1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 
  42 #include "utilities/macros.hpp"
  43 
  44 // This file holds all globally used constants & types, class (forward)
  45 // declarations and a few frequently used utility functions.
  46 
  47 //----------------------------------------------------------------------------------------------------
  48 // Constants
  49 
  50 const int LogBytesPerShort   = 1;
  51 const int LogBytesPerInt     = 2;
  52 #ifdef _LP64
  53 const int LogBytesPerWord    = 3;
  54 #else
  55 const int LogBytesPerWord    = 2;
  56 #endif
  57 const int LogBytesPerLong    = 3;
  58 
  59 const int BytesPerShort      = 1 << LogBytesPerShort;
  60 const int BytesPerInt        = 1 << LogBytesPerInt;
  61 const int BytesPerWord       = 1 << LogBytesPerWord;
  62 const int BytesPerLong       = 1 << LogBytesPerLong;
  63 
  64 const int LogBitsPerByte     = 3;
  65 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  66 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  67 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  68 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  69 
  70 const int BitsPerByte        = 1 << LogBitsPerByte;
  71 const int BitsPerShort       = 1 << LogBitsPerShort;
  72 const int BitsPerInt         = 1 << LogBitsPerInt;
  73 const int BitsPerWord        = 1 << LogBitsPerWord;
  74 const int BitsPerLong        = 1 << LogBitsPerLong;
  75 
  76 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
  77 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
  78 
  79 const int WordsPerLong       = 2;       // Number of stack entries for longs
  80 
  81 const int oopSize            = sizeof(char*); // Full-width oop
  82 extern int heapOopSize;                       // Oop within a java object
  83 const int wordSize           = sizeof(char*);
  84 const int longSize           = sizeof(jlong);
  85 const int jintSize           = sizeof(jint);
  86 const int size_tSize         = sizeof(size_t);
  87 
  88 const int BytesPerOop        = BytesPerWord;  // Full-width oop
  89 
  90 extern int LogBytesPerHeapOop;                // Oop within a java object
  91 extern int LogBitsPerHeapOop;
  92 extern int BytesPerHeapOop;
  93 extern int BitsPerHeapOop;
  94 
  95 // Oop encoding heap max
  96 extern uint64_t OopEncodingHeapMax;
  97 
  98 const int BitsPerJavaInteger = 32;
  99 const int BitsPerJavaLong    = 64;
 100 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 101 
 102 // Size of a char[] needed to represent a jint as a string in decimal.
 103 const int jintAsStringSize = 12;
 104 
 105 // In fact this should be
 106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 107 // see os::set_memory_serialize_page()
 108 #ifdef _LP64
 109 const int SerializePageShiftCount = 4;
 110 #else
 111 const int SerializePageShiftCount = 3;
 112 #endif
 113 
 114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 115 // pointer into the heap.  We require that object sizes be measured in
 116 // units of heap words, so that that
 117 //   HeapWord* hw;
 118 //   hw += oop(hw)->foo();
 119 // works, where foo is a method (like size or scavenge) that returns the
 120 // object size.
 121 class HeapWord {
 122   friend class VMStructs;
 123  private:
 124   char* i;
 125 #ifndef PRODUCT
 126  public:
 127   char* value() { return i; }
 128 #endif
 129 };
 130 
 131 // Analogous opaque struct for metadata allocated from
 132 // metaspaces.
 133 class MetaWord {
 134   friend class VMStructs;
 135  private:
 136   char* i;
 137 };
 138 
 139 // HeapWordSize must be 2^LogHeapWordSize.
 140 const int HeapWordSize        = sizeof(HeapWord);
 141 #ifdef _LP64
 142 const int LogHeapWordSize     = 3;
 143 #else
 144 const int LogHeapWordSize     = 2;
 145 #endif
 146 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 147 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 148 
 149 // The larger HeapWordSize for 64bit requires larger heaps
 150 // for the same application running in 64bit.  See bug 4967770.
 151 // The minimum alignment to a heap word size is done.  Other
 152 // parts of the memory system may required additional alignment
 153 // and are responsible for those alignments.
 154 #ifdef _LP64
 155 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 156 #else
 157 #define ScaleForWordSize(x) (x)
 158 #endif
 159 
 160 // The minimum number of native machine words necessary to contain "byte_size"
 161 // bytes.
