.e. the concurrent cycle.
2528   assert(!concurrent ||
2529          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2530          err_msg("for outer caller (concurrent cycle): "
2531                  "_old_marking_cycles_started = %u "
2532                  "is inconsistent with _old_marking_cycles_completed = %u",
2533                  _old_marking_cycles_started, _old_marking_cycles_completed));
2534 
2535   _old_marking_cycles_completed += 1;
2536 
2537   // We need to clear the "in_progress" flag in the CM thread before
2538   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2539   // is set) so that if a waiter requests another System.gc() it doesn't
2540   // incorrectly see that a marking cycle is still in progress.
2541   if (concurrent) {
2542     _cmThread->clear_in_progress();
2543   }
2544 
2545   // This notify_all() will ensure that a thread that called
2546   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2547   // and it's waiting for a full GC to finish will be woken up. It is
2548   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2549   FullGCCount_lock->notify_all();
2550 }
2551 
2552 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2553   _concurrent_cycle_started = true;
2554   _gc_timer_cm->register_gc_start(start_time);
2555 
2556   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2557   trace_heap_before_gc(_gc_tracer_cm);
2558 }
2559 
2560 void G1CollectedHeap::register_concurrent_cycle_end() {
2561   if (_concurrent_cycle_started) {
2562     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2563 
2564     if (_cm->has_aborted()) {
2565       _gc_tracer_cm->report_concurrent_mode_failure();
2566     }
2567     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2568 
2569     _concurrent_cycle_started = false;
2570   }
2571 }
2572 
2573 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2574   if (_concurrent_cycle_started) {
2575     trace_heap_after_gc(_gc_tracer_cm);
2576   }
2577 }
2578 
2579 G1YCType G1CollectedHeap::yc_type() {
2580   bool is_young = g1_policy()->gcs_are_young();
2581   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2582   bool is_during_mark = mark_in_progress();
2583 
2584   if (is_initial_mark) {
2585     return InitialMark;
2586   } else if (is_during_mark) {
2587     return DuringMark;
2588   } else if (is_young) {
2589     return Normal;
2590   } else {
2591     return Mixed;
2592   }
2593 }
2594 
2595 void G1CollectedHeap::collect(GCCause::Cause cause) {
2596   assert_heap_not_locked();
2597 
2598   unsigned int gc_count_before;
2599   unsigned int old_marking_count_before;
2600   bool retry_gc;
2601 
2602   do {
2603     retry_gc = false;
2604 
2605     {
2606       MutexLocker ml(Heap_lock);
2607 
2608       // Read the GC count while holding the Heap_lock
2609       gc_count_before = total_collections();
2610       old_marking_count_before = _old_marking_cycles_started;
2611     }
2612 
2613     if (should_do_concurrent_full_gc(cause)) {
2614       // Schedule an initial-mark evacuation pause that will start a
2615       // concurrent cycle. We're setting word_size to 0 which means that
2616       // we are not requesting a post-GC allocation.
2617       VM_G1IncCollectionPause op(gc_count_before,
2618                                  0,     /* word_size */
2619                                  true,  /* should_initiate_conc_mark */
2620                                  g1_policy()->max_pause_time_ms(),
2621                                  cause);
2622 
2623       VMThread::execute(&op);
2624       if (!op.pause_succeeded()) {
2625         if (old_marking_count_before == _old_marking_cycles_started) {
2626           retry_gc = op.should_retry_gc();
2627         } else {
2628           // A Full GC happened while we were trying to schedule the
2629           // initial-mark GC. No point in starting a new cycle given
2630           // that the whole heap was collected anyway.
2631         }
2632 
2633         if (retry_gc) {
2634           if (GC_locker::is_active_and_needs_gc()) {
2635             GC_locker::stall_until_clear();
2636           }
2637         }
2638       }
2639     } else {
2640       if (cause == GCCause::_gc_locker
2641           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2642 
2643         // Schedule a standard evacuation pause. We're setting word_size
2644         // to 0 which means that we are not requesting a post-GC allocation.
2645         VM_G1IncCollectionPause op(gc_count_before,
2646                                    0,     /* word_size */
2647                                    false, /* should_initiate_conc_mark */
2648                                    g1_policy()->max_pause_time_ms(),
2649                                    cause);
2650         VMThread::execute(&op);
2651       } else {
2652         // Schedule a Full GC.
2653         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2654         VMThread::execute(&op);
2655       }
2656     }
2657   } while (retry_gc);
2658 }
2659 
2660 bool G1CollectedHeap::is_in(const void* p) const {
2661   if (_g1_committed.contains(p)) {
2662     // Given that we know that p is in the committed space,
2663     // heap_region_containing_raw() should successfully
2664     // return the containing region.
2665     HeapRegion* hr = heap_region_containing_raw(p);
2666     return hr->is_in(p);
2667   } else {
2668     return false;
2669   }
2670 }
2671 
2672 // Iteration functions.
2673 
2674 // Iterates an OopClosure over all ref-containing fields of objects
2675 // within a HeapRegion.
2676 
2677 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2678   MemRegion _mr;
2679   ExtendedOopClosure* _cl;
2680 public:
2681   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2682     : _mr(mr), _cl(cl) {}
2683   bool doHeapRegion(HeapRegion* r) {
2684     if (!r->continuesHumongous()) {
2685       r->oop_iterate(_cl);
2686     }
2687     return false;
2688   }
2689 };
2690 
2691 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2692   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2693   heap_region_iterate(&blk);
2694 }
2695 
2696 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2697   IterateOopClosureRegionClosure blk(mr, cl);
2698   heap_region_iterate(&blk);
2699 }
2700 
2701 // Iterates an ObjectClosure over all objects within a HeapRegion.
2702 
2703 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2704   ObjectClosure* _cl;
2705 public:
2706   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2707   bool doHeapRegion(HeapRegion* r) {
2708     if (! r->continuesHumongous()) {
2709       r->object_iterate(_cl);
2710     }
2711     return false;
2712   }
2713 };
2714 
2715 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2716   IterateObjectClosureRegionClosure blk(cl);
2717   heap_region_iterate(&blk);
2718 }
2719 
2720 // Calls a SpaceClosure on a HeapRegion.
2721 
2722 class SpaceClosureRegionClosure: public HeapRegionClosure {
2723   SpaceClosure* _cl;
2724 public:
2725   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2726   bool doHeapRegion(HeapRegion* r) {
2727     _cl->do_space(r);
2728     return false;
2729   }
2730 };
2731 
2732 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2733   SpaceClosureRegionClosure blk(cl);
2734   heap_region_iterate(&blk);
2735 }
2736 
2737 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2738   _hrs.iterate(cl);
2739 }
2740 
2741 void
2742 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2743                                                  uint worker_id,
2744                                                  uint no_of_par_workers,
2745                                                  jint claim_value) {
2746   const uint regions = n_regions();
2747   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2748                              no_of_par_workers :
2749                              1);
2750   assert(UseDynamicNumberOfGCThreads ||
2751          no_of_par_workers == workers()->total_workers(),
2752          "Non dynamic should use fixed number of workers");
2753   // try to spread out the starting points of the workers
2754   const HeapRegion* start_hr =
2755                         start_region_for_worker(worker_id, no_of_par_workers);
2756   const uint start_index = start_hr->hrs_index();
2757 
2758   // each worker will actually look at all regions
2759   for (uint count = 0; count < regions; ++count) {
2760     const uint index = (start_index + count) % regions;
2761     assert(0 <= index && index < regions, "sanity");
2762     HeapRegion* r = region_at(index);
2763     // we'll ignore "continues humongous" regions (we'll process them
2764     // when we come across their corresponding "start humongous"
2765     // region) and regions already claimed
2766     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2767       continue;
2768     }
2769     // OK, try to claim it
2770     if (r->claimHeapRegion(claim_value)) {
2771       // success!
2772       assert(!r->continuesHumongous(), "sanity");
2773       if (r->startsHumongous()) {
2774         // If the region is "starts humongous" we'll iterate over its
2775         // "continues humongous" first; in fact we'll do them
2776         // first. The order is important. In on case, calling the
2777         // closure on the "starts humongous" region might de-allocate
2778         // and clear all its "continues humongous" regions and, as a
2779         // result, we might end up processing them twice. So, we'll do
2780         // them first (notice: most closures will ignore them anyway) and
2781         // then we'll do the "starts humongous" region.
2782         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2783           HeapRegion* chr = region_at(ch_index);
2784 
2785           // if the region has already been claimed or it's not
2786           // "continues humongous" we're done
2787           if (chr->claim_value() == claim_value ||
2788               !chr->continuesHumongous()) {
2789             break;
2790           }
2791 
2792           // No one should have claimed it directly. We can given
2793           // that we claimed its "starts humongous" region.
2794           assert(chr->claim_value() != claim_value, "sanity");
2795           assert(chr->humongous_start_region() == r, "sanity");
2796 
2797           if (chr->claimHeapRegion(claim_value)) {
2798             // we should always be able to claim it; no one else should
2799             // be trying to claim this region
2800 
2801             bool res2 = cl->doHeapRegion(chr);
2802             assert(!res2, "Should not abort");
2803 
2804             // Right now, this holds (i.e., no closure that actually
2805             // does something with "continues humongous" regions
2806             // clears them). We might have to weaken it in the future,
2807             // but let's leave these two asserts here for extra safety.
2808             assert(chr->continuesHumongous(), "should still be the case");
2809             assert(chr->humongous_start_region() == r, "sanity");
2810           } else {
2811             guarantee(false, "we should not reach here");
2812           }
2813         }
2814       }
2815 
2816       assert(!r->continuesHumongous(), "sanity");
2817       bool res = cl->doHeapRegion(r);
2818       assert(!res, "Should not abort");
2819     }
2820   }
2821 }
2822 
2823 class ResetClaimValuesClosure: public HeapRegionClosure {
2824 public:
2825   bool doHeapRegion(HeapRegion* r) {
2826     r->set_claim_value(HeapRegion::InitialClaimValue);
2827     return false;
2828   }
2829 };
2830 
2831 void G1CollectedHeap::reset_heap_region_claim_values() {
2832   ResetClaimValuesClosure blk;
2833   heap_region_iterate(&blk);
2834 }
2835 
2836 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2837   ResetClaimValuesClosure blk;
2838   collection_set_iterate(&blk);
2839 }
2840 
2841 #ifdef ASSERT
2842 // This checks whether all regions in the heap have the correct claim
2843 // value. I also piggy-backed on this a check to ensure that the
2844 // humongous_start_region() information on "continues humongous"
2845 // regions is correct.
2846 
2847 class CheckClaimValuesClosure : public HeapRegionClosure {
2848 private:
2849   jint _claim_value;
2850   uint _failures;
2851   HeapRegion* _sh_region;
2852 
2853 public:
2854   CheckClaimValuesClosure(jint claim_value) :
2855     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2856   bool doHeapRegion(HeapRegion* r) {
2857     if (r->claim_value() != _claim_value) {
2858       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2859                              "claim value = %d, should be %d",
2860                              HR_FORMAT_PARAMS(r),
2861                              r->claim_value(), _claim_value);
2862       ++_failures;
2863     }
2864     if (!r->isHumongous()) {
2865       _sh_region = NULL;
2866     } else if (r->startsHumongous()) {
2867       _sh_region = r;
2868     } else if (r->continuesHumongous()) {
2869       if (r->humongous_start_region() != _sh_region) {
2870         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2871                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2872                                HR_FORMAT_PARAMS(r),
2873                                r->humongous_start_region(),
2874                                _sh_region);
2875         ++_failures;
2876       }
2877     }
2878     return false;
2879   }
2880   uint failures() { return _failures; }
2881 };
2882 
2883 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2884   CheckClaimValuesClosure cl(claim_value);
2885   heap_region_iterate(&cl);
2886   return cl.failures() == 0;
2887 }
2888 
2889 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2890 private:
2891   jint _claim_value;
2892   uint _failures;
2893 
2894 public:
2895   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2896     _claim_value(claim_value), _failures(0) { }
2897 
2898   uint failures() { return _failures; }
2899 
2900   bool doHeapRegion(HeapRegion* hr) {
2901     assert(hr->in_collection_set(), "how?");
2902     assert(!hr->isHumongous(), "H-region in CSet");
2903     if (hr->claim_value() != _claim_value) {
2904       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2905                              "claim value = %d, should be %d",
2906                              HR_FORMAT_PARAMS(hr),
2907                              hr->claim_value(), _claim_value);
2908       _failures += 1;
2909     }
2910     return false;
2911   }
2912 };
2913 
2914 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2915   CheckClaimValuesInCSetHRClosure cl(claim_value);
2916   collection_set_iterate(&cl);
2917   return cl.failures() == 0;
2918 }
2919 #endif // ASSERT
2920 
2921 // Clear the cached CSet starting regions and (more importantly)
2922 // the time stamps. Called when we reset the GC time stamp.
2923 void G1CollectedHeap::clear_cset_start_regions() {
2924   assert(_worker_cset_start_region != NULL, "sanity");
2925   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2926 
2927   int n_queues = MAX2((int)ParallelGCThreads, 1);
2928   for (int i = 0; i < n_queues; i++) {
2929     _worker_cset_start_region[i] = NULL;
2930     _worker_cset_start_region_time_stamp[i] = 0;
2931   }
2932 }
2933 
2934 // Given the id of a worker, obtain or calculate a suitable
2935 // starting region for iterating over the current collection set.
2936 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2937   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2938 
2939   HeapRegion* result = NULL;
2940   unsigned gc_time_stamp = get_gc_time_stamp();
2941 
2942   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2943     // Cached starting region for current worker was set
2944     // during the current pause - so it's valid.
2945     // Note: the cached starting heap region may be NULL
2946     // (when the collection set is empty).
2947     result = _worker_cset_start_region[worker_i];
2948     assert(result == NULL || result->in_collection_set(), "sanity");
2949     return result;
2950   }
2951 
2952   // The cached entry was not valid so let's calculate
2953   // a suitable starting heap region for this worker.
2954 
2955   // We want the parallel threads to start their collection
2956   // set iteration at different collection set regions to
2957   // avoid contention.
2958   // If we have:
2959   //          n collection set regions
2960   //          p threads
2961   // Then thread t will start at region floor ((t * n) / p)
2962 
2963   result = g1_policy()->collection_set();
2964   if (G1CollectedHeap::use_parallel_gc_threads()) {
2965     uint cs_size = g1_policy()->cset_region_length();
2966     uint active_workers = workers()->active_workers();
2967     assert(UseDynamicNumberOfGCThreads ||
2968              active_workers == workers()->total_workers(),
2969              "Unless dynamic should use total workers");
2970 
2971     uint end_ind   = (cs_size * worker_i) / active_workers;
2972     uint start_ind = 0;
2973 
2974     if (worker_i > 0 &&
2975         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2976       // Previous workers starting region is valid
2977       // so let's iterate from there
2978       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2979       result = _worker_cset_start_region[worker_i - 1];
2980     }
2981 
2982     for (uint i = start_ind; i < end_ind; i++) {
2983       result = result->next_in_collection_set();
2984     }
2985   }
2986 
2987   // Note: the calculated starting heap region may be NULL
2988   // (when the collection set is empty).
2989   assert(result == NULL || result->in_collection_set(), "sanity");
2990   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2991          "should be updated only once per pause");
2992   _worker_cset_start_region[worker_i] = result;
2993   OrderAccess::storestore();
2994   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2995   return result;
2996 }
2997 
2998 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2999                                                      uint no_of_par_workers) {
3000   uint worker_num =
3001            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
3002   assert(UseDynamicNumberOfGCThreads ||
3003          no_of_par_workers == workers()->total_workers(),
3004          "Non dynamic should use fixed number of workers");
3005   const uint start_index = n_regions() * worker_i / worker_num;
3006   return region_at(start_index);
3007 }
3008 
3009 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
3010   HeapRegion* r = g1_policy()->collection_set();
3011   while (r != NULL) {
3012     HeapRegion* next = r->next_in_collection_set();
3013     if (cl->doHeapRegion(r)) {
3014       cl->incomplete();
3015       return;
3016     }
3017     r = next;
3018   }
3019 }
3020 
3021 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
3022                                                   HeapRegionClosure *cl) {
3023   if (r == NULL) {
3024     // The CSet is empty so there's nothing to do.
