1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  27 
  28 #include "gc_interface/gcCause.hpp"
  29 #include "gc_implementation/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/barrierSet.hpp"
  32 #include "runtime/handles.hpp"
  33 #include "runtime/perfData.hpp"
  34 #include "runtime/safepoint.hpp"
  35 #include "utilities/events.hpp"
  36 
  37 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  38 // is an abstract class: there may be many different kinds of heaps.  This
  39 // class defines the functions that a heap must implement, and contains
  40 // infrastructure common to all heaps.
  41 
  42 class AdaptiveSizePolicy;
  43 class BarrierSet;
  44 class CollectorPolicy;
  45 class GCHeapSummary;
  46 class GCTimer;
  47 class GCTracer;
  48 class MetaspaceSummary;
  49 class Thread;
  50 class ThreadClosure;
  51 class VirtualSpaceSummary;
  52 
  53 class GCMessage : public FormatBuffer<1024> {
  54  public:
  55   bool is_before;
  56 
  57  public:
  58   GCMessage() {}
  59 };
  60 
  61 class GCHeapLog : public EventLogBase<GCMessage> {
  62  private:
  63   void log_heap(bool before);
  64 
  65  public:
  66   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  67 
  68   void log_heap_before() {
  69     log_heap(true);
  70   }
  71   void log_heap_after() {
  72     log_heap(false);
  73   }
  74 };
  75 
  76 //
  77 // CollectedHeap
  78 //   SharedHeap
  79 //     GenCollectedHeap
  80 //     G1CollectedHeap
  81 //   ParallelScavengeHeap
  82 //
  83 class CollectedHeap : public CHeapObj<mtInternal> {
  84   friend class VMStructs;
  85   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  86 
  87 #ifdef ASSERT
  88   static int       _fire_out_of_memory_count;
  89 #endif
  90 
  91   // Used for filler objects (static, but initialized in ctor).
  92   static size_t _filler_array_max_size;
  93 
  94   GCHeapLog* _gc_heap_log;
  95 
  96   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
  97   bool _defer_initial_card_mark;
  98 
  99  protected:
 100   MemRegion _reserved;
 101   BarrierSet* _barrier_set;
 102   bool _is_gc_active;
 103   uint _n_par_threads;
 104 
 105   unsigned int _total_collections;          // ... started
 106   unsigned int _total_full_collections;     // ... started
 107   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 108   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 109 
 110   // Reason for current garbage collection.  Should be set to
 111   // a value reflecting no collection between collections.
 112   GCCause::Cause _gc_cause;
 113   GCCause::Cause _gc_lastcause;
 114   PerfStringVariable* _perf_gc_cause;
 115   PerfStringVariable* _perf_gc_lastcause;
 116 
 117   // Constructor
 118   CollectedHeap();
 119 
 120   // Do common initializations that must follow instance construction,
 121   // for example, those needing virtual calls.
 122   // This code could perhaps be moved into initialize() but would
 123   // be slightly more awkward because we want the latter to be a
 124   // pure virtual.
 125   void pre_initialize();
 126 
 127   // Create a new tlab. All TLAB allocations must go through this.
 128   virtual HeapWord* allocate_new_tlab(size_t size);
 129 
 130   // Accumulate statistics on all tlabs.
 131   virtual void accumulate_statistics_all_tlabs();
 132 
 133   // Reinitialize tlabs before resuming mutators.
 134   virtual void resize_all_tlabs();
 135 
 136   // Allocate from the current thread's TLAB, with broken-out slow path.
 137   inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
 138   static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);
 139 
 140   // Allocate an uninitialized block of the given size, or returns NULL if
 141   // this is impossible.
 142   inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);
 143 
 144   // Like allocate_init, but the block returned by a successful allocation
 145   // is guaranteed initialized to zeros.
 146   inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);
 147 
 148   // Helper functions for (VM) allocation.
 149   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
 150   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
 151                                                             HeapWord* objPtr);
 152 
 153   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj);
 154 
 155   inline static void post_allocation_setup_array(KlassHandle klass,
 156                                                  HeapWord* obj, int length);
 157 
 158   // Clears an allocated object.