 162 inline size_t heap_word_size(size_t byte_size) {
 163   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 164 }
 165 
 166 
 167 const size_t K                  = 1024;
 168 const size_t M                  = K*K;
 169 const size_t G                  = M*K;
 170 const size_t HWperKB            = K / sizeof(HeapWord);
 171 
 172 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 173 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 174 
 175 // Constants for converting from a base unit to milli-base units.  For
 176 // example from seconds to milliseconds and microseconds
 177 
 178 const int MILLIUNITS    = 1000;         // milli units per base unit
 179 const int MICROUNITS    = 1000000;      // micro units per base unit
 180 const int NANOUNITS     = 1000000000;   // nano units per base unit
 181 
 182 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 183 const jint  NANOSECS_PER_MILLISEC = 1000000;
 184 
 185 inline const char* proper_unit_for_byte_size(size_t s) {
 186 #ifdef _LP64
 187   if (s >= 10*G) {
 188     return "G";
 189   }
 190 #endif
 191   if (s >= 10*M) {
 192     return "M";
 193   } else if (s >= 10*K) {
 194     return "K";
 195   } else {
 196     return "B";
 197   }
 198 }
 199 
 200 template <class T>
 201 inline T byte_size_in_proper_unit(T s) {
 202 #ifdef _LP64
 203   if (s >= 10*G) {
 204     return (T)(s/G);
 205   }
 206 #endif
 207   if (s >= 10*M) {
 208     return (T)(s/M);
 209   } else if (s >= 10*K) {
 210     return (T)(s/K);
 211   } else {
 212     return s;
 213   }
 214 }
 215 
 216 //----------------------------------------------------------------------------------------------------
 217 // VM type definitions
 218 
 219 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 220 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 221 
 222 typedef intptr_t  intx;
 223 typedef uintptr_t uintx;
 224 
 225 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 226 const intx  max_intx  = (uintx)min_intx - 1;
 227 const uintx max_uintx = (uintx)-1;
 228 
 229 // Table of values:
 230 //      sizeof intx         4               8
 231 // min_intx             0x80000000      0x8000000000000000
 232 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 233 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 234 
 235 typedef unsigned int uint;   NEEDS_CLEANUP
 236 
 237 
 238 //----------------------------------------------------------------------------------------------------
 239 // Java type definitions
 240 
 241 // All kinds of 'plain' byte addresses
 242 typedef   signed char s_char;
 243 typedef unsigned char u_char;
 244 typedef u_char*       address;
 245 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 246                                     // except for some implementations of a C++
 247                                     // linkage pointer to function. Should never
 248                                     // need one of those to be placed in this
 249                                     // type anyway.
 250 
 251 //  Utility functions to "portably" (?) bit twiddle pointers
 252 //  Where portable means keep ANSI C++ compilers quiet
 253 
 254 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 255 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 256 
 257 //  Utility functions to "portably" make cast to/from function pointers.
 258 
 259 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 260 inline address_word  castable_address(address x)              { return address_word(x) ; }
 261 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 262 
 263 // Pointer subtraction.
 264 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 265 // the range we might need to find differences from one end of the heap
 266 // to the other.
 267 // A typical use might be:
 268 //     if (pointer_delta(end(), top()) >= size) {
 269 //       // enough room for an object of size
 270 //       ...
 271 // and then additions like
 272 //       ... top() + size ...
 273 // are safe because we know that top() is at least size below end().
 274 inline size_t pointer_delta(const void* left,
 275                             const void* right,
 276                             size_t element_size) {
 277   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 278 }
 279 // A version specialized for HeapWord*'s.
 280 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 281   return pointer_delta(left, right, sizeof(HeapWord));
 282 }
 283 // A version specialized for MetaWord*'s.
 284 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 285   return pointer_delta(left, right, sizeof(MetaWord));
 286 }
 287 
 288 //
 289 // ANSI C++ does not allow casting from one pointer type to a function pointer
 290 // directly without at best a warning. This macro accomplishes it silently
 291 // In every case that is present at this point the value be cast is a pointer
 292 // to a C linkage function. In somecase the type used for the cast reflects
 293 // that linkage and a picky compiler would not complain. In other cases because
 294 // there is no convenient place to place a typedef with extern C linkage (i.e
 295 // a platform dependent header file) it doesn't. At this point no compiler seems
 296 // picky enough to catch these instances (which are few). It is possible that
 297 // using templates could fix these for all cases. This use of templates is likely
 298 // so far from the middle of the road that it is likely to be problematic in
 299 // many C++ compilers.
 300 //
 301 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 302 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 303 
 304 // Unsigned byte types for os and stream.hpp
 305 
 306 // Unsigned one, two, four and eigth byte quantities used for describing
 307 // the .class file format. See JVM book chapter 4.
 308 
 309 typedef jubyte  u1;
 310 typedef jushort u2;
 311 typedef juint   u4;
 312 typedef julong  u8;
 313 
 314 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 315 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 316 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 317 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 318 
 319 typedef jbyte  s1;
 320 typedef jshort s2;
 321 typedef jint   s4;
 322 typedef jlong  s8;
 323 
 324 //----------------------------------------------------------------------------------------------------
 325 // JVM spec restrictions
 326 
 327 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 328 
 329 
 330 //----------------------------------------------------------------------------------------------------
 331 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 332 //
 333 // Determines whether on-the-fly class replacement and frame popping are enabled.
 334 
 335 #define HOTSWAP
 336 
 337 //----------------------------------------------------------------------------------------------------
 338 // Object alignment, in units of HeapWords.
 339 //
 340 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 341 // reference fields can be naturally aligned.
 342 
 343 extern int MinObjAlignment;
 344 extern int MinObjAlignmentInBytes;
 345 extern int MinObjAlignmentInBytesMask;
 346 
 347 extern int LogMinObjAlignment;
 348 extern int LogMinObjAlignmentInBytes;
 349 
 350 const int LogKlassAlignmentInBytes = 3;
 351 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 352 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 353 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 354 
 355 // Klass encoding metaspace max size
 356 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 357 
 358 // Machine dependent stuff
 359 
 360 #ifdef TARGET_ARCH_x86
 361 # include "globalDefinitions_x86.hpp"
 362 #endif
 363 #ifdef TARGET_ARCH_sparc
 364 # include "globalDefinitions_sparc.hpp"
 365 #endif
 366 #ifdef TARGET_ARCH_zero
 367 # include "globalDefinitions_zero.hpp"
 368 #endif
 369 #ifdef TARGET_ARCH_arm
 370 # include "globalDefinitions_arm.hpp"
 371 #endif
 372 #ifdef TARGET_ARCH_ppc
 373 # include "globalDefinitions_ppc.hpp"
 374 #endif
 375 
 376 
 377 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 378 // Note: this value must be a power of 2
 379 
 380 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 381 
 382 // Signed variants of alignment helpers.  There are two versions of each, a macro
 383 // for use in places like enum definitions that require compile-time constant
 384 // expressions and a function for all other places so as to get type checking.
 385 
 386 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 387 
 388 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 389   return align_size_up_(size, alignment);
 390 }
 391 
 392 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 393 
 394 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 395   return align_size_down_(size, alignment);
 396 }
 397 
 398 // Align objects by rounding up their size, in HeapWord units.
 399 
 400 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 401 
 402 inline intptr_t align_object_size(intptr_t size) {
 403   return align_size_up(size, MinObjAlignment);
 404 }
 405 
 406 inline bool is_object_aligned(intptr_t addr) {
 407   return addr == align_object_size(addr);
 408 }
 409 
 410 // Pad out certain offsets to jlong alignment, in HeapWord units.
 411 
 412 inline intptr_t align_object_offset(intptr_t offset) {
 413   return align_size_up(offset, HeapWordsPerLong);
 414 }
 415 
 416 // The expected size in bytes of a cache line, used to pad data structures.
 417 #define DEFAULT_CACHE_LINE_SIZE 64
 418 
 419 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
 420 // expected cache line size (a power of two).  The first addend avoids sharing
 421 // when the start address is not a multiple of alignment; the second maintains
 422 // alignment of starting addresses that happen to be a multiple.
 423 #define PADDING_SIZE(type, alignment)                           \
 424   ((alignment) + align_size_up_(sizeof(type), alignment))
 425 
 426 // Templates to create a subclass padded to avoid cache line sharing.  These are
 427 // effective only when applied to derived-most (leaf) classes.
 428 
 429 // When no args are passed to the base ctor.
 430 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 431 class Padded: public T {
 432 private:
 433   char _pad_buf_[PADDING_SIZE(T, alignment)];
 434 };
 435 
 436 // When either 0 or 1 args may be passed to the base ctor.
 437 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 438 class Padded01: public T {
 439 public:
 440   Padded01(): T() { }
 441   Padded01(Arg1T arg1): T(arg1) { }
 442 private:
 443   char _pad_buf_[PADDING_SIZE(T, alignment)];
 444 };
 445 
 446 //----------------------------------------------------------------------------------------------------
 447 // Utility macros for compilers
 448 // used to silence compiler warnings
 449 
 450 #define Unused_Variable(var) var
 451 
 452 
 453 //----------------------------------------------------------------------------------------------------
 454 // Miscellaneous
 455 
 456 // 6302670 Eliminate Hotspot __fabsf dependency
 457 // All fabs() callers should call this function instead, which will implicitly
 458 // convert the operand to double, avoiding a dependency on __fabsf which
 459 // doesn't exist in early versions of Solaris 8.
 460 inline double fabsd(double value) {
 461   return fabs(value);
 462 }
 463 
 464 inline jint low (jlong value)                    { return jint(value); }
 465 inline jint high(jlong value)                    { return jint(value >> 32); }
 466 
 467 // the fancy casts are a hopefully portable way
 468 // to do unsigned 32 to 64 bit type conversion
 469 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 470                                                    *value |= (jlong)(julong)(juint)low; }
 471 
 472 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 473                                                    *value |= (jlong)high       << 32; }
 474 
 475 inline jlong jlong_from(jint h, jint l) {
 476   jlong result = 0; // initialization to avoid warning
 477   set_high(&result, h);
 478   set_low(&result,  l);
 479   return result;
 480 }
 481 
 482 union jlong_accessor {
 483   jint  words[2];
 484   jlong long_value;
 485 };
 486 
 487 void basic_types_init(); // cannot define here; uses assert
 488 
 489 
 490 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 491 enum BasicType {
 492   T_BOOLEAN     =  4,
 493   T_CHAR        =  5,
 494   T_FLOAT       =  6,
 495   T_DOUBLE      =  7,
 496   T_BYTE        =  8,
 497   T_SHORT       =  9,
 498   T_INT         = 10,
 499   T_LONG        = 11,
 500   T_OBJECT      = 12,
 501   T_ARRAY       = 13,
 502   T_VOID        = 14,
 503   T_ADDRESS     = 15,
 504   T_NARROWOOP   = 16,
 505   T_METADATA    = 17,
 506   T_NARROWKLASS = 18,
 507   T_CONFLICT    = 19, // for stack value type with conflicting contents
 508   T_ILLEGAL     = 99
 509 };
 510 
 511 inline bool is_java_primitive(BasicType t) {
 512   return T_BOOLEAN <= t && t <= T_LONG;
 513 }
 514 
 515 inline bool is_subword_type(BasicType t) {
 516   // these guys are processed exactly like T_INT in calling sequences:
 517   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 518 }
 519 
 520 inline bool is_signed_subword_type(BasicType t) {
 521   return (t == T_BYTE || t == T_SHORT);
 522 }
 523 
 524 // Convert a char from a classfile signature to a BasicType
 525 inline BasicType char2type(char c) {
 526   switch( c ) {
 527   case 'B': return T_BYTE;
 528   case 'C': return T_CHAR;
 529   case 'D': return T_DOUBLE;
 530   case 'F': return T_FLOAT;
 531   case 'I': return T_INT;
 532   case 'J': return T_LONG;
 533   case 'S': return T_SHORT;
 534   case 'Z': return T_BOOLEAN;
 535   case 'V': return T_VOID;
 536   case 'L': return T_OBJECT;
 537   case '[': return T_ARRAY;
 538   }
 539   return T_ILLEGAL;
 540 }
 541 
 542 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 543 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 544 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 545 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 546 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 547 extern BasicType name2type(const char* name);
 548 
 549 // Auxilary math routines
 550 // least common multiple
 551 extern size_t lcm(size_t a, size_t b);
 552 
 553 
 554 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 555 enum BasicTypeSize {
 556   T_BOOLEAN_size     = 1,
 557   T_CHAR_size        = 1,
 558   T_FLOAT_size       = 1,
 559   T_DOUBLE_size      = 2,
 560   T_BYTE_size        = 1,
 561   T_SHORT_size       = 1,
 562   T_INT_size         = 1,
 563   T_LONG_size        = 2,
 564   T_OBJECT_size      = 1,
 565   T_ARRAY_size       = 1,
 566   T_NARROWOOP_size   = 1,
 567   T_NARROWKLASS_size = 1,
 568   T_VOID_size        = 0
 569 };
 570 
 571 
 572 // maps a BasicType to its instance field storage type:
 573 // all sub-word integral types are widened to T_INT
 574 extern BasicType type2field[T_CONFLICT+1];
 575 extern BasicType type2wfield[T_CONFLICT+1];
 576 
 577 
 578 // size in bytes
 579 enum ArrayElementSize {
 580   T_BOOLEAN_aelem_bytes     = 1,
 581   T_CHAR_aelem_bytes        = 2,
 582   T_FLOAT_aelem_bytes       = 4,
 583   T_DOUBLE_aelem_bytes      = 8,
 584   T_BYTE_aelem_bytes        = 1,
 585   T_SHORT_aelem_bytes       = 2,
 586   T_INT_aelem_bytes         = 4,
 587   T_LONG_aelem_bytes        = 8,
 588 #ifdef _LP64
 589   T_OBJECT_aelem_bytes      = 8,
 590   T_ARRAY_aelem_bytes       = 8,
 591 #else
 592   T_OBJECT_aelem_bytes      = 4,
 593   T_ARRAY_aelem_bytes       = 4,
 594 #endif
 595   T_NARROWOOP_aelem_bytes   = 4,
 596   T_NARROWKLASS_aelem_bytes = 4,
 597   T_VOID_aelem_bytes        = 0
 598 };
 599 
 600 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 601 #ifdef ASSERT
 602 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 603 #else
 604 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 605 #endif
 606 
 607 
 608 // JavaValue serves as a container for arbitrary Java values.