3025     return;
3026   }
3027 
3028   assert(r->in_collection_set(),
3029          "Start region must be a member of the collection set.");
3030   HeapRegion* cur = r;
3031   while (cur != NULL) {
3032     HeapRegion* next = cur->next_in_collection_set();
3033     if (cl->doHeapRegion(cur) && false) {
3034       cl->incomplete();
3035       return;
3036     }
3037     cur = next;
3038   }
3039   cur = g1_policy()->collection_set();
3040   while (cur != r) {
3041     HeapRegion* next = cur->next_in_collection_set();
3042     if (cl->doHeapRegion(cur) && false) {
3043       cl->incomplete();
3044       return;
3045     }
3046     cur = next;
3047   }
3048 }
3049 
3050 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
3051   return n_regions() > 0 ? region_at(0) : NULL;
3052 }
3053 
3054 
3055 Space* G1CollectedHeap::space_containing(const void* addr) const {
3056   Space* res = heap_region_containing(addr);
3057   return res;
3058 }
3059 
3060 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
3061   Space* sp = space_containing(addr);
3062   if (sp != NULL) {
3063     return sp->block_start(addr);
3064   }
3065   return NULL;
3066 }
3067 
3068 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
3069   Space* sp = space_containing(addr);
3070   assert(sp != NULL, "block_size of address outside of heap");
3071   return sp->block_size(addr);
3072 }
3073 
3074 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3075   Space* sp = space_containing(addr);
3076   return sp->block_is_obj(addr);
3077 }
3078 
3079 bool G1CollectedHeap::supports_tlab_allocation() const {
3080   return true;
3081 }
3082 
3083 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3084   return HeapRegion::GrainBytes;
3085 }
3086 
3087 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3088   // Return the remaining space in the cur alloc region, but not less than
3089   // the min TLAB size.
3090 
3091   // Also, this value can be at most the humongous object threshold,
3092   // since we can't allow tlabs to grow big enough to accommodate
3093   // humongous objects.
3094 
3095   HeapRegion* hr = _mutator_alloc_region.get();
3096   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3097   if (hr == NULL) {
3098     return max_tlab_size;
3099   } else {
3100     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3101   }
3102 }
3103 
3104 void G1CollectedHeap::inform_non_gc_safepoint() {
3105   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3106   while (dcqs.apply_closure_to_completed_buffer(0, 0, true));
3107 }
3108 
3109 size_t G1CollectedHeap::max_capacity() const {
3110   return _g1_reserved.byte_size();
3111 }
3112 
3113 jlong G1CollectedHeap::millis_since_last_gc() {
3114   // assert(false, "NYI");
3115   return 0;
3116 }
3117 
3118 void G1CollectedHeap::prepare_for_verify() {
3119   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3120     ensure_parsability(false);
3121   }
3122   g1_rem_set()->prepare_for_verify();
3123 }
3124 
3125 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3126                                               VerifyOption vo) {
3127   switch (vo) {
3128   case VerifyOption_G1UsePrevMarking:
3129     return hr->obj_allocated_since_prev_marking(obj);
3130   case VerifyOption_G1UseNextMarking:
3131     return hr->obj_allocated_since_next_marking(obj);
3132   case VerifyOption_G1UseMarkWord:
3133     return false;
3134   default:
3135     ShouldNotReachHere();
3136   }
3137   return false; // keep some compilers happy
3138 }
3139 
3140 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3141   switch (vo) {
3142   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3143   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3144   case VerifyOption_G1UseMarkWord:    return NULL;
3145   default:                            ShouldNotReachHere();
3146   }
3147   return NULL; // keep some compilers happy
3148 }
3149 
3150 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3151   switch (vo) {
3152   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3153   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3154   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3155   default:                            ShouldNotReachHere();
3156   }
3157   return false; // keep some compilers happy
3158 }
3159 
3160 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3161   switch (vo) {
3162   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3163   case VerifyOption_G1UseNextMarking: return "NTAMS";
3164   case VerifyOption_G1UseMarkWord:    return "NONE";
3165   default:                            ShouldNotReachHere();
3166   }
3167   return NULL; // keep some compilers happy
3168 }
3169 
3170 class VerifyLivenessOopClosure: public OopClosure {
3171   G1CollectedHeap* _g1h;
3172   VerifyOption _vo;
3173 public:
3174   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3175     _g1h(g1h), _vo(vo)
3176   { }
3177   void do_oop(narrowOop *p) { do_oop_work(p); }
3178   void do_oop(      oop *p) { do_oop_work(p); }
3179 
3180   template <class T> void do_oop_work(T *p) {
3181     oop obj = oopDesc::load_decode_heap_oop(p);
3182     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3183               "Dead object referenced by a not dead object");
3184   }
3185 };
3186 
3187 class VerifyObjsInRegionClosure: public ObjectClosure {
3188 private:
3189   G1CollectedHeap* _g1h;
3190   size_t _live_bytes;
3191   HeapRegion *_hr;
3192   VerifyOption _vo;
3193 public:
3194   // _vo == UsePrevMarking -> use "prev" marking information,
3195   // _vo == UseNextMarking -> use "next" marking information,
3196   // _vo == UseMarkWord    -> use mark word from object header.
3197   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3198     : _live_bytes(0), _hr(hr), _vo(vo) {
3199     _g1h = G1CollectedHeap::heap();
3200   }
3201   void do_object(oop o) {
3202     VerifyLivenessOopClosure isLive(_g1h, _vo);
3203     assert(o != NULL, "Huh?");
3204     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3205       // If the object is alive according to the mark word,
3206       // then verify that the marking information agrees.
3207       // Note we can't verify the contra-positive of the
3208       // above: if the object is dead (according to the mark
3209       // word), it may not be marked, or may have been marked
3210       // but has since became dead, or may have been allocated
3211       // since the last marking.
3212       if (_vo == VerifyOption_G1UseMarkWord) {
3213         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3214       }
3215 
3216       o->oop_iterate_no_header(&isLive);
3217       if (!_hr->obj_allocated_since_prev_marking(o)) {
3218         size_t obj_size = o->size();    // Make sure we don't overflow
3219         _live_bytes += (obj_size * HeapWordSize);
3220       }
3221     }
3222   }
3223   size_t live_bytes() { return _live_bytes; }
3224 };
3225 
3226 class PrintObjsInRegionClosure : public ObjectClosure {
3227   HeapRegion *_hr;
3228   G1CollectedHeap *_g1;
3229 public:
3230   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3231     _g1 = G1CollectedHeap::heap();
3232   };
3233 
3234   void do_object(oop o) {
3235     if (o != NULL) {
3236       HeapWord *start = (HeapWord *) o;
3237       size_t word_sz = o->size();
3238       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3239                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3240                           (void*) o, word_sz,
3241                           _g1->isMarkedPrev(o),
3242                           _g1->isMarkedNext(o),
3243                           _hr->obj_allocated_since_prev_marking(o));
3244       HeapWord *end = start + word_sz;
3245       HeapWord *cur;
3246       int *val;
3247       for (cur = start; cur < end; cur++) {
3248         val = (int *) cur;
3249         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3250       }
3251     }
3252   }
3253 };
3254 
3255 class VerifyRegionClosure: public HeapRegionClosure {
3256 private:
3257   bool             _par;
3258   VerifyOption     _vo;
3259   bool             _failures;
3260 public:
3261   // _vo == UsePrevMarking -> use "prev" marking information,
3262   // _vo == UseNextMarking -> use "next" marking information,
3263   // _vo == UseMarkWord    -> use mark word from object header.
3264   VerifyRegionClosure(bool par, VerifyOption vo)
3265     : _par(par),
3266       _vo(vo),
3267       _failures(false) {}
3268 
3269   bool failures() {
3270     return _failures;
3271   }
3272 
3273   bool doHeapRegion(HeapRegion* r) {
3274     if (!r->continuesHumongous()) {
3275       bool failures = false;
3276       r->verify(_vo, &failures);
3277       if (failures) {
3278         _failures = true;
3279       } else {
3280         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3281         r->object_iterate(&not_dead_yet_cl);
3282         if (_vo != VerifyOption_G1UseNextMarking) {
3283           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3284             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3285                                    "max_live_bytes "SIZE_FORMAT" "
3286                                    "< calculated "SIZE_FORMAT,
3287                                    r->bottom(), r->end(),
3288                                    r->max_live_bytes(),
3289                                  not_dead_yet_cl.live_bytes());
3290             _failures = true;
3291           }
3292         } else {
3293           // When vo == UseNextMarking we cannot currently do a sanity
3294           // check on the live bytes as the calculation has not been
3295           // finalized yet.
3296         }
3297       }
3298     }
3299     return false; // stop the region iteration if we hit a failure
3300   }
3301 };
3302 
3303 class YoungRefCounterClosure : public OopClosure {
3304   G1CollectedHeap* _g1h;
3305   int              _count;
3306  public:
3307   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3308   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3309   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3310 
3311   int count() { return _count; }
3312   void reset_count() { _count = 0; };
3313 };
3314 
3315 class VerifyKlassClosure: public KlassClosure {
3316   YoungRefCounterClosure _young_ref_counter_closure;
3317   OopClosure *_oop_closure;
3318  public:
3319   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3320   void do_klass(Klass* k) {
3321     k->oops_do(_oop_closure);
3322 
3323     _young_ref_counter_closure.reset_count();
3324     k->oops_do(&_young_ref_counter_closure);
3325     if (_young_ref_counter_closure.count() > 0) {
3326       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3327     }
3328   }
3329 };
3330 
3331 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3332 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3333 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3334 //       we can change this closure to extend the simpler OopClosure.
3335 class VerifyRootsClosure: public OopsInGenClosure {
3336 private:
3337   G1CollectedHeap* _g1h;
3338   VerifyOption     _vo;
3339   bool             _failures;
3340 public:
3341   // _vo == UsePrevMarking -> use "prev" marking information,
3342   // _vo == UseNextMarking -> use "next" marking information,
3343   // _vo == UseMarkWord    -> use mark word from object header.
3344   VerifyRootsClosure(VerifyOption vo) :
3345     _g1h(G1CollectedHeap::heap()),
3346     _vo(vo),
3347     _failures(false) { }
3348 
3349   bool failures() { return _failures; }
3350 
3351   template <class T> void do_oop_nv(T* p) {
3352     T heap_oop = oopDesc::load_heap_oop(p);
3353     if (!oopDesc::is_null(heap_oop)) {
3354       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3355       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3356         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3357                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3358         if (_vo == VerifyOption_G1UseMarkWord) {
3359           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3360         }
3361         obj->print_on(gclog_or_tty);
3362         _failures = true;
3363       }
3364     }
3365   }
3366 
3367   void do_oop(oop* p)       { do_oop_nv(p); }
3368   void do_oop(narrowOop* p) { do_oop_nv(p); }
3369 };
3370 
3371 // This is the task used for parallel heap verification.
3372 
3373 class G1ParVerifyTask: public AbstractGangTask {
3374 private:
3375   G1CollectedHeap* _g1h;
3376   VerifyOption     _vo;
3377   bool             _failures;
3378 
3379 public:
3380   // _vo == UsePrevMarking -> use "prev" marking information,
3381   // _vo == UseNextMarking -> use "next" marking information,
3382   // _vo == UseMarkWord    -> use mark word from object header.
3383   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3384     AbstractGangTask("Parallel verify task"),
3385     _g1h(g1h),
3386     _vo(vo),
3387     _failures(false) { }
3388 
3389   bool failures() {
3390     return _failures;
3391   }
3392 
3393   void work(uint worker_id) {
3394     HandleMark hm;
3395     VerifyRegionClosure blk(true, _vo);
3396     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3397                                           _g1h->workers()->active_workers(),
3398                                           HeapRegion::ParVerifyClaimValue);
3399     if (blk.failures()) {
3400       _failures = true;
3401     }
3402   }
3403 };
3404 
3405 void G1CollectedHeap::verify(bool silent) {
3406   verify(silent, VerifyOption_G1UsePrevMarking);
3407 }
3408 
3409 void G1CollectedHeap::verify(bool silent,
3410                              VerifyOption vo) {
3411   if (SafepointSynchronize::is_at_safepoint()) {
3412     if (!silent) { gclog_or_tty->print("Roots "); }
3413     VerifyRootsClosure rootsCl(vo);
3414 
3415     assert(Thread::current()->is_VM_thread(),
3416            "Expected to be executed serially by the VM thread at this point");
3417 
3418     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3419     VerifyKlassClosure klassCl(this, &rootsCl);
3420 
3421     // We apply the relevant closures to all the oops in the
3422     // system dictionary, the string table and the code cache.
3423     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3424 
3425     // Need cleared claim bits for the strong roots processing
3426     ClassLoaderDataGraph::clear_claimed_marks();
3427 
3428     process_strong_roots(true,      // activate StrongRootsScope
3429                          false,     // we set "is scavenging" to false,
3430                                     // so we don't reset the dirty cards.
3431                          ScanningOption(so),  // roots scanning options
3432                          &rootsCl,
3433                          &blobsCl,
3434                          &klassCl
3435                          );
3436 
3437     bool failures = rootsCl.failures();
3438 
3439     if (vo != VerifyOption_G1UseMarkWord) {
3440       // If we're verifying during a full GC then the region sets
3441       // will have been torn down at the start of the GC. Therefore
3442       // verifying the region sets will fail. So we only verify
3443       // the region sets when not in a full GC.
3444       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3445       verify_region_sets();
3446     }
3447 
3448     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3449     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3450       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3451              "sanity check");
3452 
3453       G1ParVerifyTask task(this, vo);
3454       assert(UseDynamicNumberOfGCThreads ||
3455         workers()->active_workers() == workers()->total_workers(),
3456         "If not dynamic should be using all the workers");
3457       int n_workers = workers()->active_workers();
3458       set_par_threads(n_workers);
3459       workers()->run_task(&task);
3460       set_par_threads(0);
3461       if (task.failures()) {
3462         failures = true;
3463       }
3464 
3465       // Checks that the expected amount of parallel work was done.
3466       // The implication is that n_workers is > 0.
3467       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3468              "sanity check");
3469 
3470       reset_heap_region_claim_values();
3471 
3472       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3473              "sanity check");
3474     } else {
3475       VerifyRegionClosure blk(false, vo);
3476       heap_region_iterate(&blk);
3477       if (blk.failures()) {
3478         failures = true;
3479       }
3480     }
3481     if (!silent) gclog_or_tty->print("RemSet ");
3482     rem_set()->verify();
3483 
3484     if (failures) {
3485       gclog_or_tty->print_cr("Heap:");
3486       // It helps to have the per-region information in the output to
3487       // help us track down what went wrong. This is why we call
3488       // print_extended_on() instead of print_on().
3489       print_extended_on(gclog_or_tty);
3490       gclog_or_tty->print_cr("");
3491 #ifndef PRODUCT
3492       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3493         concurrent_mark()->print_reachable("at-verification-failure",
3494                                            vo, false /* all */);
3495       }
3496 #endif
3497       gclog_or_tty->flush();
3498     }
3499     guarantee(!failures, "there should not have been any failures");
3500   } else {
3501     if (!silent)
3502       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3503   }
3504 }
3505 
3506 class PrintRegionClosure: public HeapRegionClosure {
3507   outputStream* _st;
3508 public:
3509   PrintRegionClosure(outputStream* st) : _st(st) {}
3510   bool doHeapRegion(HeapRegion* r) {
3511     r->print_on(_st);
3512     return false;
3513   }
3514 };
3515 
3516 void G1CollectedHeap::print_on(outputStream* st) const {
3517   st->print(" %-20s", "garbage-first heap");
3518   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3519             capacity()/K, used_unlocked()/K);
3520   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3521             _g1_storage.low_boundary(),
3522             _g1_storage.high(),
3523             _g1_storage.high_boundary());
3524   st->cr();
3525   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3526   uint young_regions = _young_list->length();
3527   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3528             (size_t) young_regions * HeapRegion::GrainBytes / K);
3529   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3530   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3531             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3532   st->cr();
3533   MetaspaceAux::print_on(st);
3534 }
3535 
3536 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3537   print_on(st);
3538 
3539   // Print the per-region information.
3540   st->cr();
3541   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3542                "HS=humongous(starts), HC=humongous(continues), "
3543                "CS=collection set, F=free, TS=gc time stamp, "
3544                "PTAMS=previous top-at-mark-start, "
3545                "NTAMS=next top-at-mark-start)");
3546   PrintRegionClosure blk(st);
3547   heap_region_iterate(&blk);
3548 }
3549 
3550 void G1CollectedHeap::print_on_error(outputStream* st) const {
3551   this->CollectedHeap::print_on_error(st);
3552 
3553   if (_cm != NULL) {
3554     st->cr();
3555     _cm->print_on_error(st);
3556   }
3557 }
3558 
3559 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3560   if (G1CollectedHeap::use_parallel_gc_threads()) {
3561     workers()->print_worker_threads_on(st);
3562   }
3563   _cmThread->print_on(st);
3564   st->cr();
3565   _cm->print_worker_threads_on(st);
3566   _cg1r->print_worker_threads_on(st);
3567 }
3568 
3569 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3570   if (G1CollectedHeap::use_parallel_gc_threads()) {
3571     workers()->threads_do(tc);
3572   }
3573   tc->do_thread(_cmThread);
3574   _cg1r->threads_do(tc);
3575 }
3576 
3577 void G1CollectedHeap::print_tracing_info() const {
3578   // We'll overload this to mean "trace GC pause statistics."
