1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import java.lang.reflect.Field;
  29 import java.security.ProtectionDomain;
  30 
  31 import sun.reflect.CallerSensitive;
  32 import sun.reflect.Reflection;
  33 import jdk.internal.misc.VM;
  34 
  35 import jdk.internal.HotSpotIntrinsicCandidate;
  36 
  37 
  38 /**
  39  * A collection of methods for performing low-level, unsafe operations.
  40  * Although the class and all methods are public, use of this class is
  41  * limited because only trusted code can obtain instances of it.
  42  *
  43  * @author John R. Rose
  44  * @see #getUnsafe
  45  */
  46 
  47 public final class Unsafe {
  48 
  49     private static native void registerNatives();
  50     static {
  51         registerNatives();
  52         sun.reflect.Reflection.registerMethodsToFilter(Unsafe.class, "getUnsafe");
  53     }
  54 
  55     private Unsafe() {}
  56 
  57     private static final Unsafe theUnsafe = new Unsafe();
  58 
  59     /**
  60      * Provides the caller with the capability of performing unsafe
  61      * operations.
  62      *
  63      * <p>The returned {@code Unsafe} object should be carefully guarded
  64      * by the caller, since it can be used to read and write data at arbitrary
  65      * memory addresses.  It must never be passed to untrusted code.
  66      *
  67      * <p>Most methods in this class are very low-level, and correspond to a
  68      * small number of hardware instructions (on typical machines).  Compilers
  69      * are encouraged to optimize these methods accordingly.
  70      *
  71      * <p>Here is a suggested idiom for using unsafe operations:
  72      *
  73      * <pre> {@code
  74      * class MyTrustedClass {
  75      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  76      *   ...
  77      *   private long myCountAddress = ...;
  78      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  79      * }}</pre>
  80      *
  81      * (It may assist compilers to make the local variable {@code final}.)
  82      *
  83      * @throws  SecurityException  if a security manager exists and its
  84      *          {@code checkPropertiesAccess} method doesn't allow
  85      *          access to the system properties.
  86      */
  87     @CallerSensitive
  88     public static Unsafe getUnsafe() {
  89         Class<?> caller = Reflection.getCallerClass();
  90         if (!VM.isSystemDomainLoader(caller.getClassLoader()))
  91             throw new SecurityException("Unsafe");
  92         return theUnsafe;
  93     }
  94 
  95     /// peek and poke operations
  96     /// (compilers should optimize these to memory ops)
  97 
  98     // These work on object fields in the Java heap.
  99     // They will not work on elements of packed arrays.
 100 
 101     /**
 102      * Fetches a value from a given Java variable.
 103      * More specifically, fetches a field or array element within the given
 104      * object {@code o} at the given offset, or (if {@code o} is null)
 105      * from the memory address whose numerical value is the given offset.
 106      * <p>
 107      * The results are undefined unless one of the following cases is true:
 108      * <ul>
 109      * <li>The offset was obtained from {@link #objectFieldOffset} on
 110      * the {@link java.lang.reflect.Field} of some Java field and the object
 111      * referred to by {@code o} is of a class compatible with that
 112      * field's class.
 113      *
 114      * <li>The offset and object reference {@code o} (either null or
 115      * non-null) were both obtained via {@link #staticFieldOffset}
 116      * and {@link #staticFieldBase} (respectively) from the
 117      * reflective {@link Field} representation of some Java field.
 118      *
 119      * <li>The object referred to by {@code o} is an array, and the offset
 120      * is an integer of the form {@code B+N*S}, where {@code N} is
 121      * a valid index into the array, and {@code B} and {@code S} are
 122      * the values obtained by {@link #arrayBaseOffset} and {@link
 123      * #arrayIndexScale} (respectively) from the array's class.  The value
 124      * referred to is the {@code N}<em>th</em> element of the array.
 125      *
 126      * </ul>
 127      * <p>
 128      * If one of the above cases is true, the call references a specific Java
 129      * variable (field or array element).  However, the results are undefined
 130      * if that variable is not in fact of the type returned by this method.
 131      * <p>
 132      * This method refers to a variable by means of two parameters, and so
 133      * it provides (in effect) a <em>double-register</em> addressing mode
 134      * for Java variables.  When the object reference is null, this method
 135      * uses its offset as an absolute address.  This is similar in operation
 136      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 137      * <em>single-register</em> addressing mode for non-Java variables.
 138      * However, because Java variables may have a different layout in memory
 139      * from non-Java variables, programmers should not assume that these
 140      * two addressing modes are ever equivalent.  Also, programmers should
 141      * remember that offsets from the double-register addressing mode cannot
 142      * be portably confused with longs used in the single-register addressing
 143      * mode.
 144      *
 145      * @param o Java heap object in which the variable resides, if any, else
 146      *        null
 147      * @param offset indication of where the variable resides in a Java heap
 148      *        object, if any, else a memory address locating the variable
 149      *        statically
 150      * @return the value fetched from the indicated Java variable
 151      * @throws RuntimeException No defined exceptions are thrown, not even
 152      *         {@link NullPointerException}
 153      */
 154     @HotSpotIntrinsicCandidate
 155     public native int getInt(Object o, long offset);
 156 
 157     /**
 158      * Stores a value into a given Java variable.
 159      * <p>
 160      * The first two parameters are interpreted exactly as with
 161      * {@link #getInt(Object, long)} to refer to a specific
 162      * Java variable (field or array element).  The given value
 163      * is stored into that variable.
 164      * <p>
 165      * The variable must be of the same type as the method
 166      * parameter {@code x}.
 167      *
 168      * @param o Java heap object in which the variable resides, if any, else
 169      *        null
 170      * @param offset indication of where the variable resides in a Java heap
 171      *        object, if any, else a memory address locating the variable
 172      *        statically
 173      * @param x the value to store into the indicated Java variable
 174      * @throws RuntimeException No defined exceptions are thrown, not even
 175      *         {@link NullPointerException}
 176      */
 177     @HotSpotIntrinsicCandidate
 178     public native void putInt(Object o, long offset, int x);
 179 
 180     /**
 181      * Fetches a reference value from a given Java variable.
 182      * @see #getInt(Object, long)
 183      */
 184     @HotSpotIntrinsicCandidate
 185     public native Object getObject(Object o, long offset);
 186 
 187     /**
 188      * Stores a reference value into a given Java variable.
 189      * <p>
 190      * Unless the reference {@code x} being stored is either null
 191      * or matches the field type, the results are undefined.
 192      * If the reference {@code o} is non-null, card marks or
 193      * other store barriers for that object (if the VM requires them)
 194      * are updated.
 195      * @see #putInt(Object, long, int)
 196      */
 197     @HotSpotIntrinsicCandidate
 198     public native void putObject(Object o, long offset, Object x);
 199 
 200     /** @see #getInt(Object, long) */
 201     @HotSpotIntrinsicCandidate
 202     public native boolean getBoolean(Object o, long offset);
 203     /** @see #putInt(Object, long, int) */
 204     @HotSpotIntrinsicCandidate
 205     public native void    putBoolean(Object o, long offset, boolean x);
 206     /** @see #getInt(Object, long) */
 207     @HotSpotIntrinsicCandidate
 208     public native byte    getByte(Object o, long offset);
 209     /** @see #putInt(Object, long, int) */
 210     @HotSpotIntrinsicCandidate
 211     public native void    putByte(Object o, long offset, byte x);
 212     /** @see #getInt(Object, long) */
 213     @HotSpotIntrinsicCandidate
 214     public native short   getShort(Object o, long offset);
 215     /** @see #putInt(Object, long, int) */
 216     @HotSpotIntrinsicCandidate
 217     public native void    putShort(Object o, long offset, short x);
 218     /** @see #getInt(Object, long) */
 219     @HotSpotIntrinsicCandidate
 220     public native char    getChar(Object o, long offset);
 221     /** @see #putInt(Object, long, int) */
 222     @HotSpotIntrinsicCandidate
 223     public native void    putChar(Object o, long offset, char x);
 224     /** @see #getInt(Object, long) */
 225     @HotSpotIntrinsicCandidate
 226     public native long    getLong(Object o, long offset);
 227     /** @see #putInt(Object, long, int) */
 228     @HotSpotIntrinsicCandidate
 229     public native void    putLong(Object o, long offset, long x);
 230     /** @see #getInt(Object, long) */
 231     @HotSpotIntrinsicCandidate
 232     public native float   getFloat(Object o, long offset);
 233     /** @see #putInt(Object, long, int) */
 234     @HotSpotIntrinsicCandidate
 235     public native void    putFloat(Object o, long offset, float x);
 236     /** @see #getInt(Object, long) */
 237     @HotSpotIntrinsicCandidate
 238     public native double  getDouble(Object o, long offset);
 239     /** @see #putInt(Object, long, int) */
 240     @HotSpotIntrinsicCandidate
 241     public native void    putDouble(Object o, long offset, double x);
 242 
 243     // These read VM internal data.
 244 
 245     /**
 246      * Fetches an uncompressed reference value from a given native variable
 247      * ignoring the VM's compressed references mode.
 248      *
 249      * @param address a memory address locating the variable
 250      * @return the value fetched from the indicated native variable
 251      */
 252     public native Object getUncompressedObject(long address);
 253 
 254     /**
 255      * Fetches the {@link java.lang.Class} Java mirror for the given native
 256      * metaspace {@code Klass} pointer.
 257      *
 258      * @param metaspaceKlass a native metaspace {@code Klass} pointer
 259      * @return the {@link java.lang.Class} Java mirror
 260      */
 261     public native Class<?> getJavaMirror(long metaspaceKlass);
 262 
 263     /**
 264      * Fetches a native metaspace {@code Klass} pointer for the given Java
 265      * object.
 266      *
 267      * @param o Java heap object for which to fetch the class pointer
 268      * @return a native metaspace {@code Klass} pointer
 269      */
 270     public native long getKlassPointer(Object o);
 271 
 272     // These work on values in the C heap.
 273 
 274     /**
 275      * Fetches a value from a given memory address.  If the address is zero, or
 276      * does not point into a block obtained from {@link #allocateMemory}, the
 277      * results are undefined.
 278      *
 279      * @see #allocateMemory
 280      */
 281     @HotSpotIntrinsicCandidate
 282     public native byte    getByte(long address);
 283 
 284     /**
 285      * Stores a value into a given memory address.  If the address is zero, or
 286      * does not point into a block obtained from {@link #allocateMemory}, the
 287      * results are undefined.
 288      *
 289      * @see #getByte(long)
 290      */
 291     @HotSpotIntrinsicCandidate
 292     public native void    putByte(long address, byte x);
 293 
 294     /** @see #getByte(long) */
 295     @HotSpotIntrinsicCandidate
 296     public native short   getShort(long address);
 297     /** @see #putByte(long, byte) */
 298     @HotSpotIntrinsicCandidate
 299     public native void    putShort(long address, short x);
 300     /** @see #getByte(long) */
 301     @HotSpotIntrinsicCandidate
 302     public native char    getChar(long address);
 303     /** @see #putByte(long, byte) */
 304     @HotSpotIntrinsicCandidate
 305     public native void    putChar(long address, char x);
 306     /** @see #getByte(long) */
 307     @HotSpotIntrinsicCandidate
 308     public native int     getInt(long address);
 309     /** @see #putByte(long, byte) */
 310     @HotSpotIntrinsicCandidate
 311     public native void    putInt(long address, int x);
 312     /** @see #getByte(long) */
 313     @HotSpotIntrinsicCandidate
 314     public native long    getLong(long address);
 315     /** @see #putByte(long, byte) */
 316     @HotSpotIntrinsicCandidate
 317     public native void    putLong(long address, long x);
 318     /** @see #getByte(long) */
 319     @HotSpotIntrinsicCandidate
 320     public native float   getFloat(long address);
 321     /** @see #putByte(long, byte) */
 322     @HotSpotIntrinsicCandidate
 323     public native void    putFloat(long address, float x);
 324     /** @see #getByte(long) */
 325     @HotSpotIntrinsicCandidate
 326     public native double  getDouble(long address);
 327     /** @see #putByte(long, byte) */
 328     @HotSpotIntrinsicCandidate
 329     public native void    putDouble(long address, double x);
 330 
 331     /**
 332      * Fetches a native pointer from a given memory address.  If the address is
 333      * zero, or does not point into a block obtained from {@link
 334      * #allocateMemory}, the results are undefined.
 335      *
 336      * <p>If the native pointer is less than 64 bits wide, it is extended as
 337      * an unsigned number to a Java long.  The pointer may be indexed by any
 338      * given byte offset, simply by adding that offset (as a simple integer) to
 339      * the long representing the pointer.  The number of bytes actually read
 340      * from the target address may be determined by consulting {@link
 341      * #addressSize}.
 342      *
 343      * @see #allocateMemory
 344      */
 345     @HotSpotIntrinsicCandidate
 346     public native long getAddress(long address);
 347 
 348     /**
 349      * Stores a native pointer into a given memory address.  If the address is
 350      * zero, or does not point into a block obtained from {@link
 351      * #allocateMemory}, the results are undefined.
 352      *
 353      * <p>The number of bytes actually written at the target address may be
 354      * determined by consulting {@link #addressSize}.
 355      *
 356      * @see #getAddress(long)
 357      */
 358     @HotSpotIntrinsicCandidate
 359     public native void putAddress(long address, long x);
 360 
 361     /// wrappers for malloc, realloc, free:
 362 
 363     /**
 364      * Allocates a new block of native memory, of the given size in bytes.  The
 365      * contents of the memory are uninitialized; they will generally be
 366      * garbage.  The resulting native pointer will never be zero, and will be
 367      * aligned for all value types.  Dispose of this memory by calling {@link
 368      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 369      *
 370      * @throws IllegalArgumentException if the size is negative or too large
 371      *         for the native size_t type
 372      *
 373      * @throws OutOfMemoryError if the allocation is refused by the system
 374      *
 375      * @see #getByte(long)
 376      * @see #putByte(long, byte)
 377      */
 378     public native long allocateMemory(long bytes);
 379 
 380     /**
 381      * Resizes a new block of native memory, to the given size in bytes.  The
 382      * contents of the new block past the size of the old block are
 383      * uninitialized; they will generally be garbage.  The resulting native
 384      * pointer will be zero if and only if the requested size is zero.  The
 385      * resulting native pointer will be aligned for all value types.  Dispose
 386      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 387      * #reallocateMemory}.  The address passed to this method may be null, in
 388      * which case an allocation will be performed.
 389      *
 390      * @throws IllegalArgumentException if the size is negative or too large
 391      *         for the native size_t type
 392      *
 393      * @throws OutOfMemoryError if the allocation is refused by the system
 394      *
 395      * @see #allocateMemory
 396      */
 397     public native long reallocateMemory(long address, long bytes);
 398 
 399     /**
 400      * Sets all bytes in a given block of memory to a fixed value
 401      * (usually zero).
 402      *
 403      * <p>This method determines a block's base address by means of two parameters,
 404      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 405      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 406      * the offset supplies an absolute base address.
 407      *
 408      * <p>The stores are in coherent (atomic) units of a size determined
 409      * by the address and length parameters.  If the effective address and
 410      * length are all even modulo 8, the stores take place in 'long' units.
 411      * If the effective address and length are (resp.) even modulo 4 or 2,
 412      * the stores take place in units of 'int' or 'short'.
 413      *
 414      * @since 1.7
 415      */
 416     public native void setMemory(Object o, long offset, long bytes, byte value);
 417 
 418     /**
 419      * Sets all bytes in a given block of memory to a fixed value
 420      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 421      * as discussed in {@link #getInt(Object,long)}.
 422      *
 423      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 424      */
 425     public void setMemory(long address, long bytes, byte value) {
 426         setMemory(null, address, bytes, value);
 427     }
 428 
 429     /**
 430      * Sets all bytes in a given block of memory to a copy of another
 431      * block.
 432      *
 433      * <p>This method determines each block's base address by means of two parameters,
 434      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 435      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 436      * the offset supplies an absolute base address.
 437      *
 438      * <p>The transfers are in coherent (atomic) units of a size determined
 439      * by the address and length parameters.  If the effective addresses and
 440      * length are all even modulo 8, the transfer takes place in 'long' units.
 441      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 442      * the transfer takes place in units of 'int' or 'short'.
 443      *
 444      * @since 1.7
 445      */
 446     @HotSpotIntrinsicCandidate
 447     public native void copyMemory(Object srcBase, long srcOffset,
 448                                   Object destBase, long destOffset,
 449                                   long bytes);
 450     /**
 451      * Sets all bytes in a given block of memory to a copy of another
 452      * block.  This provides a <em>single-register</em> addressing mode,
 453      * as discussed in {@link #getInt(Object,long)}.
 454      *
 455      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 456      */
 457     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 458         copyMemory(null, srcAddress, null, destAddress, bytes);
 459     }
 460 
 461     /**
 462      * Copies all elements from one block of memory to another block, byte swapping the
 463      * elements on the fly.
 464      *
 465      * <p>This method determines each block's base address by means of two parameters,
 466      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 467      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 468      * the offset supplies an absolute base address.
 469      *
 470      * @since 9
 471      */
 472     public native void copySwapMemory(Object srcBase, long srcOffset,
 473                                       Object destBase, long destOffset,
 474                                       long bytes, long elemSize);
 475 
 476    /**
 477      * Copies all elements from one block of memory to another block, byte swapping the
 478      * elements on the fly.
 479      *
 480      * This provides a <em>single-register</em> addressing mode, as
 481      * discussed in {@link #getInt(Object,long)}.
 482      *
 483      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
 484      */
 485     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
 486         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
 487     }
 488 
 489     /**
 490      * Disposes of a block of native memory, as obtained from {@link
 491      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 492      * this method may be null, in which case no action is taken.
 493      *
 494      * @see #allocateMemory
 495      */
 496     public native void freeMemory(long address);
 497 
 498     /// random queries
 499 
 500     /**
 501      * This constant differs from all results that will ever be returned from
 502      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 503      * or {@link #arrayBaseOffset}.
 504      */
 505     public static final int INVALID_FIELD_OFFSET   = -1;
 506 
 507     /**
 508      * Reports the location of a given field in the storage allocation of its
 509      * class.  Do not expect to perform any sort of arithmetic on this offset;
 510      * it is just a cookie which is passed to the unsafe heap memory accessors.
 511      *
 512      * <p>Any given field will always have the same offset and base, and no
 513      * two distinct fields of the same class will ever have the same offset
 514      * and base.
 515      *
 516      * <p>As of 1.4.1, offsets for fields are represented as long values,
 517      * although the Sun JVM does not use the most significant 32 bits.
 518      * However, JVM implementations which store static fields at absolute
 519      * addresses can use long offsets and null base pointers to express
 520      * the field locations in a form usable by {@link #getInt(Object,long)}.
 521      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 522      * must preserve all bits of static field offsets.
 523      * @see #getInt(Object, long)
 524      */
 525     public native long objectFieldOffset(Field f);
 526 
 527     /**
 528      * Reports the location of a given static field, in conjunction with {@link
 529      * #staticFieldBase}.
 530      * <p>Do not expect to perform any sort of arithmetic on this offset;
 531      * it is just a cookie which is passed to the unsafe heap memory accessors.
 532      *
 533      * <p>Any given field will always have the same offset, and no two distinct
 534      * fields of the same class will ever have the same offset.
 535      *
 536      * <p>As of 1.4.1, offsets for fields are represented as long values,
 537      * although the Sun JVM does not use the most significant 32 bits.
 538      * It is hard to imagine a JVM technology which needs more than
 539      * a few bits to encode an offset within a non-array object,
 540      * However, for consistency with other methods in this class,
 541      * this method reports its result as a long value.
 542      * @see #getInt(Object, long)
 543      */
 544     public native long staticFieldOffset(Field f);
 545 
 546     /**
 547      * Reports the location of a given static field, in conjunction with {@link
 548      * #staticFieldOffset}.
 549      * <p>Fetch the base "Object", if any, with which static fields of the
 550      * given class can be accessed via methods like {@link #getInt(Object,
 551      * long)}.  This value may be null.  This value may refer to an object
 552      * which is a "cookie", not guaranteed to be a real Object, and it should
 553      * not be used in any way except as argument to the get and put routines in
 554      * this class.
 555      */
 556     public native Object staticFieldBase(Field f);
 557 
 558     /**
 559      * Detects if the given class may need to be initialized. This is often
 560      * needed in conjunction with obtaining the static field base of a
 561      * class.
 562      * @return false only if a call to {@code ensureClassInitialized} would have no effect
 563      */
 564     public native boolean shouldBeInitialized(Class<?> c);
 565 
 566     /**
 567      * Ensures the given class has been initialized. This is often
 568      * needed in conjunction with obtaining the static field base of a
 569      * class.
 570      */
 571     public native void ensureClassInitialized(Class<?> c);
 572 
 573     /**
 574      * Reports the offset of the first element in the storage allocation of a
 575      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
 576      * for the same class, you may use that scale factor, together with this
 577      * base offset, to form new offsets to access elements of arrays of the
 578      * given class.
 579      *
 580      * @see #getInt(Object, long)
 581      * @see #putInt(Object, long, int)
 582      */
 583     public native int arrayBaseOffset(Class<?> arrayClass);
 584 
 585     /** The value of {@code arrayBaseOffset(boolean[].class)} */
 586     public static final int ARRAY_BOOLEAN_BASE_OFFSET
 587             = theUnsafe.arrayBaseOffset(boolean[].class);
 588 
 589     /** The value of {@code arrayBaseOffset(byte[].class)} */
 590     public static final int ARRAY_BYTE_BASE_OFFSET
 591             = theUnsafe.arrayBaseOffset(byte[].class);
 592 
 593     /** The value of {@code arrayBaseOffset(short[].class)} */
 594     public static final int ARRAY_SHORT_BASE_OFFSET
 595             = theUnsafe.arrayBaseOffset(short[].class);
 596 
 597     /** The value of {@code arrayBaseOffset(char[].class)} */
 598     public static final int ARRAY_CHAR_BASE_OFFSET
 599             = theUnsafe.arrayBaseOffset(char[].class);
 600 
 601     /** The value of {@code arrayBaseOffset(int[].class)} */
 602     public static final int ARRAY_INT_BASE_OFFSET
 603             = theUnsafe.arrayBaseOffset(int[].class);
 604 
 605     /** The value of {@code arrayBaseOffset(long[].class)} */
 606     public static final int ARRAY_LONG_BASE_OFFSET
 607             = theUnsafe.arrayBaseOffset(long[].class);
 608 
 609     /** The value of {@code arrayBaseOffset(float[].class)} */
 610     public static final int ARRAY_FLOAT_BASE_OFFSET
 611             = theUnsafe.arrayBaseOffset(float[].class);
 612 
 613     /** The value of {@code arrayBaseOffset(double[].class)} */
 614     public static final int ARRAY_DOUBLE_BASE_OFFSET
 615             = theUnsafe.arrayBaseOffset(double[].class);
 616 
 617     /** The value of {@code arrayBaseOffset(Object[].class)} */
 618     public static final int ARRAY_OBJECT_BASE_OFFSET
 619             = theUnsafe.arrayBaseOffset(Object[].class);
 620 
 621     /**
 622      * Reports the scale factor for addressing elements in the storage
 623      * allocation of a given array class.  However, arrays of "narrow" types
 624      * will generally not work properly with accessors like {@link
 625      * #getByte(Object, long)}, so the scale factor for such classes is reported
 626      * as zero.
 627      *
 628      * @see #arrayBaseOffset
 629      * @see #getInt(Object, long)
 630      * @see #putInt(Object, long, int)
 631      */
 632     public native int arrayIndexScale(Class<?> arrayClass);
 633 
 634     /** The value of {@code arrayIndexScale(boolean[].class)} */
 635     public static final int ARRAY_BOOLEAN_INDEX_SCALE
 636             = theUnsafe.arrayIndexScale(boolean[].class);
 637 
 638     /** The value of {@code arrayIndexScale(byte[].class)} */
 639     public static final int ARRAY_BYTE_INDEX_SCALE
 640             = theUnsafe.arrayIndexScale(byte[].class);
 641 
 642     /** The value of {@code arrayIndexScale(short[].class)} */
 643     public static final int ARRAY_SHORT_INDEX_SCALE
 644             = theUnsafe.arrayIndexScale(short[].class);
 645 
 646     /** The value of {@code arrayIndexScale(char[].class)} */
 647     public static final int ARRAY_CHAR_INDEX_SCALE
 648             = theUnsafe.arrayIndexScale(char[].class);
 649 
 650     /** The value of {@code arrayIndexScale(int[].class)} */
 651     public static final int ARRAY_INT_INDEX_SCALE
 652             = theUnsafe.arrayIndexScale(int[].class);
 653 
 654     /** The value of {@code arrayIndexScale(long[].class)} */
 655     public static final int ARRAY_LONG_INDEX_SCALE
 656             = theUnsafe.arrayIndexScale(long[].class);
 657 
 658     /** The value of {@code arrayIndexScale(float[].class)} */
 659     public static final int ARRAY_FLOAT_INDEX_SCALE
 660             = theUnsafe.arrayIndexScale(float[].class);
 661 
 662     /** The value of {@code arrayIndexScale(double[].class)} */
 663     public static final int ARRAY_DOUBLE_INDEX_SCALE
 664             = theUnsafe.arrayIndexScale(double[].class);
 665 
 666     /** The value of {@code arrayIndexScale(Object[].class)} */
 667     public static final int ARRAY_OBJECT_INDEX_SCALE
 668             = theUnsafe.arrayIndexScale(Object[].class);
 669 
 670     /**
 671      * Reports the size in bytes of a native pointer, as stored via {@link
 672      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
 673      * other primitive types (as stored in native memory blocks) is determined
 674      * fully by their information content.
 675      */
 676     public native int addressSize();
 677 
 678     /** The value of {@code addressSize()} */
 679     public static final int ADDRESS_SIZE = theUnsafe.addressSize();
 680 
 681     /**
 682      * Reports the size in bytes of a native memory page (whatever that is).
 683      * This value will always be a power of two.
 684      */
 685     public native int pageSize();
 686 
 687 
 688     /// random trusted operations from JNI:
 689 
 690     /**
 691      * Tells the VM to define a class, without security checks.  By default, the
 692      * class loader and protection domain come from the caller's class.
 693      */
 694     public native Class<?> defineClass(String name, byte[] b, int off, int len,
 695                                        ClassLoader loader,
 696                                        ProtectionDomain protectionDomain);
 697 
 698     /**
 699      * Defines a class but does not make it known to the class loader or system dictionary.
 700      * <p>
 701      * For each CP entry, the corresponding CP patch must either be null or have
 702      * the a format that matches its tag:
 703      * <ul>
 704      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
 705      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
 706      * <li>Class: any java.lang.Class object
 707      * <li>String: any object (not just a java.lang.String)
 708      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
 709      * </ul>
 710      * @param hostClass context for linkage, access control, protection domain, and class loader
 711      * @param data      bytes of a class file
 712      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
 713      */
 714     public native Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches);
 715 
 716     /**
 717      * Allocates an instance but does not run any constructor.
 718      * Initializes the class if it has not yet been.
 719      */
 720     @HotSpotIntrinsicCandidate
 721     public native Object allocateInstance(Class<?> cls)
 722         throws InstantiationException;
 723 
 724     /** Throws the exception without telling the verifier. */
 725     public native void throwException(Throwable ee);
 726 
 727     /**
 728      * Atomically updates Java variable to {@code x} if it is currently
 729      * holding {@code expected}.
 730      *
 731      * <p>This operation has memory semantics of a {@code volatile} read
 732      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 733      *
 734      * @return {@code true} if successful
 735      */
 736     @HotSpotIntrinsicCandidate
 737     public final native boolean compareAndSwapObject(Object o, long offset,
 738                                                      Object expected,
 739                                                      Object x);
 740 
 741     /**
 742      * Atomically updates Java variable to {@code x} if it is currently
 743      * holding {@code expected}.
 744      *
 745      * <p>This operation has memory semantics of a {@code volatile} read
 746      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 747      *
 748      * @return {@code true} if successful
 749      */
 750     @HotSpotIntrinsicCandidate
 751     public final native boolean compareAndSwapInt(Object o, long offset,
 752                                                   int expected,
 753                                                   int x);
 754 
 755     /**
 756      * Atomically updates Java variable to {@code x} if it is currently
 757      * holding {@code expected}.
 758      *
 759      * <p>This operation has memory semantics of a {@code volatile} read
 760      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 761      *
 762      * @return {@code true} if successful
 763      */
 764     @HotSpotIntrinsicCandidate
 765     public final native boolean compareAndSwapLong(Object o, long offset,
 766                                                    long expected,
 767                                                    long x);
 768 
 769     /**
 770      * Fetches a reference value from a given Java variable, with volatile
 771      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
 772      */
 773     @HotSpotIntrinsicCandidate
 774     public native Object getObjectVolatile(Object o, long offset);
 775 
 776     /**
 777      * Stores a reference value into a given Java variable, with
 778      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
 779      */
 780     @HotSpotIntrinsicCandidate
 781     public native void    putObjectVolatile(Object o, long offset, Object x);
 782 
 783     /** Volatile version of {@link #getInt(Object, long)}  */
 784     @HotSpotIntrinsicCandidate
 785     public native int     getIntVolatile(Object o, long offset);
 786 
 787     /** Volatile version of {@link #putInt(Object, long, int)}  */
 788     @HotSpotIntrinsicCandidate
 789     public native void    putIntVolatile(Object o, long offset, int x);
 790 
 791     /** Volatile version of {@link #getBoolean(Object, long)}  */
 792     @HotSpotIntrinsicCandidate
 793     public native boolean getBooleanVolatile(Object o, long offset);
 794 
 795     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
 796     @HotSpotIntrinsicCandidate
 797     public native void    putBooleanVolatile(Object o, long offset, boolean x);
 798 
 799     /** Volatile version of {@link #getByte(Object, long)}  */
 800     @HotSpotIntrinsicCandidate
 801     public native byte    getByteVolatile(Object o, long offset);
 802 
 803     /** Volatile version of {@link #putByte(Object, long, byte)}  */
 804     @HotSpotIntrinsicCandidate
 805     public native void    putByteVolatile(Object o, long offset, byte x);
 806 
 807     /** Volatile version of {@link #getShort(Object, long)}  */
 808     @HotSpotIntrinsicCandidate
 809     public native short   getShortVolatile(Object o, long offset);
 810 
 811     /** Volatile version of {@link #putShort(Object, long, short)}  */
 812     @HotSpotIntrinsicCandidate
 813     public native void    putShortVolatile(Object o, long offset, short x);
 814 
 815     /** Volatile version of {@link #getChar(Object, long)}  */
 816     @HotSpotIntrinsicCandidate
 817     public native char    getCharVolatile(Object o, long offset);
 818 
 819     /** Volatile version of {@link #putChar(Object, long, char)}  */
 820     @HotSpotIntrinsicCandidate
 821     public native void    putCharVolatile(Object o, long offset, char x);
 822 
 823     /** Volatile version of {@link #getLong(Object, long)}  */
 824     @HotSpotIntrinsicCandidate
 825     public native long    getLongVolatile(Object o, long offset);
 826 
 827     /** Volatile version of {@link #putLong(Object, long, long)}  */
 828     @HotSpotIntrinsicCandidate
 829     public native void    putLongVolatile(Object o, long offset, long x);
 830 
 831     /** Volatile version of {@link #getFloat(Object, long)}  */
 832     @HotSpotIntrinsicCandidate
 833     public native float   getFloatVolatile(Object o, long offset);
 834 
 835     /** Volatile version of {@link #putFloat(Object, long, float)}  */
 836     @HotSpotIntrinsicCandidate
 837     public native void    putFloatVolatile(Object o, long offset, float x);
 838 
 839     /** Volatile version of {@link #getDouble(Object, long)}  */
 840     @HotSpotIntrinsicCandidate
 841     public native double  getDoubleVolatile(Object o, long offset);
 842 
 843     /** Volatile version of {@link #putDouble(Object, long, double)}  */
 844     @HotSpotIntrinsicCandidate
 845     public native void    putDoubleVolatile(Object o, long offset, double x);
 846 
 847     /**
 848      * Version of {@link #putObjectVolatile(Object, long, Object)}
 849      * that does not guarantee immediate visibility of the store to
 850      * other threads. This method is generally only useful if the
 851      * underlying field is a Java volatile (or if an array cell, one
 852      * that is otherwise only accessed using volatile accesses).
 853      *
 854      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
 855      */
 856     @HotSpotIntrinsicCandidate
 857     public native void    putOrderedObject(Object o, long offset, Object x);
 858 
 859     /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)}  */
 860     @HotSpotIntrinsicCandidate
 861     public native void    putOrderedInt(Object o, long offset, int x);
 862 
 863     /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */
 864     @HotSpotIntrinsicCandidate
 865     public native void    putOrderedLong(Object o, long offset, long x);
 866 
 867     /**
 868      * Unblocks the given thread blocked on {@code park}, or, if it is
 869      * not blocked, causes the subsequent call to {@code park} not to
 870      * block.  Note: this operation is "unsafe" solely because the
 871      * caller must somehow ensure that the thread has not been
 872      * destroyed. Nothing special is usually required to ensure this
 873      * when called from Java (in which there will ordinarily be a live
 874      * reference to the thread) but this is not nearly-automatically
 875      * so when calling from native code.
 876      *
 877      * @param thread the thread to unpark.
 878      */
 879     @HotSpotIntrinsicCandidate
 880     public native void unpark(Object thread);
 881 
 882     /**
 883      * Blocks current thread, returning when a balancing
 884      * {@code unpark} occurs, or a balancing {@code unpark} has
 885      * already occurred, or the thread is interrupted, or, if not
 886      * absolute and time is not zero, the given time nanoseconds have
 887      * elapsed, or if absolute, the given deadline in milliseconds
 888      * since Epoch has passed, or spuriously (i.e., returning for no
 889      * "reason"). Note: This operation is in the Unsafe class only
 890      * because {@code unpark} is, so it would be strange to place it
 891      * elsewhere.
 892      */
 893     @HotSpotIntrinsicCandidate
 894     public native void park(boolean isAbsolute, long time);
 895 
 896     /**
 897      * Gets the load average in the system run queue assigned
 898      * to the available processors averaged over various periods of time.
 899      * This method retrieves the given {@code nelem} samples and
 900      * assigns to the elements of the given {@code loadavg} array.
 901      * The system imposes a maximum of 3 samples, representing
 902      * averages over the last 1,  5,  and  15 minutes, respectively.
 903      *
 904      * @param loadavg an array of double of size nelems
 905      * @param nelems the number of samples to be retrieved and
 906      *        must be 1 to 3.
 907      *
 908      * @return the number of samples actually retrieved; or -1
 909      *         if the load average is unobtainable.
 910      */
 911     public native int getLoadAverage(double[] loadavg, int nelems);
 912 
 913     // The following contain CAS-based Java implementations used on
 914     // platforms not supporting native instructions
 915 
 916     /**
 917      * Atomically adds the given value to the current value of a field
 918      * or array element within the given object {@code o}
 919      * at the given {@code offset}.
 920      *
 921      * @param o object/array to update the field/element in
 922      * @param offset field/element offset
 923      * @param delta the value to add
 924      * @return the previous value
 925      * @since 1.8
 926      */
 927     @HotSpotIntrinsicCandidate
 928     public final int getAndAddInt(Object o, long offset, int delta) {
 929         int v;
 930         do {
 931             v = getIntVolatile(o, offset);
 932         } while (!compareAndSwapInt(o, offset, v, v + delta));
 933         return v;
 934     }
 935 
 936     /**
 937      * Atomically adds the given value to the current value of a field
 938      * or array element within the given object {@code o}
 939      * at the given {@code offset}.
 940      *
 941      * @param o object/array to update the field/element in
 942      * @param offset field/element offset
 943      * @param delta the value to add
 944      * @return the previous value
 945      * @since 1.8
 946      */
 947     @HotSpotIntrinsicCandidate
 948     public final long getAndAddLong(Object o, long offset, long delta) {
 949         long v;
 950         do {
 951             v = getLongVolatile(o, offset);
 952         } while (!compareAndSwapLong(o, offset, v, v + delta));
 953         return v;
 954     }
 955 
 956     /**
 957      * Atomically exchanges the given value with the current value of
 958      * a field or array element within the given object {@code o}
 959      * at the given {@code offset}.
 960      *
 961      * @param o object/array to update the field/element in
 962      * @param offset field/element offset
 963      * @param newValue new value
 964      * @return the previous value
 965      * @since 1.8
 966      */
 967     @HotSpotIntrinsicCandidate
 968     public final int getAndSetInt(Object o, long offset, int newValue) {
 969         int v;
 970         do {
 971             v = getIntVolatile(o, offset);
 972         } while (!compareAndSwapInt(o, offset, v, newValue));
 973         return v;
 974     }
 975 
 976     /**
 977      * Atomically exchanges the given value with the current value of
 978      * a field or array element within the given object {@code o}
 979      * at the given {@code offset}.
 980      *
 981      * @param o object/array to update the field/element in
 982      * @param offset field/element offset
 983      * @param newValue new value
 984      * @return the previous value
 985      * @since 1.8
 986      */
 987     @HotSpotIntrinsicCandidate
 988     public final long getAndSetLong(Object o, long offset, long newValue) {
 989         long v;
 990         do {
 991             v = getLongVolatile(o, offset);
 992         } while (!compareAndSwapLong(o, offset, v, newValue));
 993         return v;
 994     }
 995 
 996     /**
 997      * Atomically exchanges the given reference value with the current
 998      * reference value of a field or array element within the given
 999      * object {@code o} at the given {@code offset}.
1000      *
1001      * @param o object/array to update the field/element in
1002      * @param offset field/element offset
1003      * @param newValue new value
1004      * @return the previous value
1005      * @since 1.8
1006      */
1007     @HotSpotIntrinsicCandidate
1008     public final Object getAndSetObject(Object o, long offset, Object newValue) {
1009         Object v;
1010         do {
1011             v = getObjectVolatile(o, offset);
1012         } while (!compareAndSwapObject(o, offset, v, newValue));
1013         return v;
1014     }
1015 
1016 
1017     /**
1018      * Ensures that loads before the fence will not be reordered with loads and
1019      * stores after the fence; a "LoadLoad plus LoadStore barrier".
1020      *
1021      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
1022      * (an "acquire fence").
1023      *
1024      * A pure LoadLoad fence is not provided, since the addition of LoadStore
1025      * is almost always desired, and most current hardware instructions that
1026      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
1027      * @since 1.8
1028      */
1029     @HotSpotIntrinsicCandidate
1030     public native void loadFence();
1031 
1032     /**
1033      * Ensures that loads and stores before the fence will not be reordered with
1034      * stores after the fence; a "StoreStore plus LoadStore barrier".
1035      *
1036      * Corresponds to C11 atomic_thread_fence(memory_order_release)
1037      * (a "release fence").
1038      *
1039      * A pure StoreStore fence is not provided, since the addition of LoadStore
1040      * is almost always desired, and most current hardware instructions that
1041      * provide a StoreStore barrier also provide a LoadStore barrier for free.
1042      * @since 1.8
1043      */
1044     @HotSpotIntrinsicCandidate
1045     public native void storeFence();
1046 
1047     /**
1048      * Ensures that loads and stores before the fence will not be reordered
1049      * with loads and stores after the fence.  Implies the effects of both
1050      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
1051      * barrier.
1052      *
1053      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
1054      * @since 1.8
1055      */
1056     @HotSpotIntrinsicCandidate
1057     public native void fullFence();
1058 
1059     /**
1060      * Throws IllegalAccessError; for use by the VM for access control
1061      * error support.
1062      * @since 1.8
1063      */
1064     private static void throwIllegalAccessError() {
1065         throw new IllegalAccessError();
1066     }
1067 
1068     /**
1069      * @return Returns true if the native byte ordering of this
1070      * platform is big-endian, false if it is little-endian.
1071      */
1072     public final boolean isBigEndian() { return BE; }
1073 
1074     /**
1075      * @return Returns true if this platform is capable of performing
1076      * accesses at addresses which are not aligned for the type of the
1077      * primitive type being accessed, false otherwise.
1078      */
1079     public final boolean unalignedAccess() { return unalignedAccess; }
1080 
1081     /**
1082      * Fetches a value at some byte offset into a given Java object.
1083      * More specifically, fetches a value within the given object
1084      * <code>o</code> at the given offset, or (if <code>o</code> is
1085      * null) from the memory address whose numerical value is the
1086      * given offset.  <p>
1087      *
1088      * The specification of this method is the same as {@link
1089      * #getLong(Object, long)} except that the offset does not need to
1090      * have been obtained from {@link #objectFieldOffset} on the
1091      * {@link java.lang.reflect.Field} of some Java field.  The value
1092      * in memory is raw data, and need not correspond to any Java
1093      * variable.  Unless <code>o</code> is null, the value accessed
1094      * must be entirely within the allocated object.  The endianness
1095      * of the value in memory is the endianness of the native platform.
1096      *
1097      * <p> The read will be atomic with respect to the largest power
1098      * of two that divides the GCD of the offset and the storage size.
1099      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
1100      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
1101      * respectively.  There are no other guarantees of atomicity.
1102      * <p>
1103      * 8-byte atomicity is only guaranteed on platforms on which
1104      * support atomic accesses to longs.
1105      *
1106      * @param o Java heap object in which the value resides, if any, else
1107      *        null
1108      * @param offset The offset in bytes from the start of the object
1109      * @return the value fetched from the indicated object
1110      * @throws RuntimeException No defined exceptions are thrown, not even
1111      *         {@link NullPointerException}
1112      * @since 9
1113      */
1114     @HotSpotIntrinsicCandidate
1115     public final long getLongUnaligned(Object o, long offset) {
1116         if ((offset & 7) == 0) {
1117             return getLong(o, offset);
1118         } else if ((offset & 3) == 0) {
1119             return makeLong(getInt(o, offset),
1120                             getInt(o, offset + 4));
1121         } else if ((offset & 1) == 0) {
1122             return makeLong(getShort(o, offset),
1123                             getShort(o, offset + 2),
1124                             getShort(o, offset + 4),
1125                             getShort(o, offset + 6));
1126         } else {
1127             return makeLong(getByte(o, offset),
1128                             getByte(o, offset + 1),
1129                             getByte(o, offset + 2),
1130                             getByte(o, offset + 3),
1131                             getByte(o, offset + 4),
1132                             getByte(o, offset + 5),
1133                             getByte(o, offset + 6),
1134                             getByte(o, offset + 7));
1135         }
1136     }
1137     /**
1138      * As {@link #getLongUnaligned(Object, long)} but with an
1139      * additional argument which specifies the endianness of the value
1140      * as stored in memory.
1141      *
1142      * @param o Java heap object in which the variable resides
1143      * @param offset The offset in bytes from the start of the object
1144      * @param bigEndian The endianness of the value
1145      * @return the value fetched from the indicated object
1146      * @since 9
1147      */
1148     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
1149         return convEndian(bigEndian, getLongUnaligned(o, offset));
1150     }
1151 
1152     /** @see #getLongUnaligned(Object, long) */
1153     @HotSpotIntrinsicCandidate
1154     public final int getIntUnaligned(Object o, long offset) {
1155         if ((offset & 3) == 0) {
1156             return getInt(o, offset);
1157         } else if ((offset & 1) == 0) {
1158             return makeInt(getShort(o, offset),
1159                            getShort(o, offset + 2));
1160         } else {
1161             return makeInt(getByte(o, offset),
1162                            getByte(o, offset + 1),
1163                            getByte(o, offset + 2),
1164                            getByte(o, offset + 3));
1165         }
1166     }
1167     /** @see #getLongUnaligned(Object, long, boolean) */
1168     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
1169         return convEndian(bigEndian, getIntUnaligned(o, offset));
1170     }
1171 
1172     /** @see #getLongUnaligned(Object, long) */
1173     @HotSpotIntrinsicCandidate
1174     public final short getShortUnaligned(Object o, long offset) {
1175         if ((offset & 1) == 0) {
1176             return getShort(o, offset);
1177         } else {
1178             return makeShort(getByte(o, offset),
1179                              getByte(o, offset + 1));
1180         }
1181     }
1182     /** @see #getLongUnaligned(Object, long, boolean) */
1183     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
1184         return convEndian(bigEndian, getShortUnaligned(o, offset));
1185     }
1186 
1187     /** @see #getLongUnaligned(Object, long) */
1188     @HotSpotIntrinsicCandidate
1189     public final char getCharUnaligned(Object o, long offset) {
1190         return (char)getShortUnaligned(o, offset);
1191     }
1192 
1193     /** @see #getLongUnaligned(Object, long, boolean) */
1194     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
1195         return convEndian(bigEndian, getCharUnaligned(o, offset));
1196     }
1197 
1198     /**
1199      * Stores a value at some byte offset into a given Java object.
1200      * <p>
1201      * The specification of this method is the same as {@link
1202      * #getLong(Object, long)} except that the offset does not need to
1203      * have been obtained from {@link #objectFieldOffset} on the
1204      * {@link java.lang.reflect.Field} of some Java field.  The value
1205      * in memory is raw data, and need not correspond to any Java
1206      * variable.  The endianness of the value in memory is the
1207      * endianness of the native platform.
1208      * <p>
1209      * The write will be atomic with respect to the largest power of
1210      * two that divides the GCD of the offset and the storage size.
1211      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
1212      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
1213      * respectively.  There are no other guarantees of atomicity.
1214      * <p>
1215      * 8-byte atomicity is only guaranteed on platforms on which
1216      * support atomic accesses to longs.
1217      *
1218      * @param o Java heap object in which the value resides, if any, else
1219      *        null
1220      * @param offset The offset in bytes from the start of the object
1221      * @param x the value to store
1222      * @throws RuntimeException No defined exceptions are thrown, not even
1223      *         {@link NullPointerException}
1224      * @since 9
1225      */
1226     @HotSpotIntrinsicCandidate
1227     public final void putLongUnaligned(Object o, long offset, long x) {
1228         if ((offset & 7) == 0) {
1229             putLong(o, offset, x);
1230         } else if ((offset & 3) == 0) {
1231             putLongParts(o, offset,
1232                          (int)(x >> 0),
1233                          (int)(x >>> 32));
1234         } else if ((offset & 1) == 0) {
1235             putLongParts(o, offset,
1236                          (short)(x >>> 0),
1237                          (short)(x >>> 16),
1238                          (short)(x >>> 32),
1239                          (short)(x >>> 48));
1240         } else {
1241             putLongParts(o, offset,
1242                          (byte)(x >>> 0),
1243                          (byte)(x >>> 8),
1244                          (byte)(x >>> 16),
1245                          (byte)(x >>> 24),
1246                          (byte)(x >>> 32),
1247                          (byte)(x >>> 40),
1248                          (byte)(x >>> 48),
1249                          (byte)(x >>> 56));
1250         }
1251     }
1252 
1253     /**
1254      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
1255      * argument which specifies the endianness of the value as stored in memory.
1256      * @param o Java heap object in which the value resides
1257      * @param offset The offset in bytes from the start of the object
1258      * @param x the value to store
1259      * @param bigEndian The endianness of the value
1260      * @throws RuntimeException No defined exceptions are thrown, not even
1261      *         {@link NullPointerException}
1262      * @since 9
1263      */
1264     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
1265         putLongUnaligned(o, offset, convEndian(bigEndian, x));
1266     }
1267 
1268     /** @see #putLongUnaligned(Object, long, long) */
1269     @HotSpotIntrinsicCandidate
1270     public final void putIntUnaligned(Object o, long offset, int x) {
1271         if ((offset & 3) == 0) {
1272             putInt(o, offset, x);
1273         } else if ((offset & 1) == 0) {
1274             putIntParts(o, offset,
1275                         (short)(x >> 0),
1276                         (short)(x >>> 16));
1277         } else {
1278             putIntParts(o, offset,
1279                         (byte)(x >>> 0),
1280                         (byte)(x >>> 8),
1281                         (byte)(x >>> 16),
1282                         (byte)(x >>> 24));
1283         }
1284     }
1285     /** @see #putLongUnaligned(Object, long, long, boolean) */
1286     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
1287         putIntUnaligned(o, offset, convEndian(bigEndian, x));
1288     }
1289 
1290     /** @see #putLongUnaligned(Object, long, long) */
1291     @HotSpotIntrinsicCandidate
1292     public final void putShortUnaligned(Object o, long offset, short x) {
1293         if ((offset & 1) == 0) {
1294             putShort(o, offset, x);
1295         } else {
1296             putShortParts(o, offset,
1297                           (byte)(x >>> 0),
1298                           (byte)(x >>> 8));
1299         }
1300     }
1301     /** @see #putLongUnaligned(Object, long, long, boolean) */
1302     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
1303         putShortUnaligned(o, offset, convEndian(bigEndian, x));
1304     }
1305 
1306     /** @see #putLongUnaligned(Object, long, long) */
1307     @HotSpotIntrinsicCandidate
1308     public final void putCharUnaligned(Object o, long offset, char x) {
1309         putShortUnaligned(o, offset, (short)x);
1310     }
1311     /** @see #putLongUnaligned(Object, long, long, boolean) */
1312     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
1313         putCharUnaligned(o, offset, convEndian(bigEndian, x));
1314     }
1315 
1316     // JVM interface methods
1317     private native boolean unalignedAccess0();
1318     private native boolean isBigEndian0();
1319 
1320     // BE is true iff the native endianness of this platform is big.
1321     private static final boolean BE = theUnsafe.isBigEndian0();
1322 
1323     // unalignedAccess is true iff this platform can perform unaligned accesses.
1324     private static final boolean unalignedAccess = theUnsafe.unalignedAccess0();
1325 
1326     private static int pickPos(int top, int pos) { return BE ? top - pos : pos; }
1327 
1328     // These methods construct integers from bytes.  The byte ordering
1329     // is the native endianness of this platform.
1330     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
1331         return ((toUnsignedLong(i0) << pickPos(56, 0))
1332               | (toUnsignedLong(i1) << pickPos(56, 8))
1333               | (toUnsignedLong(i2) << pickPos(56, 16))
1334               | (toUnsignedLong(i3) << pickPos(56, 24))
1335               | (toUnsignedLong(i4) << pickPos(56, 32))
1336               | (toUnsignedLong(i5) << pickPos(56, 40))
1337               | (toUnsignedLong(i6) << pickPos(56, 48))
1338               | (toUnsignedLong(i7) << pickPos(56, 56)));
1339     }
1340     private static long makeLong(short i0, short i1, short i2, short i3) {
1341         return ((toUnsignedLong(i0) << pickPos(48, 0))
1342               | (toUnsignedLong(i1) << pickPos(48, 16))
1343               | (toUnsignedLong(i2) << pickPos(48, 32))
1344               | (toUnsignedLong(i3) << pickPos(48, 48)));
1345     }
1346     private static long makeLong(int i0, int i1) {
1347         return (toUnsignedLong(i0) << pickPos(32, 0))
1348              | (toUnsignedLong(i1) << pickPos(32, 32));
1349     }
1350     private static int makeInt(short i0, short i1) {
1351         return (toUnsignedInt(i0) << pickPos(16, 0))
1352              | (toUnsignedInt(i1) << pickPos(16, 16));
1353     }
1354     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
1355         return ((toUnsignedInt(i0) << pickPos(24, 0))
1356               | (toUnsignedInt(i1) << pickPos(24, 8))
1357               | (toUnsignedInt(i2) << pickPos(24, 16))
1358               | (toUnsignedInt(i3) << pickPos(24, 24)));
1359     }
1360     private static short makeShort(byte i0, byte i1) {
1361         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
1362                      | (toUnsignedInt(i1) << pickPos(8, 8)));
1363     }
1364 
1365     private static byte  pick(byte  le, byte  be) { return BE ? be : le; }
1366     private static short pick(short le, short be) { return BE ? be : le; }
1367     private static int   pick(int   le, int   be) { return BE ? be : le; }
1368 
1369     // These methods write integers to memory from smaller parts
1370     // provided by their caller.  The ordering in which these parts
1371     // are written is the native endianness of this platform.
1372     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
1373         putByte(o, offset + 0, pick(i0, i7));
1374         putByte(o, offset + 1, pick(i1, i6));
1375         putByte(o, offset + 2, pick(i2, i5));
1376         putByte(o, offset + 3, pick(i3, i4));
1377         putByte(o, offset + 4, pick(i4, i3));
1378         putByte(o, offset + 5, pick(i5, i2));
1379         putByte(o, offset + 6, pick(i6, i1));
1380         putByte(o, offset + 7, pick(i7, i0));
1381     }
1382     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
1383         putShort(o, offset + 0, pick(i0, i3));
1384         putShort(o, offset + 2, pick(i1, i2));
1385         putShort(o, offset + 4, pick(i2, i1));
1386         putShort(o, offset + 6, pick(i3, i0));
1387     }
1388     private void putLongParts(Object o, long offset, int i0, int i1) {
1389         putInt(o, offset + 0, pick(i0, i1));
1390         putInt(o, offset + 4, pick(i1, i0));
1391     }
1392     private void putIntParts(Object o, long offset, short i0, short i1) {
1393         putShort(o, offset + 0, pick(i0, i1));
1394         putShort(o, offset + 2, pick(i1, i0));
1395     }
1396     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
1397         putByte(o, offset + 0, pick(i0, i3));
1398         putByte(o, offset + 1, pick(i1, i2));
1399         putByte(o, offset + 2, pick(i2, i1));
1400         putByte(o, offset + 3, pick(i3, i0));
1401     }
1402     private void putShortParts(Object o, long offset, byte i0, byte i1) {
1403         putByte(o, offset + 0, pick(i0, i1));
1404         putByte(o, offset + 1, pick(i1, i0));
1405     }
1406 
1407     // Zero-extend an integer
1408     private static int toUnsignedInt(byte n)    { return n & 0xff; }
1409     private static int toUnsignedInt(short n)   { return n & 0xffff; }
1410     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
1411     private static long toUnsignedLong(short n) { return n & 0xffffl; }
1412     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
1413 
1414     // Maybe byte-reverse an integer
1415     private static char convEndian(boolean big, char n)   { return big == BE ? n : Character.reverseBytes(n); }
1416     private static short convEndian(boolean big, short n) { return big == BE ? n : Short.reverseBytes(n)    ; }
1417     private static int convEndian(boolean big, int n)     { return big == BE ? n : Integer.reverseBytes(n)  ; }
1418     private static long convEndian(boolean big, long n)   { return big == BE ? n : Long.reverseBytes(n)     ; }
1419 }