1 /*
   2  * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.reflect.*;
  29 import java.util.ArrayList;
  30 import java.util.BitSet;
  31 import java.util.List;
  32 import java.util.Arrays;
  33 import java.util.Objects;
  34 import java.security.AccessController;
  35 import java.security.PrivilegedAction;
  36 
  37 import sun.invoke.util.ValueConversions;
  38 import sun.invoke.util.VerifyAccess;
  39 import sun.invoke.util.Wrapper;
  40 import sun.reflect.CallerSensitive;
  41 import sun.reflect.Reflection;
  42 import sun.reflect.misc.ReflectUtil;
  43 import sun.security.util.SecurityConstants;
  44 import java.lang.invoke.LambdaForm.BasicType;
  45 
  46 import static java.lang.invoke.MethodHandleStatics.*;
  47 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  48 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  49 import java.util.concurrent.ConcurrentHashMap;
  50 import java.util.stream.Collectors;
  51 import java.util.stream.Stream;
  52 
  53 import jdk.internal.org.objectweb.asm.ClassWriter;
  54 import jdk.internal.org.objectweb.asm.Opcodes;
  55 
  56 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  57 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  58 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  59 
  60 /**
  61  * This class consists exclusively of static methods that operate on or return
  62  * method handles. They fall into several categories:
  63  * <ul>
  64  * <li>Lookup methods which help create method handles for methods and fields.
  65  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  66  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  67  * </ul>
  68  *
  69  * @author John Rose, JSR 292 EG
  70  * @since 1.7
  71  */
  72 public class MethodHandles {
  73 
  74     private MethodHandles() { }  // do not instantiate
  75 
  76     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  77 
  78     // See IMPL_LOOKUP below.
  79 
  80     //// Method handle creation from ordinary methods.
  81 
  82     /**
  83      * Returns a {@link Lookup lookup object} with
  84      * full capabilities to emulate all supported bytecode behaviors of the caller.
  85      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  86      * Factory methods on the lookup object can create
  87      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  88      * for any member that the caller has access to via bytecodes,
  89      * including protected and private fields and methods.
  90      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  91      * Do not store it in place where untrusted code can access it.
  92      * <p>
  93      * This method is caller sensitive, which means that it may return different
  94      * values to different callers.
  95      * <p>
  96      * For any given caller class {@code C}, the lookup object returned by this call
  97      * has equivalent capabilities to any lookup object
  98      * supplied by the JVM to the bootstrap method of an
  99      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
 100      * executing in the same caller class {@code C}.
 101      * @return a lookup object for the caller of this method, with private access
 102      */
 103     @CallerSensitive
 104     public static Lookup lookup() {
 105         return new Lookup(Reflection.getCallerClass());
 106     }
 107 
 108     /**
 109      * Returns a {@link Lookup lookup object} which is trusted minimally.
 110      * It can only be used to create method handles to public members in
 111      * public classes in packages that are exported unconditionally.
 112      * <p>
 113      * For now, the {@linkplain Lookup#lookupClass lookup class} of this lookup
 114      * object is in an unnamed module.
 115      * Consequently, the lookup context of this lookup object will be the bootstrap
 116      * class loader, which means it cannot find user classes.
 117      *
 118      * <p style="font-size:smaller;">
 119      * <em>Discussion:</em>
 120      * The lookup class can be changed to any other class {@code C} using an expression of the form
 121      * {@link Lookup#in publicLookup().in(C.class)}.
 122      * but may change the lookup context by virtue of changing the class loader.
 123      * A public lookup object is always subject to
 124      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 125      * Also, it cannot access
 126      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 127      * @return a lookup object which is trusted minimally
 128      */
 129     public static Lookup publicLookup() {
 130         // During VM startup then only classes in the java.base module can be
 131         // loaded and linked. This is because java.base exports aren't setup until
 132         // the module system is initialized, hence types in the unnamed module
 133         // (or any named module) can't link to java/lang/Object.
 134         if (!jdk.internal.misc.VM.isModuleSystemInited()) {
 135             return new Lookup(Object.class, Lookup.PUBLIC);
 136         } else {
 137             return LookupHelper.PUBLIC_LOOKUP;
 138         }
 139     }
 140 
 141     /**
 142      * Performs an unchecked "crack" of a
 143      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 144      * The result is as if the user had obtained a lookup object capable enough
 145      * to crack the target method handle, called
 146      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 147      * on the target to obtain its symbolic reference, and then called
 148      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 149      * to resolve the symbolic reference to a member.
 150      * <p>
 151      * If there is a security manager, its {@code checkPermission} method
 152      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 153      * @param <T> the desired type of the result, either {@link Member} or a subtype
 154      * @param target a direct method handle to crack into symbolic reference components
 155      * @param expected a class object representing the desired result type {@code T}
 156      * @return a reference to the method, constructor, or field object
 157      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 158      * @exception NullPointerException if either argument is {@code null}
 159      * @exception IllegalArgumentException if the target is not a direct method handle
 160      * @exception ClassCastException if the member is not of the expected type
 161      * @since 1.8
 162      */
 163     public static <T extends Member> T
 164     reflectAs(Class<T> expected, MethodHandle target) {
 165         SecurityManager smgr = System.getSecurityManager();
 166         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 167         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 168         return lookup.revealDirect(target).reflectAs(expected, lookup);
 169     }
 170     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 171     private static final java.security.Permission ACCESS_PERMISSION =
 172         new ReflectPermission("suppressAccessChecks");
 173 
 174     /**
 175      * A <em>lookup object</em> is a factory for creating method handles,
 176      * when the creation requires access checking.
 177      * Method handles do not perform
 178      * access checks when they are called, but rather when they are created.
 179      * Therefore, method handle access
 180      * restrictions must be enforced when a method handle is created.
 181      * The caller class against which those restrictions are enforced
 182      * is known as the {@linkplain #lookupClass lookup class}.
 183      * <p>
 184      * A lookup class which needs to create method handles will call
 185      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
 186      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 187      * determined, and securely stored in the {@code Lookup} object.
 188      * The lookup class (or its delegates) may then use factory methods
 189      * on the {@code Lookup} object to create method handles for access-checked members.
 190      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 191      * even private ones.
 192      *
 193      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
 194      * The factory methods on a {@code Lookup} object correspond to all major
 195      * use cases for methods, constructors, and fields.
 196      * Each method handle created by a factory method is the functional
 197      * equivalent of a particular <em>bytecode behavior</em>.
 198      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 199      * Here is a summary of the correspondence between these factory methods and
 200      * the behavior of the resulting method handles:
 201      * <table border=1 cellpadding=5 summary="lookup method behaviors">
 202      * <tr>
 203      *     <th><a name="equiv"></a>lookup expression</th>
 204      *     <th>member</th>
 205      *     <th>bytecode behavior</th>
 206      * </tr>
 207      * <tr>
 208      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
 209      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 210      * </tr>
 211      * <tr>
 212      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
 213      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 214      * </tr>
 215      * <tr>
 216      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
 217      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 218      * </tr>
 219      * <tr>
 220      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
 221      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 222      * </tr>
 223      * <tr>
 224      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
 225      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 226      * </tr>
 227      * <tr>
 228      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
 229      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 230      * </tr>
 231      * <tr>
 232      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
 233      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 234      * </tr>
 235      * <tr>
 236      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
 237      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 238      * </tr>
 239      * <tr>
 240      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
 241      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 242      * </tr>
 243      * <tr>
 244      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
 245      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 246      * </tr>
 247      * <tr>
 248      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 249      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 250      * </tr>
 251      * <tr>
 252      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
 253      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 254      * </tr>
 255      * <tr>
 256      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
 257      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 258      * </tr>
 259      * <tr>
 260      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</td>
 261      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 262      * </tr>
 263      * </table>
 264      *
 265      * Here, the type {@code C} is the class or interface being searched for a member,
 266      * documented as a parameter named {@code refc} in the lookup methods.
 267      * The method type {@code MT} is composed from the return type {@code T}
 268      * and the sequence of argument types {@code A*}.
 269      * The constructor also has a sequence of argument types {@code A*} and
 270      * is deemed to return the newly-created object of type {@code C}.
 271      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 272      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 273      * if it is present, it is always the leading argument to the method handle invocation.
 274      * (In the case of some {@code protected} members, {@code this} may be
 275      * restricted in type to the lookup class; see below.)
 276      * The name {@code arg} stands for all the other method handle arguments.
 277      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 278      * stands for a null reference if the accessed method or field is static,
 279      * and {@code this} otherwise.
 280      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 281      * for reflective objects corresponding to the given members.
 282      * <p>
 283      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 284      * as if by {@code ldc CONSTANT_Class}.
 285      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 286      * <p>
 287      * In cases where the given member is of variable arity (i.e., a method or constructor)
 288      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 289      * In all other cases, the returned method handle will be of fixed arity.
 290      * <p style="font-size:smaller;">
 291      * <em>Discussion:</em>
 292      * The equivalence between looked-up method handles and underlying
 293      * class members and bytecode behaviors
 294      * can break down in a few ways:
 295      * <ul style="font-size:smaller;">
 296      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 297      * the lookup can still succeed, even when there is no equivalent
 298      * Java expression or bytecoded constant.
 299      * <li>Likewise, if {@code T} or {@code MT}
 300      * is not symbolically accessible from the lookup class's loader,
 301      * the lookup can still succeed.
 302      * For example, lookups for {@code MethodHandle.invokeExact} and
 303      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 304      * <li>If there is a security manager installed, it can forbid the lookup
 305      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 306      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 307      * constant is not subject to security manager checks.
 308      * <li>If the looked-up method has a
 309      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 310      * the method handle creation may fail, due to the method handle
 311      * type having too many parameters.
 312      * </ul>
 313      *
 314      * <h1><a name="access"></a>Access checking</h1>
 315      * Access checks are applied in the factory methods of {@code Lookup},
 316      * when a method handle is created.
 317      * This is a key difference from the Core Reflection API, since
 318      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 319      * performs access checking against every caller, on every call.
 320      * <p>
 321      * All access checks start from a {@code Lookup} object, which
 322      * compares its recorded lookup class against all requests to
 323      * create method handles.
 324      * A single {@code Lookup} object can be used to create any number
 325      * of access-checked method handles, all checked against a single
 326      * lookup class.
 327      * <p>
 328      * A {@code Lookup} object can be shared with other trusted code,
 329      * such as a metaobject protocol.
 330      * A shared {@code Lookup} object delegates the capability
 331      * to create method handles on private members of the lookup class.
 332      * Even if privileged code uses the {@code Lookup} object,
 333      * the access checking is confined to the privileges of the
 334      * original lookup class.
 335      * <p>
 336      * A lookup can fail, because
 337      * the containing class is not accessible to the lookup class, or
 338      * because the desired class member is missing, or because the
 339      * desired class member is not accessible to the lookup class, or
 340      * because the lookup object is not trusted enough to access the member.
 341      * In any of these cases, a {@code ReflectiveOperationException} will be
 342      * thrown from the attempted lookup.  The exact class will be one of
 343      * the following:
 344      * <ul>
 345      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 346      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 347      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 348      * </ul>
 349      * <p>
 350      * In general, the conditions under which a method handle may be
 351      * looked up for a method {@code M} are no more restrictive than the conditions
 352      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 353      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 354      * a method handle lookup will generally raise a corresponding
 355      * checked exception, such as {@code NoSuchMethodException}.
 356      * And the effect of invoking the method handle resulting from the lookup
 357      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 358      * to executing the compiled, verified, and resolved call to {@code M}.
 359      * The same point is true of fields and constructors.
 360      * <p style="font-size:smaller;">
 361      * <em>Discussion:</em>
 362      * Access checks only apply to named and reflected methods,
 363      * constructors, and fields.
 364      * Other method handle creation methods, such as
 365      * {@link MethodHandle#asType MethodHandle.asType},
 366      * do not require any access checks, and are used
 367      * independently of any {@code Lookup} object.
 368      * <p>
 369      * If the desired member is {@code protected}, the usual JVM rules apply,
 370      * including the requirement that the lookup class must be either be in the
 371      * same package as the desired member, or must inherit that member.
 372      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 373      * In addition, if the desired member is a non-static field or method
 374      * in a different package, the resulting method handle may only be applied
 375      * to objects of the lookup class or one of its subclasses.
 376      * This requirement is enforced by narrowing the type of the leading
 377      * {@code this} parameter from {@code C}
 378      * (which will necessarily be a superclass of the lookup class)
 379      * to the lookup class itself.
 380      * <p>
 381      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 382      * that the receiver argument must match both the resolved method <em>and</em>
 383      * the current class.  Again, this requirement is enforced by narrowing the
 384      * type of the leading parameter to the resulting method handle.
 385      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 386      * <p>
 387      * The JVM represents constructors and static initializer blocks as internal methods
 388      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 389      * The internal syntax of invocation instructions allows them to refer to such internal
 390      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 391      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 392      * <p>
 393      * In some cases, access between nested classes is obtained by the Java compiler by creating
 394      * an wrapper method to access a private method of another class
 395      * in the same top-level declaration.
 396      * For example, a nested class {@code C.D}
 397      * can access private members within other related classes such as
 398      * {@code C}, {@code C.D.E}, or {@code C.B},
 399      * but the Java compiler may need to generate wrapper methods in
 400      * those related classes.  In such cases, a {@code Lookup} object on
 401      * {@code C.E} would be unable to those private members.
 402      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 403      * which can transform a lookup on {@code C.E} into one on any of those other
 404      * classes, without special elevation of privilege.
 405      * <p>
 406      * The accesses permitted to a given lookup object may be limited,
 407      * according to its set of {@link #lookupModes lookupModes},
 408      * to a subset of members normally accessible to the lookup class.
 409      * For example, the {@link MethodHandles#publicLookup publicLookup}
 410      * method produces a lookup object which is only allowed to access
 411      * public members in public classes of exported packages.
 412      * The caller sensitive method {@link MethodHandles#lookup lookup}
 413      * produces a lookup object with full capabilities relative to
 414      * its caller class, to emulate all supported bytecode behaviors.
 415      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 416      * with fewer access modes than the original lookup object.
 417      *
 418      * <p style="font-size:smaller;">
 419      * <a name="privacc"></a>
 420      * <em>Discussion of private access:</em>
 421      * We say that a lookup has <em>private access</em>
 422      * if its {@linkplain #lookupModes lookup modes}
 423      * include the possibility of accessing {@code private} members.
 424      * As documented in the relevant methods elsewhere,
 425      * only lookups with private access possess the following capabilities:
 426      * <ul style="font-size:smaller;">
 427      * <li>access private fields, methods, and constructors of the lookup class
 428      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 429      *     such as {@code Class.forName}
 430      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 431      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 432      *     for classes accessible to the lookup class
 433      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 434      *     within the same package member
 435      * </ul>
 436      * <p style="font-size:smaller;">
 437      * Each of these permissions is a consequence of the fact that a lookup object
 438      * with private access can be securely traced back to an originating class,
 439      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 440      * can be reliably determined and emulated by method handles.
 441      *
 442      * <h1><a name="secmgr"></a>Security manager interactions</h1>
 443      * Although bytecode instructions can only refer to classes in
 444      * a related class loader, this API can search for methods in any
 445      * class, as long as a reference to its {@code Class} object is
 446      * available.  Such cross-loader references are also possible with the
 447      * Core Reflection API, and are impossible to bytecode instructions
 448      * such as {@code invokestatic} or {@code getfield}.
 449      * There is a {@linkplain java.lang.SecurityManager security manager API}
 450      * to allow applications to check such cross-loader references.
 451      * These checks apply to both the {@code MethodHandles.Lookup} API
 452      * and the Core Reflection API
 453      * (as found on {@link java.lang.Class Class}).
 454      * <p>
 455      * If a security manager is present, member and class lookups are subject to
 456      * additional checks.
 457      * From one to three calls are made to the security manager.
 458      * Any of these calls can refuse access by throwing a
 459      * {@link java.lang.SecurityException SecurityException}.
 460      * Define {@code smgr} as the security manager,
 461      * {@code lookc} as the lookup class of the current lookup object,
 462      * {@code refc} as the containing class in which the member
 463      * is being sought, and {@code defc} as the class in which the
 464      * member is actually defined.
 465      * (If a class or other type is being accessed,
 466      * the {@code refc} and {@code defc} values are the class itself.)
 467      * The value {@code lookc} is defined as <em>not present</em>
 468      * if the current lookup object does not have
 469      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 470      * The calls are made according to the following rules:
 471      * <ul>
 472      * <li><b>Step 1:</b>
 473      *     If {@code lookc} is not present, or if its class loader is not
 474      *     the same as or an ancestor of the class loader of {@code refc},
 475      *     then {@link SecurityManager#checkPackageAccess
 476      *     smgr.checkPackageAccess(refcPkg)} is called,
 477      *     where {@code refcPkg} is the package of {@code refc}.
 478      * <li><b>Step 2a:</b>
 479      *     If the retrieved member is not public and
 480      *     {@code lookc} is not present, then
 481      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 482      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 483      * <li><b>Step 2b:</b>
 484      *     If the retrieved class has a {@code null} class loader,
 485      *     and {@code lookc} is not present, then
 486      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 487      *     with {@code RuntimePermission("getClassLoader")} is called.
 488      * <li><b>Step 3:</b>
 489      *     If the retrieved member is not public,
 490      *     and if {@code lookc} is not present,
 491      *     and if {@code defc} and {@code refc} are different,
 492      *     then {@link SecurityManager#checkPackageAccess
 493      *     smgr.checkPackageAccess(defcPkg)} is called,
 494      *     where {@code defcPkg} is the package of {@code defc}.
 495      * </ul>
 496      * Security checks are performed after other access checks have passed.
 497      * Therefore, the above rules presuppose a member or class that is public,
 498      * or else that is being accessed from a lookup class that has
 499      * rights to access the member or class.
 500      *
 501      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
 502      * A small number of Java methods have a special property called caller sensitivity.
 503      * A <em>caller-sensitive</em> method can behave differently depending on the
 504      * identity of its immediate caller.
 505      * <p>
 506      * If a method handle for a caller-sensitive method is requested,
 507      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 508      * but they take account of the lookup class in a special way.
 509      * The resulting method handle behaves as if it were called
 510      * from an instruction contained in the lookup class,
 511      * so that the caller-sensitive method detects the lookup class.
 512      * (By contrast, the invoker of the method handle is disregarded.)
 513      * Thus, in the case of caller-sensitive methods,
 514      * different lookup classes may give rise to
 515      * differently behaving method handles.
 516      * <p>
 517      * In cases where the lookup object is
 518      * {@link MethodHandles#publicLookup() publicLookup()},
 519      * or some other lookup object without
 520      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 521      * the lookup class is disregarded.
 522      * In such cases, no caller-sensitive method handle can be created,
 523      * access is forbidden, and the lookup fails with an
 524      * {@code IllegalAccessException}.
 525      * <p style="font-size:smaller;">
 526      * <em>Discussion:</em>
 527      * For example, the caller-sensitive method
 528      * {@link java.lang.Class#forName(String) Class.forName(x)}
 529      * can return varying classes or throw varying exceptions,
 530      * depending on the class loader of the class that calls it.
 531      * A public lookup of {@code Class.forName} will fail, because
 532      * there is no reasonable way to determine its bytecode behavior.
 533      * <p style="font-size:smaller;">
 534      * If an application caches method handles for broad sharing,
 535      * it should use {@code publicLookup()} to create them.
 536      * If there is a lookup of {@code Class.forName}, it will fail,
 537      * and the application must take appropriate action in that case.
 538      * It may be that a later lookup, perhaps during the invocation of a
 539      * bootstrap method, can incorporate the specific identity
 540      * of the caller, making the method accessible.
 541      * <p style="font-size:smaller;">
 542      * The function {@code MethodHandles.lookup} is caller sensitive
 543      * so that there can be a secure foundation for lookups.
 544      * Nearly all other methods in the JSR 292 API rely on lookup
 545      * objects to check access requests.
 546      */
 547     public static final
 548     class Lookup {
 549         /** The class on behalf of whom the lookup is being performed. */
 550         private final Class<?> lookupClass;
 551 
 552         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 553         private final int allowedModes;
 554 
 555         /** A single-bit mask representing {@code public} access,
 556          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 557          *  The value, {@code 0x01}, happens to be the same as the value of the
 558          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 559          */
 560         public static final int PUBLIC = Modifier.PUBLIC;
 561 
 562         /** A single-bit mask representing {@code private} access,
 563          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 564          *  The value, {@code 0x02}, happens to be the same as the value of the
 565          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 566          */
 567         public static final int PRIVATE = Modifier.PRIVATE;
 568 
 569         /** A single-bit mask representing {@code protected} access,
 570          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 571          *  The value, {@code 0x04}, happens to be the same as the value of the
 572          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 573          */
 574         public static final int PROTECTED = Modifier.PROTECTED;
 575 
 576         /** A single-bit mask representing {@code package} access (default access),
 577          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 578          *  The value is {@code 0x08}, which does not correspond meaningfully to
 579          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 580          */
 581         public static final int PACKAGE = Modifier.STATIC;
 582 
 583         /** A single-bit mask representing {@code module} access (default access),
 584          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 585          *  The value is {@code 0x10}, which does not correspond meaningfully to
 586          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 587          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 588          *  with this lookup mode can access all public types in the module of the
 589          *  lookup class and public types in packages exported by other modules
 590          *  to the module of the lookup class.
 591          *  @since 9
 592          */
 593         public static final int MODULE = PACKAGE << 1;
 594 
 595         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE);
 596         private static final int TRUSTED   = -1;
 597 
 598         private static int fixmods(int mods) {
 599             mods &= (ALL_MODES - PACKAGE - MODULE);
 600             return (mods != 0) ? mods : (PACKAGE | MODULE);
 601         }
 602 
 603         /** Tells which class is performing the lookup.  It is this class against
 604          *  which checks are performed for visibility and access permissions.
 605          *  <p>
 606          *  The class implies a maximum level of access permission,
 607          *  but the permissions may be additionally limited by the bitmask
 608          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 609          *  can be accessed.
 610          *  @return the lookup class, on behalf of which this lookup object finds members
 611          */
 612         public Class<?> lookupClass() {
 613             return lookupClass;
 614         }
 615 
 616         // This is just for calling out to MethodHandleImpl.
 617         private Class<?> lookupClassOrNull() {
 618             return (allowedModes == TRUSTED) ? null : lookupClass;
 619         }
 620 
 621         /** Tells which access-protection classes of members this lookup object can produce.