3579   if (TraceGen0Time || TraceGen1Time) {
3580     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3581     // to that.
3582     g1_policy()->print_tracing_info();
3583   }
3584   if (G1SummarizeRSetStats) {
3585     g1_rem_set()->print_summary_info();
3586   }
3587   if (G1SummarizeConcMark) {
3588     concurrent_mark()->print_summary_info();
3589   }
3590   g1_policy()->print_yg_surv_rate_info();
3591   SpecializationStats::print();
3592 }
3593 
3594 #ifndef PRODUCT
3595 // Helpful for debugging RSet issues.
3596 
3597 class PrintRSetsClosure : public HeapRegionClosure {
3598 private:
3599   const char* _msg;
3600   size_t _occupied_sum;
3601 
3602 public:
3603   bool doHeapRegion(HeapRegion* r) {
3604     HeapRegionRemSet* hrrs = r->rem_set();
3605     size_t occupied = hrrs->occupied();
3606     _occupied_sum += occupied;
3607 
3608     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3609                            HR_FORMAT_PARAMS(r));
3610     if (occupied == 0) {
3611       gclog_or_tty->print_cr("  RSet is empty");
3612     } else {
3613       hrrs->print();
3614     }
3615     gclog_or_tty->print_cr("----------");
3616     return false;
3617   }
3618 
3619   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3620     gclog_or_tty->cr();
3621     gclog_or_tty->print_cr("========================================");
3622     gclog_or_tty->print_cr(msg);
3623     gclog_or_tty->cr();
3624   }
3625 
3626   ~PrintRSetsClosure() {
3627     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3628     gclog_or_tty->print_cr("========================================");
3629     gclog_or_tty->cr();
3630   }
3631 };
3632 
3633 void G1CollectedHeap::print_cset_rsets() {
3634   PrintRSetsClosure cl("Printing CSet RSets");
3635   collection_set_iterate(&cl);
3636 }
3637 
3638 void G1CollectedHeap::print_all_rsets() {
3639   PrintRSetsClosure cl("Printing All RSets");;
3640   heap_region_iterate(&cl);
3641 }
3642 #endif // PRODUCT
3643 
3644 G1CollectedHeap* G1CollectedHeap::heap() {
3645   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3646          "not a garbage-first heap");
3647   return _g1h;
3648 }
3649 
3650 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3651   // always_do_update_barrier = false;
3652   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3653   // Fill TLAB's and such
3654   ensure_parsability(true);
3655 }
3656 
3657 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3658 
3659   if (G1SummarizeRSetStats &&
3660       (G1SummarizeRSetStatsPeriod > 0) &&
3661       // we are at the end of the GC. Total collections has already been increased.
3662       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3663     g1_rem_set()->print_periodic_summary_info();
3664   }
3665 
3666   // FIXME: what is this about?
3667   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3668   // is set.
3669   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3670                         "derived pointer present"));
3671   // always_do_update_barrier = true;
3672 
3673   // We have just completed a GC. Update the soft reference
3674   // policy with the new heap occupancy
3675   Universe::update_heap_info_at_gc();
3676 }
3677 
3678 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3679                                                unsigned int gc_count_before,
3680                                                bool* succeeded) {
3681   assert_heap_not_locked_and_not_at_safepoint();
3682   g1_policy()->record_stop_world_start();
3683   VM_G1IncCollectionPause op(gc_count_before,
3684                              word_size,
3685                              false, /* should_initiate_conc_mark */
3686                              g1_policy()->max_pause_time_ms(),
3687                              GCCause::_g1_inc_collection_pause);
3688   VMThread::execute(&op);
3689 
3690   HeapWord* result = op.result();
3691   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3692   assert(result == NULL || ret_succeeded,
3693          "the result should be NULL if the VM did not succeed");
3694   *succeeded = ret_succeeded;
3695 
3696   assert_heap_not_locked();
3697   return result;
3698 }
3699 
3700 void
3701 G1CollectedHeap::doConcurrentMark() {
3702   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3703   if (!_cmThread->in_progress()) {
3704     _cmThread->set_started();
3705     CGC_lock->notify();
3706   }
3707 }
3708 
3709 size_t G1CollectedHeap::pending_card_num() {
3710   size_t extra_cards = 0;
3711   JavaThread *curr = Threads::first();
3712   while (curr != NULL) {
3713     DirtyCardQueue& dcq = curr->dirty_card_queue();
3714     extra_cards += dcq.size();
3715     curr = curr->next();
3716   }
3717   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3718   size_t buffer_size = dcqs.buffer_size();
3719   size_t buffer_num = dcqs.completed_buffers_num();
3720 
3721   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3722   // in bytes - not the number of 'entries'. We need to convert
3723   // into a number of cards.
3724   return (buffer_size * buffer_num + extra_cards) / oopSize;
3725 }
3726 
3727 size_t G1CollectedHeap::cards_scanned() {
3728   return g1_rem_set()->cardsScanned();
3729 }
3730 
3731 void
3732 G1CollectedHeap::setup_surviving_young_words() {
3733   assert(_surviving_young_words == NULL, "pre-condition");
3734   uint array_length = g1_policy()->young_cset_region_length();
3735   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3736   if (_surviving_young_words == NULL) {
3737     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3738                           "Not enough space for young surv words summary.");
3739   }
3740   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3741 #ifdef ASSERT
3742   for (uint i = 0;  i < array_length; ++i) {
3743     assert( _surviving_young_words[i] == 0, "memset above" );
3744   }
3745 #endif // !ASSERT
3746 }
3747 
3748 void
3749 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3750   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3751   uint array_length = g1_policy()->young_cset_region_length();
3752   for (uint i = 0; i < array_length; ++i) {
3753     _surviving_young_words[i] += surv_young_words[i];
3754   }
3755 }
3756 
3757 void
3758 G1CollectedHeap::cleanup_surviving_young_words() {
3759   guarantee( _surviving_young_words != NULL, "pre-condition" );
3760   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3761   _surviving_young_words = NULL;
3762 }
3763 
3764 #ifdef ASSERT
3765 class VerifyCSetClosure: public HeapRegionClosure {
3766 public:
3767   bool doHeapRegion(HeapRegion* hr) {
3768     // Here we check that the CSet region's RSet is ready for parallel
3769     // iteration. The fields that we'll verify are only manipulated
3770     // when the region is part of a CSet and is collected. Afterwards,
3771     // we reset these fields when we clear the region's RSet (when the
3772     // region is freed) so they are ready when the region is
3773     // re-allocated. The only exception to this is if there's an
3774     // evacuation failure and instead of freeing the region we leave
3775     // it in the heap. In that case, we reset these fields during
3776     // evacuation failure handling.
3777     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3778 
3779     // Here's a good place to add any other checks we'd like to
3780     // perform on CSet regions.
3781     return false;
3782   }
3783 };
3784 #endif // ASSERT
3785 
3786 #if TASKQUEUE_STATS
3787 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3788   st->print_raw_cr("GC Task Stats");
3789   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3790   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3791 }
3792 
3793 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3794   print_taskqueue_stats_hdr(st);
3795 
3796   TaskQueueStats totals;
3797   const int n = workers() != NULL ? workers()->total_workers() : 1;
3798   for (int i = 0; i < n; ++i) {
3799     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3800     totals += task_queue(i)->stats;
3801   }
3802   st->print_raw("tot "); totals.print(st); st->cr();
3803 
3804   DEBUG_ONLY(totals.verify());
3805 }
3806 
3807 void G1CollectedHeap::reset_taskqueue_stats() {
3808   const int n = workers() != NULL ? workers()->total_workers() : 1;
3809   for (int i = 0; i < n; ++i) {
3810     task_queue(i)->stats.reset();
3811   }
3812 }
3813 #endif // TASKQUEUE_STATS
3814 
3815 void G1CollectedHeap::log_gc_header() {
3816   if (!G1Log::fine()) {
3817     return;
3818   }
3819 
3820   gclog_or_tty->date_stamp(PrintGCDateStamps);
3821   gclog_or_tty->stamp(PrintGCTimeStamps);
3822 
3823   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3824     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3825     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3826 
3827   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3828 }
3829 
3830 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3831   if (!G1Log::fine()) {
3832     return;
3833   }
3834 
3835   if (G1Log::finer()) {
3836     if (evacuation_failed()) {
3837       gclog_or_tty->print(" (to-space exhausted)");
3838     }
3839     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3840     g1_policy()->phase_times()->note_gc_end();
3841     g1_policy()->phase_times()->print(pause_time_sec);
3842     g1_policy()->print_detailed_heap_transition();
3843   } else {
3844     if (evacuation_failed()) {
3845       gclog_or_tty->print("--");
3846     }
3847     g1_policy()->print_heap_transition();
3848     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3849   }
3850   gclog_or_tty->flush();
3851 }
3852 
3853 bool
3854 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3855   assert_at_safepoint(true /* should_be_vm_thread */);
3856   guarantee(!is_gc_active(), "collection is not reentrant");
3857 
3858   if (GC_locker::check_active_before_gc()) {
3859     return false;
3860   }
3861 
3862   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3863 
3864   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3865 
3866   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3867   ResourceMark rm;
3868 
3869   print_heap_before_gc();
3870   trace_heap_before_gc(_gc_tracer_stw);
3871 
3872   HRSPhaseSetter x(HRSPhaseEvacuation);
3873   verify_region_sets_optional();
3874   verify_dirty_young_regions();
3875 
3876   // This call will decide whether this pause is an initial-mark
3877   // pause. If it is, during_initial_mark_pause() will return true
3878   // for the duration of this pause.
3879   g1_policy()->decide_on_conc_mark_initiation();
3880 
3881   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3882   assert(!g1_policy()->during_initial_mark_pause() ||
3883           g1_policy()->gcs_are_young(), "sanity");
3884 
3885   // We also do not allow mixed GCs during marking.
3886   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3887 
3888   // Record whether this pause is an initial mark. When the current
3889   // thread has completed its logging output and it's safe to signal
3890   // the CM thread, the flag's value in the policy has been reset.
3891   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3892 
3893   // Inner scope for scope based logging, timers, and stats collection
3894   {
3895     EvacuationInfo evacuation_info;
3896 
3897     if (g1_policy()->during_initial_mark_pause()) {
3898       // We are about to start a marking cycle, so we increment the
3899       // full collection counter.
3900       increment_old_marking_cycles_started();
3901       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3902     }
3903 
3904     _gc_tracer_stw->report_yc_type(yc_type());
3905 
3906     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3907 
3908     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3909                                 workers()->active_workers() : 1);
3910     double pause_start_sec = os::elapsedTime();
3911     g1_policy()->phase_times()->note_gc_start(active_workers);
3912     log_gc_header();
3913 
3914     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3915     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3916 
3917     // If the secondary_free_list is not empty, append it to the
3918     // free_list. No need to wait for the cleanup operation to finish;
3919     // the region allocation code will check the secondary_free_list
3920     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3921     // set, skip this step so that the region allocation code has to
3922     // get entries from the secondary_free_list.
3923     if (!G1StressConcRegionFreeing) {
3924       append_secondary_free_list_if_not_empty_with_lock();
3925     }
3926 
3927     assert(check_young_list_well_formed(),
3928       "young list should be well formed");
3929 
3930     // Don't dynamically change the number of GC threads this early.  A value of
3931     // 0 is used to indicate serial work.  When parallel work is done,
3932     // it will be set.
3933 
3934     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3935       IsGCActiveMark x;
3936 
3937       gc_prologue(false);
3938       increment_total_collections(false /* full gc */);
3939       increment_gc_time_stamp();
3940 
3941       verify_before_gc();
3942 
3943       COMPILER2_PRESENT(DerivedPointerTable::clear());
3944 
3945       // Please see comment in g1CollectedHeap.hpp and
3946       // G1CollectedHeap::ref_processing_init() to see how
3947       // reference processing currently works in G1.
3948 
3949       // Enable discovery in the STW reference processor
3950       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3951                                             true /*verify_no_refs*/);
3952 
3953       {
3954         // We want to temporarily turn off discovery by the
3955         // CM ref processor, if necessary, and turn it back on
3956         // on again later if we do. Using a scoped
3957         // NoRefDiscovery object will do this.
3958         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3959 
3960         // Forget the current alloc region (we might even choose it to be part
3961         // of the collection set!).
3962         release_mutator_alloc_region();
3963 
3964         // We should call this after we retire the mutator alloc
3965         // region(s) so that all the ALLOC / RETIRE events are generated
3966         // before the start GC event.
3967         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3968 
3969         // This timing is only used by the ergonomics to handle our pause target.
3970         // It is unclear why this should not include the full pause. We will
3971         // investigate this in CR 7178365.
3972         //
3973         // Preserving the old comment here if that helps the investigation:
3974         //
3975         // The elapsed time induced by the start time below deliberately elides
3976         // the possible verification above.
3977         double sample_start_time_sec = os::elapsedTime();
3978 
3979 #if YOUNG_LIST_VERBOSE
3980         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3981         _young_list->print();
3982         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3983 #endif // YOUNG_LIST_VERBOSE
3984 
3985         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3986 
3987         double scan_wait_start = os::elapsedTime();
3988         // We have to wait until the CM threads finish scanning the
3989         // root regions as it's the only way to ensure that all the
3990         // objects on them have been correctly scanned before we start
3991         // moving them during the GC.
3992         bool waited = _cm->root_regions()->wait_until_scan_finished();
3993         double wait_time_ms = 0.0;
3994         if (waited) {
3995           double scan_wait_end = os::elapsedTime();
3996           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3997         }
3998         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3999 
4000 #if YOUNG_LIST_VERBOSE
4001         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4002         _young_list->print();
4003 #endif // YOUNG_LIST_VERBOSE
4004 
4005         if (g1_policy()->during_initial_mark_pause()) {
4006           concurrent_mark()->checkpointRootsInitialPre();
4007         }
4008 
4009 #if YOUNG_LIST_VERBOSE
4010         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4011         _young_list->print();
4012         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4013 #endif // YOUNG_LIST_VERBOSE
4014 
4015         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4016 
4017         _cm->note_start_of_gc();
4018         // We should not verify the per-thread SATB buffers given that
4019         // we have not filtered them yet (we'll do so during the
4020         // GC). We also call this after finalize_cset() to
4021         // ensure that the CSet has been finalized.
4022         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4023                                  true  /* verify_enqueued_buffers */,
4024                                  false /* verify_thread_buffers */,
4025                                  true  /* verify_fingers */);
4026 
4027         if (_hr_printer.is_active()) {
4028           HeapRegion* hr = g1_policy()->collection_set();
4029           while (hr != NULL) {
4030             G1HRPrinter::RegionType type;
4031             if (!hr->is_young()) {
4032               type = G1HRPrinter::Old;
4033             } else if (hr->is_survivor()) {
4034               type = G1HRPrinter::Survivor;
4035             } else {
4036               type = G1HRPrinter::Eden;
4037             }
4038             _hr_printer.cset(hr);
4039             hr = hr->next_in_collection_set();
4040           }
4041         }
4042 
4043 #ifdef ASSERT
4044         VerifyCSetClosure cl;
4045         collection_set_iterate(&cl);
4046 #endif // ASSERT
4047 
4048         setup_surviving_young_words();
4049 
4050         // Initialize the GC alloc regions.
4051         init_gc_alloc_regions(evacuation_info);
4052 
4053         // Actually do the work...
4054         evacuate_collection_set(evacuation_info);
4055 
4056         // We do this to mainly verify the per-thread SATB buffers
4057         // (which have been filtered by now) since we didn't verify
4058         // them earlier. No point in re-checking the stacks / enqueued
4059         // buffers given that the CSet has not changed since last time
4060         // we checked.
4061         _cm->verify_no_cset_oops(false /* verify_stacks */,
4062                                  false /* verify_enqueued_buffers */,
4063                                  true  /* verify_thread_buffers */,
4064                                  true  /* verify_fingers */);
4065 
4066         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4067         g1_policy()->clear_collection_set();
4068 
4069         cleanup_surviving_young_words();
4070 
4071         // Start a new incremental collection set for the next pause.
4072         g1_policy()->start_incremental_cset_building();
4073 
4074         // Clear the _cset_fast_test bitmap in anticipation of adding
4075         // regions to the incremental collection set for the next
4076         // evacuation pause.