 159   inline static void init_obj(HeapWord* obj, size_t size);
 160 
 161   // Filler object utilities.
 162   static inline size_t filler_array_hdr_size();
 163   static inline size_t filler_array_min_size();
 164 
 165   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 166   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 167 
 168   // Fill with a single array; caller must ensure filler_array_min_size() <=
 169   // words <= filler_array_max_size().
 170   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 171 
 172   // Fill with a single object (either an int array or a java.lang.Object).
 173   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 174 
 175   virtual void trace_heap(GCWhen::Type when, GCTracer* tracer);
 176 
 177   // Verification functions
 178   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 179     PRODUCT_RETURN;
 180   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 181     PRODUCT_RETURN;
 182   debug_only(static void check_for_valid_allocation_state();)
 183 
 184  public:
 185   enum Name {
 186     Abstract,
 187     SharedHeap,
 188     GenCollectedHeap,
 189     ParallelScavengeHeap,
 190     G1CollectedHeap
 191   };
 192 
 193   static inline size_t filler_array_max_size() {
 194     return _filler_array_max_size;
 195   }
 196 
 197   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
 198 
 199   /**
 200    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 201    * and JNI_OK on success.
 202    */
 203   virtual jint initialize() = 0;
 204 
 205   // In many heaps, there will be a need to perform some initialization activities
 206   // after the Universe is fully formed, but before general heap allocation is allowed.
 207   // This is the correct place to place such initialization methods.
 208   virtual void post_initialize() = 0;
 209 
 210   MemRegion reserved_region() const { return _reserved; }
 211   address base() const { return (address)reserved_region().start(); }
 212 
 213   virtual size_t capacity() const = 0;
 214   virtual size_t used() const = 0;
 215 
 216   // Return "true" if the part of the heap that allocates Java
 217   // objects has reached the maximal committed limit that it can
 218   // reach, without a garbage collection.
 219   virtual bool is_maximal_no_gc() const = 0;
 220 
 221   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 222   // memory that the vm could make available for storing 'normal' java objects.
 223   // This is based on the reserved address space, but should not include space
 224   // that the vm uses internally for bookkeeping or temporary storage
 225   // (e.g., in the case of the young gen, one of the survivor
 226   // spaces).
 227   virtual size_t max_capacity() const = 0;
 228 
 229   // Returns "TRUE" if "p" points into the reserved area of the heap.
 230   bool is_in_reserved(const void* p) const {
 231     return _reserved.contains(p);
 232   }
 233 
 234   bool is_in_reserved_or_null(const void* p) const {
 235     return p == NULL || is_in_reserved(p);
 236   }
 237 
 238   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 239   // Since this method can be expensive in general, we restrict its
 240   // use to assertion checking only.
 241   virtual bool is_in(const void* p) const = 0;
 242 
 243   bool is_in_or_null(const void* p) const {
 244     return p == NULL || is_in(p);
 245   }
 246 
 247   bool is_in_place(Metadata** p) {
 248     return !Universe::heap()->is_in(p);
 249   }
 250   bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
 251   bool is_in_place(narrowOop* p) {
 252     oop o = oopDesc::load_decode_heap_oop_not_null(p);
 253     return Universe::heap()->is_in((const void*)o);
 254   }
 255 
 256   // Let's define some terms: a "closed" subset of a heap is one that
 257   //
 258   // 1) contains all currently-allocated objects, and
 259   //
 260   // 2) is closed under reference: no object in the closed subset
 261   //    references one outside the closed subset.
 262   //
 263   // Membership in a heap's closed subset is useful for assertions.
 264   // Clearly, the entire heap is a closed subset, so the default
 265   // implementation is to use "is_in_reserved".  But this may not be too
 266   // liberal to perform useful checking.  Also, the "is_in" predicate
 267   // defines a closed subset, but may be too expensive, since "is_in"
 268   // verifies that its argument points to an object head.  The
 269   // "closed_subset" method allows a heap to define an intermediate
 270   // predicate, allowing more precise checking than "is_in_reserved" at
 271   // lower cost than "is_in."
 272 
 273   // One important case is a heap composed of disjoint contiguous spaces,
 274   // such as the Garbage-First collector.  Such heaps have a convenient
 275   // closed subset consisting of the allocated portions of those
 276   // contiguous spaces.
 277 
 278   // Return "TRUE" iff the given pointer points into the heap's defined
 279   // closed subset (which defaults to the entire heap).
 280   virtual bool is_in_closed_subset(const void* p) const {
 281     return is_in_reserved(p);
 282   }
 283 
 284   bool is_in_closed_subset_or_null(const void* p) const {
 285     return p == NULL || is_in_closed_subset(p);
 286   }
 287 
 288 #ifdef ASSERT
 289   // Returns true if "p" is in the part of the
 290   // heap being collected.
 291   virtual bool is_in_partial_collection(const void *p) = 0;
 292 #endif
 293 
 294   // An object is scavengable if its location may move during a scavenge.
 295   // (A scavenge is a GC which is not a full GC.)
 296   virtual bool is_scavengable(const void *p) = 0;
 297 
 298   void set_gc_cause(GCCause::Cause v) {
 299      if (UsePerfData) {
 300        _gc_lastcause = _gc_cause;
 301        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 302        _perf_gc_cause->set_value(GCCause::to_string(v));
 303      }
 304     _gc_cause = v;
 305   }
 306   GCCause::Cause gc_cause() { return _gc_cause; }
 307 
 308   // Number of threads currently working on GC tasks.
 309   uint n_par_threads() { return _n_par_threads; }
 310 
 311   // May be overridden to set additional parallelism.
 312   virtual void set_par_threads(uint t) { _n_par_threads = t; };
 313 
 314   // Allocate and initialize instances of Class
 315   static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS);
 316 
 317   // General obj/array allocation facilities.
 318   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
 319   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
 320   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
 321 
 322   inline static void post_allocation_install_obj_klass(KlassHandle klass,
 323                                                        oop obj);
 324 
 325   // Raw memory allocation facilities
 326   // The obj and array allocate methods are covers for these methods.
 327   // mem_allocate() should never be
 328   // called to allocate TLABs, only individual objects.
 329   virtual HeapWord* mem_allocate(size_t size,
 330                                  bool* gc_overhead_limit_was_exceeded) = 0;
 331 
 332   // Utilities for turning raw memory into filler objects.
 333   //
 334   // min_fill_size() is the smallest region that can be filled.
 335   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 336   // multiple objects.  fill_with_object() is for regions known to be smaller
 337   // than the largest array of integers; it uses a single object to fill the
 338   // region and has slightly less overhead.
 339   static size_t min_fill_size() {
 340     return size_t(align_object_size(oopDesc::header_size()));
 341   }
 342 
 343   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 344 
 345   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 346   static void fill_with_object(MemRegion region, bool zap = true) {
 347     fill_with_object(region.start(), region.word_size(), zap);
 348   }
 349   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 350     fill_with_object(start, pointer_delta(end, start), zap);
 351   }
 352 
 353   // Some heaps may offer a contiguous region for shared non-blocking
 354   // allocation, via inlined code (by exporting the address of the top and
 355   // end fields defining the extent of the contiguous allocation region.)
 356 
 357   // This function returns "true" iff the heap supports this kind of
 358   // allocation.  (Default is "no".)
 359   virtual bool supports_inline_contig_alloc() const {
 360     return false;
 361   }
 362   // These functions return the addresses of the fields that define the
 363   // boundaries of the contiguous allocation area.  (These fields should be
 364   // physically near to one another.)
 365   virtual HeapWord** top_addr() const {
 366     guarantee(false, "inline contiguous allocation not supported");
 367     return NULL;
 368   }
 369   virtual HeapWord** end_addr() const {
 370     guarantee(false, "inline contiguous allocation not supported");
 371     return NULL;
 372   }
 373 
 374   // Some heaps may be in an unparseable state at certain times between
 375   // collections. This may be necessary for efficient implementation of
 376   // certain allocation-related activities. Calling this function before
 377   // attempting to parse a heap ensures that the heap is in a parsable
 378   // state (provided other concurrent activity does not introduce
 379   // unparsability). It is normally expected, therefore, that this
 380   // method is invoked with the world stopped.