 622          *  The result is a bit-mask of the bits
 623          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 624          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 625          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 626          *  {@linkplain #PACKAGE PACKAGE (0x08)},
 627          *  and {@linkplain #MODULE MODULE (0x10)}.
 628          *  <p>
 629          *  A freshly-created lookup object
 630          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
 631          *  has all possible bits set, since the caller class can access all its own members,
 632          *  all public types in the caller's module, and all public types in packages exported
 633          *  by other modules to the caller's module.
 634          *  A lookup object on a new lookup class
 635          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 636          *  may have some mode bits set to zero.
 637          *  The purpose of this is to restrict access via the new lookup object,
 638          *  so that it can access only names which can be reached by the original
 639          *  lookup object, and also by the new lookup class.
 640          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 641          */
 642         public int lookupModes() {
 643             return allowedModes & ALL_MODES;
 644         }
 645 
 646         /** Embody the current class (the lookupClass) as a lookup class
 647          * for method handle creation.
 648          * Must be called by from a method in this package,
 649          * which in turn is called by a method not in this package.
 650          */
 651         Lookup(Class<?> lookupClass) {
 652             this(lookupClass, ALL_MODES);
 653             // make sure we haven't accidentally picked up a privileged class:
 654             checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
 655         }
 656 
 657         private Lookup(Class<?> lookupClass, int allowedModes) {
 658             this.lookupClass = lookupClass;
 659             this.allowedModes = allowedModes;
 660         }
 661 
 662         /**
 663          * Creates a lookup on the specified new lookup class.
 664          * The resulting object will report the specified
 665          * class as its own {@link #lookupClass lookupClass}.
 666          * <p>
 667          * However, the resulting {@code Lookup} object is guaranteed
 668          * to have no more access capabilities than the original.
 669          * In particular, access capabilities can be lost as follows:<ul>
 670          * <li>If the lookup class for this {@code Lookup} is not in a named module,
 671          * and the new lookup class is in a named module {@code M}, then no members in
 672          * {@code M}'s non-exported packages will be accessible.
 673          * <li>If the lookup for this {@code Lookup} is in a named module, and the
 674          * new lookup class is in a different module {@code M}, then no members, not even
 675          * public members in {@code M}'s exported packages, will be accessible.
 676          * <li>If the new lookup class differs from the old one,
 677          * protected members will not be accessible by virtue of inheritance.
 678          * (Protected members may continue to be accessible because of package sharing.)
 679          * <li>If the new lookup class is in a different package
 680          * than the old one, protected and default (package) members will not be accessible.
 681          * <li>If the new lookup class is not within the same package member
 682          * as the old one, private members will not be accessible.
 683          * <li>If the new lookup class is not accessible to the old lookup class,
 684          * then no members, not even public members, will be accessible.
 685          * (In all other cases, public members will continue to be accessible.)
 686          * </ul>
 687          * <p>
 688          * The resulting lookup's capabilities for loading classes
 689          * (used during {@link #findClass} invocations)
 690          * are determined by the lookup class' loader,
 691          * which may change due to this operation.
 692          *
 693          * @param requestedLookupClass the desired lookup class for the new lookup object
 694          * @return a lookup object which reports the desired lookup class
 695          * @throws NullPointerException if the argument is null
 696          */
 697         public Lookup in(Class<?> requestedLookupClass) {
 698             Objects.requireNonNull(requestedLookupClass);
 699             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 700                 return new Lookup(requestedLookupClass, ALL_MODES);
 701             if (requestedLookupClass == this.lookupClass)
 702                 return this;  // keep same capabilities
 703 
 704             int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
 705             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
 706                 // Allowed to teleport from an unnamed to a named module but resulting
 707                 // Lookup has no access to module private members
 708                 if (this.lookupClass.getModule().isNamed()) {
 709                     newModes = 0;
 710                 } else {
 711                     newModes &= ~MODULE;
 712                 }
 713             }
 714             if ((newModes & PACKAGE) != 0
 715                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 716                 newModes &= ~(PACKAGE|PRIVATE);
 717             }
 718             // Allow nestmate lookups to be created without special privilege:
 719             if ((newModes & PRIVATE) != 0
 720                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 721                 newModes &= ~PRIVATE;
 722             }
 723             if ((newModes & PUBLIC) != 0
 724                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 725                 // The requested class it not accessible from the lookup class.
 726                 // No permissions.
 727                 newModes = 0;
 728             }
 729 
 730             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
 731             return new Lookup(requestedLookupClass, newModes);
 732         }
 733 
 734         // Make sure outer class is initialized first.
 735         static { IMPL_NAMES.getClass(); }
 736 
 737         /** Package-private version of lookup which is trusted. */
 738         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 739 
 740         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
 741             String name = lookupClass.getName();
 742             if (name.startsWith("java.lang.invoke."))
 743                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
 744 
 745             // For caller-sensitive MethodHandles.lookup()
 746             // disallow lookup more restricted packages
 747             if (allowedModes == ALL_MODES && lookupClass.getClassLoader() == null) {
 748                 if (name.startsWith("java.") ||
 749                         (name.startsWith("sun.") && !name.startsWith("sun.invoke."))) {
 750                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
 751                 }
 752             }
 753         }
 754 
 755         /**
 756          * Displays the name of the class from which lookups are to be made.
 757          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
 758          * If there are restrictions on the access permitted to this lookup,
 759          * this is indicated by adding a suffix to the class name, consisting
 760          * of a slash and a keyword.  The keyword represents the strongest
 761          * allowed access, and is chosen as follows:
 762          * <ul>
 763          * <li>If no access is allowed, the suffix is "/noaccess".
 764          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
 765          * <li>If only public and module access are allowed, the suffix is "/module".
 766          * <li>If only public, module and package access are allowed, the suffix is "/package".
 767          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
 768          * </ul>
 769          * If none of the above cases apply, it is the case that full
 770          * access (public, module, package, private, and protected) is allowed.
 771          * In this case, no suffix is added.
 772          * This is true only of an object obtained originally from
 773          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
 774          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
 775          * always have restricted access, and will display a suffix.
 776          * <p>
 777          * (It may seem strange that protected access should be
 778          * stronger than private access.  Viewed independently from
 779          * package access, protected access is the first to be lost,
 780          * because it requires a direct subclass relationship between
 781          * caller and callee.)
 782          * @see #in
 783          */
 784         @Override
 785         public String toString() {
 786             String cname = lookupClass.getName();
 787             switch (allowedModes) {
 788             case 0:  // no privileges
 789                 return cname + "/noaccess";
 790             case PUBLIC:
 791                 return cname + "/public";
 792             case PUBLIC|MODULE:
 793                 return cname + "/module";
 794             case PUBLIC|MODULE|PACKAGE:
 795                 return cname + "/package";
 796             case ALL_MODES & ~PROTECTED:
 797                 return cname + "/private";
 798             case ALL_MODES:
 799                 return cname;
 800             case TRUSTED:
 801                 return "/trusted";  // internal only; not exported
 802             default:  // Should not happen, but it's a bitfield...
 803                 cname = cname + "/" + Integer.toHexString(allowedModes);
 804                 assert(false) : cname;
 805                 return cname;
 806             }
 807         }
 808 
 809         /**
 810          * Produces a method handle for a static method.
 811          * The type of the method handle will be that of the method.
 812          * (Since static methods do not take receivers, there is no
 813          * additional receiver argument inserted into the method handle type,
 814          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
 815          * The method and all its argument types must be accessible to the lookup object.
 816          * <p>
 817          * The returned method handle will have
 818          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 819          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 820          * <p>
 821          * If the returned method handle is invoked, the method's class will
 822          * be initialized, if it has not already been initialized.
 823          * <p><b>Example:</b>
 824          * <blockquote><pre>{@code
 825 import static java.lang.invoke.MethodHandles.*;
 826 import static java.lang.invoke.MethodType.*;
 827 ...
 828 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
 829   "asList", methodType(List.class, Object[].class));
 830 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
 831          * }</pre></blockquote>
 832          * @param refc the class from which the method is accessed
 833          * @param name the name of the method
 834          * @param type the type of the method
 835          * @return the desired method handle
 836          * @throws NoSuchMethodException if the method does not exist
 837          * @throws IllegalAccessException if access checking fails,
 838          *                                or if the method is not {@code static},
 839          *                                or if the method's variable arity modifier bit
 840          *                                is set and {@code asVarargsCollector} fails
 841          * @exception SecurityException if a security manager is present and it
 842          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 843          * @throws NullPointerException if any argument is null
 844          */
 845         public
 846         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 847             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
 848             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
 849         }
 850 
 851         /**
 852          * Produces a method handle for a virtual method.
 853          * The type of the method handle will be that of the method,
 854          * with the receiver type (usually {@code refc}) prepended.
 855          * The method and all its argument types must be accessible to the lookup object.
 856          * <p>
 857          * When called, the handle will treat the first argument as a receiver
 858          * and dispatch on the receiver's type to determine which method
 859          * implementation to enter.
 860          * (The dispatching action is identical with that performed by an
 861          * {@code invokevirtual} or {@code invokeinterface} instruction.)
 862          * <p>
 863          * The first argument will be of type {@code refc} if the lookup
 864          * class has full privileges to access the member.  Otherwise
 865          * the member must be {@code protected} and the first argument
 866          * will be restricted in type to the lookup class.
 867          * <p>
 868          * The returned method handle will have
 869          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 870          * the method's variable arity modifier bit ({@code 0x0080}) is set.
 871          * <p>
 872          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
 873          * instructions and method handles produced by {@code findVirtual},
 874          * if the class is {@code MethodHandle} and the name string is
 875          * {@code invokeExact} or {@code invoke}, the resulting
 876          * method handle is equivalent to one produced by
 877          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
 878          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
 879          * with the same {@code type} argument.
 880          * <p>
 881          * If the class is {@code VarHandle} and the name string corresponds to
 882          * the name of a signature-polymorphic access mode method, the resulting
 883          * method handle is equivalent to one produced by
 884          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
 885          * the access mode corresponding to the name string and with the same
 886          * {@code type} arguments.
 887          * <p>
 888          * <b>Example:</b>
 889          * <blockquote><pre>{@code
 890 import static java.lang.invoke.MethodHandles.*;
 891 import static java.lang.invoke.MethodType.*;
 892 ...
 893 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
 894   "concat", methodType(String.class, String.class));
 895 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
 896   "hashCode", methodType(int.class));
 897 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
 898   "hashCode", methodType(int.class));
 899 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
 900 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
 901 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
 902 // interface method:
 903 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
 904   "subSequence", methodType(CharSequence.class, int.class, int.class));
 905 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
 906 // constructor "internal method" must be accessed differently:
 907 MethodType MT_newString = methodType(void.class); //()V for new String()
 908 try { assertEquals("impossible", lookup()
 909         .findVirtual(String.class, "<init>", MT_newString));
 910  } catch (NoSuchMethodException ex) { } // OK
 911 MethodHandle MH_newString = publicLookup()
 912   .findConstructor(String.class, MT_newString);
 913 assertEquals("", (String) MH_newString.invokeExact());
 914          * }</pre></blockquote>
 915          *
 916          * @param refc the class or interface from which the method is accessed
 917          * @param name the name of the method
 918          * @param type the type of the method, with the receiver argument omitted
 919          * @return the desired method handle
 920          * @throws NoSuchMethodException if the method does not exist
 921          * @throws IllegalAccessException if access checking fails,
 922          *                                or if the method is {@code static},
 923          *                                or if the method is {@code private} method of interface,
 924          *                                or if the method's variable arity modifier bit
 925          *                                is set and {@code asVarargsCollector} fails
 926          * @exception SecurityException if a security manager is present and it
 927          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
 928          * @throws NullPointerException if any argument is null
 929          */
 930         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
 931             if (refc == MethodHandle.class) {
 932                 MethodHandle mh = findVirtualForMH(name, type);
 933                 if (mh != null)  return mh;
 934             } else if (refc == VarHandle.class) {
 935                 MethodHandle mh = findVirtualForVH(name, type);
 936                 if (mh != null)  return mh;
 937             }
 938             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
 939             MemberName method = resolveOrFail(refKind, refc, name, type);
 940             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
 941         }
 942         private MethodHandle findVirtualForMH(String name, MethodType type) {
 943             // these names require special lookups because of the implicit MethodType argument
 944             if ("invoke".equals(name))
 945                 return invoker(type);
 946             if ("invokeExact".equals(name))
 947                 return exactInvoker(type);
 948             if ("invokeBasic".equals(name))
 949                 return basicInvoker(type);
 950             assert(!MemberName.isMethodHandleInvokeName(name));
 951             return null;
 952         }
 953         private MethodHandle findVirtualForVH(String name, MethodType type) {
 954             try {
 955                 return varHandleInvoker(VarHandle.AccessMode.valueOf(name), type);
 956             } catch (IllegalArgumentException e) {
 957                 return null;
 958             }
 959         }
 960 
 961         /**
 962          * Produces a method handle which creates an object and initializes it, using
 963          * the constructor of the specified type.
 964          * The parameter types of the method handle will be those of the constructor,
 965          * while the return type will be a reference to the constructor's class.
 966          * The constructor and all its argument types must be accessible to the lookup object.
 967          * <p>
 968          * The requested type must have a return type of {@code void}.
 969          * (This is consistent with the JVM's treatment of constructor type descriptors.)
 970          * <p>
 971          * The returned method handle will have
 972          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
 973          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
 974          * <p>
 975          * If the returned method handle is invoked, the constructor's class will
 976          * be initialized, if it has not already been initialized.
 977          * <p><b>Example:</b>
 978          * <blockquote><pre>{@code
 979 import static java.lang.invoke.MethodHandles.*;
 980 import static java.lang.invoke.MethodType.*;
 981 ...
 982 MethodHandle MH_newArrayList = publicLookup().findConstructor(
 983   ArrayList.class, methodType(void.class, Collection.class));
 984 Collection orig = Arrays.asList("x", "y");
 985 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
 986 assert(orig != copy);
 987 assertEquals(orig, copy);
 988 // a variable-arity constructor:
 989 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
 990   ProcessBuilder.class, methodType(void.class, String[].class));
 991 ProcessBuilder pb = (ProcessBuilder)
 992   MH_newProcessBuilder.invoke("x", "y", "z");
 993 assertEquals("[x, y, z]", pb.command().toString());
 994          * }</pre></blockquote>
 995          * @param refc the class or interface from which the method is accessed
 996          * @param type the type of the method, with the receiver argument omitted, and a void return type
 997          * @return the desired method handle
 998          * @throws NoSuchMethodException if the constructor does not exist
 999          * @throws IllegalAccessException if access checking fails
1000          *                                or if the method's variable arity modifier bit
1001          *                                is set and {@code asVarargsCollector} fails
1002          * @exception SecurityException if a security manager is present and it
1003          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1004          * @throws NullPointerException if any argument is null
1005          */
1006         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1007             String name = "<init>";
1008             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1009             return getDirectConstructor(refc, ctor);
1010         }
1011 
1012         /**
1013          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1014          * initializer of the class is not run.
1015          * <p>
1016          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1017          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1018          * load the requested class, and then determines whether the class is accessible to this lookup object.
1019          *
1020          * @param targetName the fully qualified name of the class to be looked up.
1021          * @return the requested class.
1022          * @exception SecurityException if a security manager is present and it
1023          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1024          * @throws LinkageError if the linkage fails
1025          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1026          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1027          * modes.
1028          * @exception SecurityException if a security manager is present and it
1029          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1030          * @since 9
1031          */
1032         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1033             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1034             return accessClass(targetClass);
1035         }
1036 
1037         /**
1038          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1039          * static initializer of the class is not run.
1040          * <p>
1041          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1042          * {@linkplain #lookupModes() lookup modes}.
1043          *
1044          * @param targetClass the class to be access-checked
1045          *
1046          * @return the class that has been access-checked
1047          *
1048          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1049          * modes.
1050          * @exception SecurityException if a security manager is present and it
1051          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1052          * @since 9
1053          */
1054         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1055             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1056                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1057             }
1058             checkSecurityManager(targetClass, null);
1059             return targetClass;
1060         }
1061 
1062         /**
1063          * Produces an early-bound method handle for a virtual method.
1064          * It will bypass checks for overriding methods on the receiver,
1065          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1066          * instruction from within the explicitly specified {@code specialCaller}.
1067          * The type of the method handle will be that of the method,
1068          * with a suitably restricted receiver type prepended.
1069          * (The receiver type will be {@code specialCaller} or a subtype.)
1070          * The method and all its argument types must be accessible
1071          * to the lookup object.
1072          * <p>
1073          * Before method resolution,
1074          * if the explicitly specified caller class is not identical with the
1075          * lookup class, or if this lookup object does not have
1076          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1077          * privileges, the access fails.
1078          * <p>
1079          * The returned method handle will have
1080          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1081          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1082          * <p style="font-size:smaller;">
1083          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1084          * even though the {@code invokespecial} instruction can refer to them
1085          * in special circumstances.  Use {@link #findConstructor findConstructor}
1086          * to access instance initialization methods in a safe manner.)</em>
1087          * <p><b>Example:</b>
1088          * <blockquote><pre>{@code
1089 import static java.lang.invoke.MethodHandles.*;
1090 import static java.lang.invoke.MethodType.*;
1091 ...
1092 static class Listie extends ArrayList {
1093   public String toString() { return "[wee Listie]"; }
1094   static Lookup lookup() { return MethodHandles.lookup(); }
1095 }
1096 ...
1097 // no access to constructor via invokeSpecial:
1098 MethodHandle MH_newListie = Listie.lookup()
1099   .findConstructor(Listie.class, methodType(void.class));
1100 Listie l = (Listie) MH_newListie.invokeExact();
1101 try { assertEquals("impossible", Listie.lookup().findSpecial(
1102         Listie.class, "<init>", methodType(void.class), Listie.class));
1103  } catch (NoSuchMethodException ex) { } // OK
1104 // access to super and self methods via invokeSpecial:
1105 MethodHandle MH_super = Listie.lookup().findSpecial(
1106   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1107 MethodHandle MH_this = Listie.lookup().findSpecial(
1108   Listie.class, "toString" , methodType(String.class), Listie.class);
1109 MethodHandle MH_duper = Listie.lookup().findSpecial(
1110   Object.class, "toString" , methodType(String.class), Listie.class);
1111 assertEquals("[]", (String) MH_super.invokeExact(l));
1112 assertEquals(""+l, (String) MH_this.invokeExact(l));
1113 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1114 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1115         String.class, "toString", methodType(String.class), Listie.class));
1116  } catch (IllegalAccessException ex) { } // OK
1117 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1118 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1119          * }</pre></blockquote>
1120          *
1121          * @param refc the class or interface from which the method is accessed
1122          * @param name the name of the method (which must not be "&lt;init&gt;")
1123          * @param type the type of the method, with the receiver argument omitted
1124          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1125          * @return the desired method handle
1126          * @throws NoSuchMethodException if the method does not exist
1127          * @throws IllegalAccessException if access checking fails,
1128          *                                or if the method is {@code static},
1129          *                                or if the method's variable arity modifier bit
1130          *                                is set and {@code asVarargsCollector} fails
1131          * @exception SecurityException if a security manager is present and it
1132          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1133          * @throws NullPointerException if any argument is null
1134          */
1135         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1136                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1137             checkSpecialCaller(specialCaller, refc);
1138             Lookup specialLookup = this.in(specialCaller);
1139             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1140             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1141         }
1142 
1143         /**
1144          * Produces a method handle giving read access to a non-static field.
1145          * The type of the method handle will have a return type of the field's
1146          * value type.
1147          * The method handle's single argument will be the instance containing
1148          * the field.
1149          * Access checking is performed immediately on behalf of the lookup class.
1150          * @param refc the class or interface from which the method is accessed
1151          * @param name the field's name
1152          * @param type the field's type
1153          * @return a method handle which can load values from the field
1154          * @throws NoSuchFieldException if the field does not exist
1155          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1156          * @exception SecurityException if a security manager is present and it
1157          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1158          * @throws NullPointerException if any argument is null
1159          * @see #findVarHandle(Class, String, Class)
1160          */
1161         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1162             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1163             return getDirectField(REF_getField, refc, field);
1164         }
1165 
1166         /**
1167          * Produces a method handle giving write access to a non-static field.
1168          * The type of the method handle will have a void return type.
1169          * The method handle will take two arguments, the instance containing
1170          * the field, and the value to be stored.
1171          * The second argument will be of the field's value type.
1172          * Access checking is performed immediately on behalf of the lookup class.
1173          * @param refc the class or interface from which the method is accessed
1174          * @param name the field's name
1175          * @param type the field's type
1176          * @return a method handle which can store values into the field
1177          * @throws NoSuchFieldException if the field does not exist
1178          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1179          * @exception SecurityException if a security manager is present and it
1180          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1181          * @throws NullPointerException if any argument is null
1182          * @see #findVarHandle(Class, String, Class)
1183          */
1184         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1185             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1186             return getDirectField(REF_putField, refc, field);
1187         }
1188 
1189         /**
1190          * Produces a VarHandle giving access to non-static fields of type
1191          * {@code T} declared by a receiver class of type {@code R}, supporting
1192          * shape {@code (R : T)}.
1193          * <p>
1194          * Access checking is performed immediately on behalf of the lookup
1195          * class.
1196          * <p>
1197          * Certain access modes of the returned VarHandle are unsupported under
1198          * the following conditions:
1199          * <ul>
1200          * <li>if the field is declared {@code final}, then the write, atomic
1201          *     update, and numeric atomic update access modes are unsupported.
1202          * <li>if the field type is anything other than {@code int},
1203          *     {@code long} or a reference type, then atomic update access modes
1204          *     are unsupported.  (Future major platform releases of the JDK may
1205          *     support additional types for certain currently unsupported access
1206          *     modes.)
1207          * <li>if the field type is anything other than {@code int} or
1208          *     {@code long}, then numeric atomic update access modes are
1209          *     unsupported.  (Future major platform releases of the JDK may
1210          *     support additional numeric types for certain currently
1211          *     unsupported access modes.)
1212          * </ul>
1213          * <p>
1214          * If the field is declared {@code volatile} then the returned VarHandle
1215          * will override access to the field (effectively ignore the
1216          * {@code volatile} declaration) in accordance to it's specified
1217          * access modes.
1218          * @param recv the receiver class, of type {@code R}, that declares the
1219          * non-static field
1220          * @param name the field's name
1221          * @param type the field's type, of type {@code T}
1222          * @return a VarHandle giving access to non-static fields.
1223          * @throws NoSuchFieldException if the field does not exist
1224          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1225          * @exception SecurityException if a security manager is present and it
1226          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1227          * @throws NullPointerException if any argument is null
1228          * @since 9
1229          */
1230         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1231             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1232             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1233             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1234         }
1235 
1236         /**
1237          * Produces a method handle giving read access to a static field.