4077         clear_cset_fast_test();
4078 
4079         _young_list->reset_sampled_info();
4080 
4081         // Don't check the whole heap at this point as the
4082         // GC alloc regions from this pause have been tagged
4083         // as survivors and moved on to the survivor list.
4084         // Survivor regions will fail the !is_young() check.
4085         assert(check_young_list_empty(false /* check_heap */),
4086           "young list should be empty");
4087 
4088 #if YOUNG_LIST_VERBOSE
4089         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4090         _young_list->print();
4091 #endif // YOUNG_LIST_VERBOSE
4092 
4093         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4094                                              _young_list->first_survivor_region(),
4095                                              _young_list->last_survivor_region());
4096 
4097         _young_list->reset_auxilary_lists();
4098 
4099         if (evacuation_failed()) {
4100           _summary_bytes_used = recalculate_used();
4101           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4102           for (uint i = 0; i < n_queues; i++) {
4103             if (_evacuation_failed_info_array[i].has_failed()) {
4104               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4105             }
4106           }
4107         } else {
4108           // The "used" of the the collection set have already been subtracted
4109           // when they were freed.  Add in the bytes evacuated.
4110           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4111         }
4112 
4113         if (g1_policy()->during_initial_mark_pause()) {
4114           // We have to do this before we notify the CM threads that
4115           // they can start working to make sure that all the
4116           // appropriate initialization is done on the CM object.
4117           concurrent_mark()->checkpointRootsInitialPost();
4118           set_marking_started();
4119           // Note that we don't actually trigger the CM thread at
4120           // this point. We do that later when we're sure that
4121           // the current thread has completed its logging output.
4122         }
4123 
4124         allocate_dummy_regions();
4125 
4126 #if YOUNG_LIST_VERBOSE
4127         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4128         _young_list->print();
4129         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4130 #endif // YOUNG_LIST_VERBOSE
4131 
4132         init_mutator_alloc_region();
4133 
4134         {
4135           size_t expand_bytes = g1_policy()->expansion_amount();
4136           if (expand_bytes > 0) {
4137             size_t bytes_before = capacity();
4138             // No need for an ergo verbose message here,
4139             // expansion_amount() does this when it returns a value > 0.
4140             if (!expand(expand_bytes)) {
4141               // We failed to expand the heap so let's verify that
4142               // committed/uncommitted amount match the backing store
4143               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4144               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4145             }
4146           }
4147         }
4148 
4149         // We redo the verification but now wrt to the new CSet which
4150         // has just got initialized after the previous CSet was freed.
4151         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4152                                  true  /* verify_enqueued_buffers */,
4153                                  true  /* verify_thread_buffers */,
4154                                  true  /* verify_fingers */);
4155         _cm->note_end_of_gc();
4156 
4157         // This timing is only used by the ergonomics to handle our pause target.
4158         // It is unclear why this should not include the full pause. We will
4159         // investigate this in CR 7178365.
4160         double sample_end_time_sec = os::elapsedTime();
4161         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4162         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4163 
4164         MemoryService::track_memory_usage();
4165 
4166         // In prepare_for_verify() below we'll need to scan the deferred
4167         // update buffers to bring the RSets up-to-date if
4168         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4169         // the update buffers we'll probably need to scan cards on the
4170         // regions we just allocated to (i.e., the GC alloc
4171         // regions). However, during the last GC we called
4172         // set_saved_mark() on all the GC alloc regions, so card
4173         // scanning might skip the [saved_mark_word()...top()] area of
4174         // those regions (i.e., the area we allocated objects into
4175         // during the last GC). But it shouldn't. Given that
4176         // saved_mark_word() is conditional on whether the GC time stamp
4177         // on the region is current or not, by incrementing the GC time
4178         // stamp here we invalidate all the GC time stamps on all the
4179         // regions and saved_mark_word() will simply return top() for
4180         // all the regions. This is a nicer way of ensuring this rather
4181         // than iterating over the regions and fixing them. In fact, the
4182         // GC time stamp increment here also ensures that
4183         // saved_mark_word() will return top() between pauses, i.e.,
4184         // during concurrent refinement. So we don't need the
4185         // is_gc_active() check to decided which top to use when
4186         // scanning cards (see CR 7039627).
4187         increment_gc_time_stamp();
4188 
4189         verify_after_gc();
4190 
4191         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4192         ref_processor_stw()->verify_no_references_recorded();
4193 
4194         // CM reference discovery will be re-enabled if necessary.
4195       }
4196 
4197       // We should do this after we potentially expand the heap so
4198       // that all the COMMIT events are generated before the end GC
4199       // event, and after we retire the GC alloc regions so that all
4200       // RETIRE events are generated before the end GC event.
4201       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4202 
4203       if (mark_in_progress()) {
4204         concurrent_mark()->update_g1_committed();
4205       }
4206 
4207 #ifdef TRACESPINNING
4208       ParallelTaskTerminator::print_termination_counts();
4209 #endif
4210 
4211       gc_epilogue(false);
4212     }
4213 
4214     // Print the remainder of the GC log output.
4215     log_gc_footer(os::elapsedTime() - pause_start_sec);
4216 
4217     // It is not yet to safe to tell the concurrent mark to
4218     // start as we have some optional output below. We don't want the
4219     // output from the concurrent mark thread interfering with this
4220     // logging output either.
4221 
4222     _hrs.verify_optional();
4223     verify_region_sets_optional();
4224 
4225     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4226     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4227 
4228     print_heap_after_gc();
4229     trace_heap_after_gc(_gc_tracer_stw);
4230 
4231     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4232     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4233     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4234     // before any GC notifications are raised.
4235     g1mm()->update_sizes();
4236 
4237     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4238     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4239     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4240     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4241   }
4242   // It should now be safe to tell the concurrent mark thread to start
4243   // without its logging output interfering with the logging output
4244   // that came from the pause.
4245 
4246   if (should_start_conc_mark) {
4247     // CAUTION: after the doConcurrentMark() call below,
4248     // the concurrent marking thread(s) could be running
4249     // concurrently with us. Make sure that anything after
4250     // this point does not assume that we are the only GC thread
4251     // running. Note: of course, the actual marking work will
4252     // not start until the safepoint itself is released in
4253     // ConcurrentGCThread::safepoint_desynchronize().
4254     doConcurrentMark();
4255   }
4256 
4257   return true;
4258 }
4259 
4260 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4261 {
4262   size_t gclab_word_size;
4263   switch (purpose) {
4264     case GCAllocForSurvived:
4265       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4266       break;
4267     case GCAllocForTenured:
4268       gclab_word_size = _old_plab_stats.desired_plab_sz();
4269       break;
4270     default:
4271       assert(false, "unknown GCAllocPurpose");
4272       gclab_word_size = _old_plab_stats.desired_plab_sz();
4273       break;
4274   }
4275 
4276   // Prevent humongous PLAB sizes for two reasons:
4277   // * PLABs are allocated using a similar paths as oops, but should
4278   //   never be in a humongous region
4279   // * Allowing humongous PLABs needlessly churns the region free lists
4280   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4281 }
4282 
4283 void G1CollectedHeap::init_mutator_alloc_region() {
4284   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4285   _mutator_alloc_region.init();
4286 }
4287 
4288 void G1CollectedHeap::release_mutator_alloc_region() {
4289   _mutator_alloc_region.release();
4290   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4291 }
4292 
4293 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4294   assert_at_safepoint(true /* should_be_vm_thread */);
4295 
4296   _survivor_gc_alloc_region.init();
4297   _old_gc_alloc_region.init();
4298   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4299   _retained_old_gc_alloc_region = NULL;
4300 
4301   // We will discard the current GC alloc region if:
4302   // a) it's in the collection set (it can happen!),
4303   // b) it's already full (no point in using it),
4304   // c) it's empty (this means that it was emptied during
4305   // a cleanup and it should be on the free list now), or
4306   // d) it's humongous (this means that it was emptied
4307   // during a cleanup and was added to the free list, but
4308   // has been subsequently used to allocate a humongous
4309   // object that may be less than the region size).
4310   if (retained_region != NULL &&
4311       !retained_region->in_collection_set() &&
4312       !(retained_region->top() == retained_region->end()) &&
4313       !retained_region->is_empty() &&
4314       !retained_region->isHumongous()) {
4315     retained_region->set_saved_mark();
4316     // The retained region was added to the old region set when it was
4317     // retired. We have to remove it now, since we don't allow regions
4318     // we allocate to in the region sets. We'll re-add it later, when
4319     // it's retired again.
4320     _old_set.remove(retained_region);
4321     bool during_im = g1_policy()->during_initial_mark_pause();
4322     retained_region->note_start_of_copying(during_im);
4323     _old_gc_alloc_region.set(retained_region);
4324     _hr_printer.reuse(retained_region);
4325     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4326   }
4327 }
4328 
4329 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4330   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4331                                          _old_gc_alloc_region.count());
4332   _survivor_gc_alloc_region.release();
4333   // If we have an old GC alloc region to release, we'll save it in
4334   // _retained_old_gc_alloc_region. If we don't
4335   // _retained_old_gc_alloc_region will become NULL. This is what we
4336   // want either way so no reason to check explicitly for either
4337   // condition.
4338   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4339 
4340   if (ResizePLAB) {
4341     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4342     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4343   }
4344 }
4345 
4346 void G1CollectedHeap::abandon_gc_alloc_regions() {
4347   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4348   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4349   _retained_old_gc_alloc_region = NULL;
4350 }
4351 
4352 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4353   _drain_in_progress = false;
4354   set_evac_failure_closure(cl);
4355   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4356 }
4357 
4358 void G1CollectedHeap::finalize_for_evac_failure() {
4359   assert(_evac_failure_scan_stack != NULL &&
4360          _evac_failure_scan_stack->length() == 0,
4361          "Postcondition");
4362   assert(!_drain_in_progress, "Postcondition");
4363   delete _evac_failure_scan_stack;
4364   _evac_failure_scan_stack = NULL;
4365 }
4366 
4367 void G1CollectedHeap::remove_self_forwarding_pointers() {
4368   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4369 
4370   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4371 
4372   if (G1CollectedHeap::use_parallel_gc_threads()) {
4373     set_par_threads();
4374     workers()->run_task(&rsfp_task);
4375     set_par_threads(0);
4376   } else {
4377     rsfp_task.work(0);
4378   }
4379 
4380   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4381 
4382   // Reset the claim values in the regions in the collection set.
4383   reset_cset_heap_region_claim_values();
4384 
4385   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4386 
4387   // Now restore saved marks, if any.
4388   assert(_objs_with_preserved_marks.size() ==
4389             _preserved_marks_of_objs.size(), "Both or none.");
4390   while (!_objs_with_preserved_marks.is_empty()) {
4391     oop obj = _objs_with_preserved_marks.pop();
4392     markOop m = _preserved_marks_of_objs.pop();
4393     obj->set_mark(m);
4394   }
4395   _objs_with_preserved_marks.clear(true);
4396   _preserved_marks_of_objs.clear(true);
4397 }
4398 
4399 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4400   _evac_failure_scan_stack->push(obj);
4401 }
4402 
4403 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4404   assert(_evac_failure_scan_stack != NULL, "precondition");
4405 
4406   while (_evac_failure_scan_stack->length() > 0) {
4407      oop obj = _evac_failure_scan_stack->pop();
4408      _evac_failure_closure->set_region(heap_region_containing(obj));
4409      obj->oop_iterate_backwards(_evac_failure_closure);
4410   }
4411 }
4412 
4413 oop
4414 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4415                                                oop old) {
4416   assert(obj_in_cs(old),
4417          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4418                  (HeapWord*) old));
4419   markOop m = old->mark();
4420   oop forward_ptr = old->forward_to_atomic(old);
4421   if (forward_ptr == NULL) {
4422     // Forward-to-self succeeded.
4423     assert(_par_scan_state != NULL, "par scan state");
4424     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4425     uint queue_num = _par_scan_state->queue_num();
4426 
4427     _evacuation_failed = true;
4428     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4429     if (_evac_failure_closure != cl) {
4430       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4431       assert(!_drain_in_progress,
4432              "Should only be true while someone holds the lock.");
4433       // Set the global evac-failure closure to the current thread's.
4434       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4435       set_evac_failure_closure(cl);
4436       // Now do the common part.
4437       handle_evacuation_failure_common(old, m);
4438       // Reset to NULL.
4439       set_evac_failure_closure(NULL);
4440     } else {
4441       // The lock is already held, and this is recursive.
4442       assert(_drain_in_progress, "This should only be the recursive case.");
4443       handle_evacuation_failure_common(old, m);
4444     }
4445     return old;
4446   } else {
4447     // Forward-to-self failed. Either someone else managed to allocate
4448     // space for this object (old != forward_ptr) or they beat us in
4449     // self-forwarding it (old == forward_ptr).
4450     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4451            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4452                    "should not be in the CSet",
4453                    (HeapWord*) old, (HeapWord*) forward_ptr));
4454     return forward_ptr;
4455   }
4456 }
4457 
4458 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4459   preserve_mark_if_necessary(old, m);
4460 
4461   HeapRegion* r = heap_region_containing(old);
4462   if (!r->evacuation_failed()) {
4463     r->set_evacuation_failed(true);
4464     _hr_printer.evac_failure(r);
4465   }
4466 
4467   push_on_evac_failure_scan_stack(old);
4468 
4469   if (!_drain_in_progress) {
4470     // prevent recursion in copy_to_survivor_space()
4471     _drain_in_progress = true;
4472     drain_evac_failure_scan_stack();
4473     _drain_in_progress = false;
4474   }
4475 }
4476 
4477 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4478   assert(evacuation_failed(), "Oversaving!");
4479   // We want to call the "for_promotion_failure" version only in the
4480   // case of a promotion failure.
4481   if (m->must_be_preserved_for_promotion_failure(obj)) {
4482     _objs_with_preserved_marks.push(obj);
4483     _preserved_marks_of_objs.push(m);
4484   }
4485 }
4486 
4487 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4488                                                   size_t word_size) {
4489   if (purpose == GCAllocForSurvived) {
4490     HeapWord* result = survivor_attempt_allocation(word_size);
4491     if (result != NULL) {
4492       return result;
4493     } else {
4494       // Let's try to allocate in the old gen in case we can fit the
4495       // object there.
4496       return old_attempt_allocation(word_size);
4497     }
4498   } else {
4499     assert(purpose ==  GCAllocForTenured, "sanity");
4500     HeapWord* result = old_attempt_allocation(word_size);
4501     if (result != NULL) {
4502       return result;
4503     } else {
4504       // Let's try to allocate in the survivors in case we can fit the
4505       // object there.
4506       return survivor_attempt_allocation(word_size);
4507     }
4508   }
4509 
4510   ShouldNotReachHere();
4511   // Trying to keep some compilers happy.
4512   return NULL;
4513 }
4514 
4515 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4516   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4517 
4518 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4519   : _g1h(g1h),
4520     _refs(g1h->task_queue(queue_num)),
4521     _dcq(&g1h->dirty_card_queue_set()),
4522     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4523     _g1_rem(g1h->g1_rem_set()),
4524     _hash_seed(17), _queue_num(queue_num),
4525     _term_attempts(0),
4526     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4527     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4528     _age_table(false),
4529     _strong_roots_time(0), _term_time(0),
4530     _alloc_buffer_waste(0), _undo_waste(0) {
4531   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4532   // we "sacrifice" entry 0 to keep track of surviving bytes for
4533   // non-young regions (where the age is -1)
4534   // We also add a few elements at the beginning and at the end in
4535   // an attempt to eliminate cache contention
4536   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4537   uint array_length = PADDING_ELEM_NUM +
4538                       real_length +
4539                       PADDING_ELEM_NUM;
4540   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4541   if (_surviving_young_words_base == NULL)
4542     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4543                           "Not enough space for young surv histo.");
4544   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4545   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4546 
4547   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4548   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4549 
4550   _start = os::elapsedTime();
4551 }
4552 
4553 void
4554 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4555 {
4556   st->print_raw_cr("GC Termination Stats");
4557   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4558                    " ------waste (KiB)------");
4559   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4560                    "  total   alloc    undo");
4561   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4562                    " ------- ------- -------");
4563 }
4564 
4565 void
4566 G1ParScanThreadState::print_termination_stats(int i,
4567                                               outputStream* const st) const
4568 {
4569   const double elapsed_ms = elapsed_time() * 1000.0;
4570   const double s_roots_ms = strong_roots_time() * 1000.0;
4571   const double term_ms    = term_time() * 1000.0;
4572   st->print_cr("%3d %9.2f %9.2f %6.2f "
4573                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4574                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4575                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4576                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4577                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4578                alloc_buffer_waste() * HeapWordSize / K,
4579                undo_waste() * HeapWordSize / K);
4580 }
4581 
4582 #ifdef ASSERT
4583 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4584   assert(ref != NULL, "invariant");
4585   assert(UseCompressedOops, "sanity");
4586   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4587   oop p = oopDesc::load_decode_heap_oop(ref);
4588   assert(_g1h->is_in_g1_reserved(p),
4589          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4590   return true;
4591 }
4592 
4593 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4594   assert(ref != NULL, "invariant");
4595   if (has_partial_array_mask(ref)) {
4596     // Must be in the collection set--it's already been copied.
4597     oop p = clear_partial_array_mask(ref);
4598     assert(_g1h->obj_in_cs(p),
4599            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4600   } else {
4601     oop p = oopDesc::load_decode_heap_oop(ref);
4602     assert(_g1h->is_in_g1_reserved(p),
4603            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4604   }
4605   return true;
4606 }
4607 
4608 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4609   if (ref.is_narrow()) {
4610     return verify_ref((narrowOop*) ref);
4611   } else {
4612     return verify_ref((oop*) ref);
4613   }
4614 }
4615 #endif // ASSERT
4616 
4617 void G1ParScanThreadState::trim_queue() {
4618   assert(_evac_cl != NULL, "not set");
4619   assert(_evac_failure_cl != NULL, "not set");
4620   assert(_partial_scan_cl != NULL, "not set");
4621 
4622   StarTask ref;
4623   do {
4624     // Drain the overflow stack first, so other threads can steal.
4625     while (refs()->pop_overflow(ref)) {
4626       deal_with_reference(ref);
4627     }
4628 
4629     while (refs()->pop_local(ref)) {
4630       deal_with_reference(ref);
4631     }
4632   } while (!refs()->is_empty());
4633 }
4634 
4635 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4636                                      G1ParScanThreadState* par_scan_state) :
4637   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4638   _par_scan_state(par_scan_state),
4639   _worker_id(par_scan_state->queue_num()),
4640   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4641   _mark_in_progress(_g1->mark_in_progress()) { }
4642 
4643 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4644 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4645 #ifdef ASSERT
4646   HeapRegion* hr = _g1->heap_region_containing(obj);
4647   assert(hr != NULL, "sanity");
4648   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4649 #endif // ASSERT
4650 
4651   // We know that the object is not moving so it's safe to read its size.
4652   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4653 }
4654 
4655 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4656 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4657   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4658 #ifdef ASSERT
4659   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4660   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4661   assert(from_obj != to_obj, "should not be self-forwarded");
4662 
4663   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4664   assert(from_hr != NULL, "sanity");
4665   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4666 
4667   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4668   assert(to_hr != NULL, "sanity");
4669   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4670 #endif // ASSERT
4671 
4672   // The object might be in the process of being copied by another
4673   // worker so we cannot trust that its to-space image is
4674   // well-formed. So we have to read its size from its from-space
4675   // image which we know should not be changing.
4676   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4677 }
4678 
4679 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4680 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4681   ::copy_to_survivor_space(oop old) {
4682   size_t word_sz = old->size();
4683   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4684   // +1 to make the -1 indexes valid...
4685   int       young_index = from_region->young_index_in_cset()+1;
4686   assert( (from_region->is_young() && young_index >  0) ||
4687          (!from_region->is_young() && young_index == 0), "invariant" );
4688   G1CollectorPolicy* g1p = _g1->g1_policy();
4689   markOop m = old->mark();
4690   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4691                                            : m->age();
4692   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4693                                                              word_sz);
4694   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4695 #ifndef PRODUCT
4696   // Should this evacuation fail?
4697   if (_g1->evacuation_should_fail()) {
4698     if (obj_ptr != NULL) {
4699       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4700       obj_ptr = NULL;
4701     }
4702   }
4703 #endif // !PRODUCT
4704 
4705   if (obj_ptr == NULL) {
4706     // This will either forward-to-self, or detect that someone else has
4707     // installed a forwarding pointer.
4708     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4709   }
4710 
4711   oop obj = oop(obj_ptr);
4712 
4713   // We're going to allocate linearly, so might as well prefetch ahead.
4714   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4715 
4716   oop forward_ptr = old->forward_to_atomic(obj);
4717   if (forward_ptr == NULL) {
4718     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4719     if (g1p->track_object_age(alloc_purpose)) {
4720       // We could simply do obj->incr_age(). However, this causes a
4721       // performance issue. obj->incr_age() will first check whether
4722       // the object has a displaced mark by checking its mark word;
4723       // getting the mark word from the new location of the object
4724       // stalls. So, given that we already have the mark word and we
4725       // are about to install it anyway, it's better to increase the
4726       // age on the mark word, when the object does not have a
4727       // displaced mark word. We're not expecting many objects to have
4728       // a displaced marked word, so that case is not optimized
4729       // further (it could be...) and we simply call obj->incr_age().
4730 
4731       if (m->has_displaced_mark_helper()) {
4732         // in this case, we have to install the mark word first,
4733         // otherwise obj looks to be forwarded (the old mark word,
4734         // which contains the forward pointer, was copied)
4735         obj->set_mark(m);
4736         obj->incr_age();
4737       } else {
4738         m = m->incr_age();
4739         obj->set_mark(m);
4740       }
4741       _par_scan_state->age_table()->add(obj, word_sz);
4742     } else {
4743       obj->set_mark(m);
4744     }
4745 
4746     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4747     surv_young_words[young_index] += word_sz;
4748 
4749     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4750       // We keep track of the next start index in the length field of
4751       // the to-space object. The actual length can be found in the
4752       // length field of the from-space object.
4753       arrayOop(obj)->set_length(0);
4754       oop* old_p = set_partial_array_mask(old);
4755       _par_scan_state->push_on_queue(old_p);
4756     } else {
4757       // No point in using the slower heap_region_containing() method,
4758       // given that we know obj is in the heap.
4759       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4760       obj->oop_iterate_backwards(&_scanner);
4761     }
4762   } else {
4763     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4764     obj = forward_ptr;
4765   }
4766   return obj;
4767 }
4768 
4769 template <class T>
4770 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4771   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4772     _scanned_klass->record_modified_oops();
4773   }
4774 }
4775 
4776 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4777 template <class T>
4778 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4779 ::do_oop_work(T* p) {
4780   oop obj = oopDesc::load_decode_heap_oop(p);
4781   assert(barrier != G1BarrierRS || obj != NULL,
4782          "Precondition: G1BarrierRS implies obj is non-NULL");
4783 
4784   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4785 
4786   // here the null check is implicit in the cset_fast_test() test
4787   if (_g1->in_cset_fast_test(obj)) {
4788     oop forwardee;
4789     if (obj->is_forwarded()) {
4790       forwardee = obj->forwardee();
4791     } else {
4792       forwardee = copy_to_survivor_space(obj);
4793     }
4794     assert(forwardee != NULL, "forwardee should not be NULL");
4795     oopDesc::encode_store_heap_oop(p, forwardee);
4796     if (do_mark_object && forwardee != obj) {
4797       // If the object is self-forwarded we don't need to explicitly
4798       // mark it, the evacuation failure protocol will do so.
4799       mark_forwarded_object(obj, forwardee);
4800     }
4801 
4802     // When scanning the RS, we only care about objs in CS.
4803     if (barrier == G1BarrierRS) {
4804       _par_scan_state->update_rs(_from, p, _worker_id);
4805     } else if (barrier == G1BarrierKlass) {
4806       do_klass_barrier(p, forwardee);
4807     }
4808   } else {
4809     // The object is not in collection set. If we're a root scanning
4810     // closure during an initial mark pause (i.e. do_mark_object will
4811     // be true) then attempt to mark the object.
4812     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4813       mark_object(obj);
4814     }
4815   }
4816 
4817   if (barrier == G1BarrierEvac && obj != NULL) {
4818     _par_scan_state->update_rs(_from, p, _worker_id);
4819   }
4820 
4821   if (do_gen_barrier && obj != NULL) {
4822     par_do_barrier(p);
4823   }
4824 }
4825 
4826 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4827 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4828 
4829 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4830   assert(has_partial_array_mask(p), "invariant");
4831   oop from_obj = clear_partial_array_mask(p);
4832 
4833   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4834   assert(from_obj->is_objArray(), "must be obj array");
4835   objArrayOop from_obj_array = objArrayOop(from_obj);
4836   // The from-space object contains the real length.
4837   int length                 = from_obj_array->length();
4838 
4839   assert(from_obj->is_forwarded(), "must be forwarded");
4840   oop to_obj                 = from_obj->forwardee();
4841   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4842   objArrayOop to_obj_array   = objArrayOop(to_obj);
4843   // We keep track of the next start index in the length field of the
4844   // to-space object.
4845   int next_index             = to_obj_array->length();
4846   assert(0 <= next_index && next_index < length,
4847          err_msg("invariant, next index: %d, length: %d", next_index, length));
4848 
4849   int start                  = next_index;
4850   int end                    = length;
4851   int remainder              = end - start;
4852   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4853   if (remainder > 2 * ParGCArrayScanChunk) {
4854     end = start + ParGCArrayScanChunk;
4855     to_obj_array->set_length(end);
4856     // Push the remainder before we process the range in case another
4857     // worker has run out of things to do and can steal it.
4858     oop* from_obj_p = set_partial_array_mask(from_obj);
4859     _par_scan_state->push_on_queue(from_obj_p);
4860   } else {
4861     assert(length == end, "sanity");
4862     // We'll process the final range for this object. Restore the length
4863     // so that the heap remains parsable in case of evacuation failure.
4864     to_obj_array->set_length(end);
4865   }
4866   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4867   // Process indexes [start,end). It will also process the header
4868   // along with the first chunk (i.e., the chunk with start == 0).
4869   // Note that at this point the length field of to_obj_array is not
4870   // correct given that we are using it to keep track of the next
4871   // start index. oop_iterate_range() (thankfully!) ignores the length
4872   // field and only relies on the start / end parameters.  It does
4873   // however return the size of the object which will be incorrect. So
4874   // we have to ignore it even if we wanted to use it.
4875   to_obj_array->oop_iterate_range(&_scanner, start, end);
4876 }
4877 
4878 class G1ParEvacuateFollowersClosure : public VoidClosure {
4879 protected:
4880   G1CollectedHeap*              _g1h;
4881   G1ParScanThreadState*         _par_scan_state;
4882   RefToScanQueueSet*            _queues;
4883   ParallelTaskTerminator*       _terminator;
4884 
4885   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4886   RefToScanQueueSet*      queues()         { return _queues; }
4887   ParallelTaskTerminator* terminator()     { return _terminator; }
4888 
4889 public:
4890   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4891                                 G1ParScanThreadState* par_scan_state,
4892                                 RefToScanQueueSet* queues,
4893                                 ParallelTaskTerminator* terminator)
4894     : _g1h(g1h), _par_scan_state(par_scan_state),
4895       _queues(queues), _terminator(terminator) {}
4896 
4897   void do_void();
4898 
4899 private:
4900   inline bool offer_termination();
4901 };
4902 
4903 bool G1ParEvacuateFollowersClosure::offer_termination() {
4904   G1ParScanThreadState* const pss = par_scan_state();
4905   pss->start_term_time();
4906   const bool res = terminator()->offer_termination();
4907   pss->end_term_time();
4908   return res;
4909 }
4910 
4911 void G1ParEvacuateFollowersClosure::do_void() {
4912   StarTask stolen_task;
4913   G1ParScanThreadState* const pss = par_scan_state();
4914   pss->trim_queue();
4915 
4916   do {
4917     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4918       assert(pss->verify_task(stolen_task), "sanity");
4919       if (stolen_task.is_narrow()) {
4920         pss->deal_with_reference((narrowOop*) stolen_task);
4921       } else {
4922         pss->deal_with_reference((oop*) stolen_task);
4923       }
4924 
4925       // We've just processed a reference and we might have made
4926       // available new entries on the queues. So we have to make sure
4927       // we drain the queues as necessary.
4928       pss->trim_queue();
4929     }
4930   } while (!offer_termination());
4931 
4932   pss->retire_alloc_buffers();
4933 }
4934 
4935 class G1KlassScanClosure : public KlassClosure {
4936  G1ParCopyHelper* _closure;
4937  bool             _process_only_dirty;
4938  int              _count;
4939  public:
4940   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4941       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4942   void do_klass(Klass* klass) {
4943     // If the klass has not been dirtied we know that there's
4944     // no references into  the young gen and we can skip it.
4945    if (!_process_only_dirty || klass->has_modified_oops()) {
4946       // Clean the klass since we're going to scavenge all the metadata.
4947       klass->clear_modified_oops();
4948 
4949       // Tell the closure that this klass is the Klass to scavenge
4950       // and is the one to dirty if oops are left pointing into the young gen.
4951       _closure->set_scanned_klass(klass);
4952 
4953       klass->oops_do(_closure);
4954 
4955       _closure->set_scanned_klass(NULL);
4956     }
4957     _count++;
4958   }
4959 };
4960 
4961 class G1ParTask : public AbstractGangTask {
4962 protected:
4963   G1CollectedHeap*       _g1h;
4964   RefToScanQueueSet      *_queues;
4965   ParallelTaskTerminator _terminator;
4966   uint _n_workers;
4967 
4968   Mutex _stats_lock;
4969   Mutex* stats_lock() { return &_stats_lock; }
4970 
4971   size_t getNCards() {
4972     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4973       / G1BlockOffsetSharedArray::N_bytes;
4974   }
4975 
4976 public:
4977   G1ParTask(G1CollectedHeap* g1h,
4978             RefToScanQueueSet *task_queues)
4979     : AbstractGangTask("G1 collection"),
4980       _g1h(g1h),
4981       _queues(task_queues),
4982       _terminator(0, _queues),
4983       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4984   {}
4985 
4986   RefToScanQueueSet* queues() { return _queues; }
4987 
4988   RefToScanQueue *work_queue(int i) {
4989     return queues()->queue(i);
4990   }
4991 
4992   ParallelTaskTerminator* terminator() { return &_terminator; }
4993 
4994   virtual void set_for_termination(int active_workers) {
4995     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4996     // in the young space (_par_seq_tasks) in the G1 heap
4997     // for SequentialSubTasksDone.
4998     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4999     // both of which need setting by set_n_termination().
5000     _g1h->SharedHeap::set_n_termination(active_workers);
5001     _g1h->set_n_termination(active_workers);
5002     terminator()->reset_for_reuse(active_workers);
5003     _n_workers = active_workers;
5004   }
5005 
5006   void work(uint worker_id) {
5007     if (worker_id >= _n_workers) return;  // no work needed this round
5008 
5009     double start_time_ms = os::elapsedTime() * 1000.0;
5010     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5011 
5012     {
5013       ResourceMark rm;
5014       HandleMark   hm;
5015 
5016       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5017 
5018       G1ParScanThreadState            pss(_g1h, worker_id);
5019       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
5020       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5021       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
5022 
5023       pss.set_evac_closure(&scan_evac_cl);
5024       pss.set_evac_failure_closure(&evac_failure_cl);
5025       pss.set_partial_scan_closure(&partial_scan_cl);
5026 
5027       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5028       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5029 
5030       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5031       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5032 
5033       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5034       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5035       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5036 
5037       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5038       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5039 
5040       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5041         // We also need to mark copied objects.
5042         scan_root_cl = &scan_mark_root_cl;
5043         scan_klasses_cl = &scan_mark_klasses_cl_s;
5044       }
5045 
5046       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5047 
5048       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
5049 
5050       pss.start_strong_roots();
5051       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5052                                     SharedHeap::ScanningOption(so),
5053                                     scan_root_cl,
5054                                     &push_heap_rs_cl,
5055                                     scan_klasses_cl,
5056                                     worker_id);
5057       pss.end_strong_roots();
5058 
5059       {
5060         double start = os::elapsedTime();
5061         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5062         evac.do_void();
5063         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5064         double term_ms = pss.term_time()*1000.0;
5065         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5066         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5067       }
5068       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5069       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5070 
5071       if (ParallelGCVerbose) {
5072         MutexLocker x(stats_lock());
5073         pss.print_termination_stats(worker_id);
5074       }
5075 
5076       assert(pss.refs()->is_empty(), "should be empty");
5077 
5078       // Close the inner scope so that the ResourceMark and HandleMark
5079       // destructors are executed here and are included as part of the
5080       // "GC Worker Time".
5081     }
5082 
5083     double end_time_ms = os::elapsedTime() * 1000.0;
5084     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5085   }
5086 };
5087 
5088 // *** Common G1 Evacuation Stuff
5089 
5090 // Closures that support the filtering of CodeBlobs scanned during
5091 // external root scanning.
5092 
5093 // Closure applied to reference fields in code blobs (specifically nmethods)
5094 // to determine whether an nmethod contains references that point into
5095 // the collection set. Used as a predicate when walking code roots so
5096 // that only nmethods that point into the collection set are added to the
5097 // 'marked' list.
5098 
5099 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
5100 
5101   class G1PointsIntoCSOopClosure : public OopClosure {
5102     G1CollectedHeap* _g1;
5103     bool _points_into_cs;
5104   public:
5105     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
5106       _g1(g1), _points_into_cs(false) { }
5107 
5108     bool points_into_cs() const { return _points_into_cs; }
5109 
5110     template <class T>
5111     void do_oop_nv(T* p) {
5112       if (!_points_into_cs) {
5113         T heap_oop = oopDesc::load_heap_oop(p);
5114         if (!oopDesc::is_null(heap_oop) &&
5115             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
5116           _points_into_cs = true;
5117         }
5118       }
5119     }
5120 
5121     virtual void do_oop(oop* p)        { do_oop_nv(p); }
5122     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
5123   };
5124 
5125   G1CollectedHeap* _g1;
5126 
5127 public:
5128   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
5129     CodeBlobToOopClosure(cl, true), _g1(g1) { }
5130 
5131   virtual void do_code_blob(CodeBlob* cb) {
5132     nmethod* nm = cb->as_nmethod_or_null();
5133     if (nm != NULL && !(nm->test_oops_do_mark())) {
5134       G1PointsIntoCSOopClosure predicate_cl(_g1);
5135       nm->oops_do(&predicate_cl);
5136 
5137       if (predicate_cl.points_into_cs()) {
5138         // At least one of the reference fields or the oop relocations
5139         // in the nmethod points into the collection set. We have to
5140         // 'mark' this nmethod.
5141         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
5142         // or MarkingCodeBlobClosure::do_code_blob() change.
5143         if (!nm->test_set_oops_do_mark()) {
5144           do_newly_marked_nmethod(nm);
5145         }
5146       }
5147     }
5148   }
5149 };
5150 
5151 // This method is run in a GC worker.
5152 
5153 void
5154 G1CollectedHeap::
5155 g1_process_strong_roots(bool is_scavenging,
5156                         ScanningOption so,
5157                         OopClosure* scan_non_heap_roots,
5158                         OopsInHeapRegionClosure* scan_rs,
5159                         G1KlassScanClosure* scan_klasses,
5160                         int worker_i) {
5161 
5162   // First scan the strong roots
5163   double ext_roots_start = os::elapsedTime();
5164   double closure_app_time_sec = 0.0;
5165 
5166   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5167 
5168   // Walk the code cache w/o buffering, because StarTask cannot handle
5169   // unaligned oop locations.
5170   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5171 
5172   process_strong_roots(false, // no scoping; this is parallel code
5173                        is_scavenging, so,
5174                        &buf_scan_non_heap_roots,
5175                        &eager_scan_code_roots,
5176                        scan_klasses
5177                        );
5178 
5179   // Now the CM ref_processor roots.
5180   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5181     // We need to treat the discovered reference lists of the
5182     // concurrent mark ref processor as roots and keep entries
5183     // (which are added by the marking threads) on them live
5184     // until they can be processed at the end of marking.
5185     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5186   }
5187 
5188   // Finish up any enqueued closure apps (attributed as object copy time).
5189   buf_scan_non_heap_roots.done();
5190 
5191   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5192 
5193   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5194 
5195   double ext_root_time_ms =
5196     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5197 
5198   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5199 
5200   // During conc marking we have to filter the per-thread SATB buffers
5201   // to make sure we remove any oops into the CSet (which will show up
5202   // as implicitly live).
5203   double satb_filtering_ms = 0.0;
5204   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5205     if (mark_in_progress()) {
5206       double satb_filter_start = os::elapsedTime();
5207 
5208       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5209 
5210       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5211     }
5212   }
5213   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5214 
5215   // Now scan the complement of the collection set.
5216   if (scan_rs != NULL) {
5217     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5218   }
5219   _process_strong_tasks->all_tasks_completed();
5220 }
5221 
5222 void
5223 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5224   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5225   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5226 }
5227 
5228 // Weak Reference Processing support
5229 
5230 // An always "is_alive" closure that is used to preserve referents.
5231 // If the object is non-null then it's alive.  Used in the preservation
5232 // of referent objects that are pointed to by reference objects
5233 // discovered by the CM ref processor.
5234 class G1AlwaysAliveClosure: public BoolObjectClosure {
5235   G1CollectedHeap* _g1;
5236 public:
5237   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5238   bool do_object_b(oop p) {
5239     if (p != NULL) {
5240       return true;
5241     }
5242     return false;
5243   }
5244 };
5245 
5246 bool G1STWIsAliveClosure::do_object_b(oop p) {
5247   // An object is reachable if it is outside the collection set,
5248   // or is inside and copied.
5249   return !_g1->obj_in_cs(p) || p->is_forwarded();
5250 }
5251 
5252 // Non Copying Keep Alive closure
5253 class G1KeepAliveClosure: public OopClosure {
5254   G1CollectedHeap* _g1;
5255 public:
5256   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5257   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5258   void do_oop(      oop* p) {
5259     oop obj = *p;
5260 
5261     if (_g1->obj_in_cs(obj)) {
5262       assert( obj->is_forwarded(), "invariant" );
5263       *p = obj->forwardee();
5264     }
5265   }
5266 };
5267 
5268 // Copying Keep Alive closure - can be called from both
5269 // serial and parallel code as long as different worker
5270 // threads utilize different G1ParScanThreadState instances
5271 // and different queues.
5272 
5273 class G1CopyingKeepAliveClosure: public OopClosure {
5274   G1CollectedHeap*         _g1h;
5275   OopClosure*              _copy_non_heap_obj_cl;
5276   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5277   G1ParScanThreadState*    _par_scan_state;
5278 
5279 public:
5280   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5281                             OopClosure* non_heap_obj_cl,
5282                             OopsInHeapRegionClosure* metadata_obj_cl,
5283                             G1ParScanThreadState* pss):
5284     _g1h(g1h),
5285     _copy_non_heap_obj_cl(non_heap_obj_cl),
5286     _copy_metadata_obj_cl(metadata_obj_cl),
5287     _par_scan_state(pss)
5288   {}
5289 
5290   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5291   virtual void do_oop(      oop* p) { do_oop_work(p); }
5292 
5293   template <class T> void do_oop_work(T* p) {
5294     oop obj = oopDesc::load_decode_heap_oop(p);
5295 
5296     if (_g1h->obj_in_cs(obj)) {
5297       // If the referent object has been forwarded (either copied
5298       // to a new location or to itself in the event of an
5299       // evacuation failure) then we need to update the reference
5300       // field and, if both reference and referent are in the G1
5301       // heap, update the RSet for the referent.
5302       //
5303       // If the referent has not been forwarded then we have to keep
5304       // it alive by policy. Therefore we have copy the referent.
5305       //
5306       // If the reference field is in the G1 heap then we can push
5307       // on the PSS queue. When the queue is drained (after each
5308       // phase of reference processing) the object and it's followers
5309       // will be copied, the reference field set to point to the
5310       // new location, and the RSet updated. Otherwise we need to
5311       // use the the non-heap or metadata closures directly to copy
5312       // the referent object and update the pointer, while avoiding
5313       // updating the RSet.
5314 
5315       if (_g1h->is_in_g1_reserved(p)) {
5316         _par_scan_state->push_on_queue(p);
5317       } else {
5318         assert(!ClassLoaderDataGraph::contains((address)p),
5319                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5320                               PTR_FORMAT, p));
5321           _copy_non_heap_obj_cl->do_oop(p);
5322         }
5323       }
5324     }
5325 };
5326 
5327 // Serial drain queue closure. Called as the 'complete_gc'
5328 // closure for each discovered list in some of the
5329 // reference processing phases.
5330 
5331 class G1STWDrainQueueClosure: public VoidClosure {
5332 protected:
5333   G1CollectedHeap* _g1h;
5334   G1ParScanThreadState* _par_scan_state;
5335 
5336   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5337 
5338 public:
5339   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5340     _g1h(g1h),
5341     _par_scan_state(pss)
5342   { }
5343 
5344   void do_void() {
5345     G1ParScanThreadState* const pss = par_scan_state();
5346     pss->trim_queue();
5347   }
5348 };
5349 
5350 // Parallel Reference Processing closures
5351 
5352 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5353 // processing during G1 evacuation pauses.
5354 
5355 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5356 private:
5357   G1CollectedHeap*   _g1h;
5358   RefToScanQueueSet* _queues;
5359   FlexibleWorkGang*  _workers;
5360   int                _active_workers;
5361 
5362 public:
5363   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5364                         FlexibleWorkGang* workers,
5365                         RefToScanQueueSet *task_queues,
5366                         int n_workers) :
5367     _g1h(g1h),
5368     _queues(task_queues),
5369     _workers(workers),
5370     _active_workers(n_workers)
5371   {
5372     assert(n_workers > 0, "shouldn't call this otherwise");
5373   }
5374 
5375   // Executes the given task using concurrent marking worker threads.
5376   virtual void execute(ProcessTask& task);
5377   virtual void execute(EnqueueTask& task);
5378 };
5379 
5380 // Gang task for possibly parallel reference processing
5381 
5382 class G1STWRefProcTaskProxy: public AbstractGangTask {
5383   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5384   ProcessTask&     _proc_task;
5385   G1CollectedHeap* _g1h;
5386   RefToScanQueueSet *_task_queues;
5387   ParallelTaskTerminator* _terminator;
5388 
5389 public:
5390   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5391                      G1CollectedHeap* g1h,
5392                      RefToScanQueueSet *task_queues,
5393                      ParallelTaskTerminator* terminator) :
5394     AbstractGangTask("Process reference objects in parallel"),
5395     _proc_task(proc_task),
5396     _g1h(g1h),
5397     _task_queues(task_queues),
5398     _terminator(terminator)
5399   {}
5400 
5401   virtual void work(uint worker_id) {
5402     // The reference processing task executed by a single worker.
5403     ResourceMark rm;
5404     HandleMark   hm;
5405 
5406     G1STWIsAliveClosure is_alive(_g1h);
5407 
5408     G1ParScanThreadState pss(_g1h, worker_id);
5409 
5410     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5411     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5412     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5413 
5414     pss.set_evac_closure(&scan_evac_cl);
5415     pss.set_evac_failure_closure(&evac_failure_cl);
5416     pss.set_partial_scan_closure(&partial_scan_cl);
5417 
5418     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5419     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5420 
5421     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5422     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5423 
5424     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5425     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5426 
5427     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5428       // We also need to mark copied objects.
5429       copy_non_heap_cl = &copy_mark_non_heap_cl;
5430       copy_metadata_cl = &copy_mark_metadata_cl;
5431     }
5432 
5433     // Keep alive closure.
5434     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5435 
5436     // Complete GC closure
5437     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5438 
5439     // Call the reference processing task's work routine.
5440     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5441 
5442     // Note we cannot assert that the refs array is empty here as not all
5443     // of the processing tasks (specifically phase2 - pp2_work) execute
5444     // the complete_gc closure (which ordinarily would drain the queue) so
5445     // the queue may not be empty.
5446   }
5447 };
5448 
5449 // Driver routine for parallel reference processing.
5450 // Creates an instance of the ref processing gang
5451 // task and has the worker threads execute it.
5452 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5453   assert(_workers != NULL, "Need parallel worker threads.");
5454 
5455   ParallelTaskTerminator terminator(_active_workers, _queues);
5456   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5457 
5458   _g1h->set_par_threads(_active_workers);
5459   _workers->run_task(&proc_task_proxy);
5460   _g1h->set_par_threads(0);
5461 }
5462 
5463 // Gang task for parallel reference enqueueing.
5464 
5465 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5466   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5467   EnqueueTask& _enq_task;
5468 
5469 public:
5470   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5471     AbstractGangTask("Enqueue reference objects in parallel"),
5472     _enq_task(enq_task)
5473   { }
5474 
5475   virtual void work(uint worker_id) {
5476     _enq_task.work(worker_id);
5477   }
5478 };
5479 
5480 // Driver routine for parallel reference enqueueing.
5481 // Creates an instance of the ref enqueueing gang
5482 // task and has the worker threads execute it.
5483 
5484 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5485   assert(_workers != NULL, "Need parallel worker threads.");
5486 
5487   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5488 
5489   _g1h->set_par_threads(_active_workers);
5490   _workers->run_task(&enq_task_proxy);
5491   _g1h->set_par_threads(0);
5492 }
5493 
5494 // End of weak reference support closures
5495 
5496 // Abstract task used to preserve (i.e. copy) any referent objects
5497 // that are in the collection set and are pointed to by reference
5498 // objects discovered by the CM ref processor.
5499 
5500 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5501 protected:
5502   G1CollectedHeap* _g1h;
5503   RefToScanQueueSet      *_queues;
5504   ParallelTaskTerminator _terminator;
5505   uint _n_workers;
5506 
5507 public:
5508   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5509     AbstractGangTask("ParPreserveCMReferents"),
5510     _g1h(g1h),
5511     _queues(task_queues),
5512     _terminator(workers, _queues),
5513     _n_workers(workers)
5514   { }
5515 
5516   void work(uint worker_id) {
5517     ResourceMark rm;
5518     HandleMark   hm;
5519 
5520     G1ParScanThreadState            pss(_g1h, worker_id);
5521     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5522     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5523     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5524 
5525     pss.set_evac_closure(&scan_evac_cl);
5526     pss.set_evac_failure_closure(&evac_failure_cl);
5527     pss.set_partial_scan_closure(&partial_scan_cl);
5528 
5529     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5530 
5531 
5532     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5533     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5534 
5535     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5536     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5537 
5538     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5539     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5540 
5541     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5542       // We also need to mark copied objects.
5543       copy_non_heap_cl = &copy_mark_non_heap_cl;
5544       copy_metadata_cl = &copy_mark_metadata_cl;
5545     }
5546 
5547     // Is alive closure
5548     G1AlwaysAliveClosure always_alive(_g1h);
5549 
5550     // Copying keep alive closure. Applied to referent objects that need
5551     // to be copied.
5552     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5553 
5554     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5555 
5556     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5557     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5558 
5559     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5560     // So this must be true - but assert just in case someone decides to
5561     // change the worker ids.
5562     assert(0 <= worker_id && worker_id < limit, "sanity");
5563     assert(!rp->discovery_is_atomic(), "check this code");
5564 
5565     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5566     for (uint idx = worker_id; idx < limit; idx += stride) {
5567       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5568 
5569       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5570       while (iter.has_next()) {
5571         // Since discovery is not atomic for the CM ref processor, we
5572         // can see some null referent objects.
5573         iter.load_ptrs(DEBUG_ONLY(true));
5574         oop ref = iter.obj();
5575 
5576         // This will filter nulls.
5577         if (iter.is_referent_alive()) {
5578           iter.make_referent_alive();
5579         }
5580         iter.move_to_next();
5581       }
5582     }
5583 
5584     // Drain the queue - which may cause stealing
5585     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5586     drain_queue.do_void();
5587     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5588     assert(pss.refs()->is_empty(), "should be");
5589   }
5590 };
5591 
5592 // Weak Reference processing during an evacuation pause (part 1).
5593 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5594   double ref_proc_start = os::elapsedTime();
5595 
5596   ReferenceProcessor* rp = _ref_processor_stw;
5597   assert(rp->discovery_enabled(), "should have been enabled");
5598 
5599   // Any reference objects, in the collection set, that were 'discovered'
5600   // by the CM ref processor should have already been copied (either by
5601   // applying the external root copy closure to the discovered lists, or
5602   // by following an RSet entry).
5603   //
5604   // But some of the referents, that are in the collection set, that these
5605   // reference objects point to may not have been copied: the STW ref
5606   // processor would have seen that the reference object had already
5607   // been 'discovered' and would have skipped discovering the reference,
5608   // but would not have treated the reference object as a regular oop.
5609   // As a result the copy closure would not have been applied to the
5610   // referent object.
5611   //
5612   // We need to explicitly copy these referent objects - the references
5613   // will be processed at the end of remarking.
5614   //
5615   // We also need to do this copying before we process the reference
5616   // objects discovered by the STW ref processor in case one of these
5617   // referents points to another object which is also referenced by an
5618   // object discovered by the STW ref processor.
