1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "prims/methodHandles.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/flags/flagSetting.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/os.hpp"
  44 #include "runtime/safepoint.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/thread.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "crc32c.h"
  51 #ifdef COMPILER2
  52 #include "opto/intrinsicnode.hpp"
  53 #endif
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #define STOP(error) stop(error)
  58 #else
  59 #define BLOCK_COMMENT(str) block_comment(str)
  60 #define STOP(error) block_comment(error); stop(error)
  61 #endif
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 #ifdef ASSERT
  66 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  67 #endif
  68 
  69 static Assembler::Condition reverse[] = {
  70     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  71     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  72     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  73     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  74     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  75     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  76     Assembler::above          /* belowEqual    = 0x6 */ ,
  77     Assembler::belowEqual     /* above         = 0x7 */ ,
  78     Assembler::positive       /* negative      = 0x8 */ ,
  79     Assembler::negative       /* positive      = 0x9 */ ,
  80     Assembler::noParity       /* parity        = 0xa */ ,
  81     Assembler::parity         /* noParity      = 0xb */ ,
  82     Assembler::greaterEqual   /* less          = 0xc */ ,
  83     Assembler::less           /* greaterEqual  = 0xd */ ,
  84     Assembler::greater        /* lessEqual     = 0xe */ ,
  85     Assembler::lessEqual      /* greater       = 0xf, */
  86 
  87 };
  88 
  89 
  90 // Implementation of MacroAssembler
  91 
  92 // First all the versions that have distinct versions depending on 32/64 bit
  93 // Unless the difference is trivial (1 line or so).
  94 
  95 #ifndef _LP64
  96 
  97 // 32bit versions
  98 
  99 Address MacroAssembler::as_Address(AddressLiteral adr) {
 100   return Address(adr.target(), adr.rspec());
 101 }
 102 
 103 Address MacroAssembler::as_Address(ArrayAddress adr) {
 104   return Address::make_array(adr);
 105 }
 106 
 107 void MacroAssembler::call_VM_leaf_base(address entry_point,
 108                                        int number_of_arguments) {
 109   call(RuntimeAddress(entry_point));
 110   increment(rsp, number_of_arguments * wordSize);
 111 }
 112 
 113 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 118   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 126   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 127 }
 128 
 129 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 130   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 131   bs->obj_equals(this, src1, obj);
 132 }
 133 
 134 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 135   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 136   bs->obj_equals(this, src1, obj);
 137 }
 138 
 139 void MacroAssembler::extend_sign(Register hi, Register lo) {
 140   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 141   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 142     cdql();
 143   } else {
 144     movl(hi, lo);
 145     sarl(hi, 31);
 146   }
 147 }
 148 
 149 void MacroAssembler::jC2(Register tmp, Label& L) {
 150   // set parity bit if FPU flag C2 is set (via rax)
 151   save_rax(tmp);
 152   fwait(); fnstsw_ax();
 153   sahf();
 154   restore_rax(tmp);
 155   // branch
 156   jcc(Assembler::parity, L);
 157 }
 158 
 159 void MacroAssembler::jnC2(Register tmp, Label& L) {
 160   // set parity bit if FPU flag C2 is set (via rax)
 161   save_rax(tmp);
 162   fwait(); fnstsw_ax();
 163   sahf();
 164   restore_rax(tmp);
 165   // branch
 166   jcc(Assembler::noParity, L);
 167 }
 168 
 169 // 32bit can do a case table jump in one instruction but we no longer allow the base
 170 // to be installed in the Address class
 171 void MacroAssembler::jump(ArrayAddress entry) {
 172   jmp(as_Address(entry));
 173 }
 174 
 175 // Note: y_lo will be destroyed
 176 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 177   // Long compare for Java (semantics as described in JVM spec.)
 178   Label high, low, done;
 179 
 180   cmpl(x_hi, y_hi);
 181   jcc(Assembler::less, low);
 182   jcc(Assembler::greater, high);
 183   // x_hi is the return register
 184   xorl(x_hi, x_hi);
 185   cmpl(x_lo, y_lo);
 186   jcc(Assembler::below, low);
 187   jcc(Assembler::equal, done);
 188 
 189   bind(high);
 190   xorl(x_hi, x_hi);
 191   increment(x_hi);
 192   jmp(done);
 193 
 194   bind(low);
 195   xorl(x_hi, x_hi);
 196   decrementl(x_hi);
 197 
 198   bind(done);
 199 }
 200 
 201 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 202     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 203 }
 204 
 205 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 206   // leal(dst, as_Address(adr));
 207   // see note in movl as to why we must use a move
 208   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 209 }
 210 
 211 void MacroAssembler::leave() {
 212   mov(rsp, rbp);
 213   pop(rbp);
 214 }
 215 
 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 217   // Multiplication of two Java long values stored on the stack
 218   // as illustrated below. Result is in rdx:rax.
 219   //
 220   // rsp ---> [  ??  ] \               \
 221   //            ....    | y_rsp_offset  |
 222   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 223   //          [ y_hi ]                  | (in bytes)
 224   //            ....                    |
 225   //          [ x_lo ]                 /
 226   //          [ x_hi ]
 227   //            ....
 228   //
 229   // Basic idea: lo(result) = lo(x_lo * y_lo)
 230   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 231   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 232   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 233   Label quick;
 234   // load x_hi, y_hi and check if quick
 235   // multiplication is possible
 236   movl(rbx, x_hi);
 237   movl(rcx, y_hi);
 238   movl(rax, rbx);
 239   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 240   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 241   // do full multiplication
 242   // 1st step
 243   mull(y_lo);                                    // x_hi * y_lo
 244   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 245   // 2nd step
 246   movl(rax, x_lo);
 247   mull(rcx);                                     // x_lo * y_hi
 248   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 249   // 3rd step
 250   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 251   movl(rax, x_lo);
 252   mull(y_lo);                                    // x_lo * y_lo
 253   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 254 }
 255 
 256 void MacroAssembler::lneg(Register hi, Register lo) {
 257   negl(lo);
 258   adcl(hi, 0);
 259   negl(hi);
 260 }
 261 
 262 void MacroAssembler::lshl(Register hi, Register lo) {
 263   // Java shift left long support (semantics as described in JVM spec., p.305)
 264   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 265   // shift value is in rcx !
 266   assert(hi != rcx, "must not use rcx");
 267   assert(lo != rcx, "must not use rcx");
 268   const Register s = rcx;                        // shift count
 269   const int      n = BitsPerWord;
 270   Label L;
 271   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 272   cmpl(s, n);                                    // if (s < n)
 273   jcc(Assembler::less, L);                       // else (s >= n)
 274   movl(hi, lo);                                  // x := x << n
 275   xorl(lo, lo);
 276   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 277   bind(L);                                       // s (mod n) < n
 278   shldl(hi, lo);                                 // x := x << s
 279   shll(lo);
 280 }
 281 
 282 
 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 284   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 285   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 286   assert(hi != rcx, "must not use rcx");
 287   assert(lo != rcx, "must not use rcx");
 288   const Register s = rcx;                        // shift count
 289   const int      n = BitsPerWord;
 290   Label L;
 291   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 292   cmpl(s, n);                                    // if (s < n)
 293   jcc(Assembler::less, L);                       // else (s >= n)
 294   movl(lo, hi);                                  // x := x >> n
 295   if (sign_extension) sarl(hi, 31);
 296   else                xorl(hi, hi);
 297   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 298   bind(L);                                       // s (mod n) < n
 299   shrdl(lo, hi);                                 // x := x >> s
 300   if (sign_extension) sarl(hi);
 301   else                shrl(hi);
 302 }
 303 
 304 void MacroAssembler::movoop(Register dst, jobject obj) {
 305   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 306 }
 307 
 308 void MacroAssembler::movoop(Address dst, jobject obj) {
 309   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 310 }
 311 
 312 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 313   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 314 }
 315 
 316 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 317   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 318 }
 319 
 320 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 321   // scratch register is not used,
 322   // it is defined to match parameters of 64-bit version of this method.
 323   if (src.is_lval()) {
 324     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 325   } else {
 326     movl(dst, as_Address(src));
 327   }
 328 }
 329 
 330 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 331   movl(as_Address(dst), src);
 332 }
 333 
 334 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 335   movl(dst, as_Address(src));
 336 }
 337 
 338 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 339 void MacroAssembler::movptr(Address dst, intptr_t src) {
 340   movl(dst, src);
 341 }
 342 
 343 
 344 void MacroAssembler::pop_callee_saved_registers() {
 345   pop(rcx);
 346   pop(rdx);
 347   pop(rdi);
 348   pop(rsi);
 349 }
 350 
 351 void MacroAssembler::pop_fTOS() {
 352   fld_d(Address(rsp, 0));
 353   addl(rsp, 2 * wordSize);
 354 }
 355 
 356 void MacroAssembler::push_callee_saved_registers() {
 357   push(rsi);
 358   push(rdi);
 359   push(rdx);
 360   push(rcx);
 361 }
 362 
 363 void MacroAssembler::push_fTOS() {
 364   subl(rsp, 2 * wordSize);
 365   fstp_d(Address(rsp, 0));
 366 }
 367 
 368 
 369 void MacroAssembler::pushoop(jobject obj) {
 370   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 371 }
 372 
 373 void MacroAssembler::pushklass(Metadata* obj) {
 374   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 375 }
 376 
 377 void MacroAssembler::pushptr(AddressLiteral src) {
 378   if (src.is_lval()) {
 379     push_literal32((int32_t)src.target(), src.rspec());
 380   } else {
 381     pushl(as_Address(src));
 382   }
 383 }
 384 
 385 void MacroAssembler::set_word_if_not_zero(Register dst) {
 386   xorl(dst, dst);
 387   set_byte_if_not_zero(dst);
 388 }
 389 
 390 static void pass_arg0(MacroAssembler* masm, Register arg) {
 391   masm->push(arg);
 392 }
 393 
 394 static void pass_arg1(MacroAssembler* masm, Register arg) {
 395   masm->push(arg);
 396 }
 397 
 398 static void pass_arg2(MacroAssembler* masm, Register arg) {
 399   masm->push(arg);
 400 }
 401 
 402 static void pass_arg3(MacroAssembler* masm, Register arg) {
 403   masm->push(arg);
 404 }
 405 
 406 #ifndef PRODUCT
 407 extern "C" void findpc(intptr_t x);
 408 #endif
 409 
 410 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 411   // In order to get locks to work, we need to fake a in_VM state
 412   JavaThread* thread = JavaThread::current();
 413   JavaThreadState saved_state = thread->thread_state();
 414   thread->set_thread_state(_thread_in_vm);
 415   if (ShowMessageBoxOnError) {
 416     JavaThread* thread = JavaThread::current();
 417     JavaThreadState saved_state = thread->thread_state();
 418     thread->set_thread_state(_thread_in_vm);
 419     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 420       ttyLocker ttyl;
 421       BytecodeCounter::print();
 422     }
 423     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 424     // This is the value of eip which points to where verify_oop will return.
 425     if (os::message_box(msg, "Execution stopped, print registers?")) {
 426       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 427       BREAKPOINT;
 428     }
 429   } else {
 430     ttyLocker ttyl;
 431     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 432   }
 433   // Don't assert holding the ttyLock
 434     assert(false, "DEBUG MESSAGE: %s", msg);
 435   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 436 }
 437 
 438 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 439   ttyLocker ttyl;
 440   FlagSetting fs(Debugging, true);
 441   tty->print_cr("eip = 0x%08x", eip);
 442 #ifndef PRODUCT
 443   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 444     tty->cr();
 445     findpc(eip);
 446     tty->cr();
 447   }
 448 #endif
 449 #define PRINT_REG(rax) \
 450   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 451   PRINT_REG(rax);
 452   PRINT_REG(rbx);
 453   PRINT_REG(rcx);
 454   PRINT_REG(rdx);
 455   PRINT_REG(rdi);
 456   PRINT_REG(rsi);
 457   PRINT_REG(rbp);
 458   PRINT_REG(rsp);
 459 #undef PRINT_REG
 460   // Print some words near top of staack.
 461   int* dump_sp = (int*) rsp;
 462   for (int col1 = 0; col1 < 8; col1++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     os::print_location(tty, *dump_sp++);
 465   }
 466   for (int row = 0; row < 16; row++) {
 467     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 468     for (int col = 0; col < 8; col++) {
 469       tty->print(" 0x%08x", *dump_sp++);
 470     }
 471     tty->cr();
 472   }
 473   // Print some instructions around pc:
 474   Disassembler::decode((address)eip-64, (address)eip);
 475   tty->print_cr("--------");
 476   Disassembler::decode((address)eip, (address)eip+32);
 477 }
 478 
 479 void MacroAssembler::stop(const char* msg) {
 480   ExternalAddress message((address)msg);
 481   // push address of message
 482   pushptr(message.addr());
 483   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 484   pusha();                                            // push registers
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 486   hlt();
 487 }
 488 
 489 void MacroAssembler::warn(const char* msg) {
 490   push_CPU_state();
 491 
 492   ExternalAddress message((address) msg);
 493   // push address of message
 494   pushptr(message.addr());
 495 
 496   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 497   addl(rsp, wordSize);       // discard argument
 498   pop_CPU_state();
 499 }
 500 
 501 void MacroAssembler::print_state() {
 502   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 503   pusha();                                            // push registers
 504 
 505   push_CPU_state();
 506   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 507   pop_CPU_state();
 508 
 509   popa();
 510   addl(rsp, wordSize);
 511 }
 512 
 513 #else // _LP64
 514 
 515 // 64 bit versions
 516 
 517 Address MacroAssembler::as_Address(AddressLiteral adr) {
 518   // amd64 always does this as a pc-rel
 519   // we can be absolute or disp based on the instruction type
 520   // jmp/call are displacements others are absolute
 521   assert(!adr.is_lval(), "must be rval");
 522   assert(reachable(adr), "must be");
 523   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 524 
 525 }
 526 
 527 Address MacroAssembler::as_Address(ArrayAddress adr) {
 528   AddressLiteral base = adr.base();
 529   lea(rscratch1, base);
 530   Address index = adr.index();
 531   assert(index._disp == 0, "must not have disp"); // maybe it can?
 532   Address array(rscratch1, index._index, index._scale, index._disp);
 533   return array;
 534 }
 535 
 536 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 537   Label L, E;
 538 
 539 #ifdef _WIN64
 540   // Windows always allocates space for it's register args
 541   assert(num_args <= 4, "only register arguments supported");
 542   subq(rsp,  frame::arg_reg_save_area_bytes);
 543 #endif
 544 
 545   // Align stack if necessary
 546   testl(rsp, 15);
 547   jcc(Assembler::zero, L);
 548 
 549   subq(rsp, 8);
 550   {
 551     call(RuntimeAddress(entry_point));
 552   }
 553   addq(rsp, 8);
 554   jmp(E);
 555 
 556   bind(L);
 557   {
 558     call(RuntimeAddress(entry_point));
 559   }
 560 
 561   bind(E);
 562 
 563 #ifdef _WIN64
 564   // restore stack pointer
 565   addq(rsp, frame::arg_reg_save_area_bytes);
 566 #endif
 567 
 568 }
 569 
 570 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 571   assert(!src2.is_lval(), "should use cmpptr");
 572 
 573   if (reachable(src2)) {
 574     cmpq(src1, as_Address(src2));
 575   } else {
 576     lea(rscratch1, src2);
 577     Assembler::cmpq(src1, Address(rscratch1, 0));
 578   }
 579 }
 580 
 581 int MacroAssembler::corrected_idivq(Register reg) {
 582   // Full implementation of Java ldiv and lrem; checks for special
 583   // case as described in JVM spec., p.243 & p.271.  The function
 584   // returns the (pc) offset of the idivl instruction - may be needed
 585   // for implicit exceptions.
 586   //
 587   //         normal case                           special case
 588   //
 589   // input : rax: dividend                         min_long
 590   //         reg: divisor   (may not be eax/edx)   -1
 591   //
 592   // output: rax: quotient  (= rax idiv reg)       min_long
 593   //         rdx: remainder (= rax irem reg)       0
 594   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 595   static const int64_t min_long = 0x8000000000000000;
 596   Label normal_case, special_case;
 597 
 598   // check for special case
 599   cmp64(rax, ExternalAddress((address) &min_long));
 600   jcc(Assembler::notEqual, normal_case);
 601   xorl(rdx, rdx); // prepare rdx for possible special case (where
 602                   // remainder = 0)
 603   cmpq(reg, -1);
 604   jcc(Assembler::equal, special_case);
 605 
 606   // handle normal case
 607   bind(normal_case);
 608   cdqq();
 609   int idivq_offset = offset();
 610   idivq(reg);
 611 
 612   // normal and special case exit
 613   bind(special_case);
 614 
 615   return idivq_offset;
 616 }
 617 
 618 void MacroAssembler::decrementq(Register reg, int value) {
 619   if (value == min_jint) { subq(reg, value); return; }
 620   if (value <  0) { incrementq(reg, -value); return; }
 621   if (value == 0) {                        ; return; }
 622   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 623   /* else */      { subq(reg, value)       ; return; }
 624 }
 625 
 626 void MacroAssembler::decrementq(Address dst, int value) {
 627   if (value == min_jint) { subq(dst, value); return; }
 628   if (value <  0) { incrementq(dst, -value); return; }
 629   if (value == 0) {                        ; return; }
 630   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 631   /* else */      { subq(dst, value)       ; return; }
 632 }
 633 
 634 void MacroAssembler::incrementq(AddressLiteral dst) {
 635   if (reachable(dst)) {
 636     incrementq(as_Address(dst));
 637   } else {
 638     lea(rscratch1, dst);
 639     incrementq(Address(rscratch1, 0));
 640   }
 641 }
 642 
 643 void MacroAssembler::incrementq(Register reg, int value) {
 644   if (value == min_jint) { addq(reg, value); return; }
 645   if (value <  0) { decrementq(reg, -value); return; }
 646   if (value == 0) {                        ; return; }
 647   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 648   /* else */      { addq(reg, value)       ; return; }
 649 }
 650 
 651 void MacroAssembler::incrementq(Address dst, int value) {
 652   if (value == min_jint) { addq(dst, value); return; }
 653   if (value <  0) { decrementq(dst, -value); return; }
 654   if (value == 0) {                        ; return; }
 655   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 656   /* else */      { addq(dst, value)       ; return; }
 657 }
 658 
 659 // 32bit can do a case table jump in one instruction but we no longer allow the base
 660 // to be installed in the Address class
 661 void MacroAssembler::jump(ArrayAddress entry) {
 662   lea(rscratch1, entry.base());
 663   Address dispatch = entry.index();
 664   assert(dispatch._base == noreg, "must be");
 665   dispatch._base = rscratch1;
 666   jmp(dispatch);
 667 }
 668 
 669 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 670   ShouldNotReachHere(); // 64bit doesn't use two regs
 671   cmpq(x_lo, y_lo);
 672 }
 673 
 674 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 675     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 676 }
 677 
 678 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 679   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 680   movptr(dst, rscratch1);
 681 }
 682 
 683 void MacroAssembler::leave() {
 684   // %%% is this really better? Why not on 32bit too?
 685   emit_int8((unsigned char)0xC9); // LEAVE
 686 }
 687 
 688 void MacroAssembler::lneg(Register hi, Register lo) {
 689   ShouldNotReachHere(); // 64bit doesn't use two regs
 690   negq(lo);
 691 }
 692 
 693 void MacroAssembler::movoop(Register dst, jobject obj) {
 694   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695 }
 696 
 697 void MacroAssembler::movoop(Address dst, jobject obj) {
 698   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 699   movq(dst, rscratch1);
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 703   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704 }
 705 
 706 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 707   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 708   movq(dst, rscratch1);
 709 }
 710 
 711 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 712   if (src.is_lval()) {
 713     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 714   } else {
 715     if (reachable(src)) {
 716       movq(dst, as_Address(src));
 717     } else {
 718       lea(scratch, src);
 719       movq(dst, Address(scratch, 0));
 720     }
 721   }
 722 }
 723 
 724 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 725   movq(as_Address(dst), src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 729   movq(dst, as_Address(src));
 730 }
 731 
 732 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 733 void MacroAssembler::movptr(Address dst, intptr_t src) {
 734   mov64(rscratch1, src);
 735   movq(dst, rscratch1);
 736 }
 737 
 738 // These are mostly for initializing NULL
 739 void MacroAssembler::movptr(Address dst, int32_t src) {
 740   movslq(dst, src);
 741 }
 742 
 743 void MacroAssembler::movptr(Register dst, int32_t src) {
 744   mov64(dst, (intptr_t)src);
 745 }
 746 
 747 void MacroAssembler::pushoop(jobject obj) {
 748   movoop(rscratch1, obj);
 749   push(rscratch1);
 750 }
 751 
 752 void MacroAssembler::pushklass(Metadata* obj) {
 753   mov_metadata(rscratch1, obj);
 754   push(rscratch1);
 755 }
 756 
 757 void MacroAssembler::pushptr(AddressLiteral src) {
 758   lea(rscratch1, src);
 759   if (src.is_lval()) {
 760     push(rscratch1);
 761   } else {
 762     pushq(Address(rscratch1, 0));
 763   }
 764 }
 765 
 766 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 767   // we must set sp to zero to clear frame
 768   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 769   // must clear fp, so that compiled frames are not confused; it is
 770   // possible that we need it only for debugging
 771   if (clear_fp) {
 772     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 773   }
 774 
 775   // Always clear the pc because it could have been set by make_walkable()
 776   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 777   vzeroupper();
 778 }
 779 
 780 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 781                                          Register last_java_fp,
 782                                          address  last_java_pc) {
 783   vzeroupper();
 784   // determine last_java_sp register
 785   if (!last_java_sp->is_valid()) {
 786     last_java_sp = rsp;
 787   }
 788 
 789   // last_java_fp is optional
 790   if (last_java_fp->is_valid()) {
 791     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 792            last_java_fp);
 793   }
 794 
 795   // last_java_pc is optional
 796   if (last_java_pc != NULL) {
 797     Address java_pc(r15_thread,
 798                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 799     lea(rscratch1, InternalAddress(last_java_pc));
 800     movptr(java_pc, rscratch1);
 801   }
 802 
 803   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 804 }
 805 
 806 static void pass_arg0(MacroAssembler* masm, Register arg) {
 807   if (c_rarg0 != arg ) {
 808     masm->mov(c_rarg0, arg);
 809   }
 810 }
 811 
 812 static void pass_arg1(MacroAssembler* masm, Register arg) {
 813   if (c_rarg1 != arg ) {
 814     masm->mov(c_rarg1, arg);
 815   }
 816 }
 817 
 818 static void pass_arg2(MacroAssembler* masm, Register arg) {
 819   if (c_rarg2 != arg ) {
 820     masm->mov(c_rarg2, arg);
 821   }
 822 }
 823 
 824 static void pass_arg3(MacroAssembler* masm, Register arg) {
 825   if (c_rarg3 != arg ) {
 826     masm->mov(c_rarg3, arg);
 827   }
 828 }
 829 
 830 void MacroAssembler::stop(const char* msg) {
 831   address rip = pc();
 832   pusha(); // get regs on stack
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   lea(c_rarg1, InternalAddress(rip));
 835   movq(c_rarg2, rsp); // pass pointer to regs array
 836   andq(rsp, -16); // align stack as required by ABI
 837   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 838   hlt();
 839 }
 840 
 841 void MacroAssembler::warn(const char* msg) {
 842   push(rbp);
 843   movq(rbp, rsp);
 844   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 845   push_CPU_state();   // keeps alignment at 16 bytes
 846   lea(c_rarg0, ExternalAddress((address) msg));
 847   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 848   call(rax);
 849   pop_CPU_state();
 850   mov(rsp, rbp);
 851   pop(rbp);
 852 }
 853 
 854 void MacroAssembler::print_state() {
 855   address rip = pc();
 856   pusha();            // get regs on stack
 857   push(rbp);
 858   movq(rbp, rsp);
 859   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 860   push_CPU_state();   // keeps alignment at 16 bytes
 861 
 862   lea(c_rarg0, InternalAddress(rip));
 863   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 864   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 865 
 866   pop_CPU_state();
 867   mov(rsp, rbp);
 868   pop(rbp);
 869   popa();
 870 }
 871 
 872 #ifndef PRODUCT
 873 extern "C" void findpc(intptr_t x);
 874 #endif
 875 
 876 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 877   // In order to get locks to work, we need to fake a in_VM state
 878   if (ShowMessageBoxOnError) {
 879     JavaThread* thread = JavaThread::current();
 880     JavaThreadState saved_state = thread->thread_state();
 881     thread->set_thread_state(_thread_in_vm);
 882 #ifndef PRODUCT
 883     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 884       ttyLocker ttyl;
 885       BytecodeCounter::print();
 886     }
 887 #endif
 888     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 889     // XXX correct this offset for amd64
 890     // This is the value of eip which points to where verify_oop will return.
 891     if (os::message_box(msg, "Execution stopped, print registers?")) {
 892       print_state64(pc, regs);
 893       BREAKPOINT;
 894       assert(false, "start up GDB");
 895     }
 896     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 897   } else {
 898     ttyLocker ttyl;
 899     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 900                     msg);
 901     assert(false, "DEBUG MESSAGE: %s", msg);
 902   }
 903 }
 904 
 905 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 906   ttyLocker ttyl;
 907   FlagSetting fs(Debugging, true);
 908   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 909 #ifndef PRODUCT
 910   tty->cr();
 911   findpc(pc);
 912   tty->cr();
 913 #endif
 914 #define PRINT_REG(rax, value) \
 915   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 916   PRINT_REG(rax, regs[15]);
 917   PRINT_REG(rbx, regs[12]);
 918   PRINT_REG(rcx, regs[14]);
 919   PRINT_REG(rdx, regs[13]);
 920   PRINT_REG(rdi, regs[8]);
 921   PRINT_REG(rsi, regs[9]);
 922   PRINT_REG(rbp, regs[10]);
 923   PRINT_REG(rsp, regs[11]);
 924   PRINT_REG(r8 , regs[7]);
 925   PRINT_REG(r9 , regs[6]);
 926   PRINT_REG(r10, regs[5]);
 927   PRINT_REG(r11, regs[4]);
 928   PRINT_REG(r12, regs[3]);
 929   PRINT_REG(r13, regs[2]);
 930   PRINT_REG(r14, regs[1]);
 931   PRINT_REG(r15, regs[0]);
 932 #undef PRINT_REG
 933   // Print some words near top of staack.
 934   int64_t* rsp = (int64_t*) regs[11];
 935   int64_t* dump_sp = rsp;
 936   for (int col1 = 0; col1 < 8; col1++) {
 937     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 938     os::print_location(tty, *dump_sp++);
 939   }
 940   for (int row = 0; row < 25; row++) {
 941     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 942     for (int col = 0; col < 4; col++) {
 943       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 944     }
 945     tty->cr();
 946   }
 947   // Print some instructions around pc:
 948   Disassembler::decode((address)pc-64, (address)pc);
 949   tty->print_cr("--------");
 950   Disassembler::decode((address)pc, (address)pc+32);
 951 }
 952 
 953 #endif // _LP64
 954 
 955 // Now versions that are common to 32/64 bit
 956 
 957 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 958   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 959 }
 960 
 961 void MacroAssembler::addptr(Register dst, Register src) {
 962   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 963 }
 964 
 965 void MacroAssembler::addptr(Address dst, Register src) {
 966   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 967 }
 968 
 969 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 970   if (reachable(src)) {
 971     Assembler::addsd(dst, as_Address(src));
 972   } else {
 973     lea(rscratch1, src);
 974     Assembler::addsd(dst, Address(rscratch1, 0));
 975   }
 976 }
 977 
 978 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 979   if (reachable(src)) {
 980     addss(dst, as_Address(src));
 981   } else {
 982     lea(rscratch1, src);
 983     addss(dst, Address(rscratch1, 0));
 984   }
 985 }
 986 
 987 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 988   if (reachable(src)) {
 989     Assembler::addpd(dst, as_Address(src));
 990   } else {
 991     lea(rscratch1, src);
 992     Assembler::addpd(dst, Address(rscratch1, 0));
 993   }
 994 }
 995 
 996 void MacroAssembler::align(int modulus) {
 997   align(modulus, offset());
 998 }
 999 
1000 void MacroAssembler::align(int modulus, int target) {
1001   if (target % modulus != 0) {
1002     nop(modulus - (target % modulus));
1003   }
1004 }
1005 
1006 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
1007   // Used in sign-masking with aligned address.
1008   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1009   if (reachable(src)) {
1010     Assembler::andpd(dst, as_Address(src));
1011   } else {
1012     lea(rscratch1, src);
1013     Assembler::andpd(dst, Address(rscratch1, 0));
1014   }
1015 }
1016 
1017 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1018   // Used in sign-masking with aligned address.
1019   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1020   if (reachable(src)) {
1021     Assembler::andps(dst, as_Address(src));
1022   } else {
1023     lea(rscratch1, src);
1024     Assembler::andps(dst, Address(rscratch1, 0));
1025   }
1026 }
1027 
1028 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1029   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1030 }
1031 
1032 void MacroAssembler::atomic_incl(Address counter_addr) {
1033   if (os::is_MP())
1034     lock();
1035   incrementl(counter_addr);
1036 }
1037 
1038 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1039   if (reachable(counter_addr)) {
1040     atomic_incl(as_Address(counter_addr));
1041   } else {
1042     lea(scr, counter_addr);
1043     atomic_incl(Address(scr, 0));
1044   }
1045 }
1046 
1047 #ifdef _LP64
1048 void MacroAssembler::atomic_incq(Address counter_addr) {
1049   if (os::is_MP())
1050     lock();
1051   incrementq(counter_addr);
1052 }
1053 
1054 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1055   if (reachable(counter_addr)) {
1056     atomic_incq(as_Address(counter_addr));
1057   } else {
1058     lea(scr, counter_addr);
1059     atomic_incq(Address(scr, 0));
1060   }
1061 }
1062 #endif
1063 
1064 // Writes to stack successive pages until offset reached to check for
1065 // stack overflow + shadow pages.  This clobbers tmp.
1066 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1067   movptr(tmp, rsp);
1068   // Bang stack for total size given plus shadow page size.
1069   // Bang one page at a time because large size can bang beyond yellow and
1070   // red zones.
1071   Label loop;
1072   bind(loop);
1073   movl(Address(tmp, (-os::vm_page_size())), size );
1074   subptr(tmp, os::vm_page_size());
1075   subl(size, os::vm_page_size());
1076   jcc(Assembler::greater, loop);
1077 
1078   // Bang down shadow pages too.
1079   // At this point, (tmp-0) is the last address touched, so don't
1080   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1081   // was post-decremented.)  Skip this address by starting at i=1, and
1082   // touch a few more pages below.  N.B.  It is important to touch all
1083   // the way down including all pages in the shadow zone.
1084   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1085     // this could be any sized move but this is can be a debugging crumb
1086     // so the bigger the better.
1087     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1088   }
1089 }
1090 
1091 void MacroAssembler::reserved_stack_check() {
1092     // testing if reserved zone needs to be enabled
1093     Label no_reserved_zone_enabling;
1094     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1095     NOT_LP64(get_thread(rsi);)
1096 
1097     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1098     jcc(Assembler::below, no_reserved_zone_enabling);
1099 
1100     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1101     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1102     should_not_reach_here();
1103 
1104     bind(no_reserved_zone_enabling);
1105 }
1106 
1107 int MacroAssembler::biased_locking_enter(Register lock_reg,
1108                                          Register obj_reg,
1109                                          Register swap_reg,
1110                                          Register tmp_reg,
1111                                          bool swap_reg_contains_mark,
1112                                          Label& done,
1113                                          Label* slow_case,
1114                                          BiasedLockingCounters* counters) {
1115   assert(UseBiasedLocking, "why call this otherwise?");
1116   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1117   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1118   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1119   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1120   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1121   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1122 
1123   if (PrintBiasedLockingStatistics && counters == NULL) {
1124     counters = BiasedLocking::counters();
1125   }
1126   // Biased locking
1127   // See whether the lock is currently biased toward our thread and
1128   // whether the epoch is still valid
1129   // Note that the runtime guarantees sufficient alignment of JavaThread
1130   // pointers to allow age to be placed into low bits
1131   // First check to see whether biasing is even enabled for this object
1132   Label cas_label;
1133   int null_check_offset = -1;
1134   if (!swap_reg_contains_mark) {
1135     null_check_offset = offset();
1136     movptr(swap_reg, mark_addr);
1137   }
1138   movptr(tmp_reg, swap_reg);
1139   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1140   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1141   jcc(Assembler::notEqual, cas_label);
1142   // The bias pattern is present in the object's header. Need to check
1143   // whether the bias owner and the epoch are both still current.
1144 #ifndef _LP64
1145   // Note that because there is no current thread register on x86_32 we
1146   // need to store off the mark word we read out of the object to
1147   // avoid reloading it and needing to recheck invariants below. This
1148   // store is unfortunate but it makes the overall code shorter and
1149   // simpler.
1150   movptr(saved_mark_addr, swap_reg);
1151 #endif
1152   if (swap_reg_contains_mark) {
1153     null_check_offset = offset();
1154   }
1155   load_prototype_header(tmp_reg, obj_reg);
1156 #ifdef _LP64
1157   orptr(tmp_reg, r15_thread);
1158   xorptr(tmp_reg, swap_reg);
1159   Register header_reg = tmp_reg;
1160 #else
1161   xorptr(tmp_reg, swap_reg);
1162   get_thread(swap_reg);
1163   xorptr(swap_reg, tmp_reg);
1164   Register header_reg = swap_reg;
1165 #endif
1166   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1167   if (counters != NULL) {
1168     cond_inc32(Assembler::zero,
1169                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1170   }
1171   jcc(Assembler::equal, done);
1172 
1173   Label try_revoke_bias;
1174   Label try_rebias;
1175 
1176   // At this point we know that the header has the bias pattern and
1177   // that we are not the bias owner in the current epoch. We need to
1178   // figure out more details about the state of the header in order to
1179   // know what operations can be legally performed on the object's
1180   // header.
1181 
1182   // If the low three bits in the xor result aren't clear, that means
1183   // the prototype header is no longer biased and we have to revoke
1184   // the bias on this object.
1185   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1186   jccb(Assembler::notZero, try_revoke_bias);
1187 
1188   // Biasing is still enabled for this data type. See whether the
1189   // epoch of the current bias is still valid, meaning that the epoch
1190   // bits of the mark word are equal to the epoch bits of the
1191   // prototype header. (Note that the prototype header's epoch bits
1192   // only change at a safepoint.) If not, attempt to rebias the object
1193   // toward the current thread. Note that we must be absolutely sure
1194   // that the current epoch is invalid in order to do this because
1195   // otherwise the manipulations it performs on the mark word are
1196   // illegal.
1197   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1198   jccb(Assembler::notZero, try_rebias);
1199 
1200   // The epoch of the current bias is still valid but we know nothing
1201   // about the owner; it might be set or it might be clear. Try to
1202   // acquire the bias of the object using an atomic operation. If this
1203   // fails we will go in to the runtime to revoke the object's bias.
1204   // Note that we first construct the presumed unbiased header so we
1205   // don't accidentally blow away another thread's valid bias.
1206   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1207   andptr(swap_reg,
1208          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1209 #ifdef _LP64
1210   movptr(tmp_reg, swap_reg);
1211   orptr(tmp_reg, r15_thread);
1212 #else
1213   get_thread(tmp_reg);
1214   orptr(tmp_reg, swap_reg);
1215 #endif
1216   if (os::is_MP()) {
1217     lock();
1218   }
1219   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1220   // If the biasing toward our thread failed, this means that
1221   // another thread succeeded in biasing it toward itself and we
1222   // need to revoke that bias. The revocation will occur in the
1223   // interpreter runtime in the slow case.
1224   if (counters != NULL) {
1225     cond_inc32(Assembler::zero,
1226                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1227   }
1228   if (slow_case != NULL) {
1229     jcc(Assembler::notZero, *slow_case);
1230   }
1231   jmp(done);
1232 
1233   bind(try_rebias);
1234   // At this point we know the epoch has expired, meaning that the
1235   // current "bias owner", if any, is actually invalid. Under these
1236   // circumstances _only_, we are allowed to use the current header's
1237   // value as the comparison value when doing the cas to acquire the
1238   // bias in the current epoch. In other words, we allow transfer of
1239   // the bias from one thread to another directly in this situation.
1240   //
1241   // FIXME: due to a lack of registers we currently blow away the age
1242   // bits in this situation. Should attempt to preserve them.
1243   load_prototype_header(tmp_reg, obj_reg);
1244 #ifdef _LP64
1245   orptr(tmp_reg, r15_thread);
1246 #else
1247   get_thread(swap_reg);
1248   orptr(tmp_reg, swap_reg);
1249   movptr(swap_reg, saved_mark_addr);
1250 #endif
1251   if (os::is_MP()) {
1252     lock();
1253   }
1254   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1255   // If the biasing toward our thread failed, then another thread
1256   // succeeded in biasing it toward itself and we need to revoke that
1257   // bias. The revocation will occur in the runtime in the slow case.
1258   if (counters != NULL) {
1259     cond_inc32(Assembler::zero,
1260                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1261   }
1262   if (slow_case != NULL) {
1263     jcc(Assembler::notZero, *slow_case);
1264   }
1265   jmp(done);
1266 
1267   bind(try_revoke_bias);
1268   // The prototype mark in the klass doesn't have the bias bit set any
1269   // more, indicating that objects of this data type are not supposed
1270   // to be biased any more. We are going to try to reset the mark of
1271   // this object to the prototype value and fall through to the
1272   // CAS-based locking scheme. Note that if our CAS fails, it means
1273   // that another thread raced us for the privilege of revoking the
1274   // bias of this particular object, so it's okay to continue in the
1275   // normal locking code.
1276   //
1277   // FIXME: due to a lack of registers we currently blow away the age
1278   // bits in this situation. Should attempt to preserve them.
1279   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1280   load_prototype_header(tmp_reg, obj_reg);
1281   if (os::is_MP()) {
1282     lock();
1283   }
1284   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1285   // Fall through to the normal CAS-based lock, because no matter what
1286   // the result of the above CAS, some thread must have succeeded in
1287   // removing the bias bit from the object's header.
1288   if (counters != NULL) {
1289     cond_inc32(Assembler::zero,
1290                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1291   }
1292 
1293   bind(cas_label);
1294 
1295   return null_check_offset;
1296 }
1297 
1298 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1299   assert(UseBiasedLocking, "why call this otherwise?");
1300 
1301   // Check for biased locking unlock case, which is a no-op
1302   // Note: we do not have to check the thread ID for two reasons.
1303   // First, the interpreter checks for IllegalMonitorStateException at
1304   // a higher level. Second, if the bias was revoked while we held the
1305   // lock, the object could not be rebiased toward another thread, so
1306   // the bias bit would be clear.
1307   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1308   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1309   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1310   jcc(Assembler::equal, done);
1311 }
1312 
1313 #ifdef COMPILER2
1314 
1315 #if INCLUDE_RTM_OPT
1316 
1317 // Update rtm_counters based on abort status
1318 // input: abort_status
1319 //        rtm_counters (RTMLockingCounters*)
1320 // flags are killed
1321 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1322 
1323   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1324   if (PrintPreciseRTMLockingStatistics) {
1325     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1326       Label check_abort;
1327       testl(abort_status, (1<<i));
1328       jccb(Assembler::equal, check_abort);
1329       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1330       bind(check_abort);
1331     }
1332   }
1333 }
1334 
1335 // Branch if (random & (count-1) != 0), count is 2^n
1336 // tmp, scr and flags are killed
1337 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1338   assert(tmp == rax, "");
1339   assert(scr == rdx, "");
1340   rdtsc(); // modifies EDX:EAX
1341   andptr(tmp, count-1);
1342   jccb(Assembler::notZero, brLabel);
1343 }
1344 
1345 // Perform abort ratio calculation, set no_rtm bit if high ratio
1346 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1347 // tmpReg, rtm_counters_Reg and flags are killed
1348 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1349                                                  Register rtm_counters_Reg,
1350                                                  RTMLockingCounters* rtm_counters,
1351                                                  Metadata* method_data) {
1352   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1353 
1354   if (RTMLockingCalculationDelay > 0) {
1355     // Delay calculation
1356     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1357     testptr(tmpReg, tmpReg);
1358     jccb(Assembler::equal, L_done);
1359   }
1360   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1361   //   Aborted transactions = abort_count * 100
1362   //   All transactions = total_count *  RTMTotalCountIncrRate
1363   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1364 
1365   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1366   cmpptr(tmpReg, RTMAbortThreshold);
1367   jccb(Assembler::below, L_check_always_rtm2);
1368   imulptr(tmpReg, tmpReg, 100);
1369 
1370   Register scrReg = rtm_counters_Reg;
1371   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1372   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1373   imulptr(scrReg, scrReg, RTMAbortRatio);
1374   cmpptr(tmpReg, scrReg);
1375   jccb(Assembler::below, L_check_always_rtm1);
1376   if (method_data != NULL) {
1377     // set rtm_state to "no rtm" in MDO
1378     mov_metadata(tmpReg, method_data);
1379     if (os::is_MP()) {
1380       lock();
1381     }
1382     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1383   }
1384   jmpb(L_done);
1385   bind(L_check_always_rtm1);
1386   // Reload RTMLockingCounters* address
1387   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1388   bind(L_check_always_rtm2);
1389   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1390   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1391   jccb(Assembler::below, L_done);
1392   if (method_data != NULL) {
1393     // set rtm_state to "always rtm" in MDO
1394     mov_metadata(tmpReg, method_data);
1395     if (os::is_MP()) {
1396       lock();
1397     }
1398     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1399   }
1400   bind(L_done);
1401 }
1402 
1403 // Update counters and perform abort ratio calculation
1404 // input:  abort_status_Reg
1405 // rtm_counters_Reg, flags are killed
1406 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1407                                    Register rtm_counters_Reg,
1408                                    RTMLockingCounters* rtm_counters,
1409                                    Metadata* method_data,
1410                                    bool profile_rtm) {
1411 
1412   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1413   // update rtm counters based on rax value at abort
1414   // reads abort_status_Reg, updates flags
1415   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1416   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1417   if (profile_rtm) {
1418     // Save abort status because abort_status_Reg is used by following code.
1419     if (RTMRetryCount > 0) {
1420       push(abort_status_Reg);
1421     }
1422     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1423     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1424     // restore abort status
1425     if (RTMRetryCount > 0) {
1426       pop(abort_status_Reg);
1427     }
1428   }
1429 }
1430 
1431 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1432 // inputs: retry_count_Reg
1433 //       : abort_status_Reg
1434 // output: retry_count_Reg decremented by 1
1435 // flags are killed
1436 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1437   Label doneRetry;
1438   assert(abort_status_Reg == rax, "");
1439   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1440   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1441   // if reason is in 0x6 and retry count != 0 then retry
1442   andptr(abort_status_Reg, 0x6);
1443   jccb(Assembler::zero, doneRetry);
1444   testl(retry_count_Reg, retry_count_Reg);
1445   jccb(Assembler::zero, doneRetry);
1446   pause();
1447   decrementl(retry_count_Reg);
1448   jmp(retryLabel);
1449   bind(doneRetry);
1450 }
1451 
1452 // Spin and retry if lock is busy,
1453 // inputs: box_Reg (monitor address)
1454 //       : retry_count_Reg
1455 // output: retry_count_Reg decremented by 1
1456 //       : clear z flag if retry count exceeded
1457 // tmp_Reg, scr_Reg, flags are killed
1458 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1459                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1460   Label SpinLoop, SpinExit, doneRetry;
1461   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1462 
1463   testl(retry_count_Reg, retry_count_Reg);
1464   jccb(Assembler::zero, doneRetry);
1465   decrementl(retry_count_Reg);
1466   movptr(scr_Reg, RTMSpinLoopCount);
1467 
1468   bind(SpinLoop);
1469   pause();
1470   decrementl(scr_Reg);
1471   jccb(Assembler::lessEqual, SpinExit);
1472   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1473   testptr(tmp_Reg, tmp_Reg);
1474   jccb(Assembler::notZero, SpinLoop);
1475 
1476   bind(SpinExit);
1477   jmp(retryLabel);
1478   bind(doneRetry);
1479   incrementl(retry_count_Reg); // clear z flag
1480 }
1481 
1482 // Use RTM for normal stack locks
1483 // Input: objReg (object to lock)
1484 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1485                                        Register retry_on_abort_count_Reg,
1486                                        RTMLockingCounters* stack_rtm_counters,
1487                                        Metadata* method_data, bool profile_rtm,
1488                                        Label& DONE_LABEL, Label& IsInflated) {
1489   assert(UseRTMForStackLocks, "why call this otherwise?");
1490   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1491   assert(tmpReg == rax, "");
1492   assert(scrReg == rdx, "");
1493   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1494 
1495   if (RTMRetryCount > 0) {
1496     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1497     bind(L_rtm_retry);
1498   }
1499   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1500   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1501   jcc(Assembler::notZero, IsInflated);
1502 
1503   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1504     Label L_noincrement;
1505     if (RTMTotalCountIncrRate > 1) {
1506       // tmpReg, scrReg and flags are killed
1507       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1508     }
1509     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1510     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1511     bind(L_noincrement);
1512   }
1513   xbegin(L_on_abort);
1514   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1515   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1516   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1517   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1518 
1519   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1520   if (UseRTMXendForLockBusy) {
1521     xend();
1522     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1523     jmp(L_decrement_retry);
1524   }
1525   else {
1526     xabort(0);
1527   }
1528   bind(L_on_abort);
1529   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1530     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1531   }
1532   bind(L_decrement_retry);
1533   if (RTMRetryCount > 0) {
1534     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1535     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1536   }
1537 }
1538 
1539 // Use RTM for inflating locks
1540 // inputs: objReg (object to lock)
1541 //         boxReg (on-stack box address (displaced header location) - KILLED)
1542 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1543 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1544                                           Register scrReg, Register retry_on_busy_count_Reg,
1545                                           Register retry_on_abort_count_Reg,
1546                                           RTMLockingCounters* rtm_counters,
1547                                           Metadata* method_data, bool profile_rtm,
1548                                           Label& DONE_LABEL) {
1549   assert(UseRTMLocking, "why call this otherwise?");
1550   assert(tmpReg == rax, "");
1551   assert(scrReg == rdx, "");
1552   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1553   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1554 
1555   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1556   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1557   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1558 
1559   if (RTMRetryCount > 0) {
1560     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1561     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1562     bind(L_rtm_retry);
1563   }
1564   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1565     Label L_noincrement;
1566     if (RTMTotalCountIncrRate > 1) {
1567       // tmpReg, scrReg and flags are killed
1568       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1569     }
1570     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1571     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1572     bind(L_noincrement);
1573   }
1574   xbegin(L_on_abort);
1575   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1576   movptr(tmpReg, Address(tmpReg, owner_offset));
1577   testptr(tmpReg, tmpReg);
1578   jcc(Assembler::zero, DONE_LABEL);
1579   if (UseRTMXendForLockBusy) {
1580     xend();
1581     jmp(L_decrement_retry);
1582   }
1583   else {
1584     xabort(0);
1585   }
1586   bind(L_on_abort);
1587   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1588   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1589     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1590   }
1591   if (RTMRetryCount > 0) {
1592     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1593     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1594   }
1595 
1596   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1597   testptr(tmpReg, tmpReg) ;
1598   jccb(Assembler::notZero, L_decrement_retry) ;
1599 
1600   // Appears unlocked - try to swing _owner from null to non-null.
1601   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1602 #ifdef _LP64
1603   Register threadReg = r15_thread;
1604 #else
1605   get_thread(scrReg);
1606   Register threadReg = scrReg;
1607 #endif
1608   if (os::is_MP()) {
1609     lock();
1610   }
1611   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1612 
1613   if (RTMRetryCount > 0) {
1614     // success done else retry
1615     jccb(Assembler::equal, DONE_LABEL) ;
1616     bind(L_decrement_retry);
1617     // Spin and retry if lock is busy.
1618     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1619   }
1620   else {
1621     bind(L_decrement_retry);
1622   }
1623 }
1624 
1625 #endif //  INCLUDE_RTM_OPT
1626 
1627 // Fast_Lock and Fast_Unlock used by C2
1628 
1629 // Because the transitions from emitted code to the runtime
1630 // monitorenter/exit helper stubs are so slow it's critical that
1631 // we inline both the stack-locking fast-path and the inflated fast path.
1632 //
1633 // See also: cmpFastLock and cmpFastUnlock.
1634 //
1635 // What follows is a specialized inline transliteration of the code
1636 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1637 // another option would be to emit TrySlowEnter and TrySlowExit methods
1638 // at startup-time.  These methods would accept arguments as
1639 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1640 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1641 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1642 // In practice, however, the # of lock sites is bounded and is usually small.
1643 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1644 // if the processor uses simple bimodal branch predictors keyed by EIP
1645 // Since the helper routines would be called from multiple synchronization
1646 // sites.
1647 //
1648 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1649 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1650 // to those specialized methods.  That'd give us a mostly platform-independent
1651 // implementation that the JITs could optimize and inline at their pleasure.
1652 // Done correctly, the only time we'd need to cross to native could would be
1653 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1654 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1655 // (b) explicit barriers or fence operations.
1656 //
1657 // TODO:
1658 //
1659 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1660 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1661 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1662 //    the lock operators would typically be faster than reifying Self.
1663 //
1664 // *  Ideally I'd define the primitives as:
1665 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1666 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1667 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1668 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1669 //    Furthermore the register assignments are overconstrained, possibly resulting in
1670 //    sub-optimal code near the synchronization site.
1671 //
1672 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1673 //    Alternately, use a better sp-proximity test.
1674 //
1675 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1676 //    Either one is sufficient to uniquely identify a thread.
1677 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1678 //
1679 // *  Intrinsify notify() and notifyAll() for the common cases where the
1680 //    object is locked by the calling thread but the waitlist is empty.
1681 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1682 //
1683 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1684 //    But beware of excessive branch density on AMD Opterons.
1685 //
1686 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1687 //    or failure of the fast-path.  If the fast-path fails then we pass
1688 //    control to the slow-path, typically in C.  In Fast_Lock and
1689 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1690 //    will emit a conditional branch immediately after the node.
1691 //    So we have branches to branches and lots of ICC.ZF games.
1692 //    Instead, it might be better to have C2 pass a "FailureLabel"
1693 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1694 //    will drop through the node.  ICC.ZF is undefined at exit.
1695 //    In the case of failure, the node will branch directly to the
1696 //    FailureLabel
1697 
1698 
1699 // obj: object to lock
1700 // box: on-stack box address (displaced header location) - KILLED
1701 // rax,: tmp -- KILLED
1702 // scr: tmp -- KILLED
1703 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1704                                Register scrReg, Register cx1Reg, Register cx2Reg,
1705                                BiasedLockingCounters* counters,
1706                                RTMLockingCounters* rtm_counters,
1707                                RTMLockingCounters* stack_rtm_counters,
1708                                Metadata* method_data,
1709                                bool use_rtm, bool profile_rtm) {
1710   // Ensure the register assignments are disjoint
1711   assert(tmpReg == rax, "");
1712 
1713   if (use_rtm) {
1714     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1715   } else {
1716     assert(cx1Reg == noreg, "");
1717     assert(cx2Reg == noreg, "");
1718     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1719   }
1720 
1721   if (counters != NULL) {
1722     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1723   }
1724   if (EmitSync & 1) {
1725       // set box->dhw = markOopDesc::unused_mark()
1726       // Force all sync thru slow-path: slow_enter() and slow_exit()
1727       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1728       cmpptr (rsp, (int32_t)NULL_WORD);
1729   } else {
1730     // Possible cases that we'll encounter in fast_lock
1731     // ------------------------------------------------
1732     // * Inflated
1733     //    -- unlocked
1734     //    -- Locked
1735     //       = by self
1736     //       = by other
1737     // * biased
1738     //    -- by Self
1739     //    -- by other
1740     // * neutral
1741     // * stack-locked
1742     //    -- by self
1743     //       = sp-proximity test hits
1744     //       = sp-proximity test generates false-negative
1745     //    -- by other
1746     //
1747 
1748     Label IsInflated, DONE_LABEL;
1749 
1750     // it's stack-locked, biased or neutral
1751     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1752     // order to reduce the number of conditional branches in the most common cases.
1753     // Beware -- there's a subtle invariant that fetch of the markword
1754     // at [FETCH], below, will never observe a biased encoding (*101b).
1755     // If this invariant is not held we risk exclusion (safety) failure.
1756     if (UseBiasedLocking && !UseOptoBiasInlining) {
1757       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1758     }
1759 
1760 #if INCLUDE_RTM_OPT
1761     if (UseRTMForStackLocks && use_rtm) {
1762       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1763                         stack_rtm_counters, method_data, profile_rtm,
1764                         DONE_LABEL, IsInflated);
1765     }
1766 #endif // INCLUDE_RTM_OPT
1767 
1768     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1769     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1770     jccb(Assembler::notZero, IsInflated);
1771 
1772     // Attempt stack-locking ...
1773     orptr (tmpReg, markOopDesc::unlocked_value);
1774     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1775     if (os::is_MP()) {
1776       lock();
1777     }
1778     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1779     if (counters != NULL) {
1780       cond_inc32(Assembler::equal,
1781                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1782     }
1783     jcc(Assembler::equal, DONE_LABEL);           // Success
1784 
1785     // Recursive locking.
1786     // The object is stack-locked: markword contains stack pointer to BasicLock.
1787     // Locked by current thread if difference with current SP is less than one page.
1788     subptr(tmpReg, rsp);
1789     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1790     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1791     movptr(Address(boxReg, 0), tmpReg);
1792     if (counters != NULL) {
1793       cond_inc32(Assembler::equal,
1794                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1795     }
1796     jmp(DONE_LABEL);
1797 
1798     bind(IsInflated);
1799     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1800 
1801 #if INCLUDE_RTM_OPT
1802     // Use the same RTM locking code in 32- and 64-bit VM.
1803     if (use_rtm) {
1804       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1805                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1806     } else {
1807 #endif // INCLUDE_RTM_OPT
1808 
1809 #ifndef _LP64
1810     // The object is inflated.
1811 
1812     // boxReg refers to the on-stack BasicLock in the current frame.
1813     // We'd like to write:
1814     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1815     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1816     // additional latency as we have another ST in the store buffer that must drain.
1817 
1818     if (EmitSync & 8192) {
1819        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1820        get_thread (scrReg);
1821        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1822        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1823        if (os::is_MP()) {
1824          lock();
1825        }
1826        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1827     } else
1828     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1829        // register juggle because we need tmpReg for cmpxchgptr below
1830        movptr(scrReg, boxReg);
1831        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1832 
1833        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1834        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1835           // prefetchw [eax + Offset(_owner)-2]
1836           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1837        }
1838 
1839        if ((EmitSync & 64) == 0) {
1840          // Optimistic form: consider XORL tmpReg,tmpReg
1841          movptr(tmpReg, NULL_WORD);
1842        } else {
1843          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1844          // Test-And-CAS instead of CAS
1845          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1846          testptr(tmpReg, tmpReg);                   // Locked ?
1847          jccb  (Assembler::notZero, DONE_LABEL);
1848        }
1849 
1850        // Appears unlocked - try to swing _owner from null to non-null.
1851        // Ideally, I'd manifest "Self" with get_thread and then attempt
1852        // to CAS the register containing Self into m->Owner.
1853        // But we don't have enough registers, so instead we can either try to CAS
1854        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1855        // we later store "Self" into m->Owner.  Transiently storing a stack address
1856        // (rsp or the address of the box) into  m->owner is harmless.
1857        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1858        if (os::is_MP()) {
1859          lock();
1860        }
1861        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1862        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1863        // If we weren't able to swing _owner from NULL to the BasicLock
1864        // then take the slow path.
1865        jccb  (Assembler::notZero, DONE_LABEL);
1866        // update _owner from BasicLock to thread
1867        get_thread (scrReg);                    // beware: clobbers ICCs
1868        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1869        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1870 
1871        // If the CAS fails we can either retry or pass control to the slow-path.
1872        // We use the latter tactic.
1873        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1874        // If the CAS was successful ...
1875        //   Self has acquired the lock
1876        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1877        // Intentional fall-through into DONE_LABEL ...
1878     } else {
1879        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1880        movptr(boxReg, tmpReg);
1881 
1882        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1883        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1884           // prefetchw [eax + Offset(_owner)-2]
1885           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1886        }
1887 
1888        if ((EmitSync & 64) == 0) {
1889          // Optimistic form
1890          xorptr  (tmpReg, tmpReg);
1891        } else {
1892          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1893          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1894          testptr(tmpReg, tmpReg);                   // Locked ?
1895          jccb  (Assembler::notZero, DONE_LABEL);
1896        }
1897 
1898        // Appears unlocked - try to swing _owner from null to non-null.
1899        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1900        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1901        get_thread (scrReg);
1902        if (os::is_MP()) {
1903          lock();
1904        }
1905        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1906 
1907        // If the CAS fails we can either retry or pass control to the slow-path.
1908        // We use the latter tactic.
1909        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1910        // If the CAS was successful ...
1911        //   Self has acquired the lock
1912        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1913        // Intentional fall-through into DONE_LABEL ...
1914     }
1915 #else // _LP64
1916     // It's inflated
1917     movq(scrReg, tmpReg);
1918     xorq(tmpReg, tmpReg);
1919 
1920     if (os::is_MP()) {
1921       lock();
1922     }
1923     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1924     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1925     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1926     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1927     // Intentional fall-through into DONE_LABEL ...
1928     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1929 #endif // _LP64
1930 #if INCLUDE_RTM_OPT
1931     } // use_rtm()
1932 #endif
1933     // DONE_LABEL is a hot target - we'd really like to place it at the
1934     // start of cache line by padding with NOPs.
1935     // See the AMD and Intel software optimization manuals for the
1936     // most efficient "long" NOP encodings.
1937     // Unfortunately none of our alignment mechanisms suffice.
1938     bind(DONE_LABEL);
1939 
1940     // At DONE_LABEL the icc ZFlag is set as follows ...
1941     // Fast_Unlock uses the same protocol.
1942     // ZFlag == 1 -> Success
1943     // ZFlag == 0 -> Failure - force control through the slow-path
1944   }
1945 }
1946 
1947 // obj: object to unlock
1948 // box: box address (displaced header location), killed.  Must be EAX.
1949 // tmp: killed, cannot be obj nor box.
1950 //
1951 // Some commentary on balanced locking:
1952 //
1953 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1954 // Methods that don't have provably balanced locking are forced to run in the
1955 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1956 // The interpreter provides two properties:
1957 // I1:  At return-time the interpreter automatically and quietly unlocks any
1958 //      objects acquired the current activation (frame).  Recall that the
1959 //      interpreter maintains an on-stack list of locks currently held by
1960 //      a frame.
1961 // I2:  If a method attempts to unlock an object that is not held by the
1962 //      the frame the interpreter throws IMSX.
1963 //
1964 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1965 // B() doesn't have provably balanced locking so it runs in the interpreter.
1966 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1967 // is still locked by A().
1968 //
1969 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1970 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1971 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1972 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1973 // Arguably given that the spec legislates the JNI case as undefined our implementation
1974 // could reasonably *avoid* checking owner in Fast_Unlock().
1975 // In the interest of performance we elide m->Owner==Self check in unlock.
1976 // A perfectly viable alternative is to elide the owner check except when
1977 // Xcheck:jni is enabled.
1978 
1979 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1980   assert(boxReg == rax, "");
1981   assert_different_registers(objReg, boxReg, tmpReg);
1982 
1983   if (EmitSync & 4) {
1984     // Disable - inhibit all inlining.  Force control through the slow-path
1985     cmpptr (rsp, 0);
1986   } else {
1987     Label DONE_LABEL, Stacked, CheckSucc;
1988 
1989     // Critically, the biased locking test must have precedence over
1990     // and appear before the (box->dhw == 0) recursive stack-lock test.
1991     if (UseBiasedLocking && !UseOptoBiasInlining) {
1992        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1993     }
1994 
1995 #if INCLUDE_RTM_OPT
1996     if (UseRTMForStackLocks && use_rtm) {
1997       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1998       Label L_regular_unlock;
1999       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
2000       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2001       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2002       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2003       xend();                                       // otherwise end...
2004       jmp(DONE_LABEL);                              // ... and we're done
2005       bind(L_regular_unlock);
2006     }
2007 #endif
2008 
2009     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2010     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2011     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2012     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2013     jccb  (Assembler::zero, Stacked);
2014 
2015     // It's inflated.
2016 #if INCLUDE_RTM_OPT
2017     if (use_rtm) {
2018       Label L_regular_inflated_unlock;
2019       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2020       movptr(boxReg, Address(tmpReg, owner_offset));
2021       testptr(boxReg, boxReg);
2022       jccb(Assembler::notZero, L_regular_inflated_unlock);
2023       xend();
2024       jmpb(DONE_LABEL);
2025       bind(L_regular_inflated_unlock);
2026     }
2027 #endif
2028 
2029     // Despite our balanced locking property we still check that m->_owner == Self
2030     // as java routines or native JNI code called by this thread might
2031     // have released the lock.
2032     // Refer to the comments in synchronizer.cpp for how we might encode extra
2033     // state in _succ so we can avoid fetching EntryList|cxq.
2034     //
2035     // I'd like to add more cases in fast_lock() and fast_unlock() --
2036     // such as recursive enter and exit -- but we have to be wary of
2037     // I$ bloat, T$ effects and BP$ effects.
2038     //
2039     // If there's no contention try a 1-0 exit.  That is, exit without
2040     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2041     // we detect and recover from the race that the 1-0 exit admits.
2042     //
2043     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2044     // before it STs null into _owner, releasing the lock.  Updates
2045     // to data protected by the critical section must be visible before
2046     // we drop the lock (and thus before any other thread could acquire
2047     // the lock and observe the fields protected by the lock).
2048     // IA32's memory-model is SPO, so STs are ordered with respect to
2049     // each other and there's no need for an explicit barrier (fence).
2050     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2051 #ifndef _LP64
2052     get_thread (boxReg);
2053     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2054       // prefetchw [ebx + Offset(_owner)-2]
2055       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2056     }
2057 
2058     // Note that we could employ various encoding schemes to reduce
2059     // the number of loads below (currently 4) to just 2 or 3.
2060     // Refer to the comments in synchronizer.cpp.
2061     // In practice the chain of fetches doesn't seem to impact performance, however.
2062     xorptr(boxReg, boxReg);
2063     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2064        // Attempt to reduce branch density - AMD's branch predictor.
2065        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2066        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2067        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2068        jccb  (Assembler::notZero, DONE_LABEL);
2069        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2070        jmpb  (DONE_LABEL);
2071     } else {
2072        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2073        jccb  (Assembler::notZero, DONE_LABEL);
2074        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2075        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2076        jccb  (Assembler::notZero, CheckSucc);
2077        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2078        jmpb  (DONE_LABEL);
2079     }
2080 
2081     // The Following code fragment (EmitSync & 65536) improves the performance of
2082     // contended applications and contended synchronization microbenchmarks.
2083     // Unfortunately the emission of the code - even though not executed - causes regressions
2084     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2085     // with an equal number of never-executed NOPs results in the same regression.
2086     // We leave it off by default.
2087 
2088     if ((EmitSync & 65536) != 0) {
2089        Label LSuccess, LGoSlowPath ;
2090 
2091        bind  (CheckSucc);
2092 
2093        // Optional pre-test ... it's safe to elide this
2094        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2095        jccb(Assembler::zero, LGoSlowPath);
2096 
2097        // We have a classic Dekker-style idiom:
2098        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2099        // There are a number of ways to implement the barrier:
2100        // (1) lock:andl &m->_owner, 0
2101        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2102        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2103        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2104        // (2) If supported, an explicit MFENCE is appealing.
2105        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2106        //     particularly if the write-buffer is full as might be the case if
2107        //     if stores closely precede the fence or fence-equivalent instruction.
2108        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2109        //     as the situation has changed with Nehalem and Shanghai.
2110        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2111        //     The $lines underlying the top-of-stack should be in M-state.
2112        //     The locked add instruction is serializing, of course.
2113        // (4) Use xchg, which is serializing
2114        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2115        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2116        //     The integer condition codes will tell us if succ was 0.
2117        //     Since _succ and _owner should reside in the same $line and
2118        //     we just stored into _owner, it's likely that the $line
2119        //     remains in M-state for the lock:orl.
2120        //
2121        // We currently use (3), although it's likely that switching to (2)
2122        // is correct for the future.
2123 
2124        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2125        if (os::is_MP()) {
2126          lock(); addptr(Address(rsp, 0), 0);
2127        }
2128        // Ratify _succ remains non-null
2129        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2130        jccb  (Assembler::notZero, LSuccess);
2131 
2132        xorptr(boxReg, boxReg);                  // box is really EAX
2133        if (os::is_MP()) { lock(); }
2134        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2135        // There's no successor so we tried to regrab the lock with the
2136        // placeholder value. If that didn't work, then another thread
2137        // grabbed the lock so we're done (and exit was a success).
2138        jccb  (Assembler::notEqual, LSuccess);
2139        // Since we're low on registers we installed rsp as a placeholding in _owner.
2140        // Now install Self over rsp.  This is safe as we're transitioning from
2141        // non-null to non=null
2142        get_thread (boxReg);
2143        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2144        // Intentional fall-through into LGoSlowPath ...
2145 
2146        bind  (LGoSlowPath);
2147        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2148        jmpb  (DONE_LABEL);
2149 
2150        bind  (LSuccess);
2151        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2152        jmpb  (DONE_LABEL);
2153     }
2154 
2155     bind (Stacked);
2156     // It's not inflated and it's not recursively stack-locked and it's not biased.
2157     // It must be stack-locked.
2158     // Try to reset the header to displaced header.
2159     // The "box" value on the stack is stable, so we can reload
2160     // and be assured we observe the same value as above.
2161     movptr(tmpReg, Address(boxReg, 0));
2162     if (os::is_MP()) {
2163       lock();
2164     }
2165     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2166     // Intention fall-thru into DONE_LABEL
2167 
2168     // DONE_LABEL is a hot target - we'd really like to place it at the
2169     // start of cache line by padding with NOPs.
2170     // See the AMD and Intel software optimization manuals for the
2171     // most efficient "long" NOP encodings.
2172     // Unfortunately none of our alignment mechanisms suffice.
2173     if ((EmitSync & 65536) == 0) {
2174        bind (CheckSucc);
2175     }
2176 #else // _LP64
2177     // It's inflated
2178     if (EmitSync & 1024) {
2179       // Emit code to check that _owner == Self
2180       // We could fold the _owner test into subsequent code more efficiently
2181       // than using a stand-alone check, but since _owner checking is off by
2182       // default we don't bother. We also might consider predicating the
2183       // _owner==Self check on Xcheck:jni or running on a debug build.
2184       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2185       xorptr(boxReg, r15_thread);
2186     } else {
2187       xorptr(boxReg, boxReg);
2188     }
2189     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2190     jccb  (Assembler::notZero, DONE_LABEL);
2191     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2192     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2193     jccb  (Assembler::notZero, CheckSucc);
2194     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2195     jmpb  (DONE_LABEL);
2196 
2197     if ((EmitSync & 65536) == 0) {
2198       // Try to avoid passing control into the slow_path ...
2199       Label LSuccess, LGoSlowPath ;
2200       bind  (CheckSucc);
2201 
2202       // The following optional optimization can be elided if necessary
2203       // Effectively: if (succ == null) goto SlowPath
2204       // The code reduces the window for a race, however,
2205       // and thus benefits performance.
2206       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2207       jccb  (Assembler::zero, LGoSlowPath);
2208 
2209       xorptr(boxReg, boxReg);
2210       if ((EmitSync & 16) && os::is_MP()) {
2211         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2212       } else {
2213         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2214         if (os::is_MP()) {
2215           // Memory barrier/fence
2216           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2217           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2218           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2219           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2220           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2221           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2222           lock(); addl(Address(rsp, 0), 0);
2223         }
2224       }
2225       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2226       jccb  (Assembler::notZero, LSuccess);
2227 
2228       // Rare inopportune interleaving - race.
2229       // The successor vanished in the small window above.
2230       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2231       // We need to ensure progress and succession.
2232       // Try to reacquire the lock.
2233       // If that fails then the new owner is responsible for succession and this
2234       // thread needs to take no further action and can exit via the fast path (success).
2235       // If the re-acquire succeeds then pass control into the slow path.
2236       // As implemented, this latter mode is horrible because we generated more
2237       // coherence traffic on the lock *and* artifically extended the critical section
2238       // length while by virtue of passing control into the slow path.
2239 
2240       // box is really RAX -- the following CMPXCHG depends on that binding
2241       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2242       if (os::is_MP()) { lock(); }
2243       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2244       // There's no successor so we tried to regrab the lock.
2245       // If that didn't work, then another thread grabbed the
2246       // lock so we're done (and exit was a success).
2247       jccb  (Assembler::notEqual, LSuccess);
2248       // Intentional fall-through into slow-path
2249 
2250       bind  (LGoSlowPath);
2251       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2252       jmpb  (DONE_LABEL);
2253 
2254       bind  (LSuccess);
2255       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2256       jmpb  (DONE_LABEL);
2257     }
2258 
2259     bind  (Stacked);
2260     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2261     if (os::is_MP()) { lock(); }
2262     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2263 
2264     if (EmitSync & 65536) {
2265        bind (CheckSucc);
2266     }
2267 #endif
2268     bind(DONE_LABEL);
2269   }
2270 }
2271 #endif // COMPILER2
2272 
2273 void MacroAssembler::c2bool(Register x) {
2274   // implements x == 0 ? 0 : 1
2275   // note: must only look at least-significant byte of x
2276   //       since C-style booleans are stored in one byte
2277   //       only! (was bug)
2278   andl(x, 0xFF);
2279   setb(Assembler::notZero, x);
2280 }
2281 
2282 // Wouldn't need if AddressLiteral version had new name
2283 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2284   Assembler::call(L, rtype);
2285 }
2286 
2287 void MacroAssembler::call(Register entry) {
2288   Assembler::call(entry);
2289 }
2290 
2291 void MacroAssembler::call(AddressLiteral entry) {
2292   if (reachable(entry)) {
2293     Assembler::call_literal(entry.target(), entry.rspec());
2294   } else {
2295     lea(rscratch1, entry);
2296     Assembler::call(rscratch1);
2297   }
2298 }
2299 
2300 void MacroAssembler::ic_call(address entry, jint method_index) {
2301   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2302   movptr(rax, (intptr_t)Universe::non_oop_word());
2303   call(AddressLiteral(entry, rh));
2304 }
2305 
2306 // Implementation of call_VM versions
2307 
2308 void MacroAssembler::call_VM(Register oop_result,
2309                              address entry_point,
2310                              bool check_exceptions) {
2311   Label C, E;
2312   call(C, relocInfo::none);
2313   jmp(E);
2314 
2315   bind(C);
2316   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2317   ret(0);
2318 
2319   bind(E);
2320 }
2321 
2322 void MacroAssembler::call_VM(Register oop_result,
2323                              address entry_point,
2324                              Register arg_1,
2325                              bool check_exceptions) {
2326   Label C, E;
2327   call(C, relocInfo::none);
2328   jmp(E);
2329 
2330   bind(C);
2331   pass_arg1(this, arg_1);
2332   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2333   ret(0);
2334 
2335   bind(E);
2336 }
2337 
2338 void MacroAssembler::call_VM(Register oop_result,
2339                              address entry_point,
2340                              Register arg_1,
2341                              Register arg_2,
2342                              bool check_exceptions) {
2343   Label C, E;
2344   call(C, relocInfo::none);
2345   jmp(E);
2346 
2347   bind(C);
2348 
2349   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2350 
2351   pass_arg2(this, arg_2);
2352   pass_arg1(this, arg_1);
2353   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2354   ret(0);
2355 
2356   bind(E);
2357 }
2358 
2359 void MacroAssembler::call_VM(Register oop_result,
2360                              address entry_point,
2361                              Register arg_1,
2362                              Register arg_2,
2363                              Register arg_3,
2364                              bool check_exceptions) {
2365   Label C, E;
2366   call(C, relocInfo::none);
2367   jmp(E);
2368 
2369   bind(C);
2370 
2371   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2372   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2373   pass_arg3(this, arg_3);
2374 
2375   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2376   pass_arg2(this, arg_2);
2377 
2378   pass_arg1(this, arg_1);
2379   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2380   ret(0);
2381 
2382   bind(E);
2383 }
2384 
2385 void MacroAssembler::call_VM(Register oop_result,
2386                              Register last_java_sp,
2387                              address entry_point,
2388                              int number_of_arguments,
2389                              bool check_exceptions) {
2390   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2391   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2392 }
2393 
2394 void MacroAssembler::call_VM(Register oop_result,
2395                              Register last_java_sp,
2396                              address entry_point,
2397                              Register arg_1,
2398                              bool check_exceptions) {
2399   pass_arg1(this, arg_1);
2400   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2401 }
2402 
2403 void MacroAssembler::call_VM(Register oop_result,
2404                              Register last_java_sp,
2405                              address entry_point,
2406                              Register arg_1,
2407                              Register arg_2,
2408                              bool check_exceptions) {
2409 
2410   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2411   pass_arg2(this, arg_2);
2412   pass_arg1(this, arg_1);
2413   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2414 }
2415 
2416 void MacroAssembler::call_VM(Register oop_result,
2417                              Register last_java_sp,
2418                              address entry_point,
2419                              Register arg_1,
2420                              Register arg_2,
2421                              Register arg_3,
2422                              bool check_exceptions) {
2423   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2424   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2425   pass_arg3(this, arg_3);
2426   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2427   pass_arg2(this, arg_2);
2428   pass_arg1(this, arg_1);
2429   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2430 }
2431 
2432 void MacroAssembler::super_call_VM(Register oop_result,
2433                                    Register last_java_sp,
2434                                    address entry_point,
2435                                    int number_of_arguments,
2436                                    bool check_exceptions) {
2437   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2438   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2439 }
2440 
2441 void MacroAssembler::super_call_VM(Register oop_result,
2442                                    Register last_java_sp,
2443                                    address entry_point,
2444                                    Register arg_1,
2445                                    bool check_exceptions) {
2446   pass_arg1(this, arg_1);
2447   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2448 }
2449 
2450 void MacroAssembler::super_call_VM(Register oop_result,
2451                                    Register last_java_sp,
2452                                    address entry_point,
2453                                    Register arg_1,
2454                                    Register arg_2,
2455                                    bool check_exceptions) {
2456 
2457   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2458   pass_arg2(this, arg_2);
2459   pass_arg1(this, arg_1);
2460   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2461 }
2462 
2463 void MacroAssembler::super_call_VM(Register oop_result,
2464                                    Register last_java_sp,
2465                                    address entry_point,
2466                                    Register arg_1,
2467                                    Register arg_2,
2468                                    Register arg_3,
2469                                    bool check_exceptions) {
2470   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2471   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2472   pass_arg3(this, arg_3);
2473   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2474   pass_arg2(this, arg_2);
2475   pass_arg1(this, arg_1);
2476   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2477 }
2478 
2479 void MacroAssembler::call_VM_base(Register oop_result,
2480                                   Register java_thread,
2481                                   Register last_java_sp,
2482                                   address  entry_point,
2483                                   int      number_of_arguments,
2484                                   bool     check_exceptions) {
2485   // determine java_thread register
2486   if (!java_thread->is_valid()) {
2487 #ifdef _LP64
2488     java_thread = r15_thread;
2489 #else
2490     java_thread = rdi;
2491     get_thread(java_thread);
2492 #endif // LP64
2493   }
2494   // determine last_java_sp register
2495   if (!last_java_sp->is_valid()) {
2496     last_java_sp = rsp;
2497   }
2498   // debugging support
2499   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2500   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2501 #ifdef ASSERT
2502   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2503   // r12 is the heapbase.
2504   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2505 #endif // ASSERT
2506 
2507   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2508   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2509 
2510   // push java thread (becomes first argument of C function)
2511 
2512   NOT_LP64(push(java_thread); number_of_arguments++);
2513   LP64_ONLY(mov(c_rarg0, r15_thread));
2514 
2515   // set last Java frame before call
2516   assert(last_java_sp != rbp, "can't use ebp/rbp");
2517 
2518   // Only interpreter should have to set fp
2519   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2520 
2521   // do the call, remove parameters
2522   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2523 
2524   // restore the thread (cannot use the pushed argument since arguments
2525   // may be overwritten by C code generated by an optimizing compiler);
2526   // however can use the register value directly if it is callee saved.
2527   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2528     // rdi & rsi (also r15) are callee saved -> nothing to do
2529 #ifdef ASSERT
2530     guarantee(java_thread != rax, "change this code");
2531     push(rax);
2532     { Label L;
2533       get_thread(rax);
2534       cmpptr(java_thread, rax);
2535       jcc(Assembler::equal, L);
2536       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2537       bind(L);
2538     }
2539     pop(rax);
2540 #endif
2541   } else {
2542     get_thread(java_thread);
2543   }
2544   // reset last Java frame
2545   // Only interpreter should have to clear fp
2546   reset_last_Java_frame(java_thread, true);
2547 
2548    // C++ interp handles this in the interpreter
2549   check_and_handle_popframe(java_thread);
2550   check_and_handle_earlyret(java_thread);
2551 
2552   if (check_exceptions) {
2553     // check for pending exceptions (java_thread is set upon return)
2554     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2555 #ifndef _LP64
2556     jump_cc(Assembler::notEqual,
2557             RuntimeAddress(StubRoutines::forward_exception_entry()));
2558 #else
2559     // This used to conditionally jump to forward_exception however it is
2560     // possible if we relocate that the branch will not reach. So we must jump
2561     // around so we can always reach
2562 
2563     Label ok;
2564     jcc(Assembler::equal, ok);
2565     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2566     bind(ok);
2567 #endif // LP64
2568   }
2569 
2570   // get oop result if there is one and reset the value in the thread
2571   if (oop_result->is_valid()) {
2572     get_vm_result(oop_result, java_thread);
2573   }
2574 }
2575 
2576 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2577 
2578   // Calculate the value for last_Java_sp
2579   // somewhat subtle. call_VM does an intermediate call
2580   // which places a return address on the stack just under the
2581   // stack pointer as the user finsihed with it. This allows
2582   // use to retrieve last_Java_pc from last_Java_sp[-1].
2583   // On 32bit we then have to push additional args on the stack to accomplish
2584   // the actual requested call. On 64bit call_VM only can use register args
2585   // so the only extra space is the return address that call_VM created.
2586   // This hopefully explains the calculations here.
2587 
2588 #ifdef _LP64
2589   // We've pushed one address, correct last_Java_sp
2590   lea(rax, Address(rsp, wordSize));
2591 #else
2592   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2593 #endif // LP64
2594 
2595   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2596 
2597 }
2598 
2599 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2600 void MacroAssembler::call_VM_leaf0(address entry_point) {
2601   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2602 }
2603 
2604 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2605   call_VM_leaf_base(entry_point, number_of_arguments);
2606 }
2607 
2608 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2609   pass_arg0(this, arg_0);
2610   call_VM_leaf(entry_point, 1);
2611 }
2612 
2613 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2614 
2615   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2616   pass_arg1(this, arg_1);
2617   pass_arg0(this, arg_0);
2618   call_VM_leaf(entry_point, 2);
2619 }
2620 
2621 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2622   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2623   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2624   pass_arg2(this, arg_2);
2625   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2626   pass_arg1(this, arg_1);
2627   pass_arg0(this, arg_0);
2628   call_VM_leaf(entry_point, 3);
2629 }
2630 
2631 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2632   pass_arg0(this, arg_0);
2633   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2634 }
2635 
2636 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2637 
2638   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2639   pass_arg1(this, arg_1);
2640   pass_arg0(this, arg_0);
2641   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2642 }
2643 
2644 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2645   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2646   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2647   pass_arg2(this, arg_2);
2648   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2649   pass_arg1(this, arg_1);
2650   pass_arg0(this, arg_0);
2651   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2652 }
2653 
2654 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2655   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2656   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2657   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2658   pass_arg3(this, arg_3);
2659   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2660   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2661   pass_arg2(this, arg_2);
2662   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2663   pass_arg1(this, arg_1);
2664   pass_arg0(this, arg_0);
2665   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2666 }
2667 
2668 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2669   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2670   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2671   verify_oop(oop_result, "broken oop in call_VM_base");
2672 }
2673 
2674 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2675   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2676   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2677 }
2678 
2679 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2680 }
2681 
2682 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2683 }
2684 
2685 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2686   if (reachable(src1)) {
2687     cmpl(as_Address(src1), imm);
2688   } else {
2689     lea(rscratch1, src1);
2690     cmpl(Address(rscratch1, 0), imm);
2691   }
2692 }
2693 
2694 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2695   assert(!src2.is_lval(), "use cmpptr");
2696   if (reachable(src2)) {
2697     cmpl(src1, as_Address(src2));
2698   } else {
2699     lea(rscratch1, src2);
2700     cmpl(src1, Address(rscratch1, 0));
2701   }
2702 }
2703 
2704 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2705   Assembler::cmpl(src1, imm);
2706 }
2707 
2708 void MacroAssembler::cmp32(Register src1, Address src2) {
2709   Assembler::cmpl(src1, src2);
2710 }
2711 
2712 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2713   ucomisd(opr1, opr2);
2714 
2715   Label L;
2716   if (unordered_is_less) {
2717     movl(dst, -1);
2718     jcc(Assembler::parity, L);
2719     jcc(Assembler::below , L);
2720     movl(dst, 0);
2721     jcc(Assembler::equal , L);
2722     increment(dst);
2723   } else { // unordered is greater
2724     movl(dst, 1);
2725     jcc(Assembler::parity, L);
2726     jcc(Assembler::above , L);
2727     movl(dst, 0);
2728     jcc(Assembler::equal , L);
2729     decrementl(dst);
2730   }
2731   bind(L);
2732 }
2733 
2734 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2735   ucomiss(opr1, opr2);
2736 
2737   Label L;
2738   if (unordered_is_less) {
2739     movl(dst, -1);
2740     jcc(Assembler::parity, L);
2741     jcc(Assembler::below , L);
2742     movl(dst, 0);
2743     jcc(Assembler::equal , L);
2744     increment(dst);
2745   } else { // unordered is greater
2746     movl(dst, 1);
2747     jcc(Assembler::parity, L);
2748     jcc(Assembler::above , L);
2749     movl(dst, 0);
2750     jcc(Assembler::equal , L);
2751     decrementl(dst);
2752   }
2753   bind(L);
2754 }
2755 
2756 
2757 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2758   if (reachable(src1)) {
2759     cmpb(as_Address(src1), imm);
2760   } else {
2761     lea(rscratch1, src1);
2762     cmpb(Address(rscratch1, 0), imm);
2763   }
2764 }
2765 
2766 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2767 #ifdef _LP64
2768   if (src2.is_lval()) {
2769     movptr(rscratch1, src2);
2770     Assembler::cmpq(src1, rscratch1);
2771   } else if (reachable(src2)) {
2772     cmpq(src1, as_Address(src2));
2773   } else {
2774     lea(rscratch1, src2);
2775     Assembler::cmpq(src1, Address(rscratch1, 0));
2776   }
2777 #else
2778   if (src2.is_lval()) {
2779     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2780   } else {
2781     cmpl(src1, as_Address(src2));
2782   }
2783 #endif // _LP64
2784 }
2785 
2786 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2787   assert(src2.is_lval(), "not a mem-mem compare");
2788 #ifdef _LP64
2789   // moves src2's literal address
2790   movptr(rscratch1, src2);
2791   Assembler::cmpq(src1, rscratch1);
2792 #else
2793   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2794 #endif // _LP64
2795 }
2796 
2797 void MacroAssembler::cmpoop(Register src1, Register src2) {
2798   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2799   bs->obj_equals(this, src1, src2);
2800 }
2801 
2802 void MacroAssembler::cmpoop(Register src1, Address src2) {
2803   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2804   bs->obj_equals(this, src1, src2);
2805 }
2806 
2807 #ifdef _LP64
2808 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2809   movoop(rscratch1, src2);
2810   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2811   bs->obj_equals(this, src1, rscratch1);
2812 }
2813 #endif
2814 
2815 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2816   if (reachable(adr)) {
2817     if (os::is_MP())
2818       lock();
2819     cmpxchgptr(reg, as_Address(adr));
2820   } else {
2821     lea(rscratch1, adr);
2822     if (os::is_MP())
2823       lock();
2824     cmpxchgptr(reg, Address(rscratch1, 0));
2825   }
2826 }
2827 
2828 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2829   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2830 }
2831 
2832 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2833   if (reachable(src)) {
2834     Assembler::comisd(dst, as_Address(src));
2835   } else {
2836     lea(rscratch1, src);
2837     Assembler::comisd(dst, Address(rscratch1, 0));
2838   }
2839 }
2840 
2841 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2842   if (reachable(src)) {
2843     Assembler::comiss(dst, as_Address(src));
2844   } else {
2845     lea(rscratch1, src);
2846     Assembler::comiss(dst, Address(rscratch1, 0));
2847   }
2848 }
2849 
2850 
2851 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2852   Condition negated_cond = negate_condition(cond);
2853   Label L;
2854   jcc(negated_cond, L);
2855   pushf(); // Preserve flags
2856   atomic_incl(counter_addr);
2857   popf();
2858   bind(L);
2859 }
2860 
2861 int MacroAssembler::corrected_idivl(Register reg) {
2862   // Full implementation of Java idiv and irem; checks for
2863   // special case as described in JVM spec., p.243 & p.271.
2864   // The function returns the (pc) offset of the idivl
2865   // instruction - may be needed for implicit exceptions.
2866   //
2867   //         normal case                           special case
2868   //
2869   // input : rax,: dividend                         min_int
2870   //         reg: divisor   (may not be rax,/rdx)   -1
2871   //
2872   // output: rax,: quotient  (= rax, idiv reg)       min_int
2873   //         rdx: remainder (= rax, irem reg)       0
2874   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2875   const int min_int = 0x80000000;
2876   Label normal_case, special_case;
2877 
2878   // check for special case
2879   cmpl(rax, min_int);
2880   jcc(Assembler::notEqual, normal_case);
2881   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2882   cmpl(reg, -1);
2883   jcc(Assembler::equal, special_case);
2884 
2885   // handle normal case
2886   bind(normal_case);
2887   cdql();
2888   int idivl_offset = offset();
2889   idivl(reg);
2890 
2891   // normal and special case exit
2892   bind(special_case);
2893 
2894   return idivl_offset;
2895 }
2896 
2897 
2898 
2899 void MacroAssembler::decrementl(Register reg, int value) {
2900   if (value == min_jint) {subl(reg, value) ; return; }
2901   if (value <  0) { incrementl(reg, -value); return; }
2902   if (value == 0) {                        ; return; }
2903   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2904   /* else */      { subl(reg, value)       ; return; }
2905 }
2906 
2907 void MacroAssembler::decrementl(Address dst, int value) {
2908   if (value == min_jint) {subl(dst, value) ; return; }
2909   if (value <  0) { incrementl(dst, -value); return; }
2910   if (value == 0) {                        ; return; }
2911   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2912   /* else */      { subl(dst, value)       ; return; }
2913 }
2914 
2915 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2916   assert (shift_value > 0, "illegal shift value");
2917   Label _is_positive;
2918   testl (reg, reg);
2919   jcc (Assembler::positive, _is_positive);
2920   int offset = (1 << shift_value) - 1 ;
2921 
2922   if (offset == 1) {
2923     incrementl(reg);
2924   } else {
2925     addl(reg, offset);
2926   }
2927 
2928   bind (_is_positive);
2929   sarl(reg, shift_value);
2930 }
2931 
2932 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2933   if (reachable(src)) {
2934     Assembler::divsd(dst, as_Address(src));
2935   } else {
2936     lea(rscratch1, src);
2937     Assembler::divsd(dst, Address(rscratch1, 0));
2938   }
2939 }
2940 
2941 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2942   if (reachable(src)) {
2943     Assembler::divss(dst, as_Address(src));
2944   } else {
2945     lea(rscratch1, src);
2946     Assembler::divss(dst, Address(rscratch1, 0));
2947   }
2948 }
2949 
2950 // !defined(COMPILER2) is because of stupid core builds
2951 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2952 void MacroAssembler::empty_FPU_stack() {
2953   if (VM_Version::supports_mmx()) {
2954     emms();
2955   } else {
2956     for (int i = 8; i-- > 0; ) ffree(i);
2957   }
2958 }
2959 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2960 
2961 
2962 void MacroAssembler::enter() {
2963   push(rbp);
2964   mov(rbp, rsp);
2965 }
2966 
2967 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2968 void MacroAssembler::fat_nop() {
2969   if (UseAddressNop) {
2970     addr_nop_5();
2971   } else {
2972     emit_int8(0x26); // es:
2973     emit_int8(0x2e); // cs:
2974     emit_int8(0x64); // fs:
2975     emit_int8(0x65); // gs:
2976     emit_int8((unsigned char)0x90);
2977   }
2978 }
2979 
2980 void MacroAssembler::fcmp(Register tmp) {
2981   fcmp(tmp, 1, true, true);
2982 }
2983 
2984 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2985   assert(!pop_right || pop_left, "usage error");
2986   if (VM_Version::supports_cmov()) {
2987     assert(tmp == noreg, "unneeded temp");
2988     if (pop_left) {
2989       fucomip(index);
2990     } else {
2991       fucomi(index);
2992     }
2993     if (pop_right) {
2994       fpop();
2995     }
2996   } else {
2997     assert(tmp != noreg, "need temp");
2998     if (pop_left) {
2999       if (pop_right) {
3000         fcompp();
3001       } else {
3002         fcomp(index);
3003       }
3004     } else {
3005       fcom(index);
3006     }
3007     // convert FPU condition into eflags condition via rax,
3008     save_rax(tmp);
3009     fwait(); fnstsw_ax();
3010     sahf();
3011     restore_rax(tmp);
3012   }
3013   // condition codes set as follows:
3014   //
3015   // CF (corresponds to C0) if x < y
3016   // PF (corresponds to C2) if unordered
3017   // ZF (corresponds to C3) if x = y
3018 }
3019 
3020 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3021   fcmp2int(dst, unordered_is_less, 1, true, true);
3022 }
3023 
3024 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3025   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3026   Label L;
3027   if (unordered_is_less) {
3028     movl(dst, -1);
3029     jcc(Assembler::parity, L);
3030     jcc(Assembler::below , L);
3031     movl(dst, 0);
3032     jcc(Assembler::equal , L);
3033     increment(dst);
3034   } else { // unordered is greater
3035     movl(dst, 1);
3036     jcc(Assembler::parity, L);
3037     jcc(Assembler::above , L);
3038     movl(dst, 0);
3039     jcc(Assembler::equal , L);
3040     decrementl(dst);
3041   }
3042   bind(L);
3043 }
3044 
3045 void MacroAssembler::fld_d(AddressLiteral src) {
3046   fld_d(as_Address(src));
3047 }
3048 
3049 void MacroAssembler::fld_s(AddressLiteral src) {
3050   fld_s(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fld_x(AddressLiteral src) {
3054   Assembler::fld_x(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::fldcw(AddressLiteral src) {
3058   Assembler::fldcw(as_Address(src));
3059 }
3060 
3061 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3062   if (reachable(src)) {
3063     Assembler::mulpd(dst, as_Address(src));
3064   } else {
3065     lea(rscratch1, src);
3066     Assembler::mulpd(dst, Address(rscratch1, 0));
3067   }
3068 }
3069 
3070 void MacroAssembler::increase_precision() {
3071   subptr(rsp, BytesPerWord);
3072   fnstcw(Address(rsp, 0));
3073   movl(rax, Address(rsp, 0));
3074   orl(rax, 0x300);
3075   push(rax);
3076   fldcw(Address(rsp, 0));
3077   pop(rax);
3078 }
3079 
3080 void MacroAssembler::restore_precision() {
3081   fldcw(Address(rsp, 0));
3082   addptr(rsp, BytesPerWord);
3083 }
3084 
3085 void MacroAssembler::fpop() {
3086   ffree();
3087   fincstp();
3088 }
3089 
3090 void MacroAssembler::load_float(Address src) {
3091   if (UseSSE >= 1) {
3092     movflt(xmm0, src);
3093   } else {
3094     LP64_ONLY(ShouldNotReachHere());
3095     NOT_LP64(fld_s(src));
3096   }
3097 }
3098 
3099 void MacroAssembler::store_float(Address dst) {
3100   if (UseSSE >= 1) {
3101     movflt(dst, xmm0);
3102   } else {
3103     LP64_ONLY(ShouldNotReachHere());
3104     NOT_LP64(fstp_s(dst));
3105   }
3106 }
3107 
3108 void MacroAssembler::load_double(Address src) {
3109   if (UseSSE >= 2) {
3110     movdbl(xmm0, src);
3111   } else {
3112     LP64_ONLY(ShouldNotReachHere());
3113     NOT_LP64(fld_d(src));
3114   }
3115 }
3116 
3117 void MacroAssembler::store_double(Address dst) {
3118   if (UseSSE >= 2) {
3119     movdbl(dst, xmm0);
3120   } else {
3121     LP64_ONLY(ShouldNotReachHere());
3122     NOT_LP64(fstp_d(dst));
3123   }
3124 }
3125 
3126 void MacroAssembler::push_zmm(XMMRegister reg) {
3127   lea(rsp, Address(rsp, -64)); // Use lea to not affect flags
3128   evmovdqul(Address(rsp, 0), reg, Assembler::AVX_512bit);
3129 }
3130 
3131 void MacroAssembler::pop_zmm(XMMRegister reg) {
3132   evmovdqul(reg, Address(rsp, 0), Assembler::AVX_512bit);
3133   lea(rsp, Address(rsp, 64)); // Use lea to not affect flags
3134 }
3135 
3136 void MacroAssembler::fremr(Register tmp) {
3137   save_rax(tmp);
3138   { Label L;
3139     bind(L);
3140     fprem();
3141     fwait(); fnstsw_ax();
3142 #ifdef _LP64
3143     testl(rax, 0x400);
3144     jcc(Assembler::notEqual, L);
3145 #else
3146     sahf();
3147     jcc(Assembler::parity, L);
3148 #endif // _LP64
3149   }
3150   restore_rax(tmp);
3151   // Result is in ST0.
3152   // Note: fxch & fpop to get rid of ST1
3153   // (otherwise FPU stack could overflow eventually)
3154   fxch(1);
3155   fpop();
3156 }
3157 
3158 // dst = c = a * b + c
3159 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3160   Assembler::vfmadd231sd(c, a, b);
3161   if (dst != c) {
3162     movdbl(dst, c);
3163   }
3164 }
3165 
3166 // dst = c = a * b + c
3167 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3168   Assembler::vfmadd231ss(c, a, b);
3169   if (dst != c) {
3170     movflt(dst, c);
3171   }
3172 }
3173 
3174 // dst = c = a * b + c
3175 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3176   Assembler::vfmadd231pd(c, a, b, vector_len);
3177   if (dst != c) {
3178     vmovdqu(dst, c);
3179   }
3180 }
3181 
3182 // dst = c = a * b + c
3183 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3184   Assembler::vfmadd231ps(c, a, b, vector_len);
3185   if (dst != c) {
3186     vmovdqu(dst, c);
3187   }
3188 }
3189 
3190 // dst = c = a * b + c
3191 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3192   Assembler::vfmadd231pd(c, a, b, vector_len);
3193   if (dst != c) {
3194     vmovdqu(dst, c);
3195   }
3196 }
3197 
3198 // dst = c = a * b + c
3199 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3200   Assembler::vfmadd231ps(c, a, b, vector_len);
3201   if (dst != c) {
3202     vmovdqu(dst, c);
3203   }
3204 }
3205 
3206 void MacroAssembler::incrementl(AddressLiteral dst) {
3207   if (reachable(dst)) {
3208     incrementl(as_Address(dst));
3209   } else {
3210     lea(rscratch1, dst);
3211     incrementl(Address(rscratch1, 0));
3212   }
3213 }
3214 
3215 void MacroAssembler::incrementl(ArrayAddress dst) {
3216   incrementl(as_Address(dst));
3217 }
3218 
3219 void MacroAssembler::incrementl(Register reg, int value) {
3220   if (value == min_jint) {addl(reg, value) ; return; }
3221   if (value <  0) { decrementl(reg, -value); return; }
3222   if (value == 0) {                        ; return; }
3223   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3224   /* else */      { addl(reg, value)       ; return; }
3225 }
3226 
3227 void MacroAssembler::incrementl(Address dst, int value) {
3228   if (value == min_jint) {addl(dst, value) ; return; }
3229   if (value <  0) { decrementl(dst, -value); return; }
3230   if (value == 0) {                        ; return; }
3231   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3232   /* else */      { addl(dst, value)       ; return; }
3233 }
3234 
3235 void MacroAssembler::jump(AddressLiteral dst) {
3236   if (reachable(dst)) {
3237     jmp_literal(dst.target(), dst.rspec());
3238   } else {
3239     lea(rscratch1, dst);
3240     jmp(rscratch1);
3241   }
3242 }
3243 
3244 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3245   if (reachable(dst)) {
3246     InstructionMark im(this);
3247     relocate(dst.reloc());
3248     const int short_size = 2;
3249     const int long_size = 6;
3250     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3251     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3252       // 0111 tttn #8-bit disp
3253       emit_int8(0x70 | cc);
3254       emit_int8((offs - short_size) & 0xFF);
3255     } else {
3256       // 0000 1111 1000 tttn #32-bit disp
3257       emit_int8(0x0F);
3258       emit_int8((unsigned char)(0x80 | cc));
3259       emit_int32(offs - long_size);
3260     }
3261   } else {
3262 #ifdef ASSERT
3263     warning("reversing conditional branch");
3264 #endif /* ASSERT */
3265     Label skip;
3266     jccb(reverse[cc], skip);
3267     lea(rscratch1, dst);
3268     Assembler::jmp(rscratch1);
3269     bind(skip);
3270   }
3271 }
3272 
3273 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3274   if (reachable(src)) {
3275     Assembler::ldmxcsr(as_Address(src));
3276   } else {
3277     lea(rscratch1, src);
3278     Assembler::ldmxcsr(Address(rscratch1, 0));
3279   }
3280 }
3281 
3282 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3283   int off;
3284   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3285     off = offset();
3286     movsbl(dst, src); // movsxb
3287   } else {
3288     off = load_unsigned_byte(dst, src);
3289     shll(dst, 24);
3290     sarl(dst, 24);
3291   }
3292   return off;
3293 }
3294 
3295 // Note: load_signed_short used to be called load_signed_word.
3296 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3297 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3298 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3299 int MacroAssembler::load_signed_short(Register dst, Address src) {
3300   int off;
3301   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3302     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3303     // version but this is what 64bit has always done. This seems to imply
3304     // that users are only using 32bits worth.
3305     off = offset();
3306     movswl(dst, src); // movsxw
3307   } else {
3308     off = load_unsigned_short(dst, src);
3309     shll(dst, 16);
3310     sarl(dst, 16);
3311   }
3312   return off;
3313 }
3314 
3315 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3316   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3317   // and "3.9 Partial Register Penalties", p. 22).
3318   int off;
3319   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3320     off = offset();
3321     movzbl(dst, src); // movzxb
3322   } else {
3323     xorl(dst, dst);
3324     off = offset();
3325     movb(dst, src);
3326   }
3327   return off;
3328 }
3329 
3330 // Note: load_unsigned_short used to be called load_unsigned_word.
3331 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3332   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3333   // and "3.9 Partial Register Penalties", p. 22).
3334   int off;
3335   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3336     off = offset();
3337     movzwl(dst, src); // movzxw
3338   } else {
3339     xorl(dst, dst);
3340     off = offset();
3341     movw(dst, src);
3342   }
3343   return off;
3344 }
3345 
3346 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3347   switch (size_in_bytes) {
3348 #ifndef _LP64
3349   case  8:
3350     assert(dst2 != noreg, "second dest register required");
3351     movl(dst,  src);
3352     movl(dst2, src.plus_disp(BytesPerInt));
3353     break;
3354 #else
3355   case  8:  movq(dst, src); break;
3356 #endif
3357   case  4:  movl(dst, src); break;
3358   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3359   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3360   default:  ShouldNotReachHere();
3361   }
3362 }
3363 
3364 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3365   switch (size_in_bytes) {
3366 #ifndef _LP64
3367   case  8:
3368     assert(src2 != noreg, "second source register required");
3369     movl(dst,                        src);
3370     movl(dst.plus_disp(BytesPerInt), src2);
3371     break;
3372 #else
3373   case  8:  movq(dst, src); break;
3374 #endif
3375   case  4:  movl(dst, src); break;
3376   case  2:  movw(dst, src); break;
3377   case  1:  movb(dst, src); break;
3378   default:  ShouldNotReachHere();
3379   }
3380 }
3381 
3382 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3383   if (reachable(dst)) {
3384     movl(as_Address(dst), src);
3385   } else {
3386     lea(rscratch1, dst);
3387     movl(Address(rscratch1, 0), src);
3388   }
3389 }
3390 
3391 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3392   if (reachable(src)) {
3393     movl(dst, as_Address(src));
3394   } else {
3395     lea(rscratch1, src);
3396     movl(dst, Address(rscratch1, 0));
3397   }
3398 }
3399 
3400 // C++ bool manipulation
3401 
3402 void MacroAssembler::movbool(Register dst, Address src) {
3403   if(sizeof(bool) == 1)
3404     movb(dst, src);
3405   else if(sizeof(bool) == 2)
3406     movw(dst, src);
3407   else if(sizeof(bool) == 4)
3408     movl(dst, src);
3409   else
3410     // unsupported
3411     ShouldNotReachHere();
3412 }
3413 
3414 void MacroAssembler::movbool(Address dst, bool boolconst) {
3415   if(sizeof(bool) == 1)
3416     movb(dst, (int) boolconst);
3417   else if(sizeof(bool) == 2)
3418     movw(dst, (int) boolconst);
3419   else if(sizeof(bool) == 4)
3420     movl(dst, (int) boolconst);
3421   else
3422     // unsupported
3423     ShouldNotReachHere();
3424 }
3425 
3426 void MacroAssembler::movbool(Address dst, Register src) {
3427   if(sizeof(bool) == 1)
3428     movb(dst, src);
3429   else if(sizeof(bool) == 2)
3430     movw(dst, src);
3431   else if(sizeof(bool) == 4)
3432     movl(dst, src);
3433   else
3434     // unsupported
3435     ShouldNotReachHere();
3436 }
3437 
3438 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3439   movb(as_Address(dst), src);
3440 }
3441 
3442 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3443   if (reachable(src)) {
3444     movdl(dst, as_Address(src));
3445   } else {
3446     lea(rscratch1, src);
3447     movdl(dst, Address(rscratch1, 0));
3448   }
3449 }
3450 
3451 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3452   if (reachable(src)) {
3453     movq(dst, as_Address(src));
3454   } else {
3455     lea(rscratch1, src);
3456     movq(dst, Address(rscratch1, 0));
3457   }
3458 }
3459 
3460 void MacroAssembler::setvectmask(Register dst, Register src) {
3461   Assembler::movl(dst, 1);
3462   Assembler::shlxl(dst, dst, src);
3463   Assembler::decl(dst);
3464   Assembler::kmovdl(k1, dst);
3465   Assembler::movl(dst, src);
3466 }
3467 
3468 void MacroAssembler::restorevectmask() {
3469   Assembler::knotwl(k1, k0);
3470 }
3471 
3472 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3473   if (reachable(src)) {
3474     if (UseXmmLoadAndClearUpper) {
3475       movsd (dst, as_Address(src));
3476     } else {
3477       movlpd(dst, as_Address(src));
3478     }
3479   } else {
3480     lea(rscratch1, src);
3481     if (UseXmmLoadAndClearUpper) {
3482       movsd (dst, Address(rscratch1, 0));
3483     } else {
3484       movlpd(dst, Address(rscratch1, 0));
3485     }
3486   }
3487 }
3488 
3489 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3490   if (reachable(src)) {
3491     movss(dst, as_Address(src));
3492   } else {
3493     lea(rscratch1, src);
3494     movss(dst, Address(rscratch1, 0));
3495   }
3496 }
3497 
3498 void MacroAssembler::movptr(Register dst, Register src) {
3499   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3500 }
3501 
3502 void MacroAssembler::movptr(Register dst, Address src) {
3503   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3504 }
3505 
3506 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3507 void MacroAssembler::movptr(Register dst, intptr_t src) {
3508   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3509 }
3510 
3511 void MacroAssembler::movptr(Address dst, Register src) {
3512   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3513 }
3514 
3515 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3516   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3517     Assembler::vextractf32x4(dst, src, 0);
3518   } else {
3519     Assembler::movdqu(dst, src);
3520   }
3521 }
3522 
3523 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3524   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3525     Assembler::vinsertf32x4(dst, dst, src, 0);
3526   } else {
3527     Assembler::movdqu(dst, src);
3528   }
3529 }
3530 
3531 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3532   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3533     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3534   } else {
3535     Assembler::movdqu(dst, src);
3536   }
3537 }
3538 
3539 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3540   if (reachable(src)) {
3541     movdqu(dst, as_Address(src));
3542   } else {
3543     lea(scratchReg, src);
3544     movdqu(dst, Address(scratchReg, 0));
3545   }
3546 }
3547 
3548 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3549   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3550     vextractf64x4_low(dst, src);
3551   } else {
3552     Assembler::vmovdqu(dst, src);
3553   }
3554 }
3555 
3556 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3557   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3558     vinsertf64x4_low(dst, src);
3559   } else {
3560     Assembler::vmovdqu(dst, src);
3561   }
3562 }
3563 
3564 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3565   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3566     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3567   }
3568   else {
3569     Assembler::vmovdqu(dst, src);
3570   }
3571 }
3572 
3573 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3574   if (reachable(src)) {
3575     vmovdqu(dst, as_Address(src));
3576   }
3577   else {
3578     lea(rscratch1, src);
3579     vmovdqu(dst, Address(rscratch1, 0));
3580   }
3581 }
3582 
3583 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3584   if (reachable(src)) {
3585     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3586   } else {
3587     lea(rscratch, src);
3588     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3589   }
3590 }
3591 
3592 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3593   if (reachable(src)) {
3594     Assembler::movdqa(dst, as_Address(src));
3595   } else {
3596     lea(rscratch1, src);
3597     Assembler::movdqa(dst, Address(rscratch1, 0));
3598   }
3599 }
3600 
3601 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3602   if (reachable(src)) {
3603     Assembler::movsd(dst, as_Address(src));
3604   } else {
3605     lea(rscratch1, src);
3606     Assembler::movsd(dst, Address(rscratch1, 0));
3607   }
3608 }
3609 
3610 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3611   if (reachable(src)) {
3612     Assembler::movss(dst, as_Address(src));
3613   } else {
3614     lea(rscratch1, src);
3615     Assembler::movss(dst, Address(rscratch1, 0));
3616   }
3617 }
3618 
3619 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3620   if (reachable(src)) {
3621     Assembler::mulsd(dst, as_Address(src));
3622   } else {
3623     lea(rscratch1, src);
3624     Assembler::mulsd(dst, Address(rscratch1, 0));
3625   }
3626 }
3627 
3628 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3629   if (reachable(src)) {
3630     Assembler::mulss(dst, as_Address(src));
3631   } else {
3632     lea(rscratch1, src);
3633     Assembler::mulss(dst, Address(rscratch1, 0));
3634   }
3635 }
3636 
3637 void MacroAssembler::null_check(Register reg, int offset) {
3638   if (needs_explicit_null_check(offset)) {
3639     // provoke OS NULL exception if reg = NULL by
3640     // accessing M[reg] w/o changing any (non-CC) registers
3641     // NOTE: cmpl is plenty here to provoke a segv
3642     cmpptr(rax, Address(reg, 0));
3643     // Note: should probably use testl(rax, Address(reg, 0));
3644     //       may be shorter code (however, this version of
3645     //       testl needs to be implemented first)
3646   } else {
3647     // nothing to do, (later) access of M[reg + offset]
3648     // will provoke OS NULL exception if reg = NULL
3649   }
3650 }
3651 
3652 void MacroAssembler::os_breakpoint() {
3653   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3654   // (e.g., MSVC can't call ps() otherwise)
3655   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3656 }
3657 
3658 void MacroAssembler::unimplemented(const char* what) {
3659   const char* buf = NULL;
3660   {
3661     ResourceMark rm;
3662     stringStream ss;
3663     ss.print("unimplemented: %s", what);
3664     buf = code_string(ss.as_string());
3665   }
3666   stop(buf);
3667 }
3668 
3669 #ifdef _LP64
3670 #define XSTATE_BV 0x200
3671 #endif
3672 
3673 void MacroAssembler::pop_CPU_state() {
3674   pop_FPU_state();
3675   pop_IU_state();
3676 }
3677 
3678 void MacroAssembler::pop_FPU_state() {
3679 #ifndef _LP64
3680   frstor(Address(rsp, 0));
3681 #else
3682   fxrstor(Address(rsp, 0));
3683 #endif
3684   addptr(rsp, FPUStateSizeInWords * wordSize);
3685 }
3686 
3687 void MacroAssembler::pop_IU_state() {
3688   popa();
3689   LP64_ONLY(addq(rsp, 8));
3690   popf();
3691 }
3692 
3693 // Save Integer and Float state
3694 // Warning: Stack must be 16 byte aligned (64bit)
3695 void MacroAssembler::push_CPU_state() {
3696   push_IU_state();
3697   push_FPU_state();
3698 }
3699 
3700 void MacroAssembler::push_FPU_state() {
3701   subptr(rsp, FPUStateSizeInWords * wordSize);
3702 #ifndef _LP64
3703   fnsave(Address(rsp, 0));
3704   fwait();
3705 #else
3706   fxsave(Address(rsp, 0));
3707 #endif // LP64
3708 }
3709 
3710 void MacroAssembler::push_IU_state() {
3711   // Push flags first because pusha kills them
3712   pushf();
3713   // Make sure rsp stays 16-byte aligned
3714   LP64_ONLY(subq(rsp, 8));
3715   pusha();
3716 }
3717 
3718 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3719   if (!java_thread->is_valid()) {
3720     java_thread = rdi;
3721     get_thread(java_thread);
3722   }
3723   // we must set sp to zero to clear frame
3724   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3725   if (clear_fp) {
3726     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3727   }
3728 
3729   // Always clear the pc because it could have been set by make_walkable()
3730   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3731 
3732   vzeroupper();
3733 }
3734 
3735 void MacroAssembler::restore_rax(Register tmp) {
3736   if (tmp == noreg) pop(rax);
3737   else if (tmp != rax) mov(rax, tmp);
3738 }
3739 
3740 void MacroAssembler::round_to(Register reg, int modulus) {
3741   addptr(reg, modulus - 1);
3742   andptr(reg, -modulus);
3743 }
3744 
3745 void MacroAssembler::save_rax(Register tmp) {
3746   if (tmp == noreg) push(rax);
3747   else if (tmp != rax) mov(tmp, rax);
3748 }
3749 
3750 // Write serialization page so VM thread can do a pseudo remote membar.
3751 // We use the current thread pointer to calculate a thread specific
3752 // offset to write to within the page. This minimizes bus traffic
3753 // due to cache line collision.
3754 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3755   movl(tmp, thread);
3756   shrl(tmp, os::get_serialize_page_shift_count());
3757   andl(tmp, (os::vm_page_size() - sizeof(int)));
3758 
3759   Address index(noreg, tmp, Address::times_1);
3760   ExternalAddress page(os::get_memory_serialize_page());
3761 
3762   // Size of store must match masking code above
3763   movl(as_Address(ArrayAddress(page, index)), tmp);
3764 }
3765 
3766 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3767   if (SafepointMechanism::uses_thread_local_poll()) {
3768 #ifdef _LP64
3769     assert(thread_reg == r15_thread, "should be");
3770 #else
3771     if (thread_reg == noreg) {
3772       thread_reg = temp_reg;
3773       get_thread(thread_reg);
3774     }
3775 #endif
3776     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3777     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3778   } else {
3779     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3780         SafepointSynchronize::_not_synchronized);
3781     jcc(Assembler::notEqual, slow_path);
3782   }
3783 }
3784 
3785 // Calls to C land
3786 //
3787 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3788 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3789 // has to be reset to 0. This is required to allow proper stack traversal.
3790 void MacroAssembler::set_last_Java_frame(Register java_thread,
3791                                          Register last_java_sp,
3792                                          Register last_java_fp,
3793                                          address  last_java_pc) {
3794   vzeroupper();
3795   // determine java_thread register
3796   if (!java_thread->is_valid()) {
3797     java_thread = rdi;
3798     get_thread(java_thread);
3799   }
3800   // determine last_java_sp register
3801   if (!last_java_sp->is_valid()) {
3802     last_java_sp = rsp;
3803   }
3804 
3805   // last_java_fp is optional
3806 
3807   if (last_java_fp->is_valid()) {
3808     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3809   }
3810 
3811   // last_java_pc is optional
3812 
3813   if (last_java_pc != NULL) {
3814     lea(Address(java_thread,
3815                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3816         InternalAddress(last_java_pc));
3817 
3818   }
3819   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3820 }
3821 
3822 void MacroAssembler::shlptr(Register dst, int imm8) {
3823   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3824 }
3825 
3826 void MacroAssembler::shrptr(Register dst, int imm8) {
3827   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3828 }
3829 
3830 void MacroAssembler::sign_extend_byte(Register reg) {
3831   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3832     movsbl(reg, reg); // movsxb
3833   } else {
3834     shll(reg, 24);
3835     sarl(reg, 24);
3836   }
3837 }
3838 
3839 void MacroAssembler::sign_extend_short(Register reg) {
3840   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3841     movswl(reg, reg); // movsxw
3842   } else {
3843     shll(reg, 16);
3844     sarl(reg, 16);
3845   }
3846 }
3847 
3848 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3849   assert(reachable(src), "Address should be reachable");
3850   testl(dst, as_Address(src));
3851 }
3852 
3853 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3854   int dst_enc = dst->encoding();
3855   int src_enc = src->encoding();
3856   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3857     Assembler::pcmpeqb(dst, src);
3858   } else if ((dst_enc < 16) && (src_enc < 16)) {
3859     Assembler::pcmpeqb(dst, src);
3860   } else if (src_enc < 16) {
3861     push_zmm(xmm0);
3862     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3863     Assembler::pcmpeqb(xmm0, src);
3864     movdqu(dst, xmm0);
3865     pop_zmm(xmm0);
3866   } else if (dst_enc < 16) {
3867     push_zmm(xmm0);
3868     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3869     Assembler::pcmpeqb(dst, xmm0);
3870     pop_zmm(xmm0);
3871   } else {
3872     push_zmm(xmm0);
3873     push_zmm(xmm1);
3874     movdqu(xmm0, src);
3875     movdqu(xmm1, dst);
3876     Assembler::pcmpeqb(xmm1, xmm0);
3877     movdqu(dst, xmm1);
3878     pop_zmm(xmm1);
3879     pop_zmm(xmm0);
3880   }
3881 }
3882 
3883 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3884   int dst_enc = dst->encoding();
3885   int src_enc = src->encoding();
3886   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3887     Assembler::pcmpeqw(dst, src);
3888   } else if ((dst_enc < 16) && (src_enc < 16)) {
3889     Assembler::pcmpeqw(dst, src);
3890   } else if (src_enc < 16) {
3891     push_zmm(xmm0);
3892     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3893     Assembler::pcmpeqw(xmm0, src);
3894     movdqu(dst, xmm0);
3895     pop_zmm(xmm0);
3896   } else if (dst_enc < 16) {
3897     push_zmm(xmm0);
3898     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3899     Assembler::pcmpeqw(dst, xmm0);
3900     pop_zmm(xmm0);
3901   } else {
3902     push_zmm(xmm0);
3903     push_zmm(xmm1);
3904     movdqu(xmm0, src);
3905     movdqu(xmm1, dst);
3906     Assembler::pcmpeqw(xmm1, xmm0);
3907     movdqu(dst, xmm1);
3908     pop_zmm(xmm1);
3909     pop_zmm(xmm0);
3910   }
3911 }
3912 
3913 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3914   int dst_enc = dst->encoding();
3915   if (dst_enc < 16) {
3916     Assembler::pcmpestri(dst, src, imm8);
3917   } else {
3918     push_zmm(xmm0);
3919     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3920     Assembler::pcmpestri(xmm0, src, imm8);
3921     movdqu(dst, xmm0);
3922     pop_zmm(xmm0);
3923   }
3924 }
3925 
3926 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3927   int dst_enc = dst->encoding();
3928   int src_enc = src->encoding();
3929   if ((dst_enc < 16) && (src_enc < 16)) {
3930     Assembler::pcmpestri(dst, src, imm8);
3931   } else if (src_enc < 16) {
3932     push_zmm(xmm0);
3933     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3934     Assembler::pcmpestri(xmm0, src, imm8);
3935     movdqu(dst, xmm0);
3936     pop_zmm(xmm0);
3937   } else if (dst_enc < 16) {
3938     push_zmm(xmm0);
3939     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3940     Assembler::pcmpestri(dst, xmm0, imm8);
3941     pop_zmm(xmm0);
3942   } else {
3943     push_zmm(xmm0);
3944     push_zmm(xmm1);
3945     movdqu(xmm0, src);
3946     movdqu(xmm1, dst);
3947     Assembler::pcmpestri(xmm1, xmm0, imm8);
3948     movdqu(dst, xmm1);
3949     pop_zmm(xmm1);
3950     pop_zmm(xmm0);
3951   }
3952 }
3953 
3954 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3955   int dst_enc = dst->encoding();
3956   int src_enc = src->encoding();
3957   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3958     Assembler::pmovzxbw(dst, src);
3959   } else if ((dst_enc < 16) && (src_enc < 16)) {
3960     Assembler::pmovzxbw(dst, src);
3961   } else if (src_enc < 16) {
3962     push_zmm(xmm0);
3963     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3964     Assembler::pmovzxbw(xmm0, src);
3965     movdqu(dst, xmm0);
3966     pop_zmm(xmm0);
3967   } else if (dst_enc < 16) {
3968     push_zmm(xmm0);
3969     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3970     Assembler::pmovzxbw(dst, xmm0);
3971     pop_zmm(xmm0);
3972   } else {
3973     push_zmm(xmm0);
3974     push_zmm(xmm1);
3975     movdqu(xmm0, src);
3976     movdqu(xmm1, dst);
3977     Assembler::pmovzxbw(xmm1, xmm0);
3978     movdqu(dst, xmm1);
3979     pop_zmm(xmm1);
3980     pop_zmm(xmm0);
3981   }
3982 }
3983 
3984 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3985   int dst_enc = dst->encoding();
3986   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3987     Assembler::pmovzxbw(dst, src);
3988   } else if (dst_enc < 16) {
3989     Assembler::pmovzxbw(dst, src);
3990   } else {
3991     push_zmm(xmm0);
3992     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3993     Assembler::pmovzxbw(xmm0, src);
3994     movdqu(dst, xmm0);
3995     pop_zmm(xmm0);
3996   }
3997 }
3998 
3999 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
4000   int src_enc = src->encoding();
4001   if (src_enc < 16) {
4002     Assembler::pmovmskb(dst, src);
4003   } else {
4004     push_zmm(xmm0);
4005     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4006     Assembler::pmovmskb(dst, xmm0);
4007     pop_zmm(xmm0);
4008   }
4009 }
4010 
4011 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
4012   int dst_enc = dst->encoding();
4013   int src_enc = src->encoding();
4014   if ((dst_enc < 16) && (src_enc < 16)) {
4015     Assembler::ptest(dst, src);
4016   } else if (src_enc < 16) {
4017     push_zmm(xmm0);
4018     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4019     Assembler::ptest(xmm0, src);
4020     pop_zmm(xmm0);
4021   } else if (dst_enc < 16) {
4022     push_zmm(xmm0);
4023     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4024     Assembler::ptest(dst, xmm0);
4025     pop_zmm(xmm0);
4026   } else {
4027     push_zmm(xmm0);
4028     push_zmm(xmm1);
4029     movdqu(xmm0, src);
4030     movdqu(xmm1, dst);
4031     Assembler::ptest(xmm1, xmm0);
4032     pop_zmm(xmm1);
4033     pop_zmm(xmm0);
4034   }
4035 }
4036 
4037 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4038   if (reachable(src)) {
4039     Assembler::sqrtsd(dst, as_Address(src));
4040   } else {
4041     lea(rscratch1, src);
4042     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4043   }
4044 }
4045 
4046 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4047   if (reachable(src)) {
4048     Assembler::sqrtss(dst, as_Address(src));
4049   } else {
4050     lea(rscratch1, src);
4051     Assembler::sqrtss(dst, Address(rscratch1, 0));
4052   }
4053 }
4054 
4055 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4056   if (reachable(src)) {
4057     Assembler::subsd(dst, as_Address(src));
4058   } else {
4059     lea(rscratch1, src);
4060     Assembler::subsd(dst, Address(rscratch1, 0));
4061   }
4062 }
4063 
4064 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4065   if (reachable(src)) {
4066     Assembler::subss(dst, as_Address(src));
4067   } else {
4068     lea(rscratch1, src);
4069     Assembler::subss(dst, Address(rscratch1, 0));
4070   }
4071 }
4072 
4073 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4074   if (reachable(src)) {
4075     Assembler::ucomisd(dst, as_Address(src));
4076   } else {
4077     lea(rscratch1, src);
4078     Assembler::ucomisd(dst, Address(rscratch1, 0));
4079   }
4080 }
4081 
4082 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4083   if (reachable(src)) {
4084     Assembler::ucomiss(dst, as_Address(src));
4085   } else {
4086     lea(rscratch1, src);
4087     Assembler::ucomiss(dst, Address(rscratch1, 0));
4088   }
4089 }
4090 
4091 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4092   // Used in sign-bit flipping with aligned address.
4093   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4094   if (reachable(src)) {
4095     Assembler::xorpd(dst, as_Address(src));
4096   } else {
4097     lea(rscratch1, src);
4098     Assembler::xorpd(dst, Address(rscratch1, 0));
4099   }
4100 }
4101 
4102 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4103   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4104     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4105   }
4106   else {
4107     Assembler::xorpd(dst, src);
4108   }
4109 }
4110 
4111 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4112   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4113     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4114   } else {
4115     Assembler::xorps(dst, src);
4116   }
4117 }
4118 
4119 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4120   // Used in sign-bit flipping with aligned address.
4121   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4122   if (reachable(src)) {
4123     Assembler::xorps(dst, as_Address(src));
4124   } else {
4125     lea(rscratch1, src);
4126     Assembler::xorps(dst, Address(rscratch1, 0));
4127   }
4128 }
4129 
4130 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4131   // Used in sign-bit flipping with aligned address.
4132   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4133   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4134   if (reachable(src)) {
4135     Assembler::pshufb(dst, as_Address(src));
4136   } else {
4137     lea(rscratch1, src);
4138     Assembler::pshufb(dst, Address(rscratch1, 0));
4139   }
4140 }
4141 
4142 // AVX 3-operands instructions
4143 
4144 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4145   if (reachable(src)) {
4146     vaddsd(dst, nds, as_Address(src));
4147   } else {
4148     lea(rscratch1, src);
4149     vaddsd(dst, nds, Address(rscratch1, 0));
4150   }
4151 }
4152 
4153 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4154   if (reachable(src)) {
4155     vaddss(dst, nds, as_Address(src));
4156   } else {
4157     lea(rscratch1, src);
4158     vaddss(dst, nds, Address(rscratch1, 0));
4159   }
4160 }
4161 
4162 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4163   int dst_enc = dst->encoding();
4164   int nds_enc = nds->encoding();
4165   int src_enc = src->encoding();
4166   if ((dst_enc < 16) && (nds_enc < 16)) {
4167     vandps(dst, nds, negate_field, vector_len);
4168   } else if ((src_enc < 16) && (dst_enc < 16)) {
4169     evmovdqul(src, nds, Assembler::AVX_512bit);
4170     vandps(dst, src, negate_field, vector_len);
4171   } else if (src_enc < 16) {
4172     evmovdqul(src, nds, Assembler::AVX_512bit);
4173     vandps(src, src, negate_field, vector_len);
4174     evmovdqul(dst, src, Assembler::AVX_512bit);
4175   } else if (dst_enc < 16) {
4176     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4177     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4178     vandps(dst, xmm0, negate_field, vector_len);
4179     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4180   } else {
4181     if (src_enc != dst_enc) {
4182       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4183       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4184       vandps(xmm0, xmm0, negate_field, vector_len);
4185       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4186       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4187     } else {
4188       push_zmm(xmm0);
4189       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4190       vandps(xmm0, xmm0, negate_field, vector_len);
4191       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4192       pop_zmm(xmm0);
4193     }
4194   }
4195 }
4196 
4197 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4198   int dst_enc = dst->encoding();
4199   int nds_enc = nds->encoding();
4200   int src_enc = src->encoding();
4201   if ((dst_enc < 16) && (nds_enc < 16)) {
4202     vandpd(dst, nds, negate_field, vector_len);
4203   } else if ((src_enc < 16) && (dst_enc < 16)) {
4204     evmovdqul(src, nds, Assembler::AVX_512bit);
4205     vandpd(dst, src, negate_field, vector_len);
4206   } else if (src_enc < 16) {
4207     evmovdqul(src, nds, Assembler::AVX_512bit);
4208     vandpd(src, src, negate_field, vector_len);
4209     evmovdqul(dst, src, Assembler::AVX_512bit);
4210   } else if (dst_enc < 16) {
4211     evmovdqul(src, xmm0, Assembler::AVX_512bit);
4212     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4213     vandpd(dst, xmm0, negate_field, vector_len);
4214     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4215   } else {
4216     if (src_enc != dst_enc) {
4217       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4218       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4219       vandpd(xmm0, xmm0, negate_field, vector_len);
4220       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4221       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4222     } else {
4223       push_zmm(xmm0);
4224       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4225       vandpd(xmm0, xmm0, negate_field, vector_len);
4226       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4227       pop_zmm(xmm0);
4228     }
4229   }
4230 }
4231 
4232 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4233   int dst_enc = dst->encoding();
4234   int nds_enc = nds->encoding();
4235   int src_enc = src->encoding();
4236   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4237     Assembler::vpaddb(dst, nds, src, vector_len);
4238   } else if ((dst_enc < 16) && (src_enc < 16)) {
4239     Assembler::vpaddb(dst, dst, src, vector_len);
4240   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4241     // use nds as scratch for src
4242     evmovdqul(nds, src, Assembler::AVX_512bit);
4243     Assembler::vpaddb(dst, dst, nds, vector_len);
4244   } else if ((src_enc < 16) && (nds_enc < 16)) {
4245     // use nds as scratch for dst
4246     evmovdqul(nds, dst, Assembler::AVX_512bit);
4247     Assembler::vpaddb(nds, nds, src, vector_len);
4248     evmovdqul(dst, nds, Assembler::AVX_512bit);
4249   } else if (dst_enc < 16) {
4250     // use nds as scatch for xmm0 to hold src
4251     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4252     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4253     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4254     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4255   } else {
4256     // worse case scenario, all regs are in the upper bank
4257     push_zmm(xmm1);
4258     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4259     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4260     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4261     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4262     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4263     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4264     pop_zmm(xmm1);
4265   }
4266 }
4267 
4268 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4269   int dst_enc = dst->encoding();
4270   int nds_enc = nds->encoding();
4271   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4272     Assembler::vpaddb(dst, nds, src, vector_len);
4273   } else if (dst_enc < 16) {
4274     Assembler::vpaddb(dst, dst, src, vector_len);
4275   } else if (nds_enc < 16) {
4276     // implies dst_enc in upper bank with src as scratch
4277     evmovdqul(nds, dst, Assembler::AVX_512bit);
4278     Assembler::vpaddb(nds, nds, src, vector_len);
4279     evmovdqul(dst, nds, Assembler::AVX_512bit);
4280   } else {
4281     // worse case scenario, all regs in upper bank
4282     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4283     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4284     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4285     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4286   }
4287 }
4288 
4289 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4290   int dst_enc = dst->encoding();
4291   int nds_enc = nds->encoding();
4292   int src_enc = src->encoding();
4293   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4294     Assembler::vpaddw(dst, nds, src, vector_len);
4295   } else if ((dst_enc < 16) && (src_enc < 16)) {
4296     Assembler::vpaddw(dst, dst, src, vector_len);
4297   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4298     // use nds as scratch for src
4299     evmovdqul(nds, src, Assembler::AVX_512bit);
4300     Assembler::vpaddw(dst, dst, nds, vector_len);
4301   } else if ((src_enc < 16) && (nds_enc < 16)) {
4302     // use nds as scratch for dst
4303     evmovdqul(nds, dst, Assembler::AVX_512bit);
4304     Assembler::vpaddw(nds, nds, src, vector_len);
4305     evmovdqul(dst, nds, Assembler::AVX_512bit);
4306   } else if (dst_enc < 16) {
4307     // use nds as scatch for xmm0 to hold src
4308     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4309     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4310     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4311     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4312   } else {
4313     // worse case scenario, all regs are in the upper bank
4314     push_zmm(xmm1);
4315     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4316     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4317     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4318     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4319     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4320     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4321     pop_zmm(xmm1);
4322   }
4323 }
4324 
4325 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4326   int dst_enc = dst->encoding();
4327   int nds_enc = nds->encoding();
4328   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4329     Assembler::vpaddw(dst, nds, src, vector_len);
4330   } else if (dst_enc < 16) {
4331     Assembler::vpaddw(dst, dst, src, vector_len);
4332   } else if (nds_enc < 16) {
4333     // implies dst_enc in upper bank with src as scratch
4334     evmovdqul(nds, dst, Assembler::AVX_512bit);
4335     Assembler::vpaddw(nds, nds, src, vector_len);
4336     evmovdqul(dst, nds, Assembler::AVX_512bit);
4337   } else {
4338     // worse case scenario, all regs in upper bank
4339     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4340     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4341     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4342     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4343   }
4344 }
4345 
4346 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4347   if (reachable(src)) {
4348     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4349   } else {
4350     lea(rscratch1, src);
4351     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4352   }
4353 }
4354 
4355 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4356   int dst_enc = dst->encoding();
4357   int src_enc = src->encoding();
4358   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4359     Assembler::vpbroadcastw(dst, src);
4360   } else if ((dst_enc < 16) && (src_enc < 16)) {
4361     Assembler::vpbroadcastw(dst, src);
4362   } else if (src_enc < 16) {
4363     push_zmm(xmm0);
4364     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4365     Assembler::vpbroadcastw(xmm0, src);
4366     movdqu(dst, xmm0);
4367     pop_zmm(xmm0);
4368   } else if (dst_enc < 16) {
4369     push_zmm(xmm0);
4370     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4371     Assembler::vpbroadcastw(dst, xmm0);
4372     pop_zmm(xmm0);
4373   } else {
4374     push_zmm(xmm0);
4375     push_zmm(xmm1);
4376     movdqu(xmm0, src);
4377     movdqu(xmm1, dst);
4378     Assembler::vpbroadcastw(xmm1, xmm0);
4379     movdqu(dst, xmm1);
4380     pop_zmm(xmm1);
4381     pop_zmm(xmm0);
4382   }
4383 }
4384 
4385 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4386   int dst_enc = dst->encoding();
4387   int nds_enc = nds->encoding();
4388   int src_enc = src->encoding();
4389   assert(dst_enc == nds_enc, "");
4390   if ((dst_enc < 16) && (src_enc < 16)) {
4391     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4392   } else if (src_enc < 16) {
4393     push_zmm(xmm0);
4394     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4395     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4396     movdqu(dst, xmm0);
4397     pop_zmm(xmm0);
4398   } else if (dst_enc < 16) {
4399     push_zmm(xmm0);
4400     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4401     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4402     pop_zmm(xmm0);
4403   } else {
4404     push_zmm(xmm0);
4405     push_zmm(xmm1);
4406     movdqu(xmm0, src);
4407     movdqu(xmm1, dst);
4408     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4409     movdqu(dst, xmm1);
4410     pop_zmm(xmm1);
4411     pop_zmm(xmm0);
4412   }
4413 }
4414 
4415 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4416   int dst_enc = dst->encoding();
4417   int nds_enc = nds->encoding();
4418   int src_enc = src->encoding();
4419   assert(dst_enc == nds_enc, "");
4420   if ((dst_enc < 16) && (src_enc < 16)) {
4421     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4422   } else if (src_enc < 16) {
4423     push_zmm(xmm0);
4424     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4425     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4426     movdqu(dst, xmm0);
4427     pop_zmm(xmm0);
4428   } else if (dst_enc < 16) {
4429     push_zmm(xmm0);
4430     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4431     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4432     pop_zmm(xmm0);
4433   } else {
4434     push_zmm(xmm0);
4435     push_zmm(xmm1);
4436     movdqu(xmm0, src);
4437     movdqu(xmm1, dst);
4438     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4439     movdqu(dst, xmm1);
4440     pop_zmm(xmm1);
4441     pop_zmm(xmm0);
4442   }
4443 }
4444 
4445 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4446   int dst_enc = dst->encoding();
4447   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4448     Assembler::vpmovzxbw(dst, src, vector_len);
4449   } else if (dst_enc < 16) {
4450     Assembler::vpmovzxbw(dst, src, vector_len);
4451   } else {
4452     push_zmm(xmm0);
4453     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4454     Assembler::vpmovzxbw(xmm0, src, vector_len);
4455     movdqu(dst, xmm0);
4456     pop_zmm(xmm0);
4457   }
4458 }
4459 
4460 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4461   int src_enc = src->encoding();
4462   if (src_enc < 16) {
4463     Assembler::vpmovmskb(dst, src);
4464   } else {
4465     push_zmm(xmm0);
4466     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4467     Assembler::vpmovmskb(dst, xmm0);
4468     pop_zmm(xmm0);
4469   }
4470 }
4471 
4472 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4473   int dst_enc = dst->encoding();
4474   int nds_enc = nds->encoding();
4475   int src_enc = src->encoding();
4476   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4477     Assembler::vpmullw(dst, nds, src, vector_len);
4478   } else if ((dst_enc < 16) && (src_enc < 16)) {
4479     Assembler::vpmullw(dst, dst, src, vector_len);
4480   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4481     // use nds as scratch for src
4482     evmovdqul(nds, src, Assembler::AVX_512bit);
4483     Assembler::vpmullw(dst, dst, nds, vector_len);
4484   } else if ((src_enc < 16) && (nds_enc < 16)) {
4485     // use nds as scratch for dst
4486     evmovdqul(nds, dst, Assembler::AVX_512bit);
4487     Assembler::vpmullw(nds, nds, src, vector_len);
4488     evmovdqul(dst, nds, Assembler::AVX_512bit);
4489   } else if (dst_enc < 16) {
4490     // use nds as scatch for xmm0 to hold src
4491     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4492     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4493     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4494     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4495   } else {
4496     // worse case scenario, all regs are in the upper bank
4497     push_zmm(xmm1);
4498     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4499     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4500     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4501     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4502     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4503     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4504     pop_zmm(xmm1);
4505   }
4506 }
4507 
4508 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4509   int dst_enc = dst->encoding();
4510   int nds_enc = nds->encoding();
4511   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4512     Assembler::vpmullw(dst, nds, src, vector_len);
4513   } else if (dst_enc < 16) {
4514     Assembler::vpmullw(dst, dst, src, vector_len);
4515   } else if (nds_enc < 16) {
4516     // implies dst_enc in upper bank with src as scratch
4517     evmovdqul(nds, dst, Assembler::AVX_512bit);
4518     Assembler::vpmullw(nds, nds, src, vector_len);
4519     evmovdqul(dst, nds, Assembler::AVX_512bit);
4520   } else {
4521     // worse case scenario, all regs in upper bank
4522     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4523     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4524     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4525     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4526   }
4527 }
4528 
4529 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4530   int dst_enc = dst->encoding();
4531   int nds_enc = nds->encoding();
4532   int src_enc = src->encoding();
4533   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4534     Assembler::vpsubb(dst, nds, src, vector_len);
4535   } else if ((dst_enc < 16) && (src_enc < 16)) {
4536     Assembler::vpsubb(dst, dst, src, vector_len);
4537   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4538     // use nds as scratch for src
4539     evmovdqul(nds, src, Assembler::AVX_512bit);
4540     Assembler::vpsubb(dst, dst, nds, vector_len);
4541   } else if ((src_enc < 16) && (nds_enc < 16)) {
4542     // use nds as scratch for dst
4543     evmovdqul(nds, dst, Assembler::AVX_512bit);
4544     Assembler::vpsubb(nds, nds, src, vector_len);
4545     evmovdqul(dst, nds, Assembler::AVX_512bit);
4546   } else if (dst_enc < 16) {
4547     // use nds as scatch for xmm0 to hold src
4548     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4549     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4550     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4551     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4552   } else {
4553     // worse case scenario, all regs are in the upper bank
4554     push_zmm(xmm1);
4555     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4556     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4557     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4558     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4559     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4560     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4561     pop_zmm(xmm1);
4562   }
4563 }
4564 
4565 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4566   int dst_enc = dst->encoding();
4567   int nds_enc = nds->encoding();
4568   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4569     Assembler::vpsubb(dst, nds, src, vector_len);
4570   } else if (dst_enc < 16) {
4571     Assembler::vpsubb(dst, dst, src, vector_len);
4572   } else if (nds_enc < 16) {
4573     // implies dst_enc in upper bank with src as scratch
4574     evmovdqul(nds, dst, Assembler::AVX_512bit);
4575     Assembler::vpsubb(nds, nds, src, vector_len);
4576     evmovdqul(dst, nds, Assembler::AVX_512bit);
4577   } else {
4578     // worse case scenario, all regs in upper bank
4579     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4580     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4581     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4582     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4583   }
4584 }
4585 
4586 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4587   int dst_enc = dst->encoding();
4588   int nds_enc = nds->encoding();
4589   int src_enc = src->encoding();
4590   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4591     Assembler::vpsubw(dst, nds, src, vector_len);
4592   } else if ((dst_enc < 16) && (src_enc < 16)) {
4593     Assembler::vpsubw(dst, dst, src, vector_len);
4594   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4595     // use nds as scratch for src
4596     evmovdqul(nds, src, Assembler::AVX_512bit);
4597     Assembler::vpsubw(dst, dst, nds, vector_len);
4598   } else if ((src_enc < 16) && (nds_enc < 16)) {
4599     // use nds as scratch for dst
4600     evmovdqul(nds, dst, Assembler::AVX_512bit);
4601     Assembler::vpsubw(nds, nds, src, vector_len);
4602     evmovdqul(dst, nds, Assembler::AVX_512bit);
4603   } else if (dst_enc < 16) {
4604     // use nds as scatch for xmm0 to hold src
4605     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4606     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4607     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4608     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4609   } else {
4610     // worse case scenario, all regs are in the upper bank
4611     push_zmm(xmm1);
4612     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4613     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4614     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4615     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4616     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4617     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4618     pop_zmm(xmm1);
4619   }
4620 }
4621 
4622 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4623   int dst_enc = dst->encoding();
4624   int nds_enc = nds->encoding();
4625   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4626     Assembler::vpsubw(dst, nds, src, vector_len);
4627   } else if (dst_enc < 16) {
4628     Assembler::vpsubw(dst, dst, src, vector_len);
4629   } else if (nds_enc < 16) {
4630     // implies dst_enc in upper bank with src as scratch
4631     evmovdqul(nds, dst, Assembler::AVX_512bit);
4632     Assembler::vpsubw(nds, nds, src, vector_len);
4633     evmovdqul(dst, nds, Assembler::AVX_512bit);
4634   } else {
4635     // worse case scenario, all regs in upper bank
4636     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4637     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4638     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4639     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4640   }
4641 }
4642 
4643 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4644   int dst_enc = dst->encoding();
4645   int nds_enc = nds->encoding();
4646   int shift_enc = shift->encoding();
4647   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4648     Assembler::vpsraw(dst, nds, shift, vector_len);
4649   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4650     Assembler::vpsraw(dst, dst, shift, vector_len);
4651   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4652     // use nds_enc as scratch with shift
4653     evmovdqul(nds, shift, Assembler::AVX_512bit);
4654     Assembler::vpsraw(dst, dst, nds, vector_len);
4655   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4656     // use nds as scratch with dst
4657     evmovdqul(nds, dst, Assembler::AVX_512bit);
4658     Assembler::vpsraw(nds, nds, shift, vector_len);
4659     evmovdqul(dst, nds, Assembler::AVX_512bit);
4660   } else if (dst_enc < 16) {
4661     // use nds to save a copy of xmm0 and hold shift
4662     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4663     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4664     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4665     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4666   } else if (nds_enc < 16) {
4667     // use nds as dest as temps
4668     evmovdqul(nds, dst, Assembler::AVX_512bit);
4669     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4670     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4671     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4672     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4673     evmovdqul(dst, nds, Assembler::AVX_512bit);
4674   } else {
4675     // worse case scenario, all regs are in the upper bank
4676     push_zmm(xmm1);
4677     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4678     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4679     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4680     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4681     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4682     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4683     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4684     pop_zmm(xmm1);
4685   }
4686 }
4687 
4688 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4689   int dst_enc = dst->encoding();
4690   int nds_enc = nds->encoding();
4691   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4692     Assembler::vpsraw(dst, nds, shift, vector_len);
4693   } else if (dst_enc < 16) {
4694     Assembler::vpsraw(dst, dst, shift, vector_len);
4695   } else if (nds_enc < 16) {
4696     // use nds as scratch
4697     evmovdqul(nds, dst, Assembler::AVX_512bit);
4698     Assembler::vpsraw(nds, nds, shift, vector_len);
4699     evmovdqul(dst, nds, Assembler::AVX_512bit);
4700   } else {
4701     // use nds as scratch for xmm0
4702     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4703     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4704     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4705     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4706   }
4707 }
4708 
4709 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4710   int dst_enc = dst->encoding();
4711   int nds_enc = nds->encoding();
4712   int shift_enc = shift->encoding();
4713   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4714     Assembler::vpsrlw(dst, nds, shift, vector_len);
4715   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4716     Assembler::vpsrlw(dst, dst, shift, vector_len);
4717   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4718     // use nds_enc as scratch with shift
4719     evmovdqul(nds, shift, Assembler::AVX_512bit);
4720     Assembler::vpsrlw(dst, dst, nds, vector_len);
4721   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4722     // use nds as scratch with dst
4723     evmovdqul(nds, dst, Assembler::AVX_512bit);
4724     Assembler::vpsrlw(nds, nds, shift, vector_len);
4725     evmovdqul(dst, nds, Assembler::AVX_512bit);
4726   } else if (dst_enc < 16) {
4727     // use nds to save a copy of xmm0 and hold shift
4728     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4729     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4730     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4731     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4732   } else if (nds_enc < 16) {
4733     // use nds as dest as temps
4734     evmovdqul(nds, dst, Assembler::AVX_512bit);
4735     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4736     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4737     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4738     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4739     evmovdqul(dst, nds, Assembler::AVX_512bit);
4740   } else {
4741     // worse case scenario, all regs are in the upper bank
4742     push_zmm(xmm1);
4743     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4744     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4745     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4746     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4747     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4748     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4749     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4750     pop_zmm(xmm1);
4751   }
4752 }
4753 
4754 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4755   int dst_enc = dst->encoding();
4756   int nds_enc = nds->encoding();
4757   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4758     Assembler::vpsrlw(dst, nds, shift, vector_len);
4759   } else if (dst_enc < 16) {
4760     Assembler::vpsrlw(dst, dst, shift, vector_len);
4761   } else if (nds_enc < 16) {
4762     // use nds as scratch
4763     evmovdqul(nds, dst, Assembler::AVX_512bit);
4764     Assembler::vpsrlw(nds, nds, shift, vector_len);
4765     evmovdqul(dst, nds, Assembler::AVX_512bit);
4766   } else {
4767     // use nds as scratch for xmm0
4768     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4769     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4770     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4771     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4772   }
4773 }
4774 
4775 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4776   int dst_enc = dst->encoding();
4777   int nds_enc = nds->encoding();
4778   int shift_enc = shift->encoding();
4779   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4780     Assembler::vpsllw(dst, nds, shift, vector_len);
4781   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4782     Assembler::vpsllw(dst, dst, shift, vector_len);
4783   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4784     // use nds_enc as scratch with shift
4785     evmovdqul(nds, shift, Assembler::AVX_512bit);
4786     Assembler::vpsllw(dst, dst, nds, vector_len);
4787   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4788     // use nds as scratch with dst
4789     evmovdqul(nds, dst, Assembler::AVX_512bit);
4790     Assembler::vpsllw(nds, nds, shift, vector_len);
4791     evmovdqul(dst, nds, Assembler::AVX_512bit);
4792   } else if (dst_enc < 16) {
4793     // use nds to save a copy of xmm0 and hold shift
4794     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4795     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4796     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4797     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4798   } else if (nds_enc < 16) {
4799     // use nds as dest as temps
4800     evmovdqul(nds, dst, Assembler::AVX_512bit);
4801     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4802     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4803     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4804     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4805     evmovdqul(dst, nds, Assembler::AVX_512bit);
4806   } else {
4807     // worse case scenario, all regs are in the upper bank
4808     push_zmm(xmm1);
4809     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4810     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4811     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4812     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4813     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4814     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4815     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4816     pop_zmm(xmm1);
4817   }
4818 }
4819 
4820 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4821   int dst_enc = dst->encoding();
4822   int nds_enc = nds->encoding();
4823   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4824     Assembler::vpsllw(dst, nds, shift, vector_len);
4825   } else if (dst_enc < 16) {
4826     Assembler::vpsllw(dst, dst, shift, vector_len);
4827   } else if (nds_enc < 16) {
4828     // use nds as scratch
4829     evmovdqul(nds, dst, Assembler::AVX_512bit);
4830     Assembler::vpsllw(nds, nds, shift, vector_len);
4831     evmovdqul(dst, nds, Assembler::AVX_512bit);
4832   } else {
4833     // use nds as scratch for xmm0
4834     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4835     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4836     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4837     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4838   }
4839 }
4840 
4841 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4842   int dst_enc = dst->encoding();
4843   int src_enc = src->encoding();
4844   if ((dst_enc < 16) && (src_enc < 16)) {
4845     Assembler::vptest(dst, src);
4846   } else if (src_enc < 16) {
4847     push_zmm(xmm0);
4848     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4849     Assembler::vptest(xmm0, src);
4850     pop_zmm(xmm0);
4851   } else if (dst_enc < 16) {
4852     push_zmm(xmm0);
4853     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4854     Assembler::vptest(dst, xmm0);
4855     pop_zmm(xmm0);
4856   } else {
4857     push_zmm(xmm0);
4858     push_zmm(xmm1);
4859     movdqu(xmm0, src);
4860     movdqu(xmm1, dst);
4861     Assembler::vptest(xmm1, xmm0);
4862     pop_zmm(xmm1);
4863     pop_zmm(xmm0);
4864   }
4865 }
4866 
4867 // This instruction exists within macros, ergo we cannot control its input
4868 // when emitted through those patterns.
4869 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4870   if (VM_Version::supports_avx512nobw()) {
4871     int dst_enc = dst->encoding();
4872     int src_enc = src->encoding();
4873     if (dst_enc == src_enc) {
4874       if (dst_enc < 16) {
4875         Assembler::punpcklbw(dst, src);
4876       } else {
4877         push_zmm(xmm0);
4878         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4879         Assembler::punpcklbw(xmm0, xmm0);
4880         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4881         pop_zmm(xmm0);
4882       }
4883     } else {
4884       if ((src_enc < 16) && (dst_enc < 16)) {
4885         Assembler::punpcklbw(dst, src);
4886       } else if (src_enc < 16) {
4887         push_zmm(xmm0);
4888         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4889         Assembler::punpcklbw(xmm0, src);
4890         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4891         pop_zmm(xmm0);
4892       } else if (dst_enc < 16) {
4893         push_zmm(xmm0);
4894         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4895         Assembler::punpcklbw(dst, xmm0);
4896         pop_zmm(xmm0);
4897       } else {
4898         push_zmm(xmm0);
4899         push_zmm(xmm1);
4900         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4901         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4902         Assembler::punpcklbw(xmm0, xmm1);
4903         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4904         pop_zmm(xmm1);
4905         pop_zmm(xmm0);
4906       }
4907     }
4908   } else {
4909     Assembler::punpcklbw(dst, src);
4910   }
4911 }
4912 
4913 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
4914   if (VM_Version::supports_avx512vl()) {
4915     Assembler::pshufd(dst, src, mode);
4916   } else {
4917     int dst_enc = dst->encoding();
4918     if (dst_enc < 16) {
4919       Assembler::pshufd(dst, src, mode);
4920     } else {
4921       push_zmm(xmm0);
4922       Assembler::pshufd(xmm0, src, mode);
4923       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4924       pop_zmm(xmm0);
4925     }
4926   }
4927 }
4928 
4929 // This instruction exists within macros, ergo we cannot control its input
4930 // when emitted through those patterns.
4931 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4932   if (VM_Version::supports_avx512nobw()) {
4933     int dst_enc = dst->encoding();
4934     int src_enc = src->encoding();
4935     if (dst_enc == src_enc) {
4936       if (dst_enc < 16) {
4937         Assembler::pshuflw(dst, src, mode);
4938       } else {
4939         push_zmm(xmm0);
4940         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4941         Assembler::pshuflw(xmm0, xmm0, mode);
4942         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4943         pop_zmm(xmm0);
4944       }
4945     } else {
4946       if ((src_enc < 16) && (dst_enc < 16)) {
4947         Assembler::pshuflw(dst, src, mode);
4948       } else if (src_enc < 16) {
4949         push_zmm(xmm0);
4950         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4951         Assembler::pshuflw(xmm0, src, mode);
4952         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4953         pop_zmm(xmm0);
4954       } else if (dst_enc < 16) {
4955         push_zmm(xmm0);
4956         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4957         Assembler::pshuflw(dst, xmm0, mode);
4958         pop_zmm(xmm0);
4959       } else {
4960         push_zmm(xmm0);
4961         push_zmm(xmm1);
4962         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4963         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4964         Assembler::pshuflw(xmm0, xmm1, mode);
4965         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4966         pop_zmm(xmm1);
4967         pop_zmm(xmm0);
4968       }
4969     }
4970   } else {
4971     Assembler::pshuflw(dst, src, mode);
4972   }
4973 }
4974 
4975 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4976   if (reachable(src)) {
4977     vandpd(dst, nds, as_Address(src), vector_len);
4978   } else {
4979     lea(rscratch1, src);
4980     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4981   }
4982 }
4983 
4984 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4985   if (reachable(src)) {
4986     vandps(dst, nds, as_Address(src), vector_len);
4987   } else {
4988     lea(rscratch1, src);
4989     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4990   }
4991 }
4992 
4993 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4994   if (reachable(src)) {
4995     vdivsd(dst, nds, as_Address(src));
4996   } else {
4997     lea(rscratch1, src);
4998     vdivsd(dst, nds, Address(rscratch1, 0));
4999   }
5000 }
5001 
5002 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5003   if (reachable(src)) {
5004     vdivss(dst, nds, as_Address(src));
5005   } else {
5006     lea(rscratch1, src);
5007     vdivss(dst, nds, Address(rscratch1, 0));
5008   }
5009 }
5010 
5011 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5012   if (reachable(src)) {
5013     vmulsd(dst, nds, as_Address(src));
5014   } else {
5015     lea(rscratch1, src);
5016     vmulsd(dst, nds, Address(rscratch1, 0));
5017   }
5018 }
5019 
5020 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5021   if (reachable(src)) {
5022     vmulss(dst, nds, as_Address(src));
5023   } else {
5024     lea(rscratch1, src);
5025     vmulss(dst, nds, Address(rscratch1, 0));
5026   }
5027 }
5028 
5029 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5030   if (reachable(src)) {
5031     vsubsd(dst, nds, as_Address(src));
5032   } else {
5033     lea(rscratch1, src);
5034     vsubsd(dst, nds, Address(rscratch1, 0));
5035   }
5036 }
5037 
5038 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5039   if (reachable(src)) {
5040     vsubss(dst, nds, as_Address(src));
5041   } else {
5042     lea(rscratch1, src);
5043     vsubss(dst, nds, Address(rscratch1, 0));
5044   }
5045 }
5046 
5047 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5048   int nds_enc = nds->encoding();
5049   int dst_enc = dst->encoding();
5050   bool dst_upper_bank = (dst_enc > 15);
5051   bool nds_upper_bank = (nds_enc > 15);
5052   if (VM_Version::supports_avx512novl() &&
5053       (nds_upper_bank || dst_upper_bank)) {
5054     if (dst_upper_bank) {
5055       push_zmm(xmm0);
5056       movflt(xmm0, nds);
5057       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5058       movflt(dst, xmm0);
5059       pop_zmm(xmm0);
5060     } else {
5061       movflt(dst, nds);
5062       vxorps(dst, dst, src, Assembler::AVX_128bit);
5063     }
5064   } else {
5065     vxorps(dst, nds, src, Assembler::AVX_128bit);
5066   }
5067 }
5068 
5069 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5070   int nds_enc = nds->encoding();
5071   int dst_enc = dst->encoding();
5072   bool dst_upper_bank = (dst_enc > 15);
5073   bool nds_upper_bank = (nds_enc > 15);
5074   if (VM_Version::supports_avx512novl() &&
5075       (nds_upper_bank || dst_upper_bank)) {
5076     if (dst_upper_bank) {
5077       push_zmm(xmm0);
5078       movdbl(xmm0, nds);
5079       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5080       movdbl(dst, xmm0);
5081       pop_zmm(xmm0);
5082     } else {
5083       movdbl(dst, nds);
5084       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5085     }
5086   } else {
5087     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5088   }
5089 }
5090 
5091 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5092   if (reachable(src)) {
5093     vxorpd(dst, nds, as_Address(src), vector_len);
5094   } else {
5095     lea(rscratch1, src);
5096     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5097   }
5098 }
5099 
5100 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5101   if (reachable(src)) {
5102     vxorps(dst, nds, as_Address(src), vector_len);
5103   } else {
5104     lea(rscratch1, src);
5105     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5106   }
5107 }
5108 
5109 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5110   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5111   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5112   // The inverted mask is sign-extended
5113   andptr(possibly_jweak, inverted_jweak_mask);
5114 }
5115 
5116 void MacroAssembler::resolve_jobject(Register value,
5117                                      Register thread,
5118                                      Register tmp) {
5119   assert_different_registers(value, thread, tmp);
5120   Label done, not_weak;
5121   testptr(value, value);
5122   jcc(Assembler::zero, done);                // Use NULL as-is.
5123   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5124   jcc(Assembler::zero, not_weak);
5125   // Resolve jweak.
5126   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5127                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
5128   verify_oop(value);
5129   jmp(done);
5130   bind(not_weak);
5131   // Resolve (untagged) jobject.
5132   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
5133   verify_oop(value);
5134   bind(done);
5135 }
5136 
5137 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5138   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5139 }
5140 
5141 // Force generation of a 4 byte immediate value even if it fits into 8bit
5142 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5143   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5144 }
5145 
5146 void MacroAssembler::subptr(Register dst, Register src) {
5147   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5148 }
5149 
5150 // C++ bool manipulation
5151 void MacroAssembler::testbool(Register dst) {
5152   if(sizeof(bool) == 1)
5153     testb(dst, 0xff);
5154   else if(sizeof(bool) == 2) {
5155     // testw implementation needed for two byte bools
5156     ShouldNotReachHere();
5157   } else if(sizeof(bool) == 4)
5158     testl(dst, dst);
5159   else
5160     // unsupported
5161     ShouldNotReachHere();
5162 }
5163 
5164 void MacroAssembler::testptr(Register dst, Register src) {
5165   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5166 }
5167 
5168 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5169 void MacroAssembler::tlab_allocate(Register thread, Register obj,
5170                                    Register var_size_in_bytes,
5171                                    int con_size_in_bytes,
5172                                    Register t1,
5173                                    Register t2,
5174                                    Label& slow_case) {
5175   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5176   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5177 }
5178 
5179 // Defines obj, preserves var_size_in_bytes
5180 void MacroAssembler::eden_allocate(Register thread, Register obj,
5181                                    Register var_size_in_bytes,
5182                                    int con_size_in_bytes,
5183                                    Register t1,
5184                                    Label& slow_case) {
5185   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5186   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
5187 }
5188 
5189 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5190 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5191   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5192   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5193   Label done;
5194 
5195   testptr(length_in_bytes, length_in_bytes);
5196   jcc(Assembler::zero, done);
5197 
5198   // initialize topmost word, divide index by 2, check if odd and test if zero
5199   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5200 #ifdef ASSERT
5201   {
5202     Label L;
5203     testptr(length_in_bytes, BytesPerWord - 1);
5204     jcc(Assembler::zero, L);
5205     stop("length must be a multiple of BytesPerWord");
5206     bind(L);
5207   }
5208 #endif
5209   Register index = length_in_bytes;
5210   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5211   if (UseIncDec) {
5212     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5213   } else {
5214     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5215     shrptr(index, 1);
5216   }
5217 #ifndef _LP64
5218   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5219   {
5220     Label even;
5221     // note: if index was a multiple of 8, then it cannot
5222     //       be 0 now otherwise it must have been 0 before
5223     //       => if it is even, we don't need to check for 0 again
5224     jcc(Assembler::carryClear, even);
5225     // clear topmost word (no jump would be needed if conditional assignment worked here)
5226     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5227     // index could be 0 now, must check again
5228     jcc(Assembler::zero, done);
5229     bind(even);
5230   }
5231 #endif // !_LP64
5232   // initialize remaining object fields: index is a multiple of 2 now
5233   {
5234     Label loop;
5235     bind(loop);
5236     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5237     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5238     decrement(index);
5239     jcc(Assembler::notZero, loop);
5240   }
5241 
5242   bind(done);
5243 }
5244 
5245 // Look up the method for a megamorphic invokeinterface call.
5246 // The target method is determined by <intf_klass, itable_index>.
5247 // The receiver klass is in recv_klass.
5248 // On success, the result will be in method_result, and execution falls through.
5249 // On failure, execution transfers to the given label.
5250 void MacroAssembler::lookup_interface_method(Register recv_klass,
5251                                              Register intf_klass,
5252                                              RegisterOrConstant itable_index,
5253                                              Register method_result,
5254                                              Register scan_temp,
5255                                              Label& L_no_such_interface,
5256                                              bool return_method) {
5257   assert_different_registers(recv_klass, intf_klass, scan_temp);
5258   assert_different_registers(method_result, intf_klass, scan_temp);
5259   assert(recv_klass != method_result || !return_method,
5260          "recv_klass can be destroyed when method isn't needed");
5261 
5262   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5263          "caller must use same register for non-constant itable index as for method");
5264 
5265   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5266   int vtable_base = in_bytes(Klass::vtable_start_offset());
5267   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5268   int scan_step   = itableOffsetEntry::size() * wordSize;
5269   int vte_size    = vtableEntry::size_in_bytes();
5270   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5271   assert(vte_size == wordSize, "else adjust times_vte_scale");
5272 
5273   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5274 
5275   // %%% Could store the aligned, prescaled offset in the klassoop.
5276   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5277 
5278   if (return_method) {
5279     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5280     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5281     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5282   }
5283 
5284   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5285   //   if (scan->interface() == intf) {
5286   //     result = (klass + scan->offset() + itable_index);
5287   //   }
5288   // }
5289   Label search, found_method;
5290 
5291   for (int peel = 1; peel >= 0; peel--) {
5292     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5293     cmpptr(intf_klass, method_result);
5294 
5295     if (peel) {
5296       jccb(Assembler::equal, found_method);
5297     } else {
5298       jccb(Assembler::notEqual, search);
5299       // (invert the test to fall through to found_method...)
5300     }
5301 
5302     if (!peel)  break;
5303 
5304     bind(search);
5305 
5306     // Check that the previous entry is non-null.  A null entry means that
5307     // the receiver class doesn't implement the interface, and wasn't the
5308     // same as when the caller was compiled.
5309     testptr(method_result, method_result);
5310     jcc(Assembler::zero, L_no_such_interface);
5311     addptr(scan_temp, scan_step);
5312   }
5313 
5314   bind(found_method);
5315 
5316   if (return_method) {
5317     // Got a hit.
5318     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5319     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5320   }
5321 }
5322 
5323 
5324 // virtual method calling
5325 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5326                                            RegisterOrConstant vtable_index,
5327                                            Register method_result) {
5328   const int base = in_bytes(Klass::vtable_start_offset());
5329   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5330   Address vtable_entry_addr(recv_klass,
5331                             vtable_index, Address::times_ptr,
5332                             base + vtableEntry::method_offset_in_bytes());
5333   movptr(method_result, vtable_entry_addr);
5334 }
5335 
5336 
5337 void MacroAssembler::check_klass_subtype(Register sub_klass,
5338                            Register super_klass,
5339                            Register temp_reg,
5340                            Label& L_success) {
5341   Label L_failure;
5342   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5343   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5344   bind(L_failure);
5345 }
5346 
5347 
5348 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5349                                                    Register super_klass,
5350                                                    Register temp_reg,
5351                                                    Label* L_success,
5352                                                    Label* L_failure,
5353                                                    Label* L_slow_path,
5354                                         RegisterOrConstant super_check_offset) {
5355   assert_different_registers(sub_klass, super_klass, temp_reg);
5356   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5357   if (super_check_offset.is_register()) {
5358     assert_different_registers(sub_klass, super_klass,
5359                                super_check_offset.as_register());
5360   } else if (must_load_sco) {
5361     assert(temp_reg != noreg, "supply either a temp or a register offset");
5362   }
5363 
5364   Label L_fallthrough;
5365   int label_nulls = 0;
5366   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5367   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5368   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5369   assert(label_nulls <= 1, "at most one NULL in the batch");
5370 
5371   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5372   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5373   Address super_check_offset_addr(super_klass, sco_offset);
5374 
5375   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5376   // range of a jccb.  If this routine grows larger, reconsider at
5377   // least some of these.
5378 #define local_jcc(assembler_cond, label)                                \
5379   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5380   else                             jcc( assembler_cond, label) /*omit semi*/
5381 
5382   // Hacked jmp, which may only be used just before L_fallthrough.
5383 #define final_jmp(label)                                                \
5384   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5385   else                            jmp(label)                /*omit semi*/
5386 
5387   // If the pointers are equal, we are done (e.g., String[] elements).
5388   // This self-check enables sharing of secondary supertype arrays among
5389   // non-primary types such as array-of-interface.  Otherwise, each such
5390   // type would need its own customized SSA.
5391   // We move this check to the front of the fast path because many
5392   // type checks are in fact trivially successful in this manner,
5393   // so we get a nicely predicted branch right at the start of the check.
5394   cmpptr(sub_klass, super_klass);
5395   local_jcc(Assembler::equal, *L_success);
5396 
5397   // Check the supertype display:
5398   if (must_load_sco) {
5399     // Positive movl does right thing on LP64.
5400     movl(temp_reg, super_check_offset_addr);
5401     super_check_offset = RegisterOrConstant(temp_reg);
5402   }
5403   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5404   cmpptr(super_klass, super_check_addr); // load displayed supertype
5405 
5406   // This check has worked decisively for primary supers.
5407   // Secondary supers are sought in the super_cache ('super_cache_addr').
5408   // (Secondary supers are interfaces and very deeply nested subtypes.)
5409   // This works in the same check above because of a tricky aliasing
5410   // between the super_cache and the primary super display elements.
5411   // (The 'super_check_addr' can address either, as the case requires.)
5412   // Note that the cache is updated below if it does not help us find
5413   // what we need immediately.
5414   // So if it was a primary super, we can just fail immediately.
5415   // Otherwise, it's the slow path for us (no success at this point).
5416 
5417   if (super_check_offset.is_register()) {
5418     local_jcc(Assembler::equal, *L_success);
5419     cmpl(super_check_offset.as_register(), sc_offset);
5420     if (L_failure == &L_fallthrough) {
5421       local_jcc(Assembler::equal, *L_slow_path);
5422     } else {
5423       local_jcc(Assembler::notEqual, *L_failure);
5424       final_jmp(*L_slow_path);
5425     }
5426   } else if (super_check_offset.as_constant() == sc_offset) {
5427     // Need a slow path; fast failure is impossible.
5428     if (L_slow_path == &L_fallthrough) {
5429       local_jcc(Assembler::equal, *L_success);
5430     } else {
5431       local_jcc(Assembler::notEqual, *L_slow_path);
5432       final_jmp(*L_success);
5433     }
5434   } else {
5435     // No slow path; it's a fast decision.
5436     if (L_failure == &L_fallthrough) {
5437       local_jcc(Assembler::equal, *L_success);
5438     } else {
5439       local_jcc(Assembler::notEqual, *L_failure);
5440       final_jmp(*L_success);
5441     }
5442   }
5443 
5444   bind(L_fallthrough);
5445 
5446 #undef local_jcc
5447 #undef final_jmp
5448 }
5449 
5450 
5451 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5452                                                    Register super_klass,
5453                                                    Register temp_reg,
5454                                                    Register temp2_reg,
5455                                                    Label* L_success,
5456                                                    Label* L_failure,
5457                                                    bool set_cond_codes) {
5458   assert_different_registers(sub_klass, super_klass, temp_reg);
5459   if (temp2_reg != noreg)
5460     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5461 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5462 
5463   Label L_fallthrough;
5464   int label_nulls = 0;
5465   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5466   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5467   assert(label_nulls <= 1, "at most one NULL in the batch");
5468 
5469   // a couple of useful fields in sub_klass:
5470   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5471   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5472   Address secondary_supers_addr(sub_klass, ss_offset);
5473   Address super_cache_addr(     sub_klass, sc_offset);
5474 
5475   // Do a linear scan of the secondary super-klass chain.
5476   // This code is rarely used, so simplicity is a virtue here.
5477   // The repne_scan instruction uses fixed registers, which we must spill.
5478   // Don't worry too much about pre-existing connections with the input regs.
5479 
5480   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5481   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5482 
5483   // Get super_klass value into rax (even if it was in rdi or rcx).
5484   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5485   if (super_klass != rax || UseCompressedOops) {
5486     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5487     mov(rax, super_klass);
5488   }
5489   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5490   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5491 
5492 #ifndef PRODUCT
5493   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5494   ExternalAddress pst_counter_addr((address) pst_counter);
5495   NOT_LP64(  incrementl(pst_counter_addr) );
5496   LP64_ONLY( lea(rcx, pst_counter_addr) );
5497   LP64_ONLY( incrementl(Address(rcx, 0)) );
5498 #endif //PRODUCT
5499 
5500   // We will consult the secondary-super array.
5501   movptr(rdi, secondary_supers_addr);
5502   // Load the array length.  (Positive movl does right thing on LP64.)
5503   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5504   // Skip to start of data.
5505   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5506 
5507   // Scan RCX words at [RDI] for an occurrence of RAX.
5508   // Set NZ/Z based on last compare.
5509   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5510   // not change flags (only scas instruction which is repeated sets flags).
5511   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5512 
5513     testptr(rax,rax); // Set Z = 0
5514     repne_scan();
5515 
5516   // Unspill the temp. registers:
5517   if (pushed_rdi)  pop(rdi);
5518   if (pushed_rcx)  pop(rcx);
5519   if (pushed_rax)  pop(rax);
5520 
5521   if (set_cond_codes) {
5522     // Special hack for the AD files:  rdi is guaranteed non-zero.
5523     assert(!pushed_rdi, "rdi must be left non-NULL");
5524     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5525   }
5526 
5527   if (L_failure == &L_fallthrough)
5528         jccb(Assembler::notEqual, *L_failure);
5529   else  jcc(Assembler::notEqual, *L_failure);
5530 
5531   // Success.  Cache the super we found and proceed in triumph.
5532   movptr(super_cache_addr, super_klass);
5533 
5534   if (L_success != &L_fallthrough) {
5535     jmp(*L_success);
5536   }
5537 
5538 #undef IS_A_TEMP
5539 
5540   bind(L_fallthrough);
5541 }
5542 
5543 
5544 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5545   if (VM_Version::supports_cmov()) {
5546     cmovl(cc, dst, src);
5547   } else {
5548     Label L;
5549     jccb(negate_condition(cc), L);
5550     movl(dst, src);
5551     bind(L);
5552   }
5553 }
5554 
5555 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5556   if (VM_Version::supports_cmov()) {
5557     cmovl(cc, dst, src);
5558   } else {
5559     Label L;
5560     jccb(negate_condition(cc), L);
5561     movl(dst, src);
5562     bind(L);
5563   }
5564 }
5565 
5566 void MacroAssembler::verify_oop(Register reg, const char* s) {
5567   if (!VerifyOops) return;
5568 
5569   // Pass register number to verify_oop_subroutine
5570   const char* b = NULL;
5571   {
5572     ResourceMark rm;
5573     stringStream ss;
5574     ss.print("verify_oop: %s: %s", reg->name(), s);
5575     b = code_string(ss.as_string());
5576   }
5577   BLOCK_COMMENT("verify_oop {");
5578 #ifdef _LP64
5579   push(rscratch1);                    // save r10, trashed by movptr()
5580 #endif
5581   push(rax);                          // save rax,
5582   push(reg);                          // pass register argument
5583   ExternalAddress buffer((address) b);
5584   // avoid using pushptr, as it modifies scratch registers
5585   // and our contract is not to modify anything
5586   movptr(rax, buffer.addr());
5587   push(rax);
5588   // call indirectly to solve generation ordering problem
5589   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5590   call(rax);
5591   // Caller pops the arguments (oop, message) and restores rax, r10
5592   BLOCK_COMMENT("} verify_oop");
5593 }
5594 
5595 
5596 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5597                                                       Register tmp,
5598                                                       int offset) {
5599   intptr_t value = *delayed_value_addr;
5600   if (value != 0)
5601     return RegisterOrConstant(value + offset);
5602 
5603   // load indirectly to solve generation ordering problem
5604   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5605 
5606 #ifdef ASSERT
5607   { Label L;
5608     testptr(tmp, tmp);
5609     if (WizardMode) {
5610       const char* buf = NULL;
5611       {
5612         ResourceMark rm;
5613         stringStream ss;
5614         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5615         buf = code_string(ss.as_string());
5616       }
5617       jcc(Assembler::notZero, L);
5618       STOP(buf);
5619     } else {
5620       jccb(Assembler::notZero, L);
5621       hlt();
5622     }
5623     bind(L);
5624   }
5625 #endif
5626 
5627   if (offset != 0)
5628     addptr(tmp, offset);
5629 
5630   return RegisterOrConstant(tmp);
5631 }
5632 
5633 
5634 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5635                                          int extra_slot_offset) {
5636   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5637   int stackElementSize = Interpreter::stackElementSize;
5638   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5639 #ifdef ASSERT
5640   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5641   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5642 #endif
5643   Register             scale_reg    = noreg;
5644   Address::ScaleFactor scale_factor = Address::no_scale;
5645   if (arg_slot.is_constant()) {
5646     offset += arg_slot.as_constant() * stackElementSize;
5647   } else {
5648     scale_reg    = arg_slot.as_register();
5649     scale_factor = Address::times(stackElementSize);
5650   }
5651   offset += wordSize;           // return PC is on stack
5652   return Address(rsp, scale_reg, scale_factor, offset);
5653 }
5654 
5655 
5656 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5657   if (!VerifyOops) return;
5658 
5659   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5660   // Pass register number to verify_oop_subroutine
5661   const char* b = NULL;
5662   {
5663     ResourceMark rm;
5664     stringStream ss;
5665     ss.print("verify_oop_addr: %s", s);
5666     b = code_string(ss.as_string());
5667   }
5668 #ifdef _LP64
5669   push(rscratch1);                    // save r10, trashed by movptr()
5670 #endif
5671   push(rax);                          // save rax,
5672   // addr may contain rsp so we will have to adjust it based on the push
5673   // we just did (and on 64 bit we do two pushes)
5674   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5675   // stores rax into addr which is backwards of what was intended.
5676   if (addr.uses(rsp)) {
5677     lea(rax, addr);
5678     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5679   } else {
5680     pushptr(addr);
5681   }
5682 
5683   ExternalAddress buffer((address) b);
5684   // pass msg argument
5685   // avoid using pushptr, as it modifies scratch registers
5686   // and our contract is not to modify anything
5687   movptr(rax, buffer.addr());
5688   push(rax);
5689 
5690   // call indirectly to solve generation ordering problem
5691   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5692   call(rax);
5693   // Caller pops the arguments (addr, message) and restores rax, r10.
5694 }
5695 
5696 void MacroAssembler::verify_tlab() {
5697 #ifdef ASSERT
5698   if (UseTLAB && VerifyOops) {
5699     Label next, ok;
5700     Register t1 = rsi;
5701     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5702 
5703     push(t1);
5704     NOT_LP64(push(thread_reg));
5705     NOT_LP64(get_thread(thread_reg));
5706 
5707     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5708     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5709     jcc(Assembler::aboveEqual, next);
5710     STOP("assert(top >= start)");
5711     should_not_reach_here();
5712 
5713     bind(next);
5714     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5715     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5716     jcc(Assembler::aboveEqual, ok);
5717     STOP("assert(top <= end)");
5718     should_not_reach_here();
5719 
5720     bind(ok);
5721     NOT_LP64(pop(thread_reg));
5722     pop(t1);
5723   }
5724 #endif
5725 }
5726 
5727 class ControlWord {
5728  public:
5729   int32_t _value;
5730 
5731   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5732   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5733   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5734   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5735   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5736   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5737   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5738   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5739 
5740   void print() const {
5741     // rounding control
5742     const char* rc;
5743     switch (rounding_control()) {
5744       case 0: rc = "round near"; break;
5745       case 1: rc = "round down"; break;
5746       case 2: rc = "round up  "; break;
5747       case 3: rc = "chop      "; break;
5748     };
5749     // precision control
5750     const char* pc;
5751     switch (precision_control()) {
5752       case 0: pc = "24 bits "; break;
5753       case 1: pc = "reserved"; break;
5754       case 2: pc = "53 bits "; break;
5755       case 3: pc = "64 bits "; break;
5756     };
5757     // flags
5758     char f[9];
5759     f[0] = ' ';
5760     f[1] = ' ';
5761     f[2] = (precision   ()) ? 'P' : 'p';
5762     f[3] = (underflow   ()) ? 'U' : 'u';
5763     f[4] = (overflow    ()) ? 'O' : 'o';
5764     f[5] = (zero_divide ()) ? 'Z' : 'z';
5765     f[6] = (denormalized()) ? 'D' : 'd';
5766     f[7] = (invalid     ()) ? 'I' : 'i';
5767     f[8] = '\x0';
5768     // output
5769     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5770   }
5771 
5772 };
5773 
5774 class StatusWord {
5775  public:
5776   int32_t _value;
5777 
5778   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5779   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5780   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5781   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5782   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5783   int  top() const                     { return  (_value >> 11) & 7      ; }
5784   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5785   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5786   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5787   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5788   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5789   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5790   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5791   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5792 
5793   void print() const {
5794     // condition codes
5795     char c[5];
5796     c[0] = (C3()) ? '3' : '-';
5797     c[1] = (C2()) ? '2' : '-';
5798     c[2] = (C1()) ? '1' : '-';
5799     c[3] = (C0()) ? '0' : '-';
5800     c[4] = '\x0';
5801     // flags
5802     char f[9];
5803     f[0] = (error_status()) ? 'E' : '-';
5804     f[1] = (stack_fault ()) ? 'S' : '-';
5805     f[2] = (precision   ()) ? 'P' : '-';
5806     f[3] = (underflow   ()) ? 'U' : '-';
5807     f[4] = (overflow    ()) ? 'O' : '-';
5808     f[5] = (zero_divide ()) ? 'Z' : '-';
5809     f[6] = (denormalized()) ? 'D' : '-';
5810     f[7] = (invalid     ()) ? 'I' : '-';
5811     f[8] = '\x0';
5812     // output
5813     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5814   }
5815 
5816 };
5817 
5818 class TagWord {
5819  public:
5820   int32_t _value;
5821 
5822   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5823 
5824   void print() const {
5825     printf("%04x", _value & 0xFFFF);
5826   }
5827 
5828 };
5829 
5830 class FPU_Register {
5831  public:
5832   int32_t _m0;
5833   int32_t _m1;
5834   int16_t _ex;
5835 
5836   bool is_indefinite() const           {
5837     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5838   }
5839 
5840   void print() const {
5841     char  sign = (_ex < 0) ? '-' : '+';
5842     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5843     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5844   };
5845 
5846 };
5847 
5848 class FPU_State {
5849  public:
5850   enum {
5851     register_size       = 10,
5852     number_of_registers =  8,
5853     register_mask       =  7
5854   };
5855 
5856   ControlWord  _control_word;
5857   StatusWord   _status_word;
5858   TagWord      _tag_word;
5859   int32_t      _error_offset;
5860   int32_t      _error_selector;
5861   int32_t      _data_offset;
5862   int32_t      _data_selector;
5863   int8_t       _register[register_size * number_of_registers];
5864 
5865   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5866   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5867 
5868   const char* tag_as_string(int tag) const {
5869     switch (tag) {
5870       case 0: return "valid";
5871       case 1: return "zero";
5872       case 2: return "special";
5873       case 3: return "empty";
5874     }
5875     ShouldNotReachHere();
5876     return NULL;
5877   }
5878 
5879   void print() const {
5880     // print computation registers
5881     { int t = _status_word.top();
5882       for (int i = 0; i < number_of_registers; i++) {
5883         int j = (i - t) & register_mask;
5884         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5885         st(j)->print();
5886         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5887       }
5888     }
5889     printf("\n");
5890     // print control registers
5891     printf("ctrl = "); _control_word.print(); printf("\n");
5892     printf("stat = "); _status_word .print(); printf("\n");
5893     printf("tags = "); _tag_word    .print(); printf("\n");
5894   }
5895 
5896 };
5897 
5898 class Flag_Register {
5899  public:
5900   int32_t _value;
5901 
5902   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5903   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5904   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5905   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5906   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5907   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5908   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5909 
5910   void print() const {
5911     // flags
5912     char f[8];
5913     f[0] = (overflow       ()) ? 'O' : '-';
5914     f[1] = (direction      ()) ? 'D' : '-';
5915     f[2] = (sign           ()) ? 'S' : '-';
5916     f[3] = (zero           ()) ? 'Z' : '-';
5917     f[4] = (auxiliary_carry()) ? 'A' : '-';
5918     f[5] = (parity         ()) ? 'P' : '-';
5919     f[6] = (carry          ()) ? 'C' : '-';
5920     f[7] = '\x0';
5921     // output
5922     printf("%08x  flags = %s", _value, f);
5923   }
5924 
5925 };
5926 
5927 class IU_Register {
5928  public:
5929   int32_t _value;
5930 
5931   void print() const {
5932     printf("%08x  %11d", _value, _value);
5933   }
5934 
5935 };
5936 
5937 class IU_State {
5938  public:
5939   Flag_Register _eflags;
5940   IU_Register   _rdi;
5941   IU_Register   _rsi;
5942   IU_Register   _rbp;
5943   IU_Register   _rsp;
5944   IU_Register   _rbx;
5945   IU_Register   _rdx;
5946   IU_Register   _rcx;
5947   IU_Register   _rax;
5948 
5949   void print() const {
5950     // computation registers
5951     printf("rax,  = "); _rax.print(); printf("\n");
5952     printf("rbx,  = "); _rbx.print(); printf("\n");
5953     printf("rcx  = "); _rcx.print(); printf("\n");
5954     printf("rdx  = "); _rdx.print(); printf("\n");
5955     printf("rdi  = "); _rdi.print(); printf("\n");
5956     printf("rsi  = "); _rsi.print(); printf("\n");
5957     printf("rbp,  = "); _rbp.print(); printf("\n");
5958     printf("rsp  = "); _rsp.print(); printf("\n");
5959     printf("\n");
5960     // control registers
5961     printf("flgs = "); _eflags.print(); printf("\n");
5962   }
5963 };
5964 
5965 
5966 class CPU_State {
5967  public:
5968   FPU_State _fpu_state;
5969   IU_State  _iu_state;
5970 
5971   void print() const {
5972     printf("--------------------------------------------------\n");
5973     _iu_state .print();
5974     printf("\n");
5975     _fpu_state.print();
5976     printf("--------------------------------------------------\n");
5977   }
5978 
5979 };
5980 
5981 
5982 static void _print_CPU_state(CPU_State* state) {
5983   state->print();
5984 };
5985 
5986 
5987 void MacroAssembler::print_CPU_state() {
5988   push_CPU_state();
5989   push(rsp);                // pass CPU state
5990   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5991   addptr(rsp, wordSize);       // discard argument
5992   pop_CPU_state();
5993 }
5994 
5995 
5996 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5997   static int counter = 0;
5998   FPU_State* fs = &state->_fpu_state;
5999   counter++;
6000   // For leaf calls, only verify that the top few elements remain empty.
6001   // We only need 1 empty at the top for C2 code.
6002   if( stack_depth < 0 ) {
6003     if( fs->tag_for_st(7) != 3 ) {
6004       printf("FPR7 not empty\n");
6005       state->print();
6006       assert(false, "error");
6007       return false;
6008     }
6009     return true;                // All other stack states do not matter
6010   }
6011 
6012   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6013          "bad FPU control word");
6014 
6015   // compute stack depth
6016   int i = 0;
6017   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6018   int d = i;
6019   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6020   // verify findings
6021   if (i != FPU_State::number_of_registers) {
6022     // stack not contiguous
6023     printf("%s: stack not contiguous at ST%d\n", s, i);
6024     state->print();
6025     assert(false, "error");
6026     return false;
6027   }
6028   // check if computed stack depth corresponds to expected stack depth
6029   if (stack_depth < 0) {
6030     // expected stack depth is -stack_depth or less
6031     if (d > -stack_depth) {
6032       // too many elements on the stack
6033       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6034       state->print();
6035       assert(false, "error");
6036       return false;
6037     }
6038   } else {
6039     // expected stack depth is stack_depth
6040     if (d != stack_depth) {
6041       // wrong stack depth
6042       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6043       state->print();
6044       assert(false, "error");
6045       return false;
6046     }
6047   }
6048   // everything is cool
6049   return true;
6050 }
6051 
6052 
6053 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6054   if (!VerifyFPU) return;
6055   push_CPU_state();
6056   push(rsp);                // pass CPU state
6057   ExternalAddress msg((address) s);
6058   // pass message string s
6059   pushptr(msg.addr());
6060   push(stack_depth);        // pass stack depth
6061   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6062   addptr(rsp, 3 * wordSize);   // discard arguments
6063   // check for error
6064   { Label L;
6065     testl(rax, rax);
6066     jcc(Assembler::notZero, L);
6067     int3();                  // break if error condition
6068     bind(L);
6069   }
6070   pop_CPU_state();
6071 }
6072 
6073 void MacroAssembler::restore_cpu_control_state_after_jni() {
6074   // Either restore the MXCSR register after returning from the JNI Call
6075   // or verify that it wasn't changed (with -Xcheck:jni flag).
6076   if (VM_Version::supports_sse()) {
6077     if (RestoreMXCSROnJNICalls) {
6078       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6079     } else if (CheckJNICalls) {
6080       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6081     }
6082   }
6083   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6084   vzeroupper();
6085   // Reset k1 to 0xffff.
6086   if (VM_Version::supports_evex()) {
6087     push(rcx);
6088     movl(rcx, 0xffff);
6089     kmovwl(k1, rcx);
6090     pop(rcx);
6091   }
6092 
6093 #ifndef _LP64
6094   // Either restore the x87 floating pointer control word after returning
6095   // from the JNI call or verify that it wasn't changed.
6096   if (CheckJNICalls) {
6097     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6098   }
6099 #endif // _LP64
6100 }
6101 
6102 // ((OopHandle)result).resolve();
6103 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
6104   assert_different_registers(result, tmp);
6105 
6106   // Only 64 bit platforms support GCs that require a tmp register
6107   // Only IN_HEAP loads require a thread_tmp register
6108   // OopHandle::resolve is an indirection like jobject.
6109   access_load_at(T_OBJECT, IN_NATIVE,
6110                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
6111 }
6112 
6113 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
6114   // get mirror
6115   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6116   movptr(mirror, Address(method, Method::const_offset()));
6117   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6118   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6119   movptr(mirror, Address(mirror, mirror_offset));
6120   resolve_oop_handle(mirror, tmp);
6121 }
6122 
6123 void MacroAssembler::load_klass(Register dst, Register src) {
6124 #ifdef _LP64
6125   if (UseCompressedClassPointers) {
6126     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6127     decode_klass_not_null(dst);
6128   } else
6129 #endif
6130     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6131 }
6132 
6133 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6134   load_klass(dst, src);
6135   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6136 }
6137 
6138 void MacroAssembler::store_klass(Register dst, Register src) {
6139 #ifdef _LP64
6140   if (UseCompressedClassPointers) {
6141     encode_klass_not_null(src);
6142     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6143   } else
6144 #endif
6145     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6146 }
6147 
6148 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
6149                                     Register tmp1, Register thread_tmp) {
6150   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6151   decorators = AccessInternal::decorator_fixup(decorators);
6152   bool as_raw = (decorators & AS_RAW) != 0;
6153   if (as_raw) {
6154     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6155   } else {
6156     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6157   }
6158 }
6159 
6160 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
6161                                      Register tmp1, Register tmp2) {
6162   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6163   decorators = AccessInternal::decorator_fixup(decorators);
6164   bool as_raw = (decorators & AS_RAW) != 0;
6165   if (as_raw) {
6166     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
6167   } else {
6168     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
6169   }
6170 }
6171 
6172 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
6173   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
6174   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
6175     decorators |= ACCESS_READ | ACCESS_WRITE;
6176   }
6177   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6178   return bs->resolve(this, decorators, obj);
6179 }
6180 
6181 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
6182                                    Register thread_tmp, DecoratorSet decorators) {
6183   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
6184 }
6185 
6186 // Doesn't do verfication, generates fixed size code
6187 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
6188                                             Register thread_tmp, DecoratorSet decorators) {
6189   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
6190 }
6191 
6192 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
6193                                     Register tmp2, DecoratorSet decorators) {
6194   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
6195 }
6196 
6197 // Used for storing NULLs.
6198 void MacroAssembler::store_heap_oop_null(Address dst) {
6199   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
6200 }
6201 
6202 #ifdef _LP64
6203 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6204   if (UseCompressedClassPointers) {
6205     // Store to klass gap in destination
6206     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6207   }
6208 }
6209 
6210 #ifdef ASSERT
6211 void MacroAssembler::verify_heapbase(const char* msg) {
6212   assert (UseCompressedOops, "should be compressed");
6213   assert (Universe::heap() != NULL, "java heap should be initialized");
6214   if (CheckCompressedOops) {
6215     Label ok;
6216     push(rscratch1); // cmpptr trashes rscratch1
6217     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6218     jcc(Assembler::equal, ok);
6219     STOP(msg);
6220     bind(ok);
6221     pop(rscratch1);
6222   }
6223 }
6224 #endif
6225 
6226 // Algorithm must match oop.inline.hpp encode_heap_oop.
6227 void MacroAssembler::encode_heap_oop(Register r) {
6228 #ifdef ASSERT
6229   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6230 #endif
6231   verify_oop(r, "broken oop in encode_heap_oop");
6232   if (Universe::narrow_oop_base() == NULL) {
6233     if (Universe::narrow_oop_shift() != 0) {
6234       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6235       shrq(r, LogMinObjAlignmentInBytes);
6236     }
6237     return;
6238   }
6239   testq(r, r);
6240   cmovq(Assembler::equal, r, r12_heapbase);
6241   subq(r, r12_heapbase);
6242   shrq(r, LogMinObjAlignmentInBytes);
6243 }
6244 
6245 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6246 #ifdef ASSERT
6247   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6248   if (CheckCompressedOops) {
6249     Label ok;
6250     testq(r, r);
6251     jcc(Assembler::notEqual, ok);
6252     STOP("null oop passed to encode_heap_oop_not_null");
6253     bind(ok);
6254   }
6255 #endif
6256   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6257   if (Universe::narrow_oop_base() != NULL) {
6258     subq(r, r12_heapbase);
6259   }
6260   if (Universe::narrow_oop_shift() != 0) {
6261     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6262     shrq(r, LogMinObjAlignmentInBytes);
6263   }
6264 }
6265 
6266 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6267 #ifdef ASSERT
6268   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6269   if (CheckCompressedOops) {
6270     Label ok;
6271     testq(src, src);
6272     jcc(Assembler::notEqual, ok);
6273     STOP("null oop passed to encode_heap_oop_not_null2");
6274     bind(ok);
6275   }
6276 #endif
6277   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6278   if (dst != src) {
6279     movq(dst, src);
6280   }
6281   if (Universe::narrow_oop_base() != NULL) {
6282     subq(dst, r12_heapbase);
6283   }
6284   if (Universe::narrow_oop_shift() != 0) {
6285     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6286     shrq(dst, LogMinObjAlignmentInBytes);
6287   }
6288 }
6289 
6290 void  MacroAssembler::decode_heap_oop(Register r) {
6291 #ifdef ASSERT
6292   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6293 #endif
6294   if (Universe::narrow_oop_base() == NULL) {
6295     if (Universe::narrow_oop_shift() != 0) {
6296       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6297       shlq(r, LogMinObjAlignmentInBytes);
6298     }
6299   } else {
6300     Label done;
6301     shlq(r, LogMinObjAlignmentInBytes);
6302     jccb(Assembler::equal, done);
6303     addq(r, r12_heapbase);
6304     bind(done);
6305   }
6306   verify_oop(r, "broken oop in decode_heap_oop");
6307 }
6308 
6309 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6310   // Note: it will change flags
6311   assert (UseCompressedOops, "should only be used for compressed headers");
6312   assert (Universe::heap() != NULL, "java heap should be initialized");
6313   // Cannot assert, unverified entry point counts instructions (see .ad file)
6314   // vtableStubs also counts instructions in pd_code_size_limit.
6315   // Also do not verify_oop as this is called by verify_oop.
6316   if (Universe::narrow_oop_shift() != 0) {
6317     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6318     shlq(r, LogMinObjAlignmentInBytes);
6319     if (Universe::narrow_oop_base() != NULL) {
6320       addq(r, r12_heapbase);
6321     }
6322   } else {
6323     assert (Universe::narrow_oop_base() == NULL, "sanity");
6324   }
6325 }
6326 
6327 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6328   // Note: it will change flags
6329   assert (UseCompressedOops, "should only be used for compressed headers");
6330   assert (Universe::heap() != NULL, "java heap should be initialized");
6331   // Cannot assert, unverified entry point counts instructions (see .ad file)
6332   // vtableStubs also counts instructions in pd_code_size_limit.
6333   // Also do not verify_oop as this is called by verify_oop.
6334   if (Universe::narrow_oop_shift() != 0) {
6335     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6336     if (LogMinObjAlignmentInBytes == Address::times_8) {
6337       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6338     } else {
6339       if (dst != src) {
6340         movq(dst, src);
6341       }
6342       shlq(dst, LogMinObjAlignmentInBytes);
6343       if (Universe::narrow_oop_base() != NULL) {
6344         addq(dst, r12_heapbase);
6345       }
6346     }
6347   } else {
6348     assert (Universe::narrow_oop_base() == NULL, "sanity");
6349     if (dst != src) {
6350       movq(dst, src);
6351     }
6352   }
6353 }
6354 
6355 void MacroAssembler::encode_klass_not_null(Register r) {
6356   if (Universe::narrow_klass_base() != NULL) {
6357     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6358     assert(r != r12_heapbase, "Encoding a klass in r12");
6359     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6360     subq(r, r12_heapbase);
6361   }
6362   if (Universe::narrow_klass_shift() != 0) {
6363     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6364     shrq(r, LogKlassAlignmentInBytes);
6365   }
6366   if (Universe::narrow_klass_base() != NULL) {
6367     reinit_heapbase();
6368   }
6369 }
6370 
6371 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6372   if (dst == src) {
6373     encode_klass_not_null(src);
6374   } else {
6375     if (Universe::narrow_klass_base() != NULL) {
6376       mov64(dst, (int64_t)Universe::narrow_klass_base());
6377       negq(dst);
6378       addq(dst, src);
6379     } else {
6380       movptr(dst, src);
6381     }
6382     if (Universe::narrow_klass_shift() != 0) {
6383       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6384       shrq(dst, LogKlassAlignmentInBytes);
6385     }
6386   }
6387 }
6388 
6389 // Function instr_size_for_decode_klass_not_null() counts the instructions
6390 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6391 // when (Universe::heap() != NULL).  Hence, if the instructions they
6392 // generate change, then this method needs to be updated.
6393 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6394   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6395   if (Universe::narrow_klass_base() != NULL) {
6396     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6397     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6398   } else {
6399     // longest load decode klass function, mov64, leaq
6400     return 16;
6401   }
6402 }
6403 
6404 // !!! If the instructions that get generated here change then function
6405 // instr_size_for_decode_klass_not_null() needs to get updated.
6406 void  MacroAssembler::decode_klass_not_null(Register r) {
6407   // Note: it will change flags
6408   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6409   assert(r != r12_heapbase, "Decoding a klass in r12");
6410   // Cannot assert, unverified entry point counts instructions (see .ad file)
6411   // vtableStubs also counts instructions in pd_code_size_limit.
6412   // Also do not verify_oop as this is called by verify_oop.
6413   if (Universe::narrow_klass_shift() != 0) {
6414     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6415     shlq(r, LogKlassAlignmentInBytes);
6416   }
6417   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6418   if (Universe::narrow_klass_base() != NULL) {
6419     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6420     addq(r, r12_heapbase);
6421     reinit_heapbase();
6422   }
6423 }
6424 
6425 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6426   // Note: it will change flags
6427   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6428   if (dst == src) {
6429     decode_klass_not_null(dst);
6430   } else {
6431     // Cannot assert, unverified entry point counts instructions (see .ad file)
6432     // vtableStubs also counts instructions in pd_code_size_limit.
6433     // Also do not verify_oop as this is called by verify_oop.
6434     mov64(dst, (int64_t)Universe::narrow_klass_base());
6435     if (Universe::narrow_klass_shift() != 0) {
6436       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6437       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6438       leaq(dst, Address(dst, src, Address::times_8, 0));
6439     } else {
6440       addq(dst, src);
6441     }
6442   }
6443 }
6444 
6445 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6446   assert (UseCompressedOops, "should only be used for compressed headers");
6447   assert (Universe::heap() != NULL, "java heap should be initialized");
6448   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6449   int oop_index = oop_recorder()->find_index(obj);
6450   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6451   mov_narrow_oop(dst, oop_index, rspec);
6452 }
6453 
6454 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6455   assert (UseCompressedOops, "should only be used for compressed headers");
6456   assert (Universe::heap() != NULL, "java heap should be initialized");
6457   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6458   int oop_index = oop_recorder()->find_index(obj);
6459   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6460   mov_narrow_oop(dst, oop_index, rspec);
6461 }
6462 
6463 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6464   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6465   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6466   int klass_index = oop_recorder()->find_index(k);
6467   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6468   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6469 }
6470 
6471 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6472   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6473   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6474   int klass_index = oop_recorder()->find_index(k);
6475   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6476   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6477 }
6478 
6479 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6480   assert (UseCompressedOops, "should only be used for compressed headers");
6481   assert (Universe::heap() != NULL, "java heap should be initialized");
6482   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6483   int oop_index = oop_recorder()->find_index(obj);
6484   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6485   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6486 }
6487 
6488 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6489   assert (UseCompressedOops, "should only be used for compressed headers");
6490   assert (Universe::heap() != NULL, "java heap should be initialized");
6491   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6492   int oop_index = oop_recorder()->find_index(obj);
6493   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6494   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6495 }
6496 
6497 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6498   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6499   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6500   int klass_index = oop_recorder()->find_index(k);
6501   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6502   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6503 }
6504 
6505 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6506   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6507   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6508   int klass_index = oop_recorder()->find_index(k);
6509   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6510   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6511 }
6512 
6513 void MacroAssembler::reinit_heapbase() {
6514   if (UseCompressedOops || UseCompressedClassPointers) {
6515     if (Universe::heap() != NULL) {
6516       if (Universe::narrow_oop_base() == NULL) {
6517         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6518       } else {
6519         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6520       }
6521     } else {
6522       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6523     }
6524   }
6525 }
6526 
6527 #endif // _LP64
6528 
6529 // C2 compiled method's prolog code.
6530 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6531 
6532   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6533   // NativeJump::patch_verified_entry will be able to patch out the entry
6534   // code safely. The push to verify stack depth is ok at 5 bytes,
6535   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6536   // stack bang then we must use the 6 byte frame allocation even if
6537   // we have no frame. :-(
6538   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6539 
6540   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6541   // Remove word for return addr
6542   framesize -= wordSize;
6543   stack_bang_size -= wordSize;
6544 
6545   // Calls to C2R adapters often do not accept exceptional returns.
6546   // We require that their callers must bang for them.  But be careful, because
6547   // some VM calls (such as call site linkage) can use several kilobytes of
6548   // stack.  But the stack safety zone should account for that.
6549   // See bugs 4446381, 4468289, 4497237.
6550   if (stack_bang_size > 0) {
6551     generate_stack_overflow_check(stack_bang_size);
6552 
6553     // We always push rbp, so that on return to interpreter rbp, will be
6554     // restored correctly and we can correct the stack.
6555     push(rbp);
6556     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6557     if (PreserveFramePointer) {
6558       mov(rbp, rsp);
6559     }
6560     // Remove word for ebp
6561     framesize -= wordSize;
6562 
6563     // Create frame
6564     if (framesize) {
6565       subptr(rsp, framesize);
6566     }
6567   } else {
6568     // Create frame (force generation of a 4 byte immediate value)
6569     subptr_imm32(rsp, framesize);
6570 
6571     // Save RBP register now.
6572     framesize -= wordSize;
6573     movptr(Address(rsp, framesize), rbp);
6574     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6575     if (PreserveFramePointer) {
6576       movptr(rbp, rsp);
6577       if (framesize > 0) {
6578         addptr(rbp, framesize);
6579       }
6580     }
6581   }
6582 
6583   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6584     framesize -= wordSize;
6585     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6586   }
6587 
6588 #ifndef _LP64
6589   // If method sets FPU control word do it now
6590   if (fp_mode_24b) {
6591     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6592   }
6593   if (UseSSE >= 2 && VerifyFPU) {
6594     verify_FPU(0, "FPU stack must be clean on entry");
6595   }
6596 #endif
6597 
6598 #ifdef ASSERT
6599   if (VerifyStackAtCalls) {
6600     Label L;
6601     push(rax);
6602     mov(rax, rsp);
6603     andptr(rax, StackAlignmentInBytes-1);
6604     cmpptr(rax, StackAlignmentInBytes-wordSize);
6605     pop(rax);
6606     jcc(Assembler::equal, L);
6607     STOP("Stack is not properly aligned!");
6608     bind(L);
6609   }
6610 #endif
6611 
6612 }
6613 
6614 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
6615 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
6616   // cnt - number of qwords (8-byte words).
6617   // base - start address, qword aligned.
6618   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
6619   if (UseAVX >= 2) {
6620     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
6621   } else {
6622     pxor(xtmp, xtmp);
6623   }
6624   jmp(L_zero_64_bytes);
6625 
6626   BIND(L_loop);
6627   if (UseAVX >= 2) {
6628     vmovdqu(Address(base,  0), xtmp);
6629     vmovdqu(Address(base, 32), xtmp);
6630   } else {
6631     movdqu(Address(base,  0), xtmp);
6632     movdqu(Address(base, 16), xtmp);
6633     movdqu(Address(base, 32), xtmp);
6634     movdqu(Address(base, 48), xtmp);
6635   }
6636   addptr(base, 64);
6637 
6638   BIND(L_zero_64_bytes);
6639   subptr(cnt, 8);
6640   jccb(Assembler::greaterEqual, L_loop);
6641   addptr(cnt, 4);
6642   jccb(Assembler::less, L_tail);
6643   // Copy trailing 32 bytes
6644   if (UseAVX >= 2) {
6645     vmovdqu(Address(base, 0), xtmp);
6646   } else {
6647     movdqu(Address(base,  0), xtmp);
6648     movdqu(Address(base, 16), xtmp);
6649   }
6650   addptr(base, 32);
6651   subptr(cnt, 4);
6652 
6653   BIND(L_tail);
6654   addptr(cnt, 4);
6655   jccb(Assembler::lessEqual, L_end);
6656   decrement(cnt);
6657 
6658   BIND(L_sloop);
6659   movq(Address(base, 0), xtmp);
6660   addptr(base, 8);
6661   decrement(cnt);
6662   jccb(Assembler::greaterEqual, L_sloop);
6663   BIND(L_end);
6664 }
6665 
6666 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
6667   // cnt - number of qwords (8-byte words).
6668   // base - start address, qword aligned.
6669   // is_large - if optimizers know cnt is larger than InitArrayShortSize
6670   assert(base==rdi, "base register must be edi for rep stos");
6671   assert(tmp==rax,   "tmp register must be eax for rep stos");
6672   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6673   assert(InitArrayShortSize % BytesPerLong == 0,
6674     "InitArrayShortSize should be the multiple of BytesPerLong");
6675 
6676   Label DONE;
6677 
6678   if (!is_large || !UseXMMForObjInit) {
6679     xorptr(tmp, tmp);
6680   }
6681 
6682   if (!is_large) {
6683     Label LOOP, LONG;
6684     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
6685     jccb(Assembler::greater, LONG);
6686 
6687     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6688 
6689     decrement(cnt);
6690     jccb(Assembler::negative, DONE); // Zero length
6691 
6692     // Use individual pointer-sized stores for small counts:
6693     BIND(LOOP);
6694     movptr(Address(base, cnt, Address::times_ptr), tmp);
6695     decrement(cnt);
6696     jccb(Assembler::greaterEqual, LOOP);
6697     jmpb(DONE);
6698 
6699     BIND(LONG);
6700   }
6701 
6702   // Use longer rep-prefixed ops for non-small counts:
6703   if (UseFastStosb) {
6704     shlptr(cnt, 3); // convert to number of bytes
6705     rep_stosb();
6706   } else if (UseXMMForObjInit) {
6707     movptr(tmp, base);
6708     xmm_clear_mem(tmp, cnt, xtmp);
6709   } else {
6710     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6711     rep_stos();
6712   }
6713 
6714   BIND(DONE);
6715 }
6716 
6717 #ifdef COMPILER2
6718 
6719 // IndexOf for constant substrings with size >= 8 chars
6720 // which don't need to be loaded through stack.
6721 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6722                                       Register cnt1, Register cnt2,
6723                                       int int_cnt2,  Register result,
6724                                       XMMRegister vec, Register tmp,
6725                                       int ae) {
6726   ShortBranchVerifier sbv(this);
6727   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6728   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6729 
6730   // This method uses the pcmpestri instruction with bound registers
6731   //   inputs:
6732   //     xmm - substring
6733   //     rax - substring length (elements count)
6734   //     mem - scanned string
6735   //     rdx - string length (elements count)
6736   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6737   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6738   //   outputs:
6739   //     rcx - matched index in string
6740   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6741   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6742   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6743   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6744   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6745 
6746   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6747         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6748         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6749 
6750   // Note, inline_string_indexOf() generates checks:
6751   // if (substr.count > string.count) return -1;
6752   // if (substr.count == 0) return 0;
6753   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
6754 
6755   // Load substring.
6756   if (ae == StrIntrinsicNode::UL) {
6757     pmovzxbw(vec, Address(str2, 0));
6758   } else {
6759     movdqu(vec, Address(str2, 0));
6760   }
6761   movl(cnt2, int_cnt2);
6762   movptr(result, str1); // string addr
6763 
6764   if (int_cnt2 > stride) {
6765     jmpb(SCAN_TO_SUBSTR);
6766 
6767     // Reload substr for rescan, this code
6768     // is executed only for large substrings (> 8 chars)
6769     bind(RELOAD_SUBSTR);
6770     if (ae == StrIntrinsicNode::UL) {
6771       pmovzxbw(vec, Address(str2, 0));
6772     } else {
6773       movdqu(vec, Address(str2, 0));
6774     }
6775     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6776 
6777     bind(RELOAD_STR);
6778     // We came here after the beginning of the substring was
6779     // matched but the rest of it was not so we need to search
6780     // again. Start from the next element after the previous match.
6781 
6782     // cnt2 is number of substring reminding elements and
6783     // cnt1 is number of string reminding elements when cmp failed.
6784     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6785     subl(cnt1, cnt2);
6786     addl(cnt1, int_cnt2);
6787     movl(cnt2, int_cnt2); // Now restore cnt2
6788 
6789     decrementl(cnt1);     // Shift to next element
6790     cmpl(cnt1, cnt2);
6791     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6792 
6793     addptr(result, (1<<scale1));
6794 
6795   } // (int_cnt2 > 8)
6796 
6797   // Scan string for start of substr in 16-byte vectors
6798   bind(SCAN_TO_SUBSTR);
6799   pcmpestri(vec, Address(result, 0), mode);
6800   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6801   subl(cnt1, stride);
6802   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6803   cmpl(cnt1, cnt2);
6804   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6805   addptr(result, 16);
6806   jmpb(SCAN_TO_SUBSTR);
6807 
6808   // Found a potential substr
6809   bind(FOUND_CANDIDATE);
6810   // Matched whole vector if first element matched (tmp(rcx) == 0).
6811   if (int_cnt2 == stride) {
6812     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6813   } else { // int_cnt2 > 8
6814     jccb(Assembler::overflow, FOUND_SUBSTR);
6815   }
6816   // After pcmpestri tmp(rcx) contains matched element index
6817   // Compute start addr of substr
6818   lea(result, Address(result, tmp, scale1));
6819 
6820   // Make sure string is still long enough
6821   subl(cnt1, tmp);
6822   cmpl(cnt1, cnt2);
6823   if (int_cnt2 == stride) {
6824     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6825   } else { // int_cnt2 > 8
6826     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6827   }
6828   // Left less then substring.
6829 
6830   bind(RET_NOT_FOUND);
6831   movl(result, -1);
6832   jmp(EXIT);
6833 
6834   if (int_cnt2 > stride) {
6835     // This code is optimized for the case when whole substring
6836     // is matched if its head is matched.
6837     bind(MATCH_SUBSTR_HEAD);
6838     pcmpestri(vec, Address(result, 0), mode);
6839     // Reload only string if does not match
6840     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
6841 
6842     Label CONT_SCAN_SUBSTR;
6843     // Compare the rest of substring (> 8 chars).
6844     bind(FOUND_SUBSTR);
6845     // First 8 chars are already matched.
6846     negptr(cnt2);
6847     addptr(cnt2, stride);
6848 
6849     bind(SCAN_SUBSTR);
6850     subl(cnt1, stride);
6851     cmpl(cnt2, -stride); // Do not read beyond substring
6852     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6853     // Back-up strings to avoid reading beyond substring:
6854     // cnt1 = cnt1 - cnt2 + 8
6855     addl(cnt1, cnt2); // cnt2 is negative
6856     addl(cnt1, stride);
6857     movl(cnt2, stride); negptr(cnt2);
6858     bind(CONT_SCAN_SUBSTR);
6859     if (int_cnt2 < (int)G) {
6860       int tail_off1 = int_cnt2<<scale1;
6861       int tail_off2 = int_cnt2<<scale2;
6862       if (ae == StrIntrinsicNode::UL) {
6863         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
6864       } else {
6865         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
6866       }
6867       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6868     } else {
6869       // calculate index in register to avoid integer overflow (int_cnt2*2)
6870       movl(tmp, int_cnt2);
6871       addptr(tmp, cnt2);
6872       if (ae == StrIntrinsicNode::UL) {
6873         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
6874       } else {
6875         movdqu(vec, Address(str2, tmp, scale2, 0));
6876       }
6877       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6878     }
6879     // Need to reload strings pointers if not matched whole vector
6880     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6881     addptr(cnt2, stride);
6882     jcc(Assembler::negative, SCAN_SUBSTR);
6883     // Fall through if found full substring
6884 
6885   } // (int_cnt2 > 8)
6886 
6887   bind(RET_FOUND);
6888   // Found result if we matched full small substring.
6889   // Compute substr offset
6890   subptr(result, str1);
6891   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6892     shrl(result, 1); // index
6893   }
6894   bind(EXIT);
6895 
6896 } // string_indexofC8
6897 
6898 // Small strings are loaded through stack if they cross page boundary.
6899 void MacroAssembler::string_indexof(Register str1, Register str2,
6900                                     Register cnt1, Register cnt2,
6901                                     int int_cnt2,  Register result,
6902                                     XMMRegister vec, Register tmp,
6903                                     int ae) {
6904   ShortBranchVerifier sbv(this);
6905   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6906   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6907 
6908   //
6909   // int_cnt2 is length of small (< 8 chars) constant substring
6910   // or (-1) for non constant substring in which case its length
6911   // is in cnt2 register.
6912   //
6913   // Note, inline_string_indexOf() generates checks:
6914   // if (substr.count > string.count) return -1;
6915   // if (substr.count == 0) return 0;
6916   //
6917   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6918   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6919   // This method uses the pcmpestri instruction with bound registers
6920   //   inputs:
6921   //     xmm - substring
6922   //     rax - substring length (elements count)
6923   //     mem - scanned string
6924   //     rdx - string length (elements count)
6925   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6926   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6927   //   outputs:
6928   //     rcx - matched index in string
6929   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6930   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6931   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6932   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6933 
6934   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6935         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6936         FOUND_CANDIDATE;
6937 
6938   { //========================================================
6939     // We don't know where these strings are located
6940     // and we can't read beyond them. Load them through stack.
6941     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6942 
6943     movptr(tmp, rsp); // save old SP
6944 
6945     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6946       if (int_cnt2 == (1>>scale2)) { // One byte
6947         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6948         load_unsigned_byte(result, Address(str2, 0));
6949         movdl(vec, result); // move 32 bits
6950       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6951         // Not enough header space in 32-bit VM: 12+3 = 15.
6952         movl(result, Address(str2, -1));
6953         shrl(result, 8);
6954         movdl(vec, result); // move 32 bits
6955       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6956         load_unsigned_short(result, Address(str2, 0));
6957         movdl(vec, result); // move 32 bits
6958       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6959         movdl(vec, Address(str2, 0)); // move 32 bits
6960       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6961         movq(vec, Address(str2, 0));  // move 64 bits
6962       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6963         // Array header size is 12 bytes in 32-bit VM
6964         // + 6 bytes for 3 chars == 18 bytes,
6965         // enough space to load vec and shift.
6966         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6967         if (ae == StrIntrinsicNode::UL) {
6968           int tail_off = int_cnt2-8;
6969           pmovzxbw(vec, Address(str2, tail_off));
6970           psrldq(vec, -2*tail_off);
6971         }
6972         else {
6973           int tail_off = int_cnt2*(1<<scale2);
6974           movdqu(vec, Address(str2, tail_off-16));
6975           psrldq(vec, 16-tail_off);
6976         }
6977       }
6978     } else { // not constant substring
6979       cmpl(cnt2, stride);
6980       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6981 
6982       // We can read beyond string if srt+16 does not cross page boundary
6983       // since heaps are aligned and mapped by pages.
6984       assert(os::vm_page_size() < (int)G, "default page should be small");
6985       movl(result, str2); // We need only low 32 bits
6986       andl(result, (os::vm_page_size()-1));
6987       cmpl(result, (os::vm_page_size()-16));
6988       jccb(Assembler::belowEqual, CHECK_STR);
6989 
6990       // Move small strings to stack to allow load 16 bytes into vec.
6991       subptr(rsp, 16);
6992       int stk_offset = wordSize-(1<<scale2);
6993       push(cnt2);
6994 
6995       bind(COPY_SUBSTR);
6996       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
6997         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
6998         movb(Address(rsp, cnt2, scale2, stk_offset), result);
6999       } else if (ae == StrIntrinsicNode::UU) {
7000         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7001         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7002       }
7003       decrement(cnt2);
7004       jccb(Assembler::notZero, COPY_SUBSTR);
7005 
7006       pop(cnt2);
7007       movptr(str2, rsp);  // New substring address
7008     } // non constant
7009 
7010     bind(CHECK_STR);
7011     cmpl(cnt1, stride);
7012     jccb(Assembler::aboveEqual, BIG_STRINGS);
7013 
7014     // Check cross page boundary.
7015     movl(result, str1); // We need only low 32 bits
7016     andl(result, (os::vm_page_size()-1));
7017     cmpl(result, (os::vm_page_size()-16));
7018     jccb(Assembler::belowEqual, BIG_STRINGS);
7019 
7020     subptr(rsp, 16);
7021     int stk_offset = -(1<<scale1);
7022     if (int_cnt2 < 0) { // not constant
7023       push(cnt2);
7024       stk_offset += wordSize;
7025     }
7026     movl(cnt2, cnt1);
7027 
7028     bind(COPY_STR);
7029     if (ae == StrIntrinsicNode::LL) {
7030       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7031       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7032     } else {
7033       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7034       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7035     }
7036     decrement(cnt2);
7037     jccb(Assembler::notZero, COPY_STR);
7038 
7039     if (int_cnt2 < 0) { // not constant
7040       pop(cnt2);
7041     }
7042     movptr(str1, rsp);  // New string address
7043 
7044     bind(BIG_STRINGS);
7045     // Load substring.
7046     if (int_cnt2 < 0) { // -1
7047       if (ae == StrIntrinsicNode::UL) {
7048         pmovzxbw(vec, Address(str2, 0));
7049       } else {
7050         movdqu(vec, Address(str2, 0));
7051       }
7052       push(cnt2);       // substr count
7053       push(str2);       // substr addr
7054       push(str1);       // string addr
7055     } else {
7056       // Small (< 8 chars) constant substrings are loaded already.
7057       movl(cnt2, int_cnt2);
7058     }
7059     push(tmp);  // original SP
7060 
7061   } // Finished loading
7062 
7063   //========================================================
7064   // Start search
7065   //
7066 
7067   movptr(result, str1); // string addr
7068 
7069   if (int_cnt2  < 0) {  // Only for non constant substring
7070     jmpb(SCAN_TO_SUBSTR);
7071 
7072     // SP saved at sp+0
7073     // String saved at sp+1*wordSize
7074     // Substr saved at sp+2*wordSize
7075     // Substr count saved at sp+3*wordSize
7076 
7077     // Reload substr for rescan, this code
7078     // is executed only for large substrings (> 8 chars)
7079     bind(RELOAD_SUBSTR);
7080     movptr(str2, Address(rsp, 2*wordSize));
7081     movl(cnt2, Address(rsp, 3*wordSize));
7082     if (ae == StrIntrinsicNode::UL) {
7083       pmovzxbw(vec, Address(str2, 0));
7084     } else {
7085       movdqu(vec, Address(str2, 0));
7086     }
7087     // We came here after the beginning of the substring was
7088     // matched but the rest of it was not so we need to search
7089     // again. Start from the next element after the previous match.
7090     subptr(str1, result); // Restore counter
7091     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7092       shrl(str1, 1);
7093     }
7094     addl(cnt1, str1);
7095     decrementl(cnt1);   // Shift to next element
7096     cmpl(cnt1, cnt2);
7097     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7098 
7099     addptr(result, (1<<scale1));
7100   } // non constant
7101 
7102   // Scan string for start of substr in 16-byte vectors
7103   bind(SCAN_TO_SUBSTR);
7104   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7105   pcmpestri(vec, Address(result, 0), mode);
7106   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7107   subl(cnt1, stride);
7108   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7109   cmpl(cnt1, cnt2);
7110   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7111   addptr(result, 16);
7112 
7113   bind(ADJUST_STR);
7114   cmpl(cnt1, stride); // Do not read beyond string
7115   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7116   // Back-up string to avoid reading beyond string.
7117   lea(result, Address(result, cnt1, scale1, -16));
7118   movl(cnt1, stride);
7119   jmpb(SCAN_TO_SUBSTR);
7120 
7121   // Found a potential substr
7122   bind(FOUND_CANDIDATE);
7123   // After pcmpestri tmp(rcx) contains matched element index
7124 
7125   // Make sure string is still long enough
7126   subl(cnt1, tmp);
7127   cmpl(cnt1, cnt2);
7128   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7129   // Left less then substring.
7130 
7131   bind(RET_NOT_FOUND);
7132   movl(result, -1);
7133   jmpb(CLEANUP);
7134 
7135   bind(FOUND_SUBSTR);
7136   // Compute start addr of substr
7137   lea(result, Address(result, tmp, scale1));
7138   if (int_cnt2 > 0) { // Constant substring
7139     // Repeat search for small substring (< 8 chars)
7140     // from new point without reloading substring.
7141     // Have to check that we don't read beyond string.
7142     cmpl(tmp, stride-int_cnt2);
7143     jccb(Assembler::greater, ADJUST_STR);
7144     // Fall through if matched whole substring.
7145   } else { // non constant
7146     assert(int_cnt2 == -1, "should be != 0");
7147 
7148     addl(tmp, cnt2);
7149     // Found result if we matched whole substring.
7150     cmpl(tmp, stride);
7151     jccb(Assembler::lessEqual, RET_FOUND);
7152 
7153     // Repeat search for small substring (<= 8 chars)
7154     // from new point 'str1' without reloading substring.
7155     cmpl(cnt2, stride);
7156     // Have to check that we don't read beyond string.
7157     jccb(Assembler::lessEqual, ADJUST_STR);
7158 
7159     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7160     // Compare the rest of substring (> 8 chars).
7161     movptr(str1, result);
7162 
7163     cmpl(tmp, cnt2);
7164     // First 8 chars are already matched.
7165     jccb(Assembler::equal, CHECK_NEXT);
7166 
7167     bind(SCAN_SUBSTR);
7168     pcmpestri(vec, Address(str1, 0), mode);
7169     // Need to reload strings pointers if not matched whole vector
7170     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7171 
7172     bind(CHECK_NEXT);
7173     subl(cnt2, stride);
7174     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7175     addptr(str1, 16);
7176     if (ae == StrIntrinsicNode::UL) {
7177       addptr(str2, 8);
7178     } else {
7179       addptr(str2, 16);
7180     }
7181     subl(cnt1, stride);
7182     cmpl(cnt2, stride); // Do not read beyond substring
7183     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7184     // Back-up strings to avoid reading beyond substring.
7185 
7186     if (ae == StrIntrinsicNode::UL) {
7187       lea(str2, Address(str2, cnt2, scale2, -8));
7188       lea(str1, Address(str1, cnt2, scale1, -16));
7189     } else {
7190       lea(str2, Address(str2, cnt2, scale2, -16));
7191       lea(str1, Address(str1, cnt2, scale1, -16));
7192     }
7193     subl(cnt1, cnt2);
7194     movl(cnt2, stride);
7195     addl(cnt1, stride);
7196     bind(CONT_SCAN_SUBSTR);
7197     if (ae == StrIntrinsicNode::UL) {
7198       pmovzxbw(vec, Address(str2, 0));
7199     } else {
7200       movdqu(vec, Address(str2, 0));
7201     }
7202     jmp(SCAN_SUBSTR);
7203 
7204     bind(RET_FOUND_LONG);
7205     movptr(str1, Address(rsp, wordSize));
7206   } // non constant
7207 
7208   bind(RET_FOUND);
7209   // Compute substr offset
7210   subptr(result, str1);
7211   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7212     shrl(result, 1); // index
7213   }
7214   bind(CLEANUP);
7215   pop(rsp); // restore SP
7216 
7217 } // string_indexof
7218 
7219 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7220                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7221   ShortBranchVerifier sbv(this);
7222   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7223 
7224   int stride = 8;
7225 
7226   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7227         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7228         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7229         FOUND_SEQ_CHAR, DONE_LABEL;
7230 
7231   movptr(result, str1);
7232   if (UseAVX >= 2) {
7233     cmpl(cnt1, stride);
7234     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7235     cmpl(cnt1, 2*stride);
7236     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7237     movdl(vec1, ch);
7238     vpbroadcastw(vec1, vec1);
7239     vpxor(vec2, vec2);
7240     movl(tmp, cnt1);
7241     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7242     andl(cnt1,0x0000000F);  //tail count (in chars)
7243 
7244     bind(SCAN_TO_16_CHAR_LOOP);
7245     vmovdqu(vec3, Address(result, 0));
7246     vpcmpeqw(vec3, vec3, vec1, 1);
7247     vptest(vec2, vec3);
7248     jcc(Assembler::carryClear, FOUND_CHAR);
7249     addptr(result, 32);
7250     subl(tmp, 2*stride);
7251     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7252     jmp(SCAN_TO_8_CHAR);
7253     bind(SCAN_TO_8_CHAR_INIT);
7254     movdl(vec1, ch);
7255     pshuflw(vec1, vec1, 0x00);
7256     pshufd(vec1, vec1, 0);
7257     pxor(vec2, vec2);
7258   }
7259   bind(SCAN_TO_8_CHAR);
7260   cmpl(cnt1, stride);
7261   if (UseAVX >= 2) {
7262     jcc(Assembler::less, SCAN_TO_CHAR);
7263   } else {
7264     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7265     movdl(vec1, ch);
7266     pshuflw(vec1, vec1, 0x00);
7267     pshufd(vec1, vec1, 0);
7268     pxor(vec2, vec2);
7269   }
7270   movl(tmp, cnt1);
7271   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7272   andl(cnt1,0x00000007);  //tail count (in chars)
7273 
7274   bind(SCAN_TO_8_CHAR_LOOP);
7275   movdqu(vec3, Address(result, 0));
7276   pcmpeqw(vec3, vec1);
7277   ptest(vec2, vec3);
7278   jcc(Assembler::carryClear, FOUND_CHAR);
7279   addptr(result, 16);
7280   subl(tmp, stride);
7281   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7282   bind(SCAN_TO_CHAR);
7283   testl(cnt1, cnt1);
7284   jcc(Assembler::zero, RET_NOT_FOUND);
7285   bind(SCAN_TO_CHAR_LOOP);
7286   load_unsigned_short(tmp, Address(result, 0));
7287   cmpl(ch, tmp);
7288   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7289   addptr(result, 2);
7290   subl(cnt1, 1);
7291   jccb(Assembler::zero, RET_NOT_FOUND);
7292   jmp(SCAN_TO_CHAR_LOOP);
7293 
7294   bind(RET_NOT_FOUND);
7295   movl(result, -1);
7296   jmpb(DONE_LABEL);
7297 
7298   bind(FOUND_CHAR);
7299   if (UseAVX >= 2) {
7300     vpmovmskb(tmp, vec3);
7301   } else {
7302     pmovmskb(tmp, vec3);
7303   }
7304   bsfl(ch, tmp);
7305   addl(result, ch);
7306 
7307   bind(FOUND_SEQ_CHAR);
7308   subptr(result, str1);
7309   shrl(result, 1);
7310 
7311   bind(DONE_LABEL);
7312 } // string_indexof_char
7313 
7314 // helper function for string_compare
7315 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7316                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7317                                         Address::ScaleFactor scale2, Register index, int ae) {
7318   if (ae == StrIntrinsicNode::LL) {
7319     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7320     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7321   } else if (ae == StrIntrinsicNode::UU) {
7322     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7323     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7324   } else {
7325     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7326     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7327   }
7328 }
7329 
7330 // Compare strings, used for char[] and byte[].
7331 void MacroAssembler::string_compare(Register str1, Register str2,
7332                                     Register cnt1, Register cnt2, Register result,
7333                                     XMMRegister vec1, int ae) {
7334   ShortBranchVerifier sbv(this);
7335   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7336   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7337   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7338   int stride2x2 = 0x40;
7339   Address::ScaleFactor scale = Address::no_scale;
7340   Address::ScaleFactor scale1 = Address::no_scale;
7341   Address::ScaleFactor scale2 = Address::no_scale;
7342 
7343   if (ae != StrIntrinsicNode::LL) {
7344     stride2x2 = 0x20;
7345   }
7346 
7347   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7348     shrl(cnt2, 1);
7349   }
7350   // Compute the minimum of the string lengths and the
7351   // difference of the string lengths (stack).
7352   // Do the conditional move stuff
7353   movl(result, cnt1);
7354   subl(cnt1, cnt2);
7355   push(cnt1);
7356   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7357 
7358   // Is the minimum length zero?
7359   testl(cnt2, cnt2);
7360   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7361   if (ae == StrIntrinsicNode::LL) {
7362     // Load first bytes
7363     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7364     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7365   } else if (ae == StrIntrinsicNode::UU) {
7366     // Load first characters
7367     load_unsigned_short(result, Address(str1, 0));
7368     load_unsigned_short(cnt1, Address(str2, 0));
7369   } else {
7370     load_unsigned_byte(result, Address(str1, 0));
7371     load_unsigned_short(cnt1, Address(str2, 0));
7372   }
7373   subl(result, cnt1);
7374   jcc(Assembler::notZero,  POP_LABEL);
7375 
7376   if (ae == StrIntrinsicNode::UU) {
7377     // Divide length by 2 to get number of chars
7378     shrl(cnt2, 1);
7379   }
7380   cmpl(cnt2, 1);
7381   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7382 
7383   // Check if the strings start at the same location and setup scale and stride
7384   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7385     cmpptr(str1, str2);
7386     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7387     if (ae == StrIntrinsicNode::LL) {
7388       scale = Address::times_1;
7389       stride = 16;
7390     } else {
7391       scale = Address::times_2;
7392       stride = 8;
7393     }
7394   } else {
7395     scale1 = Address::times_1;
7396     scale2 = Address::times_2;
7397     // scale not used
7398     stride = 8;
7399   }
7400 
7401   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7402     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7403     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7404     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7405     Label COMPARE_TAIL_LONG;
7406     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7407 
7408     int pcmpmask = 0x19;
7409     if (ae == StrIntrinsicNode::LL) {
7410       pcmpmask &= ~0x01;
7411     }
7412 
7413     // Setup to compare 16-chars (32-bytes) vectors,
7414     // start from first character again because it has aligned address.
7415     if (ae == StrIntrinsicNode::LL) {
7416       stride2 = 32;
7417     } else {
7418       stride2 = 16;
7419     }
7420     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7421       adr_stride = stride << scale;
7422     } else {
7423       adr_stride1 = 8;  //stride << scale1;
7424       adr_stride2 = 16; //stride << scale2;
7425     }
7426 
7427     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7428     // rax and rdx are used by pcmpestri as elements counters
7429     movl(result, cnt2);
7430     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7431     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7432 
7433     // fast path : compare first 2 8-char vectors.
7434     bind(COMPARE_16_CHARS);
7435     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7436       movdqu(vec1, Address(str1, 0));
7437     } else {
7438       pmovzxbw(vec1, Address(str1, 0));
7439     }
7440     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7441     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7442 
7443     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7444       movdqu(vec1, Address(str1, adr_stride));
7445       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7446     } else {
7447       pmovzxbw(vec1, Address(str1, adr_stride1));
7448       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7449     }
7450     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7451     addl(cnt1, stride);
7452 
7453     // Compare the characters at index in cnt1
7454     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7455     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7456     subl(result, cnt2);
7457     jmp(POP_LABEL);
7458 
7459     // Setup the registers to start vector comparison loop
7460     bind(COMPARE_WIDE_VECTORS);
7461     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7462       lea(str1, Address(str1, result, scale));
7463       lea(str2, Address(str2, result, scale));
7464     } else {
7465       lea(str1, Address(str1, result, scale1));
7466       lea(str2, Address(str2, result, scale2));
7467     }
7468     subl(result, stride2);
7469     subl(cnt2, stride2);
7470     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7471     negptr(result);
7472 
7473     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7474     bind(COMPARE_WIDE_VECTORS_LOOP);
7475 
7476 #ifdef _LP64
7477     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7478       cmpl(cnt2, stride2x2);
7479       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7480       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7481       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7482 
7483       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7484       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7485         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7486         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7487       } else {
7488         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7489         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7490       }
7491       kortestql(k7, k7);
7492       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7493       addptr(result, stride2x2);  // update since we already compared at this addr
7494       subl(cnt2, stride2x2);      // and sub the size too
7495       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7496 
7497       vpxor(vec1, vec1);
7498       jmpb(COMPARE_WIDE_TAIL);
7499     }//if (VM_Version::supports_avx512vlbw())
7500 #endif // _LP64
7501 
7502 
7503     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7504     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7505       vmovdqu(vec1, Address(str1, result, scale));
7506       vpxor(vec1, Address(str2, result, scale));
7507     } else {
7508       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7509       vpxor(vec1, Address(str2, result, scale2));
7510     }
7511     vptest(vec1, vec1);
7512     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7513     addptr(result, stride2);
7514     subl(cnt2, stride2);
7515     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7516     // clean upper bits of YMM registers
7517     vpxor(vec1, vec1);
7518 
7519     // compare wide vectors tail
7520     bind(COMPARE_WIDE_TAIL);
7521     testptr(result, result);
7522     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7523 
7524     movl(result, stride2);
7525     movl(cnt2, result);
7526     negptr(result);
7527     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7528 
7529     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7530     bind(VECTOR_NOT_EQUAL);
7531     // clean upper bits of YMM registers
7532     vpxor(vec1, vec1);
7533     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7534       lea(str1, Address(str1, result, scale));
7535       lea(str2, Address(str2, result, scale));
7536     } else {
7537       lea(str1, Address(str1, result, scale1));
7538       lea(str2, Address(str2, result, scale2));
7539     }
7540     jmp(COMPARE_16_CHARS);
7541 
7542     // Compare tail chars, length between 1 to 15 chars
7543     bind(COMPARE_TAIL_LONG);
7544     movl(cnt2, result);
7545     cmpl(cnt2, stride);
7546     jcc(Assembler::less, COMPARE_SMALL_STR);
7547 
7548     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7549       movdqu(vec1, Address(str1, 0));
7550     } else {
7551       pmovzxbw(vec1, Address(str1, 0));
7552     }
7553     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7554     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7555     subptr(cnt2, stride);
7556     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7557     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7558       lea(str1, Address(str1, result, scale));
7559       lea(str2, Address(str2, result, scale));
7560     } else {
7561       lea(str1, Address(str1, result, scale1));
7562       lea(str2, Address(str2, result, scale2));
7563     }
7564     negptr(cnt2);
7565     jmpb(WHILE_HEAD_LABEL);
7566 
7567     bind(COMPARE_SMALL_STR);
7568   } else if (UseSSE42Intrinsics) {
7569     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7570     int pcmpmask = 0x19;
7571     // Setup to compare 8-char (16-byte) vectors,
7572     // start from first character again because it has aligned address.
7573     movl(result, cnt2);
7574     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7575     if (ae == StrIntrinsicNode::LL) {
7576       pcmpmask &= ~0x01;
7577     }
7578     jcc(Assembler::zero, COMPARE_TAIL);
7579     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7580       lea(str1, Address(str1, result, scale));
7581       lea(str2, Address(str2, result, scale));
7582     } else {
7583       lea(str1, Address(str1, result, scale1));
7584       lea(str2, Address(str2, result, scale2));
7585     }
7586     negptr(result);
7587 
7588     // pcmpestri
7589     //   inputs:
7590     //     vec1- substring
7591     //     rax - negative string length (elements count)
7592     //     mem - scanned string
7593     //     rdx - string length (elements count)
7594     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7595     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7596     //   outputs:
7597     //     rcx - first mismatched element index
7598     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7599 
7600     bind(COMPARE_WIDE_VECTORS);
7601     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7602       movdqu(vec1, Address(str1, result, scale));
7603       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7604     } else {
7605       pmovzxbw(vec1, Address(str1, result, scale1));
7606       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7607     }
7608     // After pcmpestri cnt1(rcx) contains mismatched element index
7609 
7610     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
7611     addptr(result, stride);
7612     subptr(cnt2, stride);
7613     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
7614 
7615     // compare wide vectors tail
7616     testptr(result, result);
7617     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7618 
7619     movl(cnt2, stride);
7620     movl(result, stride);
7621     negptr(result);
7622     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7623       movdqu(vec1, Address(str1, result, scale));
7624       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7625     } else {
7626       pmovzxbw(vec1, Address(str1, result, scale1));
7627       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7628     }
7629     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
7630 
7631     // Mismatched characters in the vectors
7632     bind(VECTOR_NOT_EQUAL);
7633     addptr(cnt1, result);
7634     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7635     subl(result, cnt2);
7636     jmpb(POP_LABEL);
7637 
7638     bind(COMPARE_TAIL); // limit is zero
7639     movl(cnt2, result);
7640     // Fallthru to tail compare
7641   }
7642   // Shift str2 and str1 to the end of the arrays, negate min
7643   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7644     lea(str1, Address(str1, cnt2, scale));
7645     lea(str2, Address(str2, cnt2, scale));
7646   } else {
7647     lea(str1, Address(str1, cnt2, scale1));
7648     lea(str2, Address(str2, cnt2, scale2));
7649   }
7650   decrementl(cnt2);  // first character was compared already
7651   negptr(cnt2);
7652 
7653   // Compare the rest of the elements
7654   bind(WHILE_HEAD_LABEL);
7655   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
7656   subl(result, cnt1);
7657   jccb(Assembler::notZero, POP_LABEL);
7658   increment(cnt2);
7659   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
7660 
7661   // Strings are equal up to min length.  Return the length difference.
7662   bind(LENGTH_DIFF_LABEL);
7663   pop(result);
7664   if (ae == StrIntrinsicNode::UU) {
7665     // Divide diff by 2 to get number of chars
7666     sarl(result, 1);
7667   }
7668   jmpb(DONE_LABEL);
7669 
7670 #ifdef _LP64
7671   if (VM_Version::supports_avx512vlbw()) {
7672 
7673     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
7674 
7675     kmovql(cnt1, k7);
7676     notq(cnt1);
7677     bsfq(cnt2, cnt1);
7678     if (ae != StrIntrinsicNode::LL) {
7679       // Divide diff by 2 to get number of chars
7680       sarl(cnt2, 1);
7681     }
7682     addq(result, cnt2);
7683     if (ae == StrIntrinsicNode::LL) {
7684       load_unsigned_byte(cnt1, Address(str2, result));
7685       load_unsigned_byte(result, Address(str1, result));
7686     } else if (ae == StrIntrinsicNode::UU) {
7687       load_unsigned_short(cnt1, Address(str2, result, scale));
7688       load_unsigned_short(result, Address(str1, result, scale));
7689     } else {
7690       load_unsigned_short(cnt1, Address(str2, result, scale2));
7691       load_unsigned_byte(result, Address(str1, result, scale1));
7692     }
7693     subl(result, cnt1);
7694     jmpb(POP_LABEL);
7695   }//if (VM_Version::supports_avx512vlbw())
7696 #endif // _LP64
7697 
7698   // Discard the stored length difference
7699   bind(POP_LABEL);
7700   pop(cnt1);
7701 
7702   // That's it
7703   bind(DONE_LABEL);
7704   if(ae == StrIntrinsicNode::UL) {
7705     negl(result);
7706   }
7707 
7708 }
7709 
7710 // Search for Non-ASCII character (Negative byte value) in a byte array,
7711 // return true if it has any and false otherwise.
7712 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
7713 //   @HotSpotIntrinsicCandidate
7714 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
7715 //     for (int i = off; i < off + len; i++) {
7716 //       if (ba[i] < 0) {
7717 //         return true;
7718 //       }
7719 //     }
7720 //     return false;
7721 //   }
7722 void MacroAssembler::has_negatives(Register ary1, Register len,
7723   Register result, Register tmp1,
7724   XMMRegister vec1, XMMRegister vec2) {
7725   // rsi: byte array
7726   // rcx: len
7727   // rax: result
7728   ShortBranchVerifier sbv(this);
7729   assert_different_registers(ary1, len, result, tmp1);
7730   assert_different_registers(vec1, vec2);
7731   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
7732 
7733   // len == 0
7734   testl(len, len);
7735   jcc(Assembler::zero, FALSE_LABEL);
7736 
7737   if ((UseAVX > 2) && // AVX512
7738     VM_Version::supports_avx512vlbw() &&
7739     VM_Version::supports_bmi2()) {
7740 
7741     set_vector_masking();  // opening of the stub context for programming mask registers
7742 
7743     Label test_64_loop, test_tail;
7744     Register tmp3_aliased = len;
7745 
7746     movl(tmp1, len);
7747     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
7748 
7749     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
7750     andl(len, ~(64 - 1));    // vector count (in chars)
7751     jccb(Assembler::zero, test_tail);
7752 
7753     lea(ary1, Address(ary1, len, Address::times_1));
7754     negptr(len);
7755 
7756     bind(test_64_loop);
7757     // Check whether our 64 elements of size byte contain negatives
7758     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
7759     kortestql(k2, k2);
7760     jcc(Assembler::notZero, TRUE_LABEL);
7761 
7762     addptr(len, 64);
7763     jccb(Assembler::notZero, test_64_loop);
7764 
7765 
7766     bind(test_tail);
7767     // bail out when there is nothing to be done
7768     testl(tmp1, -1);
7769     jcc(Assembler::zero, FALSE_LABEL);
7770 
7771     // Save k1
7772     kmovql(k3, k1);
7773 
7774     // ~(~0 << len) applied up to two times (for 32-bit scenario)
7775 #ifdef _LP64
7776     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
7777     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
7778     notq(tmp3_aliased);
7779     kmovql(k1, tmp3_aliased);
7780 #else
7781     Label k_init;
7782     jmp(k_init);
7783 
7784     // We could not read 64-bits from a general purpose register thus we move
7785     // data required to compose 64 1's to the instruction stream
7786     // We emit 64 byte wide series of elements from 0..63 which later on would
7787     // be used as a compare targets with tail count contained in tmp1 register.
7788     // Result would be a k1 register having tmp1 consecutive number or 1
7789     // counting from least significant bit.
7790     address tmp = pc();
7791     emit_int64(0x0706050403020100);
7792     emit_int64(0x0F0E0D0C0B0A0908);
7793     emit_int64(0x1716151413121110);
7794     emit_int64(0x1F1E1D1C1B1A1918);
7795     emit_int64(0x2726252423222120);
7796     emit_int64(0x2F2E2D2C2B2A2928);
7797     emit_int64(0x3736353433323130);
7798     emit_int64(0x3F3E3D3C3B3A3938);
7799 
7800     bind(k_init);
7801     lea(len, InternalAddress(tmp));
7802     // create mask to test for negative byte inside a vector
7803     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
7804     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
7805 
7806 #endif
7807     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
7808     ktestq(k2, k1);
7809     // Restore k1
7810     kmovql(k1, k3);
7811     jcc(Assembler::notZero, TRUE_LABEL);
7812 
7813     jmp(FALSE_LABEL);
7814 
7815     clear_vector_masking();   // closing of the stub context for programming mask registers
7816   } else {
7817     movl(result, len); // copy
7818 
7819     if (UseAVX == 2 && UseSSE >= 2) {
7820       // With AVX2, use 32-byte vector compare
7821       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7822 
7823       // Compare 32-byte vectors
7824       andl(result, 0x0000001f);  //   tail count (in bytes)
7825       andl(len, 0xffffffe0);   // vector count (in bytes)
7826       jccb(Assembler::zero, COMPARE_TAIL);
7827 
7828       lea(ary1, Address(ary1, len, Address::times_1));
7829       negptr(len);
7830 
7831       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
7832       movdl(vec2, tmp1);
7833       vpbroadcastd(vec2, vec2);
7834 
7835       bind(COMPARE_WIDE_VECTORS);
7836       vmovdqu(vec1, Address(ary1, len, Address::times_1));
7837       vptest(vec1, vec2);
7838       jccb(Assembler::notZero, TRUE_LABEL);
7839       addptr(len, 32);
7840       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7841 
7842       testl(result, result);
7843       jccb(Assembler::zero, FALSE_LABEL);
7844 
7845       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7846       vptest(vec1, vec2);
7847       jccb(Assembler::notZero, TRUE_LABEL);
7848       jmpb(FALSE_LABEL);
7849 
7850       bind(COMPARE_TAIL); // len is zero
7851       movl(len, result);
7852       // Fallthru to tail compare
7853     } else if (UseSSE42Intrinsics) {
7854       // With SSE4.2, use double quad vector compare
7855       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7856 
7857       // Compare 16-byte vectors
7858       andl(result, 0x0000000f);  //   tail count (in bytes)
7859       andl(len, 0xfffffff0);   // vector count (in bytes)
7860       jccb(Assembler::zero, COMPARE_TAIL);
7861 
7862       lea(ary1, Address(ary1, len, Address::times_1));
7863       negptr(len);
7864 
7865       movl(tmp1, 0x80808080);
7866       movdl(vec2, tmp1);
7867       pshufd(vec2, vec2, 0);
7868 
7869       bind(COMPARE_WIDE_VECTORS);
7870       movdqu(vec1, Address(ary1, len, Address::times_1));
7871       ptest(vec1, vec2);
7872       jccb(Assembler::notZero, TRUE_LABEL);
7873       addptr(len, 16);
7874       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7875 
7876       testl(result, result);
7877       jccb(Assembler::zero, FALSE_LABEL);
7878 
7879       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7880       ptest(vec1, vec2);
7881       jccb(Assembler::notZero, TRUE_LABEL);
7882       jmpb(FALSE_LABEL);
7883 
7884       bind(COMPARE_TAIL); // len is zero
7885       movl(len, result);
7886       // Fallthru to tail compare
7887     }
7888   }
7889   // Compare 4-byte vectors
7890   andl(len, 0xfffffffc); // vector count (in bytes)
7891   jccb(Assembler::zero, COMPARE_CHAR);
7892 
7893   lea(ary1, Address(ary1, len, Address::times_1));
7894   negptr(len);
7895 
7896   bind(COMPARE_VECTORS);
7897   movl(tmp1, Address(ary1, len, Address::times_1));
7898   andl(tmp1, 0x80808080);
7899   jccb(Assembler::notZero, TRUE_LABEL);
7900   addptr(len, 4);
7901   jcc(Assembler::notZero, COMPARE_VECTORS);
7902 
7903   // Compare trailing char (final 2 bytes), if any
7904   bind(COMPARE_CHAR);
7905   testl(result, 0x2);   // tail  char
7906   jccb(Assembler::zero, COMPARE_BYTE);
7907   load_unsigned_short(tmp1, Address(ary1, 0));
7908   andl(tmp1, 0x00008080);
7909   jccb(Assembler::notZero, TRUE_LABEL);
7910   subptr(result, 2);
7911   lea(ary1, Address(ary1, 2));
7912 
7913   bind(COMPARE_BYTE);
7914   testl(result, 0x1);   // tail  byte
7915   jccb(Assembler::zero, FALSE_LABEL);
7916   load_unsigned_byte(tmp1, Address(ary1, 0));
7917   andl(tmp1, 0x00000080);
7918   jccb(Assembler::notEqual, TRUE_LABEL);
7919   jmpb(FALSE_LABEL);
7920 
7921   bind(TRUE_LABEL);
7922   movl(result, 1);   // return true
7923   jmpb(DONE);
7924 
7925   bind(FALSE_LABEL);
7926   xorl(result, result); // return false
7927 
7928   // That's it
7929   bind(DONE);
7930   if (UseAVX >= 2 && UseSSE >= 2) {
7931     // clean upper bits of YMM registers
7932     vpxor(vec1, vec1);
7933     vpxor(vec2, vec2);
7934   }
7935 }
7936 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
7937 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7938                                    Register limit, Register result, Register chr,
7939                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7940   ShortBranchVerifier sbv(this);
7941   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7942 
7943   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7944   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7945 
7946   if (is_array_equ) {
7947     // Check the input args
7948     cmpoop(ary1, ary2);
7949     jcc(Assembler::equal, TRUE_LABEL);
7950 
7951     // Need additional checks for arrays_equals.
7952     testptr(ary1, ary1);
7953     jcc(Assembler::zero, FALSE_LABEL);
7954     testptr(ary2, ary2);
7955     jcc(Assembler::zero, FALSE_LABEL);
7956 
7957     // Check the lengths
7958     movl(limit, Address(ary1, length_offset));
7959     cmpl(limit, Address(ary2, length_offset));
7960     jcc(Assembler::notEqual, FALSE_LABEL);
7961   }
7962 
7963   // count == 0
7964   testl(limit, limit);
7965   jcc(Assembler::zero, TRUE_LABEL);
7966 
7967   if (is_array_equ) {
7968     // Load array address
7969     lea(ary1, Address(ary1, base_offset));
7970     lea(ary2, Address(ary2, base_offset));
7971   }
7972 
7973   if (is_array_equ && is_char) {
7974     // arrays_equals when used for char[].
7975     shll(limit, 1);      // byte count != 0
7976   }
7977   movl(result, limit); // copy
7978 
7979   if (UseAVX >= 2) {
7980     // With AVX2, use 32-byte vector compare
7981     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7982 
7983     // Compare 32-byte vectors
7984     andl(result, 0x0000001f);  //   tail count (in bytes)
7985     andl(limit, 0xffffffe0);   // vector count (in bytes)
7986     jcc(Assembler::zero, COMPARE_TAIL);
7987 
7988     lea(ary1, Address(ary1, limit, Address::times_1));
7989     lea(ary2, Address(ary2, limit, Address::times_1));
7990     negptr(limit);
7991 
7992     bind(COMPARE_WIDE_VECTORS);
7993 
7994 #ifdef _LP64
7995     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7996       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
7997 
7998       cmpl(limit, -64);
7999       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8000 
8001       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8002 
8003       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8004       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8005       kortestql(k7, k7);
8006       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8007       addptr(limit, 64);  // update since we already compared at this addr
8008       cmpl(limit, -64);
8009       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8010 
8011       // At this point we may still need to compare -limit+result bytes.
8012       // We could execute the next two instruction and just continue via non-wide path:
8013       //  cmpl(limit, 0);
8014       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8015       // But since we stopped at the points ary{1,2}+limit which are
8016       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8017       // (|limit| <= 32 and result < 32),
8018       // we may just compare the last 64 bytes.
8019       //
8020       addptr(result, -64);   // it is safe, bc we just came from this area
8021       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8022       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8023       kortestql(k7, k7);
8024       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8025 
8026       jmp(TRUE_LABEL);
8027 
8028       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8029 
8030     }//if (VM_Version::supports_avx512vlbw())
8031 #endif //_LP64
8032 
8033     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8034     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8035     vpxor(vec1, vec2);
8036 
8037     vptest(vec1, vec1);
8038     jcc(Assembler::notZero, FALSE_LABEL);
8039     addptr(limit, 32);
8040     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8041 
8042     testl(result, result);
8043     jcc(Assembler::zero, TRUE_LABEL);
8044 
8045     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8046     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8047     vpxor(vec1, vec2);
8048 
8049     vptest(vec1, vec1);
8050     jccb(Assembler::notZero, FALSE_LABEL);
8051     jmpb(TRUE_LABEL);
8052 
8053     bind(COMPARE_TAIL); // limit is zero
8054     movl(limit, result);
8055     // Fallthru to tail compare
8056   } else if (UseSSE42Intrinsics) {
8057     // With SSE4.2, use double quad vector compare
8058     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8059 
8060     // Compare 16-byte vectors
8061     andl(result, 0x0000000f);  //   tail count (in bytes)
8062     andl(limit, 0xfffffff0);   // vector count (in bytes)
8063     jcc(Assembler::zero, COMPARE_TAIL);
8064 
8065     lea(ary1, Address(ary1, limit, Address::times_1));
8066     lea(ary2, Address(ary2, limit, Address::times_1));
8067     negptr(limit);
8068 
8069     bind(COMPARE_WIDE_VECTORS);
8070     movdqu(vec1, Address(ary1, limit, Address::times_1));
8071     movdqu(vec2, Address(ary2, limit, Address::times_1));
8072     pxor(vec1, vec2);
8073 
8074     ptest(vec1, vec1);
8075     jcc(Assembler::notZero, FALSE_LABEL);
8076     addptr(limit, 16);
8077     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8078 
8079     testl(result, result);
8080     jcc(Assembler::zero, TRUE_LABEL);
8081 
8082     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8083     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8084     pxor(vec1, vec2);
8085 
8086     ptest(vec1, vec1);
8087     jccb(Assembler::notZero, FALSE_LABEL);
8088     jmpb(TRUE_LABEL);
8089 
8090     bind(COMPARE_TAIL); // limit is zero
8091     movl(limit, result);
8092     // Fallthru to tail compare
8093   }
8094 
8095   // Compare 4-byte vectors
8096   andl(limit, 0xfffffffc); // vector count (in bytes)
8097   jccb(Assembler::zero, COMPARE_CHAR);
8098 
8099   lea(ary1, Address(ary1, limit, Address::times_1));
8100   lea(ary2, Address(ary2, limit, Address::times_1));
8101   negptr(limit);
8102 
8103   bind(COMPARE_VECTORS);
8104   movl(chr, Address(ary1, limit, Address::times_1));
8105   cmpl(chr, Address(ary2, limit, Address::times_1));
8106   jccb(Assembler::notEqual, FALSE_LABEL);
8107   addptr(limit, 4);
8108   jcc(Assembler::notZero, COMPARE_VECTORS);
8109 
8110   // Compare trailing char (final 2 bytes), if any
8111   bind(COMPARE_CHAR);
8112   testl(result, 0x2);   // tail  char
8113   jccb(Assembler::zero, COMPARE_BYTE);
8114   load_unsigned_short(chr, Address(ary1, 0));
8115   load_unsigned_short(limit, Address(ary2, 0));
8116   cmpl(chr, limit);
8117   jccb(Assembler::notEqual, FALSE_LABEL);
8118 
8119   if (is_array_equ && is_char) {
8120     bind(COMPARE_BYTE);
8121   } else {
8122     lea(ary1, Address(ary1, 2));
8123     lea(ary2, Address(ary2, 2));
8124 
8125     bind(COMPARE_BYTE);
8126     testl(result, 0x1);   // tail  byte
8127     jccb(Assembler::zero, TRUE_LABEL);
8128     load_unsigned_byte(chr, Address(ary1, 0));
8129     load_unsigned_byte(limit, Address(ary2, 0));
8130     cmpl(chr, limit);
8131     jccb(Assembler::notEqual, FALSE_LABEL);
8132   }
8133   bind(TRUE_LABEL);
8134   movl(result, 1);   // return true
8135   jmpb(DONE);
8136 
8137   bind(FALSE_LABEL);
8138   xorl(result, result); // return false
8139 
8140   // That's it
8141   bind(DONE);
8142   if (UseAVX >= 2) {
8143     // clean upper bits of YMM registers
8144     vpxor(vec1, vec1);
8145     vpxor(vec2, vec2);
8146   }
8147 }
8148 
8149 #endif
8150 
8151 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8152                                    Register to, Register value, Register count,
8153                                    Register rtmp, XMMRegister xtmp) {
8154   ShortBranchVerifier sbv(this);
8155   assert_different_registers(to, value, count, rtmp);
8156   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8157   Label L_fill_2_bytes, L_fill_4_bytes;
8158 
8159   int shift = -1;
8160   switch (t) {
8161     case T_BYTE:
8162       shift = 2;
8163       break;
8164     case T_SHORT:
8165       shift = 1;
8166       break;
8167     case T_INT:
8168       shift = 0;
8169       break;
8170     default: ShouldNotReachHere();
8171   }
8172 
8173   if (t == T_BYTE) {
8174     andl(value, 0xff);
8175     movl(rtmp, value);
8176     shll(rtmp, 8);
8177     orl(value, rtmp);
8178   }
8179   if (t == T_SHORT) {
8180     andl(value, 0xffff);
8181   }
8182   if (t == T_BYTE || t == T_SHORT) {
8183     movl(rtmp, value);
8184     shll(rtmp, 16);
8185     orl(value, rtmp);
8186   }
8187 
8188   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8189   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8190   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8191     // align source address at 4 bytes address boundary
8192     if (t == T_BYTE) {
8193       // One byte misalignment happens only for byte arrays
8194       testptr(to, 1);
8195       jccb(Assembler::zero, L_skip_align1);
8196       movb(Address(to, 0), value);
8197       increment(to);
8198       decrement(count);
8199       BIND(L_skip_align1);
8200     }
8201     // Two bytes misalignment happens only for byte and short (char) arrays
8202     testptr(to, 2);
8203     jccb(Assembler::zero, L_skip_align2);
8204     movw(Address(to, 0), value);
8205     addptr(to, 2);
8206     subl(count, 1<<(shift-1));
8207     BIND(L_skip_align2);
8208   }
8209   if (UseSSE < 2) {
8210     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8211     // Fill 32-byte chunks
8212     subl(count, 8 << shift);
8213     jcc(Assembler::less, L_check_fill_8_bytes);
8214     align(16);
8215 
8216     BIND(L_fill_32_bytes_loop);
8217 
8218     for (int i = 0; i < 32; i += 4) {
8219       movl(Address(to, i), value);
8220     }
8221 
8222     addptr(to, 32);
8223     subl(count, 8 << shift);
8224     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8225     BIND(L_check_fill_8_bytes);
8226     addl(count, 8 << shift);
8227     jccb(Assembler::zero, L_exit);
8228     jmpb(L_fill_8_bytes);
8229 
8230     //
8231     // length is too short, just fill qwords
8232     //
8233     BIND(L_fill_8_bytes_loop);
8234     movl(Address(to, 0), value);
8235     movl(Address(to, 4), value);
8236     addptr(to, 8);
8237     BIND(L_fill_8_bytes);
8238     subl(count, 1 << (shift + 1));
8239     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8240     // fall through to fill 4 bytes
8241   } else {
8242     Label L_fill_32_bytes;
8243     if (!UseUnalignedLoadStores) {
8244       // align to 8 bytes, we know we are 4 byte aligned to start
8245       testptr(to, 4);
8246       jccb(Assembler::zero, L_fill_32_bytes);
8247       movl(Address(to, 0), value);
8248       addptr(to, 4);
8249       subl(count, 1<<shift);
8250     }
8251     BIND(L_fill_32_bytes);
8252     {
8253       assert( UseSSE >= 2, "supported cpu only" );
8254       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8255       if (UseAVX > 2) {
8256         movl(rtmp, 0xffff);
8257         kmovwl(k1, rtmp);
8258       }
8259       movdl(xtmp, value);
8260       if (UseAVX > 2 && UseUnalignedLoadStores) {
8261         // Fill 64-byte chunks
8262         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8263         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8264 
8265         subl(count, 16 << shift);
8266         jcc(Assembler::less, L_check_fill_32_bytes);
8267         align(16);
8268 
8269         BIND(L_fill_64_bytes_loop);
8270         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8271         addptr(to, 64);
8272         subl(count, 16 << shift);
8273         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8274 
8275         BIND(L_check_fill_32_bytes);
8276         addl(count, 8 << shift);
8277         jccb(Assembler::less, L_check_fill_8_bytes);
8278         vmovdqu(Address(to, 0), xtmp);
8279         addptr(to, 32);
8280         subl(count, 8 << shift);
8281 
8282         BIND(L_check_fill_8_bytes);
8283       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8284         // Fill 64-byte chunks
8285         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8286         vpbroadcastd(xtmp, xtmp);
8287 
8288         subl(count, 16 << shift);
8289         jcc(Assembler::less, L_check_fill_32_bytes);
8290         align(16);
8291 
8292         BIND(L_fill_64_bytes_loop);
8293         vmovdqu(Address(to, 0), xtmp);
8294         vmovdqu(Address(to, 32), xtmp);
8295         addptr(to, 64);
8296         subl(count, 16 << shift);
8297         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8298 
8299         BIND(L_check_fill_32_bytes);
8300         addl(count, 8 << shift);
8301         jccb(Assembler::less, L_check_fill_8_bytes);
8302         vmovdqu(Address(to, 0), xtmp);
8303         addptr(to, 32);
8304         subl(count, 8 << shift);
8305 
8306         BIND(L_check_fill_8_bytes);
8307         // clean upper bits of YMM registers
8308         movdl(xtmp, value);
8309         pshufd(xtmp, xtmp, 0);
8310       } else {
8311         // Fill 32-byte chunks
8312         pshufd(xtmp, xtmp, 0);
8313 
8314         subl(count, 8 << shift);
8315         jcc(Assembler::less, L_check_fill_8_bytes);
8316         align(16);
8317 
8318         BIND(L_fill_32_bytes_loop);
8319 
8320         if (UseUnalignedLoadStores) {
8321           movdqu(Address(to, 0), xtmp);
8322           movdqu(Address(to, 16), xtmp);
8323         } else {
8324           movq(Address(to, 0), xtmp);
8325           movq(Address(to, 8), xtmp);
8326           movq(Address(to, 16), xtmp);
8327           movq(Address(to, 24), xtmp);
8328         }
8329 
8330         addptr(to, 32);
8331         subl(count, 8 << shift);
8332         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8333 
8334         BIND(L_check_fill_8_bytes);
8335       }
8336       addl(count, 8 << shift);
8337       jccb(Assembler::zero, L_exit);
8338       jmpb(L_fill_8_bytes);
8339 
8340       //
8341       // length is too short, just fill qwords
8342       //
8343       BIND(L_fill_8_bytes_loop);
8344       movq(Address(to, 0), xtmp);
8345       addptr(to, 8);
8346       BIND(L_fill_8_bytes);
8347       subl(count, 1 << (shift + 1));
8348       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8349     }
8350   }
8351   // fill trailing 4 bytes
8352   BIND(L_fill_4_bytes);
8353   testl(count, 1<<shift);
8354   jccb(Assembler::zero, L_fill_2_bytes);
8355   movl(Address(to, 0), value);
8356   if (t == T_BYTE || t == T_SHORT) {
8357     addptr(to, 4);
8358     BIND(L_fill_2_bytes);
8359     // fill trailing 2 bytes
8360     testl(count, 1<<(shift-1));
8361     jccb(Assembler::zero, L_fill_byte);
8362     movw(Address(to, 0), value);
8363     if (t == T_BYTE) {
8364       addptr(to, 2);
8365       BIND(L_fill_byte);
8366       // fill trailing byte
8367       testl(count, 1);
8368       jccb(Assembler::zero, L_exit);
8369       movb(Address(to, 0), value);
8370     } else {
8371       BIND(L_fill_byte);
8372     }
8373   } else {
8374     BIND(L_fill_2_bytes);
8375   }
8376   BIND(L_exit);
8377 }
8378 
8379 // encode char[] to byte[] in ISO_8859_1
8380    //@HotSpotIntrinsicCandidate
8381    //private static int implEncodeISOArray(byte[] sa, int sp,
8382    //byte[] da, int dp, int len) {
8383    //  int i = 0;
8384    //  for (; i < len; i++) {
8385    //    char c = StringUTF16.getChar(sa, sp++);
8386    //    if (c > '\u00FF')
8387    //      break;
8388    //    da[dp++] = (byte)c;
8389    //  }
8390    //  return i;
8391    //}
8392 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8393   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8394   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8395   Register tmp5, Register result) {
8396 
8397   // rsi: src
8398   // rdi: dst
8399   // rdx: len
8400   // rcx: tmp5
8401   // rax: result
8402   ShortBranchVerifier sbv(this);
8403   assert_different_registers(src, dst, len, tmp5, result);
8404   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8405 
8406   // set result
8407   xorl(result, result);
8408   // check for zero length
8409   testl(len, len);
8410   jcc(Assembler::zero, L_done);
8411 
8412   movl(result, len);
8413 
8414   // Setup pointers
8415   lea(src, Address(src, len, Address::times_2)); // char[]
8416   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8417   negptr(len);
8418 
8419   if (UseSSE42Intrinsics || UseAVX >= 2) {
8420     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8421     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8422 
8423     if (UseAVX >= 2) {
8424       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8425       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8426       movdl(tmp1Reg, tmp5);
8427       vpbroadcastd(tmp1Reg, tmp1Reg);
8428       jmp(L_chars_32_check);
8429 
8430       bind(L_copy_32_chars);
8431       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8432       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8433       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8434       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8435       jccb(Assembler::notZero, L_copy_32_chars_exit);
8436       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8437       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8438       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8439 
8440       bind(L_chars_32_check);
8441       addptr(len, 32);
8442       jcc(Assembler::lessEqual, L_copy_32_chars);
8443 
8444       bind(L_copy_32_chars_exit);
8445       subptr(len, 16);
8446       jccb(Assembler::greater, L_copy_16_chars_exit);
8447 
8448     } else if (UseSSE42Intrinsics) {
8449       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8450       movdl(tmp1Reg, tmp5);
8451       pshufd(tmp1Reg, tmp1Reg, 0);
8452       jmpb(L_chars_16_check);
8453     }
8454 
8455     bind(L_copy_16_chars);
8456     if (UseAVX >= 2) {
8457       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8458       vptest(tmp2Reg, tmp1Reg);
8459       jcc(Assembler::notZero, L_copy_16_chars_exit);
8460       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8461       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8462     } else {
8463       if (UseAVX > 0) {
8464         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8465         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8466         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8467       } else {
8468         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8469         por(tmp2Reg, tmp3Reg);
8470         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8471         por(tmp2Reg, tmp4Reg);
8472       }
8473       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8474       jccb(Assembler::notZero, L_copy_16_chars_exit);
8475       packuswb(tmp3Reg, tmp4Reg);
8476     }
8477     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8478 
8479     bind(L_chars_16_check);
8480     addptr(len, 16);
8481     jcc(Assembler::lessEqual, L_copy_16_chars);
8482 
8483     bind(L_copy_16_chars_exit);
8484     if (UseAVX >= 2) {
8485       // clean upper bits of YMM registers
8486       vpxor(tmp2Reg, tmp2Reg);
8487       vpxor(tmp3Reg, tmp3Reg);
8488       vpxor(tmp4Reg, tmp4Reg);
8489       movdl(tmp1Reg, tmp5);
8490       pshufd(tmp1Reg, tmp1Reg, 0);
8491     }
8492     subptr(len, 8);
8493     jccb(Assembler::greater, L_copy_8_chars_exit);
8494 
8495     bind(L_copy_8_chars);
8496     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8497     ptest(tmp3Reg, tmp1Reg);
8498     jccb(Assembler::notZero, L_copy_8_chars_exit);
8499     packuswb(tmp3Reg, tmp1Reg);
8500     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8501     addptr(len, 8);
8502     jccb(Assembler::lessEqual, L_copy_8_chars);
8503 
8504     bind(L_copy_8_chars_exit);
8505     subptr(len, 8);
8506     jccb(Assembler::zero, L_done);
8507   }
8508 
8509   bind(L_copy_1_char);
8510   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8511   testl(tmp5, 0xff00);      // check if Unicode char
8512   jccb(Assembler::notZero, L_copy_1_char_exit);
8513   movb(Address(dst, len, Address::times_1, 0), tmp5);
8514   addptr(len, 1);
8515   jccb(Assembler::less, L_copy_1_char);
8516 
8517   bind(L_copy_1_char_exit);
8518   addptr(result, len); // len is negative count of not processed elements
8519 
8520   bind(L_done);
8521 }
8522 
8523 #ifdef _LP64
8524 /**
8525  * Helper for multiply_to_len().
8526  */
8527 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8528   addq(dest_lo, src1);
8529   adcq(dest_hi, 0);
8530   addq(dest_lo, src2);
8531   adcq(dest_hi, 0);
8532 }
8533 
8534 /**
8535  * Multiply 64 bit by 64 bit first loop.
8536  */
8537 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8538                                            Register y, Register y_idx, Register z,
8539                                            Register carry, Register product,
8540                                            Register idx, Register kdx) {
8541   //
8542   //  jlong carry, x[], y[], z[];
8543   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8544   //    huge_128 product = y[idx] * x[xstart] + carry;
8545   //    z[kdx] = (jlong)product;
8546   //    carry  = (jlong)(product >>> 64);
8547   //  }
8548   //  z[xstart] = carry;
8549   //
8550 
8551   Label L_first_loop, L_first_loop_exit;
8552   Label L_one_x, L_one_y, L_multiply;
8553 
8554   decrementl(xstart);
8555   jcc(Assembler::negative, L_one_x);
8556 
8557   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8558   rorq(x_xstart, 32); // convert big-endian to little-endian
8559 
8560   bind(L_first_loop);
8561   decrementl(idx);
8562   jcc(Assembler::negative, L_first_loop_exit);
8563   decrementl(idx);
8564   jcc(Assembler::negative, L_one_y);
8565   movq(y_idx, Address(y, idx, Address::times_4,  0));
8566   rorq(y_idx, 32); // convert big-endian to little-endian
8567   bind(L_multiply);
8568   movq(product, x_xstart);
8569   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8570   addq(product, carry);
8571   adcq(rdx, 0);
8572   subl(kdx, 2);
8573   movl(Address(z, kdx, Address::times_4,  4), product);
8574   shrq(product, 32);
8575   movl(Address(z, kdx, Address::times_4,  0), product);
8576   movq(carry, rdx);
8577   jmp(L_first_loop);
8578 
8579   bind(L_one_y);
8580   movl(y_idx, Address(y,  0));
8581   jmp(L_multiply);
8582 
8583   bind(L_one_x);
8584   movl(x_xstart, Address(x,  0));
8585   jmp(L_first_loop);
8586 
8587   bind(L_first_loop_exit);
8588 }
8589 
8590 /**
8591  * Multiply 64 bit by 64 bit and add 128 bit.
8592  */
8593 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8594                                             Register yz_idx, Register idx,
8595                                             Register carry, Register product, int offset) {
8596   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8597   //     z[kdx] = (jlong)product;
8598 
8599   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8600   rorq(yz_idx, 32); // convert big-endian to little-endian
8601   movq(product, x_xstart);
8602   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8603   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8604   rorq(yz_idx, 32); // convert big-endian to little-endian
8605 
8606   add2_with_carry(rdx, product, carry, yz_idx);
8607 
8608   movl(Address(z, idx, Address::times_4,  offset+4), product);
8609   shrq(product, 32);
8610   movl(Address(z, idx, Address::times_4,  offset), product);
8611 
8612 }
8613 
8614 /**
8615  * Multiply 128 bit by 128 bit. Unrolled inner loop.
8616  */
8617 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
8618                                              Register yz_idx, Register idx, Register jdx,
8619                                              Register carry, Register product,
8620                                              Register carry2) {
8621   //   jlong carry, x[], y[], z[];
8622   //   int kdx = ystart+1;
8623   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8624   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
8625   //     z[kdx+idx+1] = (jlong)product;
8626   //     jlong carry2  = (jlong)(product >>> 64);
8627   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
8628   //     z[kdx+idx] = (jlong)product;
8629   //     carry  = (jlong)(product >>> 64);
8630   //   }
8631   //   idx += 2;
8632   //   if (idx > 0) {
8633   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
8634   //     z[kdx+idx] = (jlong)product;
8635   //     carry  = (jlong)(product >>> 64);
8636   //   }
8637   //
8638 
8639   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8640 
8641   movl(jdx, idx);
8642   andl(jdx, 0xFFFFFFFC);
8643   shrl(jdx, 2);
8644 
8645   bind(L_third_loop);
8646   subl(jdx, 1);
8647   jcc(Assembler::negative, L_third_loop_exit);
8648   subl(idx, 4);
8649 
8650   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
8651   movq(carry2, rdx);
8652 
8653   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
8654   movq(carry, rdx);
8655   jmp(L_third_loop);
8656 
8657   bind (L_third_loop_exit);
8658 
8659   andl (idx, 0x3);
8660   jcc(Assembler::zero, L_post_third_loop_done);
8661 
8662   Label L_check_1;
8663   subl(idx, 2);
8664   jcc(Assembler::negative, L_check_1);
8665 
8666   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
8667   movq(carry, rdx);
8668 
8669   bind (L_check_1);
8670   addl (idx, 0x2);
8671   andl (idx, 0x1);
8672   subl(idx, 1);
8673   jcc(Assembler::negative, L_post_third_loop_done);
8674 
8675   movl(yz_idx, Address(y, idx, Address::times_4,  0));
8676   movq(product, x_xstart);
8677   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
8678   movl(yz_idx, Address(z, idx, Address::times_4,  0));
8679 
8680   add2_with_carry(rdx, product, yz_idx, carry);
8681 
8682   movl(Address(z, idx, Address::times_4,  0), product);
8683   shrq(product, 32);
8684 
8685   shlq(rdx, 32);
8686   orq(product, rdx);
8687   movq(carry, product);
8688 
8689   bind(L_post_third_loop_done);
8690 }
8691 
8692 /**
8693  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
8694  *
8695  */
8696 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
8697                                                   Register carry, Register carry2,
8698                                                   Register idx, Register jdx,
8699                                                   Register yz_idx1, Register yz_idx2,
8700                                                   Register tmp, Register tmp3, Register tmp4) {
8701   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
8702 
8703   //   jlong carry, x[], y[], z[];
8704   //   int kdx = ystart+1;
8705   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8706   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
8707   //     jlong carry2  = (jlong)(tmp3 >>> 64);
8708   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
8709   //     carry  = (jlong)(tmp4 >>> 64);
8710   //     z[kdx+idx+1] = (jlong)tmp3;
8711   //     z[kdx+idx] = (jlong)tmp4;
8712   //   }
8713   //   idx += 2;
8714   //   if (idx > 0) {
8715   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
8716   //     z[kdx+idx] = (jlong)yz_idx1;
8717   //     carry  = (jlong)(yz_idx1 >>> 64);
8718   //   }
8719   //
8720 
8721   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8722 
8723   movl(jdx, idx);
8724   andl(jdx, 0xFFFFFFFC);
8725   shrl(jdx, 2);
8726 
8727   bind(L_third_loop);
8728   subl(jdx, 1);
8729   jcc(Assembler::negative, L_third_loop_exit);
8730   subl(idx, 4);
8731 
8732   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
8733   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
8734   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
8735   rorxq(yz_idx2, yz_idx2, 32);
8736 
8737   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
8738   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
8739 
8740   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
8741   rorxq(yz_idx1, yz_idx1, 32);
8742   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8743   rorxq(yz_idx2, yz_idx2, 32);
8744 
8745   if (VM_Version::supports_adx()) {
8746     adcxq(tmp3, carry);
8747     adoxq(tmp3, yz_idx1);
8748 
8749     adcxq(tmp4, tmp);
8750     adoxq(tmp4, yz_idx2);
8751 
8752     movl(carry, 0); // does not affect flags
8753     adcxq(carry2, carry);
8754     adoxq(carry2, carry);
8755   } else {
8756     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
8757     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
8758   }
8759   movq(carry, carry2);
8760 
8761   movl(Address(z, idx, Address::times_4, 12), tmp3);
8762   shrq(tmp3, 32);
8763   movl(Address(z, idx, Address::times_4,  8), tmp3);
8764 
8765   movl(Address(z, idx, Address::times_4,  4), tmp4);
8766   shrq(tmp4, 32);
8767   movl(Address(z, idx, Address::times_4,  0), tmp4);
8768 
8769   jmp(L_third_loop);
8770 
8771   bind (L_third_loop_exit);
8772 
8773   andl (idx, 0x3);
8774   jcc(Assembler::zero, L_post_third_loop_done);
8775 
8776   Label L_check_1;
8777   subl(idx, 2);
8778   jcc(Assembler::negative, L_check_1);
8779 
8780   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
8781   rorxq(yz_idx1, yz_idx1, 32);
8782   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
8783   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8784   rorxq(yz_idx2, yz_idx2, 32);
8785 
8786   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
8787 
8788   movl(Address(z, idx, Address::times_4,  4), tmp3);
8789   shrq(tmp3, 32);
8790   movl(Address(z, idx, Address::times_4,  0), tmp3);
8791   movq(carry, tmp4);
8792 
8793   bind (L_check_1);
8794   addl (idx, 0x2);
8795   andl (idx, 0x1);
8796   subl(idx, 1);
8797   jcc(Assembler::negative, L_post_third_loop_done);
8798   movl(tmp4, Address(y, idx, Address::times_4,  0));
8799   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
8800   movl(tmp4, Address(z, idx, Address::times_4,  0));
8801 
8802   add2_with_carry(carry2, tmp3, tmp4, carry);
8803 
8804   movl(Address(z, idx, Address::times_4,  0), tmp3);
8805   shrq(tmp3, 32);
8806 
8807   shlq(carry2, 32);
8808   orq(tmp3, carry2);
8809   movq(carry, tmp3);
8810 
8811   bind(L_post_third_loop_done);
8812 }
8813 
8814 /**
8815  * Code for BigInteger::multiplyToLen() instrinsic.
8816  *
8817  * rdi: x
8818  * rax: xlen
8819  * rsi: y
8820  * rcx: ylen
8821  * r8:  z
8822  * r11: zlen
8823  * r12: tmp1
8824  * r13: tmp2
8825  * r14: tmp3
8826  * r15: tmp4
8827  * rbx: tmp5
8828  *
8829  */
8830 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
8831                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
8832   ShortBranchVerifier sbv(this);
8833   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
8834 
8835   push(tmp1);
8836   push(tmp2);
8837   push(tmp3);
8838   push(tmp4);
8839   push(tmp5);
8840 
8841   push(xlen);
8842   push(zlen);
8843 
8844   const Register idx = tmp1;
8845   const Register kdx = tmp2;
8846   const Register xstart = tmp3;
8847 
8848   const Register y_idx = tmp4;
8849   const Register carry = tmp5;
8850   const Register product  = xlen;
8851   const Register x_xstart = zlen;  // reuse register
8852 
8853   // First Loop.
8854   //
8855   //  final static long LONG_MASK = 0xffffffffL;
8856   //  int xstart = xlen - 1;
8857   //  int ystart = ylen - 1;
8858   //  long carry = 0;
8859   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8860   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
8861   //    z[kdx] = (int)product;
8862   //    carry = product >>> 32;
8863   //  }
8864   //  z[xstart] = (int)carry;
8865   //
8866 
8867   movl(idx, ylen);      // idx = ylen;
8868   movl(kdx, zlen);      // kdx = xlen+ylen;
8869   xorq(carry, carry);   // carry = 0;
8870 
8871   Label L_done;
8872 
8873   movl(xstart, xlen);
8874   decrementl(xstart);
8875   jcc(Assembler::negative, L_done);
8876 
8877   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
8878 
8879   Label L_second_loop;
8880   testl(kdx, kdx);
8881   jcc(Assembler::zero, L_second_loop);
8882 
8883   Label L_carry;
8884   subl(kdx, 1);
8885   jcc(Assembler::zero, L_carry);
8886 
8887   movl(Address(z, kdx, Address::times_4,  0), carry);
8888   shrq(carry, 32);
8889   subl(kdx, 1);
8890 
8891   bind(L_carry);
8892   movl(Address(z, kdx, Address::times_4,  0), carry);
8893 
8894   // Second and third (nested) loops.
8895   //
8896   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8897   //   carry = 0;
8898   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8899   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8900   //                    (z[k] & LONG_MASK) + carry;
8901   //     z[k] = (int)product;
8902   //     carry = product >>> 32;
8903   //   }
8904   //   z[i] = (int)carry;
8905   // }
8906   //
8907   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8908 
8909   const Register jdx = tmp1;
8910 
8911   bind(L_second_loop);
8912   xorl(carry, carry);    // carry = 0;
8913   movl(jdx, ylen);       // j = ystart+1
8914 
8915   subl(xstart, 1);       // i = xstart-1;
8916   jcc(Assembler::negative, L_done);
8917 
8918   push (z);
8919 
8920   Label L_last_x;
8921   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8922   subl(xstart, 1);       // i = xstart-1;
8923   jcc(Assembler::negative, L_last_x);
8924 
8925   if (UseBMI2Instructions) {
8926     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8927     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8928   } else {
8929     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8930     rorq(x_xstart, 32);  // convert big-endian to little-endian
8931   }
8932 
8933   Label L_third_loop_prologue;
8934   bind(L_third_loop_prologue);
8935 
8936   push (x);
8937   push (xstart);
8938   push (ylen);
8939 
8940 
8941   if (UseBMI2Instructions) {
8942     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8943   } else { // !UseBMI2Instructions
8944     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8945   }
8946 
8947   pop(ylen);
8948   pop(xlen);
8949   pop(x);
8950   pop(z);
8951 
8952   movl(tmp3, xlen);
8953   addl(tmp3, 1);
8954   movl(Address(z, tmp3, Address::times_4,  0), carry);
8955   subl(tmp3, 1);
8956   jccb(Assembler::negative, L_done);
8957 
8958   shrq(carry, 32);
8959   movl(Address(z, tmp3, Address::times_4,  0), carry);
8960   jmp(L_second_loop);
8961 
8962   // Next infrequent code is moved outside loops.
8963   bind(L_last_x);
8964   if (UseBMI2Instructions) {
8965     movl(rdx, Address(x,  0));
8966   } else {
8967     movl(x_xstart, Address(x,  0));
8968   }
8969   jmp(L_third_loop_prologue);
8970 
8971   bind(L_done);
8972 
8973   pop(zlen);
8974   pop(xlen);
8975 
8976   pop(tmp5);
8977   pop(tmp4);
8978   pop(tmp3);
8979   pop(tmp2);
8980   pop(tmp1);
8981 }
8982 
8983 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8984   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8985   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8986   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8987   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8988   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
8989   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
8990   Label SAME_TILL_END, DONE;
8991   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
8992 
8993   //scale is in rcx in both Win64 and Unix
8994   ShortBranchVerifier sbv(this);
8995 
8996   shlq(length);
8997   xorq(result, result);
8998 
8999   if ((UseAVX > 2) &&
9000       VM_Version::supports_avx512vlbw()) {
9001     set_vector_masking();  // opening of the stub context for programming mask registers
9002     cmpq(length, 64);
9003     jcc(Assembler::less, VECTOR32_TAIL);
9004     movq(tmp1, length);
9005     andq(tmp1, 0x3F);      // tail count
9006     andq(length, ~(0x3F)); //vector count
9007 
9008     bind(VECTOR64_LOOP);
9009     // AVX512 code to compare 64 byte vectors.
9010     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9011     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9012     kortestql(k7, k7);
9013     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9014     addq(result, 64);
9015     subq(length, 64);
9016     jccb(Assembler::notZero, VECTOR64_LOOP);
9017 
9018     //bind(VECTOR64_TAIL);
9019     testq(tmp1, tmp1);
9020     jcc(Assembler::zero, SAME_TILL_END);
9021 
9022     bind(VECTOR64_TAIL);
9023     // AVX512 code to compare upto 63 byte vectors.
9024     // Save k1
9025     kmovql(k3, k1);
9026     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9027     shlxq(tmp2, tmp2, tmp1);
9028     notq(tmp2);
9029     kmovql(k1, tmp2);
9030 
9031     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9032     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9033 
9034     ktestql(k7, k1);
9035     // Restore k1
9036     kmovql(k1, k3);
9037     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9038 
9039     bind(VECTOR64_NOT_EQUAL);
9040     kmovql(tmp1, k7);
9041     notq(tmp1);
9042     tzcntq(tmp1, tmp1);
9043     addq(result, tmp1);
9044     shrq(result);
9045     jmp(DONE);
9046     bind(VECTOR32_TAIL);
9047     clear_vector_masking();   // closing of the stub context for programming mask registers
9048   }
9049 
9050   cmpq(length, 8);
9051   jcc(Assembler::equal, VECTOR8_LOOP);
9052   jcc(Assembler::less, VECTOR4_TAIL);
9053 
9054   if (UseAVX >= 2) {
9055 
9056     cmpq(length, 16);
9057     jcc(Assembler::equal, VECTOR16_LOOP);
9058     jcc(Assembler::less, VECTOR8_LOOP);
9059 
9060     cmpq(length, 32);
9061     jccb(Assembler::less, VECTOR16_TAIL);
9062 
9063     subq(length, 32);
9064     bind(VECTOR32_LOOP);
9065     vmovdqu(rymm0, Address(obja, result));
9066     vmovdqu(rymm1, Address(objb, result));
9067     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9068     vptest(rymm2, rymm2);
9069     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9070     addq(result, 32);
9071     subq(length, 32);
9072     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9073     addq(length, 32);
9074     jcc(Assembler::equal, SAME_TILL_END);
9075     //falling through if less than 32 bytes left //close the branch here.
9076 
9077     bind(VECTOR16_TAIL);
9078     cmpq(length, 16);
9079     jccb(Assembler::less, VECTOR8_TAIL);
9080     bind(VECTOR16_LOOP);
9081     movdqu(rymm0, Address(obja, result));
9082     movdqu(rymm1, Address(objb, result));
9083     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9084     ptest(rymm2, rymm2);
9085     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9086     addq(result, 16);
9087     subq(length, 16);
9088     jcc(Assembler::equal, SAME_TILL_END);
9089     //falling through if less than 16 bytes left
9090   } else {//regular intrinsics
9091 
9092     cmpq(length, 16);
9093     jccb(Assembler::less, VECTOR8_TAIL);
9094 
9095     subq(length, 16);
9096     bind(VECTOR16_LOOP);
9097     movdqu(rymm0, Address(obja, result));
9098     movdqu(rymm1, Address(objb, result));
9099     pxor(rymm0, rymm1);
9100     ptest(rymm0, rymm0);
9101     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9102     addq(result, 16);
9103     subq(length, 16);
9104     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9105     addq(length, 16);
9106     jcc(Assembler::equal, SAME_TILL_END);
9107     //falling through if less than 16 bytes left
9108   }
9109 
9110   bind(VECTOR8_TAIL);
9111   cmpq(length, 8);
9112   jccb(Assembler::less, VECTOR4_TAIL);
9113   bind(VECTOR8_LOOP);
9114   movq(tmp1, Address(obja, result));
9115   movq(tmp2, Address(objb, result));
9116   xorq(tmp1, tmp2);
9117   testq(tmp1, tmp1);
9118   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9119   addq(result, 8);
9120   subq(length, 8);
9121   jcc(Assembler::equal, SAME_TILL_END);
9122   //falling through if less than 8 bytes left
9123 
9124   bind(VECTOR4_TAIL);
9125   cmpq(length, 4);
9126   jccb(Assembler::less, BYTES_TAIL);
9127   bind(VECTOR4_LOOP);
9128   movl(tmp1, Address(obja, result));
9129   xorl(tmp1, Address(objb, result));
9130   testl(tmp1, tmp1);
9131   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9132   addq(result, 4);
9133   subq(length, 4);
9134   jcc(Assembler::equal, SAME_TILL_END);
9135   //falling through if less than 4 bytes left
9136 
9137   bind(BYTES_TAIL);
9138   bind(BYTES_LOOP);
9139   load_unsigned_byte(tmp1, Address(obja, result));
9140   load_unsigned_byte(tmp2, Address(objb, result));
9141   xorl(tmp1, tmp2);
9142   testl(tmp1, tmp1);
9143   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9144   decq(length);
9145   jccb(Assembler::zero, SAME_TILL_END);
9146   incq(result);
9147   load_unsigned_byte(tmp1, Address(obja, result));
9148   load_unsigned_byte(tmp2, Address(objb, result));
9149   xorl(tmp1, tmp2);
9150   testl(tmp1, tmp1);
9151   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9152   decq(length);
9153   jccb(Assembler::zero, SAME_TILL_END);
9154   incq(result);
9155   load_unsigned_byte(tmp1, Address(obja, result));
9156   load_unsigned_byte(tmp2, Address(objb, result));
9157   xorl(tmp1, tmp2);
9158   testl(tmp1, tmp1);
9159   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9160   jmpb(SAME_TILL_END);
9161 
9162   if (UseAVX >= 2) {
9163     bind(VECTOR32_NOT_EQUAL);
9164     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9165     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9166     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9167     vpmovmskb(tmp1, rymm0);
9168     bsfq(tmp1, tmp1);
9169     addq(result, tmp1);
9170     shrq(result);
9171     jmpb(DONE);
9172   }
9173 
9174   bind(VECTOR16_NOT_EQUAL);
9175   if (UseAVX >= 2) {
9176     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9177     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9178     pxor(rymm0, rymm2);
9179   } else {
9180     pcmpeqb(rymm2, rymm2);
9181     pxor(rymm0, rymm1);
9182     pcmpeqb(rymm0, rymm1);
9183     pxor(rymm0, rymm2);
9184   }
9185   pmovmskb(tmp1, rymm0);
9186   bsfq(tmp1, tmp1);
9187   addq(result, tmp1);
9188   shrq(result);
9189   jmpb(DONE);
9190 
9191   bind(VECTOR8_NOT_EQUAL);
9192   bind(VECTOR4_NOT_EQUAL);
9193   bsfq(tmp1, tmp1);
9194   shrq(tmp1, 3);
9195   addq(result, tmp1);
9196   bind(BYTES_NOT_EQUAL);
9197   shrq(result);
9198   jmpb(DONE);
9199 
9200   bind(SAME_TILL_END);
9201   mov64(result, -1);
9202 
9203   bind(DONE);
9204 }
9205 
9206 //Helper functions for square_to_len()
9207 
9208 /**
9209  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9210  * Preserves x and z and modifies rest of the registers.
9211  */
9212 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9213   // Perform square and right shift by 1
9214   // Handle odd xlen case first, then for even xlen do the following
9215   // jlong carry = 0;
9216   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9217   //     huge_128 product = x[j:j+1] * x[j:j+1];
9218   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9219   //     z[i+2:i+3] = (jlong)(product >>> 1);
9220   //     carry = (jlong)product;
9221   // }
9222 
9223   xorq(tmp5, tmp5);     // carry
9224   xorq(rdxReg, rdxReg);
9225   xorl(tmp1, tmp1);     // index for x
9226   xorl(tmp4, tmp4);     // index for z
9227 
9228   Label L_first_loop, L_first_loop_exit;
9229 
9230   testl(xlen, 1);
9231   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9232 
9233   // Square and right shift by 1 the odd element using 32 bit multiply
9234   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9235   imulq(raxReg, raxReg);
9236   shrq(raxReg, 1);
9237   adcq(tmp5, 0);
9238   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9239   incrementl(tmp1);
9240   addl(tmp4, 2);
9241 
9242   // Square and  right shift by 1 the rest using 64 bit multiply
9243   bind(L_first_loop);
9244   cmpptr(tmp1, xlen);
9245   jccb(Assembler::equal, L_first_loop_exit);
9246 
9247   // Square
9248   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9249   rorq(raxReg, 32);    // convert big-endian to little-endian
9250   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9251 
9252   // Right shift by 1 and save carry
9253   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9254   rcrq(rdxReg, 1);
9255   rcrq(raxReg, 1);
9256   adcq(tmp5, 0);
9257 
9258   // Store result in z
9259   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9260   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9261 
9262   // Update indices for x and z
9263   addl(tmp1, 2);
9264   addl(tmp4, 4);
9265   jmp(L_first_loop);
9266 
9267   bind(L_first_loop_exit);
9268 }
9269 
9270 
9271 /**
9272  * Perform the following multiply add operation using BMI2 instructions
9273  * carry:sum = sum + op1*op2 + carry
9274  * op2 should be in rdx
9275  * op2 is preserved, all other registers are modified
9276  */
9277 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9278   // assert op2 is rdx
9279   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9280   addq(sum, carry);
9281   adcq(tmp2, 0);
9282   addq(sum, op1);
9283   adcq(tmp2, 0);
9284   movq(carry, tmp2);
9285 }
9286 
9287 /**
9288  * Perform the following multiply add operation:
9289  * carry:sum = sum + op1*op2 + carry
9290  * Preserves op1, op2 and modifies rest of registers
9291  */
9292 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9293   // rdx:rax = op1 * op2
9294   movq(raxReg, op2);
9295   mulq(op1);
9296 
9297   //  rdx:rax = sum + carry + rdx:rax
9298   addq(sum, carry);
9299   adcq(rdxReg, 0);
9300   addq(sum, raxReg);
9301   adcq(rdxReg, 0);
9302 
9303   // carry:sum = rdx:sum
9304   movq(carry, rdxReg);
9305 }
9306 
9307 /**
9308  * Add 64 bit long carry into z[] with carry propogation.
9309  * Preserves z and carry register values and modifies rest of registers.
9310  *
9311  */
9312 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9313   Label L_fourth_loop, L_fourth_loop_exit;
9314 
9315   movl(tmp1, 1);
9316   subl(zlen, 2);
9317   addq(Address(z, zlen, Address::times_4, 0), carry);
9318 
9319   bind(L_fourth_loop);
9320   jccb(Assembler::carryClear, L_fourth_loop_exit);
9321   subl(zlen, 2);
9322   jccb(Assembler::negative, L_fourth_loop_exit);
9323   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9324   jmp(L_fourth_loop);
9325   bind(L_fourth_loop_exit);
9326 }
9327 
9328 /**
9329  * Shift z[] left by 1 bit.
9330  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9331  *
9332  */
9333 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9334 
9335   Label L_fifth_loop, L_fifth_loop_exit;
9336 
9337   // Fifth loop
9338   // Perform primitiveLeftShift(z, zlen, 1)
9339 
9340   const Register prev_carry = tmp1;
9341   const Register new_carry = tmp4;
9342   const Register value = tmp2;
9343   const Register zidx = tmp3;
9344 
9345   // int zidx, carry;
9346   // long value;
9347   // carry = 0;
9348   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9349   //    (carry:value)  = (z[i] << 1) | carry ;
9350   //    z[i] = value;
9351   // }
9352 
9353   movl(zidx, zlen);
9354   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9355 
9356   bind(L_fifth_loop);
9357   decl(zidx);  // Use decl to preserve carry flag
9358   decl(zidx);
9359   jccb(Assembler::negative, L_fifth_loop_exit);
9360 
9361   if (UseBMI2Instructions) {
9362      movq(value, Address(z, zidx, Address::times_4, 0));
9363      rclq(value, 1);
9364      rorxq(value, value, 32);
9365      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9366   }
9367   else {
9368     // clear new_carry
9369     xorl(new_carry, new_carry);
9370 
9371     // Shift z[i] by 1, or in previous carry and save new carry
9372     movq(value, Address(z, zidx, Address::times_4, 0));
9373     shlq(value, 1);
9374     adcl(new_carry, 0);
9375 
9376     orq(value, prev_carry);
9377     rorq(value, 0x20);
9378     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9379 
9380     // Set previous carry = new carry
9381     movl(prev_carry, new_carry);
9382   }
9383   jmp(L_fifth_loop);
9384 
9385   bind(L_fifth_loop_exit);
9386 }
9387 
9388 
9389 /**
9390  * Code for BigInteger::squareToLen() intrinsic
9391  *
9392  * rdi: x
9393  * rsi: len
9394  * r8:  z
9395  * rcx: zlen
9396  * r12: tmp1
9397  * r13: tmp2
9398  * r14: tmp3
9399  * r15: tmp4
9400  * rbx: tmp5
9401  *
9402  */
9403 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9404 
9405   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9406   push(tmp1);
9407   push(tmp2);
9408   push(tmp3);
9409   push(tmp4);
9410   push(tmp5);
9411 
9412   // First loop
9413   // Store the squares, right shifted one bit (i.e., divided by 2).
9414   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9415 
9416   // Add in off-diagonal sums.
9417   //
9418   // Second, third (nested) and fourth loops.
9419   // zlen +=2;
9420   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9421   //    carry = 0;
9422   //    long op2 = x[xidx:xidx+1];
9423   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9424   //       k -= 2;
9425   //       long op1 = x[j:j+1];
9426   //       long sum = z[k:k+1];
9427   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9428   //       z[k:k+1] = sum;
9429   //    }
9430   //    add_one_64(z, k, carry, tmp_regs);
9431   // }
9432 
9433   const Register carry = tmp5;
9434   const Register sum = tmp3;
9435   const Register op1 = tmp4;
9436   Register op2 = tmp2;
9437 
9438   push(zlen);
9439   push(len);
9440   addl(zlen,2);
9441   bind(L_second_loop);
9442   xorq(carry, carry);
9443   subl(zlen, 4);
9444   subl(len, 2);
9445   push(zlen);
9446   push(len);
9447   cmpl(len, 0);
9448   jccb(Assembler::lessEqual, L_second_loop_exit);
9449 
9450   // Multiply an array by one 64 bit long.
9451   if (UseBMI2Instructions) {
9452     op2 = rdxReg;
9453     movq(op2, Address(x, len, Address::times_4,  0));
9454     rorxq(op2, op2, 32);
9455   }
9456   else {
9457     movq(op2, Address(x, len, Address::times_4,  0));
9458     rorq(op2, 32);
9459   }
9460 
9461   bind(L_third_loop);
9462   decrementl(len);
9463   jccb(Assembler::negative, L_third_loop_exit);
9464   decrementl(len);
9465   jccb(Assembler::negative, L_last_x);
9466 
9467   movq(op1, Address(x, len, Address::times_4,  0));
9468   rorq(op1, 32);
9469 
9470   bind(L_multiply);
9471   subl(zlen, 2);
9472   movq(sum, Address(z, zlen, Address::times_4,  0));
9473 
9474   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9475   if (UseBMI2Instructions) {
9476     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9477   }
9478   else {
9479     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9480   }
9481 
9482   movq(Address(z, zlen, Address::times_4, 0), sum);
9483 
9484   jmp(L_third_loop);
9485   bind(L_third_loop_exit);
9486 
9487   // Fourth loop
9488   // Add 64 bit long carry into z with carry propogation.
9489   // Uses offsetted zlen.
9490   add_one_64(z, zlen, carry, tmp1);
9491 
9492   pop(len);
9493   pop(zlen);
9494   jmp(L_second_loop);
9495 
9496   // Next infrequent code is moved outside loops.
9497   bind(L_last_x);
9498   movl(op1, Address(x, 0));
9499   jmp(L_multiply);
9500 
9501   bind(L_second_loop_exit);
9502   pop(len);
9503   pop(zlen);
9504   pop(len);
9505   pop(zlen);
9506 
9507   // Fifth loop
9508   // Shift z left 1 bit.
9509   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9510 
9511   // z[zlen-1] |= x[len-1] & 1;
9512   movl(tmp3, Address(x, len, Address::times_4, -4));
9513   andl(tmp3, 1);
9514   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9515 
9516   pop(tmp5);
9517   pop(tmp4);
9518   pop(tmp3);
9519   pop(tmp2);
9520   pop(tmp1);
9521 }
9522 
9523 /**
9524  * Helper function for mul_add()
9525  * Multiply the in[] by int k and add to out[] starting at offset offs using
9526  * 128 bit by 32 bit multiply and return the carry in tmp5.
9527  * Only quad int aligned length of in[] is operated on in this function.
9528  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9529  * This function preserves out, in and k registers.
9530  * len and offset point to the appropriate index in "in" & "out" correspondingly
9531  * tmp5 has the carry.
9532  * other registers are temporary and are modified.
9533  *
9534  */
9535 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9536   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9537   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9538 
9539   Label L_first_loop, L_first_loop_exit;
9540 
9541   movl(tmp1, len);
9542   shrl(tmp1, 2);
9543 
9544   bind(L_first_loop);
9545   subl(tmp1, 1);
9546   jccb(Assembler::negative, L_first_loop_exit);
9547 
9548   subl(len, 4);
9549   subl(offset, 4);
9550 
9551   Register op2 = tmp2;
9552   const Register sum = tmp3;
9553   const Register op1 = tmp4;
9554   const Register carry = tmp5;
9555 
9556   if (UseBMI2Instructions) {
9557     op2 = rdxReg;
9558   }
9559 
9560   movq(op1, Address(in, len, Address::times_4,  8));
9561   rorq(op1, 32);
9562   movq(sum, Address(out, offset, Address::times_4,  8));
9563   rorq(sum, 32);
9564   if (UseBMI2Instructions) {
9565     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9566   }
9567   else {
9568     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9569   }
9570   // Store back in big endian from little endian
9571   rorq(sum, 0x20);
9572   movq(Address(out, offset, Address::times_4,  8), sum);
9573 
9574   movq(op1, Address(in, len, Address::times_4,  0));
9575   rorq(op1, 32);
9576   movq(sum, Address(out, offset, Address::times_4,  0));
9577   rorq(sum, 32);
9578   if (UseBMI2Instructions) {
9579     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9580   }
9581   else {
9582     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9583   }
9584   // Store back in big endian from little endian
9585   rorq(sum, 0x20);
9586   movq(Address(out, offset, Address::times_4,  0), sum);
9587 
9588   jmp(L_first_loop);
9589   bind(L_first_loop_exit);
9590 }
9591 
9592 /**
9593  * Code for BigInteger::mulAdd() intrinsic
9594  *
9595  * rdi: out
9596  * rsi: in
9597  * r11: offs (out.length - offset)
9598  * rcx: len
9599  * r8:  k
9600  * r12: tmp1
9601  * r13: tmp2
9602  * r14: tmp3
9603  * r15: tmp4
9604  * rbx: tmp5
9605  * Multiply the in[] by word k and add to out[], return the carry in rax
9606  */
9607 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9608    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9609    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9610 
9611   Label L_carry, L_last_in, L_done;
9612 
9613 // carry = 0;
9614 // for (int j=len-1; j >= 0; j--) {
9615 //    long product = (in[j] & LONG_MASK) * kLong +
9616 //                   (out[offs] & LONG_MASK) + carry;
9617 //    out[offs--] = (int)product;
9618 //    carry = product >>> 32;
9619 // }
9620 //
9621   push(tmp1);
9622   push(tmp2);
9623   push(tmp3);
9624   push(tmp4);
9625   push(tmp5);
9626 
9627   Register op2 = tmp2;
9628   const Register sum = tmp3;
9629   const Register op1 = tmp4;
9630   const Register carry =  tmp5;
9631 
9632   if (UseBMI2Instructions) {
9633     op2 = rdxReg;
9634     movl(op2, k);
9635   }
9636   else {
9637     movl(op2, k);
9638   }
9639 
9640   xorq(carry, carry);
9641 
9642   //First loop
9643 
9644   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
9645   //The carry is in tmp5
9646   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
9647 
9648   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
9649   decrementl(len);
9650   jccb(Assembler::negative, L_carry);
9651   decrementl(len);
9652   jccb(Assembler::negative, L_last_in);
9653 
9654   movq(op1, Address(in, len, Address::times_4,  0));
9655   rorq(op1, 32);
9656 
9657   subl(offs, 2);
9658   movq(sum, Address(out, offs, Address::times_4,  0));
9659   rorq(sum, 32);
9660 
9661   if (UseBMI2Instructions) {
9662     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9663   }
9664   else {
9665     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9666   }
9667 
9668   // Store back in big endian from little endian
9669   rorq(sum, 0x20);
9670   movq(Address(out, offs, Address::times_4,  0), sum);
9671 
9672   testl(len, len);
9673   jccb(Assembler::zero, L_carry);
9674 
9675   //Multiply the last in[] entry, if any
9676   bind(L_last_in);
9677   movl(op1, Address(in, 0));
9678   movl(sum, Address(out, offs, Address::times_4,  -4));
9679 
9680   movl(raxReg, k);
9681   mull(op1); //tmp4 * eax -> edx:eax
9682   addl(sum, carry);
9683   adcl(rdxReg, 0);
9684   addl(sum, raxReg);
9685   adcl(rdxReg, 0);
9686   movl(carry, rdxReg);
9687 
9688   movl(Address(out, offs, Address::times_4,  -4), sum);
9689 
9690   bind(L_carry);
9691   //return tmp5/carry as carry in rax
9692   movl(rax, carry);
9693 
9694   bind(L_done);
9695   pop(tmp5);
9696   pop(tmp4);
9697   pop(tmp3);
9698   pop(tmp2);
9699   pop(tmp1);
9700 }
9701 #endif
9702 
9703 /**
9704  * Emits code to update CRC-32 with a byte value according to constants in table
9705  *
9706  * @param [in,out]crc   Register containing the crc.
9707  * @param [in]val       Register containing the byte to fold into the CRC.
9708  * @param [in]table     Register containing the table of crc constants.
9709  *
9710  * uint32_t crc;
9711  * val = crc_table[(val ^ crc) & 0xFF];
9712  * crc = val ^ (crc >> 8);
9713  *
9714  */
9715 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
9716   xorl(val, crc);
9717   andl(val, 0xFF);
9718   shrl(crc, 8); // unsigned shift
9719   xorl(crc, Address(table, val, Address::times_4, 0));
9720 }
9721 
9722 /**
9723 * Fold four 128-bit data chunks
9724 */
9725 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9726   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
9727   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
9728   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
9729   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
9730 }
9731 
9732 /**
9733  * Fold 128-bit data chunk
9734  */
9735 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9736   if (UseAVX > 0) {
9737     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
9738     vpclmulldq(xcrc, xK, xcrc); // [63:0]
9739     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
9740     pxor(xcrc, xtmp);
9741   } else {
9742     movdqa(xtmp, xcrc);
9743     pclmulhdq(xtmp, xK);   // [123:64]
9744     pclmulldq(xcrc, xK);   // [63:0]
9745     pxor(xcrc, xtmp);
9746     movdqu(xtmp, Address(buf, offset));
9747     pxor(xcrc, xtmp);
9748   }
9749 }
9750 
9751 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
9752   if (UseAVX > 0) {
9753     vpclmulhdq(xtmp, xK, xcrc);
9754     vpclmulldq(xcrc, xK, xcrc);
9755     pxor(xcrc, xbuf);
9756     pxor(xcrc, xtmp);
9757   } else {
9758     movdqa(xtmp, xcrc);
9759     pclmulhdq(xtmp, xK);
9760     pclmulldq(xcrc, xK);
9761     pxor(xcrc, xbuf);
9762     pxor(xcrc, xtmp);
9763   }
9764 }
9765 
9766 /**
9767  * 8-bit folds to compute 32-bit CRC
9768  *
9769  * uint64_t xcrc;
9770  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
9771  */
9772 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
9773   movdl(tmp, xcrc);
9774   andl(tmp, 0xFF);
9775   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
9776   psrldq(xcrc, 1); // unsigned shift one byte
9777   pxor(xcrc, xtmp);
9778 }
9779 
9780 /**
9781  * uint32_t crc;
9782  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
9783  */
9784 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
9785   movl(tmp, crc);
9786   andl(tmp, 0xFF);
9787   shrl(crc, 8);
9788   xorl(crc, Address(table, tmp, Address::times_4, 0));
9789 }
9790 
9791 /**
9792  * @param crc   register containing existing CRC (32-bit)
9793  * @param buf   register pointing to input byte buffer (byte*)
9794  * @param len   register containing number of bytes
9795  * @param table register that will contain address of CRC table
9796  * @param tmp   scratch register
9797  */
9798 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
9799   assert_different_registers(crc, buf, len, table, tmp, rax);
9800 
9801   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
9802   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
9803 
9804   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
9805   // context for the registers used, where all instructions below are using 128-bit mode
9806   // On EVEX without VL and BW, these instructions will all be AVX.
9807   if (VM_Version::supports_avx512vlbw()) {
9808     movl(tmp, 0xffff);
9809     kmovwl(k1, tmp);
9810   }
9811 
9812   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
9813   notl(crc); // ~crc
9814   cmpl(len, 16);
9815   jcc(Assembler::less, L_tail);
9816 
9817   // Align buffer to 16 bytes
9818   movl(tmp, buf);
9819   andl(tmp, 0xF);
9820   jccb(Assembler::zero, L_aligned);
9821   subl(tmp,  16);
9822   addl(len, tmp);
9823 
9824   align(4);
9825   BIND(L_align_loop);
9826   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9827   update_byte_crc32(crc, rax, table);
9828   increment(buf);
9829   incrementl(tmp);
9830   jccb(Assembler::less, L_align_loop);
9831 
9832   BIND(L_aligned);
9833   movl(tmp, len); // save
9834   shrl(len, 4);
9835   jcc(Assembler::zero, L_tail_restore);
9836 
9837   // Fold total 512 bits of polynomial on each iteration
9838   if (VM_Version::supports_vpclmulqdq()) {
9839     Label Parallel_loop, L_No_Parallel;
9840 
9841     cmpl(len, 8);
9842     jccb(Assembler::less, L_No_Parallel);
9843 
9844     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9845     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
9846     movdl(xmm5, crc);
9847     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
9848     addptr(buf, 64);
9849     subl(len, 7);
9850     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
9851 
9852     BIND(Parallel_loop);
9853     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
9854     addptr(buf, 64);
9855     subl(len, 4);
9856     jcc(Assembler::greater, Parallel_loop);
9857 
9858     vextracti64x2(xmm2, xmm1, 0x01);
9859     vextracti64x2(xmm3, xmm1, 0x02);
9860     vextracti64x2(xmm4, xmm1, 0x03);
9861     jmp(L_fold_512b);
9862 
9863     BIND(L_No_Parallel);
9864   }
9865   // Fold crc into first bytes of vector
9866   movdqa(xmm1, Address(buf, 0));
9867   movdl(rax, xmm1);
9868   xorl(crc, rax);
9869   if (VM_Version::supports_sse4_1()) {
9870     pinsrd(xmm1, crc, 0);
9871   } else {
9872     pinsrw(xmm1, crc, 0);
9873     shrl(crc, 16);
9874     pinsrw(xmm1, crc, 1);
9875   }
9876   addptr(buf, 16);
9877   subl(len, 4); // len > 0
9878   jcc(Assembler::less, L_fold_tail);
9879 
9880   movdqa(xmm2, Address(buf,  0));
9881   movdqa(xmm3, Address(buf, 16));
9882   movdqa(xmm4, Address(buf, 32));
9883   addptr(buf, 48);
9884   subl(len, 3);
9885   jcc(Assembler::lessEqual, L_fold_512b);
9886 
9887   // Fold total 512 bits of polynomial on each iteration,
9888   // 128 bits per each of 4 parallel streams.
9889   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9890 
9891   align(32);
9892   BIND(L_fold_512b_loop);
9893   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9894   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
9895   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
9896   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
9897   addptr(buf, 64);
9898   subl(len, 4);
9899   jcc(Assembler::greater, L_fold_512b_loop);
9900 
9901   // Fold 512 bits to 128 bits.
9902   BIND(L_fold_512b);
9903   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9904   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
9905   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
9906   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
9907 
9908   // Fold the rest of 128 bits data chunks
9909   BIND(L_fold_tail);
9910   addl(len, 3);
9911   jccb(Assembler::lessEqual, L_fold_128b);
9912   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9913 
9914   BIND(L_fold_tail_loop);
9915   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9916   addptr(buf, 16);
9917   decrementl(len);
9918   jccb(Assembler::greater, L_fold_tail_loop);
9919 
9920   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9921   BIND(L_fold_128b);
9922   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9923   if (UseAVX > 0) {
9924     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9925     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9926     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9927   } else {
9928     movdqa(xmm2, xmm0);
9929     pclmulqdq(xmm2, xmm1, 0x1);
9930     movdqa(xmm3, xmm0);
9931     pand(xmm3, xmm2);
9932     pclmulqdq(xmm0, xmm3, 0x1);
9933   }
9934   psrldq(xmm1, 8);
9935   psrldq(xmm2, 4);
9936   pxor(xmm0, xmm1);
9937   pxor(xmm0, xmm2);
9938 
9939   // 8 8-bit folds to compute 32-bit CRC.
9940   for (int j = 0; j < 4; j++) {
9941     fold_8bit_crc32(xmm0, table, xmm1, rax);
9942   }
9943   movdl(crc, xmm0); // mov 32 bits to general register
9944   for (int j = 0; j < 4; j++) {
9945     fold_8bit_crc32(crc, table, rax);
9946   }
9947 
9948   BIND(L_tail_restore);
9949   movl(len, tmp); // restore
9950   BIND(L_tail);
9951   andl(len, 0xf);
9952   jccb(Assembler::zero, L_exit);
9953 
9954   // Fold the rest of bytes
9955   align(4);
9956   BIND(L_tail_loop);
9957   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9958   update_byte_crc32(crc, rax, table);
9959   increment(buf);
9960   decrementl(len);
9961   jccb(Assembler::greater, L_tail_loop);
9962 
9963   BIND(L_exit);
9964   notl(crc); // ~c
9965 }
9966 
9967 #ifdef _LP64
9968 // S. Gueron / Information Processing Letters 112 (2012) 184
9969 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9970 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9971 // Output: the 64-bit carry-less product of B * CONST
9972 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9973                                      Register tmp1, Register tmp2, Register tmp3) {
9974   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9975   if (n > 0) {
9976     addq(tmp3, n * 256 * 8);
9977   }
9978   //    Q1 = TABLEExt[n][B & 0xFF];
9979   movl(tmp1, in);
9980   andl(tmp1, 0x000000FF);
9981   shll(tmp1, 3);
9982   addq(tmp1, tmp3);
9983   movq(tmp1, Address(tmp1, 0));
9984 
9985   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9986   movl(tmp2, in);
9987   shrl(tmp2, 8);
9988   andl(tmp2, 0x000000FF);
9989   shll(tmp2, 3);
9990   addq(tmp2, tmp3);
9991   movq(tmp2, Address(tmp2, 0));
9992 
9993   shlq(tmp2, 8);
9994   xorq(tmp1, tmp2);
9995 
9996   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9997   movl(tmp2, in);
9998   shrl(tmp2, 16);
9999   andl(tmp2, 0x000000FF);
10000   shll(tmp2, 3);
10001   addq(tmp2, tmp3);
10002   movq(tmp2, Address(tmp2, 0));
10003 
10004   shlq(tmp2, 16);
10005   xorq(tmp1, tmp2);
10006 
10007   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10008   shrl(in, 24);
10009   andl(in, 0x000000FF);
10010   shll(in, 3);
10011   addq(in, tmp3);
10012   movq(in, Address(in, 0));
10013 
10014   shlq(in, 24);
10015   xorq(in, tmp1);
10016   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10017 }
10018 
10019 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10020                                       Register in_out,
10021                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10022                                       XMMRegister w_xtmp2,
10023                                       Register tmp1,
10024                                       Register n_tmp2, Register n_tmp3) {
10025   if (is_pclmulqdq_supported) {
10026     movdl(w_xtmp1, in_out); // modified blindly
10027 
10028     movl(tmp1, const_or_pre_comp_const_index);
10029     movdl(w_xtmp2, tmp1);
10030     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10031 
10032     movdq(in_out, w_xtmp1);
10033   } else {
10034     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10035   }
10036 }
10037 
10038 // Recombination Alternative 2: No bit-reflections
10039 // T1 = (CRC_A * U1) << 1
10040 // T2 = (CRC_B * U2) << 1
10041 // C1 = T1 >> 32
10042 // C2 = T2 >> 32
10043 // T1 = T1 & 0xFFFFFFFF
10044 // T2 = T2 & 0xFFFFFFFF
10045 // T1 = CRC32(0, T1)
10046 // T2 = CRC32(0, T2)
10047 // C1 = C1 ^ T1
10048 // C2 = C2 ^ T2
10049 // CRC = C1 ^ C2 ^ CRC_C
10050 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10051                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10052                                      Register tmp1, Register tmp2,
10053                                      Register n_tmp3) {
10054   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10055   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10056   shlq(in_out, 1);
10057   movl(tmp1, in_out);
10058   shrq(in_out, 32);
10059   xorl(tmp2, tmp2);
10060   crc32(tmp2, tmp1, 4);
10061   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10062   shlq(in1, 1);
10063   movl(tmp1, in1);
10064   shrq(in1, 32);
10065   xorl(tmp2, tmp2);
10066   crc32(tmp2, tmp1, 4);
10067   xorl(in1, tmp2);
10068   xorl(in_out, in1);
10069   xorl(in_out, in2);
10070 }
10071 
10072 // Set N to predefined value
10073 // Subtract from a lenght of a buffer
10074 // execute in a loop:
10075 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10076 // for i = 1 to N do
10077 //  CRC_A = CRC32(CRC_A, A[i])
10078 //  CRC_B = CRC32(CRC_B, B[i])
10079 //  CRC_C = CRC32(CRC_C, C[i])
10080 // end for
10081 // Recombine
10082 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10083                                        Register in_out1, Register in_out2, Register in_out3,
10084                                        Register tmp1, Register tmp2, Register tmp3,
10085                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10086                                        Register tmp4, Register tmp5,
10087                                        Register n_tmp6) {
10088   Label L_processPartitions;
10089   Label L_processPartition;
10090   Label L_exit;
10091 
10092   bind(L_processPartitions);
10093   cmpl(in_out1, 3 * size);
10094   jcc(Assembler::less, L_exit);
10095     xorl(tmp1, tmp1);
10096     xorl(tmp2, tmp2);
10097     movq(tmp3, in_out2);
10098     addq(tmp3, size);
10099 
10100     bind(L_processPartition);
10101       crc32(in_out3, Address(in_out2, 0), 8);
10102       crc32(tmp1, Address(in_out2, size), 8);
10103       crc32(tmp2, Address(in_out2, size * 2), 8);
10104       addq(in_out2, 8);
10105       cmpq(in_out2, tmp3);
10106       jcc(Assembler::less, L_processPartition);
10107     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10108             w_xtmp1, w_xtmp2, w_xtmp3,
10109             tmp4, tmp5,
10110             n_tmp6);
10111     addq(in_out2, 2 * size);
10112     subl(in_out1, 3 * size);
10113     jmp(L_processPartitions);
10114 
10115   bind(L_exit);
10116 }
10117 #else
10118 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10119                                      Register tmp1, Register tmp2, Register tmp3,
10120                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10121   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10122   if (n > 0) {
10123     addl(tmp3, n * 256 * 8);
10124   }
10125   //    Q1 = TABLEExt[n][B & 0xFF];
10126   movl(tmp1, in_out);
10127   andl(tmp1, 0x000000FF);
10128   shll(tmp1, 3);
10129   addl(tmp1, tmp3);
10130   movq(xtmp1, Address(tmp1, 0));
10131 
10132   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10133   movl(tmp2, in_out);
10134   shrl(tmp2, 8);
10135   andl(tmp2, 0x000000FF);
10136   shll(tmp2, 3);
10137   addl(tmp2, tmp3);
10138   movq(xtmp2, Address(tmp2, 0));
10139 
10140   psllq(xtmp2, 8);
10141   pxor(xtmp1, xtmp2);
10142 
10143   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10144   movl(tmp2, in_out);
10145   shrl(tmp2, 16);
10146   andl(tmp2, 0x000000FF);
10147   shll(tmp2, 3);
10148   addl(tmp2, tmp3);
10149   movq(xtmp2, Address(tmp2, 0));
10150 
10151   psllq(xtmp2, 16);
10152   pxor(xtmp1, xtmp2);
10153 
10154   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10155   shrl(in_out, 24);
10156   andl(in_out, 0x000000FF);
10157   shll(in_out, 3);
10158   addl(in_out, tmp3);
10159   movq(xtmp2, Address(in_out, 0));
10160 
10161   psllq(xtmp2, 24);
10162   pxor(xtmp1, xtmp2); // Result in CXMM
10163   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10164 }
10165 
10166 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10167                                       Register in_out,
10168                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10169                                       XMMRegister w_xtmp2,
10170                                       Register tmp1,
10171                                       Register n_tmp2, Register n_tmp3) {
10172   if (is_pclmulqdq_supported) {
10173     movdl(w_xtmp1, in_out);
10174 
10175     movl(tmp1, const_or_pre_comp_const_index);
10176     movdl(w_xtmp2, tmp1);
10177     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10178     // Keep result in XMM since GPR is 32 bit in length
10179   } else {
10180     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10181   }
10182 }
10183 
10184 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10185                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10186                                      Register tmp1, Register tmp2,
10187                                      Register n_tmp3) {
10188   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10189   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10190 
10191   psllq(w_xtmp1, 1);
10192   movdl(tmp1, w_xtmp1);
10193   psrlq(w_xtmp1, 32);
10194   movdl(in_out, w_xtmp1);
10195 
10196   xorl(tmp2, tmp2);
10197   crc32(tmp2, tmp1, 4);
10198   xorl(in_out, tmp2);
10199 
10200   psllq(w_xtmp2, 1);
10201   movdl(tmp1, w_xtmp2);
10202   psrlq(w_xtmp2, 32);
10203   movdl(in1, w_xtmp2);
10204 
10205   xorl(tmp2, tmp2);
10206   crc32(tmp2, tmp1, 4);
10207   xorl(in1, tmp2);
10208   xorl(in_out, in1);
10209   xorl(in_out, in2);
10210 }
10211 
10212 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10213                                        Register in_out1, Register in_out2, Register in_out3,
10214                                        Register tmp1, Register tmp2, Register tmp3,
10215                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10216                                        Register tmp4, Register tmp5,
10217                                        Register n_tmp6) {
10218   Label L_processPartitions;
10219   Label L_processPartition;
10220   Label L_exit;
10221 
10222   bind(L_processPartitions);
10223   cmpl(in_out1, 3 * size);
10224   jcc(Assembler::less, L_exit);
10225     xorl(tmp1, tmp1);
10226     xorl(tmp2, tmp2);
10227     movl(tmp3, in_out2);
10228     addl(tmp3, size);
10229 
10230     bind(L_processPartition);
10231       crc32(in_out3, Address(in_out2, 0), 4);
10232       crc32(tmp1, Address(in_out2, size), 4);
10233       crc32(tmp2, Address(in_out2, size*2), 4);
10234       crc32(in_out3, Address(in_out2, 0+4), 4);
10235       crc32(tmp1, Address(in_out2, size+4), 4);
10236       crc32(tmp2, Address(in_out2, size*2+4), 4);
10237       addl(in_out2, 8);
10238       cmpl(in_out2, tmp3);
10239       jcc(Assembler::less, L_processPartition);
10240 
10241         push(tmp3);
10242         push(in_out1);
10243         push(in_out2);
10244         tmp4 = tmp3;
10245         tmp5 = in_out1;
10246         n_tmp6 = in_out2;
10247 
10248       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10249             w_xtmp1, w_xtmp2, w_xtmp3,
10250             tmp4, tmp5,
10251             n_tmp6);
10252 
10253         pop(in_out2);
10254         pop(in_out1);
10255         pop(tmp3);
10256 
10257     addl(in_out2, 2 * size);
10258     subl(in_out1, 3 * size);
10259     jmp(L_processPartitions);
10260 
10261   bind(L_exit);
10262 }
10263 #endif //LP64
10264 
10265 #ifdef _LP64
10266 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10267 // Input: A buffer I of L bytes.
10268 // Output: the CRC32C value of the buffer.
10269 // Notations:
10270 // Write L = 24N + r, with N = floor (L/24).
10271 // r = L mod 24 (0 <= r < 24).
10272 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10273 // N quadwords, and R consists of r bytes.
10274 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10275 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10276 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10277 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10278 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10279                                           Register tmp1, Register tmp2, Register tmp3,
10280                                           Register tmp4, Register tmp5, Register tmp6,
10281                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10282                                           bool is_pclmulqdq_supported) {
10283   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10284   Label L_wordByWord;
10285   Label L_byteByByteProlog;
10286   Label L_byteByByte;
10287   Label L_exit;
10288 
10289   if (is_pclmulqdq_supported ) {
10290     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10291     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10292 
10293     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10294     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10295 
10296     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10297     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10298     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10299   } else {
10300     const_or_pre_comp_const_index[0] = 1;
10301     const_or_pre_comp_const_index[1] = 0;
10302 
10303     const_or_pre_comp_const_index[2] = 3;
10304     const_or_pre_comp_const_index[3] = 2;
10305 
10306     const_or_pre_comp_const_index[4] = 5;
10307     const_or_pre_comp_const_index[5] = 4;
10308    }
10309   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10310                     in2, in1, in_out,
10311                     tmp1, tmp2, tmp3,
10312                     w_xtmp1, w_xtmp2, w_xtmp3,
10313                     tmp4, tmp5,
10314                     tmp6);
10315   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10316                     in2, in1, in_out,
10317                     tmp1, tmp2, tmp3,
10318                     w_xtmp1, w_xtmp2, w_xtmp3,
10319                     tmp4, tmp5,
10320                     tmp6);
10321   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10322                     in2, in1, in_out,
10323                     tmp1, tmp2, tmp3,
10324                     w_xtmp1, w_xtmp2, w_xtmp3,
10325                     tmp4, tmp5,
10326                     tmp6);
10327   movl(tmp1, in2);
10328   andl(tmp1, 0x00000007);
10329   negl(tmp1);
10330   addl(tmp1, in2);
10331   addq(tmp1, in1);
10332 
10333   BIND(L_wordByWord);
10334   cmpq(in1, tmp1);
10335   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10336     crc32(in_out, Address(in1, 0), 4);
10337     addq(in1, 4);
10338     jmp(L_wordByWord);
10339 
10340   BIND(L_byteByByteProlog);
10341   andl(in2, 0x00000007);
10342   movl(tmp2, 1);
10343 
10344   BIND(L_byteByByte);
10345   cmpl(tmp2, in2);
10346   jccb(Assembler::greater, L_exit);
10347     crc32(in_out, Address(in1, 0), 1);
10348     incq(in1);
10349     incl(tmp2);
10350     jmp(L_byteByByte);
10351 
10352   BIND(L_exit);
10353 }
10354 #else
10355 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10356                                           Register tmp1, Register  tmp2, Register tmp3,
10357                                           Register tmp4, Register  tmp5, Register tmp6,
10358                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10359                                           bool is_pclmulqdq_supported) {
10360   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10361   Label L_wordByWord;
10362   Label L_byteByByteProlog;
10363   Label L_byteByByte;
10364   Label L_exit;
10365 
10366   if (is_pclmulqdq_supported) {
10367     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10368     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10369 
10370     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10371     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10372 
10373     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10374     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10375   } else {
10376     const_or_pre_comp_const_index[0] = 1;
10377     const_or_pre_comp_const_index[1] = 0;
10378 
10379     const_or_pre_comp_const_index[2] = 3;
10380     const_or_pre_comp_const_index[3] = 2;
10381 
10382     const_or_pre_comp_const_index[4] = 5;
10383     const_or_pre_comp_const_index[5] = 4;
10384   }
10385   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10386                     in2, in1, in_out,
10387                     tmp1, tmp2, tmp3,
10388                     w_xtmp1, w_xtmp2, w_xtmp3,
10389                     tmp4, tmp5,
10390                     tmp6);
10391   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10392                     in2, in1, in_out,
10393                     tmp1, tmp2, tmp3,
10394                     w_xtmp1, w_xtmp2, w_xtmp3,
10395                     tmp4, tmp5,
10396                     tmp6);
10397   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10398                     in2, in1, in_out,
10399                     tmp1, tmp2, tmp3,
10400                     w_xtmp1, w_xtmp2, w_xtmp3,
10401                     tmp4, tmp5,
10402                     tmp6);
10403   movl(tmp1, in2);
10404   andl(tmp1, 0x00000007);
10405   negl(tmp1);
10406   addl(tmp1, in2);
10407   addl(tmp1, in1);
10408 
10409   BIND(L_wordByWord);
10410   cmpl(in1, tmp1);
10411   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10412     crc32(in_out, Address(in1,0), 4);
10413     addl(in1, 4);
10414     jmp(L_wordByWord);
10415 
10416   BIND(L_byteByByteProlog);
10417   andl(in2, 0x00000007);
10418   movl(tmp2, 1);
10419 
10420   BIND(L_byteByByte);
10421   cmpl(tmp2, in2);
10422   jccb(Assembler::greater, L_exit);
10423     movb(tmp1, Address(in1, 0));
10424     crc32(in_out, tmp1, 1);
10425     incl(in1);
10426     incl(tmp2);
10427     jmp(L_byteByByte);
10428 
10429   BIND(L_exit);
10430 }
10431 #endif // LP64
10432 #undef BIND
10433 #undef BLOCK_COMMENT
10434 
10435 // Compress char[] array to byte[].
10436 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10437 //   @HotSpotIntrinsicCandidate
10438 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10439 //     for (int i = 0; i < len; i++) {
10440 //       int c = src[srcOff++];
10441 //       if (c >>> 8 != 0) {
10442 //         return 0;
10443 //       }
10444 //       dst[dstOff++] = (byte)c;
10445 //     }
10446 //     return len;
10447 //   }
10448 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10449   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10450   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10451   Register tmp5, Register result) {
10452   Label copy_chars_loop, return_length, return_zero, done;
10453 
10454   // rsi: src
10455   // rdi: dst
10456   // rdx: len
10457   // rcx: tmp5
10458   // rax: result
10459 
10460   // rsi holds start addr of source char[] to be compressed
10461   // rdi holds start addr of destination byte[]
10462   // rdx holds length
10463 
10464   assert(len != result, "");
10465 
10466   // save length for return
10467   push(len);
10468 
10469   if ((UseAVX > 2) && // AVX512
10470     VM_Version::supports_avx512vlbw() &&
10471     VM_Version::supports_bmi2()) {
10472 
10473     set_vector_masking();  // opening of the stub context for programming mask registers
10474 
10475     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero, below_threshold;
10476 
10477     // alignment
10478     Label post_alignment;
10479 
10480     // if length of the string is less than 16, handle it in an old fashioned way
10481     testl(len, -32);
10482     jcc(Assembler::zero, below_threshold);
10483 
10484     // First check whether a character is compressable ( <= 0xFF).
10485     // Create mask to test for Unicode chars inside zmm vector
10486     movl(result, 0x00FF);
10487     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10488 
10489     // Save k1
10490     kmovql(k3, k1);
10491 
10492     testl(len, -64);
10493     jcc(Assembler::zero, post_alignment);
10494 
10495     movl(tmp5, dst);
10496     andl(tmp5, (32 - 1));
10497     negl(tmp5);
10498     andl(tmp5, (32 - 1));
10499 
10500     // bail out when there is nothing to be done
10501     testl(tmp5, 0xFFFFFFFF);
10502     jcc(Assembler::zero, post_alignment);
10503 
10504     // ~(~0 << len), where len is the # of remaining elements to process
10505     movl(result, 0xFFFFFFFF);
10506     shlxl(result, result, tmp5);
10507     notl(result);
10508     kmovdl(k1, result);
10509 
10510     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10511     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10512     ktestd(k2, k1);
10513     jcc(Assembler::carryClear, restore_k1_return_zero);
10514 
10515     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10516 
10517     addptr(src, tmp5);
10518     addptr(src, tmp5);
10519     addptr(dst, tmp5);
10520     subl(len, tmp5);
10521 
10522     bind(post_alignment);
10523     // end of alignment
10524 
10525     movl(tmp5, len);
10526     andl(tmp5, (32 - 1));    // tail count (in chars)
10527     andl(len, ~(32 - 1));    // vector count (in chars)
10528     jcc(Assembler::zero, copy_loop_tail);
10529 
10530     lea(src, Address(src, len, Address::times_2));
10531     lea(dst, Address(dst, len, Address::times_1));
10532     negptr(len);
10533 
10534     bind(copy_32_loop);
10535     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10536     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10537     kortestdl(k2, k2);
10538     jcc(Assembler::carryClear, restore_k1_return_zero);
10539 
10540     // All elements in current processed chunk are valid candidates for
10541     // compression. Write a truncated byte elements to the memory.
10542     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10543     addptr(len, 32);
10544     jcc(Assembler::notZero, copy_32_loop);
10545 
10546     bind(copy_loop_tail);
10547     // bail out when there is nothing to be done
10548     testl(tmp5, 0xFFFFFFFF);
10549     // Restore k1
10550     kmovql(k1, k3);
10551     jcc(Assembler::zero, return_length);
10552 
10553     movl(len, tmp5);
10554 
10555     // ~(~0 << len), where len is the # of remaining elements to process
10556     movl(result, 0xFFFFFFFF);
10557     shlxl(result, result, len);
10558     notl(result);
10559 
10560     kmovdl(k1, result);
10561 
10562     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10563     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10564     ktestd(k2, k1);
10565     jcc(Assembler::carryClear, restore_k1_return_zero);
10566 
10567     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10568     // Restore k1
10569     kmovql(k1, k3);
10570     jmp(return_length);
10571 
10572     bind(restore_k1_return_zero);
10573     // Restore k1
10574     kmovql(k1, k3);
10575     jmp(return_zero);
10576 
10577     clear_vector_masking();   // closing of the stub context for programming mask registers
10578 
10579     bind(below_threshold);
10580   }
10581 
10582   if (UseSSE42Intrinsics) {
10583     Label copy_32_loop, copy_16, copy_tail;
10584 
10585     movl(result, len);
10586 
10587     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10588 
10589     // vectored compression
10590     andl(len, 0xfffffff0);    // vector count (in chars)
10591     andl(result, 0x0000000f);    // tail count (in chars)
10592     testl(len, len);
10593     jccb(Assembler::zero, copy_16);
10594 
10595     // compress 16 chars per iter
10596     movdl(tmp1Reg, tmp5);
10597     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10598     pxor(tmp4Reg, tmp4Reg);
10599 
10600     lea(src, Address(src, len, Address::times_2));
10601     lea(dst, Address(dst, len, Address::times_1));
10602     negptr(len);
10603 
10604     bind(copy_32_loop);
10605     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10606     por(tmp4Reg, tmp2Reg);
10607     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10608     por(tmp4Reg, tmp3Reg);
10609     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10610     jcc(Assembler::notZero, return_zero);
10611     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10612     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10613     addptr(len, 16);
10614     jcc(Assembler::notZero, copy_32_loop);
10615 
10616     // compress next vector of 8 chars (if any)
10617     bind(copy_16);
10618     movl(len, result);
10619     andl(len, 0xfffffff8);    // vector count (in chars)
10620     andl(result, 0x00000007);    // tail count (in chars)
10621     testl(len, len);
10622     jccb(Assembler::zero, copy_tail);
10623 
10624     movdl(tmp1Reg, tmp5);
10625     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10626     pxor(tmp3Reg, tmp3Reg);
10627 
10628     movdqu(tmp2Reg, Address(src, 0));
10629     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10630     jccb(Assembler::notZero, return_zero);
10631     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10632     movq(Address(dst, 0), tmp2Reg);
10633     addptr(src, 16);
10634     addptr(dst, 8);
10635 
10636     bind(copy_tail);
10637     movl(len, result);
10638   }
10639   // compress 1 char per iter
10640   testl(len, len);
10641   jccb(Assembler::zero, return_length);
10642   lea(src, Address(src, len, Address::times_2));
10643   lea(dst, Address(dst, len, Address::times_1));
10644   negptr(len);
10645 
10646   bind(copy_chars_loop);
10647   load_unsigned_short(result, Address(src, len, Address::times_2));
10648   testl(result, 0xff00);      // check if Unicode char
10649   jccb(Assembler::notZero, return_zero);
10650   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10651   increment(len);
10652   jcc(Assembler::notZero, copy_chars_loop);
10653 
10654   // if compression succeeded, return length
10655   bind(return_length);
10656   pop(result);
10657   jmpb(done);
10658 
10659   // if compression failed, return 0
10660   bind(return_zero);
10661   xorl(result, result);
10662   addptr(rsp, wordSize);
10663 
10664   bind(done);
10665 }
10666 
10667 // Inflate byte[] array to char[].
10668 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
10669 //   @HotSpotIntrinsicCandidate
10670 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
10671 //     for (int i = 0; i < len; i++) {
10672 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
10673 //     }
10674 //   }
10675 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10676   XMMRegister tmp1, Register tmp2) {
10677   Label copy_chars_loop, done, below_threshold;
10678   // rsi: src
10679   // rdi: dst
10680   // rdx: len
10681   // rcx: tmp2
10682 
10683   // rsi holds start addr of source byte[] to be inflated
10684   // rdi holds start addr of destination char[]
10685   // rdx holds length
10686   assert_different_registers(src, dst, len, tmp2);
10687 
10688   if ((UseAVX > 2) && // AVX512
10689     VM_Version::supports_avx512vlbw() &&
10690     VM_Version::supports_bmi2()) {
10691 
10692     set_vector_masking();  // opening of the stub context for programming mask registers
10693 
10694     Label copy_32_loop, copy_tail;
10695     Register tmp3_aliased = len;
10696 
10697     // if length of the string is less than 16, handle it in an old fashioned way
10698     testl(len, -16);
10699     jcc(Assembler::zero, below_threshold);
10700 
10701     // In order to use only one arithmetic operation for the main loop we use
10702     // this pre-calculation
10703     movl(tmp2, len);
10704     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
10705     andl(len, -32);     // vector count
10706     jccb(Assembler::zero, copy_tail);
10707 
10708     lea(src, Address(src, len, Address::times_1));
10709     lea(dst, Address(dst, len, Address::times_2));
10710     negptr(len);
10711 
10712 
10713     // inflate 32 chars per iter
10714     bind(copy_32_loop);
10715     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
10716     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
10717     addptr(len, 32);
10718     jcc(Assembler::notZero, copy_32_loop);
10719 
10720     bind(copy_tail);
10721     // bail out when there is nothing to be done
10722     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
10723     jcc(Assembler::zero, done);
10724 
10725     // Save k1
10726     kmovql(k2, k1);
10727 
10728     // ~(~0 << length), where length is the # of remaining elements to process
10729     movl(tmp3_aliased, -1);
10730     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
10731     notl(tmp3_aliased);
10732     kmovdl(k1, tmp3_aliased);
10733     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
10734     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
10735 
10736     // Restore k1
10737     kmovql(k1, k2);
10738     jmp(done);
10739 
10740     clear_vector_masking();   // closing of the stub context for programming mask registers
10741   }
10742   if (UseSSE42Intrinsics) {
10743     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
10744 
10745     movl(tmp2, len);
10746 
10747     if (UseAVX > 1) {
10748       andl(tmp2, (16 - 1));
10749       andl(len, -16);
10750       jccb(Assembler::zero, copy_new_tail);
10751     } else {
10752       andl(tmp2, 0x00000007);   // tail count (in chars)
10753       andl(len, 0xfffffff8);    // vector count (in chars)
10754       jccb(Assembler::zero, copy_tail);
10755     }
10756 
10757     // vectored inflation
10758     lea(src, Address(src, len, Address::times_1));
10759     lea(dst, Address(dst, len, Address::times_2));
10760     negptr(len);
10761 
10762     if (UseAVX > 1) {
10763       bind(copy_16_loop);
10764       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
10765       vmovdqu(Address(dst, len, Address::times_2), tmp1);
10766       addptr(len, 16);
10767       jcc(Assembler::notZero, copy_16_loop);
10768 
10769       bind(below_threshold);
10770       bind(copy_new_tail);
10771       if ((UseAVX > 2) &&
10772         VM_Version::supports_avx512vlbw() &&
10773         VM_Version::supports_bmi2()) {
10774         movl(tmp2, len);
10775       } else {
10776         movl(len, tmp2);
10777       }
10778       andl(tmp2, 0x00000007);
10779       andl(len, 0xFFFFFFF8);
10780       jccb(Assembler::zero, copy_tail);
10781 
10782       pmovzxbw(tmp1, Address(src, 0));
10783       movdqu(Address(dst, 0), tmp1);
10784       addptr(src, 8);
10785       addptr(dst, 2 * 8);
10786 
10787       jmp(copy_tail, true);
10788     }
10789 
10790     // inflate 8 chars per iter
10791     bind(copy_8_loop);
10792     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
10793     movdqu(Address(dst, len, Address::times_2), tmp1);
10794     addptr(len, 8);
10795     jcc(Assembler::notZero, copy_8_loop);
10796 
10797     bind(copy_tail);
10798     movl(len, tmp2);
10799 
10800     cmpl(len, 4);
10801     jccb(Assembler::less, copy_bytes);
10802 
10803     movdl(tmp1, Address(src, 0));  // load 4 byte chars
10804     pmovzxbw(tmp1, tmp1);
10805     movq(Address(dst, 0), tmp1);
10806     subptr(len, 4);
10807     addptr(src, 4);
10808     addptr(dst, 8);
10809 
10810     bind(copy_bytes);
10811   } else {
10812     bind(below_threshold);
10813   }
10814 
10815   testl(len, len);
10816   jccb(Assembler::zero, done);
10817   lea(src, Address(src, len, Address::times_1));
10818   lea(dst, Address(dst, len, Address::times_2));
10819   negptr(len);
10820 
10821   // inflate 1 char per iter
10822   bind(copy_chars_loop);
10823   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10824   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10825   increment(len);
10826   jcc(Assembler::notZero, copy_chars_loop);
10827 
10828   bind(done);
10829 }
10830 
10831 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10832   switch (cond) {
10833     // Note some conditions are synonyms for others
10834     case Assembler::zero:         return Assembler::notZero;
10835     case Assembler::notZero:      return Assembler::zero;
10836     case Assembler::less:         return Assembler::greaterEqual;
10837     case Assembler::lessEqual:    return Assembler::greater;
10838     case Assembler::greater:      return Assembler::lessEqual;
10839     case Assembler::greaterEqual: return Assembler::less;
10840     case Assembler::below:        return Assembler::aboveEqual;
10841     case Assembler::belowEqual:   return Assembler::above;
10842     case Assembler::above:        return Assembler::belowEqual;
10843     case Assembler::aboveEqual:   return Assembler::below;
10844     case Assembler::overflow:     return Assembler::noOverflow;
10845     case Assembler::noOverflow:   return Assembler::overflow;
10846     case Assembler::negative:     return Assembler::positive;
10847     case Assembler::positive:     return Assembler::negative;
10848     case Assembler::parity:       return Assembler::noParity;
10849     case Assembler::noParity:     return Assembler::parity;
10850   }
10851   ShouldNotReachHere(); return Assembler::overflow;
10852 }
10853 
10854 SkipIfEqual::SkipIfEqual(
10855     MacroAssembler* masm, const bool* flag_addr, bool value) {
10856   _masm = masm;
10857   _masm->cmp8(ExternalAddress((address)flag_addr), value);
10858   _masm->jcc(Assembler::equal, _label);
10859 }
10860 
10861 SkipIfEqual::~SkipIfEqual() {
10862   _masm->bind(_label);
10863 }
10864 
10865 // 32-bit Windows has its own fast-path implementation
10866 // of get_thread
10867 #if !defined(WIN32) || defined(_LP64)
10868 
10869 // This is simply a call to Thread::current()
10870 void MacroAssembler::get_thread(Register thread) {
10871   if (thread != rax) {
10872     push(rax);
10873   }
10874   LP64_ONLY(push(rdi);)
10875   LP64_ONLY(push(rsi);)
10876   push(rdx);
10877   push(rcx);
10878 #ifdef _LP64
10879   push(r8);
10880   push(r9);
10881   push(r10);
10882   push(r11);
10883 #endif
10884 
10885   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10886 
10887 #ifdef _LP64
10888   pop(r11);
10889   pop(r10);
10890   pop(r9);
10891   pop(r8);
10892 #endif
10893   pop(rcx);
10894   pop(rdx);
10895   LP64_ONLY(pop(rsi);)
10896   LP64_ONLY(pop(rdi);)
10897   if (thread != rax) {
10898     mov(thread, rax);
10899     pop(rax);
10900   }
10901 }
10902 
10903 #endif