
Copyright © 2019 Oracle and/or its affiliates.

Oracle Code One 2019
G1 and ZGC: A Look into the Progress of Garbage Collection in Java

[DEV4459]

Oracle
September 16, 2019

Mikael Vidstedt, Director, Java Virtual Machine
Paul Su, Director, JVM Garbage Collection

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2019 Oracle and/or its affiliates.

http://www.oracle.com/investor

Agenda

• Introduction to garbage collection

• GC tradeoffs

• G1

• ZGC

Copyright © 2019 Oracle and/or its affiliates.

Copyright © 2019 Oracle and/or its affiliates.

Introduction to Garbage Collection

Copyright © 2019 Oracle and/or its affiliates.

Introduction to Garbage Collection

Copyright © 2019 Oracle and/or its affiliates.

Introduction to Garbage Collection

Copyright © 2019 Oracle and/or its affiliates.

Introduction to Garbage Collection

Copyright © 2019 Oracle and/or its affiliates.

Introduction to Garbage Collection

Copyright © 2019 Oracle and/or its affiliates.

Introduction to Garbage Collection

Copyright © 2019 Oracle and/or its affiliates.

Introduction to Garbage Collection

Copyright © 2019 Oracle and/or its affiliates.

Collectors in the JVM

GC Optimized For

Serial Memory Footprint

Parallel Throughput

G1 Throughput/Latency Balance

CMS Latency

ZGC Scalability/Low Latency

Copyright © 2019 Oracle and/or its affiliates.

G1

Copyright © 2019 Oracle and/or its affiliates.

The G1 Garbage Collector

The default garbage collector since JDK 9
• First introduced in 6u14
• Supported since 7u4

The goal: throughput and low latency
The default pause target for G1 is 200 milliseconds

• Higher pause goal → more throughput, higher latency
• Lower pause goal → less throughput, lower latency

13

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• The heap is split into multiple regions
• Region size depends on heap size, e.g. 2 MB for 4 GB heap

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• New objects are allocated into eden (E) regions

E

E

E

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

E

E

E

Heap

• A young collection happens after a number of eden regions have
been allocated

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• Young collections compactly copy live objects in eden regions to
survivor regions (S)

E S

E

E

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• Objects will then continue to be allocated in eden regions

E S

E

E

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• If objects survive multiple young collections, then they are
compactly copied into an old region (O)

E S

S E

E

O

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• After a while the heap fills up with eden, survivor and old regions

E O

O

O S O

S

O

E

E

EO

O

O

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• All live objects in old regions are then marked concurrently
• The Java application is not stopped

E O

O

O S O

S

O

E

E

EO

O

O

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• Eden, survivor and old regions are then collected in mixed
collections.

• Live objects are compactly copied into survivor and old regions.
E O

O

O S O

S

O

E

E

EO

O

O

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• Eden, survivor and old regions are then collected in mixed
collections.

• Live objects are compactly copied into survivor and old regions.
E O

O O

S

O S O

S

O

E

E

EO

O

O

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

O

S

O O

OO

O

O

Heap

• Eden, survivor and old regions are then collected in mixed
collections.

• Live objects are compactly copied into survivor and old regions.

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

O

S O

O

O

O

Heap

• Eden, survivor and old regions are then collected in mixed
collections.

• Live objects are compactly copied into survivor and old regions.

Copyright © 2019 Oracle and/or its affiliates.

G1 - Generational region-based memory management

• When no more old regions are suitable for collection,
then G1 will resume doing young collections

O

O

S

O

Heap

Copyright © 2019 Oracle and/or its affiliates.

G1 enhancements since JDK 8

13 GC-related JEPs since JDK 8
• 5 related to G1

Copyright © 2019 Oracle and/or its affiliates.

G1 enhancements since JDK 8

13 GC-related JEPs since JDK 8
• 5 related to G1

~1450 GC enhancements
• ~699 related to G1

The JEPs represent only a small portion of the work going into the
GC area.

Copyright © 2019 Oracle and/or its affiliates.

G1 enhancements between JDK 8 and JDK 9

Latency

Throughput

Memory

Copyright © 2019 Oracle and/or its affiliates.

G1 enhancements between JDK 8 and JDK 9

Latency

Throughput

Memory

Optimize
Evacuation9+

Ergonomic
Thread Tuning9

Parallelize
GC
Phases9+

Fast Evacuation
Failure Handling9

Lazy
RemSet
Initialization9

RemSet Space
Reductions9

Archive
regions
CDS support9

Heap
Resizing
Ergonomics9

Container
Awareness9

Elastic
TLAB9

Marking
Scalability
9

Improved
Refinement
9

Adaptive
Mark
Start9

Parallel
Pretouch9

Lazy Thread
Initialization9

Superscripts indicate JDK
versions containing
significant work in that area

Copyright © 2019 Oracle and/or its affiliates.

Adaptive Mark Start/Initiating Heap Occupancy Percentage
(IHOP)

E O

O

O S O

S

O

E

E

EO

O

O

Heap

Copyright © 2019 Oracle and/or its affiliates.

Latency

Throughput

Memory

Parallel
Full
GC10

Superscripts indicate JDK
versions containing
significant work in that area

G1 enhancements between JDK 9 and JDK 10

Copyright © 2019 Oracle and/or its affiliates.

Parallel Full GC

Application ApplicationGC Application ApplicationGC

• Now uses the same number of parallel threads as young and mixed GCs

Copyright © 2019 Oracle and/or its affiliates.

Latency

Throughput

Memory

Reference
Precleaning11

Parallel
Reference
Processing11

Rebuild
RemSets
On the
Fly11

Ergonomic
Thread
Tuning9,11 RemSet Space

Reductions9,11
Marking
Space
Reductions11

Container
Awareness9,11

G1 enhancements between JDK 10 and JDK 11

Copyright © 2019 Oracle and/or its affiliates.

Rebuild Remembered Sets on the Fly

• Remembered sets are data structures that track references into a region
• Can occupy a significant amount of memory i.e. 20% of the total heap

• Remembered sets for old regions are particularly large
• G1 maintains remembered sets for all regions

• But only need remembered sets for old regions during Mixed GCs

Copyright © 2019 Oracle and/or its affiliates.

Rebuild Remembered Sets on the Fly

• Dynamically rebuild remembered sets after the concurrent mark phase
• Only build remembered sets for regions in the collection set
• Improves both throughput and latency

Copyright © 2019 Oracle and/or its affiliates.

G1 enhancements between JDK 11 and JDK 12

Latency

Throughput

MemoryAbortable
Mixed GC12

Old Gen On
NVDIMM12

Uncommit
At
Remark12

Superscripts indicate JDK
versions containing
significant work in that area

Copyright © 2019 Oracle and/or its affiliates.

Abortable Mixed GCs

• G1 attempts to avoid exceeding the pause time target by using heuristics to
select a collection of regions that can be collected within the given time

• Once started, all the selected regions must be collected
• Can exceed the pause target if the collection set is too large

Copyright © 2019 Oracle and/or its affiliates.

Abortable Mixed GCs

• Split the collection set into mandatory and optional regions
• Mandatory regions are always collected
• Optional regions can be processed incrementally until there is no time left

Copyright © 2019 Oracle and/or its affiliates.

G1 enhancements between JDK 12 and JDK 13

Latency

Throughput

Memory
RemSet Space
Reductions9,11,13

Container
Awareness9,11,13

Abortable
Mixed GC12,13

Eliminate
Locks13+

Superscripts indicate JDK
versions containing
significant work in that area

G1 performance improvements between JDK 8 and
JDK 14

Heap Size: 30GB
OS: Oracle Linux 7.4
HW: Intel Xeon E5-2690 2.9GHz
2 sockets, 8 cores

• 12% improvement in maximum
throughput between JDK 8 and JDK 14

• 65% improvement in responsiveness

Copyright © 2019 Oracle and/or its affiliates.

100% 100%

110%

147%

112%

165%

80%

90%

100%

110%

120%

130%

140%

150%

160%

170%

Throughput Responsiveness

JDK 8u231 / JDK 11.0.5 / JDK 14-b12
30GB Java Heap

8u231 11.0.5 14b12

Copyright © 2019 Oracle and/or its affiliates.

Latency

Throughput

Memory

Improved
RemSet
ScanPredictions

Improved NUMA
support

Reduce
Barrier
overhead

RemSet
Storage

G1 enhancements JDK 14 and beyond

Copyright © 2019 Oracle and/or its affiliates.

ZGC

ZGC - A Scalable Low-Latency Garbage
Collector

Copyright © 2019 Oracle and/or its affiliates.

Multi-terabyte heaps Max GC pause
time

Easy to tune
Max application
throughput
reduction

10msTB

15%

ZGC at a Glance

Concurrent
Tracing

Compacting
Single generation

Region-based
NUMA-aware
Load barriers
Colored pointers

ZGC pause times do not increase
with the heap or live-set size

Copyright © 2019 Oracle and/or its affiliates.

ZGC pause times do increase
with the root-set size

Copyright © 2019 Oracle and/or its affiliates.

(Number of Java Threads)

Auto-tuning

Design: No knobs until proven differently!

Copyright © 2019 Oracle and/or its affiliates.

Application Threads
(aka. ”Mutator Threads”)

Allocate memory (new)
Generate garbage

Copyright © 2019 Oracle and/or its affiliates.

GC Threads

Collect garbage
Free up memory for allocation

Allocation Rate > Collection Rate Allocation Stall

Avoiding Allocation Stalls

Generate less garbage

Copyright © 2019 Oracle and/or its affiliates.

Collect garbage faster

Avoiding Allocation Stalls

Generate less garbage

Avoid allocating objects
Run application more slowly
JIT compiler optimizations

Copyright © 2019 Oracle and/or its affiliates.

Collect garbage faster

Avoiding Allocation Stalls

Generate less garbage

Avoid allocating objects
Run application more slowly
JIT compiler optimizations

Copyright © 2019 Oracle and/or its affiliates.

Collect garbage faster

Avoiding Allocation Stalls

Generate less garbage

Avoid allocating objects
Run application more slowly
JIT compiler optimizations

Copyright © 2019 Oracle and/or its affiliates.

Collect garbage faster

Avoiding Allocation Stalls

Generate less garbage

Avoid allocating objects
Run application more slowly
JIT compiler optimizations

Copyright © 2019 Oracle and/or its affiliates.

Collect garbage faster

Speed up GC implementation
Use more GC threads
Have application threads help out
Use more memory

“Barriers” – GC Callbacks

Barriers
Small piece of code injected by the JVM
Executed when accessing/updating an object

Store / Load Barriers (aka. Write / Read)
Store: Executed when storing a reference to the Java heap
Load: Executed when reading a reference from the Java heap

Copyright © 2019 Oracle and/or its affiliates.

Use of Barriers in GCs

Existing GCs make use of store (write) barriers
True for G1, Parallel, Serial, CMS
Helps speed up generational support

ZGC uses load barriers
Mutator threads take on some additional work

Copyright © 2019 Oracle and/or its affiliates.

ZGC Load barrier
String name = person.name;
<load barrier>
String copy = name; // No barrier

name.isEmpty(); // No barrier
int age = person.age; // No barrier

Copyright © 2019 Oracle and/or its affiliates.

String name;
int age;
double height; ...

Person

String

ZGC Load barrier
String name = person.name;
<load barrier>

Copyright © 2019 Oracle and/or its affiliates.

ZGC Load barrier
String name = person.name;
<load barrier>

Copyright © 2019 Oracle and/or its affiliates.

ZGC Load barrier
String name = person.name;
if (!good(name)) {

name = slow_case(name);
}

Copyright © 2019 Oracle and/or its affiliates.

ZGC Load barrier
String name = person.name;
if (!good(name)) {

name = slow_case(name);
}

Where to place the good/bad information?
In object? GC side structure?

Copyright © 2019 Oracle and/or its affiliates.

Colored Pointers

Modern machines use 64-bit addresses/pointers
Exception: Compressed oops

Object pointers stored as 32-bit “indexes”

Copyright © 2019 Oracle and/or its affiliates.

Colored Pointers

Modern machines use 64-bit addresses/pointers
Exception: Compressed oops

Object pointers stored as 32-bit “indexes”
For ZGC

References (object pointers) are always 64 bit

Copyright © 2019 Oracle and/or its affiliates.

Object Address (44 bits, 16TB address space)Unused (16 bits)

meta-data

Colored Pointers

Modern machines use 64-bit addresses/pointers
Exception: Compressed oops

Object pointers stored as 32-bit “indexes”
For ZGC

References (object pointers) are always 64 bit
Only 64-bit platforms
No compressed oops

Copyright © 2019 Oracle and/or its affiliates.

Object Address (44 bits, 16TB address space)Unused (16 bits)

meta-data

Load Barrier Using Colored Pointers
mov 0x10(%rax), %rbx // String n = person.name;

test %rbx, 0x20(%r15) // Bad color?

jnz slow_path // Yes -> Enter slow path and

// mark/relocate/remap, adjust

// 0x10(%rax) and %rbx

Copyright © 2019 Oracle and/or its affiliates.

Load Barrier Using Colored Pointers
mov 0x10(%rax), %rbx // String n = person.name;

test %rbx, 0x20(%r15) // Bad color?

jnz slow_path // Yes -> Enter slow path and

// mark/relocate/remap, adjust

// 0x10(%rax) and %rbx

~4% execution overhead

Copyright © 2019 Oracle and/or its affiliates.

GC Performance

Heap Size: 128GB
OS: Oracle Linux 7.5
HW: Intel Xeon E5-2690 2.9GHz
2 sockets, 16 cores (32 hw-threads)

Copyright © 2019 Oracle and/or its affiliates.

0%

20%

40%

60%

80%

100%

120%

Parallel G1 ZGC

GC Performance (Higher is better)

Throughput Responsiveness

GC Pause Times

Copyright © 2019 Oracle and/or its affiliates.

0

100

200

300

400

500

600

Parallel G1 ZGC

GC Pause Times (ms)

Average 95% 99% 99.90% Max

GC Pause Times (Logarithmic Scale)

Copyright © 2019 Oracle and/or its affiliates.

0.1

1

10

100

1000

Parallel G1 ZGC

GC Pause Times (ms)
Logarithmic Scale

Average 95% 99% 99.90% Max

Using ZGC (JDK 11+)

-XX:+UnlockExperimentalVMOptions
-XX:+UseZGC

Copyright © 2019 Oracle and/or its affiliates.

Tuning options
Look out for Allocation Stalls

Option #1: Increase the max heap size
-Xmx<size>
Trade memory for better latency

Option #2: Increase number of GC threads
-XX:ConcGCThreads=<number>
Trade CPU-time for better latency

Copyright © 2019 Oracle and/or its affiliates.

Status/Recent Improvements

JDK 11
First JDK to include open sourced ZGC (Experimental)

Copyright © 2019 Oracle and/or its affiliates.

Status/Recent Improvements

JDK 11
First JDK to include open sourced ZGC (Experimental)

JDK 12
Concurrent class unloading
Thread-local handshakes

Copyright © 2019 Oracle and/or its affiliates.

Status/Recent Improvements

JDK 11
First JDK to include open sourced ZGC (Experimental)

JDK 12
Concurrent class unloading
Thread-local handshakes

JDK 13 – Released hours ago!
Max heap size increased to 16 TB (was: 4 TB)
Uncommit unused memory
Linux/aarch64 port

Copyright © 2019 Oracle and/or its affiliates.

Next up: Productization

Stability
Super late barrier expansion

Support additional platforms
macOS, Windows, …

Copyright © 2019 Oracle and/or its affiliates.

Potential Future Work
Generational support

Leverage “Weak generational hypothesis”
Manage higher allocation rates
Reduce CPU utilization

Segmented Array Clearing
Chasing Sub-millisecond max pause times

Concurrent thread stack scanning
Additional latency improvements

Low latency VM

Copyright © 2019 Oracle and/or its affiliates.

Further Reading
G1 links
• GC Tuning Guide

• https://docs.oracle.com/en/java/javase/12/gctuning/garbage-first-garbage-
collector.html

ZGC links
• ZGC wiki

• https://wiki.openjdk.java.net/display/zgc/Main

• GC Tuning Guide
• https://docs.oracle.com/en/java/javase/12/gctuning/z-garbage-

collector1.html

Copyright © 2019 Oracle and/or its affiliates.

Thank You

Copyright © 2019 Oracle and/or its affiliates.

