1 /*
   2  * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "jfr/leakprofiler/chains/edge.hpp"
  28 #include "jfr/leakprofiler/chains/edgeStore.hpp"
  29 #include "jfr/leakprofiler/chains/edgeUtils.hpp"
  30 #include "jfr/leakprofiler/utilities/unifiedOop.hpp"
  31 #include "oops/fieldStreams.hpp"
  32 #include "oops/instanceKlass.hpp"
  33 #include "oops/objArrayOop.inline.hpp"
  34 #include "oops/oopsHierarchy.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 
  37 bool EdgeUtils::is_leak_edge(const Edge& edge) {
  38   return (const Edge*)edge.pointee()->mark() == &edge;
  39 }
  40 
  41 bool EdgeUtils::is_root(const Edge& edge) {
  42   return edge.is_root();
  43 }
  44 
  45 static int field_offset(const Edge& edge) {
  46   assert(!edge.is_root(), "invariant");
  47   const oop ref_owner = edge.reference_owner();
  48   assert(ref_owner != NULL, "invariant");
  49   const oop* reference = UnifiedOop::decode(edge.reference());
  50   assert(reference != NULL, "invariant");
  51   assert(!UnifiedOop::is_narrow(reference), "invariant");
  52   assert(!ref_owner->is_array(), "invariant");
  53   assert(ref_owner->is_instance(), "invariant");
  54   const int offset = (int)pointer_delta(reference, ref_owner, sizeof(char));
  55   assert(offset < (ref_owner->size() * HeapWordSize), "invariant");
  56   return offset;
  57 }
  58 
  59 static const InstanceKlass* field_type(const Edge& edge) {
  60   assert(!edge.is_root() || !EdgeUtils::is_array_element(edge), "invariant");
  61   return (const InstanceKlass*)edge.reference_owner_klass();
  62 }
  63 
  64 const Symbol* EdgeUtils::field_name_symbol(const Edge& edge) {
  65   assert(!edge.is_root(), "invariant");
  66   assert(!is_array_element(edge), "invariant");
  67   const int offset = field_offset(edge);
  68   const InstanceKlass* ik = field_type(edge);
  69   while (ik != NULL) {
  70     JavaFieldStream jfs(ik);
  71     while (!jfs.done()) {
  72       if (offset == jfs.offset()) {
  73         return jfs.name();
  74       }
  75       jfs.next();
  76     }
  77     ik = (InstanceKlass*)ik->super();
  78   }
  79   return NULL;
  80 }
  81 
  82 jshort EdgeUtils::field_modifiers(const Edge& edge) {
  83   const int offset = field_offset(edge);
  84   const InstanceKlass* ik = field_type(edge);
  85 
  86   while (ik != NULL) {
  87     JavaFieldStream jfs(ik);
  88     while (!jfs.done()) {
  89       if (offset == jfs.offset()) {
  90         return jfs.access_flags().as_short();
  91       }
  92       jfs.next();
  93     }
  94     ik = (InstanceKlass*)ik->super();
  95   }
  96   return 0;
  97 }
  98 
  99 bool EdgeUtils::is_array_element(const Edge& edge) {
 100   assert(!edge.is_root(), "invariant");
 101   const oop ref_owner = edge.reference_owner();
 102   assert(ref_owner != NULL, "invariant");
 103   return ref_owner->is_objArray();
 104 }
 105 
 106 static int array_offset(const Edge& edge) {
 107   assert(!edge.is_root(), "invariant");
 108   const oop ref_owner = edge.reference_owner();
 109   assert(ref_owner != NULL, "invariant");
 110   const oop* reference = UnifiedOop::decode(edge.reference());
 111   assert(reference != NULL, "invariant");
 112   assert(!UnifiedOop::is_narrow(reference), "invariant");
 113   assert(ref_owner->is_array(), "invariant");
 114   const objArrayOop ref_owner_array = static_cast<const objArrayOop>(ref_owner);
 115   const int offset = (int)pointer_delta(reference, ref_owner_array->base(), heapOopSize);
 116   assert(offset >= 0 && offset < ref_owner_array->length(), "invariant");
 117   return offset;
 118 }
 119 
 120 int EdgeUtils::array_index(const Edge& edge) {
 121   return is_array_element(edge) ? array_offset(edge) : 0;
 122 }
 123 
 124 int EdgeUtils::array_size(const Edge& edge) {
 125   if (is_array_element(edge)) {
 126     const oop ref_owner = edge.reference_owner();
 127     assert(ref_owner != NULL, "invariant");
 128     assert(ref_owner->is_objArray(), "invariant");
 129     return ((objArrayOop)(ref_owner))->length();
 130   }
 131   return 0;
 132 }
 133 
 134 const Edge* EdgeUtils::root(const Edge& edge) {
 135   const Edge* current = &edge;
 136   const Edge* parent = current->parent();
 137   while (parent != NULL) {
 138     current = parent;
 139     parent = current->parent();
 140   }
 141   return current;
 142 }
 143 
 144 // The number of references associated with the leak node;
 145 // can be viewed as the leak node "context".
 146 // Used to provide leak context for a "capped/skipped" reference chain.
 147 static const size_t leak_context = 100;
 148 
 149 // The number of references associated with the root node;
 150 // can be viewed as the root node "context".
 151 // Used to provide root context for a "capped/skipped" reference chain.
 152 static const size_t root_context = 100;
 153 
 154 // A limit on the reference chain depth to be serialized,
 155 static const size_t max_ref_chain_depth = leak_context + root_context;
 156 
 157 const RoutableEdge* skip_to(const RoutableEdge& edge, size_t skip_length) {
 158   const RoutableEdge* current = &edge;
 159   const RoutableEdge* parent = current->physical_parent();
 160   size_t seek = 0;
 161   while (parent != NULL && seek != skip_length) {
 162     seek++;
 163     current = parent;
 164     parent = parent->physical_parent();
 165   }
 166   return current;
 167 }
 168 
 169 #ifdef ASSERT
 170 static void validate_skip_target(const RoutableEdge* skip_target) {
 171   assert(skip_target != NULL, "invariant");
 172   assert(skip_target->distance_to_root() + 1 == root_context, "invariant");
 173   assert(skip_target->is_sentinel(), "invariant");
 174 }
 175 
 176 static void validate_new_skip_edge(const RoutableEdge* new_skip_edge, const RoutableEdge* last_skip_edge, size_t adjustment) {
 177   assert(new_skip_edge != NULL, "invariant");
 178   assert(new_skip_edge->is_skip_edge(), "invariant");
 179   if (last_skip_edge != NULL) {
 180     const RoutableEdge* const target = skip_to(*new_skip_edge->logical_parent(), adjustment);
 181     validate_skip_target(target->logical_parent());
 182     return;
 183   }
 184   assert(last_skip_edge == NULL, "invariant");
 185   // only one level of logical indirection
 186   validate_skip_target(new_skip_edge->logical_parent());
 187 }
 188 #endif // ASSERT
 189 
 190 static void install_logical_route(const RoutableEdge* new_skip_edge, size_t skip_target_distance) {
 191   assert(new_skip_edge != NULL, "invariant");
 192   assert(!new_skip_edge->is_skip_edge(), "invariant");
 193   assert(!new_skip_edge->processed(), "invariant");
 194   const RoutableEdge* const skip_target = skip_to(*new_skip_edge, skip_target_distance);
 195   assert(skip_target != NULL, "invariant");
 196   new_skip_edge->set_skip_edge(skip_target);
 197   new_skip_edge->set_skip_length(skip_target_distance);
 198   assert(new_skip_edge->is_skip_edge(), "invariant");
 199   assert(new_skip_edge->logical_parent() == skip_target, "invariant");
 200 }
 201 
 202 static const RoutableEdge* find_last_skip_edge(const RoutableEdge& edge, size_t& distance) {
 203   assert(distance == 0, "invariant");
 204   const RoutableEdge* current = &edge;
 205   while (current != NULL) {
 206     if (current->is_skip_edge() && current->skip_edge()->is_sentinel()) {
 207       return current;
 208     }
 209     current = current->physical_parent();
 210     ++distance;
 211   }
 212   return current;
 213 }
 214 
 215 static void collapse_overlapping_chain(const RoutableEdge& edge,
 216                                        const RoutableEdge* first_processed_edge,
 217                                        size_t first_processed_distance) {
 218   assert(first_processed_edge != NULL, "invariant");
 219   // first_processed_edge is already processed / written
 220   assert(first_processed_edge->processed(), "invariant");
 221   assert(first_processed_distance + 1 <= leak_context, "invariant");
 222 
 223   // from this first processed edge, attempt to fetch the last skip edge
 224   size_t last_skip_edge_distance = 0;
 225   const RoutableEdge* const last_skip_edge = find_last_skip_edge(*first_processed_edge, last_skip_edge_distance);
 226   const size_t distance_discovered = first_processed_distance + last_skip_edge_distance + 1;
 227 
 228   if (distance_discovered <= leak_context || (last_skip_edge == NULL && distance_discovered <= max_ref_chain_depth)) {
 229     // complete chain can be accommodated without modification
 230     return;
 231   }
 232 
 233   // backtrack one edge from existing processed edge
 234   const RoutableEdge* const new_skip_edge = skip_to(edge, first_processed_distance - 1);
 235   assert(new_skip_edge != NULL, "invariant");
 236   assert(!new_skip_edge->processed(), "invariant");
 237   assert(new_skip_edge->parent() == first_processed_edge, "invariant");
 238 
 239   size_t adjustment = 0;
 240   if (last_skip_edge != NULL) {
 241     assert(leak_context - 1 > first_processed_distance - 1, "invariant");
 242     adjustment = leak_context - first_processed_distance - 1;
 243     assert(last_skip_edge_distance + 1 > adjustment, "invariant");
 244     install_logical_route(new_skip_edge, last_skip_edge_distance + 1 - adjustment);
 245   } else {
 246     install_logical_route(new_skip_edge, last_skip_edge_distance + 1 - root_context);
 247     new_skip_edge->logical_parent()->set_skip_length(1); // sentinel
 248   }
 249 
 250   DEBUG_ONLY(validate_new_skip_edge(new_skip_edge, last_skip_edge, adjustment);)
 251 }
 252 
 253 static void collapse_non_overlapping_chain(const RoutableEdge& edge,
 254                                            const RoutableEdge* first_processed_edge,
 255                                            size_t first_processed_distance) {
 256   assert(first_processed_edge != NULL, "invariant");
 257   assert(!first_processed_edge->processed(), "invariant");
 258   // this implies that the first "processed" edge is the leak context relative "leaf"
 259   assert(first_processed_distance + 1 == leak_context, "invariant");
 260 
 261   const size_t distance_to_root = edge.distance_to_root();
 262   if (distance_to_root + 1 <= max_ref_chain_depth) {
 263     // complete chain can be accommodated without constructing a skip edge
 264     return;
 265   }
 266 
 267   install_logical_route(first_processed_edge, distance_to_root + 1 - first_processed_distance - root_context);
 268   first_processed_edge->logical_parent()->set_skip_length(1); // sentinel
 269 
 270   DEBUG_ONLY(validate_new_skip_edge(first_processed_edge, NULL, 0);)
 271 }
 272 
 273 static const RoutableEdge* processed_edge(const RoutableEdge& edge, size_t& distance) {
 274   assert(distance == 0, "invariant");
 275   const RoutableEdge* current = &edge;
 276   while (current != NULL && distance < leak_context - 1) {
 277     if (current->processed()) {
 278       return current;
 279     }
 280     current = current->physical_parent();
 281     ++distance;
 282   }
 283   assert(distance <= leak_context - 1, "invariant");
 284   return current;
 285 }
 286 
 287 /*
 288  * Some vocabulary:
 289  * -----------
 290  * "Context" is an interval in the chain, it is associcated with an edge and it signifies a number of connected edges.
 291  * "Processed / written" means an edge that has already been serialized.
 292  * "Skip edge" is an edge that contains additional information for logical routing purposes.
 293  * "Skip target" is an edge used as a destination for a skip edge
 294  */
 295 void EdgeUtils::collapse_chain(const RoutableEdge& edge) {
 296   assert(is_leak_edge(edge), "invariant");
 297 
 298   // attempt to locate an already processed edge inside current leak context (if any)
 299   size_t first_processed_distance = 0;
 300   const RoutableEdge* const first_processed_edge = processed_edge(edge, first_processed_distance);
 301   if (first_processed_edge == NULL) {
 302     return;
 303   }
 304 
 305   if (first_processed_edge->processed()) {
 306     collapse_overlapping_chain(edge, first_processed_edge, first_processed_distance);
 307   } else {
 308     collapse_non_overlapping_chain(edge, first_processed_edge, first_processed_distance);
 309   }
 310 
 311   assert(edge.logical_distance_to_root() + 1 <= max_ref_chain_depth, "invariant");
 312 }