5619 
5620   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5621            no_of_gc_workers == workers()->active_workers(),
5622            "Need to reset active GC workers");
5623 
5624   set_par_threads(no_of_gc_workers);
5625   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5626                                                  no_of_gc_workers,
5627                                                  _task_queues);
5628 
5629   if (G1CollectedHeap::use_parallel_gc_threads()) {
5630     workers()->run_task(&keep_cm_referents);
5631   } else {
5632     keep_cm_referents.work(0);
5633   }
5634 
5635   set_par_threads(0);
5636 
5637   // Closure to test whether a referent is alive.
5638   G1STWIsAliveClosure is_alive(this);
5639 
5640   // Even when parallel reference processing is enabled, the processing
5641   // of JNI refs is serial and performed serially by the current thread
5642   // rather than by a worker. The following PSS will be used for processing
5643   // JNI refs.
5644 
5645   // Use only a single queue for this PSS.
5646   G1ParScanThreadState pss(this, 0);
5647 
5648   // We do not embed a reference processor in the copying/scanning
5649   // closures while we're actually processing the discovered
5650   // reference objects.
5651   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5652   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5653   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5654 
5655   pss.set_evac_closure(&scan_evac_cl);
5656   pss.set_evac_failure_closure(&evac_failure_cl);
5657   pss.set_partial_scan_closure(&partial_scan_cl);
5658 
5659   assert(pss.refs()->is_empty(), "pre-condition");
5660 
5661   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5662   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5663 
5664   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5665   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5666 
5667   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5668   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5669 
5670   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5671     // We also need to mark copied objects.
5672     copy_non_heap_cl = &copy_mark_non_heap_cl;
5673     copy_metadata_cl = &copy_mark_metadata_cl;
5674   }
5675 
5676   // Keep alive closure.
5677   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5678 
5679   // Serial Complete GC closure
5680   G1STWDrainQueueClosure drain_queue(this, &pss);
5681 
5682   // Setup the soft refs policy...
5683   rp->setup_policy(false);
5684 
5685   ReferenceProcessorStats stats;
5686   if (!rp->processing_is_mt()) {
5687     // Serial reference processing...
5688     stats = rp->process_discovered_references(&is_alive,
5689                                               &keep_alive,
5690                                               &drain_queue,
5691                                               NULL,
5692                                               _gc_timer_stw);
5693   } else {
5694     // Parallel reference processing
5695     assert(rp->num_q() == no_of_gc_workers, "sanity");
5696     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5697 
5698     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5699     stats = rp->process_discovered_references(&is_alive,
5700                                               &keep_alive,
5701                                               &drain_queue,
5702                                               &par_task_executor,
5703                                               _gc_timer_stw);
5704   }
5705 
5706   _gc_tracer_stw->report_gc_reference_stats(stats);
5707   // We have completed copying any necessary live referent objects
5708   // (that were not copied during the actual pause) so we can
5709   // retire any active alloc buffers
5710   pss.retire_alloc_buffers();
5711   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5712 
5713   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5714   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5715 }
5716 
5717 // Weak Reference processing during an evacuation pause (part 2).
5718 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5719   double ref_enq_start = os::elapsedTime();
5720 
5721   ReferenceProcessor* rp = _ref_processor_stw;
5722   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5723 
5724   // Now enqueue any remaining on the discovered lists on to
5725   // the pending list.
5726   if (!rp->processing_is_mt()) {
5727     // Serial reference processing...
5728     rp->enqueue_discovered_references();
5729   } else {
5730     // Parallel reference enqueueing
5731 
5732     assert(no_of_gc_workers == workers()->active_workers(),
5733            "Need to reset active workers");
5734     assert(rp->num_q() == no_of_gc_workers, "sanity");
5735     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5736 
5737     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5738     rp->enqueue_discovered_references(&par_task_executor);
5739   }
5740 
5741   rp->verify_no_references_recorded();
5742   assert(!rp->discovery_enabled(), "should have been disabled");
5743 
5744   // FIXME
5745   // CM's reference processing also cleans up the string and symbol tables.
5746   // Should we do that here also? We could, but it is a serial operation
5747   // and could significantly increase the pause time.
5748 
5749   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5750   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5751 }
5752 
5753 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5754   _expand_heap_after_alloc_failure = true;
5755   _evacuation_failed = false;
5756 
5757   // Should G1EvacuationFailureALot be in effect for this GC?
5758   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5759 
5760   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5761 
5762   // Disable the hot card cache.
5763   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5764   hot_card_cache->reset_hot_cache_claimed_index();
5765   hot_card_cache->set_use_cache(false);
5766 
5767   uint n_workers;
5768   if (G1CollectedHeap::use_parallel_gc_threads()) {
5769     n_workers =
5770       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5771                                      workers()->active_workers(),
5772                                      Threads::number_of_non_daemon_threads());
5773     assert(UseDynamicNumberOfGCThreads ||
5774            n_workers == workers()->total_workers(),
5775            "If not dynamic should be using all the  workers");
5776     workers()->set_active_workers(n_workers);
5777     set_par_threads(n_workers);
5778   } else {
5779     assert(n_par_threads() == 0,
5780            "Should be the original non-parallel value");
5781     n_workers = 1;
5782   }
5783 
5784   G1ParTask g1_par_task(this, _task_queues);
5785 
5786   init_for_evac_failure(NULL);
5787 
5788   rem_set()->prepare_for_younger_refs_iterate(true);
5789 
5790   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5791   double start_par_time_sec = os::elapsedTime();
5792   double end_par_time_sec;
5793 
5794   {
5795     StrongRootsScope srs(this);
5796 
5797     if (G1CollectedHeap::use_parallel_gc_threads()) {
5798       // The individual threads will set their evac-failure closures.
5799       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5800       // These tasks use ShareHeap::_process_strong_tasks
5801       assert(UseDynamicNumberOfGCThreads ||
5802              workers()->active_workers() == workers()->total_workers(),
5803              "If not dynamic should be using all the  workers");
5804       workers()->run_task(&g1_par_task);
5805     } else {
5806       g1_par_task.set_for_termination(n_workers);
5807       g1_par_task.work(0);
5808     }
5809     end_par_time_sec = os::elapsedTime();
5810 
5811     // Closing the inner scope will execute the destructor
5812     // for the StrongRootsScope object. We record the current
5813     // elapsed time before closing the scope so that time
5814     // taken for the SRS destructor is NOT included in the
5815     // reported parallel time.
5816   }
5817 
5818   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5819   g1_policy()->phase_times()->record_par_time(par_time_ms);
5820 
5821   double code_root_fixup_time_ms =
5822         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5823   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5824 
5825   set_par_threads(0);
5826 
5827   // Process any discovered reference objects - we have
5828   // to do this _before_ we retire the GC alloc regions
5829   // as we may have to copy some 'reachable' referent
5830   // objects (and their reachable sub-graphs) that were
5831   // not copied during the pause.
5832   process_discovered_references(n_workers);
5833 
5834   // Weak root processing.
5835   // Note: when JSR 292 is enabled and code blobs can contain
5836   // non-perm oops then we will need to process the code blobs
5837   // here too.
5838   {
5839     G1STWIsAliveClosure is_alive(this);
5840     G1KeepAliveClosure keep_alive(this);
5841     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5842   }
5843 
5844   release_gc_alloc_regions(n_workers, evacuation_info);
5845   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5846 
5847   // Reset and re-enable the hot card cache.
5848   // Note the counts for the cards in the regions in the
5849   // collection set are reset when the collection set is freed.
5850   hot_card_cache->reset_hot_cache();
5851   hot_card_cache->set_use_cache(true);
5852 
5853   finalize_for_evac_failure();
5854 
5855   if (evacuation_failed()) {
5856     remove_self_forwarding_pointers();
5857 
5858     // Reset the G1EvacuationFailureALot counters and flags
5859     // Note: the values are reset only when an actual
5860     // evacuation failure occurs.
5861     NOT_PRODUCT(reset_evacuation_should_fail();)
5862   }
5863 
5864   // Enqueue any remaining references remaining on the STW
5865   // reference processor's discovered lists. We need to do
5866   // this after the card table is cleaned (and verified) as
5867   // the act of enqueueing entries on to the pending list
5868   // will log these updates (and dirty their associated
5869   // cards). We need these updates logged to update any
5870   // RSets.
5871   enqueue_discovered_references(n_workers);
5872 
5873   if (G1DeferredRSUpdate) {
5874     RedirtyLoggedCardTableEntryFastClosure redirty;
5875     dirty_card_queue_set().set_closure(&redirty);
5876     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5877 
5878     DirtyCardQueueSet& dcq = concurrent_g1_refine()->cards_ready_for_refinement();
5879     dcq.merge_bufferlists(&dirty_card_queue_set());
5880     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5881   }
5882   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5883 }
5884 
5885 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5886                                      size_t* pre_used,
5887                                      FreeRegionList* free_list,
5888                                      OldRegionSet* old_proxy_set,
5889                                      HumongousRegionSet* humongous_proxy_set,
5890                                      HRRSCleanupTask* hrrs_cleanup_task,
5891                                      bool par) {
5892   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5893     if (hr->isHumongous()) {
5894       assert(hr->startsHumongous(), "we should only see starts humongous");
5895       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5896     } else {
5897       _old_set.remove_with_proxy(hr, old_proxy_set);
5898       free_region(hr, pre_used, free_list, par);
5899     }
5900   } else {
5901     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5902   }
5903 }
5904 
5905 void G1CollectedHeap::free_region(HeapRegion* hr,
5906                                   size_t* pre_used,
5907                                   FreeRegionList* free_list,
5908                                   bool par) {
5909   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5910   assert(!hr->is_empty(), "the region should not be empty");
5911   assert(free_list != NULL, "pre-condition");
5912 
5913   // Clear the card counts for this region.
5914   // Note: we only need to do this if the region is not young
5915   // (since we don't refine cards in young regions).
5916   if (!hr->is_young()) {
5917     _cg1r->hot_card_cache()->reset_card_counts(hr);
5918   }
5919   *pre_used += hr->used();
5920   hr->hr_clear(par, true /* clear_space */);
5921   free_list->add_as_head(hr);
5922 }
5923 
5924 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5925                                      size_t* pre_used,
5926                                      FreeRegionList* free_list,
5927                                      HumongousRegionSet* humongous_proxy_set,
5928                                      bool par) {
5929   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5930   assert(free_list != NULL, "pre-condition");
5931   assert(humongous_proxy_set != NULL, "pre-condition");
5932 
5933   size_t hr_used = hr->used();
5934   size_t hr_capacity = hr->capacity();
5935   size_t hr_pre_used = 0;
5936   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5937   // We need to read this before we make the region non-humongous,
5938   // otherwise the information will be gone.
5939   uint last_index = hr->last_hc_index();
5940   hr->set_notHumongous();
5941   free_region(hr, &hr_pre_used, free_list, par);
5942 
5943   uint i = hr->hrs_index() + 1;
5944   while (i < last_index) {
5945     HeapRegion* curr_hr = region_at(i);
5946     assert(curr_hr->continuesHumongous(), "invariant");
5947     curr_hr->set_notHumongous();
5948     free_region(curr_hr, &hr_pre_used, free_list, par);
5949     i += 1;
5950   }
5951   assert(hr_pre_used == hr_used,
5952          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5953                  "should be the same", hr_pre_used, hr_used));
5954   *pre_used += hr_pre_used;
5955 }
5956 
5957 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5958                                        FreeRegionList* free_list,
5959                                        OldRegionSet* old_proxy_set,
5960                                        HumongousRegionSet* humongous_proxy_set,
5961                                        bool par) {
5962   if (pre_used > 0) {
5963     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5964     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5965     assert(_summary_bytes_used >= pre_used,
5966            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5967                    "should be >= pre_used: "SIZE_FORMAT,
5968                    _summary_bytes_used, pre_used));
5969     _summary_bytes_used -= pre_used;
5970   }
5971   if (free_list != NULL && !free_list->is_empty()) {
5972     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5973     _free_list.add_as_head(free_list);
5974   }
5975   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5976     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5977     _old_set.update_from_proxy(old_proxy_set);
5978   }
5979   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5980     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5981     _humongous_set.update_from_proxy(humongous_proxy_set);
5982   }
5983 }
5984 
5985 class G1ParCleanupCTTask : public AbstractGangTask {
5986   CardTableModRefBS* _ct_bs;
5987   G1CollectedHeap* _g1h;
5988   HeapRegion* volatile _su_head;
5989 public:
5990   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5991                      G1CollectedHeap* g1h) :
5992     AbstractGangTask("G1 Par Cleanup CT Task"),
5993     _ct_bs(ct_bs), _g1h(g1h) { }
5994 
5995   void work(uint worker_id) {
5996     HeapRegion* r;
5997     while (r = _g1h->pop_dirty_cards_region()) {
5998       clear_cards(r);
5999     }
6000   }
6001 
6002   void clear_cards(HeapRegion* r) {
6003     // Cards of the survivors should have already been dirtied.
6004     if (!r->is_survivor()) {
6005       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6006     }
6007   }
6008 };
6009 
6010 #ifndef PRODUCT
6011 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6012   G1CollectedHeap* _g1h;
6013   CardTableModRefBS* _ct_bs;
6014 public:
6015   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
6016     : _g1h(g1h), _ct_bs(ct_bs) { }
6017   virtual bool doHeapRegion(HeapRegion* r) {
6018     if (r->is_survivor()) {
6019       _g1h->verify_dirty_region(r);
6020     } else {
6021       _g1h->verify_not_dirty_region(r);
6022     }
6023     return false;
6024   }
6025 };
6026 
6027 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6028   // All of the region should be clean.
6029   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
6030   MemRegion mr(hr->bottom(), hr->end());
6031   ct_bs->verify_not_dirty_region(mr);
6032 }
6033 
6034 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6035   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6036   // dirty allocated blocks as they allocate them. The thread that
6037   // retires each region and replaces it with a new one will do a
6038   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6039   // not dirty that area (one less thing to have to do while holding
6040   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6041   // is dirty.
6042   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
6043   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6044   ct_bs->verify_dirty_region(mr);
6045 }
6046 
6047 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6048   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
6049   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6050     verify_dirty_region(hr);
6051   }
6052 }
6053 
6054 void G1CollectedHeap::verify_dirty_young_regions() {
6055   verify_dirty_young_list(_young_list->first_region());
6056 }
6057 #endif
6058 
6059 void G1CollectedHeap::cleanUpCardTable() {
6060   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
6061   double start = os::elapsedTime();
6062 
6063   {
6064     // Iterate over the dirty cards region list.
6065     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6066 
6067     if (G1CollectedHeap::use_parallel_gc_threads()) {
6068       set_par_threads();
6069       workers()->run_task(&cleanup_task);
6070       set_par_threads(0);
6071     } else {
6072       while (_dirty_cards_region_list) {
6073         HeapRegion* r = _dirty_cards_region_list;
6074         cleanup_task.clear_cards(r);
6075         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6076         if (_dirty_cards_region_list == r) {
6077           // The last region.
6078           _dirty_cards_region_list = NULL;
6079         }
6080         r->set_next_dirty_cards_region(NULL);
6081       }
6082     }
6083 #ifndef PRODUCT
6084     if (G1VerifyCTCleanup || VerifyAfterGC) {
6085       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6086       heap_region_iterate(&cleanup_verifier);
6087     }
6088 #endif
6089   }
6090 
6091   double elapsed = os::elapsedTime() - start;
6092   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6093 }
6094 
6095 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6096   size_t pre_used = 0;
6097   FreeRegionList local_free_list("Local List for CSet Freeing");
6098 
6099   double young_time_ms     = 0.0;
6100   double non_young_time_ms = 0.0;
6101 
6102   // Since the collection set is a superset of the the young list,
6103   // all we need to do to clear the young list is clear its
6104   // head and length, and unlink any young regions in the code below
6105   _young_list->clear();
6106 
6107   G1CollectorPolicy* policy = g1_policy();
6108 
6109   double start_sec = os::elapsedTime();
6110   bool non_young = true;
6111 
6112   HeapRegion* cur = cs_head;
6113   int age_bound = -1;
6114   size_t rs_lengths = 0;
6115 
6116   while (cur != NULL) {
6117     assert(!is_on_master_free_list(cur), "sanity");
6118     if (non_young) {
6119       if (cur->is_young()) {
6120         double end_sec = os::elapsedTime();
6121         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6122         non_young_time_ms += elapsed_ms;
6123 
6124         start_sec = os::elapsedTime();
6125         non_young = false;
6126       }
6127     } else {
6128       if (!cur->is_young()) {
6129         double end_sec = os::elapsedTime();
6130         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6131         young_time_ms += elapsed_ms;
6132 
6133         start_sec = os::elapsedTime();
6134         non_young = true;
6135       }
6136     }
6137 
6138     rs_lengths += cur->rem_set()->occupied();
6139 
6140     HeapRegion* next = cur->next_in_collection_set();
6141     assert(cur->in_collection_set(), "bad CS");
6142     cur->set_next_in_collection_set(NULL);
6143     cur->set_in_collection_set(false);
6144 
6145     if (cur->is_young()) {
6146       int index = cur->young_index_in_cset();
6147       assert(index != -1, "invariant");
6148       assert((uint) index < policy->young_cset_region_length(), "invariant");
6149       size_t words_survived = _surviving_young_words[index];
6150       cur->record_surv_words_in_group(words_survived);
6151 
6152       // At this point the we have 'popped' cur from the collection set
6153       // (linked via next_in_collection_set()) but it is still in the
6154       // young list (linked via next_young_region()). Clear the
6155       // _next_young_region field.
6156       cur->set_next_young_region(NULL);
6157     } else {
6158       int index = cur->young_index_in_cset();
6159       assert(index == -1, "invariant");
6160     }
6161 
6162     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6163             (!cur->is_young() && cur->young_index_in_cset() == -1),
6164             "invariant" );
6165 
6166     if (!cur->evacuation_failed()) {
6167       MemRegion used_mr = cur->used_region();
6168 
6169       // And the region is empty.
6170       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6171       free_region(cur, &pre_used, &local_free_list, false /* par */);
6172     } else {
6173       cur->uninstall_surv_rate_group();
6174       if (cur->is_young()) {
6175         cur->set_young_index_in_cset(-1);
6176       }
6177       cur->set_not_young();
6178       cur->set_evacuation_failed(false);
6179       // The region is now considered to be old.
6180       _old_set.add(cur);
6181       evacuation_info.increment_collectionset_used_after(cur->used());
6182     }
6183     cur = next;
6184   }
6185 
6186   evacuation_info.set_regions_freed(local_free_list.length());
6187   policy->record_max_rs_lengths(rs_lengths);
6188   policy->cset_regions_freed();
6189 
6190   double end_sec = os::elapsedTime();
6191   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6192 
6193   if (non_young) {
6194     non_young_time_ms += elapsed_ms;
6195   } else {
6196     young_time_ms += elapsed_ms;
6197   }
6198 
6199   update_sets_after_freeing_regions(pre_used, &local_free_list,
6200                                     NULL /* old_proxy_set */,
6201                                     NULL /* humongous_proxy_set */,
6202                                     false /* par */);
6203   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6204   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6205 }
6206 
6207 // This routine is similar to the above but does not record
6208 // any policy statistics or update free lists; we are abandoning
6209 // the current incremental collection set in preparation of a
6210 // full collection. After the full GC we will start to build up
6211 // the incremental collection set again.
6212 // This is only called when we're doing a full collection
6213 // and is immediately followed by the tearing down of the young list.
6214 
6215 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6216   HeapRegion* cur = cs_head;
6217 
6218   while (cur != NULL) {
6219     HeapRegion* next = cur->next_in_collection_set();
6220     assert(cur->in_collection_set(), "bad CS");
6221     cur->set_next_in_collection_set(NULL);
6222     cur->set_in_collection_set(false);
6223     cur->set_young_index_in_cset(-1);
6224     cur = next;
6225   }
6226 }
6227 
6228 void G1CollectedHeap::set_free_regions_coming() {
6229   if (G1ConcRegionFreeingVerbose) {
6230     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6231                            "setting free regions coming");
6232   }
6233 
6234   assert(!free_regions_coming(), "pre-condition");
6235   _free_regions_coming = true;
6236 }
6237 
6238 void G1CollectedHeap::reset_free_regions_coming() {
6239   assert(free_regions_coming(), "pre-condition");
6240 
6241   {
6242     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6243     _free_regions_coming = false;
6244     SecondaryFreeList_lock->notify_all();
6245   }
6246 
6247   if (G1ConcRegionFreeingVerbose) {
6248     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6249                            "reset free regions coming");
6250   }
6251 }
6252 
6253 void G1CollectedHeap::wait_while_free_regions_coming() {
6254   // Most of the time we won't have to wait, so let's do a quick test
6255   // first before we take the lock.
6256   if (!free_regions_coming()) {
6257     return;
6258   }
6259 
6260   if (G1ConcRegionFreeingVerbose) {
6261     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6262                            "waiting for free regions");
6263   }
6264 
6265   {
6266     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6267     while (free_regions_coming()) {
6268       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6269     }
6270   }
6271 
6272   if (G1ConcRegionFreeingVerbose) {
6273     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6274                            "done waiting for free regions");
6275   }
6276 }
6277 
6278 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6279   assert(heap_lock_held_for_gc(),
6280               "the heap lock should already be held by or for this thread");
6281   _young_list->push_region(hr);
6282 }
6283 
6284 class NoYoungRegionsClosure: public HeapRegionClosure {
6285 private:
6286   bool _success;
6287 public:
6288   NoYoungRegionsClosure() : _success(true) { }
6289   bool doHeapRegion(HeapRegion* r) {
6290     if (r->is_young()) {
6291       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6292                              r->bottom(), r->end());
6293       _success = false;
6294     }
6295     return false;
6296   }
6297   bool success() { return _success; }
6298 };
6299 
6300 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6301   bool ret = _young_list->check_list_empty(check_sample);
6302 
6303   if (check_heap) {
6304     NoYoungRegionsClosure closure;
6305     heap_region_iterate(&closure);
6306     ret = ret && closure.success();
6307   }
6308 
6309   return ret;
6310 }
6311 
6312 class TearDownRegionSetsClosure : public HeapRegionClosure {
6313 private:
6314   OldRegionSet *_old_set;
6315 
6316 public:
6317   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6318 
6319   bool doHeapRegion(HeapRegion* r) {
6320     if (r->is_empty()) {
6321       // We ignore empty regions, we'll empty the free list afterwards
6322     } else if (r->is_young()) {
6323       // We ignore young regions, we'll empty the young list afterwards
6324     } else if (r->isHumongous()) {
6325       // We ignore humongous regions, we're not tearing down the
6326       // humongous region set
6327     } else {
6328       // The rest should be old
6329       _old_set->remove(r);
6330     }
6331     return false;
6332   }
6333 
6334   ~TearDownRegionSetsClosure() {
6335     assert(_old_set->is_empty(), "post-condition");
6336   }
6337 };
6338 
6339 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6340   assert_at_safepoint(true /* should_be_vm_thread */);
6341 
6342   if (!free_list_only) {
6343     TearDownRegionSetsClosure cl(&_old_set);
6344     heap_region_iterate(&cl);
6345 
6346     // Need to do this after the heap iteration to be able to
6347     // recognize the young regions and ignore them during the iteration.
6348     _young_list->empty_list();
6349   }
6350   _free_list.remove_all();
6351 }
6352 
6353 class RebuildRegionSetsClosure : public HeapRegionClosure {
6354 private:
6355   bool            _free_list_only;
6356   OldRegionSet*   _old_set;
6357   FreeRegionList* _free_list;
6358   size_t          _total_used;
6359 
6360 public:
6361   RebuildRegionSetsClosure(bool free_list_only,
6362                            OldRegionSet* old_set, FreeRegionList* free_list) :
6363     _free_list_only(free_list_only),
6364     _old_set(old_set), _free_list(free_list), _total_used(0) {
6365     assert(_free_list->is_empty(), "pre-condition");
6366     if (!free_list_only) {
6367       assert(_old_set->is_empty(), "pre-condition");
6368     }
6369   }
6370 
6371   bool doHeapRegion(HeapRegion* r) {
6372     if (r->continuesHumongous()) {
6373       return false;
6374     }
6375 
6376     if (r->is_empty()) {
6377       // Add free regions to the free list
6378       _free_list->add_as_tail(r);
6379     } else if (!_free_list_only) {
6380       assert(!r->is_young(), "we should not come across young regions");
6381 
6382       if (r->isHumongous()) {
6383         // We ignore humongous regions, we left the humongous set unchanged
6384       } else {
6385         // The rest should be old, add them to the old set
6386         _old_set->add(r);
6387       }
6388       _total_used += r->used();
6389     }
6390 
6391     return false;
6392   }
6393 
6394   size_t total_used() {
6395     return _total_used;
6396   }
6397 };
6398 
6399 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6400   assert_at_safepoint(true /* should_be_vm_thread */);
6401 
6402   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6403   heap_region_iterate(&cl);
6404 
6405   if (!free_list_only) {
6406     _summary_bytes_used = cl.total_used();
6407   }
6408   assert(_summary_bytes_used == recalculate_used(),
6409          err_msg("inconsistent _summary_bytes_used, "
6410                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6411                  _summary_bytes_used, recalculate_used()));
6412 }
6413 
6414 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6415   _refine_cte_cl->set_concurrent(concurrent);
6416 }
6417 
6418 void G1CollectedHeap::set_use_transferring_cte_cl(bool transferring) {
6419   CardTableEntryClosure* cte_cl = NULL;
6420   if (transferring) {
6421     cte_cl = _transfer_cte_cl;
6422   } else {
6423     cte_cl = _refine_cte_cl;
6424   }
6425   JavaThread::dirty_card_queue_set().set_closure(cte_cl);
6426 }
6427 
6428 
6429 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6430   HeapRegion* hr = heap_region_containing(p);
6431   if (hr == NULL) {
6432     return false;
6433   } else {
6434     return hr->is_in(p);
6435   }
6436 }
6437 
6438 // Methods for the mutator alloc region
6439 
6440 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6441                                                       bool force) {
6442   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6443   assert(!force || g1_policy()->can_expand_young_list(),
6444          "if force is true we should be able to expand the young list");
6445   bool young_list_full = g1_policy()->is_young_list_full();
6446   if (force || !young_list_full) {
6447     HeapRegion* new_alloc_region = new_region(word_size,
6448                                               false /* do_expand */);
6449     if (new_alloc_region != NULL) {
6450       set_region_short_lived_locked(new_alloc_region);
6451       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6452       return new_alloc_region;
6453     }
6454   }
6455   return NULL;
6456 }
6457 
6458 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6459                                                   size_t allocated_bytes) {
6460   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6461   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6462 
6463   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6464   _summary_bytes_used += allocated_bytes;
6465   _hr_printer.retire(alloc_region);
6466   // We update the eden sizes here, when the region is retired,
6467   // instead of when it's allocated, since this is the point that its
6468   // used space has been recored in _summary_bytes_used.
6469   g1mm()->update_eden_size();
6470 }
6471 
6472 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6473                                                     bool force) {
6474   return _g1h->new_mutator_alloc_region(word_size, force);
6475 }
6476 
6477 void G1CollectedHeap::set_par_threads() {
6478   // Don't change the number of workers.  Use the value previously set
6479   // in the workgroup.
6480   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6481   uint n_workers = workers()->active_workers();
6482   assert(UseDynamicNumberOfGCThreads ||
6483            n_workers == workers()->total_workers(),
6484       "Otherwise should be using the total number of workers");
6485   if (n_workers == 0) {
6486     assert(false, "Should have been set in prior evacuation pause.");
6487     n_workers = ParallelGCThreads;
6488     workers()->set_active_workers(n_workers);
6489   }
6490   set_par_threads(n_workers);
6491 }
6492 
6493 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6494                                        size_t allocated_bytes) {
6495   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6496 }
6497 
6498 // Methods for the GC alloc regions
6499 
6500 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6501                                                  uint count,
6502                                                  GCAllocPurpose ap) {
6503   assert(FreeList_lock->owned_by_self(), "pre-condition");
6504 
6505   if (count < g1_policy()->max_regions(ap)) {
6506     HeapRegion* new_alloc_region = new_region(word_size,
6507                                               true /* do_expand */);
6508     if (new_alloc_region != NULL) {
6509       // We really only need to do this for old regions given that we
6510       // should never scan survivors. But it doesn't hurt to do it
6511       // for survivors too.
6512       new_alloc_region->set_saved_mark();
6513       if (ap == GCAllocForSurvived) {
6514         new_alloc_region->set_survivor();
6515         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6516       } else {
6517         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6518       }
6519       bool during_im = g1_policy()->during_initial_mark_pause();
6520       new_alloc_region->note_start_of_copying(during_im);
6521       return new_alloc_region;
6522     } else {
6523       g1_policy()->note_alloc_region_limit_reached(ap);
6524     }
6525   }
6526   return NULL;
6527 }
6528 
6529 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6530                                              size_t allocated_bytes,
6531                                              GCAllocPurpose ap) {
6532   bool during_im = g1_policy()->during_initial_mark_pause();
6533   alloc_region->note_end_of_copying(during_im);
6534   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6535   if (ap == GCAllocForSurvived) {
6536     young_list()->add_survivor_region(alloc_region);
6537   } else {
6538     _old_set.add(alloc_region);
6539   }
6540   _hr_printer.retire(alloc_region);
6541 }
6542 
6543 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6544                                                        bool force) {
6545   assert(!force, "not supported for GC alloc regions");
6546   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6547 }
6548 
6549 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6550                                           size_t allocated_bytes) {
6551   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6552                                GCAllocForSurvived);
6553 }
6554 
6555 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6556                                                   bool force) {
6557   assert(!force, "not supported for GC alloc regions");
6558   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6559 }
6560 
6561 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6562                                      size_t allocated_bytes) {
6563   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6564                                GCAllocForTenured);
6565 }
6566 // Heap region set verification
6567 
6568 class VerifyRegionListsClosure : public HeapRegionClosure {
6569 private:
6570   FreeRegionList*     _free_list;
6571   OldRegionSet*       _old_set;
6572   HumongousRegionSet* _humongous_set;
6573   uint                _region_count;
6574 
6575 public:
6576   VerifyRegionListsClosure(OldRegionSet* old_set,
6577                            HumongousRegionSet* humongous_set,
6578                            FreeRegionList* free_list) :
6579     _old_set(old_set), _humongous_set(humongous_set),
6580     _free_list(free_list), _region_count(0) { }
6581 
6582   uint region_count() { return _region_count; }
6583 
6584   bool doHeapRegion(HeapRegion* hr) {
6585     _region_count += 1;
6586 
6587     if (hr->continuesHumongous()) {
6588       return false;
6589     }
6590 
6591     if (hr->is_young()) {
6592       // TODO
6593     } else if (hr->startsHumongous()) {
6594       _humongous_set->verify_next_region(hr);
6595     } else if (hr->is_empty()) {
6596       _free_list->verify_next_region(hr);
6597     } else {
6598       _old_set->verify_next_region(hr);
6599     }
6600     return false;
6601   }
6602 };
6603 
6604 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6605                                              HeapWord* bottom) {
6606   HeapWord* end = bottom + HeapRegion::GrainWords;
6607   MemRegion mr(bottom, end);
6608   assert(_g1_reserved.contains(mr), "invariant");
6609   // This might return NULL if the allocation fails
6610   return new HeapRegion(hrs_index, _bot_shared, mr);
6611 }
6612 
6613 void G1CollectedHeap::verify_region_sets() {
6614   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6615 
6616   // First, check the explicit lists.
6617   _free_list.verify();
6618   {
6619     // Given that a concurrent operation might be adding regions to
6620     // the secondary free list we have to take the lock before
6621     // verifying it.
6622     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6623     _secondary_free_list.verify();
6624   }
6625   _old_set.verify();
6626   _humongous_set.verify();
6627 
6628   // If a concurrent region freeing operation is in progress it will
6629   // be difficult to correctly attributed any free regions we come
6630   // across to the correct free list given that they might belong to
6631   // one of several (free_list, secondary_free_list, any local lists,
6632   // etc.). So, if that's the case we will skip the rest of the
6633   // verification operation. Alternatively, waiting for the concurrent
6634   // operation to complete will have a non-trivial effect on the GC's
6635   // operation (no concurrent operation will last longer than the
6636   // interval between two calls to verification) and it might hide
6637   // any issues that we would like to catch during testing.
6638   if (free_regions_coming()) {
6639     return;
6640   }
6641 
6642   // Make sure we append the secondary_free_list on the free_list so
6643   // that all free regions we will come across can be safely
6644   // attributed to the free_list.
6645   append_secondary_free_list_if_not_empty_with_lock();
6646 
6647   // Finally, make sure that the region accounting in the lists is
6648   // consistent with what we see in the heap.
6649   _old_set.verify_start();
6650   _humongous_set.verify_start();
6651   _free_list.verify_start();
6652 
6653   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6654   heap_region_iterate(&cl);
6655 
6656   _old_set.verify_end();
6657   _humongous_set.verify_end();
6658   _free_list.verify_end();
6659 }