 609 
 610 class JavaValue {
 611 
 612  public:
 613   typedef union JavaCallValue {
 614     jfloat   f;
 615     jdouble  d;
 616     jint     i;
 617     jlong    l;
 618     jobject  h;
 619   } JavaCallValue;
 620 
 621  private:
 622   BasicType _type;
 623   JavaCallValue _value;
 624 
 625  public:
 626   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 627 
 628   JavaValue(jfloat value) {
 629     _type    = T_FLOAT;
 630     _value.f = value;
 631   }
 632 
 633   JavaValue(jdouble value) {
 634     _type    = T_DOUBLE;
 635     _value.d = value;
 636   }
 637 
 638  jfloat get_jfloat() const { return _value.f; }
 639  jdouble get_jdouble() const { return _value.d; }
 640  jint get_jint() const { return _value.i; }
 641  jlong get_jlong() const { return _value.l; }
 642  jobject get_jobject() const { return _value.h; }
 643  JavaCallValue* get_value_addr() { return &_value; }
 644  BasicType get_type() const { return _type; }
 645 
 646  void set_jfloat(jfloat f) { _value.f = f;}
 647  void set_jdouble(jdouble d) { _value.d = d;}
 648  void set_jint(jint i) { _value.i = i;}
 649  void set_jlong(jlong l) { _value.l = l;}
 650  void set_jobject(jobject h) { _value.h = h;}
 651  void set_type(BasicType t) { _type = t; }
 652 
 653  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 654  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 655  jchar get_jchar() const { return (jchar) (_value.i);}
 656  jshort get_jshort() const { return (jshort) (_value.i);}
 657 
 658 };
 659 
 660 
 661 #define STACK_BIAS      0
 662 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 663 // in order to extend the reach of the stack pointer.
 664 #if defined(SPARC) && defined(_LP64)
 665 #undef STACK_BIAS
 666 #define STACK_BIAS      0x7ff
 667 #endif
 668 
 669 
 670 // TosState describes the top-of-stack state before and after the execution of
 671 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 672 // registers. The TosState corresponds to the 'machine represention' of this cached
 673 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 674 // as well as a 5th state in case the top-of-stack value is actually on the top
 675 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 676 // state when it comes to machine representation but is used separately for (oop)
 677 // type specific operations (e.g. verification code).
 678 
 679 enum TosState {         // describes the tos cache contents
 680   btos = 0,             // byte, bool tos cached
 681   ctos = 1,             // char tos cached
 682   stos = 2,             // short tos cached
 683   itos = 3,             // int tos cached
 684   ltos = 4,             // long tos cached
 685   ftos = 5,             // float tos cached
 686   dtos = 6,             // double tos cached
 687   atos = 7,             // object cached
 688   vtos = 8,             // tos not cached
 689   number_of_states,
 690   ilgl                  // illegal state: should not occur
 691 };
 692 
 693 
 694 inline TosState as_TosState(BasicType type) {
 695   switch (type) {
 696     case T_BYTE   : return btos;
 697     case T_BOOLEAN: return btos; // FIXME: Add ztos
 698     case T_CHAR   : return ctos;
 699     case T_SHORT  : return stos;
 700     case T_INT    : return itos;
 701     case T_LONG   : return ltos;
 702     case T_FLOAT  : return ftos;
 703     case T_DOUBLE : return dtos;
 704     case T_VOID   : return vtos;
 705     case T_ARRAY  : // fall through
 706     case T_OBJECT : return atos;
 707   }
 708   return ilgl;
 709 }
 710 
 711 inline BasicType as_BasicType(TosState state) {
 712   switch (state) {
 713     //case ztos: return T_BOOLEAN;//FIXME
 714     case btos : return T_BYTE;
 715     case ctos : return T_CHAR;
 716     case stos : return T_SHORT;
 717     case itos : return T_INT;
 718     case ltos : return T_LONG;
 719     case ftos : return T_FLOAT;
 720     case dtos : return T_DOUBLE;
 721     case atos : return T_OBJECT;
 722     case vtos : return T_VOID;
 723   }
 724   return T_ILLEGAL;
 725 }
 726 
 727 
 728 // Helper function to convert BasicType info into TosState
 729 // Note: Cannot define here as it uses global constant at the time being.
 730 TosState as_TosState(BasicType type);
 731 
 732 
 733 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
 734 
 735 enum ReferenceType {
 736  REF_NONE,      // Regular class
 737  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
 738  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
 739  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
 740  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
 741  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
 742 };
 743 
 744 
 745 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 746 // information is needed by the safepoint code.
 747 //
 748 // There are 4 essential states:
 749 //
 750 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 751 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 752 //  _thread_in_vm       : Executing in the vm
 753 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 754 //
 755 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 756 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 757 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 758 //
 759 // Given a state, the xxx_trans state can always be found by adding 1.
 760 //
 761 enum JavaThreadState {
 762   _thread_uninitialized     =  0, // should never happen (missing initialization)
 763   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 764   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 765   _thread_in_native         =  4, // running in native code
 766   _thread_in_native_trans   =  5, // corresponding transition state
 767   _thread_in_vm             =  6, // running in VM
 768   _thread_in_vm_trans       =  7, // corresponding transition state
 769   _thread_in_Java           =  8, // running in Java or in stub code
 770   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 771   _thread_blocked           = 10, // blocked in vm
 772   _thread_blocked_trans     = 11, // corresponding transition state
 773   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 774 };
 775 
 776 
 777 // Handy constants for deciding which compiler mode to use.
 778 enum MethodCompilation {
 779   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 780   InvalidOSREntryBci = -2
 781 };
 782 
 783 // Enumeration to distinguish tiers of compilation
 784 enum CompLevel {
 785   CompLevel_any               = -1,
 786   CompLevel_all               = -1,
 787   CompLevel_none              = 0,         // Interpreter
 788   CompLevel_simple            = 1,         // C1
 789   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 790   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 791   CompLevel_full_optimization = 4,         // C2 or Shark
 792 
 793 #if defined(COMPILER2) || defined(SHARK)
 794   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 795 #elif defined(COMPILER1)
 796   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 797 #else
 798   CompLevel_highest_tier      = CompLevel_none,
 799 #endif
 800 
 801 #if defined(TIERED)
 802   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 803 #elif defined(COMPILER1)
 804   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 805 #elif defined(COMPILER2) || defined(SHARK)
 806   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 807 #else
 808   CompLevel_initial_compile   = CompLevel_none
 809 #endif
 810 };
 811 
 812 inline bool is_c1_compile(int comp_level) {
 813   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 814 }
 815 
 816 inline bool is_c2_compile(int comp_level) {
 817   return comp_level == CompLevel_full_optimization;
 818 }
 819 
 820 inline bool is_highest_tier_compile(int comp_level) {
 821   return comp_level == CompLevel_highest_tier;
 822 }
 823 
 824 //----------------------------------------------------------------------------------------------------
 825 // 'Forward' declarations of frequently used classes
 826 // (in order to reduce interface dependencies & reduce
 827 // number of unnecessary compilations after changes)
 828 
 829 class symbolTable;
 830 class ClassFileStream;
 831 
 832 class Event;
 833 
 834 class Thread;
 835 class  VMThread;
 836 class  JavaThread;
 837 class Threads;
 838 
 839 class VM_Operation;
 840 class VMOperationQueue;
 841 
 842 class CodeBlob;
 843 class  nmethod;
 844 class  OSRAdapter;
 845 class  I2CAdapter;
 846 class  C2IAdapter;
 847 class CompiledIC;
 848 class relocInfo;
 849 class ScopeDesc;
 850 class PcDesc;
 851 
 852 class Recompiler;
 853 class Recompilee;
 854 class RecompilationPolicy;
 855 class RFrame;
 856 class  CompiledRFrame;
 857 class  InterpretedRFrame;
 858 
 859 class frame;
 860 
 861 class vframe;
 862 class   javaVFrame;
 863 class     interpretedVFrame;
 864 class     compiledVFrame;
 865 class     deoptimizedVFrame;
 866 class   externalVFrame;
 867 class     entryVFrame;
 868 
 869 class RegisterMap;
 870 
 871 class Mutex;
 872 class Monitor;
 873 class BasicLock;
 874 class BasicObjectLock;
 875 
 876 class PeriodicTask;
 877 
 878 class JavaCallWrapper;
 879 
 880 class   oopDesc;
 881 class   metaDataOopDesc;
 882 
 883 class NativeCall;
 884 
 885 class zone;
 886 
 887 class StubQueue;
 888 
 889 class outputStream;
 890 
 891 class ResourceArea;
 892 
 893 class DebugInformationRecorder;
 894 class ScopeValue;
 895 class CompressedStream;
 896 class   DebugInfoReadStream;
 897 class   DebugInfoWriteStream;
 898 class LocationValue;
 899 class ConstantValue;
 900 class IllegalValue;
 901 
 902 class PrivilegedElement;
 903 class MonitorArray;
 904 
 905 class MonitorInfo;
 906 
 907 class OffsetClosure;
 908 class OopMapCache;
 909 class InterpreterOopMap;
 910 class OopMapCacheEntry;
 911 class OSThread;
 912 
 913 typedef int (*OSThreadStartFunc)(void*);
 914 
 915 class Space;
 916 
 917 class JavaValue;
 918 class methodHandle;
 919 class JavaCallArguments;
 920 
 921 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
 922 
 923 extern void basic_fatal(const char* msg);
 924 
 925 
 926 //----------------------------------------------------------------------------------------------------
 927 // Special constants for debugging
 928 
 929 const jint     badInt           = -3;                       // generic "bad int" value
 930 const long     badAddressVal    = -2;                       // generic "bad address" value
 931 const long     badOopVal        = -1;                       // generic "bad oop" value
 932 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 933 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 934 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 935 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 936 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 937 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 938 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 939 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 940 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 941 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 942 
 943 
 944 // (These must be implemented as #defines because C++ compilers are
 945 // not obligated to inline non-integral constants!)
