1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/method.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "prims/methodHandles.hpp"
  32 #include "runtime/frame.inline.hpp"
  33 #include "runtime/handles.inline.hpp"
  34 #include "runtime/javaCalls.hpp"
  35 #include "runtime/monitorChunk.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/signature.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 #ifdef COMPILER1
  42 #include "c1/c1_Runtime1.hpp"
  43 #include "runtime/vframeArray.hpp"
  44 #endif
  45 
  46 #ifdef ASSERT
  47 void RegisterMap::check_location_valid() {
  48 }
  49 #endif
  50 
  51 
  52 // Profiling/safepoint support
  53 
  54 bool frame::safe_for_sender(JavaThread *thread) {
  55   address   sp = (address)_sp;
  56   address   fp = (address)_fp;
  57   address   unextended_sp = (address)_unextended_sp;
  58 
  59   // consider stack guards when trying to determine "safe" stack pointers
  60   static size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
  61   size_t usable_stack_size = thread->stack_size() - stack_guard_size;
  62 
  63   // sp must be within the usable part of the stack (not in guards)
  64   bool sp_safe = (sp < thread->stack_base()) &&
  65                  (sp >= thread->stack_base() - usable_stack_size);
  66 
  67 
  68   if (!sp_safe) {
  69     return false;
  70   }
  71 
  72   // unextended sp must be within the stack and above or equal sp
  73   bool unextended_sp_safe = (unextended_sp < thread->stack_base()) &&
  74                             (unextended_sp >= sp);
  75 
  76   if (!unextended_sp_safe) {
  77     return false;
  78   }
  79 
  80   // an fp must be within the stack and above (but not equal) sp
  81   // second evaluation on fp+ is added to handle situation where fp is -1
  82   bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
  83 
  84   // We know sp/unextended_sp are safe only fp is questionable here
  85 
  86   // If the current frame is known to the code cache then we can attempt to
  87   // to construct the sender and do some validation of it. This goes a long way
  88   // toward eliminating issues when we get in frame construction code
  89 
  90   if (_cb != NULL ) {
  91 
  92     // First check if frame is complete and tester is reliable
  93     // Unfortunately we can only check frame complete for runtime stubs and nmethod
  94     // other generic buffer blobs are more problematic so we just assume they are
  95     // ok. adapter blobs never have a frame complete and are never ok.
  96 
  97     // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
  98 
  99     if (!Interpreter::contains(_pc) && _cb->frame_size() <= 0) {
 100       //assert(0, "Invalid frame_size");
 101       return false;
 102     }
 103 
 104     if (!_cb->is_frame_complete_at(_pc)) {
 105       if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
 106         return false;
 107       }
 108     }
 109 
 110     // Could just be some random pointer within the codeBlob
 111     if (!_cb->code_contains(_pc)) {
 112       return false;
 113     }
 114 
 115     // Entry frame checks
 116     if (is_entry_frame()) {
 117       // an entry frame must have a valid fp.
 118 
 119       if (!fp_safe) return false;
 120 
 121       // Validate the JavaCallWrapper an entry frame must have
 122 
 123       address jcw = (address)entry_frame_call_wrapper();
 124 
 125       bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > fp);
 126 
 127       return jcw_safe;
 128 
 129     }
 130 
 131     intptr_t* sender_sp = NULL;
 132     address   sender_pc = NULL;
 133 
 134     if (is_interpreted_frame()) {
 135       // fp must be safe
 136       if (!fp_safe) {
 137         return false;
 138       }
 139 
 140       sender_pc = (address) this->fp()[return_addr_offset];
 141       sender_sp = (intptr_t*) addr_at(sender_sp_offset);
 142 
 143     } else {
 144       // must be some sort of compiled/runtime frame
 145       // fp does not have to be safe (although it could be check for c1?)
 146 
 147       sender_sp = _unextended_sp + _cb->frame_size();
 148       // On Intel the return_address is always the word on the stack
 149       sender_pc = (address) *(sender_sp-1);
 150     }
 151 
 152 
 153     // If the potential sender is the interpreter then we can do some more checking
 154     if (Interpreter::contains(sender_pc)) {
 155 
 156       // ebp is always saved in a recognizable place in any code we generate. However
 157       // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
 158       // is really a frame pointer.
 159 
 160       intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
 161       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 162 
 163       if (!saved_fp_safe) {
 164         return false;
 165       }
 166 
 167       // construct the potential sender
 168 
 169       frame sender(sender_sp, saved_fp, sender_pc);
 170 
 171       return sender.is_interpreted_frame_valid(thread);
 172 
 173     }
 174 
 175     // We must always be able to find a recognizable pc
 176     CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
 177     if (sender_pc == NULL ||  sender_blob == NULL) {
 178       return false;
 179     }
 180 
 181     // Could be a zombie method
 182     if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
 183       return false;
 184     }
 185 
 186     // Could just be some random pointer within the codeBlob
 187     if (!sender_blob->code_contains(sender_pc)) {
 188       return false;
 189     }
 190 
 191     // We should never be able to see an adapter if the current frame is something from code cache
 192     if (sender_blob->is_adapter_blob()) {
 193       return false;
 194     }
 195 
 196     // Could be the call_stub
 197     if (StubRoutines::returns_to_call_stub(sender_pc)) {
 198       intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
 199       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 200 
 201       if (!saved_fp_safe) {
 202         return false;
 203       }
 204 
 205       // construct the potential sender
 206 
 207       frame sender(sender_sp, saved_fp, sender_pc);
 208 
 209       // Validate the JavaCallWrapper an entry frame must have
 210       address jcw = (address)sender.entry_frame_call_wrapper();
 211 
 212       bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > (address)sender.fp());
 213 
 214       return jcw_safe;
 215     }
 216 
 217     if (sender_blob->is_nmethod()) {
 218         nmethod* nm = sender_blob->as_nmethod_or_null();
 219         if (nm != NULL) {
 220             if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc)) {
 221                 return false;
 222             }
 223         }
 224     }
 225 
 226     // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
 227     // because the return address counts against the callee's frame.
 228 
 229     if (sender_blob->frame_size() <= 0) {
 230       assert(!sender_blob->is_nmethod(), "should count return address at least");
 231       return false;
 232     }
 233 
 234     // We should never be able to see anything here except an nmethod. If something in the
 235     // code cache (current frame) is called by an entity within the code cache that entity
 236     // should not be anything but the call stub (already covered), the interpreter (already covered)
 237     // or an nmethod.
 238 
 239     if (!sender_blob->is_nmethod()) {
 240         return false;
 241     }
 242 
 243     // Could put some more validation for the potential non-interpreted sender
 244     // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
 245 
 246     // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
 247 
 248     // We've validated the potential sender that would be created
 249     return true;
 250   }
 251 
 252   // Must be native-compiled frame. Since sender will try and use fp to find
 253   // linkages it must be safe
 254 
 255   if (!fp_safe) {
 256     return false;
 257   }
 258 
 259   // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
 260 
 261   if ( (address) this->fp()[return_addr_offset] == NULL) return false;
 262 
 263 
 264   // could try and do some more potential verification of native frame if we could think of some...
 265 
 266   return true;
 267 
 268 }
 269 
 270 
 271 void frame::patch_pc(Thread* thread, address pc) {
 272   address* pc_addr = &(((address*) sp())[-1]);
 273   if (TracePcPatching) {
 274     tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
 275                   pc_addr, *pc_addr, pc);
 276   }
 277   // Either the return address is the original one or we are going to
 278   // patch in the same address that's already there.
 279   assert(_pc == *pc_addr || pc == *pc_addr, "must be");
 280   *pc_addr = pc;
 281   _cb = CodeCache::find_blob(pc);
 282   address original_pc = nmethod::get_deopt_original_pc(this);
 283   if (original_pc != NULL) {
 284     assert(original_pc == _pc, "expected original PC to be stored before patching");
 285     _deopt_state = is_deoptimized;
 286     // leave _pc as is
 287   } else {
 288     _deopt_state = not_deoptimized;
 289     _pc = pc;
 290   }
 291 }
 292 
 293 bool frame::is_interpreted_frame() const  {
 294   return Interpreter::contains(pc());
 295 }
 296 
 297 int frame::frame_size(RegisterMap* map) const {
 298   frame sender = this->sender(map);
 299   return sender.sp() - sp();
 300 }
 301 
 302 intptr_t* frame::entry_frame_argument_at(int offset) const {
 303   // convert offset to index to deal with tsi
 304   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 305   // Entry frame's arguments are always in relation to unextended_sp()
 306   return &unextended_sp()[index];
 307 }
 308 
 309 // sender_sp
 310 #ifdef CC_INTERP
 311 intptr_t* frame::interpreter_frame_sender_sp() const {
 312   assert(is_interpreted_frame(), "interpreted frame expected");
 313   // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
 314   // seems odd and if we always know interpreted vs. non then sender_sp() is really
 315   // doing too much work.
 316   return get_interpreterState()->sender_sp();
 317 }
 318 
 319 // monitor elements
 320 
 321 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
 322   return get_interpreterState()->monitor_base();
 323 }
 324 
 325 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
 326   return (BasicObjectLock*) get_interpreterState()->stack_base();
 327 }
 328 
 329 #else // CC_INTERP
 330 
 331 intptr_t* frame::interpreter_frame_sender_sp() const {
 332   assert(is_interpreted_frame(), "interpreted frame expected");
 333   return (intptr_t*) at(interpreter_frame_sender_sp_offset);
 334 }
 335 
 336 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
 337   assert(is_interpreted_frame(), "interpreted frame expected");
 338   ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
 339 }
 340 
 341 
 342 // monitor elements
 343 
 344 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
 345   return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
 346 }
 347 
 348 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
 349   BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
 350   // make sure the pointer points inside the frame
 351   assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
 352   assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
 353   return result;
 354 }
 355 
 356 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
 357   *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
 358 }
 359 
 360 // Used by template based interpreter deoptimization
 361 void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
 362     *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
 363 }
 364 #endif // CC_INTERP
 365 
 366 frame frame::sender_for_entry_frame(RegisterMap* map) const {
 367   assert(map != NULL, "map must be set");
 368   // Java frame called from C; skip all C frames and return top C
 369   // frame of that chunk as the sender
 370   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
 371   assert(!entry_frame_is_first(), "next Java fp must be non zero");
 372   assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
 373   map->clear();
 374   assert(map->include_argument_oops(), "should be set by clear");
 375   if (jfa->last_Java_pc() != NULL ) {
 376     frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
 377     return fr;
 378   }
 379   frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
 380   return fr;
 381 }
 382 
 383 //------------------------------------------------------------------------------
 384 // frame::verify_deopt_original_pc
 385 //
 386 // Verifies the calculated original PC of a deoptimization PC for the
 387 // given unextended SP.  The unextended SP might also be the saved SP
 388 // for MethodHandle call sites.
 389 #ifdef ASSERT
 390 void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) {
 391   frame fr;
 392 
 393   // This is ugly but it's better than to change {get,set}_original_pc
 394   // to take an SP value as argument.  And it's only a debugging
 395   // method anyway.
 396   fr._unextended_sp = unextended_sp;
 397 
 398   address original_pc = nm->get_original_pc(&fr);
 399   assert(nm->insts_contains(original_pc), "original PC must be in nmethod");
 400   assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be");
 401 }
 402 #endif
 403 
 404 //------------------------------------------------------------------------------
 405 // frame::adjust_unextended_sp
 406 void frame::adjust_unextended_sp() {
 407   // If we are returning to a compiled MethodHandle call site, the
 408   // saved_fp will in fact be a saved value of the unextended SP.  The
 409   // simplest way to tell whether we are returning to such a call site
 410   // is as follows:
 411 
 412   nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null();
 413   if (sender_nm != NULL) {
 414     // If the sender PC is a deoptimization point, get the original
 415     // PC.  For MethodHandle call site the unextended_sp is stored in
 416     // saved_fp.
 417     if (sender_nm->is_deopt_mh_entry(_pc)) {
 418       DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp));
 419       _unextended_sp = _fp;
 420     }
 421     else if (sender_nm->is_deopt_entry(_pc)) {
 422       DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp));
 423     }
 424     else if (sender_nm->is_method_handle_return(_pc)) {
 425       _unextended_sp = _fp;
 426     }
 427   }
 428 }
 429 
 430 //------------------------------------------------------------------------------
 431 // frame::update_map_with_saved_link
 432 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
 433   // The interpreter and compiler(s) always save EBP/RBP in a known
 434   // location on entry. We must record where that location is
 435   // so this if EBP/RBP was live on callout from c2 we can find
 436   // the saved copy no matter what it called.
 437 
 438   // Since the interpreter always saves EBP/RBP if we record where it is then
 439   // we don't have to always save EBP/RBP on entry and exit to c2 compiled
 440   // code, on entry will be enough.
 441   map->set_location(rbp->as_VMReg(), (address) link_addr);
 442 #ifdef AMD64
 443   // this is weird "H" ought to be at a higher address however the
 444   // oopMaps seems to have the "H" regs at the same address and the
 445   // vanilla register.
 446   // XXXX make this go away
 447   if (true) {
 448     map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
 449   }
 450 #endif // AMD64
 451 }
 452 
 453 
 454 //------------------------------------------------------------------------------
 455 // frame::sender_for_interpreter_frame
 456 frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
 457   // SP is the raw SP from the sender after adapter or interpreter
 458   // extension.
 459   intptr_t* sender_sp = this->sender_sp();
 460 
 461   // This is the sp before any possible extension (adapter/locals).
 462   intptr_t* unextended_sp = interpreter_frame_sender_sp();
 463 
 464 #ifdef COMPILER2
 465   if (map->update_map()) {
 466     update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
 467   }
 468 #endif // COMPILER2
 469 
 470   return frame(sender_sp, unextended_sp, link(), sender_pc());
 471 }
 472 
 473 
 474 //------------------------------------------------------------------------------
 475 // frame::sender_for_compiled_frame
 476 frame frame::sender_for_compiled_frame(RegisterMap* map) const {
 477   assert(map != NULL, "map must be set");
 478 
 479   // frame owned by optimizing compiler
 480   assert(_cb->frame_size() >= 0, "must have non-zero frame size");
 481   intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
 482   intptr_t* unextended_sp = sender_sp;
 483 
 484   // On Intel the return_address is always the word on the stack
 485   address sender_pc = (address) *(sender_sp-1);
 486 
 487   // This is the saved value of EBP which may or may not really be an FP.
 488   // It is only an FP if the sender is an interpreter frame (or C1?).
 489   intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
 490 
 491   if (map->update_map()) {
 492     // Tell GC to use argument oopmaps for some runtime stubs that need it.
 493     // For C1, the runtime stub might not have oop maps, so set this flag
 494     // outside of update_register_map.
 495     map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
 496     if (_cb->oop_maps() != NULL) {
 497       OopMapSet::update_register_map(this, map);
 498     }
 499 
 500     // Since the prolog does the save and restore of EBP there is no oopmap
 501     // for it so we must fill in its location as if there was an oopmap entry
 502     // since if our caller was compiled code there could be live jvm state in it.
 503     update_map_with_saved_link(map, saved_fp_addr);
 504   }
 505 
 506   assert(sender_sp != sp(), "must have changed");
 507   return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
 508 }
 509 
 510 
 511 //------------------------------------------------------------------------------
 512 // frame::sender
 513 frame frame::sender(RegisterMap* map) const {
 514   // Default is we done have to follow them. The sender_for_xxx will
 515   // update it accordingly
 516   map->set_include_argument_oops(false);
 517 
 518   if (is_entry_frame())       return sender_for_entry_frame(map);
 519   if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
 520   assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
 521 
 522   if (_cb != NULL) {
 523     return sender_for_compiled_frame(map);
 524   }
 525   // Must be native-compiled frame, i.e. the marshaling code for native
 526   // methods that exists in the core system.
 527   return frame(sender_sp(), link(), sender_pc());
 528 }
 529 
 530 
 531 bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
 532   assert(is_interpreted_frame(), "must be interpreter frame");
 533   Method* method = interpreter_frame_method();
 534   // When unpacking an optimized frame the frame pointer is
 535   // adjusted with:
 536   int diff = (method->max_locals() - method->size_of_parameters()) *
 537              Interpreter::stackElementWords;
 538   return _fp == (fp - diff);
 539 }
 540 
 541 void frame::pd_gc_epilog() {
 542   // nothing done here now
 543 }
 544 
 545 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
 546 // QQQ
 547 #ifdef CC_INTERP
 548 #else
 549   assert(is_interpreted_frame(), "Not an interpreted frame");
 550   // These are reasonable sanity checks
 551   if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
 552     return false;
 553   }
 554   if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
 555     return false;
 556   }
 557   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
 558     return false;
 559   }
 560   // These are hacks to keep us out of trouble.
 561   // The problem with these is that they mask other problems
 562   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
 563     return false;
 564   }
 565 
 566   // do some validation of frame elements
 567 
 568   // first the method
 569 
 570   Method* m = *interpreter_frame_method_addr();
 571 
 572   // validate the method we'd find in this potential sender
 573   if (!m->is_valid_method()) return false;
 574 
 575   // stack frames shouldn't be much larger than max_stack elements
 576 
 577   if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
 578     return false;
 579   }
 580 
 581   // validate bci/bcx
 582 
 583   intptr_t  bcx    = interpreter_frame_bcx();
 584   if (m->validate_bci_from_bcx(bcx) < 0) {
 585     return false;
 586   }
 587 
 588   // validate ConstantPoolCache*
 589   ConstantPoolCache* cp = *interpreter_frame_cache_addr();
 590   if (cp == NULL || !cp->is_metaspace_object()) return false;
 591 
 592   // validate locals
 593 
 594   address locals =  (address) *interpreter_frame_locals_addr();
 595 
 596   if (locals > thread->stack_base() || locals < (address) fp()) return false;
 597 
 598   // We'd have to be pretty unlucky to be mislead at this point
 599 
 600 #endif // CC_INTERP
 601   return true;
 602 }
 603 
 604 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
 605 #ifdef CC_INTERP
 606   // Needed for JVMTI. The result should always be in the
 607   // interpreterState object
 608   interpreterState istate = get_interpreterState();
 609 #endif // CC_INTERP
 610   assert(is_interpreted_frame(), "interpreted frame expected");
 611   Method* method = interpreter_frame_method();
 612   BasicType type = method->result_type();
 613 
 614   intptr_t* tos_addr;
 615   if (method->is_native()) {
 616     // Prior to calling into the runtime to report the method_exit the possible
 617     // return value is pushed to the native stack. If the result is a jfloat/jdouble
 618     // then ST0 is saved before EAX/EDX. See the note in generate_native_result
 619     tos_addr = (intptr_t*)sp();
 620     if (type == T_FLOAT || type == T_DOUBLE) {
 621     // QQQ seems like this code is equivalent on the two platforms
 622 #ifdef AMD64
 623       // This is times two because we do a push(ltos) after pushing XMM0
 624       // and that takes two interpreter stack slots.
 625       tos_addr += 2 * Interpreter::stackElementWords;
 626 #else
 627       tos_addr += 2;
 628 #endif // AMD64
 629     }
 630   } else {
 631     tos_addr = (intptr_t*)interpreter_frame_tos_address();
 632   }
 633 
 634   switch (type) {
 635     case T_OBJECT  :
 636     case T_ARRAY   : {
 637       oop obj;
 638       if (method->is_native()) {
 639 #ifdef CC_INTERP
 640         obj = istate->_oop_temp;
 641 #else
 642         obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
 643 #endif // CC_INTERP
 644       } else {
 645         oop* obj_p = (oop*)tos_addr;
 646         obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
 647       }
 648       assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
 649       *oop_result = obj;
 650       break;
 651     }
 652     case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
 653     case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
 654     case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
 655     case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
 656     case T_INT     : value_result->i = *(jint*)tos_addr; break;
 657     case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
 658     case T_FLOAT   : {
 659 #ifdef AMD64
 660         value_result->f = *(jfloat*)tos_addr;
 661 #else
 662       if (method->is_native()) {
 663         jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
 664         value_result->f = (jfloat)d;
 665       } else {
 666         value_result->f = *(jfloat*)tos_addr;
 667       }
 668 #endif // AMD64
 669       break;
 670     }
 671     case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
 672     case T_VOID    : /* Nothing to do */ break;
 673     default        : ShouldNotReachHere();
 674   }
 675 
 676   return type;
 677 }
 678 
 679 
 680 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
 681   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 682   return &interpreter_frame_tos_address()[index];
 683 }
 684 
 685 #ifndef PRODUCT
 686 
 687 #define DESCRIBE_FP_OFFSET(name) \
 688   values.describe(frame_no, fp() + frame::name##_offset, #name)
 689 
 690 void frame::describe_pd(FrameValues& values, int frame_no) {
 691   if (is_interpreted_frame()) {
 692     DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
 693     DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
 694     DESCRIBE_FP_OFFSET(interpreter_frame_method);
 695     DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
 696     DESCRIBE_FP_OFFSET(interpreter_frame_cache);
 697     DESCRIBE_FP_OFFSET(interpreter_frame_locals);
 698     DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
 699     DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
 700   }
 701 }
 702 #endif
 703 
 704 intptr_t *frame::initial_deoptimization_info() {
 705   // used to reset the saved FP
 706   return fp();
 707 }
 708 
 709 intptr_t* frame::real_fp() const {
 710   if (_cb != NULL) {
 711     // use the frame size if valid
 712     int size = _cb->frame_size();
 713     if (size > 0) {
 714       return unextended_sp() + size;
 715     }
 716   }
 717   // else rely on fp()
 718   assert(! is_compiled_frame(), "unknown compiled frame size");
 719   return fp();
 720 }