1238          * The type of the method handle will have a return type of the field's
1239          * value type.
1240          * The method handle will take no arguments.
1241          * Access checking is performed immediately on behalf of the lookup class.
1242          * <p>
1243          * If the returned method handle is invoked, the field's class will
1244          * be initialized, if it has not already been initialized.
1245          * @param refc the class or interface from which the method is accessed
1246          * @param name the field's name
1247          * @param type the field's type
1248          * @return a method handle which can load values from the field
1249          * @throws NoSuchFieldException if the field does not exist
1250          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1251          * @exception SecurityException if a security manager is present and it
1252          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1253          * @throws NullPointerException if any argument is null
1254          */
1255         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1256             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1257             return getDirectField(REF_getStatic, refc, field);
1258         }
1259 
1260         /**
1261          * Produces a method handle giving write access to a static field.
1262          * The type of the method handle will have a void return type.
1263          * The method handle will take a single
1264          * argument, of the field's value type, the value to be stored.
1265          * Access checking is performed immediately on behalf of the lookup class.
1266          * <p>
1267          * If the returned method handle is invoked, the field's class will
1268          * be initialized, if it has not already been initialized.
1269          * @param refc the class or interface from which the method is accessed
1270          * @param name the field's name
1271          * @param type the field's type
1272          * @return a method handle which can store values into the field
1273          * @throws NoSuchFieldException if the field does not exist
1274          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1275          * @exception SecurityException if a security manager is present and it
1276          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1277          * @throws NullPointerException if any argument is null
1278          */
1279         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1280             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1281             return getDirectField(REF_putStatic, refc, field);
1282         }
1283 
1284         /**
1285          * Produces a VarHandle giving access to a static field of type
1286          * {@code T} declared by a given declaring class, supporting shape
1287          * {@code ((empty) : T)}.
1288          * <p>
1289          * Access checking is performed immediately on behalf of the lookup
1290          * class.
1291          * <p>
1292          * If the returned VarHandle is operated on, the declaring class will be
1293          * initialized, if it has not already been initialized.
1294          * <p>
1295          * Certain access modes of the returned VarHandle are unsupported under
1296          * the following conditions:
1297          * <ul>
1298          * <li>if the field is declared {@code final}, then the write, atomic
1299          *     update, and numeric atomic update access modes are unsupported.
1300          * <li>if the field type is anything other than {@code int},
1301          *     {@code long} or a reference type, then atomic update access modes
1302          *     are unsupported.  (Future major platform releases of the JDK may
1303          *     support additional types for certain currently unsupported access
1304          *     modes.)
1305          * <li>if the field type is anything other than {@code int} or
1306          *     {@code long}, then numeric atomic update access modes are
1307          *     unsupported.  (Future major platform releases of the JDK may
1308          *     support additional numeric types for certain currently
1309          *     unsupported access modes.)
1310          * </ul>
1311          * <p>
1312          * If the field is declared {@code volatile} then the returned VarHandle
1313          * will override access to the field (effectively ignore the
1314          * {@code volatile} declaration) in accordance to it's specified
1315          * access modes.
1316          * @param decl the class that declares the static field
1317          * @param name the field's name
1318          * @param type the field's type, of type {@code T}
1319          * @return a VarHandle giving access to a static field
1320          * @throws NoSuchFieldException if the field does not exist
1321          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1322          * @exception SecurityException if a security manager is present and it
1323          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1324          * @throws NullPointerException if any argument is null
1325          * @since 9
1326          */
1327         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1328             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1329             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1330             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1331         }
1332 
1333         /**
1334          * Produces an early-bound method handle for a non-static method.
1335          * The receiver must have a supertype {@code defc} in which a method
1336          * of the given name and type is accessible to the lookup class.
1337          * The method and all its argument types must be accessible to the lookup object.
1338          * The type of the method handle will be that of the method,
1339          * without any insertion of an additional receiver parameter.
1340          * The given receiver will be bound into the method handle,
1341          * so that every call to the method handle will invoke the
1342          * requested method on the given receiver.
1343          * <p>
1344          * The returned method handle will have
1345          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1346          * the method's variable arity modifier bit ({@code 0x0080}) is set
1347          * <em>and</em> the trailing array argument is not the only argument.
1348          * (If the trailing array argument is the only argument,
1349          * the given receiver value will be bound to it.)
1350          * <p>
1351          * This is equivalent to the following code:
1352          * <blockquote><pre>{@code
1353 import static java.lang.invoke.MethodHandles.*;
1354 import static java.lang.invoke.MethodType.*;
1355 ...
1356 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1357 MethodHandle mh1 = mh0.bindTo(receiver);
1358 MethodType mt1 = mh1.type();
1359 if (mh0.isVarargsCollector())
1360   mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
1361 return mh1;
1362          * }</pre></blockquote>
1363          * where {@code defc} is either {@code receiver.getClass()} or a super
1364          * type of that class, in which the requested method is accessible
1365          * to the lookup class.
1366          * (Note that {@code bindTo} does not preserve variable arity.)
1367          * @param receiver the object from which the method is accessed
1368          * @param name the name of the method
1369          * @param type the type of the method, with the receiver argument omitted
1370          * @return the desired method handle
1371          * @throws NoSuchMethodException if the method does not exist
1372          * @throws IllegalAccessException if access checking fails
1373          *                                or if the method's variable arity modifier bit
1374          *                                is set and {@code asVarargsCollector} fails
1375          * @exception SecurityException if a security manager is present and it
1376          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1377          * @throws NullPointerException if any argument is null
1378          * @see MethodHandle#bindTo
1379          * @see #findVirtual
1380          */
1381         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1382             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1383             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1384             MethodHandle mh = getDirectMethodNoRestrict(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1385             return mh.bindArgumentL(0, receiver).setVarargs(method);
1386         }
1387 
1388         /**
1389          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1390          * to <i>m</i>, if the lookup class has permission.
1391          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1392          * If <i>m</i> is virtual, overriding is respected on every call.
1393          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1394          * The type of the method handle will be that of the method,
1395          * with the receiver type prepended (but only if it is non-static).
1396          * If the method's {@code accessible} flag is not set,
1397          * access checking is performed immediately on behalf of the lookup class.
1398          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1399          * <p>
1400          * The returned method handle will have
1401          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1402          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1403          * <p>
1404          * If <i>m</i> is static, and
1405          * if the returned method handle is invoked, the method's class will
1406          * be initialized, if it has not already been initialized.
1407          * @param m the reflected method
1408          * @return a method handle which can invoke the reflected method
1409          * @throws IllegalAccessException if access checking fails
1410          *                                or if the method's variable arity modifier bit
1411          *                                is set and {@code asVarargsCollector} fails
1412          * @throws NullPointerException if the argument is null
1413          */
1414         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1415             if (m.getDeclaringClass() == MethodHandle.class) {
1416                 MethodHandle mh = unreflectForMH(m);
1417                 if (mh != null)  return mh;
1418             }
1419             if (m.getDeclaringClass() == VarHandle.class) {
1420                 MethodHandle mh = unreflectForVH(m);
1421                 if (mh != null)  return mh;
1422             }
1423             MemberName method = new MemberName(m);
1424             byte refKind = method.getReferenceKind();
1425             if (refKind == REF_invokeSpecial)
1426                 refKind = REF_invokeVirtual;
1427             assert(method.isMethod());
1428             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1429             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1430         }
1431         private MethodHandle unreflectForMH(Method m) {
1432             // these names require special lookups because they throw UnsupportedOperationException
1433             if (MemberName.isMethodHandleInvokeName(m.getName()))
1434                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1435             return null;
1436         }
1437         private MethodHandle unreflectForVH(Method m) {
1438             // these names require special lookups because they throw UnsupportedOperationException
1439             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
1440                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
1441             return null;
1442         }
1443 
1444         /**
1445          * Produces a method handle for a reflected method.
1446          * It will bypass checks for overriding methods on the receiver,
1447          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1448          * instruction from within the explicitly specified {@code specialCaller}.
1449          * The type of the method handle will be that of the method,
1450          * with a suitably restricted receiver type prepended.
1451          * (The receiver type will be {@code specialCaller} or a subtype.)
1452          * If the method's {@code accessible} flag is not set,
1453          * access checking is performed immediately on behalf of the lookup class,
1454          * as if {@code invokespecial} instruction were being linked.
1455          * <p>
1456          * Before method resolution,
1457          * if the explicitly specified caller class is not identical with the
1458          * lookup class, or if this lookup object does not have
1459          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1460          * privileges, the access fails.
1461          * <p>
1462          * The returned method handle will have
1463          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1464          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1465          * @param m the reflected method
1466          * @param specialCaller the class nominally calling the method
1467          * @return a method handle which can invoke the reflected method
1468          * @throws IllegalAccessException if access checking fails,
1469          *                                or if the method is {@code static},
1470          *                                or if the method's variable arity modifier bit
1471          *                                is set and {@code asVarargsCollector} fails
1472          * @throws NullPointerException if any argument is null
1473          */
1474         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1475             checkSpecialCaller(specialCaller, null);
1476             Lookup specialLookup = this.in(specialCaller);
1477             MemberName method = new MemberName(m, true);
1478             assert(method.isMethod());
1479             // ignore m.isAccessible:  this is a new kind of access
1480             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1481         }
1482 
1483         /**
1484          * Produces a method handle for a reflected constructor.
1485          * The type of the method handle will be that of the constructor,
1486          * with the return type changed to the declaring class.
1487          * The method handle will perform a {@code newInstance} operation,
1488          * creating a new instance of the constructor's class on the
1489          * arguments passed to the method handle.
1490          * <p>
1491          * If the constructor's {@code accessible} flag is not set,
1492          * access checking is performed immediately on behalf of the lookup class.
1493          * <p>
1494          * The returned method handle will have
1495          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1496          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1497          * <p>
1498          * If the returned method handle is invoked, the constructor's class will
1499          * be initialized, if it has not already been initialized.
1500          * @param c the reflected constructor
1501          * @return a method handle which can invoke the reflected constructor
1502          * @throws IllegalAccessException if access checking fails
1503          *                                or if the method's variable arity modifier bit
1504          *                                is set and {@code asVarargsCollector} fails
1505          * @throws NullPointerException if the argument is null
1506          */
1507         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1508             MemberName ctor = new MemberName(c);
1509             assert(ctor.isConstructor());
1510             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1511             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1512         }
1513 
1514         /**
1515          * Produces a method handle giving read access to a reflected field.
1516          * The type of the method handle will have a return type of the field's
1517          * value type.
1518          * If the field is static, the method handle will take no arguments.
1519          * Otherwise, its single argument will be the instance containing
1520          * the field.
1521          * If the field's {@code accessible} flag is not set,
1522          * access checking is performed immediately on behalf of the lookup class.
1523          * <p>
1524          * If the field is static, and
1525          * if the returned method handle is invoked, the field's class will
1526          * be initialized, if it has not already been initialized.
1527          * @param f the reflected field
1528          * @return a method handle which can load values from the reflected field
1529          * @throws IllegalAccessException if access checking fails
1530          * @throws NullPointerException if the argument is null
1531          */
1532         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1533             return unreflectField(f, false);
1534         }
1535         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1536             MemberName field = new MemberName(f, isSetter);
1537             assert(isSetter
1538                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1539                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1540             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1541             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1542         }
1543 
1544         /**
1545          * Produces a method handle giving write access to a reflected field.
1546          * The type of the method handle will have a void return type.
1547          * If the field is static, the method handle will take a single
1548          * argument, of the field's value type, the value to be stored.
1549          * Otherwise, the two arguments will be the instance containing
1550          * the field, and the value to be stored.
1551          * If the field's {@code accessible} flag is not set,
1552          * access checking is performed immediately on behalf of the lookup class.
1553          * <p>
1554          * If the field is static, and
1555          * if the returned method handle is invoked, the field's class will
1556          * be initialized, if it has not already been initialized.
1557          * @param f the reflected field
1558          * @return a method handle which can store values into the reflected field
1559          * @throws IllegalAccessException if access checking fails
1560          * @throws NullPointerException if the argument is null
1561          */
1562         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1563             return unreflectField(f, true);
1564         }
1565 
1566         /**
1567          * Produces a VarHandle that accesses fields of type {@code T} declared
1568          * by a class of type {@code R}, as described by the given reflected
1569          * field.
1570          * If the field is non-static the VarHandle supports a shape of
1571          * {@code (R : T)}, otherwise supports a shape of {@code ((empty) : T)}.
1572          * <p>
1573          * Access checking is performed immediately on behalf of the lookup
1574          * class, regardless of the value of the field's {@code accessible}
1575          * flag.
1576          * <p>
1577          * If the field is static, and if the returned VarHandle is operated
1578          * on, the field's declaring class will be initialized, if it has not
1579          * already been initialized.
1580          * <p>
1581          * Certain access modes of the returned VarHandle are unsupported under
1582          * the following conditions:
1583          * <ul>
1584          * <li>if the field is declared {@code final}, then the write, atomic
1585          *     update, and numeric atomic update access modes are unsupported.
1586          * <li>if the field type is anything other than {@code int},
1587          *     {@code long} or a reference type, then atomic update access modes
1588          *     are unsupported.  (Future major platform releases of the JDK may
1589          *     support additional types for certain currently unsupported access
1590          *     modes.)
1591          * <li>if the field type is anything other than {@code int} or
1592          *     {@code long}, then numeric atomic update access modes are
1593          *     unsupported.  (Future major platform releases of the JDK may
1594          *     support additional numeric types for certain currently
1595          *     unsupported access modes.)
1596          * </ul>
1597          * <p>
1598          * If the field is declared {@code volatile} then the returned VarHandle
1599          * will override access to the field (effectively ignore the
1600          * {@code volatile} declaration) in accordance to it's specified
1601          * access modes.
1602          * @param f the reflected field, with a field of type {@code T}, and
1603          * a declaring class of type {@code R}
1604          * @return a VarHandle giving access to non-static fields or a static
1605          * field
1606          * @throws IllegalAccessException if access checking fails
1607          * @throws NullPointerException if the argument is null
1608          * @since 9
1609          */
1610         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1611             MemberName getField = new MemberName(f, false);
1612             MemberName putField = new MemberName(f, true);
1613             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
1614                                                       f.getDeclaringClass(), getField, putField);
1615         }
1616 
1617         /**
1618          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1619          * created by this lookup object or a similar one.
1620          * Security and access checks are performed to ensure that this lookup object
1621          * is capable of reproducing the target method handle.
1622          * This means that the cracking may fail if target is a direct method handle
1623          * but was created by an unrelated lookup object.
1624          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1625          * and was created by a lookup object for a different class.
1626          * @param target a direct method handle to crack into symbolic reference components
1627          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1628          * @exception SecurityException if a security manager is present and it
1629          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1630          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1631          * @exception NullPointerException if the target is {@code null}
1632          * @see MethodHandleInfo
1633          * @since 1.8
1634          */
1635         public MethodHandleInfo revealDirect(MethodHandle target) {
1636             MemberName member = target.internalMemberName();
1637             if (member == null || (!member.isResolved() &&
1638                                    !member.isMethodHandleInvoke() &&
1639                                    !member.isVarHandleMethodInvoke()))
1640                 throw newIllegalArgumentException("not a direct method handle");
1641             Class<?> defc = member.getDeclaringClass();
1642             byte refKind = member.getReferenceKind();
1643             assert(MethodHandleNatives.refKindIsValid(refKind));
1644             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1645                 // Devirtualized method invocation is usually formally virtual.
1646                 // To avoid creating extra MemberName objects for this common case,
1647                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1648                 refKind = REF_invokeVirtual;
1649             if (refKind == REF_invokeVirtual && defc.isInterface())
1650                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
1651                 refKind = REF_invokeInterface;
1652             // Check SM permissions and member access before cracking.
1653             try {
1654                 checkAccess(refKind, defc, member);
1655                 checkSecurityManager(defc, member);
1656             } catch (IllegalAccessException ex) {
1657                 throw new IllegalArgumentException(ex);
1658             }
1659             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
1660                 Class<?> callerClass = target.internalCallerClass();
1661                 if (!hasPrivateAccess() || callerClass != lookupClass())
1662                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
1663             }
1664             // Produce the handle to the results.
1665             return new InfoFromMemberName(this, member, refKind);
1666         }
1667 
1668         /// Helper methods, all package-private.
1669 
1670         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1671             checkSymbolicClass(refc);  // do this before attempting to resolve
1672             Objects.requireNonNull(name);
1673             Objects.requireNonNull(type);
1674             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1675                                             NoSuchFieldException.class);
1676         }
1677 
1678         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1679             checkSymbolicClass(refc);  // do this before attempting to resolve
1680             Objects.requireNonNull(name);
1681             Objects.requireNonNull(type);
1682             checkMethodName(refKind, name);  // NPE check on name
1683             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
1684                                             NoSuchMethodException.class);
1685         }
1686 
1687         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
1688             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
1689             Objects.requireNonNull(member.getName());
1690             Objects.requireNonNull(member.getType());
1691             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
1692                                             ReflectiveOperationException.class);
1693         }
1694 
1695         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1696             Objects.requireNonNull(refc);
1697             Class<?> caller = lookupClassOrNull();
1698             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
1699                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
1700         }
1701 
1702         /** Check name for an illegal leading "&lt;" character. */
1703         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
1704             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
1705                 throw new NoSuchMethodException("illegal method name: "+name);
1706         }
1707 
1708 
1709         /**
1710          * Find my trustable caller class if m is a caller sensitive method.
1711          * If this lookup object has private access, then the caller class is the lookupClass.
1712          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
1713          */
1714         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
1715             Class<?> callerClass = null;
1716             if (MethodHandleNatives.isCallerSensitive(m)) {
1717                 // Only lookups with private access are allowed to resolve caller-sensitive methods
1718                 if (hasPrivateAccess()) {
1719                     callerClass = lookupClass;
1720                 } else {
1721                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
1722                 }
1723             }
1724             return callerClass;
1725         }
1726 
1727         private boolean hasPrivateAccess() {
1728             return (allowedModes & PRIVATE) != 0;
1729         }
1730 
1731         /**
1732          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
1733          * Determines a trustable caller class to compare with refc, the symbolic reference class.
1734          * If this lookup object has private access, then the caller class is the lookupClass.
1735          */
1736         void checkSecurityManager(Class<?> refc, MemberName m) {
1737             SecurityManager smgr = System.getSecurityManager();
1738             if (smgr == null)  return;
1739             if (allowedModes == TRUSTED)  return;
1740 
1741             // Step 1:
1742             boolean fullPowerLookup = hasPrivateAccess();
1743             if (!fullPowerLookup ||
1744                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
1745                 ReflectUtil.checkPackageAccess(refc);
1746             }
1747 
1748             if (m == null) {  // findClass or accessClass
1749                 // Step 2b:
1750                 if (!fullPowerLookup) {
1751                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
1752                 }
1753                 return;
1754             }
1755 
1756             // Step 2a:
1757             if (m.isPublic()) return;
1758             if (!fullPowerLookup) {
1759                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
1760             }
1761 
1762             // Step 3:
1763             Class<?> defc = m.getDeclaringClass();
1764             if (!fullPowerLookup && defc != refc) {
1765                 ReflectUtil.checkPackageAccess(defc);
1766             }
1767         }
1768 
1769         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1770             boolean wantStatic = (refKind == REF_invokeStatic);
1771             String message;
1772             if (m.isConstructor())
1773                 message = "expected a method, not a constructor";
1774             else if (!m.isMethod())
1775                 message = "expected a method";
1776             else if (wantStatic != m.isStatic())
1777                 message = wantStatic ? "expected a static method" : "expected a non-static method";
1778             else
1779                 { checkAccess(refKind, refc, m); return; }
1780             throw m.makeAccessException(message, this);
1781         }
1782 
1783         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1784             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
1785             String message;
1786             if (wantStatic != m.isStatic())
1787                 message = wantStatic ? "expected a static field" : "expected a non-static field";
1788             else
1789                 { checkAccess(refKind, refc, m); return; }
1790             throw m.makeAccessException(message, this);
1791         }
1792 
1793         /** Check public/protected/private bits on the symbolic reference class and its member. */
1794         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
1795             assert(m.referenceKindIsConsistentWith(refKind) &&
1796                    MethodHandleNatives.refKindIsValid(refKind) &&
1797                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
1798             int allowedModes = this.allowedModes;
1799             if (allowedModes == TRUSTED)  return;
1800             int mods = m.getModifiers();
1801             if (Modifier.isProtected(mods) &&
1802                     refKind == REF_invokeVirtual &&
1803                     m.getDeclaringClass() == Object.class &&
1804                     m.getName().equals("clone") &&
1805                     refc.isArray()) {
1806                 // The JVM does this hack also.
1807                 // (See ClassVerifier::verify_invoke_instructions
1808                 // and LinkResolver::check_method_accessability.)
1809                 // Because the JVM does not allow separate methods on array types,
1810                 // there is no separate method for int[].clone.
1811                 // All arrays simply inherit Object.clone.
1812                 // But for access checking logic, we make Object.clone
1813                 // (normally protected) appear to be public.
1814                 // Later on, when the DirectMethodHandle is created,
1815                 // its leading argument will be restricted to the
1816                 // requested array type.
1817                 // N.B. The return type is not adjusted, because
1818                 // that is *not* the bytecode behavior.
1819                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
1820             }
1821             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
1822                 // cannot "new" a protected ctor in a different package
1823                 mods ^= Modifier.PROTECTED;
1824             }
1825             if (Modifier.isFinal(mods) &&
1826                     MethodHandleNatives.refKindIsSetter(refKind))
1827                 throw m.makeAccessException("unexpected set of a final field", this);
1828             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1829             if ((requestedModes & allowedModes) != 0) {
1830                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
1831                                                     mods, lookupClass(), allowedModes))
1832                     return;
1833             } else {
1834                 // Protected members can also be checked as if they were package-private.
1835                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
1836                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
1837                     return;
1838             }
1839             throw m.makeAccessException(accessFailedMessage(refc, m), this);
1840         }
1841 
1842         String accessFailedMessage(Class<?> refc, MemberName m) {
1843             Class<?> defc = m.getDeclaringClass();
1844             int mods = m.getModifiers();
1845             // check the class first:
1846             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
1847                                (defc == refc ||
1848                                 Modifier.isPublic(refc.getModifiers())));
1849             if (!classOK && (allowedModes & PACKAGE) != 0) {
1850                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1851                            (defc == refc ||
1852                             VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1853             }
1854             if (!classOK)
1855                 return "class is not public";
1856             if (Modifier.isPublic(mods))
1857                 return "access to public member failed";  // (how?, module not readable?)
1858             if (Modifier.isPrivate(mods))
1859                 return "member is private";
1860             if (Modifier.isProtected(mods))
1861                 return "member is protected";
1862             return "member is private to package";
1863         }
1864 
1865         private static final boolean ALLOW_NESTMATE_ACCESS = false;
1866 
1867         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
1868             int allowedModes = this.allowedModes;
1869             if (allowedModes == TRUSTED)  return;
1870             if (!hasPrivateAccess()
1871                 || (specialCaller != lookupClass()
1872                        // ensure non-abstract methods in superinterfaces can be special-invoked
1873                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))
1874                     && !(ALLOW_NESTMATE_ACCESS &&
1875                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1876                 throw new MemberName(specialCaller).
1877                     makeAccessException("no private access for invokespecial", this);
1878         }
1879 
1880         private boolean restrictProtectedReceiver(MemberName method) {
1881             // The accessing class only has the right to use a protected member
1882             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
1883             if (!method.isProtected() || method.isStatic()
1884                 || allowedModes == TRUSTED
1885                 || method.getDeclaringClass() == lookupClass()
1886                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
1887                 || (ALLOW_NESTMATE_ACCESS &&
1888                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1889                 return false;
1890             return true;
1891         }
1892         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
1893             assert(!method.isStatic());
1894             // receiver type of mh is too wide; narrow to caller
1895             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
1896                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
1897             }
1898             MethodType rawType = mh.type();
1899             if (rawType.parameterType(0) == caller)  return mh;
1900             MethodType narrowType = rawType.changeParameterType(0, caller);
1901             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
1902             assert(mh.viewAsTypeChecks(narrowType, true));
1903             return mh.copyWith(narrowType, mh.form);
1904         }
1905 
1906         /** Check access and get the requested method. */
1907         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1908             final boolean doRestrict    = true;
1909             final boolean checkSecurity = true;
1910             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1911         }
1912         /** Check access and get the requested method, eliding receiver narrowing rules. */
1913         private MethodHandle getDirectMethodNoRestrict(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1914             final boolean doRestrict    = false;
1915             final boolean checkSecurity = true;
1916             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1917         }
1918         /** Check access and get the requested method, eliding security manager checks. */
1919         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
1920             final boolean doRestrict    = true;
1921             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1922             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
1923         }
1924         /** Common code for all methods; do not call directly except from immediately above. */
1925         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
1926                                                    boolean checkSecurity,
1927                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
1928             checkMethod(refKind, refc, method);
1929             // Optionally check with the security manager; this isn't needed for unreflect* calls.
1930             if (checkSecurity)
1931                 checkSecurityManager(refc, method);
1932             assert(!method.isMethodHandleInvoke());
1933 
1934             if (refKind == REF_invokeSpecial &&
1935                 refc != lookupClass() &&
1936                 !refc.isInterface() &&
1937                 refc != lookupClass().getSuperclass() &&
1938                 refc.isAssignableFrom(lookupClass())) {
1939                 assert(!method.getName().equals("<init>"));  // not this code path
1940                 // Per JVMS 6.5, desc. of invokespecial instruction:
1941                 // If the method is in a superclass of the LC,
1942                 // and if our original search was above LC.super,
1943                 // repeat the search (symbolic lookup) from LC.super
1944                 // and continue with the direct superclass of that class,
1945                 // and so forth, until a match is found or no further superclasses exist.
1946                 // FIXME: MemberName.resolve should handle this instead.
1947                 Class<?> refcAsSuper = lookupClass();
1948                 MemberName m2;
1949                 do {
1950                     refcAsSuper = refcAsSuper.getSuperclass();
1951                     m2 = new MemberName(refcAsSuper,
1952                                         method.getName(),
1953                                         method.getMethodType(),
1954                                         REF_invokeSpecial);
1955                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
1956                 } while (m2 == null &&         // no method is found yet
1957                          refc != refcAsSuper); // search up to refc
1958                 if (m2 == null)  throw new InternalError(method.toString());
1959                 method = m2;
1960                 refc = refcAsSuper;
1961                 // redo basic checks
1962                 checkMethod(refKind, refc, method);
1963             }
1964 
1965             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method);
1966             MethodHandle mh = dmh;
1967             // Optionally narrow the receiver argument to refc using restrictReceiver.
1968             if (doRestrict &&
1969                    (refKind == REF_invokeSpecial ||
1970                        (MethodHandleNatives.refKindHasReceiver(refKind) &&
1971                            restrictProtectedReceiver(method)))) {
1972                 mh = restrictReceiver(method, dmh, lookupClass());
1973             }
1974             mh = maybeBindCaller(method, mh, callerClass);
1975             mh = mh.setVarargs(method);
1976             return mh;
1977         }
1978         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
1979                                              Class<?> callerClass)
1980                                              throws IllegalAccessException {
1981             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
1982                 return mh;
1983             Class<?> hostClass = lookupClass;
1984             if (!hasPrivateAccess())  // caller must have private access
1985                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
1986             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
1987             // Note: caller will apply varargs after this step happens.
1988             return cbmh;
1989         }
1990         /** Check access and get the requested field. */
1991         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1992             final boolean checkSecurity = true;
1993             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
1994         }
1995         /** Check access and get the requested field, eliding security manager checks. */
1996         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
1997             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
1998             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
1999         }
2000         /** Common code for all fields; do not call directly except from immediately above. */
2001         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2002                                                   boolean checkSecurity) throws IllegalAccessException {
2003             checkField(refKind, refc, field);
2004             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2005             if (checkSecurity)
2006                 checkSecurityManager(refc, field);
2007             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2008             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2009                                     restrictProtectedReceiver(field));
2010             if (doRestrict)
2011                 return restrictReceiver(field, dmh, lookupClass());
2012             return dmh;
2013         }
2014         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2015                                             Class<?> refc, MemberName getField, MemberName putField)
2016                 throws IllegalAccessException {
2017             final boolean checkSecurity = true;
2018             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2019         }
2020         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2021                                                              Class<?> refc, MemberName getField, MemberName putField)
2022                 throws IllegalAccessException {
2023             final boolean checkSecurity = false;
2024             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2025         }
2026         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2027                                                   Class<?> refc, MemberName getField, MemberName putField,
2028                                                   boolean checkSecurity) throws IllegalAccessException {
2029             assert getField.isStatic() == putField.isStatic();
2030             assert getField.isGetter() && putField.isSetter();
2031             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2032             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2033 
2034             checkField(getRefKind, refc, getField);
2035             if (checkSecurity)
2036                 checkSecurityManager(refc, getField);
2037 
2038             if (!putField.isFinal()) {
2039                 // A VarHandle does not support updates to final fields, any
2040                 // such VarHandle to a final field will be read-only and
2041                 // therefore the following write-based accessibility checks are
2042                 // only required for non-final fields
2043                 checkField(putRefKind, refc, putField);
2044                 if (checkSecurity)
2045                     checkSecurityManager(refc, putField);
2046             }
2047 
2048             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2049                                   restrictProtectedReceiver(getField));
2050             if (doRestrict) {
2051                 assert !getField.isStatic();
2052                 // receiver type of VarHandle is too wide; narrow to caller
2053                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2054                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2055                 }
2056                 refc = lookupClass();
2057             }
2058             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2059         }
2060         /** Check access and get the requested constructor. */
2061         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2062             final boolean checkSecurity = true;
2063             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2064         }
2065         /** Check access and get the requested constructor, eliding security manager checks. */
2066         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2067             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2068             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2069         }
2070         /** Common code for all constructors; do not call directly except from immediately above. */
2071         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2072                                                   boolean checkSecurity) throws IllegalAccessException {
2073             assert(ctor.isConstructor());
2074             checkAccess(REF_newInvokeSpecial, refc, ctor);
2075             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2076             if (checkSecurity)
2077                 checkSecurityManager(refc, ctor);
2078             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2079             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2080         }
2081 
2082         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2083          */
2084         /*non-public*/
2085         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2086             if (!(type instanceof Class || type instanceof MethodType))
2087                 throw new InternalError("unresolved MemberName");
2088             MemberName member = new MemberName(refKind, defc, name, type);
2089             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2090             if (mh != null) {
2091                 checkSymbolicClass(defc);
2092                 return mh;
2093             }
2094             // Treat MethodHandle.invoke and invokeExact specially.
2095             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2096                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2097                 if (mh != null) {
2098                     return mh;
2099                 }
2100             }
2101             MemberName resolved = resolveOrFail(refKind, member);
2102             mh = getDirectMethodForConstant(refKind, defc, resolved);
2103             if (mh instanceof DirectMethodHandle
2104                     && canBeCached(refKind, defc, resolved)) {
2105                 MemberName key = mh.internalMemberName();
2106                 if (key != null) {
2107                     key = key.asNormalOriginal();
2108                 }
2109                 if (member.equals(key)) {  // better safe than sorry
2110                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2111                 }
2112             }
2113             return mh;
2114         }
2115         private
2116         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2117             if (refKind == REF_invokeSpecial) {
2118                 return false;
2119             }
2120             if (!Modifier.isPublic(defc.getModifiers()) ||
2121                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2122                     !member.isPublic() ||
2123                     member.isCallerSensitive()) {
2124                 return false;
2125             }
2126             ClassLoader loader = defc.getClassLoader();
2127             if (!jdk.internal.misc.VM.isSystemDomainLoader(loader)) {
2128                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2129                 boolean found = false;
2130                 while (sysl != null) {
2131                     if (loader == sysl) { found = true; break; }
2132                     sysl = sysl.getParent();
2133                 }
2134                 if (!found) {
2135                     return false;
2136                 }
2137             }
2138             try {
2139                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
2140                     new MemberName(refKind, defc, member.getName(), member.getType()));
2141                 checkSecurityManager(defc, resolved2);
2142             } catch (ReflectiveOperationException | SecurityException ex) {
2143                 return false;
2144             }
2145             return true;
2146         }
2147         private
2148         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2149                 throws ReflectiveOperationException {
2150             if (MethodHandleNatives.refKindIsField(refKind)) {
2151                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2152             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2153                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
2154             } else if (refKind == REF_newInvokeSpecial) {
2155                 return getDirectConstructorNoSecurityManager(defc, member);
2156             }
2157             // oops
2158             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2159         }
2160 
2161         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2162     }
2163 
2164     /**
2165      * Helper class used to lazily create PUBLIC_LOOKUP with a lookup class
2166      * in an <em>unnamed module</em>.
2167      *
2168      * @see Lookup#publicLookup
2169      */
2170     private static class LookupHelper {
2171         private static final String UNNAMED = "Unnamed";
2172         private static final String OBJECT  = "java/lang/Object";
2173 
2174         private static Class<?> createClass() {
2175             try {
2176                 ClassWriter cw = new ClassWriter(0);
2177                 cw.visit(Opcodes.V1_8,
2178                          Opcodes.ACC_FINAL + Opcodes.ACC_SUPER,
2179                          UNNAMED,
2180                          null,
2181                          OBJECT,
2182                          null);
2183                 cw.visitSource(UNNAMED, null);
2184                 cw.visitEnd();
2185                 byte[] bytes = cw.toByteArray();
2186                 ClassLoader loader = new ClassLoader(null) {
2187                     @Override
2188                     protected Class<?> findClass(String cn) throws ClassNotFoundException {
2189                         if (cn.equals(UNNAMED))
2190                             return super.defineClass(UNNAMED, bytes, 0, bytes.length);
2191                         throw new ClassNotFoundException(cn);
2192                     }
2193                 };
2194                 return loader.loadClass(UNNAMED);
2195             } catch (Exception e) {
2196                 throw new InternalError(e);
2197             }
2198         }
2199 
2200         private static final Class<?> PUBLIC_LOOKUP_CLASS;
2201         static {
2202             PrivilegedAction<Class<?>> pa = new PrivilegedAction<Class<?>>() {
2203                 public Class<?> run() {
2204                     return createClass();
2205                 }
2206             };
2207             PUBLIC_LOOKUP_CLASS = AccessController.doPrivileged(pa);
2208         }
2209 
2210         /**
2211          * Lookup that is trusted minimally. It can only be used to create
2212          * method handles to publicly accessible members in exported packages.
2213          *
2214          * @see MethodHandles#publicLookup
2215          */
2216         static final Lookup PUBLIC_LOOKUP = new Lookup(PUBLIC_LOOKUP_CLASS, Lookup.PUBLIC);
2217     }
2218 
2219     /**
2220      * Produces a method handle giving read access to elements of an array.
2221      * The type of the method handle will have a return type of the array's
2222      * element type.  Its first argument will be the array type,
2223      * and the second will be {@code int}.
2224      * @param arrayClass an array type
2225      * @return a method handle which can load values from the given array type
2226      * @throws NullPointerException if the argument is null
2227      * @throws  IllegalArgumentException if arrayClass is not an array type
2228      */
2229     public static
2230     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2231         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, false);
2232     }
2233 
2234     /**
2235      * Produces a method handle giving write access to elements of an array.
2236      * The type of the method handle will have a void return type.
2237      * Its last argument will be the array's element type.
2238      * The first and second arguments will be the array type and int.
2239      * @param arrayClass the class of an array
2240      * @return a method handle which can store values into the array type
2241      * @throws NullPointerException if the argument is null
2242      * @throws IllegalArgumentException if arrayClass is not an array type
2243      */
2244     public static
2245     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2246         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, true);
2247     }
2248 
2249     /**
2250      *
2251      * Produces a VarHandle giving access to elements of an array type
2252      * {@code T[]}, supporting shape {@code (T[], int : T)}.
2253      * <p>
2254      * Certain access modes of the returned VarHandle are unsupported under
2255      * the following conditions:
2256      * <ul>
2257      * <li>if the component type is anything other than {@code int},
2258      *     {@code long} or a reference type, then atomic update access modes
2259      *     are unsupported.  (Future major platform releases of the JDK may
2260      *     support additional types for certain currently unsupported access
2261      *     modes.)
2262      * <li>if the component type is anything other than {@code int} or
2263      *     {@code long}, then numeric atomic update access modes are
2264      *     unsupported.  (Future major platform releases of the JDK may
2265      *     support additional numeric types for certain currently
2266      *     unsupported access modes.)
2267      * </ul>
2268      * @param arrayClass the class of an array, of type {@code T[]}
2269      * @return a VarHandle giving access to elements of an array
2270      * @throws NullPointerException if the arrayClass is null
2271      * @throws IllegalArgumentException if arrayClass is not an array type
2272      * @since 9
2273      */
2274     public static
2275     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2276         return VarHandles.makeArrayElementHandle(arrayClass);
2277     }
2278 
2279     /**
2280      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2281      * viewed as if it were a different primitive array type, such as
2282      * {@code int[]} or {@code long[]}.  The shape of the resulting VarHandle is
2283      * {@code (byte[], int : T)}, where the {@code int} coordinate type
2284      * corresponds to an argument that is an index in a {@code byte[]} array,
2285      * and {@code T} is the component type of the given view array class.  The
2286      * returned VarHandle accesses bytes at an index in a {@code byte[]} array,
2287      * composing bytes to or from a value of {@code T} according to the given
2288      * endianness.
2289      * <p>
2290      * The supported component types (variables types) are {@code short},
2291      * {@code char}, {@code int}, {@code long}, {@code float} and
2292      * {@code double}.
2293      * <p>
2294      * Access of bytes at a given index will result in an
2295      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2296      * or greater than the {@code byte[]} array length minus the size (in bytes)
2297      * of {@code T}.
2298      * <p>
2299      * Access of bytes at an index may be aligned or misaligned for {@code T},
2300      * with respect to the underlying memory address, {@code A} say, associated
2301      * with the array and index.
2302      * If access is misaligned then access for anything other than the
2303      * {@code get} and {@code set} access modes will result in an
2304      * {@code IllegalStateException}.  In such cases atomic access is only
2305      * guaranteed with respect to the largest power of two that divides the GCD
2306      * of {@code A} and the size (in bytes) of {@code T}.
2307      * If access is aligned then following access modes are supported and are
2308      * guaranteed to support atomic access:
2309      * <ul>
2310      * <li>read write access modes for all {@code T};
2311      * <li>atomic update access modes for {@code int}, {@code long},
2312      *     {@code float} or {@code double}.
2313      *     (Future major platform releases of the JDK may support additional
2314      *     types for certain currently unsupported access modes.)
2315      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2316      *     (Future major platform releases of the JDK may support additional
2317      *     numeric types for certain currently unsupported access modes.)
2318      * </ul>
2319      * <p>
2320      * Misaligned access, and therefore atomicity guarantees, may be determined
2321      * for {@code byte[]} arrays without operating on a specific array.  Given
2322      * an {@code index}, {@code T} and it's corresponding boxed type,
2323      * {@code T_BOX}, misalignment may be determined as follows:
2324      * <pre>{@code
2325      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2326      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2327      *     alignmentOffset(0, sizeOfT);
2328      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2329      * boolean isMisaligned = misalignedAtIndex != 0;
2330      * }</pre>
2331      *
2332      * @implNote
2333      * The variable types {@code float} and {@code double} are supported as if
2334      * by transformation to and access with the variable types {@code int} and
2335      * {@code long} respectively.  For example, the transformation of a
2336      * {@code double} value to a long value is performed as if using
2337      * {@link Double#doubleToRawLongBits(double)}, and the reverse
2338      * transformation is performed as if using
2339      * {@link Double#longBitsToDouble(long)}.
2340      *
2341      * @param viewArrayClass the view array class, with a component type of
2342      * type {@code T}
2343      * @param bigEndian true if the endianness of the view array elements, as
2344      * stored in the underlying {@code byte} array, is big endian, otherwise
2345      * little endian
2346      * @return a VarHandle giving access to elements of a {@code byte[]} array
2347      * viewed as if elements corresponding to the components type of the view
2348      * array class
2349      * @throws NullPointerException if viewArrayClass is null
2350      * @throws IllegalArgumentException if viewArrayClass is not an array type
2351      * @throws UnsupportedOperationException if the component type of
2352      * viewArrayClass is not supported as a variable type
2353      * @since 9
2354      */
2355     public static
2356     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2357                                      boolean bigEndian) throws IllegalArgumentException {
2358         return VarHandles.byteArrayViewHandle(viewArrayClass, bigEndian);
2359     }
2360 
2361     /**
2362      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2363      * viewed as if it were an array of elements of a different primitive
2364      * component type to that of {@code byte}, such as {@code int[]} or
2365      * {@code long[]}.  The shape of the resulting VarHandle is
2366      * {@code (ByteBuffer, int : T)}, where the {@code int} coordinate type
2367      * corresponds to an argument that is an index in a {@code ByteBuffer}, and
2368      * {@code T} is the component type of the given view array class.  The
2369      * returned VarHandle accesses bytes at an index in a {@code ByteBuffer},
2370      * composing bytes to or from a value of {@code T} according to the given
2371      * endianness.
2372      * <p>
2373      * The supported component types (variables types) are {@code short},
2374      * {@code char}, {@code int}, {@code long}, {@code float} and
2375      * {@code double}.
2376      * <p>
2377      * Access will result in a {@code ReadOnlyBufferException} for anything
2378      * other than the read access modes if the {@code ByteBuffer} is read-only.
2379      * <p>
2380      * Access of bytes at a given index will result in an
2381      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2382      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2383      * {@code T}.
2384      * <p>
2385      * Access of bytes at an index may be aligned or misaligned for {@code T},
2386      * with respect to the underlying memory address, {@code A} say, associated
2387      * with the {@code ByteBuffer} and index.
2388      * If access is misaligned then access for anything other than the
2389      * {@code get} and {@code set} access modes will result in an
2390      * {@code IllegalStateException}.  In such cases atomic access is only
2391      * guaranteed with respect to the largest power of two that divides the GCD
2392      * of {@code A} and the size (in bytes) of {@code T}.
2393      * If access is aligned then following access modes are supported and are
2394      * guaranteed to support atomic access:
2395      * <ul>
2396      * <li>read write access modes for all {@code T};
2397      * <li>atomic update access modes for {@code int}, {@code long},
2398      *     {@code float} or {@code double}.
2399      *     (Future major platform releases of the JDK may support additional
2400      *     types for certain currently unsupported access modes.)
2401      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2402      *     (Future major platform releases of the JDK may support additional
2403      *     numeric types for certain currently unsupported access modes.)
2404      * </ul>
2405      * <p>
2406      * Misaligned access, and therefore atomicity guarantees, may be determined
2407      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2408      * {@code index}, {@code T} and it's corresponding boxed type,
2409      * {@code T_BOX}, as follows:
2410      * <pre>{@code
2411      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2412      * ByteBuffer bb = ...
2413      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2414      * boolean isMisaligned = misalignedAtIndex != 0;
2415      * }</pre>
2416      *
2417      * @implNote
2418      * The variable types {@code float} and {@code double} are supported as if
2419      * by transformation to and access with the variable types {@code int} and
2420      * {@code long} respectively.  For example, the transformation of a
2421      * {@code double} value to a long value is performed as if using
2422      * {@link Double#doubleToRawLongBits(double)}, and the reverse
2423      * transformation is performed as if using
2424      * {@link Double#longBitsToDouble(long)}.
2425      *
2426      * @param viewArrayClass the view array class, with a component type of
2427      * type {@code T}
2428      * @param bigEndian true if the endianness of the view array elements, as
2429      * stored in the underlying {@code ByteBuffer}, is big endian, otherwise
2430      * little endian (Note this overrides the endianness of a
2431      * {@code ByteBuffer})
2432      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2433      * viewed as if elements corresponding to the components type of the view
2434      * array class
2435      * @throws NullPointerException if viewArrayClass is null
2436      * @throws IllegalArgumentException if viewArrayClass is not an array type
2437      * @throws UnsupportedOperationException if the component type of
2438      * viewArrayClass is not supported as a variable type
2439      * @since 9
2440      */
2441     public static
2442     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2443                                       boolean bigEndian) throws IllegalArgumentException {
2444         return VarHandles.makeByteBufferViewHandle(viewArrayClass, bigEndian);
2445     }
2446 
2447 
2448     /// method handle invocation (reflective style)
2449 
2450     /**
2451      * Produces a method handle which will invoke any method handle of the
2452      * given {@code type}, with a given number of trailing arguments replaced by
2453      * a single trailing {@code Object[]} array.
2454      * The resulting invoker will be a method handle with the following
2455      * arguments:
2456      * <ul>
2457      * <li>a single {@code MethodHandle} target
2458      * <li>zero or more leading values (counted by {@code leadingArgCount})
2459      * <li>an {@code Object[]} array containing trailing arguments
2460      * </ul>
2461      * <p>
2462      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2463      * the indicated {@code type}.
2464      * That is, if the target is exactly of the given {@code type}, it will behave
2465      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2466      * is used to convert the target to the required {@code type}.
2467      * <p>
2468      * The type of the returned invoker will not be the given {@code type}, but rather
2469      * will have all parameters except the first {@code leadingArgCount}
2470      * replaced by a single array of type {@code Object[]}, which will be
2471      * the final parameter.
2472      * <p>
2473      * Before invoking its target, the invoker will spread the final array, apply
2474      * reference casts as necessary, and unbox and widen primitive arguments.
2475      * If, when the invoker is called, the supplied array argument does
2476      * not have the correct number of elements, the invoker will throw
2477      * an {@link IllegalArgumentException} instead of invoking the target.
2478      * <p>
2479      * This method is equivalent to the following code (though it may be more efficient):
2480      * <blockquote><pre>{@code
2481 MethodHandle invoker = MethodHandles.invoker(type);
2482 int spreadArgCount = type.parameterCount() - leadingArgCount;
2483 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2484 return invoker;
2485      * }</pre></blockquote>
2486      * This method throws no reflective or security exceptions.
2487      * @param type the desired target type
2488      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2489      * @return a method handle suitable for invoking any method handle of the given type
2490      * @throws NullPointerException if {@code type} is null
2491      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2492      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2493      *                  or if the resulting method handle's type would have
2494      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2495      */
2496     public static
2497     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2498         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2499             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2500         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
2501         return type.invokers().spreadInvoker(leadingArgCount);
2502     }
2503 
2504     /**
2505      * Produces a special <em>invoker method handle</em> which can be used to
2506      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2507      * The resulting invoker will have a type which is
2508      * exactly equal to the desired type, except that it will accept
2509      * an additional leading argument of type {@code MethodHandle}.
2510      * <p>
2511      * This method is equivalent to the following code (though it may be more efficient):
2512      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2513      *
2514      * <p style="font-size:smaller;">
2515      * <em>Discussion:</em>
2516      * Invoker method handles can be useful when working with variable method handles
2517      * of unknown types.
2518      * For example, to emulate an {@code invokeExact} call to a variable method
2519      * handle {@code M}, extract its type {@code T},
2520      * look up the invoker method {@code X} for {@code T},
2521      * and call the invoker method, as {@code X.invoke(T, A...)}.
2522      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2523      * is unknown.)
2524      * If spreading, collecting, or other argument transformations are required,
2525      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2526      * method handle values, as long as they are compatible with the type of {@code X}.
2527      * <p style="font-size:smaller;">
2528      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2529      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2530      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2531      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2532      * <p>
2533      * This method throws no reflective or security exceptions.
2534      * @param type the desired target type
2535      * @return a method handle suitable for invoking any method handle of the given type
2536      * @throws IllegalArgumentException if the resulting method handle's type would have
2537      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2538      */
2539     public static
2540     MethodHandle exactInvoker(MethodType type) {
2541         return type.invokers().exactInvoker();
2542     }
2543 
2544     /**
2545      * Produces a special <em>invoker method handle</em> which can be used to
2546      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2547      * The resulting invoker will have a type which is
2548      * exactly equal to the desired type, except that it will accept
2549      * an additional leading argument of type {@code MethodHandle}.
2550      * <p>
2551      * Before invoking its target, if the target differs from the expected type,
2552      * the invoker will apply reference casts as
2553      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2554      * Similarly, the return value will be converted as necessary.
2555      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2556      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2557      * <p>
2558      * This method is equivalent to the following code (though it may be more efficient):
2559      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2560      * <p style="font-size:smaller;">
2561      * <em>Discussion:</em>
2562      * A {@linkplain MethodType#genericMethodType general method type} is one which
2563      * mentions only {@code Object} arguments and return values.
2564      * An invoker for such a type is capable of calling any method handle
2565      * of the same arity as the general type.
2566      * <p style="font-size:smaller;">
2567      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2568      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2569      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2570      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2571      * <p>
2572      * This method throws no reflective or security exceptions.
2573      * @param type the desired target type
2574      * @return a method handle suitable for invoking any method handle convertible to the given type
2575      * @throws IllegalArgumentException if the resulting method handle's type would have
2576      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2577      */
2578     public static
2579     MethodHandle invoker(MethodType type) {
2580         return type.invokers().genericInvoker();
2581     }
2582 
2583     /**
2584      * Produces a special <em>invoker method handle</em> which can be used to
2585      * invoke a signature-polymorphic access mode method on any VarHandle whose
2586      * associated access mode type is compatible with the given type.
2587      * The resulting invoker will have a type which is exactly equal to the
2588      * desired given type, except that it will accept an additional leading
2589      * argument of type {@code VarHandle}.
2590      *
2591      * @param accessMode the VarHandle access mode
2592      * @param type the desired target type
2593      * @return a method handle suitable for invoking an access mode method of
2594      *         any VarHandle whose access mode type is of the given type.
2595      * @since 9
2596      */
2597     static public
2598     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2599         return type.invokers().varHandleMethodExactInvoker(accessMode);
2600     }
2601 
2602     /**
2603      * Produces a special <em>invoker method handle</em> which can be used to
2604      * invoke a signature-polymorphic access mode method on any VarHandle whose
2605      * associated access mode type is compatible with the given type.
2606      * The resulting invoker will have a type which is exactly equal to the
2607      * desired given type, except that it will accept an additional leading
2608      * argument of type {@code VarHandle}.
2609      * <p>
2610      * Before invoking its target, if the access mode type differs from the
2611      * desired given type, the invoker will apply reference casts as necessary
2612      * and box, unbox, or widen primitive values, as if by
2613      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
2614      * converted as necessary.
2615      * <p>
2616      * This method is equivalent to the following code (though it may be more
2617      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
2618      *
2619      * @param accessMode the VarHandle access mode
2620      * @param type the desired target type
2621      * @return a method handle suitable for invoking an access mode method of
2622      *         any VarHandle whose access mode type is convertible to the given
2623      *         type.
2624      * @since 9
2625      */
2626     static public
2627     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2628         return type.invokers().varHandleMethodInvoker(accessMode);
2629     }
2630 
2631     static /*non-public*/
2632     MethodHandle basicInvoker(MethodType type) {
2633         return type.invokers().basicInvoker();
2634     }
2635 
2636      /// method handle modification (creation from other method handles)
2637 
2638     /**
2639      * Produces a method handle which adapts the type of the
2640      * given method handle to a new type by pairwise argument and return type conversion.
2641      * The original type and new type must have the same number of arguments.
2642      * The resulting method handle is guaranteed to report a type
2643      * which is equal to the desired new type.
2644      * <p>
2645      * If the original type and new type are equal, returns target.
2646      * <p>
2647      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
2648      * and some additional conversions are also applied if those conversions fail.
2649      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
2650      * if possible, before or instead of any conversions done by {@code asType}:
2651      * <ul>
2652      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
2653      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
2654      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
2655      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
2656      *     the boolean is converted to a byte value, 1 for true, 0 for false.
2657      *     (This treatment follows the usage of the bytecode verifier.)
2658      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
2659      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
2660      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
2661      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
2662      *     then a Java casting conversion (JLS 5.5) is applied.
2663      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
2664      *     widening and/or narrowing.)
2665      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
2666      *     conversion will be applied at runtime, possibly followed
2667      *     by a Java casting conversion (JLS 5.5) on the primitive value,
2668      *     possibly followed by a conversion from byte to boolean by testing
2669      *     the low-order bit.
2670      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
2671      *     and if the reference is null at runtime, a zero value is introduced.
2672      * </ul>
2673      * @param target the method handle to invoke after arguments are retyped
2674      * @param newType the expected type of the new method handle
2675      * @return a method handle which delegates to the target after performing
2676      *           any necessary argument conversions, and arranges for any
2677      *           necessary return value conversions
2678      * @throws NullPointerException if either argument is null
2679      * @throws WrongMethodTypeException if the conversion cannot be made
2680      * @see MethodHandle#asType
2681      */
2682     public static
2683     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2684         explicitCastArgumentsChecks(target, newType);
2685         // use the asTypeCache when possible:
2686         MethodType oldType = target.type();
2687         if (oldType == newType)  return target;
2688         if (oldType.explicitCastEquivalentToAsType(newType)) {
2689             return target.asFixedArity().asType(newType);
2690         }
2691         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
2692     }
2693 
2694     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
2695         if (target.type().parameterCount() != newType.parameterCount()) {
2696             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
2697         }
2698     }
2699 
2700     /**
2701      * Produces a method handle which adapts the calling sequence of the
2702      * given method handle to a new type, by reordering the arguments.
2703      * The resulting method handle is guaranteed to report a type
2704      * which is equal to the desired new type.
2705      * <p>
2706      * The given array controls the reordering.
2707      * Call {@code #I} the number of incoming parameters (the value
2708      * {@code newType.parameterCount()}, and call {@code #O} the number
2709      * of outgoing parameters (the value {@code target.type().parameterCount()}).
2710      * Then the length of the reordering array must be {@code #O},
2711      * and each element must be a non-negative number less than {@code #I}.
2712      * For every {@code N} less than {@code #O}, the {@code N}-th
2713      * outgoing argument will be taken from the {@code I}-th incoming
2714      * argument, where {@code I} is {@code reorder[N]}.
2715      * <p>
2716      * No argument or return value conversions are applied.
2717      * The type of each incoming argument, as determined by {@code newType},
2718      * must be identical to the type of the corresponding outgoing parameter
2719      * or parameters in the target method handle.
2720      * The return type of {@code newType} must be identical to the return
2721      * type of the original target.
2722      * <p>
2723      * The reordering array need not specify an actual permutation.
2724      * An incoming argument will be duplicated if its index appears
2725      * more than once in the array, and an incoming argument will be dropped
2726      * if its index does not appear in the array.
2727      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
2728      * incoming arguments which are not mentioned in the reordering array
2729      * may be of any type, as determined only by {@code newType}.
2730      * <blockquote><pre>{@code
2731 import static java.lang.invoke.MethodHandles.*;
2732 import static java.lang.invoke.MethodType.*;
2733 ...
2734 MethodType intfn1 = methodType(int.class, int.class);
2735 MethodType intfn2 = methodType(int.class, int.class, int.class);
2736 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2737 assert(sub.type().equals(intfn2));
2738 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
2739 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2740 assert((int)rsub.invokeExact(1, 100) == 99);
2741 MethodHandle add = ... (int x, int y) -> (x+y) ...;
2742 assert(add.type().equals(intfn2));
2743 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2744 assert(twice.type().equals(intfn1));
2745 assert((int)twice.invokeExact(21) == 42);
2746      * }</pre></blockquote>
2747      * <p>
2748      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
2749      * variable-arity method handle}, even if the original target method handle was.
2750      * @param target the method handle to invoke after arguments are reordered
2751      * @param newType the expected type of the new method handle
2752      * @param reorder an index array which controls the reordering
2753      * @return a method handle which delegates to the target after it
2754      *           drops unused arguments and moves and/or duplicates the other arguments
2755      * @throws NullPointerException if any argument is null
2756      * @throws IllegalArgumentException if the index array length is not equal to
2757      *                  the arity of the target, or if any index array element
2758      *                  not a valid index for a parameter of {@code newType},
2759      *                  or if two corresponding parameter types in
2760      *                  {@code target.type()} and {@code newType} are not identical,
2761      */
2762     public static
2763     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
2764         reorder = reorder.clone();  // get a private copy
2765         MethodType oldType = target.type();
2766         permuteArgumentChecks(reorder, newType, oldType);
2767         // first detect dropped arguments and handle them separately
2768         int[] originalReorder = reorder;
2769         BoundMethodHandle result = target.rebind();
2770         LambdaForm form = result.form;
2771         int newArity = newType.parameterCount();
2772         // Normalize the reordering into a real permutation,
2773         // by removing duplicates and adding dropped elements.
2774         // This somewhat improves lambda form caching, as well
2775         // as simplifying the transform by breaking it up into steps.
2776         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
2777             if (ddIdx > 0) {
2778                 // We found a duplicated entry at reorder[ddIdx].
2779                 // Example:  (x,y,z)->asList(x,y,z)
2780                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
2781                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
2782                 // The starred element corresponds to the argument
2783                 // deleted by the dupArgumentForm transform.
2784                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
2785                 boolean killFirst = false;
2786                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
2787                     // Set killFirst if the dup is larger than an intervening position.
2788                     // This will remove at least one inversion from the permutation.
2789                     if (dupVal > val) killFirst = true;
2790                 }
2791                 if (!killFirst) {
2792                     srcPos = dstPos;
2793                     dstPos = ddIdx;
2794                 }
2795                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
2796                 assert (reorder[srcPos] == reorder[dstPos]);
2797                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
2798                 // contract the reordering by removing the element at dstPos
2799                 int tailPos = dstPos + 1;
2800                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
2801                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
2802             } else {
2803                 int dropVal = ~ddIdx, insPos = 0;
2804                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
2805                     // Find first element of reorder larger than dropVal.
2806                     // This is where we will insert the dropVal.
2807                     insPos += 1;
2808                 }
2809                 Class<?> ptype = newType.parameterType(dropVal);
2810                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
2811                 oldType = oldType.insertParameterTypes(insPos, ptype);
2812                 // expand the reordering by inserting an element at insPos
2813                 int tailPos = insPos + 1;
2814                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
2815                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
2816                 reorder[insPos] = dropVal;
2817             }
2818             assert (permuteArgumentChecks(reorder, newType, oldType));
2819         }
2820         assert (reorder.length == newArity);  // a perfect permutation
2821         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
2822         form = form.editor().permuteArgumentsForm(1, reorder);
2823         if (newType == result.type() && form == result.internalForm())
2824             return result;
2825         return result.copyWith(newType, form);
2826     }
2827 
2828     /**
2829      * Return an indication of any duplicate or omission in reorder.
2830      * If the reorder contains a duplicate entry, return the index of the second occurrence.
2831      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
2832      * Otherwise, return zero.
2833      * If an element not in [0..newArity-1] is encountered, return reorder.length.
2834      */
2835     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
2836         final int BIT_LIMIT = 63;  // max number of bits in bit mask
2837         if (newArity < BIT_LIMIT) {
2838             long mask = 0;
2839             for (int i = 0; i < reorder.length; i++) {
2840                 int arg = reorder[i];
2841                 if (arg >= newArity) {
2842                     return reorder.length;
2843                 }
2844                 long bit = 1L << arg;
2845                 if ((mask & bit) != 0) {
2846                     return i;  // >0 indicates a dup
2847                 }
2848                 mask |= bit;
2849             }
2850             if (mask == (1L << newArity) - 1) {
2851                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
2852                 return 0;
2853             }
2854             // find first zero
2855             long zeroBit = Long.lowestOneBit(~mask);
2856             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
2857             assert(zeroPos <= newArity);
2858             if (zeroPos == newArity) {
2859                 return 0;
2860             }
2861             return ~zeroPos;
2862         } else {
2863             // same algorithm, different bit set
2864             BitSet mask = new BitSet(newArity);
2865             for (int i = 0; i < reorder.length; i++) {
2866                 int arg = reorder[i];
2867                 if (arg >= newArity) {
2868                     return reorder.length;
2869                 }
2870                 if (mask.get(arg)) {
2871                     return i;  // >0 indicates a dup
2872                 }
2873                 mask.set(arg);
2874             }
2875             int zeroPos = mask.nextClearBit(0);
2876             assert(zeroPos <= newArity);
2877             if (zeroPos == newArity) {
2878                 return 0;
2879             }
2880             return ~zeroPos;
2881         }
2882     }
2883 
2884     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
2885         if (newType.returnType() != oldType.returnType())
2886             throw newIllegalArgumentException("return types do not match",
2887                     oldType, newType);
2888         if (reorder.length == oldType.parameterCount()) {
2889             int limit = newType.parameterCount();
2890             boolean bad = false;
2891             for (int j = 0; j < reorder.length; j++) {
2892                 int i = reorder[j];
2893                 if (i < 0 || i >= limit) {
2894                     bad = true; break;
2895                 }
2896                 Class<?> src = newType.parameterType(i);
2897                 Class<?> dst = oldType.parameterType(j);
2898                 if (src != dst)
2899                     throw newIllegalArgumentException("parameter types do not match after reorder",
2900                             oldType, newType);
2901             }
2902             if (!bad)  return true;
2903         }
2904         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
2905     }
2906 
2907     /**
2908      * Produces a method handle of the requested return type which returns the given
2909      * constant value every time it is invoked.
2910      * <p>
2911      * Before the method handle is returned, the passed-in value is converted to the requested type.
2912      * If the requested type is primitive, widening primitive conversions are attempted,
2913      * else reference conversions are attempted.
2914      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
2915      * @param type the return type of the desired method handle
2916      * @param value the value to return
2917      * @return a method handle of the given return type and no arguments, which always returns the given value
2918      * @throws NullPointerException if the {@code type} argument is null
2919      * @throws ClassCastException if the value cannot be converted to the required return type
2920      * @throws IllegalArgumentException if the given type is {@code void.class}
2921      */
2922     public static
2923     MethodHandle constant(Class<?> type, Object value) {
2924         if (type.isPrimitive()) {
2925             if (type == void.class)
2926                 throw newIllegalArgumentException("void type");
2927             Wrapper w = Wrapper.forPrimitiveType(type);
2928             value = w.convert(value, type);
2929             if (w.zero().equals(value))
2930                 return zero(w, type);
2931             return insertArguments(identity(type), 0, value);
2932         } else {
2933             if (value == null)
2934                 return zero(Wrapper.OBJECT, type);
2935             return identity(type).bindTo(value);
2936         }
2937     }
2938 
2939     /**
2940      * Produces a method handle which returns its sole argument when invoked.
2941      * @param type the type of the sole parameter and return value of the desired method handle
2942      * @return a unary method handle which accepts and returns the given type
2943      * @throws NullPointerException if the argument is null
2944      * @throws IllegalArgumentException if the given type is {@code void.class}
2945      */
2946     public static
2947     MethodHandle identity(Class<?> type) {
2948         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
2949         int pos = btw.ordinal();
2950         MethodHandle ident = IDENTITY_MHS[pos];
2951         if (ident == null) {
2952             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
2953         }
2954         if (ident.type().returnType() == type)
2955             return ident;
2956         // something like identity(Foo.class); do not bother to intern these
2957         assert(btw == Wrapper.OBJECT);
2958         return makeIdentity(type);
2959     }
2960     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.values().length];
2961     private static MethodHandle makeIdentity(Class<?> ptype) {
2962         MethodType mtype = MethodType.methodType(ptype, ptype);
2963         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
2964         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
2965     }
2966 
2967     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
2968         int pos = btw.ordinal();
2969         MethodHandle zero = ZERO_MHS[pos];
2970         if (zero == null) {
2971             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
2972         }
2973         if (zero.type().returnType() == rtype)
2974             return zero;
2975         assert(btw == Wrapper.OBJECT);
2976         return makeZero(rtype);
2977     }
2978     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.values().length];
2979     private static MethodHandle makeZero(Class<?> rtype) {
2980         MethodType mtype = MethodType.methodType(rtype);
2981         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
2982         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
2983     }
2984 
2985     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
2986         // Simulate a CAS, to avoid racy duplication of results.
2987         MethodHandle prev = cache[pos];
2988         if (prev != null) return prev;
2989         return cache[pos] = value;
2990     }
2991 
2992     /**
2993      * Provides a target method handle with one or more <em>bound arguments</em>
2994      * in advance of the method handle's invocation.
2995      * The formal parameters to the target corresponding to the bound
2996      * arguments are called <em>bound parameters</em>.
2997      * Returns a new method handle which saves away the bound arguments.
2998      * When it is invoked, it receives arguments for any non-bound parameters,
2999      * binds the saved arguments to their corresponding parameters,
3000      * and calls the original target.
3001      * <p>
3002      * The type of the new method handle will drop the types for the bound
3003      * parameters from the original target type, since the new method handle
3004      * will no longer require those arguments to be supplied by its callers.
3005      * <p>
3006      * Each given argument object must match the corresponding bound parameter type.
3007      * If a bound parameter type is a primitive, the argument object
3008      * must be a wrapper, and will be unboxed to produce the primitive value.
3009      * <p>
3010      * The {@code pos} argument selects which parameters are to be bound.
3011      * It may range between zero and <i>N-L</i> (inclusively),
3012      * where <i>N</i> is the arity of the target method handle
3013      * and <i>L</i> is the length of the values array.
3014      * <p>
3015      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3016      * variable-arity method handle}, even if the original target method handle was.
3017      * @param target the method handle to invoke after the argument is inserted
3018      * @param pos where to insert the argument (zero for the first)
3019      * @param values the series of arguments to insert
3020      * @return a method handle which inserts an additional argument,
3021      *         before calling the original method handle
3022      * @throws NullPointerException if the target or the {@code values} array is null
3023      * @see MethodHandle#bindTo
3024      */
3025     public static
3026     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3027         int insCount = values.length;
3028         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3029         if (insCount == 0)  return target;
3030         BoundMethodHandle result = target.rebind();
3031         for (int i = 0; i < insCount; i++) {
3032             Object value = values[i];
3033             Class<?> ptype = ptypes[pos+i];
3034             if (ptype.isPrimitive()) {
3035                 result = insertArgumentPrimitive(result, pos, ptype, value);
3036             } else {
3037                 value = ptype.cast(value);  // throw CCE if needed
3038                 result = result.bindArgumentL(pos, value);
3039             }
3040         }
3041         return result;
3042     }
3043 
3044     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3045                                                              Class<?> ptype, Object value) {
3046         Wrapper w = Wrapper.forPrimitiveType(ptype);
3047         // perform unboxing and/or primitive conversion
3048         value = w.convert(value, ptype);
3049         switch (w) {
3050         case INT:     return result.bindArgumentI(pos, (int)value);
3051         case LONG:    return result.bindArgumentJ(pos, (long)value);
3052         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3053         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3054         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3055         }
3056     }
3057 
3058     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3059         MethodType oldType = target.type();
3060         int outargs = oldType.parameterCount();
3061         int inargs  = outargs - insCount;
3062         if (inargs < 0)
3063             throw newIllegalArgumentException("too many values to insert");
3064         if (pos < 0 || pos > inargs)
3065             throw newIllegalArgumentException("no argument type to append");
3066         return oldType.ptypes();
3067     }
3068 
3069     /**
3070      * Produces a method handle which will discard some dummy arguments
3071      * before calling some other specified <i>target</i> method handle.
3072      * The type of the new method handle will be the same as the target's type,
3073      * except it will also include the dummy argument types,
3074      * at some given position.
3075      * <p>
3076      * The {@code pos} argument may range between zero and <i>N</i>,
3077      * where <i>N</i> is the arity of the target.
3078      * If {@code pos} is zero, the dummy arguments will precede
3079      * the target's real arguments; if {@code pos} is <i>N</i>
3080      * they will come after.
3081      * <p>
3082      * <b>Example:</b>
3083      * <blockquote><pre>{@code
3084 import static java.lang.invoke.MethodHandles.*;
3085 import static java.lang.invoke.MethodType.*;
3086 ...
3087 MethodHandle cat = lookup().findVirtual(String.class,
3088   "concat", methodType(String.class, String.class));
3089 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3090 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3091 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3092 assertEquals(bigType, d0.type());
3093 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3094      * }</pre></blockquote>
3095      * <p>
3096      * This method is also equivalent to the following code:
3097      * <blockquote><pre>
3098      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3099      * </pre></blockquote>
3100      * @param target the method handle to invoke after the arguments are dropped
3101      * @param valueTypes the type(s) of the argument(s) to drop
3102      * @param pos position of first argument to drop (zero for the leftmost)
3103      * @return a method handle which drops arguments of the given types,
3104      *         before calling the original method handle
3105      * @throws NullPointerException if the target is null,
3106      *                              or if the {@code valueTypes} list or any of its elements is null
3107      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3108      *                  or if {@code pos} is negative or greater than the arity of the target,
3109      *                  or if the new method handle's type would have too many parameters
3110      */
3111     public static
3112     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3113         MethodType oldType = target.type();  // get NPE
3114         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3115         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3116         if (dropped == 0)  return target;
3117         BoundMethodHandle result = target.rebind();
3118         LambdaForm lform = result.form;
3119         int insertFormArg = 1 + pos;
3120         for (Class<?> ptype : valueTypes) {
3121             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3122         }
3123         result = result.copyWith(newType, lform);
3124         return result;
3125     }
3126 
3127     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3128         int dropped = valueTypes.size();
3129         MethodType.checkSlotCount(dropped);
3130         int outargs = oldType.parameterCount();
3131         int inargs  = outargs + dropped;
3132         if (pos < 0 || pos > outargs)
3133             throw newIllegalArgumentException("no argument type to remove"
3134                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3135                     );
3136         return dropped;
3137     }
3138 
3139     /**
3140      * Produces a method handle which will discard some dummy arguments
3141      * before calling some other specified <i>target</i> method handle.
3142      * The type of the new method handle will be the same as the target's type,
3143      * except it will also include the dummy argument types,
3144      * at some given position.
3145      * <p>
3146      * The {@code pos} argument may range between zero and <i>N</i>,
3147      * where <i>N</i> is the arity of the target.
3148      * If {@code pos} is zero, the dummy arguments will precede
3149      * the target's real arguments; if {@code pos} is <i>N</i>
3150      * they will come after.
3151      * <p>
3152      * <b>Example:</b>
3153      * <blockquote><pre>{@code
3154 import static java.lang.invoke.MethodHandles.*;
3155 import static java.lang.invoke.MethodType.*;
3156 ...
3157 MethodHandle cat = lookup().findVirtual(String.class,
3158   "concat", methodType(String.class, String.class));
3159 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3160 MethodHandle d0 = dropArguments(cat, 0, String.class);
3161 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3162 MethodHandle d1 = dropArguments(cat, 1, String.class);
3163 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3164 MethodHandle d2 = dropArguments(cat, 2, String.class);
3165 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3166 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3167 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3168      * }</pre></blockquote>
3169      * <p>
3170      * This method is also equivalent to the following code:
3171      * <blockquote><pre>
3172      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3173      * </pre></blockquote>
3174      * @param target the method handle to invoke after the arguments are dropped
3175      * @param valueTypes the type(s) of the argument(s) to drop
3176      * @param pos position of first argument to drop (zero for the leftmost)
3177      * @return a method handle which drops arguments of the given types,
3178      *         before calling the original method handle
3179      * @throws NullPointerException if the target is null,
3180      *                              or if the {@code valueTypes} array or any of its elements is null
3181      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3182      *                  or if {@code pos} is negative or greater than the arity of the target,
3183      *                  or if the new method handle's type would have
3184      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3185      */
3186     public static
3187     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3188         return dropArguments(target, pos, Arrays.asList(valueTypes));
3189     }
3190 
3191     /**
3192      * Adapts a target method handle by pre-processing
3193      * one or more of its arguments, each with its own unary filter function,
3194      * and then calling the target with each pre-processed argument
3195      * replaced by the result of its corresponding filter function.
3196      * <p>
3197      * The pre-processing is performed by one or more method handles,
3198      * specified in the elements of the {@code filters} array.
3199      * The first element of the filter array corresponds to the {@code pos}
3200      * argument of the target, and so on in sequence.
3201      * <p>
3202      * Null arguments in the array are treated as identity functions,
3203      * and the corresponding arguments left unchanged.
3204      * (If there are no non-null elements in the array, the original target is returned.)
3205      * Each filter is applied to the corresponding argument of the adapter.
3206      * <p>
3207      * If a filter {@code F} applies to the {@code N}th argument of
3208      * the target, then {@code F} must be a method handle which
3209      * takes exactly one argument.  The type of {@code F}'s sole argument
3210      * replaces the corresponding argument type of the target
3211      * in the resulting adapted method handle.
3212      * The return type of {@code F} must be identical to the corresponding
3213      * parameter type of the target.
3214      * <p>
3215      * It is an error if there are elements of {@code filters}
3216      * (null or not)
3217      * which do not correspond to argument positions in the target.
3218      * <p><b>Example:</b>
3219      * <blockquote><pre>{@code
3220 import static java.lang.invoke.MethodHandles.*;
3221 import static java.lang.invoke.MethodType.*;
3222 ...
3223 MethodHandle cat = lookup().findVirtual(String.class,
3224   "concat", methodType(String.class, String.class));
3225 MethodHandle upcase = lookup().findVirtual(String.class,
3226   "toUpperCase", methodType(String.class));
3227 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3228 MethodHandle f0 = filterArguments(cat, 0, upcase);
3229 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3230 MethodHandle f1 = filterArguments(cat, 1, upcase);
3231 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3232 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3233 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3234      * }</pre></blockquote>
3235      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3236      * denotes the return type of both the {@code target} and resulting adapter.
3237      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3238      * of the parameters and arguments that precede and follow the filter position
3239      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3240      * values of the filtered parameters and arguments; they also represent the
3241      * return types of the {@code filter[i]} handles. The latter accept arguments
3242      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3243      * the resulting adapter.
3244      * <blockquote><pre>{@code
3245      * T target(P... p, A[i]... a[i], B... b);
3246      * A[i] filter[i](V[i]);
3247      * T adapter(P... p, V[i]... v[i], B... b) {
3248      *   return target(p..., filter[i](v[i])..., b...);
3249      * }
3250      * }</pre></blockquote>
3251      * <p>
3252      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3253      * variable-arity method handle}, even if the original target method handle was.
3254      *
3255      * @param target the method handle to invoke after arguments are filtered
3256      * @param pos the position of the first argument to filter
3257      * @param filters method handles to call initially on filtered arguments
3258      * @return method handle which incorporates the specified argument filtering logic
3259      * @throws NullPointerException if the target is null
3260      *                              or if the {@code filters} array is null
3261      * @throws IllegalArgumentException if a non-null element of {@code filters}
3262      *          does not match a corresponding argument type of target as described above,
3263      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3264      *          or if the resulting method handle's type would have
3265      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3266      */
3267     public static
3268     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3269         filterArgumentsCheckArity(target, pos, filters);
3270         MethodHandle adapter = target;
3271         int curPos = pos-1;  // pre-incremented
3272         for (MethodHandle filter : filters) {
3273             curPos += 1;
3274             if (filter == null)  continue;  // ignore null elements of filters
3275             adapter = filterArgument(adapter, curPos, filter);
3276         }
3277         return adapter;
3278     }
3279 
3280     /*non-public*/ static
3281     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3282         filterArgumentChecks(target, pos, filter);
3283         MethodType targetType = target.type();
3284         MethodType filterType = filter.type();
3285         BoundMethodHandle result = target.rebind();
3286         Class<?> newParamType = filterType.parameterType(0);
3287         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3288         MethodType newType = targetType.changeParameterType(pos, newParamType);
3289         result = result.copyWithExtendL(newType, lform, filter);
3290         return result;
3291     }
3292 
3293     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3294         MethodType targetType = target.type();
3295         int maxPos = targetType.parameterCount();
3296         if (pos + filters.length > maxPos)
3297             throw newIllegalArgumentException("too many filters");
3298     }
3299 
3300     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3301         MethodType targetType = target.type();
3302         MethodType filterType = filter.type();
3303         if (filterType.parameterCount() != 1
3304             || filterType.returnType() != targetType.parameterType(pos))
3305             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3306     }
3307 
3308     /**
3309      * Adapts a target method handle by pre-processing
3310      * a sub-sequence of its arguments with a filter (another method handle).
3311      * The pre-processed arguments are replaced by the result (if any) of the
3312      * filter function.
3313      * The target is then called on the modified (usually shortened) argument list.
3314      * <p>
3315      * If the filter returns a value, the target must accept that value as
3316      * its argument in position {@code pos}, preceded and/or followed by
3317      * any arguments not passed to the filter.
3318      * If the filter returns void, the target must accept all arguments
3319      * not passed to the filter.
3320      * No arguments are reordered, and a result returned from the filter
3321      * replaces (in order) the whole subsequence of arguments originally
3322      * passed to the adapter.
3323      * <p>
3324      * The argument types (if any) of the filter
3325      * replace zero or one argument types of the target, at position {@code pos},
3326      * in the resulting adapted method handle.
3327      * The return type of the filter (if any) must be identical to the
3328      * argument type of the target at position {@code pos}, and that target argument
3329      * is supplied by the return value of the filter.
3330      * <p>
3331      * In all cases, {@code pos} must be greater than or equal to zero, and
3332      * {@code pos} must also be less than or equal to the target's arity.
3333      * <p><b>Example:</b>
3334      * <blockquote><pre>{@code
3335 import static java.lang.invoke.MethodHandles.*;
3336 import static java.lang.invoke.MethodType.*;
3337 ...
3338 MethodHandle deepToString = publicLookup()
3339   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3340 
3341 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3342 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3343 
3344 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3345 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3346 
3347 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3348 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3349 assertEquals("[top, [up, down], strange]",
3350              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3351 
3352 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3353 assertEquals("[top, [up, down], [strange]]",
3354              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3355 
3356 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3357 assertEquals("[top, [[up, down, strange], charm], bottom]",
3358              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3359      * }</pre></blockquote>
3360      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3361      * represents the return type of the {@code target} and resulting adapter.
3362      * {@code V}/{@code v} stand for the return type and value of the
3363      * {@code filter}, which are also found in the signature and arguments of
3364      * the {@code target}, respectively, unless {@code V} is {@code void}.
3365      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
3366      * and values preceding and following the collection position, {@code pos},
3367      * in the {@code target}'s signature. They also turn up in the resulting
3368      * adapter's signature and arguments, where they surround
3369      * {@code B}/{@code b}, which represent the parameter types and arguments
3370      * to the {@code filter} (if any).
3371      * <blockquote><pre>{@code
3372      * T target(A...,V,C...);
3373      * V filter(B...);
3374      * T adapter(A... a,B... b,C... c) {
3375      *   V v = filter(b...);
3376      *   return target(a...,v,c...);
3377      * }
3378      * // and if the filter has no arguments:
3379      * T target2(A...,V,C...);
3380      * V filter2();
3381      * T adapter2(A... a,C... c) {
3382      *   V v = filter2();
3383      *   return target2(a...,v,c...);
3384      * }
3385      * // and if the filter has a void return:
3386      * T target3(A...,C...);
3387      * void filter3(B...);
3388      * T adapter3(A... a,B... b,C... c) {
3389      *   filter3(b...);
3390      *   return target3(a...,c...);
3391      * }
3392      * }</pre></blockquote>
3393      * <p>
3394      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3395      * one which first "folds" the affected arguments, and then drops them, in separate
3396      * steps as follows:
3397      * <blockquote><pre>{@code
3398      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3399      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3400      * }</pre></blockquote>
3401      * If the target method handle consumes no arguments besides than the result
3402      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
3403      * is equivalent to {@code filterReturnValue(coll, mh)}.
3404      * If the filter method handle {@code coll} consumes one argument and produces
3405      * a non-void result, then {@code collectArguments(mh, N, coll)}
3406      * is equivalent to {@code filterArguments(mh, N, coll)}.
3407      * Other equivalences are possible but would require argument permutation.
3408      * <p>
3409      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3410      * variable-arity method handle}, even if the original target method handle was.
3411      *
3412      * @param target the method handle to invoke after filtering the subsequence of arguments
3413      * @param pos the position of the first adapter argument to pass to the filter,
3414      *            and/or the target argument which receives the result of the filter
3415      * @param filter method handle to call on the subsequence of arguments
3416      * @return method handle which incorporates the specified argument subsequence filtering logic
3417      * @throws NullPointerException if either argument is null
3418      * @throws IllegalArgumentException if the return type of {@code filter}
3419      *          is non-void and is not the same as the {@code pos} argument of the target,
3420      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
3421      *          or if the resulting method handle's type would have
3422      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3423      * @see MethodHandles#foldArguments
3424      * @see MethodHandles#filterArguments
3425      * @see MethodHandles#filterReturnValue
3426      */
3427     public static
3428     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
3429         MethodType newType = collectArgumentsChecks(target, pos, filter);
3430         MethodType collectorType = filter.type();
3431         BoundMethodHandle result = target.rebind();
3432         LambdaForm lform;
3433         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
3434             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
3435             if (lform != null) {
3436                 return result.copyWith(newType, lform);
3437             }
3438         }
3439         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
3440         return result.copyWithExtendL(newType, lform, filter);
3441     }
3442 
3443     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3444         MethodType targetType = target.type();
3445         MethodType filterType = filter.type();
3446         Class<?> rtype = filterType.returnType();
3447         List<Class<?>> filterArgs = filterType.parameterList();
3448         if (rtype == void.class) {
3449             return targetType.insertParameterTypes(pos, filterArgs);
3450         }
3451         if (rtype != targetType.parameterType(pos)) {
3452             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3453         }
3454         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
3455     }
3456 
3457     /**
3458      * Adapts a target method handle by post-processing
3459      * its return value (if any) with a filter (another method handle).
3460      * The result of the filter is returned from the adapter.
3461      * <p>
3462      * If the target returns a value, the filter must accept that value as
3463      * its only argument.
3464      * If the target returns void, the filter must accept no arguments.
3465      * <p>
3466      * The return type of the filter
3467      * replaces the return type of the target
3468      * in the resulting adapted method handle.
3469      * The argument type of the filter (if any) must be identical to the
3470      * return type of the target.
3471      * <p><b>Example:</b>
3472      * <blockquote><pre>{@code
3473 import static java.lang.invoke.MethodHandles.*;
3474 import static java.lang.invoke.MethodType.*;
3475 ...
3476 MethodHandle cat = lookup().findVirtual(String.class,
3477   "concat", methodType(String.class, String.class));
3478 MethodHandle length = lookup().findVirtual(String.class,
3479   "length", methodType(int.class));
3480 System.out.println((String) cat.invokeExact("x", "y")); // xy
3481 MethodHandle f0 = filterReturnValue(cat, length);
3482 System.out.println((int) f0.invokeExact("x", "y")); // 2
3483      * }</pre></blockquote>
3484      * <p>Here is pseudocode for the resulting adapter. In the code,
3485      * {@code T}/{@code t} represent the result type and value of the
3486      * {@code target}; {@code V}, the result type of the {@code filter}; and
3487      * {@code A}/{@code a}, the types and values of the parameters and arguments
3488      * of the {@code target} as well as the resulting adapter.
3489      * <blockquote><pre>{@code
3490      * T target(A...);
3491      * V filter(T);
3492      * V adapter(A... a) {
3493      *   T t = target(a...);
3494      *   return filter(t);
3495      * }
3496      * // and if the target has a void return:
3497      * void target2(A...);
3498      * V filter2();
3499      * V adapter2(A... a) {
3500      *   target2(a...);
3501      *   return filter2();
3502      * }
3503      * // and if the filter has a void return:
3504      * T target3(A...);
3505      * void filter3(V);
3506      * void adapter3(A... a) {
3507      *   T t = target3(a...);
3508      *   filter3(t);
3509      * }
3510      * }</pre></blockquote>
3511      * <p>
3512      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3513      * variable-arity method handle}, even if the original target method handle was.
3514      * @param target the method handle to invoke before filtering the return value
3515      * @param filter method handle to call on the return value
3516      * @return method handle which incorporates the specified return value filtering logic
3517      * @throws NullPointerException if either argument is null
3518      * @throws IllegalArgumentException if the argument list of {@code filter}
3519      *          does not match the return type of target as described above
3520      */
3521     public static
3522     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
3523         MethodType targetType = target.type();
3524         MethodType filterType = filter.type();
3525         filterReturnValueChecks(targetType, filterType);
3526         BoundMethodHandle result = target.rebind();
3527         BasicType rtype = BasicType.basicType(filterType.returnType());
3528         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
3529         MethodType newType = targetType.changeReturnType(filterType.returnType());
3530         result = result.copyWithExtendL(newType, lform, filter);
3531         return result;
3532     }
3533 
3534     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
3535         Class<?> rtype = targetType.returnType();
3536         int filterValues = filterType.parameterCount();
3537         if (filterValues == 0
3538                 ? (rtype != void.class)
3539                 : (rtype != filterType.parameterType(0)))
3540             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3541     }
3542 
3543     /**
3544      * Adapts a target method handle by pre-processing
3545      * some of its arguments, and then calling the target with
3546      * the result of the pre-processing, inserted into the original
3547      * sequence of arguments.
3548      * <p>
3549      * The pre-processing is performed by {@code combiner}, a second method handle.
3550      * Of the arguments passed to the adapter, the first {@code N} arguments
3551      * are copied to the combiner, which is then called.
3552      * (Here, {@code N} is defined as the parameter count of the combiner.)
3553      * After this, control passes to the target, with any result
3554      * from the combiner inserted before the original {@code N} incoming
3555      * arguments.
3556      * <p>
3557      * If the combiner returns a value, the first parameter type of the target
3558      * must be identical with the return type of the combiner, and the next
3559      * {@code N} parameter types of the target must exactly match the parameters
3560      * of the combiner.
3561      * <p>
3562      * If the combiner has a void return, no result will be inserted,
3563      * and the first {@code N} parameter types of the target
3564      * must exactly match the parameters of the combiner.
3565      * <p>
3566      * The resulting adapter is the same type as the target, except that the
3567      * first parameter type is dropped,
3568      * if it corresponds to the result of the combiner.
3569      * <p>
3570      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
3571      * that either the combiner or the target does not wish to receive.
3572      * If some of the incoming arguments are destined only for the combiner,
3573      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
3574      * arguments will not need to be live on the stack on entry to the
3575      * target.)
3576      * <p><b>Example:</b>
3577      * <blockquote><pre>{@code
3578 import static java.lang.invoke.MethodHandles.*;
3579 import static java.lang.invoke.MethodType.*;
3580 ...
3581 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
3582   "println", methodType(void.class, String.class))
3583     .bindTo(System.out);
3584 MethodHandle cat = lookup().findVirtual(String.class,
3585   "concat", methodType(String.class, String.class));
3586 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
3587 MethodHandle catTrace = foldArguments(cat, trace);
3588 // also prints "boo":
3589 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
3590      * }</pre></blockquote>
3591      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3592      * represents the result type of the {@code target} and resulting adapter.
3593      * {@code V}/{@code v} represent the type and value of the parameter and argument
3594      * of {@code target} that precedes the folding position; {@code V} also is
3595      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
3596      * types and values of the {@code N} parameters and arguments at the folding
3597      * position. {@code B}/{@code b} represent the types and values of the
3598      * {@code target} parameters and arguments that follow the folded parameters
3599      * and arguments.
3600      * <blockquote><pre>{@code
3601      * // there are N arguments in A...
3602      * T target(V, A[N]..., B...);
3603      * V combiner(A...);
3604      * T adapter(A... a, B... b) {
3605      *   V v = combiner(a...);
3606      *   return target(v, a..., b...);
3607      * }
3608      * // and if the combiner has a void return:
3609      * T target2(A[N]..., B...);
3610      * void combiner2(A...);
3611      * T adapter2(A... a, B... b) {
3612      *   combiner2(a...);
3613      *   return target2(a..., b...);
3614      * }
3615      * }</pre></blockquote>
3616      * <p>
3617      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3618      * variable-arity method handle}, even if the original target method handle was.
3619      * @param target the method handle to invoke after arguments are combined
3620      * @param combiner method handle to call initially on the incoming arguments
3621      * @return method handle which incorporates the specified argument folding logic
3622      * @throws NullPointerException if either argument is null
3623      * @throws IllegalArgumentException if {@code combiner}'s return type
3624      *          is non-void and not the same as the first argument type of
3625      *          the target, or if the initial {@code N} argument types
3626      *          of the target
3627      *          (skipping one matching the {@code combiner}'s return type)
3628      *          are not identical with the argument types of {@code combiner}
3629      */
3630     public static
3631     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
3632         return foldArguments(target, 0, combiner);
3633     }
3634 
3635     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
3636         int foldArgs   = combinerType.parameterCount();
3637         Class<?> rtype = combinerType.returnType();
3638         int foldVals = rtype == void.class ? 0 : 1;
3639         int afterInsertPos = foldPos + foldVals;
3640         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
3641         if (ok && !(combinerType.parameterList()
3642                     .equals(targetType.parameterList().subList(afterInsertPos,
3643                                                                afterInsertPos + foldArgs))))
3644             ok = false;
3645         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
3646             ok = false;
3647         if (!ok)
3648             throw misMatchedTypes("target and combiner types", targetType, combinerType);
3649         return rtype;
3650     }
3651 
3652     /**
3653      * Makes a method handle which adapts a target method handle,
3654      * by guarding it with a test, a boolean-valued method handle.
3655      * If the guard fails, a fallback handle is called instead.
3656      * All three method handles must have the same corresponding
3657      * argument and return types, except that the return type
3658      * of the test must be boolean, and the test is allowed
3659      * to have fewer arguments than the other two method handles.
3660      * <p>
3661      * Here is pseudocode for the resulting adapter. In the code, {@code T}
3662      * represents the uniform result type of the three involved handles;
3663      * {@code A}/{@code a}, the types and values of the {@code target}
3664      * parameters and arguments that are consumed by the {@code test}; and
3665      * {@code B}/{@code b}, those types and values of the {@code target}
3666      * parameters and arguments that are not consumed by the {@code test}.
3667      * <blockquote><pre>{@code
3668      * boolean test(A...);
3669      * T target(A...,B...);
3670      * T fallback(A...,B...);
3671      * T adapter(A... a,B... b) {
3672      *   if (test(a...))
3673      *     return target(a..., b...);
3674      *   else
3675      *     return fallback(a..., b...);
3676      * }
3677      * }</pre></blockquote>
3678      * Note that the test arguments ({@code a...} in the pseudocode) cannot
3679      * be modified by execution of the test, and so are passed unchanged
3680      * from the caller to the target or fallback as appropriate.
3681      * @param test method handle used for test, must return boolean
3682      * @param target method handle to call if test passes
3683      * @param fallback method handle to call if test fails
3684      * @return method handle which incorporates the specified if/then/else logic
3685      * @throws NullPointerException if any argument is null
3686      * @throws IllegalArgumentException if {@code test} does not return boolean,
3687      *          or if all three method types do not match (with the return
3688      *          type of {@code test} changed to match that of the target).
3689      */
3690     public static
3691     MethodHandle guardWithTest(MethodHandle test,
3692                                MethodHandle target,
3693                                MethodHandle fallback) {
3694         MethodType gtype = test.type();
3695         MethodType ttype = target.type();
3696         MethodType ftype = fallback.type();
3697         if (!ttype.equals(ftype))
3698             throw misMatchedTypes("target and fallback types", ttype, ftype);
3699         if (gtype.returnType() != boolean.class)
3700             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
3701         List<Class<?>> targs = ttype.parameterList();
3702         List<Class<?>> gargs = gtype.parameterList();
3703         if (!targs.equals(gargs)) {
3704             int gpc = gargs.size(), tpc = targs.size();
3705             if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
3706                 throw misMatchedTypes("target and test types", ttype, gtype);
3707             test = dropArguments(test, gpc, targs.subList(gpc, tpc));
3708             gtype = test.type();
3709         }
3710         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
3711     }
3712 
3713     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
3714         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
3715     }
3716 
3717     /**
3718      * Makes a method handle which adapts a target method handle,
3719      * by running it inside an exception handler.
3720      * If the target returns normally, the adapter returns that value.
3721      * If an exception matching the specified type is thrown, the fallback
3722      * handle is called instead on the exception, plus the original arguments.
3723      * <p>
3724      * The target and handler must have the same corresponding
3725      * argument and return types, except that handler may omit trailing arguments
3726      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
3727      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
3728      * <p>
3729      * Here is pseudocode for the resulting adapter. In the code, {@code T}
3730      * represents the return type of the {@code target} and {@code handler},
3731      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
3732      * the types and values of arguments to the resulting handle consumed by
3733      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
3734      * resulting handle discarded by {@code handler}.
3735      * <blockquote><pre>{@code
3736      * T target(A..., B...);
3737      * T handler(ExType, A...);
3738      * T adapter(A... a, B... b) {
3739      *   try {
3740      *     return target(a..., b...);
3741      *   } catch (ExType ex) {
3742      *     return handler(ex, a...);
3743      *   }
3744      * }
3745      * }</pre></blockquote>
3746      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
3747      * be modified by execution of the target, and so are passed unchanged
3748      * from the caller to the handler, if the handler is invoked.
3749      * <p>
3750      * The target and handler must return the same type, even if the handler
3751      * always throws.  (This might happen, for instance, because the handler
3752      * is simulating a {@code finally} clause).
3753      * To create such a throwing handler, compose the handler creation logic
3754      * with {@link #throwException throwException},
3755      * in order to create a method handle of the correct return type.
3756      * @param target method handle to call
3757      * @param exType the type of exception which the handler will catch
3758      * @param handler method handle to call if a matching exception is thrown
3759      * @return method handle which incorporates the specified try/catch logic
3760      * @throws NullPointerException if any argument is null
3761      * @throws IllegalArgumentException if {@code handler} does not accept
3762      *          the given exception type, or if the method handle types do
3763      *          not match in their return types and their
3764      *          corresponding parameters
3765      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
3766      */
3767     public static
3768     MethodHandle catchException(MethodHandle target,
3769                                 Class<? extends Throwable> exType,
3770                                 MethodHandle handler) {
3771         MethodType ttype = target.type();
3772         MethodType htype = handler.type();
3773         if (!Throwable.class.isAssignableFrom(exType))
3774             throw new ClassCastException(exType.getName());
3775         if (htype.parameterCount() < 1 ||
3776             !htype.parameterType(0).isAssignableFrom(exType))
3777             throw newIllegalArgumentException("handler does not accept exception type "+exType);
3778         if (htype.returnType() != ttype.returnType())
3779             throw misMatchedTypes("target and handler return types", ttype, htype);
3780         List<Class<?>> targs = ttype.parameterList();
3781         List<Class<?>> hargs = htype.parameterList();
3782         hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
3783         if (!targs.equals(hargs)) {
3784             int hpc = hargs.size(), tpc = targs.size();
3785             if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
3786                 throw misMatchedTypes("target and handler types", ttype, htype);
3787             handler = dropArguments(handler, 1+hpc, targs.subList(hpc, tpc));
3788             htype = handler.type();
3789         }
3790         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
3791     }
3792 
3793     /**
3794      * Produces a method handle which will throw exceptions of the given {@code exType}.
3795      * The method handle will accept a single argument of {@code exType},
3796      * and immediately throw it as an exception.
3797      * The method type will nominally specify a return of {@code returnType}.
3798      * The return type may be anything convenient:  It doesn't matter to the
3799      * method handle's behavior, since it will never return normally.
3800      * @param returnType the return type of the desired method handle
3801      * @param exType the parameter type of the desired method handle
3802      * @return method handle which can throw the given exceptions
3803      * @throws NullPointerException if either argument is null
3804      */
3805     public static
3806     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
3807         if (!Throwable.class.isAssignableFrom(exType))
3808             throw new ClassCastException(exType.getName());
3809         return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
3810     }
3811 
3812     /**
3813      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
3814      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
3815      * delivers the loop's result, which is the return value of the resulting handle.
3816      * <p>
3817      * Intuitively, every loop is formed by one or more "clauses", each specifying a local iteration value and/or a loop
3818      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
3819      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
3820      * terms of method handles, each clause will determine four actions:<ul>
3821      * <li>Before the loop executes, the initialization of an iteration variable or loop invariant local.
3822      * <li>When a clause executes, an update step for the iteration variable.
3823      * <li>When a clause executes, a predicate execution to test for loop exit.
3824      * <li>If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
3825      * </ul>
3826      * <p>
3827      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
3828      * this case. See below for a detailed description.
3829      * <p>
3830      * Each clause function, with the exception of clause initializers, is able to observe the entire loop state,
3831      * because it will be passed <em>all</em> current iteration variable values, as well as all incoming loop
3832      * parameters. Most clause functions will not need all of this information, but they will be formally connected as
3833      * if by {@link #dropArguments}.
3834      * <p>
3835      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
3836      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
3837      * corresponds to a place where {@link IllegalArgumentException} may be thrown if the required constraint is not met
3838      * by the inputs to the loop combinator. The term "effectively identical", applied to parameter type lists, means
3839      * that they must be identical, or else one list must be a proper prefix of the other.
3840      * <p>
3841      * <em>Step 0: Determine clause structure.</em><ol type="a">
3842      * <li>The clause array (of type {@code MethodHandle[][]} must be non-{@code null} and contain at least one element.
3843      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
3844      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
3845      * four. Padding takes place by appending elements to the array.
3846      * <li>Clauses with all {@code null}s are disregarded.
3847      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
3848      * </ol>
3849      * <p>
3850      * <em>Step 1A: Determine iteration variables.</em><ol type="a">
3851      * <li>Examine init and step function return types, pairwise, to determine each clause's iteration variable type.
3852      * <li>If both functions are omitted, use {@code void}; else if one is omitted, use the other's return type; else
3853      * use the common return type (they must be identical).
3854      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
3855      * <li>This list of types is called the "common prefix".
3856      * </ol>
3857      * <p>
3858      * <em>Step 1B: Determine loop parameters.</em><ul>
3859      * <li><b>If at least one init function is given,</b><ol type="a">
3860      *   <li>Examine init function parameter lists.
3861      *   <li>Omitted init functions are deemed to have {@code null} parameter lists.
3862      *   <li>All init function parameter lists must be effectively identical.
3863      *   <li>The longest parameter list (which is necessarily unique) is called the "common suffix".
3864      * </ol>
3865      * <li><b>If no init function is given,</b><ol type="a">
3866      *   <li>Examine the suffixes of the step, pred, and fini parameter lists, after removing the "common prefix".
3867      *   <li>The longest of these suffixes is taken as the "common suffix".
3868      * </ol></ul>
3869      * <p>
3870      * <em>Step 1C: Determine loop return type.</em><ol type="a">
3871      * <li>Examine fini function return types, disregarding omitted fini functions.
3872      * <li>If there are no fini functions, use {@code void} as the loop return type.
3873      * <li>Otherwise, use the common return type of the fini functions; they must all be identical.
3874      * </ol>
3875      * <p>
3876      * <em>Step 1D: Check other types.</em><ol type="a">
3877      * <li>There must be at least one non-omitted pred function.
3878      * <li>Every non-omitted pred function must have a {@code boolean} return type.
3879      * </ol>
3880      * <p>
3881      * <em>Step 2: Determine parameter lists.</em><ol type="a">
3882      * <li>The parameter list for the resulting loop handle will be the "common suffix".
3883      * <li>The parameter list for init functions will be adjusted to the "common suffix". (Note that their parameter
3884      * lists are already effectively identical to the common suffix.)
3885      * <li>The parameter list for non-init (step, pred, and fini) functions will be adjusted to the common prefix
3886      * followed by the common suffix, called the "common parameter sequence".
3887      * <li>Every non-init, non-omitted function parameter list must be effectively identical to the common parameter
3888      * sequence.
3889      * </ol>
3890      * <p>
3891      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
3892      * <li>If an init function is omitted, use a {@linkplain #constant constant function} of the appropriate
3893      * {@code null}/zero/{@code false}/{@code void} type. (For this purpose, a constant {@code void} is simply a
3894      * function which does nothing and returns {@code void}; it can be obtained from another constant function by
3895      * {@linkplain MethodHandle#asType type conversion}.)
3896      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
3897      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
3898      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
3899      * <li>If a pred function is omitted, the corresponding fini function must also be omitted.
3900      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
3901      * as this clause is concerned.)
3902      * <li>If a fini function is omitted, use a constant {@code null}/zero/{@code false}/{@code void} function of the
3903      * loop return type.
3904      * </ol>
3905      * <p>
3906      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
3907      * <li>At this point, every init function parameter list is effectively identical to the common suffix, but some
3908      * lists may be shorter. For every init function with a short parameter list, pad out the end of the list by
3909      * {@linkplain #dropArguments dropping arguments}.
3910      * <li>At this point, every non-init function parameter list is effectively identical to the common parameter
3911      * sequence, but some lists may be shorter. For every non-init function with a short parameter list, pad out the end
3912      * of the list by {@linkplain #dropArguments dropping arguments}.
3913      * </ol>
3914      * <p>
3915      * <em>Final observations.</em><ol type="a">
3916      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
3917      * <li>All init functions have a common parameter type list, which the final loop handle will also have.
3918      * <li>All fini functions have a common return type, which the final loop handle will also have.
3919      * <li>All non-init functions have a common parameter type list, which is the common parameter sequence, of
3920      * (non-{@code void}) iteration variables followed by loop parameters.
3921      * <li>Each pair of init and step functions agrees in their return types.
3922      * <li>Each non-init function will be able to observe the current values of all iteration variables, by means of the
3923      * common prefix.
3924      * </ol>
3925      * <p>
3926      * <em>Loop execution.</em><ol type="a">
3927      * <li>When the loop is called, the loop input values are saved in locals, to be passed (as the common suffix) to
3928      * every clause function. These locals are loop invariant.
3929      * <li>Each init function is executed in clause order (passing the common suffix) and the non-{@code void} values
3930      * are saved (as the common prefix) into locals. These locals are loop varying (unless their steps are identity
3931      * functions, as noted above).
3932      * <li>All function executions (except init functions) will be passed the common parameter sequence, consisting of
3933      * the non-{@code void} iteration values (in clause order) and then the loop inputs (in argument order).
3934      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
3935      * returns {@code false}.
3936      * <li>The non-{@code void} result from a step function call is used to update the corresponding loop variable. The
3937      * updated value is immediately visible to all subsequent function calls.
3938      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
3939      * is returned from the loop as a whole.
3940      * </ol>
3941      * <p>
3942      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the types / values
3943      * of loop variables; {@code A}/{@code a}, those of arguments passed to the resulting loop; and {@code R}, the
3944      * result types of finalizers as well as of the resulting loop.
3945      * <blockquote><pre>{@code
3946      * V... init...(A...);
3947      * boolean pred...(V..., A...);
3948      * V... step...(V..., A...);
3949      * R fini...(V..., A...);
3950      * R loop(A... a) {
3951      *   V... v... = init...(a...);
3952      *   for (;;) {
3953      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
3954      *       v = s(v..., a...);
3955      *       if (!p(v..., a...)) {
3956      *         return f(v..., a...);
3957      *       }
3958      *     }
3959      *   }
3960      * }
3961      * }</pre></blockquote>
3962      * <p>
3963      * @apiNote Example:
3964      * <blockquote><pre>{@code
3965      * // iterative implementation of the factorial function as a loop handle
3966      * static int one(int k) { return 1; }
3967      * static int inc(int i, int acc, int k) { return i + 1; }
3968      * static int mult(int i, int acc, int k) { return i * acc; }
3969      * static boolean pred(int i, int acc, int k) { return i < k; }
3970      * static int fin(int i, int acc, int k) { return acc; }
3971      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
3972      * // null initializer for counter, should initialize to 0
3973      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
3974      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
3975      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
3976      * assertEquals(120, loop.invoke(5));
3977      * }</pre></blockquote>
3978      *
3979      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
3980      *
3981      * @return a method handle embodying the looping behavior as defined by the arguments.
3982      *
3983      * @throws IllegalArgumentException in case any of the constraints described above is violated.
3984      *
3985      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
3986      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
3987      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
3988      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
3989      * @since 9
3990      */
3991     public static MethodHandle loop(MethodHandle[]... clauses) {
3992         // Step 0: determine clause structure.
3993         checkLoop0(clauses);
3994 
3995         List<MethodHandle> init = new ArrayList<>();
3996         List<MethodHandle> step = new ArrayList<>();
3997         List<MethodHandle> pred = new ArrayList<>();
3998         List<MethodHandle> fini = new ArrayList<>();
3999 
4000         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4001             init.add(clause[0]); // all clauses have at least length 1
4002             step.add(clause.length <= 1 ? null : clause[1]);
4003             pred.add(clause.length <= 2 ? null : clause[2]);
4004             fini.add(clause.length <= 3 ? null : clause[3]);
4005         });
4006 
4007         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4008         final int nclauses = init.size();
4009 
4010         // Step 1A: determine iteration variables.
4011         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4012         for (int i = 0; i < nclauses; ++i) {
4013             MethodHandle in = init.get(i);
4014             MethodHandle st = step.get(i);
4015             if (in == null && st == null) {
4016                 iterationVariableTypes.add(void.class);
4017             } else if (in != null && st != null) {
4018                 checkLoop1a(i, in, st);
4019                 iterationVariableTypes.add(in.type().returnType());
4020             } else {
4021                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4022             }
4023         }
4024         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4025                 collect(Collectors.toList());
4026 
4027         // Step 1B: determine loop parameters.
4028         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4029         checkLoop1b(init, commonSuffix);
4030 
4031         // Step 1C: determine loop return type.
4032         // Step 1D: check other types.
4033         final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type).
4034                 map(MethodType::returnType).findFirst().orElse(void.class);
4035         checkLoop1cd(pred, fini, loopReturnType);
4036 
4037         // Step 2: determine parameter lists.
4038         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4039         commonParameterSequence.addAll(commonSuffix);
4040         checkLoop2(step, pred, fini, commonParameterSequence);
4041 
4042         // Step 3: fill in omitted functions.
4043         for (int i = 0; i < nclauses; ++i) {
4044             Class<?> t = iterationVariableTypes.get(i);
4045             if (init.get(i) == null) {
4046                 init.set(i, zeroHandle(t));
4047             }
4048             if (step.get(i) == null) {
4049                 step.set(i, dropArguments(t == void.class ? zeroHandle(t) : identity(t), 0, commonPrefix.subList(0, i)));
4050             }
4051             if (pred.get(i) == null) {
4052                 pred.set(i, constant(boolean.class, true));
4053             }
4054             if (fini.get(i) == null) {
4055                 fini.set(i, zeroHandle(t));
4056             }
4057         }
4058 
4059         // Step 4: fill in missing parameter types.
4060         List<MethodHandle> finit = fillParameterTypes(init, commonSuffix);
4061         List<MethodHandle> fstep = fillParameterTypes(step, commonParameterSequence);
4062         List<MethodHandle> fpred = fillParameterTypes(pred, commonParameterSequence);
4063         List<MethodHandle> ffini = fillParameterTypes(fini, commonParameterSequence);
4064 
4065         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4066                 allMatch(pl -> pl.equals(commonSuffix));
4067         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4068                 allMatch(pl -> pl.equals(commonParameterSequence));
4069 
4070         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, commonPrefix, finit, fstep, fpred, ffini);
4071     }
4072 
4073     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4074         return hs.stream().map(h -> {
4075             int pc = h.type().parameterCount();
4076             int tpsize = targetParams.size();
4077             return pc < tpsize ? dropArguments(h, pc, targetParams.subList(pc, tpsize)) : h;
4078         }).collect(Collectors.toList());
4079     }
4080 
4081     /**
4082      * Constructs a {@code while} loop from an initializer, a body, and a predicate. This is a convenience wrapper for
4083      * the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4084      * <p>
4085      * The loop handle's result type is the same as the sole loop variable's, i.e., the result type of {@code init}.
4086      * The parameter type list of {@code init} also determines that of the resulting handle. The {@code pred} handle
4087      * must have an additional leading parameter of the same type as {@code init}'s result, and so must the {@code
4088      * body}. These constraints follow directly from those described for the {@linkplain MethodHandles#loop(MethodHandle[][])
4089      * generic loop combinator}.
4090      * <p>
4091      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4092      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4093      * passed to the loop.
4094      * <blockquote><pre>{@code
4095      * V init(A);
4096      * boolean pred(V, A);
4097      * V body(V, A);
4098      * V whileLoop(A a) {
4099      *   V v = init(a);
4100      *   while (pred(v, a)) {
4101      *     v = body(v, a);
4102      *   }
4103      *   return v;
4104      * }
4105      * }</pre></blockquote>
4106      * <p>
4107      * @apiNote Example:
4108      * <blockquote><pre>{@code
4109      * // implement the zip function for lists as a loop handle
4110      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
4111      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
4112      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
4113      *   zip.add(a.next());
4114      *   zip.add(b.next());
4115      *   return zip;
4116      * }
4117      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
4118      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
4119      * List<String> a = Arrays.asList("a", "b", "c", "d");
4120      * List<String> b = Arrays.asList("e", "f", "g", "h");
4121      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
4122      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
4123      * }</pre></blockquote>
4124      *
4125      * <p>
4126      * @implSpec The implementation of this method is equivalent to:
4127      * <blockquote><pre>{@code
4128      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4129      *     MethodHandle[]
4130      *         checkExit = {null, null, pred, identity(init.type().returnType())},
4131      *         varBody = {init, body};
4132      *     return loop(checkExit, varBody);
4133      * }
4134      * }</pre></blockquote>
4135      *
4136      * @param init initializer: it should provide the initial value of the loop variable. This controls the loop's
4137      *             result type. Passing {@code null} or a {@code void} init function will make the loop's result type
4138      *             {@code void}.
4139      * @param pred condition for the loop, which may not be {@code null}.
4140      * @param body body of the loop, which may not be {@code null}.
4141      *
4142      * @return the value of the loop variable as the loop terminates.
4143      * @throws IllegalArgumentException if any argument has a type inconsistent with the loop structure
4144      *
4145      * @see MethodHandles#loop(MethodHandle[][])
4146      * @since 9
4147      */
4148     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4149         MethodHandle fin = init == null ? zeroHandle(void.class) : identity(init.type().returnType());
4150         MethodHandle[] checkExit = {null, null, pred, fin};
4151         MethodHandle[] varBody = {init, body};
4152         return loop(checkExit, varBody);
4153     }
4154 
4155     /**
4156      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate. This is a convenience wrapper
4157      * for the {@linkplain MethodHandles#loop(MethodHandle[][]) generic loop combinator}.
4158      * <p>
4159      * The loop handle's result type is the same as the sole loop variable's, i.e., the result type of {@code init}.
4160      * The parameter type list of {@code init} also determines that of the resulting handle. The {@code pred} handle
4161      * must have an additional leading parameter of the same type as {@code init}'s result, and so must the {@code
4162      * body}. These constraints follow directly from those described for the {@linkplain MethodHandles#loop(MethodHandle[][])
4163      * generic loop combinator}.
4164      * <p>
4165      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4166      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4167      * passed to the loop.
4168      * <blockquote><pre>{@code
4169      * V init(A);
4170      * boolean pred(V, A);
4171      * V body(V, A);
4172      * V doWhileLoop(A a) {
4173      *   V v = init(a);
4174      *   do {
4175      *     v = body(v, a);
4176      *   } while (pred(v, a));
4177      *   return v;
4178      * }
4179      * }</pre></blockquote>
4180      * <p>
4181      * @apiNote Example:
4182      * <blockquote><pre>{@code
4183      * // int i = 0; while (i < limit) { ++i; } return i; => limit
4184      * static int zero(int limit) { return 0; }
4185      * static int step(int i, int limit) { return i + 1; }
4186      * static boolean pred(int i, int limit) { return i < limit; }
4187      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
4188      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
4189      * assertEquals(23, loop.invoke(23));
4190      * }</pre></blockquote>
4191      *
4192      * <p>
4193      * @implSpec The implementation of this method is equivalent to:
4194      * <blockquote><pre>{@code
4195      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
4196      *     MethodHandle[] clause = { init, body, pred, identity(init.type().returnType()) };
4197      *     return loop(clause);
4198      * }
4199      * }</pre></blockquote>
4200      *
4201      *
4202      * @param init initializer: it should provide the initial value of the loop variable. This controls the loop's
4203      *             result type. Passing {@code null} or a {@code void} init function will make the loop's result type
4204      *             {@code void}.
4205      * @param pred condition for the loop, which may not be {@code null}.
4206      * @param body body of the loop, which may not be {@code null}.
4207      *
4208      * @return the value of the loop variable as the loop terminates.
4209      * @throws IllegalArgumentException if any argument has a type inconsistent with the loop structure
4210      *
4211      * @see MethodHandles#loop(MethodHandle[][])
4212      * @since 9
4213      */
4214     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
4215         MethodHandle fin = init == null ? zeroHandle(void.class) : identity(init.type().returnType());
4216         MethodHandle[] clause = {init, body, pred, fin};
4217         return loop(clause);
4218     }
4219 
4220     /**
4221      * Constructs a loop that runs a given number of iterations. The loop counter is an {@code int} initialized from the
4222      * {@code iterations} handle evaluation result. The counter is passed to the {@code body} function, so that must
4223      * accept an initial {@code int} argument. The result of the loop execution is the final value of the additional
4224      * local state. This is a convenience wrapper for the {@linkplain MethodHandles#loop(MethodHandle[][]) generic loop
4225      * combinator}.
4226      * <p>
4227      * The result type and parameter type list of {@code init} determine those of the resulting handle. The {@code
4228      * iterations} handle must accept the same parameter types as {@code init} but return an {@code int}. The {@code
4229      * body} handle must accept the same parameter types as well, preceded by an {@code int} parameter for the counter,
4230      * and a parameter of the same type as {@code init}'s result. These constraints follow directly from those described
4231      * for the {@linkplain MethodHandles#loop(MethodHandle[][]) generic loop combinator}.
4232      * <p>
4233      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4234      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4235      * passed to the loop.
4236      * <blockquote><pre>{@code
4237      * int iterations(A);
4238      * V init(A);
4239      * V body(int, V, A);
4240      * V countedLoop(A a) {
4241      *   int end = iterations(a);
4242      *   V v = init(a);
4243      *   for (int i = 0; i < end; ++i) {
4244      *     v = body(i, v, a);
4245      *   }
4246      *   return v;
4247      * }
4248      * }</pre></blockquote>
4249      * <p>
4250      * @apiNote Example:
4251      * <blockquote><pre>{@code
4252      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
4253      * // => a variation on a well known theme
4254      * static String start(String arg) { return arg; }
4255      * static String step(int counter, String v, String arg) { return "na " + v; }
4256      * // assume MH_start and MH_step are handles to the two methods above
4257      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
4258      * MethodHandle loop = MethodHandles.countedLoop(fit13, MH_start, MH_step);
4259      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
4260      * }</pre></blockquote>
4261      *
4262      * <p>
4263      * @implSpec The implementation of this method is equivalent to:
4264      * <blockquote><pre>{@code
4265      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
4266      *     return countedLoop(null, iterations, init, body);  // null => constant zero
4267      * }
4268      * }</pre></blockquote>
4269      *
4270      * @param iterations a handle to return the number of iterations this loop should run.
4271      * @param init initializer for additional loop state. This determines the loop's result type.
4272      *             Passing {@code null} or a {@code void} init function will make the loop's result type
4273      *             {@code void}.
4274      * @param body the body of the loop, which must not be {@code null}.
4275      *             It must accept an initial {@code int} parameter (for the counter), and then any
4276      *             additional loop-local variable plus loop parameters.
4277      *
4278      * @return a method handle representing the loop.
4279      * @throws IllegalArgumentException if any argument has a type inconsistent with the loop structure
4280      *
4281      * @since 9
4282      */
4283     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
4284         return countedLoop(null, iterations, init, body);
4285     }
4286 
4287     /**
4288      * Constructs a loop that counts over a range of numbers. The loop counter is an {@code int} that will be
4289      * initialized to the {@code int} value returned from the evaluation of the {@code start} handle and run to the
4290      * value returned from {@code end} (exclusively) with a step width of 1. The counter value is passed to the {@code
4291      * body} function in each iteration; it has to accept an initial {@code int} parameter
4292      * for that. The result of the loop execution is the final value of the additional local state
4293      * obtained by running {@code init}.
4294      * This is a
4295      * convenience wrapper for the {@linkplain MethodHandles#loop(MethodHandle[][]) generic loop combinator}.
4296      * <p>
4297      * The constraints for the {@code init} and {@code body} handles are the same as for {@link
4298      * #countedLoop(MethodHandle, MethodHandle, MethodHandle)}. Additionally, the {@code start} and {@code end} handles
4299      * must return an {@code int} and accept the same parameters as {@code init}.
4300      * <p>
4301      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4302      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4303      * passed to the loop.
4304      * <blockquote><pre>{@code
4305      * int start(A);
4306      * int end(A);
4307      * V init(A);
4308      * V body(int, V, A);
4309      * V countedLoop(A a) {
4310      *   int s = start(a);
4311      *   int e = end(a);
4312      *   V v = init(a);
4313      *   for (int i = s; i < e; ++i) {
4314      *     v = body(i, v, a);
4315      *   }
4316      *   return v;
4317      * }
4318      * }</pre></blockquote>
4319      *
4320      * <p>
4321      * @implSpec The implementation of this method is equivalent to:
4322      * <blockquote><pre>{@code
4323      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
4324      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
4325      *     // assume MH_increment and MH_lessThan are handles to x+1 and x<y of type int,
4326      *     // assume MH_decrement is a handle to x-1 of type int
4327      *     MethodHandle[]
4328      *         indexVar = {start, MH_increment}, // i = start; i = i+1
4329      *         loopLimit = {end, null, MH_lessThan, returnVar }, // i<end
4330      *         bodyClause = {init,
4331      *                       filterArgument(dropArguments(body, 1, int.class), 0, MH_decrement}; // v = body(i-1, v)
4332      *     return loop(indexVar, loopLimit, bodyClause);
4333      * }
4334      * }</pre></blockquote>
4335      *
4336      * @param start a handle to return the start value of the loop counter.
4337      *              If it is {@code null}, a constant zero is assumed.
4338      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to {@code end-1}).
4339      * @param init initializer for additional loop state. This determines the loop's result type.
4340      *             Passing {@code null} or a {@code void} init function will make the loop's result type
4341      *             {@code void}.
4342      * @param body the body of the loop, which must not be {@code null}.
4343      *             It must accept an initial {@code int} parameter (for the counter), and then any
4344      *             additional loop-local variable plus loop parameters.
4345      *
4346      * @return a method handle representing the loop.
4347      * @throws IllegalArgumentException if any argument has a type inconsistent with the loop structure
4348      *
4349      * @since 9
4350      */
4351     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
4352         MethodHandle returnVar = dropArguments(init == null ? zeroHandle(void.class) : identity(init.type().returnType()),
4353                 0, int.class, int.class);
4354         MethodHandle[] indexVar = {start, MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep)};
4355         MethodHandle[] loopLimit = {end, null, MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred), returnVar};
4356         MethodHandle[] bodyClause = {init,
4357                 filterArgument(dropArguments(body, 1, int.class), 0,
4358                         MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_decrementCounter))};
4359         return loop(indexVar, loopLimit, bodyClause);
4360     }
4361 
4362     /**
4363      * Constructs a loop that ranges over the elements produced by an {@code Iterator<T>}.
4364      * The iterator will be produced by the evaluation of the {@code iterator} handle.
4365      * If this handle is passed as {@code null} the method {@link Iterable#iterator} will be used instead,
4366      * and will be applied to a leading argument of the loop handle.
4367      * Each value produced by the iterator is passed to the {@code body}, which must accept an initial {@code T} parameter.
4368      * The result of the loop execution is the final value of the additional local state
4369      * obtained by running {@code init}.
4370      * <p>
4371      * This is a convenience wrapper for the
4372      * {@linkplain MethodHandles#loop(MethodHandle[][]) generic loop combinator}, and the constraints imposed on the {@code body}
4373      * handle follow directly from those described for the latter.
4374      * <p>
4375      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4376      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
4377      * structure the loop iterates over, and {@code A}/{@code a}, that of the argument passed to the loop.
4378      * <blockquote><pre>{@code
4379      * Iterator<T> iterator(A);  // defaults to Iterable::iterator
4380      * V init(A);
4381      * V body(T,V,A);
4382      * V iteratedLoop(A a) {
4383      *   Iterator<T> it = iterator(a);
4384      *   V v = init(a);
4385      *   for (T t : it) {
4386      *     v = body(t, v, a);
4387      *   }
4388      *   return v;
4389      * }
4390      * }</pre></blockquote>
4391      * <p>
4392      * The type {@code T} may be either a primitive or reference.
4393      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type
4394      * {@code Iterator}, the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body}
4395      * to {@code Object} as if by the {@link MethodHandle#asType asType} conversion method.
4396      * Therefore, if an iterator of the wrong type appears as the loop is executed,
4397      * runtime exceptions may occur as the result of dynamic conversions performed by {@code asType}.
4398      * <p>
4399      * @apiNote Example:
4400      * <blockquote><pre>{@code
4401      * // reverse a list
4402      * static List<String> reverseStep(String e, List<String> r, List<String> l) {
4403      *   r.add(0, e);
4404      *   return r;
4405      * }
4406      * static List<String> newArrayList(List<String> l) { return new ArrayList<>(); }
4407      * // assume MH_reverseStep, MH_newArrayList are handles to the above methods
4408      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
4409      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
4410      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
4411      * assertEquals(reversedList, (List<String>) loop.invoke(list));
4412      * }</pre></blockquote>
4413      * <p>
4414      * @implSpec The implementation of this method is equivalent to:
4415      * <blockquote><pre>{@code
4416      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
4417      *     // assume MH_next and MH_hasNext are handles to methods of Iterator
4418      *     Class<?> itype = iterator.type().returnType();
4419      *     Class<?> ttype = body.type().parameterType(0);
4420      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, itype);
4421      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
4422      *     MethodHandle[]
4423      *         iterVar = {iterator, null, MH_hasNext, returnVar}, // it = iterator(); while (it.hasNext)
4424      *         bodyClause = {init, filterArgument(body, 0, nextVal)};  // v = body(t, v, a);
4425      *     return loop(iterVar, bodyClause);
4426      * }
4427      * }</pre></blockquote>
4428      *
4429      * @param iterator a handle to return the iterator to start the loop.
4430      *             Passing {@code null} will make the loop call {@link Iterable#iterator()} on the first
4431      *             incoming value.
4432      * @param init initializer for additional loop state. This determines the loop's result type.
4433      *             Passing {@code null} or a {@code void} init function will make the loop's result type
4434      *             {@code void}.
4435      * @param body the body of the loop, which must not be {@code null}.
4436      *             It must accept an initial {@code T} parameter (for the iterated values), and then any
4437      *             additional loop-local variable plus loop parameters.
4438      *
4439      * @return a method handle embodying the iteration loop functionality.
4440      * @throws IllegalArgumentException if any argument has a type inconsistent with the loop structure
4441      *
4442      * @since 9
4443      */
4444     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
4445         checkIteratedLoop(body);
4446 
4447         MethodHandle initit = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
4448         MethodHandle initIterator = iterator == null ?
4449                 initit.asType(initit.type().changeParameterType(0, body.type().parameterType(init == null ? 1 : 2))) :
4450                 iterator;
4451         Class<?> itype = initIterator.type().returnType();
4452         Class<?> ttype = body.type().parameterType(0);
4453 
4454         MethodHandle returnVar =
4455                 dropArguments(init == null ? zeroHandle(void.class) : identity(init.type().returnType()), 0, itype);
4456         MethodHandle initnx = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
4457         MethodHandle nextVal = initnx.asType(initnx.type().changeReturnType(ttype));
4458 
4459         MethodHandle[] iterVar = {initIterator, null, MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred), returnVar};
4460         MethodHandle[] bodyClause = {init, filterArgument(body, 0, nextVal)};
4461 
4462         return loop(iterVar, bodyClause);
4463     }
4464 
4465     /**
4466      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
4467      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
4468      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
4469      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
4470      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
4471      * {@code try-finally} handle.
4472      * <p>
4473      * The {@code cleanup} handle will be passed one or two additional leading arguments.
4474      * The first is the exception thrown during the
4475      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
4476      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
4477      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
4478      * The second argument is not present if the {@code target} handle has a {@code void} return type.
4479      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
4480      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
4481      * <p>
4482      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
4483      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
4484      * two extra leading parameters:<ul>
4485      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
4486      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
4487      * the result from the execution of the {@code target} handle.
4488      * This parameter is not present if the {@code target} returns {@code void}.
4489      * </ul>
4490      * <p>
4491      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
4492      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
4493      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
4494      * the cleanup.
4495      * <blockquote><pre>{@code
4496      * V target(A..., B...);
4497      * V cleanup(Throwable, V, A...);
4498      * V adapter(A... a, B... b) {
4499      *   V result = (zero value for V);
4500      *   Throwable throwable = null;
4501      *   try {
4502      *     result = target(a..., b...);
4503      *   } catch (Throwable t) {
4504      *     throwable = t;
4505      *     throw t;
4506      *   } finally {
4507      *     result = cleanup(throwable, result, a...);
4508      *   }
4509      *   return result;
4510      * }
4511      * }</pre></blockquote>
4512      * <p>
4513      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4514      * be modified by execution of the target, and so are passed unchanged
4515      * from the caller to the cleanup, if it is invoked.
4516      * <p>
4517      * The target and cleanup must return the same type, even if the cleanup
4518      * always throws.
4519      * To create such a throwing cleanup, compose the cleanup logic
4520      * with {@link #throwException throwException},
4521      * in order to create a method handle of the correct return type.
4522      * <p>
4523      * Note that {@code tryFinally} never converts exceptions into normal returns.
4524      * In rare cases where exceptions must be converted in that way, first wrap
4525      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
4526      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
4527      *
4528      * @param target the handle whose execution is to be wrapped in a {@code try} block.
4529      * @param cleanup the handle that is invoked in the finally block.
4530      *
4531      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
4532      * @throws NullPointerException if any argument is null
4533      * @throws IllegalArgumentException if {@code cleanup} does not accept
4534      *          the required leading arguments, or if the method handle types do
4535      *          not match in their return types and their
4536      *          corresponding trailing parameters
4537      *
4538      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
4539      * @since 9
4540      */
4541     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
4542         List<Class<?>> targetParamTypes = target.type().parameterList();
4543         List<Class<?>> cleanupParamTypes = cleanup.type().parameterList();
4544         Class<?> rtype = target.type().returnType();
4545 
4546         checkTryFinally(target, cleanup);
4547 
4548         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
4549         int tpSize = targetParamTypes.size();
4550         int cpPrefixLength = rtype == void.class ? 1 : 2;
4551         int cpSize = cleanupParamTypes.size();
4552         MethodHandle aCleanup = cpSize - cpPrefixLength < tpSize ?
4553                 dropArguments(cleanup, cpSize, targetParamTypes.subList(tpSize - (cpSize - cpPrefixLength), tpSize)) :
4554                 cleanup;
4555 
4556         MethodHandle aTarget = target.asSpreader(Object[].class, target.type().parameterCount());
4557         aCleanup = aCleanup.asSpreader(Object[].class, tpSize);
4558 
4559         return MethodHandleImpl.makeTryFinally(aTarget, aCleanup, rtype, targetParamTypes);
4560     }
4561 
4562     /**
4563      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4564      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4565      * before the folded arguments.
4566      * <p>
4567      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4568      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4569      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4570      * 0.
4571      * <p>
4572      * @apiNote Example:
4573      * <blockquote><pre>{@code
4574     import static java.lang.invoke.MethodHandles.*;
4575     import static java.lang.invoke.MethodType.*;
4576     ...
4577     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4578     "println", methodType(void.class, String.class))
4579     .bindTo(System.out);
4580     MethodHandle cat = lookup().findVirtual(String.class,
4581     "concat", methodType(String.class, String.class));
4582     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4583     MethodHandle catTrace = foldArguments(cat, 1, trace);
4584     // also prints "jum":
4585     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4586      * }</pre></blockquote>
4587      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4588      * represents the result type of the {@code target} and resulting adapter.
4589      * {@code V}/{@code v} represent the type and value of the parameter and argument
4590      * of {@code target} that precedes the folding position; {@code V} also is
4591      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4592      * types and values of the {@code N} parameters and arguments at the folding
4593      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4594      * and values of the {@code target} parameters and arguments that precede and
4595      * follow the folded parameters and arguments starting at {@code pos},
4596      * respectively.
4597      * <blockquote><pre>{@code
4598      * // there are N arguments in A...
4599      * T target(Z..., V, A[N]..., B...);
4600      * V combiner(A...);
4601      * T adapter(Z... z, A... a, B... b) {
4602      *   V v = combiner(a...);
4603      *   return target(z..., v, a..., b...);
4604      * }
4605      * // and if the combiner has a void return:
4606      * T target2(Z..., A[N]..., B...);
4607      * void combiner2(A...);
4608      * T adapter2(Z... z, A... a, B... b) {
4609      *   combiner2(a...);
4610      *   return target2(z..., a..., b...);
4611      * }
4612      * }</pre></blockquote>
4613      * <p>
4614      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4615      * variable-arity method handle}, even if the original target method handle was.
4616      *
4617      * @param target the method handle to invoke after arguments are combined
4618      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4619      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4620      * @param combiner method handle to call initially on the incoming arguments
4621      * @return method handle which incorporates the specified argument folding logic
4622      * @throws NullPointerException if either argument is null
4623      * @throws IllegalArgumentException if {@code combiner}'s return type
4624      *          is non-void and not the same as the argument type at position {@code pos} of
4625      *          the target signature, or if the {@code N} argument types at position {@code pos}
4626      *          of the target signature
4627      *          (skipping one matching the {@code combiner}'s return type)
4628      *          are not identical with the argument types of {@code combiner}
4629      *
4630      * @see #foldArguments(MethodHandle, MethodHandle)
4631      * @since 9
4632      */
4633     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4634         MethodType targetType = target.type();
4635         MethodType combinerType = combiner.type();
4636         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4637         BoundMethodHandle result = target.rebind();
4638         boolean dropResult = rtype == void.class;
4639         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4640         MethodType newType = targetType;
4641         if (!dropResult) {
4642             newType = newType.dropParameterTypes(pos, pos + 1);
4643         }
4644         result = result.copyWithExtendL(newType, lform, combiner);
4645         return result;
4646     }
4647 
4648     /**
4649      * Wrap creation of a proper zero handle for a given type.
4650      *
4651      * @param type the type.
4652      *
4653      * @return a zero value for the given type.
4654      */
4655     static MethodHandle zeroHandle(Class<?> type) {
4656         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
4657     }
4658 
4659     private static void checkLoop0(MethodHandle[][] clauses) {
4660         if (clauses == null || clauses.length == 0) {
4661             throw newIllegalArgumentException("null or no clauses passed");
4662         }
4663         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4664             throw newIllegalArgumentException("null clauses are not allowed");
4665         }
4666         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4667             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4668         }
4669     }
4670 
4671     private static void checkLoop1a(int i, MethodHandle in, MethodHandle st) {
4672         if (in.type().returnType() != st.type().returnType()) {
4673             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4674                     st.type().returnType());
4675         }
4676     }
4677 
4678     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4679         final List<Class<?>> empty = List.of();
4680         final List<MethodHandle> nonNullInits = init.stream().filter(Objects::nonNull).collect(Collectors.toList());
4681         if (nonNullInits.isEmpty()) {
4682             final List<Class<?>> longest = Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).
4683                     // take only those that can contribute to a common suffix because they are longer than the prefix
4684                     map(MethodHandle::type).filter(t -> t.parameterCount() > cpSize).map(MethodType::parameterList).
4685                     reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4686             return longest.size() == 0 ? empty : longest.subList(cpSize, longest.size());
4687         } else {
4688             return nonNullInits.stream().map(MethodHandle::type).map(MethodType::parameterList).
4689                     reduce((p, q) -> p.size() >= q.size() ? p : q).get();
4690         }
4691     }
4692 
4693     private static void checkLoop1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4694         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::parameterList).
4695                 anyMatch(pl -> !pl.equals(commonSuffix.subList(0, pl.size())))) {
4696             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4697                     " (common suffix: " + commonSuffix + ")");
4698         }
4699     }
4700 
4701     private static void checkLoop1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4702         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4703                 anyMatch(t -> t != loopReturnType)) {
4704             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4705                     loopReturnType + ")");
4706         }
4707 
4708         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4709             throw newIllegalArgumentException("no predicate found", pred);
4710         }
4711         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4712                 anyMatch(t -> t != boolean.class)) {
4713             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4714         }
4715     }
4716 
4717     private static void checkLoop2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4718         final int cpSize = commonParameterSequence.size();
4719         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4720                 map(MethodType::parameterList).
4721                 anyMatch(pl -> pl.size() > cpSize || !pl.equals(commonParameterSequence.subList(0, pl.size())))) {
4722             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4723                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4724         }
4725     }
4726 
4727     private static void checkIteratedLoop(MethodHandle body) {
4728         if (null == body) {
4729             throw newIllegalArgumentException("iterated loop body must not be null");
4730         }
4731     }
4732 
4733     private static void checkTryFinally(MethodHandle target, MethodHandle cleanup) {
4734         Class<?> rtype = target.type().returnType();
4735         if (rtype != cleanup.type().returnType()) {
4736             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
4737         }
4738         List<Class<?>> cleanupParamTypes = cleanup.type().parameterList();
4739         if (!Throwable.class.isAssignableFrom(cleanupParamTypes.get(0))) {
4740             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
4741         }
4742         if (rtype != void.class && cleanupParamTypes.get(1) != rtype) {
4743             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
4744         }
4745         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
4746         // target parameter list.
4747         int cleanupArgIndex = rtype == void.class ? 1 : 2;
4748         List<Class<?>> cleanupArgSuffix = cleanupParamTypes.subList(cleanupArgIndex, cleanupParamTypes.size());
4749         List<Class<?>> targetParamTypes = target.type().parameterList();
4750         if (targetParamTypes.size() < cleanupArgSuffix.size() ||
4751                 !cleanupArgSuffix.equals(targetParamTypes.subList(0, cleanupParamTypes.size() - cleanupArgIndex))) {
4752             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
4753                     cleanup.type(), target.type());
4754         }
4755     }
4756 
4757 }