 381   // NOTE: if you override this method, make sure you call
 382   // super::ensure_parsability so that the non-generational
 383   // part of the work gets done. See implementation of
 384   // CollectedHeap::ensure_parsability and, for instance,
 385   // that of GenCollectedHeap::ensure_parsability().
 386   // The argument "retire_tlabs" controls whether existing TLABs
 387   // are merely filled or also retired, thus preventing further
 388   // allocation from them and necessitating allocation of new TLABs.
 389   virtual void ensure_parsability(bool retire_tlabs);
 390 
 391   // Return an estimate of the maximum allocation that could be performed
 392   // without triggering any collection or expansion activity.  In a
 393   // generational collector, for example, this is probably the largest
 394   // allocation that could be supported (without expansion) in the youngest
 395   // generation.  It is "unsafe" because no locks are taken; the result
 396   // should be treated as an approximation, not a guarantee, for use in
 397   // heuristic resizing decisions.
 398   virtual size_t unsafe_max_alloc() = 0;
 399 
 400   // Section on thread-local allocation buffers (TLABs)
 401   // If the heap supports thread-local allocation buffers, it should override
 402   // the following methods:
 403   // Returns "true" iff the heap supports thread-local allocation buffers.
 404   // The default is "no".
 405   virtual bool supports_tlab_allocation() const {
 406     return false;
 407   }
 408   // The amount of space available for thread-local allocation buffers.
 409   virtual size_t tlab_capacity(Thread *thr) const {
 410     guarantee(false, "thread-local allocation buffers not supported");
 411     return 0;
 412   }
 413   // An estimate of the maximum allocation that could be performed
 414   // for thread-local allocation buffers without triggering any
 415   // collection or expansion activity.
 416   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 417     guarantee(false, "thread-local allocation buffers not supported");
 418     return 0;
 419   }
 420 
 421   // Can a compiler initialize a new object without store barriers?
 422   // This permission only extends from the creation of a new object
 423   // via a TLAB up to the first subsequent safepoint. If such permission
 424   // is granted for this heap type, the compiler promises to call
 425   // defer_store_barrier() below on any slow path allocation of
 426   // a new object for which such initializing store barriers will
 427   // have been elided.
 428   virtual bool can_elide_tlab_store_barriers() const = 0;
 429 
 430   // If a compiler is eliding store barriers for TLAB-allocated objects,
 431   // there is probably a corresponding slow path which can produce
 432   // an object allocated anywhere.  The compiler's runtime support
 433   // promises to call this function on such a slow-path-allocated
 434   // object before performing initializations that have elided
 435   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 436   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 437 
 438   // Answers whether an initializing store to a new object currently
 439   // allocated at the given address doesn't need a store
 440   // barrier. Returns "true" if it doesn't need an initializing
 441   // store barrier; answers "false" if it does.
 442   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 443 
 444   // If a compiler is eliding store barriers for TLAB-allocated objects,
 445   // we will be informed of a slow-path allocation by a call
 446   // to new_store_pre_barrier() above. Such a call precedes the
 447   // initialization of the object itself, and no post-store-barriers will
 448   // be issued. Some heap types require that the barrier strictly follows
 449   // the initializing stores. (This is currently implemented by deferring the
 450   // barrier until the next slow-path allocation or gc-related safepoint.)
 451   // This interface answers whether a particular heap type needs the card
 452   // mark to be thus strictly sequenced after the stores.
 453   virtual bool card_mark_must_follow_store() const = 0;
 454 
 455   // If the CollectedHeap was asked to defer a store barrier above,
 456   // this informs it to flush such a deferred store barrier to the
 457   // remembered set.
 458   virtual void flush_deferred_store_barrier(JavaThread* thread);
 459 
 460   // Does this heap support heap inspection (+PrintClassHistogram?)
 461   virtual bool supports_heap_inspection() const = 0;
 462 
 463   // Perform a collection of the heap; intended for use in implementing
 464   // "System.gc".  This probably implies as full a collection as the
 465   // "CollectedHeap" supports.
