1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/shared/collectedHeap.inline.hpp"
  34 #include "gc/shared/collectorCounters.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/gcTrace.hpp"
  38 #include "gc/shared/gcTraceTime.inline.hpp"
  39 #include "gc/shared/genCollectedHeap.hpp"
  40 #include "gc/shared/genOopClosures.inline.hpp"
  41 #include "gc/shared/generationSpec.hpp"
  42 #include "gc/shared/space.hpp"
  43 #include "gc/shared/strongRootsScope.hpp"
  44 #include "gc/shared/vmGCOperations.hpp"
  45 #include "gc/shared/weakProcessor.hpp"
  46 #include "gc/shared/workgroup.hpp"
  47 #include "memory/filemap.hpp"
  48 #include "memory/metaspaceCounters.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/handles.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/vmThread.hpp"
  56 #include "services/management.hpp"
  57 #include "services/memoryService.hpp"
  58 #include "utilities/debug.hpp"
  59 #include "utilities/formatBuffer.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/stack.inline.hpp"
  62 #include "utilities/vmError.hpp"
  63 
  64 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  65   CollectedHeap(),
  66   _rem_set(NULL),
  67   _gen_policy(policy),
  68   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  69   _full_collections_completed(0)
  70 {
  71   assert(policy != NULL, "Sanity check");
  72 }
  73 
  74 jint GenCollectedHeap::initialize() {
  75   CollectedHeap::pre_initialize();
  76 
  77   // While there are no constraints in the GC code that HeapWordSize
  78   // be any particular value, there are multiple other areas in the
  79   // system which believe this to be true (e.g. oop->object_size in some
  80   // cases incorrectly returns the size in wordSize units rather than
  81   // HeapWordSize).
  82   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  83 
  84   // Allocate space for the heap.
  85 
  86   char* heap_address;
  87   ReservedSpace heap_rs;
  88 
  89   size_t heap_alignment = collector_policy()->heap_alignment();
  90 
  91   heap_address = allocate(heap_alignment, &heap_rs);
  92 
  93   if (!heap_rs.is_reserved()) {
  94     vm_shutdown_during_initialization(
  95       "Could not reserve enough space for object heap");
  96     return JNI_ENOMEM;
  97   }
  98 
  99   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 100 
 101   _rem_set = collector_policy()->create_rem_set(reserved_region());
 102   set_barrier_set(rem_set()->bs());
 103 
 104   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 105   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 106   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 107 
 108   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 109   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 110   clear_incremental_collection_failed();
 111 
 112   return JNI_OK;
 113 }
 114 
 115 char* GenCollectedHeap::allocate(size_t alignment,
 116                                  ReservedSpace* heap_rs){
 117   // Now figure out the total size.
 118   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 119   assert(alignment % pageSize == 0, "Must be");
 120 
 121   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 122   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 123 
 124   // Check for overflow.
 125   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 126   if (total_reserved < young_spec->max_size()) {
 127     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 128                                   "the maximum representable size");
 129   }
 130   assert(total_reserved % alignment == 0,
 131          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 132          SIZE_FORMAT, total_reserved, alignment);
 133 
 134   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 135 
 136   os::trace_page_sizes("Heap",
 137                        collector_policy()->min_heap_byte_size(),
 138                        total_reserved,
 139                        alignment,
 140                        heap_rs->base(),
 141                        heap_rs->size());
 142 
 143   return heap_rs->base();
 144 }
 145 
 146 void GenCollectedHeap::post_initialize() {
 147   CollectedHeap::post_initialize();
 148   ref_processing_init();
 149   check_gen_kinds();
 150   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 151 
 152   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 153                                       _old_gen->capacity(),
 154                                       def_new_gen->from()->capacity());
 155   _gen_policy->initialize_gc_policy_counters();
 156 }
 157 
 158 void GenCollectedHeap::ref_processing_init() {
 159   _young_gen->ref_processor_init();
 160   _old_gen->ref_processor_init();
 161 }
 162 
 163 size_t GenCollectedHeap::capacity() const {
 164   return _young_gen->capacity() + _old_gen->capacity();
 165 }
 166 
 167 size_t GenCollectedHeap::used() const {
 168   return _young_gen->used() + _old_gen->used();
 169 }
 170 
 171 void GenCollectedHeap::save_used_regions() {
 172   _old_gen->save_used_region();
 173   _young_gen->save_used_region();
 174 }
 175 
 176 size_t GenCollectedHeap::max_capacity() const {
 177   return _young_gen->max_capacity() + _old_gen->max_capacity();
 178 }
 179 
 180 // Update the _full_collections_completed counter
 181 // at the end of a stop-world full GC.
 182 unsigned int GenCollectedHeap::update_full_collections_completed() {
 183   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 184   assert(_full_collections_completed <= _total_full_collections,
 185          "Can't complete more collections than were started");
 186   _full_collections_completed = _total_full_collections;
 187   ml.notify_all();
 188   return _full_collections_completed;
 189 }
 190 
 191 // Update the _full_collections_completed counter, as appropriate,
 192 // at the end of a concurrent GC cycle. Note the conditional update
 193 // below to allow this method to be called by a concurrent collector
 194 // without synchronizing in any manner with the VM thread (which
 195 // may already have initiated a STW full collection "concurrently").
 196 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 197   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 198   assert((_full_collections_completed <= _total_full_collections) &&
 199          (count <= _total_full_collections),
 200          "Can't complete more collections than were started");
 201   if (count > _full_collections_completed) {
 202     _full_collections_completed = count;
 203     ml.notify_all();
 204   }
 205   return _full_collections_completed;
 206 }
 207 
 208 
 209 #ifndef PRODUCT
 210 // Override of memory state checking method in CollectedHeap:
 211 // Some collectors (CMS for example) can't have badHeapWordVal written
 212 // in the first two words of an object. (For instance , in the case of
 213 // CMS these words hold state used to synchronize between certain
 214 // (concurrent) GC steps and direct allocating mutators.)
 215 // The skip_header_HeapWords() method below, allows us to skip
 216 // over the requisite number of HeapWord's. Note that (for
 217 // generational collectors) this means that those many words are
 218 // skipped in each object, irrespective of the generation in which
 219 // that object lives. The resultant loss of precision seems to be
 220 // harmless and the pain of avoiding that imprecision appears somewhat
 221 // higher than we are prepared to pay for such rudimentary debugging
 222 // support.
 223 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 224                                                          size_t size) {
 225   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 226     // We are asked to check a size in HeapWords,
 227     // but the memory is mangled in juint words.
 228     juint* start = (juint*) (addr + skip_header_HeapWords());
 229     juint* end   = (juint*) (addr + size);
 230     for (juint* slot = start; slot < end; slot += 1) {
 231       assert(*slot == badHeapWordVal,
 232              "Found non badHeapWordValue in pre-allocation check");
 233     }
 234   }
 235 }
 236 #endif
 237 
 238 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 239                                                bool is_tlab,
 240                                                bool first_only) {
 241   HeapWord* res = NULL;
 242 
 243   if (_young_gen->should_allocate(size, is_tlab)) {
 244     res = _young_gen->allocate(size, is_tlab);
 245     if (res != NULL || first_only) {
 246       return res;
 247     }
 248   }
 249 
 250   if (_old_gen->should_allocate(size, is_tlab)) {
 251     res = _old_gen->allocate(size, is_tlab);
 252   }
 253 
 254   return res;
 255 }
 256 
 257 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 258                                          bool* gc_overhead_limit_was_exceeded) {
 259   return gen_policy()->mem_allocate_work(size,
 260                                          false /* is_tlab */,
 261                                          gc_overhead_limit_was_exceeded);
 262 }
 263 
 264 bool GenCollectedHeap::must_clear_all_soft_refs() {
 265   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 266          _gc_cause == GCCause::_wb_full_gc;
 267 }
 268 
 269 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 270                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 271                                           bool restore_marks_for_biased_locking) {
 272   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 273   GCTraceTime(Trace, gc, phases) t1(title);
 274   TraceCollectorStats tcs(gen->counters());
 275   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 276 
 277   gen->stat_record()->invocations++;
 278   gen->stat_record()->accumulated_time.start();
 279 
 280   // Must be done anew before each collection because
 281   // a previous collection will do mangling and will
 282   // change top of some spaces.
 283   record_gen_tops_before_GC();
 284 
 285   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 286 
 287   if (run_verification && VerifyBeforeGC) {
 288     HandleMark hm;  // Discard invalid handles created during verification
 289     Universe::verify("Before GC");
 290   }
 291   COMPILER2_PRESENT(DerivedPointerTable::clear());
 292 
 293   if (restore_marks_for_biased_locking) {
 294     // We perform this mark word preservation work lazily
 295     // because it's only at this point that we know whether we
 296     // absolutely have to do it; we want to avoid doing it for
 297     // scavenge-only collections where it's unnecessary
 298     BiasedLocking::preserve_marks();
 299   }
 300 
 301   // Do collection work
 302   {
 303     // Note on ref discovery: For what appear to be historical reasons,
 304     // GCH enables and disabled (by enqueing) refs discovery.
 305     // In the future this should be moved into the generation's
 306     // collect method so that ref discovery and enqueueing concerns
 307     // are local to a generation. The collect method could return
 308     // an appropriate indication in the case that notification on
 309     // the ref lock was needed. This will make the treatment of
 310     // weak refs more uniform (and indeed remove such concerns
 311     // from GCH). XXX
 312 
 313     HandleMark hm;  // Discard invalid handles created during gc
 314     save_marks();   // save marks for all gens
 315     // We want to discover references, but not process them yet.
 316     // This mode is disabled in process_discovered_references if the
 317     // generation does some collection work, or in
 318     // enqueue_discovered_references if the generation returns
 319     // without doing any work.
 320     ReferenceProcessor* rp = gen->ref_processor();
 321     // If the discovery of ("weak") refs in this generation is
 322     // atomic wrt other collectors in this configuration, we
 323     // are guaranteed to have empty discovered ref lists.
 324     if (rp->discovery_is_atomic()) {
 325       rp->enable_discovery();
 326       rp->setup_policy(clear_soft_refs);
 327     } else {
 328       // collect() below will enable discovery as appropriate
 329     }
 330     gen->collect(full, clear_soft_refs, size, is_tlab);
 331     if (!rp->enqueuing_is_done()) {
 332       ReferenceProcessorPhaseTimes pt(NULL, rp->num_q());
 333       rp->enqueue_discovered_references(NULL, &pt);
 334       pt.print_enqueue_phase();
 335     } else {
 336       rp->set_enqueuing_is_done(false);
 337     }
 338     rp->verify_no_references_recorded();
 339   }
 340 
 341   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 342 
 343   gen->stat_record()->accumulated_time.stop();
 344 
 345   update_gc_stats(gen, full);
 346 
 347   if (run_verification && VerifyAfterGC) {
 348     HandleMark hm;  // Discard invalid handles created during verification
 349     Universe::verify("After GC");
 350   }
 351 }
 352 
 353 void GenCollectedHeap::do_collection(bool           full,
 354                                      bool           clear_all_soft_refs,
 355                                      size_t         size,
 356                                      bool           is_tlab,
 357                                      GenerationType max_generation) {
 358   ResourceMark rm;
 359   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 360 
 361   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 362   assert(my_thread->is_VM_thread() ||
 363          my_thread->is_ConcurrentGC_thread(),
 364          "incorrect thread type capability");
 365   assert(Heap_lock->is_locked(),
 366          "the requesting thread should have the Heap_lock");
 367   guarantee(!is_gc_active(), "collection is not reentrant");
 368 
 369   if (GCLocker::check_active_before_gc()) {
 370     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 371   }
 372 
 373   GCIdMarkAndRestore gc_id_mark;
 374 
 375   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 376                           collector_policy()->should_clear_all_soft_refs();
 377 
 378   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 379 
 380   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 381 
 382   print_heap_before_gc();
 383 
 384   {
 385     FlagSetting fl(_is_gc_active, true);
 386 
 387     bool complete = full && (max_generation == OldGen);
 388     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 389     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 390 
 391     FormatBuffer<> gc_string("%s", "Pause ");
 392     if (do_young_collection) {
 393       gc_string.append("Young");
 394     } else {
 395       gc_string.append("Full");
 396     }
 397 
 398     GCTraceCPUTime tcpu;
 399     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 400 
 401     gc_prologue(complete);
 402     increment_total_collections(complete);
 403 
 404     size_t young_prev_used = _young_gen->used();
 405     size_t old_prev_used = _old_gen->used();
 406 
 407     bool run_verification = total_collections() >= VerifyGCStartAt;
 408 
 409     bool prepared_for_verification = false;
 410     bool collected_old = false;
 411 
 412     if (do_young_collection) {
 413       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 414         prepare_for_verify();
 415         prepared_for_verification = true;
 416       }
 417 
 418       collect_generation(_young_gen,
 419                          full,
 420                          size,
 421                          is_tlab,
 422                          run_verification && VerifyGCLevel <= 0,
 423                          do_clear_all_soft_refs,
 424                          false);
 425 
 426       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 427           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 428         // Allocation request was met by young GC.
 429         size = 0;
 430       }
 431     }
 432 
 433     bool must_restore_marks_for_biased_locking = false;
 434 
 435     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 436       if (!complete) {
 437         // The full_collections increment was missed above.
 438         increment_total_full_collections();
 439       }
 440 
 441       if (!prepared_for_verification && run_verification &&
 442           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 443         prepare_for_verify();
 444       }
 445 
 446       if (do_young_collection) {
 447         // We did a young GC. Need a new GC id for the old GC.
 448         GCIdMarkAndRestore gc_id_mark;
 449         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 450         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 451       } else {
 452         // No young GC done. Use the same GC id as was set up earlier in this method.
 453         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 454       }
 455 
 456       must_restore_marks_for_biased_locking = true;
 457       collected_old = true;
 458     }
 459 
 460     // Update "complete" boolean wrt what actually transpired --
 461     // for instance, a promotion failure could have led to
 462     // a whole heap collection.
 463     complete = complete || collected_old;
 464 
 465     print_heap_change(young_prev_used, old_prev_used);
 466     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 467 
 468     // Adjust generation sizes.
 469     if (collected_old) {
 470       _old_gen->compute_new_size();
 471     }
 472     _young_gen->compute_new_size();
 473 
 474     if (complete) {
 475       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 476       ClassLoaderDataGraph::purge();
 477       MetaspaceAux::verify_metrics();
 478       // Resize the metaspace capacity after full collections
 479       MetaspaceGC::compute_new_size();
 480       update_full_collections_completed();
 481     }
 482 
 483     // Track memory usage and detect low memory after GC finishes
 484     MemoryService::track_memory_usage();
 485 
 486     gc_epilogue(complete);
 487 
 488     if (must_restore_marks_for_biased_locking) {
 489       BiasedLocking::restore_marks();
 490     }
 491   }
 492 
 493   print_heap_after_gc();
 494 
 495 #ifdef TRACESPINNING
 496   ParallelTaskTerminator::print_termination_counts();
 497 #endif
 498 }
 499 
 500 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 501   CodeCache::register_scavenge_root_nmethod(nm);
 502 }
 503 
 504 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 505   CodeCache::verify_scavenge_root_nmethod(nm);
 506 }
 507 
 508 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 509   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 510 }
 511 
 512 #ifdef ASSERT
 513 class AssertNonScavengableClosure: public OopClosure {
 514 public:
 515   virtual void do_oop(oop* p) {
 516     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 517       "Referent should not be scavengable.");  }
 518   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 519 };
 520 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 521 #endif
 522 
 523 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 524                                      ScanningOption so,
 525                                      OopClosure* strong_roots,
 526                                      OopClosure* weak_roots,
 527                                      CLDClosure* strong_cld_closure,
 528                                      CLDClosure* weak_cld_closure,
 529                                      CodeBlobToOopClosure* code_roots) {
 530   // General roots.
 531   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 532   assert(code_roots != NULL, "code root closure should always be set");
 533   // _n_termination for _process_strong_tasks should be set up stream
 534   // in a method not running in a GC worker.  Otherwise the GC worker
 535   // could be trying to change the termination condition while the task
 536   // is executing in another GC worker.
 537 
 538   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 539     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 540   }
 541 
 542   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 543   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 544 
 545   bool is_par = scope->n_threads() > 1;
 546   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 547 
 548   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 549     Universe::oops_do(strong_roots);
 550   }
 551   // Global (strong) JNI handles
 552   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 553     JNIHandles::oops_do(strong_roots);
 554   }
 555 
 556   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 557     ObjectSynchronizer::oops_do(strong_roots);
 558   }
 559   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 560     Management::oops_do(strong_roots);
 561   }
 562   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 563     JvmtiExport::oops_do(strong_roots);
 564   }
 565   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 566     AOTLoader::oops_do(strong_roots);
 567   }
 568 
 569   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 570     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 571   }
 572 
 573   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 574     if (so & SO_ScavengeCodeCache) {
 575       assert(code_roots != NULL, "must supply closure for code cache");
 576 
 577       // We only visit parts of the CodeCache when scavenging.
 578       CodeCache::scavenge_root_nmethods_do(code_roots);
 579     }
 580     if (so & SO_AllCodeCache) {
 581       assert(code_roots != NULL, "must supply closure for code cache");
 582 
 583       // CMSCollector uses this to do intermediate-strength collections.
 584       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 585       CodeCache::blobs_do(code_roots);
 586     }
 587     // Verify that the code cache contents are not subject to
 588     // movement by a scavenging collection.
 589     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 590     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 591   }
 592 }
 593 
 594 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 595                                                   OopClosure* root_closure) {
 596   assert(root_closure != NULL, "Must be set");
 597   // All threads execute the following. A specific chunk of buckets
 598   // from the StringTable are the individual tasks.
 599   if (scope->n_threads() > 1) {
 600     StringTable::possibly_parallel_oops_do(root_closure);
 601   } else {
 602     StringTable::oops_do(root_closure);
 603   }
 604 }
 605 
 606 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 607                                            OopsInGenClosure* root_closure,
 608                                            OopsInGenClosure* old_gen_closure,
 609                                            CLDClosure* cld_closure) {
 610   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 611 
 612   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 613                 cld_closure, cld_closure, &mark_code_closure);
 614   process_string_table_roots(scope, root_closure);
 615 
 616   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 617     root_closure->reset_generation();
 618   }
 619 
 620   // When collection is parallel, all threads get to cooperate to do
 621   // old generation scanning.
 622   old_gen_closure->set_generation(_old_gen);
 623   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 624   old_gen_closure->reset_generation();
 625 
 626   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 627 }
 628 
 629 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 630                                           bool is_adjust_phase,
 631                                           ScanningOption so,
 632                                           bool only_strong_roots,
 633                                           OopsInGenClosure* root_closure,
 634                                           CLDClosure* cld_closure) {
 635   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 636   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 637   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 638 
 639   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 640   if (is_adjust_phase) {
 641     // We never treat the string table as roots during marking
 642     // for the full gc, so we only need to process it during
 643     // the adjust phase.
 644     process_string_table_roots(scope, root_closure);
 645   }
 646 
 647   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 648 }
 649 
 650 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 651   WeakProcessor::oops_do(root_closure);
 652   _young_gen->ref_processor()->weak_oops_do(root_closure);
 653   _old_gen->ref_processor()->weak_oops_do(root_closure);
 654 }
 655 
 656 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 657 void GenCollectedHeap::                                                 \
 658 oop_since_save_marks_iterate(GenerationType gen,                        \
 659                              OopClosureType* cur,                       \
 660                              OopClosureType* older) {                   \
 661   if (gen == YoungGen) {                              \
 662     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 663     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 664   } else {                                                              \
 665     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 666   }                                                                     \
 667 }
 668 
 669 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 670 
 671 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 672 
 673 bool GenCollectedHeap::no_allocs_since_save_marks() {
 674   return _young_gen->no_allocs_since_save_marks() &&
 675          _old_gen->no_allocs_since_save_marks();
 676 }
 677 
 678 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 679   return _young_gen->supports_inline_contig_alloc();
 680 }
 681 
 682 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 683   return _young_gen->top_addr();
 684 }
 685 
 686 HeapWord** GenCollectedHeap::end_addr() const {
 687   return _young_gen->end_addr();
 688 }
 689 
 690 // public collection interfaces
 691 
 692 void GenCollectedHeap::collect(GCCause::Cause cause) {
 693   if (cause == GCCause::_wb_young_gc) {
 694     // Young collection for the WhiteBox API.
 695     collect(cause, YoungGen);
 696   } else {
 697 #ifdef ASSERT
 698   if (cause == GCCause::_scavenge_alot) {
 699     // Young collection only.
 700     collect(cause, YoungGen);
 701   } else {
 702     // Stop-the-world full collection.
 703     collect(cause, OldGen);
 704   }
 705 #else
 706     // Stop-the-world full collection.
 707     collect(cause, OldGen);
 708 #endif
 709   }
 710 }
 711 
 712 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 713   // The caller doesn't have the Heap_lock
 714   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 715   MutexLocker ml(Heap_lock);
 716   collect_locked(cause, max_generation);
 717 }
 718 
 719 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 720   // The caller has the Heap_lock
 721   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 722   collect_locked(cause, OldGen);
 723 }
 724 
 725 // this is the private collection interface
 726 // The Heap_lock is expected to be held on entry.
 727 
 728 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 729   // Read the GC count while holding the Heap_lock
 730   unsigned int gc_count_before      = total_collections();
 731   unsigned int full_gc_count_before = total_full_collections();
 732   {
 733     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 734     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 735                          cause, max_generation);
 736     VMThread::execute(&op);
 737   }
 738 }
 739 
 740 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 741    do_full_collection(clear_all_soft_refs, OldGen);
 742 }
 743 
 744 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 745                                           GenerationType last_generation) {
 746   GenerationType local_last_generation;
 747   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 748       gc_cause() == GCCause::_gc_locker) {
 749     local_last_generation = YoungGen;
 750   } else {
 751     local_last_generation = last_generation;
 752   }
 753 
 754   do_collection(true,                   // full
 755                 clear_all_soft_refs,    // clear_all_soft_refs
 756                 0,                      // size
 757                 false,                  // is_tlab
 758                 local_last_generation); // last_generation
 759   // Hack XXX FIX ME !!!
 760   // A scavenge may not have been attempted, or may have
 761   // been attempted and failed, because the old gen was too full
 762   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 763       incremental_collection_will_fail(false /* don't consult_young */)) {
 764     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 765     // This time allow the old gen to be collected as well
 766     do_collection(true,                // full
 767                   clear_all_soft_refs, // clear_all_soft_refs
 768                   0,                   // size
 769                   false,               // is_tlab
 770                   OldGen);             // last_generation
 771   }
 772 }
 773 
 774 bool GenCollectedHeap::is_in_young(oop p) {
 775   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 776   assert(result == _young_gen->is_in_reserved(p),
 777          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 778   return result;
 779 }
 780 
 781 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 782 bool GenCollectedHeap::is_in(const void* p) const {
 783   return _young_gen->is_in(p) || _old_gen->is_in(p);
 784 }
 785 
 786 #ifdef ASSERT
 787 // Don't implement this by using is_in_young().  This method is used
 788 // in some cases to check that is_in_young() is correct.
 789 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 790   assert(is_in_reserved(p) || p == NULL,
 791     "Does not work if address is non-null and outside of the heap");
 792   return p < _young_gen->reserved().end() && p != NULL;
 793 }
 794 #endif
 795 
 796 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 797   NoHeaderExtendedOopClosure no_header_cl(cl);
 798   oop_iterate(&no_header_cl);
 799 }
 800 
 801 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 802   _young_gen->oop_iterate(cl);
 803   _old_gen->oop_iterate(cl);
 804 }
 805 
 806 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 807   _young_gen->object_iterate(cl);
 808   _old_gen->object_iterate(cl);
 809 }
 810 
 811 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 812   _young_gen->safe_object_iterate(cl);
 813   _old_gen->safe_object_iterate(cl);
 814 }
 815 
 816 Space* GenCollectedHeap::space_containing(const void* addr) const {
 817   Space* res = _young_gen->space_containing(addr);
 818   if (res != NULL) {
 819     return res;
 820   }
 821   res = _old_gen->space_containing(addr);
 822   assert(res != NULL, "Could not find containing space");
 823   return res;
 824 }
 825 
 826 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 827   assert(is_in_reserved(addr), "block_start of address outside of heap");
 828   if (_young_gen->is_in_reserved(addr)) {
 829     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 830     return _young_gen->block_start(addr);
 831   }
 832 
 833   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 834   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 835   return _old_gen->block_start(addr);
 836 }
 837 
 838 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 839   assert(is_in_reserved(addr), "block_size of address outside of heap");
 840   if (_young_gen->is_in_reserved(addr)) {
 841     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 842     return _young_gen->block_size(addr);
 843   }
 844 
 845   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 846   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 847   return _old_gen->block_size(addr);
 848 }
 849 
 850 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 851   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 852   assert(block_start(addr) == addr, "addr must be a block start");
 853   if (_young_gen->is_in_reserved(addr)) {
 854     return _young_gen->block_is_obj(addr);
 855   }
 856 
 857   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 858   return _old_gen->block_is_obj(addr);
 859 }
 860 
 861 bool GenCollectedHeap::supports_tlab_allocation() const {
 862   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 863   return _young_gen->supports_tlab_allocation();
 864 }
 865 
 866 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 867   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 868   if (_young_gen->supports_tlab_allocation()) {
 869     return _young_gen->tlab_capacity();
 870   }
 871   return 0;
 872 }
 873 
 874 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 875   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 876   if (_young_gen->supports_tlab_allocation()) {
 877     return _young_gen->tlab_used();
 878   }
 879   return 0;
 880 }
 881 
 882 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 883   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 884   if (_young_gen->supports_tlab_allocation()) {
 885     return _young_gen->unsafe_max_tlab_alloc();
 886   }
 887   return 0;
 888 }
 889 
 890 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 891   bool gc_overhead_limit_was_exceeded;
 892   return gen_policy()->mem_allocate_work(size /* size */,
 893                                          true /* is_tlab */,
 894                                          &gc_overhead_limit_was_exceeded);
 895 }
 896 
 897 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 898 // from the list headed by "*prev_ptr".
 899 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 900   bool first = true;
 901   size_t min_size = 0;   // "first" makes this conceptually infinite.
 902   ScratchBlock **smallest_ptr, *smallest;
 903   ScratchBlock  *cur = *prev_ptr;
 904   while (cur) {
 905     assert(*prev_ptr == cur, "just checking");
 906     if (first || cur->num_words < min_size) {
 907       smallest_ptr = prev_ptr;
 908       smallest     = cur;
 909       min_size     = smallest->num_words;
 910       first        = false;
 911     }
 912     prev_ptr = &cur->next;
 913     cur     =  cur->next;
 914   }
 915   smallest      = *smallest_ptr;
 916   *smallest_ptr = smallest->next;
 917   return smallest;
 918 }
 919 
 920 // Sort the scratch block list headed by res into decreasing size order,
 921 // and set "res" to the result.
 922 static void sort_scratch_list(ScratchBlock*& list) {
 923   ScratchBlock* sorted = NULL;
 924   ScratchBlock* unsorted = list;
 925   while (unsorted) {
 926     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 927     smallest->next  = sorted;
 928     sorted          = smallest;
 929   }
 930   list = sorted;
 931 }
 932 
 933 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 934                                                size_t max_alloc_words) {
 935   ScratchBlock* res = NULL;
 936   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 937   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 938   sort_scratch_list(res);
 939   return res;
 940 }
 941 
 942 void GenCollectedHeap::release_scratch() {
 943   _young_gen->reset_scratch();
 944   _old_gen->reset_scratch();
 945 }
 946 
 947 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 948   void do_generation(Generation* gen) {
 949     gen->prepare_for_verify();
 950   }
 951 };
 952 
 953 void GenCollectedHeap::prepare_for_verify() {
 954   ensure_parsability(false);        // no need to retire TLABs
 955   GenPrepareForVerifyClosure blk;
 956   generation_iterate(&blk, false);
 957 }
 958 
 959 void GenCollectedHeap::generation_iterate(GenClosure* cl,
 960                                           bool old_to_young) {
 961   if (old_to_young) {
 962     cl->do_generation(_old_gen);
 963     cl->do_generation(_young_gen);
 964   } else {
 965     cl->do_generation(_young_gen);
 966     cl->do_generation(_old_gen);
 967   }
 968 }
 969 
 970 bool GenCollectedHeap::is_maximal_no_gc() const {
 971   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
 972 }
 973 
 974 void GenCollectedHeap::save_marks() {
 975   _young_gen->save_marks();
 976   _old_gen->save_marks();
 977 }
 978 
 979 GenCollectedHeap* GenCollectedHeap::heap() {
 980   CollectedHeap* heap = Universe::heap();
 981   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
 982   assert(heap->kind() == CollectedHeap::SerialHeap ||
 983          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
 984   return (GenCollectedHeap*) heap;
 985 }
 986 
 987 void GenCollectedHeap::prepare_for_compaction() {
 988   // Start by compacting into same gen.
 989   CompactPoint cp(_old_gen);
 990   _old_gen->prepare_for_compaction(&cp);
 991   _young_gen->prepare_for_compaction(&cp);
 992 }
 993 
 994 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
 995   log_debug(gc, verify)("%s", _old_gen->name());
 996   _old_gen->verify();
 997 
 998   log_debug(gc, verify)("%s", _old_gen->name());
 999   _young_gen->verify();
1000 
1001   log_debug(gc, verify)("RemSet");
1002   rem_set()->verify();
1003 }
1004 
1005 void GenCollectedHeap::print_on(outputStream* st) const {
1006   _young_gen->print_on(st);
1007   _old_gen->print_on(st);
1008   MetaspaceAux::print_on(st);
1009 }
1010 
1011 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1012 }
1013 
1014 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1015 }
1016 
1017 void GenCollectedHeap::print_tracing_info() const {
1018   if (log_is_enabled(Debug, gc, heap, exit)) {
1019     LogStreamHandle(Debug, gc, heap, exit) lsh;
1020     _young_gen->print_summary_info_on(&lsh);
1021     _old_gen->print_summary_info_on(&lsh);
1022   }
1023 }
1024 
1025 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1026   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1027                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1028   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1029                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1030 }
1031 
1032 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1033  private:
1034   bool _full;
1035  public:
1036   void do_generation(Generation* gen) {
1037     gen->gc_prologue(_full);
1038   }
1039   GenGCPrologueClosure(bool full) : _full(full) {};
1040 };
1041 
1042 void GenCollectedHeap::gc_prologue(bool full) {
1043   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1044 
1045   // Fill TLAB's and such
1046   CollectedHeap::accumulate_statistics_all_tlabs();
1047   ensure_parsability(true);   // retire TLABs
1048 
1049   // Walk generations
1050   GenGCPrologueClosure blk(full);
1051   generation_iterate(&blk, false);  // not old-to-young.
1052 };
1053 
1054 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1055  private:
1056   bool _full;
1057  public:
1058   void do_generation(Generation* gen) {
1059     gen->gc_epilogue(_full);
1060   }
1061   GenGCEpilogueClosure(bool full) : _full(full) {};
1062 };
1063 
1064 void GenCollectedHeap::gc_epilogue(bool full) {
1065 #if COMPILER2_OR_JVMCI
1066   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1067   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1068   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1069 #endif // COMPILER2_OR_JVMCI
1070 
1071   resize_all_tlabs();
1072 
1073   GenGCEpilogueClosure blk(full);
1074   generation_iterate(&blk, false);  // not old-to-young.
1075 
1076   if (!CleanChunkPoolAsync) {
1077     Chunk::clean_chunk_pool();
1078   }
1079 
1080   MetaspaceCounters::update_performance_counters();
1081   CompressedClassSpaceCounters::update_performance_counters();
1082 };
1083 
1084 #ifndef PRODUCT
1085 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1086  private:
1087  public:
1088   void do_generation(Generation* gen) {
1089     gen->record_spaces_top();
1090   }
1091 };
1092 
1093 void GenCollectedHeap::record_gen_tops_before_GC() {
1094   if (ZapUnusedHeapArea) {
1095     GenGCSaveTopsBeforeGCClosure blk;
1096     generation_iterate(&blk, false);  // not old-to-young.
1097   }
1098 }
1099 #endif  // not PRODUCT
1100 
1101 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1102  public:
1103   void do_generation(Generation* gen) {
1104     gen->ensure_parsability();
1105   }
1106 };
1107 
1108 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1109   CollectedHeap::ensure_parsability(retire_tlabs);
1110   GenEnsureParsabilityClosure ep_cl;
1111   generation_iterate(&ep_cl, false);
1112 }
1113 
1114 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1115                                               oop obj,
1116                                               size_t obj_size) {
1117   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1118   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1119   HeapWord* result = NULL;
1120 
1121   result = old_gen->expand_and_allocate(obj_size, false);
1122 
1123   if (result != NULL) {
1124     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1125   }
1126   return oop(result);
1127 }
1128 
1129 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1130   jlong _time;   // in ms
1131   jlong _now;    // in ms
1132 
1133  public:
1134   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1135 
1136   jlong time() { return _time; }
1137 
1138   void do_generation(Generation* gen) {
1139     _time = MIN2(_time, gen->time_of_last_gc(_now));
1140   }
1141 };
1142 
1143 jlong GenCollectedHeap::millis_since_last_gc() {
1144   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1145   // provided the underlying platform provides such a time source
1146   // (and it is bug free). So we still have to guard against getting
1147   // back a time later than 'now'.
1148   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1149   GenTimeOfLastGCClosure tolgc_cl(now);
1150   // iterate over generations getting the oldest
1151   // time that a generation was collected
1152   generation_iterate(&tolgc_cl, false);
1153 
1154   jlong retVal = now - tolgc_cl.time();
1155   if (retVal < 0) {
1156     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1157        ". returning zero instead.", retVal);
1158     return 0;
1159   }
1160   return retVal;
1161 }