 946 #define       badAddress        ((address)::badAddressVal)
 947 #define       badOop            ((oop)::badOopVal)
 948 #define       badHeapWord       (::badHeapWordVal)
 949 #define       badJNIHandle      ((oop)::badJNIHandleVal)
 950 
 951 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 952 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 953 
 954 //----------------------------------------------------------------------------------------------------
 955 // Utility functions for bitfield manipulations
 956 
 957 const intptr_t AllBits    = ~0; // all bits set in a word
 958 const intptr_t NoBits     =  0; // no bits set in a word
 959 const jlong    NoLongBits =  0; // no bits set in a long
 960 const intptr_t OneBit     =  1; // only right_most bit set in a word
 961 
 962 // get a word with the n.th or the right-most or left-most n bits set
 963 // (note: #define used only so that they can be used in enum constant definitions)
 964 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
 965 #define right_n_bits(n)   (nth_bit(n) - 1)
 966 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
 967 
 968 // bit-operations using a mask m
 969 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 970 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 971 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 972 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 973 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 974 
 975 // bit-operations using the n.th bit
 976 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 977 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 978 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 979 
 980 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 981 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 982   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 983 }
 984 
 985 
 986 //----------------------------------------------------------------------------------------------------
 987 // Utility functions for integers
 988 
 989 // Avoid use of global min/max macros which may cause unwanted double
 990 // evaluation of arguments.
 991 #ifdef max
 992 #undef max
 993 #endif
 994 
 995 #ifdef min
 996 #undef min
 997 #endif
 998 
 999 #define max(a,b) Do_not_use_max_use_MAX2_instead
1000 #define min(a,b) Do_not_use_min_use_MIN2_instead
1001 
1002 // It is necessary to use templates here. Having normal overloaded
1003 // functions does not work because it is necessary to provide both 32-
1004 // and 64-bit overloaded functions, which does not work, and having
1005 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1006 // will be even more error-prone than macros.
1007 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1008 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1009 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1010 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1011 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1012 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1013 
1014 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1015 
1016 // true if x is a power of 2, false otherwise
1017 inline bool is_power_of_2(intptr_t x) {
1018   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1019 }
1020 
1021 // long version of is_power_of_2
1022 inline bool is_power_of_2_long(jlong x) {
1023   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1024 }
1025 
1026 //* largest i such that 2^i <= x
1027 //  A negative value of 'x' will return '31'
1028 inline int log2_intptr(intptr_t x) {
1029   int i = -1;
1030   uintptr_t p =  1;
1031   while (p != 0 && p <= (uintptr_t)x) {
1032     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1033     i++; p *= 2;
1034   }
1035   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1036   // (if p = 0 then overflow occurred and i = 31)
1037   return i;
1038 }
1039 
1040 //* largest i such that 2^i <= x
1041 //  A negative value of 'x' will return '63'
1042 inline int log2_long(jlong x) {
1043   int i = -1;
1044   julong p =  1;
1045   while (p != 0 && p <= (julong)x) {
1046     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1047     i++; p *= 2;
1048   }
1049   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1050   // (if p = 0 then overflow occurred and i = 63)
1051   return i;
1052 }
1053 
1054 //* the argument must be exactly a power of 2
1055 inline int exact_log2(intptr_t x) {
1056   #ifdef ASSERT
1057     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1058   #endif
1059   return log2_intptr(x);
1060 }
1061 
1062 //* the argument must be exactly a power of 2
1063 inline int exact_log2_long(jlong x) {
1064   #ifdef ASSERT
1065     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1066   #endif
1067   return log2_long(x);
1068 }
1069 
1070 
1071 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1072 inline intptr_t round_to(intptr_t x, uintx s) {
1073   #ifdef ASSERT
1074     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1075   #endif
1076   const uintx m = s - 1;
1077   return mask_bits(x + m, ~m);
1078 }
1079 
1080 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1081 inline intptr_t round_down(intptr_t x, uintx s) {
1082   #ifdef ASSERT
1083     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1084   #endif
1085   const uintx m = s - 1;
1086   return mask_bits(x, ~m);
1087 }
1088 
1089 
1090 inline bool is_odd (intx x) { return x & 1;      }
1091 inline bool is_even(intx x) { return !is_odd(x); }
1092 
1093 // "to" should be greater than "from."
1094 inline intx byte_size(void* from, void* to) {
1095   return (address)to - (address)from;
1096 }
1097 
1098 //----------------------------------------------------------------------------------------------------
1099 // Avoid non-portable casts with these routines (DEPRECATED)
1100 
1101 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1102 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1103 
1104 // Given sequence of four bytes, build into a 32-bit word
1105 // following the conventions used in class files.
1106 // On the 386, this could be realized with a simple address cast.
1107 //
1108 
1109 // This routine takes eight bytes:
1110 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1111   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1112        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1113        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1114        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1115        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1116        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1117        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1118        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1119 }
1120 
1121 // This routine takes four bytes:
1122 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1123   return  (( u4(c1) << 24 )  &  0xff000000)
1124        |  (( u4(c2) << 16 )  &  0x00ff0000)
1125        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1126        |  (( u4(c4) <<  0 )  &  0x000000ff);
1127 }
1128 
1129 // And this one works if the four bytes are contiguous in memory:
1130 inline u4 build_u4_from( u1* p ) {
1131   return  build_u4_from( p[0], p[1], p[2], p[3] );
1132 }
1133 
1134 // Ditto for two-byte ints:
1135 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1136   return  u2((( u2(c1) <<  8 )  &  0xff00)
1137           |  (( u2(c2) <<  0 )  &  0x00ff));
1138 }
1139 
1140 // And this one works if the two bytes are contiguous in memory:
1141 inline u2 build_u2_from( u1* p ) {
1142   return  build_u2_from( p[0], p[1] );
1143 }
1144 
1145 // Ditto for floats:
1146 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1147   u4 u = build_u4_from( c1, c2, c3, c4 );
1148   return  *(jfloat*)&u;
1149 }
1150 
1151 inline jfloat build_float_from( u1* p ) {
1152   u4 u = build_u4_from( p );
1153   return  *(jfloat*)&u;
1154 }
1155 
1156 
1157 // now (64-bit) longs
1158 
1159 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1160   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1161        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1162        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1163        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1164        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1165        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1166        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1167        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1168 }
1169 
1170 inline jlong build_long_from( u1* p ) {
1171   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1172 }
1173 
1174 
1175 // Doubles, too!
1176 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1177   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1178   return  *(jdouble*)&u;
1179 }
1180 
1181 inline jdouble build_double_from( u1* p ) {
1182   jlong u = build_long_from( p );
1183   return  *(jdouble*)&u;
1184 }
1185 
1186 
1187 // Portable routines to go the other way:
1188 
1189 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1190   c1 = u1(x >> 8);
1191   c2 = u1(x);
1192 }
1193 
1194 inline void explode_short_to( u2 x, u1* p ) {
1195   explode_short_to( x, p[0], p[1]);
1196 }
1197 
1198 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1199   c1 = u1(x >> 24);
1200   c2 = u1(x >> 16);
1201   c3 = u1(x >>  8);
1202   c4 = u1(x);
1203 }
1204 
1205 inline void explode_int_to( u4 x, u1* p ) {
1206   explode_int_to( x, p[0], p[1], p[2], p[3]);
1207 }
1208 
1209 
1210 // Pack and extract shorts to/from ints:
1211 
1212 inline int extract_low_short_from_int(jint x) {
1213   return x & 0xffff;
1214 }
1215 
1216 inline int extract_high_short_from_int(jint x) {
1217   return (x >> 16) & 0xffff;
1218 }
1219 
1220 inline int build_int_from_shorts( jushort low, jushort high ) {
1221   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1222 }
1223 
1224 // Printf-style formatters for fixed- and variable-width types as pointers and
1225 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1226 // doesn't provide appropriate definitions, they should be provided in
1227 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1228 
1229 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1230 
1231 // Format 32-bit quantities.
1232 #define INT32_FORMAT           "%" PRId32
1233 #define UINT32_FORMAT          "%" PRIu32
1234 #define INT32_FORMAT_W(width)  "%" #width PRId32
1235 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1236 
1237 #define PTR32_FORMAT           "0x%08" PRIx32
1238 
1239 // Format 64-bit quantities.
1240 #define INT64_FORMAT           "%" PRId64
1241 #define UINT64_FORMAT          "%" PRIu64
1242 #define INT64_FORMAT_W(width)  "%" #width PRId64
1243 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1244 
1245 #define PTR64_FORMAT           "0x%016" PRIx64
1246 
1247 // Format pointers which change size between 32- and 64-bit.
1248 #ifdef  _LP64
1249 #define INTPTR_FORMAT "0x%016" PRIxPTR
1250 #define PTR_FORMAT    "0x%016" PRIxPTR
1251 #else   // !_LP64
1252 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1253 #define PTR_FORMAT    "0x%08"  PRIxPTR
1254 #endif  // _LP64
1255 
1256 #define SSIZE_FORMAT          "%" PRIdPTR
1257 #define SIZE_FORMAT           "%" PRIuPTR
1258 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1259 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
1260 
1261 #define INTX_FORMAT           "%" PRIdPTR
1262 #define UINTX_FORMAT          "%" PRIuPTR
1263 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1264 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1265 
1266 
1267 // Enable zap-a-lot if in debug version.
1268 
1269 # ifdef ASSERT
1270 # ifdef COMPILER2
1271 #   define ENABLE_ZAP_DEAD_LOCALS
1272 #endif /* COMPILER2 */
1273 # endif /* ASSERT */
1274 
1275 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1276 
1277 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP