1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 
  36 // Portions of code courtesy of Clifford Click
  37 
  38 // Optimization - Graph Style
  39 
  40 class Chaitin;
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class     AllocateNode;
  52 class       AllocateArrayNode;
  53 class     BoxLockNode;
  54 class     LockNode;
  55 class     UnlockNode;
  56 class JVMState;
  57 class OopMap;
  58 class State;
  59 class StartNode;
  60 class MachCallNode;
  61 class FastLockNode;
  62 
  63 //------------------------------StartNode--------------------------------------
  64 // The method start node
  65 class StartNode : public MultiNode {
  66   virtual uint cmp( const Node &n ) const;
  67   virtual uint size_of() const; // Size is bigger
  68 public:
  69   const TypeTuple *_domain;
  70   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  71     init_class_id(Class_Start);
  72     init_req(0,this);
  73     init_req(1,root);
  74   }
  75   virtual int Opcode() const;
  76   virtual bool pinned() const { return true; };
  77   virtual const Type *bottom_type() const;
  78   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  79   virtual const Type *Value( PhaseTransform *phase ) const;
  80   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  81   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  82   virtual const RegMask &in_RegMask(uint) const;
  83   virtual Node *match( const ProjNode *proj, const Matcher *m );
  84   virtual uint ideal_reg() const { return 0; }
  85 #ifndef PRODUCT
  86   virtual void  dump_spec(outputStream *st) const;
  87 #endif
  88 };
  89 
  90 //------------------------------StartOSRNode-----------------------------------
  91 // The method start node for on stack replacement code
  92 class StartOSRNode : public StartNode {
  93 public:
  94   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  95   virtual int   Opcode() const;
  96   static  const TypeTuple *osr_domain();
  97 };
  98 
  99 
 100 //------------------------------ParmNode---------------------------------------
 101 // Incoming parameters
 102 class ParmNode : public ProjNode {
 103   static const char * const names[TypeFunc::Parms+1];
 104 public:
 105   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 106     init_class_id(Class_Parm);
 107   }
 108   virtual int Opcode() const;
 109   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 110   virtual uint ideal_reg() const;
 111 #ifndef PRODUCT
 112   virtual void dump_spec(outputStream *st) const;
 113 #endif
 114 };
 115 
 116 
 117 //------------------------------ReturnNode-------------------------------------
 118 // Return from subroutine node
 119 class ReturnNode : public Node {
 120 public:
 121   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 122   virtual int Opcode() const;
 123   virtual bool  is_CFG() const { return true; }
 124   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 125   virtual bool depends_only_on_test() const { return false; }
 126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 127   virtual const Type *Value( PhaseTransform *phase ) const;
 128   virtual uint ideal_reg() const { return NotAMachineReg; }
 129   virtual uint match_edge(uint idx) const;
 130 #ifndef PRODUCT
 131   virtual void dump_req(outputStream *st = tty) const;
 132 #endif
 133 };
 134 
 135 
 136 //------------------------------RethrowNode------------------------------------
 137 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 138 // ends the current basic block like a ReturnNode.  Restores registers and
 139 // unwinds stack.  Rethrow happens in the caller's method.
 140 class RethrowNode : public Node {
 141  public:
 142   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 143   virtual int Opcode() const;
 144   virtual bool  is_CFG() const { return true; }
 145   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 146   virtual bool depends_only_on_test() const { return false; }
 147   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 148   virtual const Type *Value( PhaseTransform *phase ) const;
 149   virtual uint match_edge(uint idx) const;
 150   virtual uint ideal_reg() const { return NotAMachineReg; }
 151 #ifndef PRODUCT
 152   virtual void dump_req(outputStream *st = tty) const;
 153 #endif
 154 };
 155 
 156 
 157 //------------------------------TailCallNode-----------------------------------
 158 // Pop stack frame and jump indirect
 159 class TailCallNode : public ReturnNode {
 160 public:
 161   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 162     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 163     init_req(TypeFunc::Parms, target);
 164     init_req(TypeFunc::Parms+1, moop);
 165   }
 166 
 167   virtual int Opcode() const;
 168   virtual uint match_edge(uint idx) const;
 169 };
 170 
 171 //------------------------------TailJumpNode-----------------------------------
 172 // Pop stack frame and jump indirect
 173 class TailJumpNode : public ReturnNode {
 174 public:
 175   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 176     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 177     init_req(TypeFunc::Parms, target);
 178     init_req(TypeFunc::Parms+1, ex_oop);
 179   }
 180 
 181   virtual int Opcode() const;
 182   virtual uint match_edge(uint idx) const;
 183 };
 184 
 185 //-------------------------------JVMState-------------------------------------
 186 // A linked list of JVMState nodes captures the whole interpreter state,
 187 // plus GC roots, for all active calls at some call site in this compilation
 188 // unit.  (If there is no inlining, then the list has exactly one link.)
 189 // This provides a way to map the optimized program back into the interpreter,
 190 // or to let the GC mark the stack.
 191 class JVMState : public ResourceObj {
 192   friend class VMStructs;
 193 public:
 194   typedef enum {
 195     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 196     Reexecute_False     =  0, // false       -- do not reexecute
 197     Reexecute_True      =  1  // true        -- reexecute the bytecode
 198   } ReexecuteState; //Reexecute State
 199 
 200 private:
 201   JVMState*         _caller;    // List pointer for forming scope chains
 202   uint              _depth;     // One more than caller depth, or one.
 203   uint              _locoff;    // Offset to locals in input edge mapping
 204   uint              _stkoff;    // Offset to stack in input edge mapping
 205   uint              _monoff;    // Offset to monitors in input edge mapping
 206   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 207   uint              _endoff;    // Offset to end of input edge mapping
 208   uint              _sp;        // Jave Expression Stack Pointer for this state
 209   int               _bci;       // Byte Code Index of this JVM point
 210   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 211   ciMethod*         _method;    // Method Pointer
 212   SafePointNode*    _map;       // Map node associated with this scope
 213 public:
 214   friend class Compile;
 215   friend class PreserveReexecuteState;
 216 
 217   // Because JVMState objects live over the entire lifetime of the
 218   // Compile object, they are allocated into the comp_arena, which
 219   // does not get resource marked or reset during the compile process
 220   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
 221   void operator delete( void * ) { } // fast deallocation
 222 
 223   // Create a new JVMState, ready for abstract interpretation.
 224   JVMState(ciMethod* method, JVMState* caller);
 225   JVMState(int stack_size);  // root state; has a null method
 226 
 227   // Access functions for the JVM
 228   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 229   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 230   uint              locoff() const { return _locoff; }
 231   uint              stkoff() const { return _stkoff; }
 232   uint              argoff() const { return _stkoff + _sp; }
 233   uint              monoff() const { return _monoff; }
 234   uint              scloff() const { return _scloff; }
 235   uint              endoff() const { return _endoff; }
 236   uint              oopoff() const { return debug_end(); }
 237 
 238   int            loc_size() const { return stkoff() - locoff(); }
 239   int            stk_size() const { return monoff() - stkoff(); }
 240   int            mon_size() const { return scloff() - monoff(); }
 241   int            scl_size() const { return endoff() - scloff(); }
 242 
 243   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 244   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 245   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 246   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 247 
 248   uint                      sp() const { return _sp; }
 249   int                      bci() const { return _bci; }
 250   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 251   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 252   bool              has_method() const { return _method != NULL; }
 253   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 254   JVMState*             caller() const { return _caller; }
 255   SafePointNode*           map() const { return _map; }
 256   uint                   depth() const { return _depth; }
 257   uint             debug_start() const; // returns locoff of root caller
 258   uint               debug_end() const; // returns endoff of self
 259   uint              debug_size() const {
 260     return loc_size() + sp() + mon_size() + scl_size();
 261   }
 262   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 263 
 264   // Returns the JVM state at the desired depth (1 == root).
 265   JVMState* of_depth(int d) const;
 266 
 267   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 268   bool same_calls_as(const JVMState* that) const;
 269 
 270   // Monitors (monitors are stored as (boxNode, objNode) pairs
 271   enum { logMonitorEdges = 1 };
 272   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 273   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 274   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 275   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 276   bool is_monitor_box(uint off)    const {
 277     assert(is_mon(off), "should be called only for monitor edge");
 278     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 279   }
 280   bool is_monitor_use(uint off)    const { return (is_mon(off)
 281                                                    && is_monitor_box(off))
 282                                              || (caller() && caller()->is_monitor_use(off)); }
 283 
 284   // Initialization functions for the JVM
 285   void              set_locoff(uint off) { _locoff = off; }
 286   void              set_stkoff(uint off) { _stkoff = off; }
 287   void              set_monoff(uint off) { _monoff = off; }
 288   void              set_scloff(uint off) { _scloff = off; }
 289   void              set_endoff(uint off) { _endoff = off; }
 290   void              set_offsets(uint off) {
 291     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 292   }
 293   void              set_map(SafePointNode *map) { _map = map; }
 294   void              set_sp(uint sp) { _sp = sp; }
 295                     // _reexecute is initialized to "undefined" for a new bci
 296   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 297   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 298 
 299   // Miscellaneous utility functions
 300   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 301   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 302   void      set_map_deep(SafePointNode *map);// reset map for all callers
 303   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
 304   int       interpreter_frame_size() const;
 305 
 306 #ifndef PRODUCT
 307   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 308   void      dump_spec(outputStream *st) const;
 309   void      dump_on(outputStream* st) const;
 310   void      dump() const {
 311     dump_on(tty);
 312   }
 313 #endif
 314 };
 315 
 316 //------------------------------SafePointNode----------------------------------
 317 // A SafePointNode is a subclass of a MultiNode for convenience (and
 318 // potential code sharing) only - conceptually it is independent of
 319 // the Node semantics.
 320 class SafePointNode : public MultiNode {
 321   virtual uint           cmp( const Node &n ) const;
 322   virtual uint           size_of() const;       // Size is bigger
 323 
 324 public:
 325   SafePointNode(uint edges, JVMState* jvms,
 326                 // A plain safepoint advertises no memory effects (NULL):
 327                 const TypePtr* adr_type = NULL)
 328     : MultiNode( edges ),
 329       _jvms(jvms),
 330       _oop_map(NULL),
 331       _adr_type(adr_type)
 332   {
 333     init_class_id(Class_SafePoint);
 334   }
 335 
 336   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 337   JVMState* const _jvms;      // Pointer to list of JVM State objects
 338   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 339   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 340 
 341   // Many calls take *all* of memory as input,
 342   // but some produce a limited subset of that memory as output.
 343   // The adr_type reports the call's behavior as a store, not a load.
 344 
 345   virtual JVMState* jvms() const { return _jvms; }
 346   void set_jvms(JVMState* s) {
 347     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 348   }
 349   OopMap *oop_map() const { return _oop_map; }
 350   void set_oop_map(OopMap *om) { _oop_map = om; }
 351 
 352  private:
 353   void verify_input(JVMState* jvms, uint idx) const {
 354     assert(verify_jvms(jvms), "jvms must match");
 355     Node* n = in(idx);
 356     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 357            in(idx + 1)->is_top(), "2nd half of long/double");
 358   }
 359 
 360  public:
 361   // Functionality from old debug nodes which has changed
 362   Node *local(JVMState* jvms, uint idx) const {
 363     verify_input(jvms, jvms->locoff() + idx);
 364     return in(jvms->locoff() + idx);
 365   }
 366   Node *stack(JVMState* jvms, uint idx) const {
 367     verify_input(jvms, jvms->stkoff() + idx);
 368     return in(jvms->stkoff() + idx);
 369   }
 370   Node *argument(JVMState* jvms, uint idx) const {
 371     verify_input(jvms, jvms->argoff() + idx);
 372     return in(jvms->argoff() + idx);
 373   }
 374   Node *monitor_box(JVMState* jvms, uint idx) const {
 375     assert(verify_jvms(jvms), "jvms must match");
 376     return in(jvms->monitor_box_offset(idx));
 377   }
 378   Node *monitor_obj(JVMState* jvms, uint idx) const {
 379     assert(verify_jvms(jvms), "jvms must match");
 380     return in(jvms->monitor_obj_offset(idx));
 381   }
 382 
 383   void  set_local(JVMState* jvms, uint idx, Node *c);
 384 
 385   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 386     assert(verify_jvms(jvms), "jvms must match");
 387     set_req(jvms->stkoff() + idx, c);
 388   }
 389   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 390     assert(verify_jvms(jvms), "jvms must match");
 391     set_req(jvms->argoff() + idx, c);
 392   }
 393   void ensure_stack(JVMState* jvms, uint stk_size) {
 394     assert(verify_jvms(jvms), "jvms must match");
 395     int grow_by = (int)stk_size - (int)jvms->stk_size();
 396     if (grow_by > 0)  grow_stack(jvms, grow_by);
 397   }
 398   void grow_stack(JVMState* jvms, uint grow_by);
 399   // Handle monitor stack
 400   void push_monitor( const FastLockNode *lock );
 401   void pop_monitor ();
 402   Node *peek_monitor_box() const;
 403   Node *peek_monitor_obj() const;
 404 
 405   // Access functions for the JVM
 406   Node *control  () const { return in(TypeFunc::Control  ); }
 407   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 408   Node *memory   () const { return in(TypeFunc::Memory   ); }
 409   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 410   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 411 
 412   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 413   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 414   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 415 
 416   MergeMemNode* merged_memory() const {
 417     return in(TypeFunc::Memory)->as_MergeMem();
 418   }
 419 
 420   // The parser marks useless maps as dead when it's done with them:
 421   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 422 
 423   // Exception states bubbling out of subgraphs such as inlined calls
 424   // are recorded here.  (There might be more than one, hence the "next".)
 425   // This feature is used only for safepoints which serve as "maps"
 426   // for JVM states during parsing, intrinsic expansion, etc.
 427   SafePointNode*         next_exception() const;
 428   void               set_next_exception(SafePointNode* n);
 429   bool                   has_exceptions() const { return next_exception() != NULL; }
 430 
 431   // Helper methods to operate on replaced nodes
 432   ReplacedNodes replaced_nodes() const {
 433     return _replaced_nodes;
 434   }
 435 
 436   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 437     _replaced_nodes = replaced_nodes;
 438   }
 439 
 440   void clone_replaced_nodes() {
 441     _replaced_nodes.clone();
 442   }
 443   void record_replaced_node(Node* initial, Node* improved) {
 444     _replaced_nodes.record(initial, improved);
 445   }
 446   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 447     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 448   }
 449   void delete_replaced_nodes() {
 450     _replaced_nodes.reset();
 451   }
 452   void apply_replaced_nodes() {
 453     _replaced_nodes.apply(this);
 454   }
 455   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 456     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 457   }
 458   bool has_replaced_nodes() const {
 459     return !_replaced_nodes.is_empty();
 460   }
 461 
 462   // Standard Node stuff
 463   virtual int            Opcode() const;
 464   virtual bool           pinned() const { return true; }
 465   virtual const Type    *Value( PhaseTransform *phase ) const;
 466   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 467   virtual const TypePtr *adr_type() const { return _adr_type; }
 468   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 469   virtual Node          *Identity( PhaseTransform *phase );
 470   virtual uint           ideal_reg() const { return 0; }
 471   virtual const RegMask &in_RegMask(uint) const;
 472   virtual const RegMask &out_RegMask() const;
 473   virtual uint           match_edge(uint idx) const;
 474 
 475   static  bool           needs_polling_address_input();
 476 
 477 #ifndef PRODUCT
 478   virtual void           dump_spec(outputStream *st) const;
 479 #endif
 480 };
 481 
 482 //------------------------------SafePointScalarObjectNode----------------------
 483 // A SafePointScalarObjectNode represents the state of a scalarized object
 484 // at a safepoint.
 485 
 486 class SafePointScalarObjectNode: public TypeNode {
 487   uint _first_index; // First input edge relative index of a SafePoint node where
 488                      // states of the scalarized object fields are collected.
 489                      // It is relative to the last (youngest) jvms->_scloff.
 490   uint _n_fields;    // Number of non-static fields of the scalarized object.
 491   DEBUG_ONLY(AllocateNode* _alloc;)
 492 
 493   virtual uint hash() const ; // { return NO_HASH; }
 494   virtual uint cmp( const Node &n ) const;
 495 
 496   uint first_index() const { return _first_index; }
 497 
 498 public:
 499   SafePointScalarObjectNode(const TypeOopPtr* tp,
 500 #ifdef ASSERT
 501                             AllocateNode* alloc,
 502 #endif
 503                             uint first_index, uint n_fields);
 504   virtual int Opcode() const;
 505   virtual uint           ideal_reg() const;
 506   virtual const RegMask &in_RegMask(uint) const;
 507   virtual const RegMask &out_RegMask() const;
 508   virtual uint           match_edge(uint idx) const;
 509 
 510   uint first_index(JVMState* jvms) const {
 511     assert(jvms != NULL, "missed JVMS");
 512     return jvms->scloff() + _first_index;
 513   }
 514   uint n_fields()    const { return _n_fields; }
 515 
 516 #ifdef ASSERT
 517   AllocateNode* alloc() const { return _alloc; }
 518 #endif
 519 
 520   virtual uint size_of() const { return sizeof(*this); }
 521 
 522   // Assumes that "this" is an argument to a safepoint node "s", and that
 523   // "new_call" is being created to correspond to "s".  But the difference
 524   // between the start index of the jvmstates of "new_call" and "s" is
 525   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 526   // corresponds appropriately to "this" in "new_call".  Assumes that
 527   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 528   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 529   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
 530 
 531 #ifndef PRODUCT
 532   virtual void              dump_spec(outputStream *st) const;
 533 #endif
 534 };
 535 
 536 
 537 // Simple container for the outgoing projections of a call.  Useful
 538 // for serious surgery on calls.
 539 class CallProjections : public StackObj {
 540 public:
 541   Node* fallthrough_proj;
 542   Node* fallthrough_catchproj;
 543   Node* fallthrough_memproj;
 544   Node* fallthrough_ioproj;
 545   Node* catchall_catchproj;
 546   Node* catchall_memproj;
 547   Node* catchall_ioproj;
 548   Node* resproj;
 549   Node* exobj;
 550 };
 551 
 552 class CallGenerator;
 553 
 554 //------------------------------CallNode---------------------------------------
 555 // Call nodes now subsume the function of debug nodes at callsites, so they
 556 // contain the functionality of a full scope chain of debug nodes.
 557 class CallNode : public SafePointNode {
 558   friend class VMStructs;
 559 
 560 protected:
 561   bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase);
 562 
 563 public:
 564   const TypeFunc *_tf;        // Function type
 565   address      _entry_point;  // Address of method being called
 566   float        _cnt;          // Estimate of number of times called
 567   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 568   const char *_name;           // Printable name, if _method is NULL
 569 
 570   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 571     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 572       _tf(tf),
 573       _entry_point(addr),
 574       _cnt(COUNT_UNKNOWN),
 575       _generator(NULL),
 576       _name(NULL)
 577   {
 578     init_class_id(Class_Call);
 579   }
 580 
 581   const TypeFunc* tf()         const { return _tf; }
 582   const address  entry_point() const { return _entry_point; }
 583   const float    cnt()         const { return _cnt; }
 584   CallGenerator* generator()   const { return _generator; }
 585 
 586   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 587   void set_entry_point(address p)       { _entry_point = p; }
 588   void set_cnt(float c)                 { _cnt = c; }
 589   void set_generator(CallGenerator* cg) { _generator = cg; }
 590 
 591   virtual const Type *bottom_type() const;
 592   virtual const Type *Value( PhaseTransform *phase ) const;
 593   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 594   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 595   virtual uint        cmp( const Node &n ) const;
 596   virtual uint        size_of() const = 0;
 597   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 598   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 599   virtual uint        ideal_reg() const { return NotAMachineReg; }
 600   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 601   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 602   virtual bool        guaranteed_safepoint()  { return true; }
 603   // For macro nodes, the JVMState gets modified during expansion. If calls
 604   // use MachConstantBase, it gets modified during matching. So when cloning
 605   // the node the JVMState must be cloned. Default is not to clone.
 606   virtual void clone_jvms(Compile* C) {
 607     if (C->needs_clone_jvms() && jvms() != NULL) {
 608       set_jvms(jvms()->clone_deep(C));
 609       jvms()->set_map_deep(this);
 610     }
 611   }
 612 
 613   // Returns true if the call may modify n
 614   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
 615   // Does this node have a use of n other than in debug information?
 616   bool                has_non_debug_use(Node *n);
 617   // Returns the unique CheckCastPP of a call
 618   // or result projection is there are several CheckCastPP
 619   // or returns NULL if there is no one.
 620   Node *result_cast();
 621   // Does this node returns pointer?
 622   bool returns_pointer() const {
 623     const TypeTuple *r = tf()->range();
 624     return (r->cnt() > TypeFunc::Parms &&
 625             r->field_at(TypeFunc::Parms)->isa_ptr());
 626   }
 627 
 628   // Collect all the interesting edges from a call for use in
 629   // replacing the call by something else.  Used by macro expansion
 630   // and the late inlining support.
 631   void extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts = true);
 632 
 633   virtual uint match_edge(uint idx) const;
 634 
 635   bool is_call_to_arraycopystub() const;
 636 
 637 #ifndef PRODUCT
 638   virtual void        dump_req(outputStream *st = tty) const;
 639   virtual void        dump_spec(outputStream *st) const;
 640 #endif
 641 };
 642 
 643 
 644 //------------------------------CallJavaNode-----------------------------------
 645 // Make a static or dynamic subroutine call node using Java calling
 646 // convention.  (The "Java" calling convention is the compiler's calling
 647 // convention, as opposed to the interpreter's or that of native C.)
 648 class CallJavaNode : public CallNode {
 649   friend class VMStructs;
 650 protected:
 651   virtual uint cmp( const Node &n ) const;
 652   virtual uint size_of() const; // Size is bigger
 653 
 654   bool    _optimized_virtual;
 655   bool    _method_handle_invoke;
 656   ciMethod* _method;            // Method being direct called
 657 public:
 658   const int       _bci;         // Byte Code Index of call byte code
 659   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 660     : CallNode(tf, addr, TypePtr::BOTTOM),
 661       _method(method), _bci(bci),
 662       _optimized_virtual(false),
 663       _method_handle_invoke(false)
 664   {
 665     init_class_id(Class_CallJava);
 666   }
 667 
 668   virtual int   Opcode() const;
 669   ciMethod* method() const                { return _method; }
 670   void  set_method(ciMethod *m)           { _method = m; }
 671   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 672   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 673   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 674   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 675 
 676 #ifndef PRODUCT
 677   virtual void  dump_spec(outputStream *st) const;
 678 #endif
 679 };
 680 
 681 //------------------------------CallStaticJavaNode-----------------------------
 682 // Make a direct subroutine call using Java calling convention (for static
 683 // calls and optimized virtual calls, plus calls to wrappers for run-time
 684 // routines); generates static stub.
 685 class CallStaticJavaNode : public CallJavaNode {
 686   virtual uint cmp( const Node &n ) const;
 687   virtual uint size_of() const; // Size is bigger
 688 public:
 689   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
 690     : CallJavaNode(tf, addr, method, bci) {
 691     init_class_id(Class_CallStaticJava);
 692     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
 693       init_flags(Flag_is_macro);
 694       C->add_macro_node(this);
 695     }
 696     _is_scalar_replaceable = false;
 697     _is_non_escaping = false;
 698   }
 699   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 700                      const TypePtr* adr_type)
 701     : CallJavaNode(tf, addr, NULL, bci) {
 702     init_class_id(Class_CallStaticJava);
 703     // This node calls a runtime stub, which often has narrow memory effects.
 704     _adr_type = adr_type;
 705     _is_scalar_replaceable = false;
 706     _is_non_escaping = false;
 707     _name = name;
 708   }
 709 
 710   // Result of Escape Analysis
 711   bool _is_scalar_replaceable;
 712   bool _is_non_escaping;
 713 
 714   // If this is an uncommon trap, return the request code, else zero.
 715   int uncommon_trap_request() const;
 716   static int extract_uncommon_trap_request(const Node* call);
 717 
 718   bool is_boxing_method() const {
 719     return is_macro() && (method() != NULL) && method()->is_boxing_method();
 720   }
 721   // Later inlining modifies the JVMState, so we need to clone it
 722   // when the call node is cloned (because it is macro node).
 723   virtual void  clone_jvms(Compile* C) {
 724     if ((jvms() != NULL) && is_boxing_method()) {
 725       set_jvms(jvms()->clone_deep(C));
 726       jvms()->set_map_deep(this);
 727     }
 728   }
 729 
 730   virtual int         Opcode() const;
 731 #ifndef PRODUCT
 732   virtual void        dump_spec(outputStream *st) const;
 733 #endif
 734 };
 735 
 736 //------------------------------CallDynamicJavaNode----------------------------
 737 // Make a dispatched call using Java calling convention.
 738 class CallDynamicJavaNode : public CallJavaNode {
 739   virtual uint cmp( const Node &n ) const;
 740   virtual uint size_of() const; // Size is bigger
 741 public:
 742   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 743     init_class_id(Class_CallDynamicJava);
 744   }
 745 
 746   int _vtable_index;
 747   virtual int   Opcode() const;
 748 #ifndef PRODUCT
 749   virtual void  dump_spec(outputStream *st) const;
 750 #endif
 751 };
 752 
 753 //------------------------------CallRuntimeNode--------------------------------
 754 // Make a direct subroutine call node into compiled C++ code.
 755 class CallRuntimeNode : public CallNode {
 756   virtual uint cmp( const Node &n ) const;
 757   virtual uint size_of() const; // Size is bigger
 758 public:
 759   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 760                   const TypePtr* adr_type)
 761     : CallNode(tf, addr, adr_type)
 762   {
 763     init_class_id(Class_CallRuntime);
 764     _name = name;
 765   }
 766 
 767   virtual int   Opcode() const;
 768   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 769 
 770 #ifndef PRODUCT
 771   virtual void  dump_spec(outputStream *st) const;
 772 #endif
 773 };
 774 
 775 //------------------------------CallLeafNode-----------------------------------
 776 // Make a direct subroutine call node into compiled C++ code, without
 777 // safepoints
 778 class CallLeafNode : public CallRuntimeNode {
 779 public:
 780   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 781                const TypePtr* adr_type)
 782     : CallRuntimeNode(tf, addr, name, adr_type)
 783   {
 784     init_class_id(Class_CallLeaf);
 785   }
 786   virtual int   Opcode() const;
 787   virtual bool        guaranteed_safepoint()  { return false; }
 788 #ifndef PRODUCT
 789   virtual void  dump_spec(outputStream *st) const;
 790 #endif
 791 };
 792 
 793 //------------------------------CallLeafNoFPNode-------------------------------
 794 // CallLeafNode, not using floating point or using it in the same manner as
 795 // the generated code
 796 class CallLeafNoFPNode : public CallLeafNode {
 797 public:
 798   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 799                    const TypePtr* adr_type)
 800     : CallLeafNode(tf, addr, name, adr_type)
 801   {
 802   }
 803   virtual int   Opcode() const;
 804 };
 805 
 806 
 807 //------------------------------Allocate---------------------------------------
 808 // High-level memory allocation
 809 //
 810 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 811 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 812 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 813 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 814 //  order to differentiate the uses of the projection on the normal control path from
 815 //  those on the exception return path.
 816 //
 817 class AllocateNode : public CallNode {
 818 public:
 819   enum {
 820     // Output:
 821     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 822     // Inputs:
 823     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 824     KlassNode,                        // type (maybe dynamic) of the obj.
 825     InitialTest,                      // slow-path test (may be constant)
 826     ALength,                          // array length (or TOP if none)
 827     ParmLimit
 828   };
 829 
 830   static const TypeFunc* alloc_type(const Type* t) {
 831     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 832     fields[AllocSize]   = TypeInt::POS;
 833     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 834     fields[InitialTest] = TypeInt::BOOL;
 835     fields[ALength]     = t;  // length (can be a bad length)
 836 
 837     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 838 
 839     // create result type (range)
 840     fields = TypeTuple::fields(1);
 841     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 842 
 843     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 844 
 845     return TypeFunc::make(domain, range);
 846   }
 847 
 848   // Result of Escape Analysis
 849   bool _is_scalar_replaceable;
 850   bool _is_non_escaping;
 851 
 852   virtual uint size_of() const; // Size is bigger
 853   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 854                Node *size, Node *klass_node, Node *initial_test);
 855   // Expansion modifies the JVMState, so we need to clone it
 856   virtual void  clone_jvms(Compile* C) {
 857     if (jvms() != NULL) {
 858       set_jvms(jvms()->clone_deep(C));
 859       jvms()->set_map_deep(this);
 860     }
 861   }
 862   virtual int Opcode() const;
 863   virtual uint ideal_reg() const { return Op_RegP; }
 864   virtual bool        guaranteed_safepoint()  { return false; }
 865 
 866   // allocations do not modify their arguments
 867   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
 868 
 869   // Pattern-match a possible usage of AllocateNode.
 870   // Return null if no allocation is recognized.
 871   // The operand is the pointer produced by the (possible) allocation.
 872   // It must be a projection of the Allocate or its subsequent CastPP.
 873   // (Note:  This function is defined in file graphKit.cpp, near
 874   // GraphKit::new_instance/new_array, whose output it recognizes.)
 875   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 876   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 877 
 878   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 879   // an offset, which is reported back to the caller.
 880   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 881   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 882                                         intptr_t& offset);
 883 
 884   // Dig the klass operand out of a (possible) allocation site.
 885   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 886     AllocateNode* allo = Ideal_allocation(ptr, phase);
 887     return (allo == NULL) ? NULL : allo->in(KlassNode);
 888   }
 889 
 890   // Conservatively small estimate of offset of first non-header byte.
 891   int minimum_header_size() {
 892     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 893                                 instanceOopDesc::base_offset_in_bytes();
 894   }
 895 
 896   // Return the corresponding initialization barrier (or null if none).
 897   // Walks out edges to find it...
 898   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 899   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 900   InitializeNode* initialization();
 901 
 902   // Convenience for initialization->maybe_set_complete(phase)
 903   bool maybe_set_complete(PhaseGVN* phase);
 904 };
 905 
 906 //------------------------------AllocateArray---------------------------------
 907 //
 908 // High-level array allocation
 909 //
 910 class AllocateArrayNode : public AllocateNode {
 911 public:
 912   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 913                     Node* size, Node* klass_node, Node* initial_test,
 914                     Node* count_val
 915                     )
 916     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 917                    initial_test)
 918   {
 919     init_class_id(Class_AllocateArray);
 920     set_req(AllocateNode::ALength,        count_val);
 921   }
 922   virtual int Opcode() const;
 923   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 924 
 925   // Dig the length operand out of a array allocation site.
 926   Node* Ideal_length() {
 927     return in(AllocateNode::ALength);
 928   }
 929 
 930   // Dig the length operand out of a array allocation site and narrow the
 931   // type with a CastII, if necesssary
 932   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 933 
 934   // Pattern-match a possible usage of AllocateArrayNode.
 935   // Return null if no allocation is recognized.
 936   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 937     AllocateNode* allo = Ideal_allocation(ptr, phase);
 938     return (allo == NULL || !allo->is_AllocateArray())
 939            ? NULL : allo->as_AllocateArray();
 940   }
 941 };
 942 
 943 //------------------------------AbstractLockNode-----------------------------------
 944 class AbstractLockNode: public CallNode {
 945 private:
 946   enum {
 947     Regular = 0,  // Normal lock
 948     NonEscObj,    // Lock is used for non escaping object
 949     Coarsened,    // Lock was coarsened
 950     Nested        // Nested lock
 951   } _kind;
 952 #ifndef PRODUCT
 953   NamedCounter* _counter;
 954 #endif
 955 
 956 protected:
 957   // helper functions for lock elimination
 958   //
 959 
 960   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 961                             GrowableArray<AbstractLockNode*> &lock_ops);
 962   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 963                                        GrowableArray<AbstractLockNode*> &lock_ops);
 964   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 965                                GrowableArray<AbstractLockNode*> &lock_ops);
 966   LockNode *find_matching_lock(UnlockNode* unlock);
 967 
 968   // Update the counter to indicate that this lock was eliminated.
 969   void set_eliminated_lock_counter() PRODUCT_RETURN;
 970 
 971 public:
 972   AbstractLockNode(const TypeFunc *tf)
 973     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 974       _kind(Regular)
 975   {
 976 #ifndef PRODUCT
 977     _counter = NULL;
 978 #endif
 979   }
 980   virtual int Opcode() const = 0;
 981   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 982   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 983   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 984   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
 985 
 986   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 987 
 988   virtual uint size_of() const { return sizeof(*this); }
 989 
 990   bool is_eliminated()  const { return (_kind != Regular); }
 991   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
 992   bool is_coarsened()   const { return (_kind == Coarsened); }
 993   bool is_nested()      const { return (_kind == Nested); }
 994 
 995   const char * kind_as_string() const;
 996   void log_lock_optimization(Compile* c, const char * tag) const;
 997 
 998   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
 999   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1000   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1001 
1002   // locking does not modify its arguments
1003   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
1004 
1005 #ifndef PRODUCT
1006   void create_lock_counter(JVMState* s);
1007   NamedCounter* counter() const { return _counter; }
1008 #endif
1009 };
1010 
1011 //------------------------------Lock---------------------------------------
1012 // High-level lock operation
1013 //
1014 // This is a subclass of CallNode because it is a macro node which gets expanded
1015 // into a code sequence containing a call.  This node takes 3 "parameters":
1016 //    0  -  object to lock
1017 //    1 -   a BoxLockNode
1018 //    2 -   a FastLockNode
1019 //
1020 class LockNode : public AbstractLockNode {
1021 public:
1022 
1023   static const TypeFunc *lock_type() {
1024     // create input type (domain)
1025     const Type **fields = TypeTuple::fields(3);
1026     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1027     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1028     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1029     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1030 
1031     // create result type (range)
1032     fields = TypeTuple::fields(0);
1033 
1034     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1035 
1036     return TypeFunc::make(domain,range);
1037   }
1038 
1039   virtual int Opcode() const;
1040   virtual uint size_of() const; // Size is bigger
1041   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1042     init_class_id(Class_Lock);
1043     init_flags(Flag_is_macro);
1044     C->add_macro_node(this);
1045   }
1046   virtual bool        guaranteed_safepoint()  { return false; }
1047 
1048   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1049   // Expansion modifies the JVMState, so we need to clone it
1050   virtual void  clone_jvms(Compile* C) {
1051     if (jvms() != NULL) {
1052       set_jvms(jvms()->clone_deep(C));
1053       jvms()->set_map_deep(this);
1054     }
1055   }
1056 
1057   bool is_nested_lock_region(); // Is this Lock nested?
1058   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1059 };
1060 
1061 //------------------------------Unlock---------------------------------------
1062 // High-level unlock operation
1063 class UnlockNode : public AbstractLockNode {
1064 private:
1065 #ifdef ASSERT
1066   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1067 #endif
1068 public:
1069   virtual int Opcode() const;
1070   virtual uint size_of() const; // Size is bigger
1071   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1072 #ifdef ASSERT
1073     , _dbg_jvms(NULL)
1074 #endif
1075   {
1076     init_class_id(Class_Unlock);
1077     init_flags(Flag_is_macro);
1078     C->add_macro_node(this);
1079   }
1080   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1081   // unlock is never a safepoint
1082   virtual bool        guaranteed_safepoint()  { return false; }
1083 #ifdef ASSERT
1084   void set_dbg_jvms(JVMState* s) {
1085     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1086   }
1087   JVMState* dbg_jvms() const { return _dbg_jvms; }
1088 #else
1089   JVMState* dbg_jvms() const { return NULL; }
1090 #endif
1091 };
1092 #endif // SHARE_VM_OPTO_CALLNODE_HPP