 466   virtual void collect(GCCause::Cause cause) = 0;
 467 
 468   // Perform a full collection
 469   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 470 
 471   // This interface assumes that it's being called by the
 472   // vm thread. It collects the heap assuming that the
 473   // heap lock is already held and that we are executing in
 474   // the context of the vm thread.
 475   virtual void collect_as_vm_thread(GCCause::Cause cause);
 476 
 477   virtual void inform_non_gc_safepoint() {}
 478 
 479   // Callback from VM_CollectForMetadataAllocation operation.
 480   MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 481                                                size_t size,
 482                                                Metaspace::MetadataType mdtype);
 483 
 484   // Returns the barrier set for this heap
 485   BarrierSet* barrier_set() { return _barrier_set; }
 486 
 487   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 488   // that it should answer "false" for the concurrent part of a concurrent
 489   // collector -- dld).
 490   bool is_gc_active() const { return _is_gc_active; }
 491 
 492   // Total number of GC collections (started)
 493   unsigned int total_collections() const { return _total_collections; }
 494   unsigned int total_full_collections() const { return _total_full_collections;}
 495 
 496   // Increment total number of GC collections (started)
 497   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 498   void increment_total_collections(bool full = false) {
 499     _total_collections++;
 500     if (full) {
 501       increment_total_full_collections();
 502     }
 503   }
 504 
 505   void increment_total_full_collections() { _total_full_collections++; }
 506 
 507   // Return the AdaptiveSizePolicy for the heap.
 508   virtual AdaptiveSizePolicy* size_policy() = 0;
 509 
 510   // Return the CollectorPolicy for the heap
 511   virtual CollectorPolicy* collector_policy() const = 0;
 512 
 513   void oop_iterate_no_header(OopClosure* cl);
 514 
 515   // Iterate over all the ref-containing fields of all objects, calling
 516   // "cl.do_oop" on each.
 517   virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
 518 
 519   // Iterate over all objects, calling "cl.do_object" on each.
 520   virtual void object_iterate(ObjectClosure* cl) = 0;
 521 
 522   // Similar to object_iterate() except iterates only
 523   // over live objects.
 524   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 525 
 526   // NOTE! There is no requirement that a collector implement these
 527   // functions.
 528   //
 529   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 530   // each address in the (reserved) heap is a member of exactly
 531   // one block.  The defining characteristic of a block is that it is
 532   // possible to find its size, and thus to progress forward to the next
 533   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 534   // represent Java objects, or they might be free blocks in a
 535   // free-list-based heap (or subheap), as long as the two kinds are
 536   // distinguishable and the size of each is determinable.
 537 
 538   // Returns the address of the start of the "block" that contains the
 539   // address "addr".  We say "blocks" instead of "object" since some heaps
 540   // may not pack objects densely; a chunk may either be an object or a
 541   // non-object.
 542   virtual HeapWord* block_start(const void* addr) const = 0;
 543 
 544   // Requires "addr" to be the start of a chunk, and returns its size.
 545   // "addr + size" is required to be the start of a new chunk, or the end
 546   // of the active area of the heap.
 547   virtual size_t block_size(const HeapWord* addr) const = 0;
 548 
 549   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 550   // the block is an object.
 551   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 552 
 553   // Returns the longest time (in ms) that has elapsed since the last
 554   // time that any part of the heap was examined by a garbage collection.
 555   virtual jlong millis_since_last_gc() = 0;
 556 
 557   // Perform any cleanup actions necessary before allowing a verification.
 558   virtual void prepare_for_verify() = 0;
 559 
 560   // Generate any dumps preceding or following a full gc
 561   void pre_full_gc_dump(GCTimer* timer);
 562   void post_full_gc_dump(GCTimer* timer);
 563 
 564   VirtualSpaceSummary create_heap_space_summary();
 565   GCHeapSummary create_heap_summary();
 566 
 567   MetaspaceSummary create_metaspace_summary();
 568 
 569   // Print heap information on the given outputStream.
 570   virtual void print_on(outputStream* st) const = 0;
 571   // The default behavior is to call print_on() on tty.
 572   virtual void print() const {
 573     print_on(tty);
 574   }
 575   // Print more detailed heap information on the given
 576   // outputStream. The default behavior is to call print_on(). It is
 577   // up to each subclass to override it and add any additional output
 578   // it needs.
 579   virtual void print_extended_on(outputStream* st) const {
 580     print_on(st);
 581   }
 582 
 583   virtual void print_on_error(outputStream* st) const {
 584     st->print_cr("Heap:");
 585     print_extended_on(st);
 586     st->cr();
 587 
 588     _barrier_set->print_on(st);
 589   }
 590 
 591   // Print all GC threads (other than the VM thread)
 592   // used by this heap.
 593   virtual void print_gc_threads_on(outputStream* st) const = 0;
 594   // The default behavior is to call print_gc_threads_on() on tty.
 595   void print_gc_threads() {
 596     print_gc_threads_on(tty);
 597   }
 598   // Iterator for all GC threads (other than VM thread)
 599   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 600 
 601   // Print any relevant tracing info that flags imply.
 602   // Default implementation does nothing.
 603   virtual void print_tracing_info() const = 0;
 604 
 605   void print_heap_before_gc();
 606   void print_heap_after_gc();
 607 
 608   void trace_heap_before_gc(GCTracer* gc_tracer);
 609   void trace_heap_after_gc(GCTracer* gc_tracer);
 610 
 611   // Heap verification
 612   virtual void verify(bool silent, VerifyOption option) = 0;
 613 
 614   // Non product verification and debugging.
 615 #ifndef PRODUCT
 616   // Support for PromotionFailureALot.  Return true if it's time to cause a
 617   // promotion failure.  The no-argument version uses
 618   // this->_promotion_failure_alot_count as the counter.
 619   inline bool promotion_should_fail(volatile size_t* count);
 620   inline bool promotion_should_fail();
 621 
 622   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 623   // GC in which promotion failure occurred.
 624   inline void reset_promotion_should_fail(volatile size_t* count);
 625   inline void reset_promotion_should_fail();
 626 #endif  // #ifndef PRODUCT
 627 
 628 #ifdef ASSERT
 629   static int fired_fake_oom() {
 630     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 631   }
 632 #endif
 633 
 634  public:
 635   // This is a convenience method that is used in cases where
 636   // the actual number of GC worker threads is not pertinent but
 637   // only whether there more than 0.  Use of this method helps
 638   // reduce the occurrence of ParallelGCThreads to uses where the
 639   // actual number may be germane.
 640   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
 641 
 642   /////////////// Unit tests ///////////////
 643 
 644   NOT_PRODUCT(static void test_is_in();)
 645 };
 646 
 647 // Class to set and reset the GC cause for a CollectedHeap.
 648 
 649 class GCCauseSetter : StackObj {
 650   CollectedHeap* _heap;
 651   GCCause::Cause _previous_cause;
 652  public:
 653   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 654     assert(SafepointSynchronize::is_at_safepoint(),
 655            "This method manipulates heap state without locking");
 656     _heap = heap;
 657     _previous_cause = _heap->gc_cause();
 658     _heap->set_gc_cause(cause);
 659   }
 660 
 661   ~GCCauseSetter() {
 662     assert(SafepointSynchronize::is_at_safepoint(),
 663           "This method manipulates heap state without locking");
 664     _heap->set_gc_cause(_previous_cause);
 665   }
 666 };
 667 
 668 class NonGCSafepointMark : StackObj {
 669   CollectedHeap* _heap;
 670   unsigned int _total_collections;
 671   unsigned int _total_full_collections;
 672 public:
 673   NonGCSafepointMark(CollectedHeap* heap) : _heap(heap),
 674       _total_collections(heap->total_collections()),
 675       _total_full_collections(heap->total_full_collections()) { }
 676 
 677   ~NonGCSafepointMark() {
 678     if (_heap->total_collections() == _total_collections &&
 679         _heap->total_full_collections() == _total_full_collections) {
 680       _heap->inform_non_gc_safepoint();
 681     }
 682   }
 683 };
 684 
 685 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP