1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_ExitRelease  = 0;
 105 int ObjectMonitor::Knob_InlineNotify = 1;
 106 int ObjectMonitor::Knob_Verbose      = 0;
 107 int ObjectMonitor::Knob_VerifyInUse  = 0;
 108 int ObjectMonitor::Knob_VerifyMatch  = 0;
 109 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 110 
 111 static int Knob_SpinBase            = 0;       // Floor AKA SpinMin
 112 static int Knob_SpinBackOff         = 0;       // spin-loop backoff
 113 static int Knob_CASPenalty          = -1;      // Penalty for failed CAS
 114 static int Knob_OXPenalty           = -1;      // Penalty for observed _owner change
 115 static int Knob_SpinSetSucc         = 1;       // spinners set the _succ field
 116 static int Knob_SpinEarly           = 1;
 117 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 118 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 119 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 120 static int Knob_Bonus               = 100;     // spin success bonus
 121 static int Knob_BonusB              = 100;     // spin success bonus
 122 static int Knob_Penalty             = 200;     // spin failure penalty
 123 static int Knob_Poverty             = 1000;
 124 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 125 static int Knob_FixedSpin           = 0;
 126 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 127 static int Knob_UsePause            = 1;
 128 static int Knob_ExitPolicy          = 0;
 129 static int Knob_PreSpin             = 10;      // 20-100 likely better
 130 static int Knob_ResetEvent          = 0;
 131 static int BackOffMask              = 0;
 132 
 133 static int Knob_FastHSSEC           = 0;
 134 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 135 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 136 static volatile int InitDone        = 0;
 137 
 138 // -----------------------------------------------------------------------------
 139 // Theory of operations -- Monitors lists, thread residency, etc:
 140 //
 141 // * A thread acquires ownership of a monitor by successfully
 142 //   CAS()ing the _owner field from null to non-null.
 143 //
 144 // * Invariant: A thread appears on at most one monitor list --
 145 //   cxq, EntryList or WaitSet -- at any one time.
 146 //
 147 // * Contending threads "push" themselves onto the cxq with CAS
 148 //   and then spin/park.
 149 //
 150 // * After a contending thread eventually acquires the lock it must
 151 //   dequeue itself from either the EntryList or the cxq.
 152 //
 153 // * The exiting thread identifies and unparks an "heir presumptive"
 154 //   tentative successor thread on the EntryList.  Critically, the
 155 //   exiting thread doesn't unlink the successor thread from the EntryList.
 156 //   After having been unparked, the wakee will recontend for ownership of
 157 //   the monitor.   The successor (wakee) will either acquire the lock or
 158 //   re-park itself.
 159 //
 160 //   Succession is provided for by a policy of competitive handoff.
 161 //   The exiting thread does _not_ grant or pass ownership to the
 162 //   successor thread.  (This is also referred to as "handoff" succession").
 163 //   Instead the exiting thread releases ownership and possibly wakes
 164 //   a successor, so the successor can (re)compete for ownership of the lock.
 165 //   If the EntryList is empty but the cxq is populated the exiting
 166 //   thread will drain the cxq into the EntryList.  It does so by
 167 //   by detaching the cxq (installing null with CAS) and folding
 168 //   the threads from the cxq into the EntryList.  The EntryList is
 169 //   doubly linked, while the cxq is singly linked because of the
 170 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 171 //
 172 // * Concurrency invariants:
 173 //
 174 //   -- only the monitor owner may access or mutate the EntryList.
 175 //      The mutex property of the monitor itself protects the EntryList
 176 //      from concurrent interference.
 177 //   -- Only the monitor owner may detach the cxq.
 178 //
 179 // * The monitor entry list operations avoid locks, but strictly speaking
 180 //   they're not lock-free.  Enter is lock-free, exit is not.
 181 //   For a description of 'Methods and apparatus providing non-blocking access
 182 //   to a resource,' see U.S. Pat. No. 7844973.
 183 //
 184 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 185 //   detaching thread.  This mechanism is immune from the ABA corruption.
 186 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 187 //
 188 // * Taken together, the cxq and the EntryList constitute or form a
 189 //   single logical queue of threads stalled trying to acquire the lock.
 190 //   We use two distinct lists to improve the odds of a constant-time
 191 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 192 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 193 //   A key desideratum is to minimize queue & monitor metadata manipulation
 194 //   that occurs while holding the monitor lock -- that is, we want to
 195 //   minimize monitor lock holds times.  Note that even a small amount of
 196 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 197 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 198 //   locks and monitor metadata.
 199 //
 200 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 201 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 202 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 203 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 204 //
 205 //   The EntryList is ordered by the prevailing queue discipline and
 206 //   can be organized in any convenient fashion, such as a doubly-linked list or
 207 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 208 //   to operate in constant-time.  If we need a priority queue then something akin
 209 //   to Solaris' sleepq would work nicely.  Viz.,
 210 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 211 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 212 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 213 //   EntryList accordingly.
 214 //
 215 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 216 //   somewhat similar to an elevator-scan.
 217 //
 218 // * The monitor synchronization subsystem avoids the use of native
 219 //   synchronization primitives except for the narrow platform-specific
 220 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 221 //   the semantics of park-unpark.  Put another way, this monitor implementation
 222 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 223 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 224 //   underlying OS manages the READY<->RUN transitions.
 225 //
 226 // * Waiting threads reside on the WaitSet list -- wait() puts
 227 //   the caller onto the WaitSet.
 228 //
 229 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 230 //   either the EntryList or cxq.  Subsequent exit() operations will
 231 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 232 //   it's likely the notifyee would simply impale itself on the lock held
 233 //   by the notifier.
 234 //
 235 // * An interesting alternative is to encode cxq as (List,LockByte) where
 236 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 237 //   variable, like _recursions, in the scheme.  The threads or Events that form
 238 //   the list would have to be aligned in 256-byte addresses.  A thread would
 239 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 240 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 241 //   Note that is is *not* word-tearing, but it does presume that full-word
 242 //   CAS operations are coherent with intermix with STB operations.  That's true
 243 //   on most common processors.
 244 //
 245 // * See also http://blogs.sun.com/dave
 246 
 247 
 248 void* ObjectMonitor::operator new (size_t size) throw() {
 249   return AllocateHeap(size, mtInternal);
 250 }
 251 void* ObjectMonitor::operator new[] (size_t size) throw() {
 252   return operator new (size);
 253 }
 254 void ObjectMonitor::operator delete(void* p) {
 255   FreeHeap(p);
 256 }
 257 void ObjectMonitor::operator delete[] (void *p) {
 258   operator delete(p);
 259 }
 260 
 261 // -----------------------------------------------------------------------------
 262 // Enter support
 263 
 264 void ObjectMonitor::enter(TRAPS) {
 265   // The following code is ordered to check the most common cases first
 266   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 267   Thread * const Self = THREAD;
 268 
 269   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 270   if (cur == NULL) {
 271     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 272     assert(_recursions == 0, "invariant");
 273     assert(_owner == Self, "invariant");
 274     return;
 275   }
 276 
 277   if (cur == Self) {
 278     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 279     _recursions++;
 280     return;
 281   }
 282 
 283   if (Self->is_lock_owned ((address)cur)) {
 284     assert(_recursions == 0, "internal state error");
 285     _recursions = 1;
 286     // Commute owner from a thread-specific on-stack BasicLockObject address to
 287     // a full-fledged "Thread *".
 288     _owner = Self;
 289     return;
 290   }
 291 
 292   // We've encountered genuine contention.
 293   assert(Self->_Stalled == 0, "invariant");
 294   Self->_Stalled = intptr_t(this);
 295 
 296   // Try one round of spinning *before* enqueueing Self
 297   // and before going through the awkward and expensive state
 298   // transitions.  The following spin is strictly optional ...
 299   // Note that if we acquire the monitor from an initial spin
 300   // we forgo posting JVMTI events and firing DTRACE probes.
 301   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 302     assert(_owner == Self, "invariant");
 303     assert(_recursions == 0, "invariant");
 304     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 305     Self->_Stalled = 0;
 306     return;
 307   }
 308 
 309   assert(_owner != Self, "invariant");
 310   assert(_succ != Self, "invariant");
 311   assert(Self->is_Java_thread(), "invariant");
 312   JavaThread * jt = (JavaThread *) Self;
 313   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 314   assert(jt->thread_state() != _thread_blocked, "invariant");
 315   assert(this->object() != NULL, "invariant");
 316   assert(_count >= 0, "invariant");
 317 
 318   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 319   // Ensure the object-monitor relationship remains stable while there's contention.
 320   Atomic::inc(&_count);
 321 
 322   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 323   EventJavaMonitorEnter event;
 324   if (event.should_commit()) {
 325     event.set_monitorClass(((oop)this->object())->klass());
 326     event.set_address((uintptr_t)(this->object_addr()));
 327   }
 328 
 329   { // Change java thread status to indicate blocked on monitor enter.
 330     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 331 
 332     Self->set_current_pending_monitor(this);
 333 
 334     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 335     if (JvmtiExport::should_post_monitor_contended_enter()) {
 336       JvmtiExport::post_monitor_contended_enter(jt, this);
 337 
 338       // The current thread does not yet own the monitor and does not
 339       // yet appear on any queues that would get it made the successor.
 340       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 341       // handler cannot accidentally consume an unpark() meant for the
 342       // ParkEvent associated with this ObjectMonitor.
 343     }
 344 
 345     OSThreadContendState osts(Self->osthread());
 346     ThreadBlockInVM tbivm(jt);
 347 
 348     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 349     for (;;) {
 350       jt->set_suspend_equivalent();
 351       // cleared by handle_special_suspend_equivalent_condition()
 352       // or java_suspend_self()
 353 
 354       EnterI(THREAD);
 355 
 356       if (!ExitSuspendEquivalent(jt)) break;
 357 
 358       // We have acquired the contended monitor, but while we were
 359       // waiting another thread suspended us. We don't want to enter
 360       // the monitor while suspended because that would surprise the
 361       // thread that suspended us.
 362       //
 363       _recursions = 0;
 364       _succ = NULL;
 365       exit(false, Self);
 366 
 367       jt->java_suspend_self();
 368     }
 369     Self->set_current_pending_monitor(NULL);
 370 
 371     // We cleared the pending monitor info since we've just gotten past
 372     // the enter-check-for-suspend dance and we now own the monitor free
 373     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 374     // destructor can go to a safepoint at the end of this block. If we
 375     // do a thread dump during that safepoint, then this thread will show
 376     // as having "-locked" the monitor, but the OS and java.lang.Thread
 377     // states will still report that the thread is blocked trying to
 378     // acquire it.
 379   }
 380 
 381   Atomic::dec(&_count);
 382   assert(_count >= 0, "invariant");
 383   Self->_Stalled = 0;
 384 
 385   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 386   assert(_recursions == 0, "invariant");
 387   assert(_owner == Self, "invariant");
 388   assert(_succ != Self, "invariant");
 389   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 390 
 391   // The thread -- now the owner -- is back in vm mode.
 392   // Report the glorious news via TI,DTrace and jvmstat.
 393   // The probe effect is non-trivial.  All the reportage occurs
 394   // while we hold the monitor, increasing the length of the critical
 395   // section.  Amdahl's parallel speedup law comes vividly into play.
 396   //
 397   // Another option might be to aggregate the events (thread local or
 398   // per-monitor aggregation) and defer reporting until a more opportune
 399   // time -- such as next time some thread encounters contention but has
 400   // yet to acquire the lock.  While spinning that thread could
 401   // spinning we could increment JVMStat counters, etc.
 402 
 403   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 404   if (JvmtiExport::should_post_monitor_contended_entered()) {
 405     JvmtiExport::post_monitor_contended_entered(jt, this);
 406 
 407     // The current thread already owns the monitor and is not going to
 408     // call park() for the remainder of the monitor enter protocol. So
 409     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 410     // event handler consumed an unpark() issued by the thread that
 411     // just exited the monitor.
 412   }
 413   if (event.should_commit()) {
 414     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 415     event.commit();
 416   }
 417   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 418 }
 419 
 420 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 421 // Callers must compensate as needed.
 422 
 423 int ObjectMonitor::TryLock(Thread * Self) {
 424   void * own = _owner;
 425   if (own != NULL) return 0;
 426   if (Atomic::replace_if_null(Self, &_owner)) {
 427     // Either guarantee _recursions == 0 or set _recursions = 0.
 428     assert(_recursions == 0, "invariant");
 429     assert(_owner == Self, "invariant");
 430     return 1;
 431   }
 432   // The lock had been free momentarily, but we lost the race to the lock.
 433   // Interference -- the CAS failed.
 434   // We can either return -1 or retry.
 435   // Retry doesn't make as much sense because the lock was just acquired.
 436   return -1;
 437 }
 438 
 439 #define MAX_RECHECK_INTERVAL 1000
 440 
 441 void ObjectMonitor::EnterI(TRAPS) {
 442   Thread * const Self = THREAD;
 443   assert(Self->is_Java_thread(), "invariant");
 444   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 445 
 446   // Try the lock - TATAS
 447   if (TryLock (Self) > 0) {
 448     assert(_succ != Self, "invariant");
 449     assert(_owner == Self, "invariant");
 450     assert(_Responsible != Self, "invariant");
 451     return;
 452   }
 453 
 454   DeferredInitialize();
 455 
 456   // We try one round of spinning *before* enqueueing Self.
 457   //
 458   // If the _owner is ready but OFFPROC we could use a YieldTo()
 459   // operation to donate the remainder of this thread's quantum
 460   // to the owner.  This has subtle but beneficial affinity
 461   // effects.
 462 
 463   if (TrySpin (Self) > 0) {
 464     assert(_owner == Self, "invariant");
 465     assert(_succ != Self, "invariant");
 466     assert(_Responsible != Self, "invariant");
 467     return;
 468   }
 469 
 470   // The Spin failed -- Enqueue and park the thread ...
 471   assert(_succ != Self, "invariant");
 472   assert(_owner != Self, "invariant");
 473   assert(_Responsible != Self, "invariant");
 474 
 475   // Enqueue "Self" on ObjectMonitor's _cxq.
 476   //
 477   // Node acts as a proxy for Self.
 478   // As an aside, if were to ever rewrite the synchronization code mostly
 479   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 480   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 481   // as well as eliminate a subset of ABA issues.
 482   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 483 
 484   ObjectWaiter node(Self);
 485   Self->_ParkEvent->reset();
 486   node._prev   = (ObjectWaiter *) 0xBAD;
 487   node.TState  = ObjectWaiter::TS_CXQ;
 488 
 489   // Push "Self" onto the front of the _cxq.
 490   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 491   // Note that spinning tends to reduce the rate at which threads
 492   // enqueue and dequeue on EntryList|cxq.
 493   ObjectWaiter * nxt;
 494   for (;;) {
 495     node._next = nxt = _cxq;
 496     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 497 
 498     // Interference - the CAS failed because _cxq changed.  Just retry.
 499     // As an optional optimization we retry the lock.
 500     if (TryLock (Self) > 0) {
 501       assert(_succ != Self, "invariant");
 502       assert(_owner == Self, "invariant");
 503       assert(_Responsible != Self, "invariant");
 504       return;
 505     }
 506   }
 507 
 508   // Check for cxq|EntryList edge transition to non-null.  This indicates
 509   // the onset of contention.  While contention persists exiting threads
 510   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 511   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 512   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 513   // arrange for one of the contending thread to use a timed park() operations
 514   // to detect and recover from the race.  (Stranding is form of progress failure
 515   // where the monitor is unlocked but all the contending threads remain parked).
 516   // That is, at least one of the contended threads will periodically poll _owner.
 517   // One of the contending threads will become the designated "Responsible" thread.
 518   // The Responsible thread uses a timed park instead of a normal indefinite park
 519   // operation -- it periodically wakes and checks for and recovers from potential
 520   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 521   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 522   // be responsible for a monitor.
 523   //
 524   // Currently, one of the contended threads takes on the added role of "Responsible".
 525   // A viable alternative would be to use a dedicated "stranding checker" thread
 526   // that periodically iterated over all the threads (or active monitors) and unparked
 527   // successors where there was risk of stranding.  This would help eliminate the
 528   // timer scalability issues we see on some platforms as we'd only have one thread
 529   // -- the checker -- parked on a timer.
 530 
 531   if (nxt == NULL && _EntryList == NULL) {
 532     // Try to assume the role of responsible thread for the monitor.
 533     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 534     Atomic::replace_if_null(Self, &_Responsible);
 535   }
 536 
 537   // The lock might have been released while this thread was occupied queueing
 538   // itself onto _cxq.  To close the race and avoid "stranding" and
 539   // progress-liveness failure we must resample-retry _owner before parking.
 540   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 541   // In this case the ST-MEMBAR is accomplished with CAS().
 542   //
 543   // TODO: Defer all thread state transitions until park-time.
 544   // Since state transitions are heavy and inefficient we'd like
 545   // to defer the state transitions until absolutely necessary,
 546   // and in doing so avoid some transitions ...
 547 
 548   int nWakeups = 0;
 549   int recheckInterval = 1;
 550 
 551   for (;;) {
 552 
 553     if (TryLock(Self) > 0) break;
 554     assert(_owner != Self, "invariant");
 555 
 556     // park self
 557     if (_Responsible == Self) {
 558       Self->_ParkEvent->park((jlong) recheckInterval);
 559       // Increase the recheckInterval, but clamp the value.
 560       recheckInterval *= 8;
 561       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 562         recheckInterval = MAX_RECHECK_INTERVAL;
 563       }
 564     } else {
 565       Self->_ParkEvent->park();
 566     }
 567 
 568     if (TryLock(Self) > 0) break;
 569 
 570     // The lock is still contested.
 571     // Keep a tally of the # of futile wakeups.
 572     // Note that the counter is not protected by a lock or updated by atomics.
 573     // That is by design - we trade "lossy" counters which are exposed to
 574     // races during updates for a lower probe effect.
 575 
 576     // This PerfData object can be used in parallel with a safepoint.
 577     // See the work around in PerfDataManager::destroy().
 578     OM_PERFDATA_OP(FutileWakeups, inc());
 579     ++nWakeups;
 580 
 581     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 582     // We can defer clearing _succ until after the spin completes
 583     // TrySpin() must tolerate being called with _succ == Self.
 584     // Try yet another round of adaptive spinning.
 585     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 586 
 587     // We can find that we were unpark()ed and redesignated _succ while
 588     // we were spinning.  That's harmless.  If we iterate and call park(),
 589     // park() will consume the event and return immediately and we'll
 590     // just spin again.  This pattern can repeat, leaving _succ to simply
 591     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 592     // Alternately, we can sample fired() here, and if set, forgo spinning
 593     // in the next iteration.
 594 
 595     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 596       Self->_ParkEvent->reset();
 597       OrderAccess::fence();
 598     }
 599     if (_succ == Self) _succ = NULL;
 600 
 601     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 602     OrderAccess::fence();
 603   }
 604 
 605   // Egress :
 606   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 607   // Normally we'll find Self on the EntryList .
 608   // From the perspective of the lock owner (this thread), the
 609   // EntryList is stable and cxq is prepend-only.
 610   // The head of cxq is volatile but the interior is stable.
 611   // In addition, Self.TState is stable.
 612 
 613   assert(_owner == Self, "invariant");
 614   assert(object() != NULL, "invariant");
 615   // I'd like to write:
 616   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 617   // but as we're at a safepoint that's not safe.
 618 
 619   UnlinkAfterAcquire(Self, &node);
 620   if (_succ == Self) _succ = NULL;
 621 
 622   assert(_succ != Self, "invariant");
 623   if (_Responsible == Self) {
 624     _Responsible = NULL;
 625     OrderAccess::fence(); // Dekker pivot-point
 626 
 627     // We may leave threads on cxq|EntryList without a designated
 628     // "Responsible" thread.  This is benign.  When this thread subsequently
 629     // exits the monitor it can "see" such preexisting "old" threads --
 630     // threads that arrived on the cxq|EntryList before the fence, above --
 631     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 632     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 633     // non-null and elect a new "Responsible" timer thread.
 634     //
 635     // This thread executes:
 636     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 637     //    LD cxq|EntryList               (in subsequent exit)
 638     //
 639     // Entering threads in the slow/contended path execute:
 640     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 641     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 642     //
 643     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 644     // exit operation from floating above the ST Responsible=null.
 645   }
 646 
 647   // We've acquired ownership with CAS().
 648   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 649   // But since the CAS() this thread may have also stored into _succ,
 650   // EntryList, cxq or Responsible.  These meta-data updates must be
 651   // visible __before this thread subsequently drops the lock.
 652   // Consider what could occur if we didn't enforce this constraint --
 653   // STs to monitor meta-data and user-data could reorder with (become
 654   // visible after) the ST in exit that drops ownership of the lock.
 655   // Some other thread could then acquire the lock, but observe inconsistent
 656   // or old monitor meta-data and heap data.  That violates the JMM.
 657   // To that end, the 1-0 exit() operation must have at least STST|LDST
 658   // "release" barrier semantics.  Specifically, there must be at least a
 659   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 660   // the lock.   The barrier ensures that changes to monitor meta-data and data
 661   // protected by the lock will be visible before we release the lock, and
 662   // therefore before some other thread (CPU) has a chance to acquire the lock.
 663   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 664   //
 665   // Critically, any prior STs to _succ or EntryList must be visible before
 666   // the ST of null into _owner in the *subsequent* (following) corresponding
 667   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 668   // execute a serializing instruction.
 669 
 670   return;
 671 }
 672 
 673 // ReenterI() is a specialized inline form of the latter half of the
 674 // contended slow-path from EnterI().  We use ReenterI() only for
 675 // monitor reentry in wait().
 676 //
 677 // In the future we should reconcile EnterI() and ReenterI(), adding
 678 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 679 // loop accordingly.
 680 
 681 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 682   assert(Self != NULL, "invariant");
 683   assert(SelfNode != NULL, "invariant");
 684   assert(SelfNode->_thread == Self, "invariant");
 685   assert(_waiters > 0, "invariant");
 686   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 687   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 688   JavaThread * jt = (JavaThread *) Self;
 689 
 690   int nWakeups = 0;
 691   for (;;) {
 692     ObjectWaiter::TStates v = SelfNode->TState;
 693     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 694     assert(_owner != Self, "invariant");
 695 
 696     if (TryLock(Self) > 0) break;
 697     if (TrySpin(Self) > 0) break;
 698 
 699     // State transition wrappers around park() ...
 700     // ReenterI() wisely defers state transitions until
 701     // it's clear we must park the thread.
 702     {
 703       OSThreadContendState osts(Self->osthread());
 704       ThreadBlockInVM tbivm(jt);
 705 
 706       // cleared by handle_special_suspend_equivalent_condition()
 707       // or java_suspend_self()
 708       jt->set_suspend_equivalent();
 709       Self->_ParkEvent->park();
 710 
 711       // were we externally suspended while we were waiting?
 712       for (;;) {
 713         if (!ExitSuspendEquivalent(jt)) break;
 714         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 715         jt->java_suspend_self();
 716         jt->set_suspend_equivalent();
 717       }
 718     }
 719 
 720     // Try again, but just so we distinguish between futile wakeups and
 721     // successful wakeups.  The following test isn't algorithmically
 722     // necessary, but it helps us maintain sensible statistics.
 723     if (TryLock(Self) > 0) break;
 724 
 725     // The lock is still contested.
 726     // Keep a tally of the # of futile wakeups.
 727     // Note that the counter is not protected by a lock or updated by atomics.
 728     // That is by design - we trade "lossy" counters which are exposed to
 729     // races during updates for a lower probe effect.
 730     ++nWakeups;
 731 
 732     // Assuming this is not a spurious wakeup we'll normally
 733     // find that _succ == Self.
 734     if (_succ == Self) _succ = NULL;
 735 
 736     // Invariant: after clearing _succ a contending thread
 737     // *must* retry  _owner before parking.
 738     OrderAccess::fence();
 739 
 740     // This PerfData object can be used in parallel with a safepoint.
 741     // See the work around in PerfDataManager::destroy().
 742     OM_PERFDATA_OP(FutileWakeups, inc());
 743   }
 744 
 745   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 746   // Normally we'll find Self on the EntryList.
 747   // Unlinking from the EntryList is constant-time and atomic-free.
 748   // From the perspective of the lock owner (this thread), the
 749   // EntryList is stable and cxq is prepend-only.
 750   // The head of cxq is volatile but the interior is stable.
 751   // In addition, Self.TState is stable.
 752 
 753   assert(_owner == Self, "invariant");
 754   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 755   UnlinkAfterAcquire(Self, SelfNode);
 756   if (_succ == Self) _succ = NULL;
 757   assert(_succ != Self, "invariant");
 758   SelfNode->TState = ObjectWaiter::TS_RUN;
 759   OrderAccess::fence();      // see comments at the end of EnterI()
 760 }
 761 
 762 // By convention we unlink a contending thread from EntryList|cxq immediately
 763 // after the thread acquires the lock in ::enter().  Equally, we could defer
 764 // unlinking the thread until ::exit()-time.
 765 
 766 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 767   assert(_owner == Self, "invariant");
 768   assert(SelfNode->_thread == Self, "invariant");
 769 
 770   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 771     // Normal case: remove Self from the DLL EntryList .
 772     // This is a constant-time operation.
 773     ObjectWaiter * nxt = SelfNode->_next;
 774     ObjectWaiter * prv = SelfNode->_prev;
 775     if (nxt != NULL) nxt->_prev = prv;
 776     if (prv != NULL) prv->_next = nxt;
 777     if (SelfNode == _EntryList) _EntryList = nxt;
 778     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 779     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 780   } else {
 781     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 782     // Inopportune interleaving -- Self is still on the cxq.
 783     // This usually means the enqueue of self raced an exiting thread.
 784     // Normally we'll find Self near the front of the cxq, so
 785     // dequeueing is typically fast.  If needbe we can accelerate
 786     // this with some MCS/CHL-like bidirectional list hints and advisory
 787     // back-links so dequeueing from the interior will normally operate
 788     // in constant-time.
 789     // Dequeue Self from either the head (with CAS) or from the interior
 790     // with a linear-time scan and normal non-atomic memory operations.
 791     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 792     // and then unlink Self from EntryList.  We have to drain eventually,
 793     // so it might as well be now.
 794 
 795     ObjectWaiter * v = _cxq;
 796     assert(v != NULL, "invariant");
 797     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 798       // The CAS above can fail from interference IFF a "RAT" arrived.
 799       // In that case Self must be in the interior and can no longer be
 800       // at the head of cxq.
 801       if (v == SelfNode) {
 802         assert(_cxq != v, "invariant");
 803         v = _cxq;          // CAS above failed - start scan at head of list
 804       }
 805       ObjectWaiter * p;
 806       ObjectWaiter * q = NULL;
 807       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 808         q = p;
 809         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 810       }
 811       assert(v != SelfNode, "invariant");
 812       assert(p == SelfNode, "Node not found on cxq");
 813       assert(p != _cxq, "invariant");
 814       assert(q != NULL, "invariant");
 815       assert(q->_next == p, "invariant");
 816       q->_next = p->_next;
 817     }
 818   }
 819 
 820 #ifdef ASSERT
 821   // Diagnostic hygiene ...
 822   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 823   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 824   SelfNode->TState = ObjectWaiter::TS_RUN;
 825 #endif
 826 }
 827 
 828 // -----------------------------------------------------------------------------
 829 // Exit support
 830 //
 831 // exit()
 832 // ~~~~~~
 833 // Note that the collector can't reclaim the objectMonitor or deflate
 834 // the object out from underneath the thread calling ::exit() as the
 835 // thread calling ::exit() never transitions to a stable state.
 836 // This inhibits GC, which in turn inhibits asynchronous (and
 837 // inopportune) reclamation of "this".
 838 //
 839 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 840 // There's one exception to the claim above, however.  EnterI() can call
 841 // exit() to drop a lock if the acquirer has been externally suspended.
 842 // In that case exit() is called with _thread_state as _thread_blocked,
 843 // but the monitor's _count field is > 0, which inhibits reclamation.
 844 //
 845 // 1-0 exit
 846 // ~~~~~~~~
 847 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 848 // the fast-path operators have been optimized so the common ::exit()
 849 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 850 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 851 // greatly improves latency -- MEMBAR and CAS having considerable local
 852 // latency on modern processors -- but at the cost of "stranding".  Absent the
 853 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 854 // ::enter() path, resulting in the entering thread being stranding
 855 // and a progress-liveness failure.   Stranding is extremely rare.
 856 // We use timers (timed park operations) & periodic polling to detect
 857 // and recover from stranding.  Potentially stranded threads periodically
 858 // wake up and poll the lock.  See the usage of the _Responsible variable.
 859 //
 860 // The CAS() in enter provides for safety and exclusion, while the CAS or
 861 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 862 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 863 // We detect and recover from stranding with timers.
 864 //
 865 // If a thread transiently strands it'll park until (a) another
 866 // thread acquires the lock and then drops the lock, at which time the
 867 // exiting thread will notice and unpark the stranded thread, or, (b)
 868 // the timer expires.  If the lock is high traffic then the stranding latency
 869 // will be low due to (a).  If the lock is low traffic then the odds of
 870 // stranding are lower, although the worst-case stranding latency
 871 // is longer.  Critically, we don't want to put excessive load in the
 872 // platform's timer subsystem.  We want to minimize both the timer injection
 873 // rate (timers created/sec) as well as the number of timers active at
 874 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 875 // the integral of the # of active timers at any instant over time).
 876 // Both impinge on OS scalability.  Given that, at most one thread parked on
 877 // a monitor will use a timer.
 878 //
 879 // There is also the risk of a futile wake-up. If we drop the lock
 880 // another thread can reacquire the lock immediately, and we can
 881 // then wake a thread unnecessarily. This is benign, and we've
 882 // structured the code so the windows are short and the frequency
 883 // of such futile wakups is low.
 884 
 885 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 886   Thread * const Self = THREAD;
 887   if (THREAD != _owner) {
 888     if (THREAD->is_lock_owned((address) _owner)) {
 889       // Transmute _owner from a BasicLock pointer to a Thread address.
 890       // We don't need to hold _mutex for this transition.
 891       // Non-null to Non-null is safe as long as all readers can
 892       // tolerate either flavor.
 893       assert(_recursions == 0, "invariant");
 894       _owner = THREAD;
 895       _recursions = 0;
 896     } else {
 897       // Apparent unbalanced locking ...
 898       // Naively we'd like to throw IllegalMonitorStateException.
 899       // As a practical matter we can neither allocate nor throw an
 900       // exception as ::exit() can be called from leaf routines.
 901       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 902       // Upon deeper reflection, however, in a properly run JVM the only
 903       // way we should encounter this situation is in the presence of
 904       // unbalanced JNI locking. TODO: CheckJNICalls.
 905       // See also: CR4414101
 906       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 907       return;
 908     }
 909   }
 910 
 911   if (_recursions != 0) {
 912     _recursions--;        // this is simple recursive enter
 913     return;
 914   }
 915 
 916   // Invariant: after setting Responsible=null an thread must execute
 917   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 918   _Responsible = NULL;
 919 
 920 #if INCLUDE_JFR
 921   // get the owner's thread id for the MonitorEnter event
 922   // if it is enabled and the thread isn't suspended
 923   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 924     _previous_owner_tid = JFR_THREAD_ID(Self);
 925   }
 926 #endif
 927 
 928   for (;;) {
 929     assert(THREAD == _owner, "invariant");
 930 
 931     if (Knob_ExitPolicy == 0) {
 932       // release semantics: prior loads and stores from within the critical section
 933       // must not float (reorder) past the following store that drops the lock.
 934       // On SPARC that requires MEMBAR #loadstore|#storestore.
 935       // But of course in TSO #loadstore|#storestore is not required.
 936       // I'd like to write one of the following:
 937       // A.  OrderAccess::release() ; _owner = NULL
 938       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 939       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 940       // store into a _dummy variable.  That store is not needed, but can result
 941       // in massive wasteful coherency traffic on classic SMP systems.
 942       // Instead, I use release_store(), which is implemented as just a simple
 943       // ST on x64, x86 and SPARC.
 944       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 945       OrderAccess::storeload();                        // See if we need to wake a successor
 946       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 947         return;
 948       }
 949       // Other threads are blocked trying to acquire the lock.
 950 
 951       // Normally the exiting thread is responsible for ensuring succession,
 952       // but if other successors are ready or other entering threads are spinning
 953       // then this thread can simply store NULL into _owner and exit without
 954       // waking a successor.  The existence of spinners or ready successors
 955       // guarantees proper succession (liveness).  Responsibility passes to the
 956       // ready or running successors.  The exiting thread delegates the duty.
 957       // More precisely, if a successor already exists this thread is absolved
 958       // of the responsibility of waking (unparking) one.
 959       //
 960       // The _succ variable is critical to reducing futile wakeup frequency.
 961       // _succ identifies the "heir presumptive" thread that has been made
 962       // ready (unparked) but that has not yet run.  We need only one such
 963       // successor thread to guarantee progress.
 964       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 965       // section 3.3 "Futile Wakeup Throttling" for details.
 966       //
 967       // Note that spinners in Enter() also set _succ non-null.
 968       // In the current implementation spinners opportunistically set
 969       // _succ so that exiting threads might avoid waking a successor.
 970       // Another less appealing alternative would be for the exiting thread
 971       // to drop the lock and then spin briefly to see if a spinner managed
 972       // to acquire the lock.  If so, the exiting thread could exit
 973       // immediately without waking a successor, otherwise the exiting
 974       // thread would need to dequeue and wake a successor.
 975       // (Note that we'd need to make the post-drop spin short, but no
 976       // shorter than the worst-case round-trip cache-line migration time.
 977       // The dropped lock needs to become visible to the spinner, and then
 978       // the acquisition of the lock by the spinner must become visible to
 979       // the exiting thread).
 980 
 981       // It appears that an heir-presumptive (successor) must be made ready.
 982       // Only the current lock owner can manipulate the EntryList or
 983       // drain _cxq, so we need to reacquire the lock.  If we fail
 984       // to reacquire the lock the responsibility for ensuring succession
 985       // falls to the new owner.
 986       //
 987       if (!Atomic::replace_if_null(THREAD, &_owner)) {
 988         return;
 989       }
 990     } else {
 991       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 992         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 993         OrderAccess::storeload();
 994         // Ratify the previously observed values.
 995         if (_cxq == NULL || _succ != NULL) {
 996           return;
 997         }
 998 
 999         // inopportune interleaving -- the exiting thread (this thread)
1000         // in the fast-exit path raced an entering thread in the slow-enter
1001         // path.
1002         // We have two choices:
1003         // A.  Try to reacquire the lock.
1004         //     If the CAS() fails return immediately, otherwise
1005         //     we either restart/rerun the exit operation, or simply
1006         //     fall-through into the code below which wakes a successor.
1007         // B.  If the elements forming the EntryList|cxq are TSM
1008         //     we could simply unpark() the lead thread and return
1009         //     without having set _succ.
1010         if (!Atomic::replace_if_null(THREAD, &_owner)) {
1011           return;
1012         }
1013       }
1014     }
1015 
1016     guarantee(_owner == THREAD, "invariant");
1017 
1018     ObjectWaiter * w = NULL;
1019     int QMode = Knob_QMode;
1020 
1021     if (QMode == 2 && _cxq != NULL) {
1022       // QMode == 2 : cxq has precedence over EntryList.
1023       // Try to directly wake a successor from the cxq.
1024       // If successful, the successor will need to unlink itself from cxq.
1025       w = _cxq;
1026       assert(w != NULL, "invariant");
1027       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1028       ExitEpilog(Self, w);
1029       return;
1030     }
1031 
1032     if (QMode == 3 && _cxq != NULL) {
1033       // Aggressively drain cxq into EntryList at the first opportunity.
1034       // This policy ensure that recently-run threads live at the head of EntryList.
1035       // Drain _cxq into EntryList - bulk transfer.
1036       // First, detach _cxq.
1037       // The following loop is tantamount to: w = swap(&cxq, NULL)
1038       w = _cxq;
1039       for (;;) {
1040         assert(w != NULL, "Invariant");
1041         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1042         if (u == w) break;
1043         w = u;
1044       }
1045       assert(w != NULL, "invariant");
1046 
1047       ObjectWaiter * q = NULL;
1048       ObjectWaiter * p;
1049       for (p = w; p != NULL; p = p->_next) {
1050         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1051         p->TState = ObjectWaiter::TS_ENTER;
1052         p->_prev = q;
1053         q = p;
1054       }
1055 
1056       // Append the RATs to the EntryList
1057       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1058       ObjectWaiter * Tail;
1059       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1060            Tail = Tail->_next)
1061         /* empty */;
1062       if (Tail == NULL) {
1063         _EntryList = w;
1064       } else {
1065         Tail->_next = w;
1066         w->_prev = Tail;
1067       }
1068 
1069       // Fall thru into code that tries to wake a successor from EntryList
1070     }
1071 
1072     if (QMode == 4 && _cxq != NULL) {
1073       // Aggressively drain cxq into EntryList at the first opportunity.
1074       // This policy ensure that recently-run threads live at the head of EntryList.
1075 
1076       // Drain _cxq into EntryList - bulk transfer.
1077       // First, detach _cxq.
1078       // The following loop is tantamount to: w = swap(&cxq, NULL)
1079       w = _cxq;
1080       for (;;) {
1081         assert(w != NULL, "Invariant");
1082         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1083         if (u == w) break;
1084         w = u;
1085       }
1086       assert(w != NULL, "invariant");
1087 
1088       ObjectWaiter * q = NULL;
1089       ObjectWaiter * p;
1090       for (p = w; p != NULL; p = p->_next) {
1091         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1092         p->TState = ObjectWaiter::TS_ENTER;
1093         p->_prev = q;
1094         q = p;
1095       }
1096 
1097       // Prepend the RATs to the EntryList
1098       if (_EntryList != NULL) {
1099         q->_next = _EntryList;
1100         _EntryList->_prev = q;
1101       }
1102       _EntryList = w;
1103 
1104       // Fall thru into code that tries to wake a successor from EntryList
1105     }
1106 
1107     w = _EntryList;
1108     if (w != NULL) {
1109       // I'd like to write: guarantee (w->_thread != Self).
1110       // But in practice an exiting thread may find itself on the EntryList.
1111       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1112       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1113       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1114       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1115       // release the lock "O".  T2 resumes immediately after the ST of null into
1116       // _owner, above.  T2 notices that the EntryList is populated, so it
1117       // reacquires the lock and then finds itself on the EntryList.
1118       // Given all that, we have to tolerate the circumstance where "w" is
1119       // associated with Self.
1120       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1121       ExitEpilog(Self, w);
1122       return;
1123     }
1124 
1125     // If we find that both _cxq and EntryList are null then just
1126     // re-run the exit protocol from the top.
1127     w = _cxq;
1128     if (w == NULL) continue;
1129 
1130     // Drain _cxq into EntryList - bulk transfer.
1131     // First, detach _cxq.
1132     // The following loop is tantamount to: w = swap(&cxq, NULL)
1133     for (;;) {
1134       assert(w != NULL, "Invariant");
1135       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1136       if (u == w) break;
1137       w = u;
1138     }
1139 
1140     assert(w != NULL, "invariant");
1141     assert(_EntryList == NULL, "invariant");
1142 
1143     // Convert the LIFO SLL anchored by _cxq into a DLL.
1144     // The list reorganization step operates in O(LENGTH(w)) time.
1145     // It's critical that this step operate quickly as
1146     // "Self" still holds the outer-lock, restricting parallelism
1147     // and effectively lengthening the critical section.
1148     // Invariant: s chases t chases u.
1149     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1150     // we have faster access to the tail.
1151 
1152     if (QMode == 1) {
1153       // QMode == 1 : drain cxq to EntryList, reversing order
1154       // We also reverse the order of the list.
1155       ObjectWaiter * s = NULL;
1156       ObjectWaiter * t = w;
1157       ObjectWaiter * u = NULL;
1158       while (t != NULL) {
1159         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1160         t->TState = ObjectWaiter::TS_ENTER;
1161         u = t->_next;
1162         t->_prev = u;
1163         t->_next = s;
1164         s = t;
1165         t = u;
1166       }
1167       _EntryList  = s;
1168       assert(s != NULL, "invariant");
1169     } else {
1170       // QMode == 0 or QMode == 2
1171       _EntryList = w;
1172       ObjectWaiter * q = NULL;
1173       ObjectWaiter * p;
1174       for (p = w; p != NULL; p = p->_next) {
1175         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1176         p->TState = ObjectWaiter::TS_ENTER;
1177         p->_prev = q;
1178         q = p;
1179       }
1180     }
1181 
1182     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1183     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1184 
1185     // See if we can abdicate to a spinner instead of waking a thread.
1186     // A primary goal of the implementation is to reduce the
1187     // context-switch rate.
1188     if (_succ != NULL) continue;
1189 
1190     w = _EntryList;
1191     if (w != NULL) {
1192       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1193       ExitEpilog(Self, w);
1194       return;
1195     }
1196   }
1197 }
1198 
1199 // ExitSuspendEquivalent:
1200 // A faster alternate to handle_special_suspend_equivalent_condition()
1201 //
1202 // handle_special_suspend_equivalent_condition() unconditionally
1203 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1204 // operations have high latency.  Note that in ::enter() we call HSSEC
1205 // while holding the monitor, so we effectively lengthen the critical sections.
1206 //
1207 // There are a number of possible solutions:
1208 //
1209 // A.  To ameliorate the problem we might also defer state transitions
1210 //     to as late as possible -- just prior to parking.
1211 //     Given that, we'd call HSSEC after having returned from park(),
1212 //     but before attempting to acquire the monitor.  This is only a
1213 //     partial solution.  It avoids calling HSSEC while holding the
1214 //     monitor (good), but it still increases successor reacquisition latency --
1215 //     the interval between unparking a successor and the time the successor
1216 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1217 //     If we use this technique we can also avoid EnterI()-exit() loop
1218 //     in ::enter() where we iteratively drop the lock and then attempt
1219 //     to reacquire it after suspending.
1220 //
1221 // B.  In the future we might fold all the suspend bits into a
1222 //     composite per-thread suspend flag and then update it with CAS().
1223 //     Alternately, a Dekker-like mechanism with multiple variables
1224 //     would suffice:
1225 //       ST Self->_suspend_equivalent = false
1226 //       MEMBAR
1227 //       LD Self_>_suspend_flags
1228 //
1229 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1230 // with a more efficient implementation, the need to use "FastHSSEC" has
1231 // decreased. - Dave
1232 
1233 
1234 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1235   const int Mode = Knob_FastHSSEC;
1236   if (Mode && !jSelf->is_external_suspend()) {
1237     assert(jSelf->is_suspend_equivalent(), "invariant");
1238     jSelf->clear_suspend_equivalent();
1239     if (2 == Mode) OrderAccess::storeload();
1240     if (!jSelf->is_external_suspend()) return false;
1241     // We raced a suspension -- fall thru into the slow path
1242     jSelf->set_suspend_equivalent();
1243   }
1244   return jSelf->handle_special_suspend_equivalent_condition();
1245 }
1246 
1247 
1248 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1249   assert(_owner == Self, "invariant");
1250 
1251   // Exit protocol:
1252   // 1. ST _succ = wakee
1253   // 2. membar #loadstore|#storestore;
1254   // 2. ST _owner = NULL
1255   // 3. unpark(wakee)
1256 
1257   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1258   ParkEvent * Trigger = Wakee->_event;
1259 
1260   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1261   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1262   // out-of-scope (non-extant).
1263   Wakee  = NULL;
1264 
1265   // Drop the lock
1266   OrderAccess::release_store(&_owner, (void*)NULL);
1267   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1268 
1269   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1270   Trigger->unpark();
1271 
1272   // Maintain stats and report events to JVMTI
1273   OM_PERFDATA_OP(Parks, inc());
1274 }
1275 
1276 
1277 // -----------------------------------------------------------------------------
1278 // Class Loader deadlock handling.
1279 //
1280 // complete_exit exits a lock returning recursion count
1281 // complete_exit/reenter operate as a wait without waiting
1282 // complete_exit requires an inflated monitor
1283 // The _owner field is not always the Thread addr even with an
1284 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1285 // thread due to contention.
1286 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1287   Thread * const Self = THREAD;
1288   assert(Self->is_Java_thread(), "Must be Java thread!");
1289   JavaThread *jt = (JavaThread *)THREAD;
1290 
1291   DeferredInitialize();
1292 
1293   if (THREAD != _owner) {
1294     if (THREAD->is_lock_owned ((address)_owner)) {
1295       assert(_recursions == 0, "internal state error");
1296       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1297       _recursions = 0;
1298     }
1299   }
1300 
1301   guarantee(Self == _owner, "complete_exit not owner");
1302   intptr_t save = _recursions; // record the old recursion count
1303   _recursions = 0;        // set the recursion level to be 0
1304   exit(true, Self);           // exit the monitor
1305   guarantee(_owner != Self, "invariant");
1306   return save;
1307 }
1308 
1309 // reenter() enters a lock and sets recursion count
1310 // complete_exit/reenter operate as a wait without waiting
1311 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1312   Thread * const Self = THREAD;
1313   assert(Self->is_Java_thread(), "Must be Java thread!");
1314   JavaThread *jt = (JavaThread *)THREAD;
1315 
1316   guarantee(_owner != Self, "reenter already owner");
1317   enter(THREAD);       // enter the monitor
1318   guarantee(_recursions == 0, "reenter recursion");
1319   _recursions = recursions;
1320   return;
1321 }
1322 
1323 
1324 // -----------------------------------------------------------------------------
1325 // A macro is used below because there may already be a pending
1326 // exception which should not abort the execution of the routines
1327 // which use this (which is why we don't put this into check_slow and
1328 // call it with a CHECK argument).
1329 
1330 #define CHECK_OWNER()                                                       \
1331   do {                                                                      \
1332     if (THREAD != _owner) {                                                 \
1333       if (THREAD->is_lock_owned((address) _owner)) {                        \
1334         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1335         _recursions = 0;                                                    \
1336       } else {                                                              \
1337         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1338       }                                                                     \
1339     }                                                                       \
1340   } while (false)
1341 
1342 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1343 // TODO-FIXME: remove check_slow() -- it's likely dead.
1344 
1345 void ObjectMonitor::check_slow(TRAPS) {
1346   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1347   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1348 }
1349 
1350 static int Adjust(volatile int * adr, int dx) {
1351   int v;
1352   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1353   return v;
1354 }
1355 
1356 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1357                                     ObjectMonitor* monitor,
1358                                     jlong notifier_tid,
1359                                     jlong timeout,
1360                                     bool timedout) {
1361   assert(event != NULL, "invariant");
1362   assert(monitor != NULL, "invariant");
1363   event->set_monitorClass(((oop)monitor->object())->klass());
1364   event->set_timeout(timeout);
1365   event->set_address((uintptr_t)monitor->object_addr());
1366   event->set_notifier(notifier_tid);
1367   event->set_timedOut(timedout);
1368   event->commit();
1369 }
1370 
1371 // -----------------------------------------------------------------------------
1372 // Wait/Notify/NotifyAll
1373 //
1374 // Note: a subset of changes to ObjectMonitor::wait()
1375 // will need to be replicated in complete_exit
1376 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1377   Thread * const Self = THREAD;
1378   assert(Self->is_Java_thread(), "Must be Java thread!");
1379   JavaThread *jt = (JavaThread *)THREAD;
1380 
1381   DeferredInitialize();
1382 
1383   // Throw IMSX or IEX.
1384   CHECK_OWNER();
1385 
1386   EventJavaMonitorWait event;
1387 
1388   // check for a pending interrupt
1389   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1390     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1391     if (JvmtiExport::should_post_monitor_waited()) {
1392       // Note: 'false' parameter is passed here because the
1393       // wait was not timed out due to thread interrupt.
1394       JvmtiExport::post_monitor_waited(jt, this, false);
1395 
1396       // In this short circuit of the monitor wait protocol, the
1397       // current thread never drops ownership of the monitor and
1398       // never gets added to the wait queue so the current thread
1399       // cannot be made the successor. This means that the
1400       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1401       // consume an unpark() meant for the ParkEvent associated with
1402       // this ObjectMonitor.
1403     }
1404     if (event.should_commit()) {
1405       post_monitor_wait_event(&event, this, 0, millis, false);
1406     }
1407     THROW(vmSymbols::java_lang_InterruptedException());
1408     return;
1409   }
1410 
1411   assert(Self->_Stalled == 0, "invariant");
1412   Self->_Stalled = intptr_t(this);
1413   jt->set_current_waiting_monitor(this);
1414 
1415   // create a node to be put into the queue
1416   // Critically, after we reset() the event but prior to park(), we must check
1417   // for a pending interrupt.
1418   ObjectWaiter node(Self);
1419   node.TState = ObjectWaiter::TS_WAIT;
1420   Self->_ParkEvent->reset();
1421   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1422 
1423   // Enter the waiting queue, which is a circular doubly linked list in this case
1424   // but it could be a priority queue or any data structure.
1425   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1426   // by the the owner of the monitor *except* in the case where park()
1427   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1428   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1429 
1430   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1431   AddWaiter(&node);
1432   Thread::SpinRelease(&_WaitSetLock);
1433 
1434   _Responsible = NULL;
1435 
1436   intptr_t save = _recursions; // record the old recursion count
1437   _waiters++;                  // increment the number of waiters
1438   _recursions = 0;             // set the recursion level to be 1
1439   exit(true, Self);                    // exit the monitor
1440   guarantee(_owner != Self, "invariant");
1441 
1442   // The thread is on the WaitSet list - now park() it.
1443   // On MP systems it's conceivable that a brief spin before we park
1444   // could be profitable.
1445   //
1446   // TODO-FIXME: change the following logic to a loop of the form
1447   //   while (!timeout && !interrupted && _notified == 0) park()
1448 
1449   int ret = OS_OK;
1450   int WasNotified = 0;
1451   { // State transition wrappers
1452     OSThread* osthread = Self->osthread();
1453     OSThreadWaitState osts(osthread, true);
1454     {
1455       ThreadBlockInVM tbivm(jt);
1456       // Thread is in thread_blocked state and oop access is unsafe.
1457       jt->set_suspend_equivalent();
1458 
1459       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1460         // Intentionally empty
1461       } else if (node._notified == 0) {
1462         if (millis <= 0) {
1463           Self->_ParkEvent->park();
1464         } else {
1465           ret = Self->_ParkEvent->park(millis);
1466         }
1467       }
1468 
1469       // were we externally suspended while we were waiting?
1470       if (ExitSuspendEquivalent (jt)) {
1471         // TODO-FIXME: add -- if succ == Self then succ = null.
1472         jt->java_suspend_self();
1473       }
1474 
1475     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1476 
1477     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1478     // from the WaitSet to the EntryList.
1479     // See if we need to remove Node from the WaitSet.
1480     // We use double-checked locking to avoid grabbing _WaitSetLock
1481     // if the thread is not on the wait queue.
1482     //
1483     // Note that we don't need a fence before the fetch of TState.
1484     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1485     // written by the is thread. (perhaps the fetch might even be satisfied
1486     // by a look-aside into the processor's own store buffer, although given
1487     // the length of the code path between the prior ST and this load that's
1488     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1489     // then we'll acquire the lock and then re-fetch a fresh TState value.
1490     // That is, we fail toward safety.
1491 
1492     if (node.TState == ObjectWaiter::TS_WAIT) {
1493       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1494       if (node.TState == ObjectWaiter::TS_WAIT) {
1495         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1496         assert(node._notified == 0, "invariant");
1497         node.TState = ObjectWaiter::TS_RUN;
1498       }
1499       Thread::SpinRelease(&_WaitSetLock);
1500     }
1501 
1502     // The thread is now either on off-list (TS_RUN),
1503     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1504     // The Node's TState variable is stable from the perspective of this thread.
1505     // No other threads will asynchronously modify TState.
1506     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1507     OrderAccess::loadload();
1508     if (_succ == Self) _succ = NULL;
1509     WasNotified = node._notified;
1510 
1511     // Reentry phase -- reacquire the monitor.
1512     // re-enter contended monitor after object.wait().
1513     // retain OBJECT_WAIT state until re-enter successfully completes
1514     // Thread state is thread_in_vm and oop access is again safe,
1515     // although the raw address of the object may have changed.
1516     // (Don't cache naked oops over safepoints, of course).
1517 
1518     // post monitor waited event. Note that this is past-tense, we are done waiting.
1519     if (JvmtiExport::should_post_monitor_waited()) {
1520       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1521 
1522       if (node._notified != 0 && _succ == Self) {
1523         // In this part of the monitor wait-notify-reenter protocol it
1524         // is possible (and normal) for another thread to do a fastpath
1525         // monitor enter-exit while this thread is still trying to get
1526         // to the reenter portion of the protocol.
1527         //
1528         // The ObjectMonitor was notified and the current thread is
1529         // the successor which also means that an unpark() has already
1530         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1531         // consume the unpark() that was done when the successor was
1532         // set because the same ParkEvent is shared between Java
1533         // monitors and JVM/TI RawMonitors (for now).
1534         //
1535         // We redo the unpark() to ensure forward progress, i.e., we
1536         // don't want all pending threads hanging (parked) with none
1537         // entering the unlocked monitor.
1538         node._event->unpark();
1539       }
1540     }
1541 
1542     if (event.should_commit()) {
1543       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1544     }
1545 
1546     OrderAccess::fence();
1547 
1548     assert(Self->_Stalled != 0, "invariant");
1549     Self->_Stalled = 0;
1550 
1551     assert(_owner != Self, "invariant");
1552     ObjectWaiter::TStates v = node.TState;
1553     if (v == ObjectWaiter::TS_RUN) {
1554       enter(Self);
1555     } else {
1556       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1557       ReenterI(Self, &node);
1558       node.wait_reenter_end(this);
1559     }
1560 
1561     // Self has reacquired the lock.
1562     // Lifecycle - the node representing Self must not appear on any queues.
1563     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1564     // want residual elements associated with this thread left on any lists.
1565     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1566     assert(_owner == Self, "invariant");
1567     assert(_succ != Self, "invariant");
1568   } // OSThreadWaitState()
1569 
1570   jt->set_current_waiting_monitor(NULL);
1571 
1572   guarantee(_recursions == 0, "invariant");
1573   _recursions = save;     // restore the old recursion count
1574   _waiters--;             // decrement the number of waiters
1575 
1576   // Verify a few postconditions
1577   assert(_owner == Self, "invariant");
1578   assert(_succ != Self, "invariant");
1579   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1580 
1581   // check if the notification happened
1582   if (!WasNotified) {
1583     // no, it could be timeout or Thread.interrupt() or both
1584     // check for interrupt event, otherwise it is timeout
1585     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1586       THROW(vmSymbols::java_lang_InterruptedException());
1587     }
1588   }
1589 
1590   // NOTE: Spurious wake up will be consider as timeout.
1591   // Monitor notify has precedence over thread interrupt.
1592 }
1593 
1594 
1595 // Consider:
1596 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1597 // then instead of transferring a thread from the WaitSet to the EntryList
1598 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1599 
1600 void ObjectMonitor::INotify(Thread * Self) {
1601   const int policy = Knob_MoveNotifyee;
1602 
1603   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1604   ObjectWaiter * iterator = DequeueWaiter();
1605   if (iterator != NULL) {
1606     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1607     guarantee(iterator->_notified == 0, "invariant");
1608     // Disposition - what might we do with iterator ?
1609     // a.  add it directly to the EntryList - either tail (policy == 1)
1610     //     or head (policy == 0).
1611     // b.  push it onto the front of the _cxq (policy == 2).
1612     // For now we use (b).
1613     if (policy != 4) {
1614       iterator->TState = ObjectWaiter::TS_ENTER;
1615     }
1616     iterator->_notified = 1;
1617     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1618 
1619     ObjectWaiter * list = _EntryList;
1620     if (list != NULL) {
1621       assert(list->_prev == NULL, "invariant");
1622       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1623       assert(list != iterator, "invariant");
1624     }
1625 
1626     if (policy == 0) {       // prepend to EntryList
1627       if (list == NULL) {
1628         iterator->_next = iterator->_prev = NULL;
1629         _EntryList = iterator;
1630       } else {
1631         list->_prev = iterator;
1632         iterator->_next = list;
1633         iterator->_prev = NULL;
1634         _EntryList = iterator;
1635       }
1636     } else if (policy == 1) {      // append to EntryList
1637       if (list == NULL) {
1638         iterator->_next = iterator->_prev = NULL;
1639         _EntryList = iterator;
1640       } else {
1641         // CONSIDER:  finding the tail currently requires a linear-time walk of
1642         // the EntryList.  We can make tail access constant-time by converting to
1643         // a CDLL instead of using our current DLL.
1644         ObjectWaiter * tail;
1645         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1646         assert(tail != NULL && tail->_next == NULL, "invariant");
1647         tail->_next = iterator;
1648         iterator->_prev = tail;
1649         iterator->_next = NULL;
1650       }
1651     } else if (policy == 2) {      // prepend to cxq
1652       if (list == NULL) {
1653         iterator->_next = iterator->_prev = NULL;
1654         _EntryList = iterator;
1655       } else {
1656         iterator->TState = ObjectWaiter::TS_CXQ;
1657         for (;;) {
1658           ObjectWaiter * front = _cxq;
1659           iterator->_next = front;
1660           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1661             break;
1662           }
1663         }
1664       }
1665     } else if (policy == 3) {      // append to cxq
1666       iterator->TState = ObjectWaiter::TS_CXQ;
1667       for (;;) {
1668         ObjectWaiter * tail = _cxq;
1669         if (tail == NULL) {
1670           iterator->_next = NULL;
1671           if (Atomic::replace_if_null(iterator, &_cxq)) {
1672             break;
1673           }
1674         } else {
1675           while (tail->_next != NULL) tail = tail->_next;
1676           tail->_next = iterator;
1677           iterator->_prev = tail;
1678           iterator->_next = NULL;
1679           break;
1680         }
1681       }
1682     } else {
1683       ParkEvent * ev = iterator->_event;
1684       iterator->TState = ObjectWaiter::TS_RUN;
1685       OrderAccess::fence();
1686       ev->unpark();
1687     }
1688 
1689     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1690     // move the add-to-EntryList operation, above, outside the critical section
1691     // protected by _WaitSetLock.  In practice that's not useful.  With the
1692     // exception of  wait() timeouts and interrupts the monitor owner
1693     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1694     // on _WaitSetLock so it's not profitable to reduce the length of the
1695     // critical section.
1696 
1697     if (policy < 4) {
1698       iterator->wait_reenter_begin(this);
1699     }
1700   }
1701   Thread::SpinRelease(&_WaitSetLock);
1702 }
1703 
1704 // Consider: a not-uncommon synchronization bug is to use notify() when
1705 // notifyAll() is more appropriate, potentially resulting in stranded
1706 // threads; this is one example of a lost wakeup. A useful diagnostic
1707 // option is to force all notify() operations to behave as notifyAll().
1708 //
1709 // Note: We can also detect many such problems with a "minimum wait".
1710 // When the "minimum wait" is set to a small non-zero timeout value
1711 // and the program does not hang whereas it did absent "minimum wait",
1712 // that suggests a lost wakeup bug.
1713 
1714 void ObjectMonitor::notify(TRAPS) {
1715   CHECK_OWNER();
1716   if (_WaitSet == NULL) {
1717     return;
1718   }
1719   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1720   INotify(THREAD);
1721   OM_PERFDATA_OP(Notifications, inc(1));
1722 }
1723 
1724 
1725 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1726 // from the waitset to the EntryList. This could be done more efficiently with a
1727 // single bulk transfer but in practice it's not time-critical. Beware too,
1728 // that in prepend-mode we invert the order of the waiters. Let's say that the
1729 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1730 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1731 
1732 void ObjectMonitor::notifyAll(TRAPS) {
1733   CHECK_OWNER();
1734   if (_WaitSet == NULL) {
1735     return;
1736   }
1737 
1738   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1739   int tally = 0;
1740   while (_WaitSet != NULL) {
1741     tally++;
1742     INotify(THREAD);
1743   }
1744 
1745   OM_PERFDATA_OP(Notifications, inc(tally));
1746 }
1747 
1748 // -----------------------------------------------------------------------------
1749 // Adaptive Spinning Support
1750 //
1751 // Adaptive spin-then-block - rational spinning
1752 //
1753 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1754 // algorithm.  On high order SMP systems it would be better to start with
1755 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1756 // a contending thread could enqueue itself on the cxq and then spin locally
1757 // on a thread-specific variable such as its ParkEvent._Event flag.
1758 // That's left as an exercise for the reader.  Note that global spinning is
1759 // not problematic on Niagara, as the L2 cache serves the interconnect and
1760 // has both low latency and massive bandwidth.
1761 //
1762 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1763 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1764 // (duration) or we can fix the count at approximately the duration of
1765 // a context switch and vary the frequency.   Of course we could also
1766 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1767 // For a description of 'Adaptive spin-then-block mutual exclusion in
1768 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1769 //
1770 // This implementation varies the duration "D", where D varies with
1771 // the success rate of recent spin attempts. (D is capped at approximately
1772 // length of a round-trip context switch).  The success rate for recent
1773 // spin attempts is a good predictor of the success rate of future spin
1774 // attempts.  The mechanism adapts automatically to varying critical
1775 // section length (lock modality), system load and degree of parallelism.
1776 // D is maintained per-monitor in _SpinDuration and is initialized
1777 // optimistically.  Spin frequency is fixed at 100%.
1778 //
1779 // Note that _SpinDuration is volatile, but we update it without locks
1780 // or atomics.  The code is designed so that _SpinDuration stays within
1781 // a reasonable range even in the presence of races.  The arithmetic
1782 // operations on _SpinDuration are closed over the domain of legal values,
1783 // so at worst a race will install and older but still legal value.
1784 // At the very worst this introduces some apparent non-determinism.
1785 // We might spin when we shouldn't or vice-versa, but since the spin
1786 // count are relatively short, even in the worst case, the effect is harmless.
1787 //
1788 // Care must be taken that a low "D" value does not become an
1789 // an absorbing state.  Transient spinning failures -- when spinning
1790 // is overall profitable -- should not cause the system to converge
1791 // on low "D" values.  We want spinning to be stable and predictable
1792 // and fairly responsive to change and at the same time we don't want
1793 // it to oscillate, become metastable, be "too" non-deterministic,
1794 // or converge on or enter undesirable stable absorbing states.
1795 //
1796 // We implement a feedback-based control system -- using past behavior
1797 // to predict future behavior.  We face two issues: (a) if the
1798 // input signal is random then the spin predictor won't provide optimal
1799 // results, and (b) if the signal frequency is too high then the control
1800 // system, which has some natural response lag, will "chase" the signal.
1801 // (b) can arise from multimodal lock hold times.  Transient preemption
1802 // can also result in apparent bimodal lock hold times.
1803 // Although sub-optimal, neither condition is particularly harmful, as
1804 // in the worst-case we'll spin when we shouldn't or vice-versa.
1805 // The maximum spin duration is rather short so the failure modes aren't bad.
1806 // To be conservative, I've tuned the gain in system to bias toward
1807 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1808 // "rings" or oscillates between spinning and not spinning.  This happens
1809 // when spinning is just on the cusp of profitability, however, so the
1810 // situation is not dire.  The state is benign -- there's no need to add
1811 // hysteresis control to damp the transition rate between spinning and
1812 // not spinning.
1813 
1814 // Spinning: Fixed frequency (100%), vary duration
1815 int ObjectMonitor::TrySpin(Thread * Self) {
1816   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1817   int ctr = Knob_FixedSpin;
1818   if (ctr != 0) {
1819     while (--ctr >= 0) {
1820       if (TryLock(Self) > 0) return 1;
1821       SpinPause();
1822     }
1823     return 0;
1824   }
1825 
1826   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1827     if (TryLock(Self) > 0) {
1828       // Increase _SpinDuration ...
1829       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1830       // Raising _SpurDuration to the poverty line is key.
1831       int x = _SpinDuration;
1832       if (x < Knob_SpinLimit) {
1833         if (x < Knob_Poverty) x = Knob_Poverty;
1834         _SpinDuration = x + Knob_BonusB;
1835       }
1836       return 1;
1837     }
1838     SpinPause();
1839   }
1840 
1841   // Admission control - verify preconditions for spinning
1842   //
1843   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1844   // becoming an absorbing state.  Put another way, we spin briefly to
1845   // sample, just in case the system load, parallelism, contention, or lock
1846   // modality changed.
1847   //
1848   // Consider the following alternative:
1849   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1850   // spin attempt.  "Periodically" might mean after a tally of
1851   // the # of failed spin attempts (or iterations) reaches some threshold.
1852   // This takes us into the realm of 1-out-of-N spinning, where we
1853   // hold the duration constant but vary the frequency.
1854 
1855   ctr = _SpinDuration;
1856   if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
1857   if (ctr <= 0) return 0;
1858 
1859   if (Knob_SuccRestrict && _succ != NULL) return 0;
1860   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1861     return 0;
1862   }
1863 
1864   int MaxSpin = Knob_MaxSpinners;
1865   if (MaxSpin >= 0) {
1866     if (_Spinner > MaxSpin) {
1867       return 0;
1868     }
1869     // Slightly racy, but benign ...
1870     Adjust(&_Spinner, 1);
1871   }
1872 
1873   // We're good to spin ... spin ingress.
1874   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1875   // when preparing to LD...CAS _owner, etc and the CAS is likely
1876   // to succeed.
1877   int hits    = 0;
1878   int msk     = 0;
1879   int caspty  = Knob_CASPenalty;
1880   int oxpty   = Knob_OXPenalty;
1881   int sss     = Knob_SpinSetSucc;
1882   if (sss && _succ == NULL) _succ = Self;
1883   Thread * prv = NULL;
1884 
1885   // There are three ways to exit the following loop:
1886   // 1.  A successful spin where this thread has acquired the lock.
1887   // 2.  Spin failure with prejudice
1888   // 3.  Spin failure without prejudice
1889 
1890   while (--ctr >= 0) {
1891 
1892     // Periodic polling -- Check for pending GC
1893     // Threads may spin while they're unsafe.
1894     // We don't want spinning threads to delay the JVM from reaching
1895     // a stop-the-world safepoint or to steal cycles from GC.
1896     // If we detect a pending safepoint we abort in order that
1897     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1898     // this thread, if safe, doesn't steal cycles from GC.
1899     // This is in keeping with the "no loitering in runtime" rule.
1900     // We periodically check to see if there's a safepoint pending.
1901     if ((ctr & 0xFF) == 0) {
1902       if (SafepointMechanism::poll(Self)) {
1903         goto Abort;           // abrupt spin egress
1904       }
1905       if (Knob_UsePause & 1) SpinPause();
1906     }
1907 
1908     if (Knob_UsePause & 2) SpinPause();
1909 
1910     // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
1911     // This is useful on classic SMP systems, but is of less utility on
1912     // N1-style CMT platforms.
1913     //
1914     // Trade-off: lock acquisition latency vs coherency bandwidth.
1915     // Lock hold times are typically short.  A histogram
1916     // of successful spin attempts shows that we usually acquire
1917     // the lock early in the spin.  That suggests we want to
1918     // sample _owner frequently in the early phase of the spin,
1919     // but then back-off and sample less frequently as the spin
1920     // progresses.  The back-off makes a good citizen on SMP big
1921     // SMP systems.  Oversampling _owner can consume excessive
1922     // coherency bandwidth.  Relatedly, if we _oversample _owner we
1923     // can inadvertently interfere with the the ST m->owner=null.
1924     // executed by the lock owner.
1925     if (ctr & msk) continue;
1926     ++hits;
1927     if ((hits & 0xF) == 0) {
1928       // The 0xF, above, corresponds to the exponent.
1929       // Consider: (msk+1)|msk
1930       msk = ((msk << 2)|3) & BackOffMask;
1931     }
1932 
1933     // Probe _owner with TATAS
1934     // If this thread observes the monitor transition or flicker
1935     // from locked to unlocked to locked, then the odds that this
1936     // thread will acquire the lock in this spin attempt go down
1937     // considerably.  The same argument applies if the CAS fails
1938     // or if we observe _owner change from one non-null value to
1939     // another non-null value.   In such cases we might abort
1940     // the spin without prejudice or apply a "penalty" to the
1941     // spin count-down variable "ctr", reducing it by 100, say.
1942 
1943     Thread * ox = (Thread *) _owner;
1944     if (ox == NULL) {
1945       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1946       if (ox == NULL) {
1947         // The CAS succeeded -- this thread acquired ownership
1948         // Take care of some bookkeeping to exit spin state.
1949         if (sss && _succ == Self) {
1950           _succ = NULL;
1951         }
1952         if (MaxSpin > 0) Adjust(&_Spinner, -1);
1953 
1954         // Increase _SpinDuration :
1955         // The spin was successful (profitable) so we tend toward
1956         // longer spin attempts in the future.
1957         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1958         // If we acquired the lock early in the spin cycle it
1959         // makes sense to increase _SpinDuration proportionally.
1960         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1961         int x = _SpinDuration;
1962         if (x < Knob_SpinLimit) {
1963           if (x < Knob_Poverty) x = Knob_Poverty;
1964           _SpinDuration = x + Knob_Bonus;
1965         }
1966         return 1;
1967       }
1968 
1969       // The CAS failed ... we can take any of the following actions:
1970       // * penalize: ctr -= Knob_CASPenalty
1971       // * exit spin with prejudice -- goto Abort;
1972       // * exit spin without prejudice.
1973       // * Since CAS is high-latency, retry again immediately.
1974       prv = ox;
1975       if (caspty == -2) break;
1976       if (caspty == -1) goto Abort;
1977       ctr -= caspty;
1978       continue;
1979     }
1980 
1981     // Did lock ownership change hands ?
1982     if (ox != prv && prv != NULL) {
1983       if (oxpty == -2) break;
1984       if (oxpty == -1) goto Abort;
1985       ctr -= oxpty;
1986     }
1987     prv = ox;
1988 
1989     // Abort the spin if the owner is not executing.
1990     // The owner must be executing in order to drop the lock.
1991     // Spinning while the owner is OFFPROC is idiocy.
1992     // Consider: ctr -= RunnablePenalty ;
1993     if (Knob_OState && NotRunnable (Self, ox)) {
1994       goto Abort;
1995     }
1996     if (sss && _succ == NULL) _succ = Self;
1997   }
1998 
1999   // Spin failed with prejudice -- reduce _SpinDuration.
2000   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2001   // AIMD is globally stable.
2002   {
2003     int x = _SpinDuration;
2004     if (x > 0) {
2005       // Consider an AIMD scheme like: x -= (x >> 3) + 100
2006       // This is globally sample and tends to damp the response.
2007       x -= Knob_Penalty;
2008       if (x < 0) x = 0;
2009       _SpinDuration = x;
2010     }
2011   }
2012 
2013  Abort:
2014   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
2015   if (sss && _succ == Self) {
2016     _succ = NULL;
2017     // Invariant: after setting succ=null a contending thread
2018     // must recheck-retry _owner before parking.  This usually happens
2019     // in the normal usage of TrySpin(), but it's safest
2020     // to make TrySpin() as foolproof as possible.
2021     OrderAccess::fence();
2022     if (TryLock(Self) > 0) return 1;
2023   }
2024   return 0;
2025 }
2026 
2027 // NotRunnable() -- informed spinning
2028 //
2029 // Don't bother spinning if the owner is not eligible to drop the lock.
2030 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2031 // The thread must be runnable in order to drop the lock in timely fashion.
2032 // If the _owner is not runnable then spinning will not likely be
2033 // successful (profitable).
2034 //
2035 // Beware -- the thread referenced by _owner could have died
2036 // so a simply fetch from _owner->_thread_state might trap.
2037 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2038 // Because of the lifecycle issues, the _thread_state values
2039 // observed by NotRunnable() might be garbage.  NotRunnable must
2040 // tolerate this and consider the observed _thread_state value
2041 // as advisory.
2042 //
2043 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2044 // a thread pointer.
2045 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2046 // with the LSB of _owner.  Another option would be to probabilistically probe
2047 // the putative _owner->TypeTag value.
2048 //
2049 // Checking _thread_state isn't perfect.  Even if the thread is
2050 // in_java it might be blocked on a page-fault or have been preempted
2051 // and sitting on a ready/dispatch queue.
2052 //
2053 // The return value from NotRunnable() is *advisory* -- the
2054 // result is based on sampling and is not necessarily coherent.
2055 // The caller must tolerate false-negative and false-positive errors.
2056 // Spinning, in general, is probabilistic anyway.
2057 
2058 
2059 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2060   // Check ox->TypeTag == 2BAD.
2061   if (ox == NULL) return 0;
2062 
2063   // Avoid transitive spinning ...
2064   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2065   // Immediately after T1 acquires L it's possible that T2, also
2066   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2067   // This occurs transiently after T1 acquired L but before
2068   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2069   // its spin in this circumstance.
2070   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2071 
2072   if (BlockedOn == 1) return 1;
2073   if (BlockedOn != 0) {
2074     return BlockedOn != intptr_t(this) && _owner == ox;
2075   }
2076 
2077   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2078   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2079   // consider also: jst != _thread_in_Java -- but that's overspecific.
2080   return jst == _thread_blocked || jst == _thread_in_native;
2081 }
2082 
2083 
2084 // -----------------------------------------------------------------------------
2085 // WaitSet management ...
2086 
2087 ObjectWaiter::ObjectWaiter(Thread* thread) {
2088   _next     = NULL;
2089   _prev     = NULL;
2090   _notified = 0;
2091   _notifier_tid = 0;
2092   TState    = TS_RUN;
2093   _thread   = thread;
2094   _event    = thread->_ParkEvent;
2095   _active   = false;
2096   assert(_event != NULL, "invariant");
2097 }
2098 
2099 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2100   JavaThread *jt = (JavaThread *)this->_thread;
2101   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2102 }
2103 
2104 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2105   JavaThread *jt = (JavaThread *)this->_thread;
2106   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2107 }
2108 
2109 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2110   assert(node != NULL, "should not add NULL node");
2111   assert(node->_prev == NULL, "node already in list");
2112   assert(node->_next == NULL, "node already in list");
2113   // put node at end of queue (circular doubly linked list)
2114   if (_WaitSet == NULL) {
2115     _WaitSet = node;
2116     node->_prev = node;
2117     node->_next = node;
2118   } else {
2119     ObjectWaiter* head = _WaitSet;
2120     ObjectWaiter* tail = head->_prev;
2121     assert(tail->_next == head, "invariant check");
2122     tail->_next = node;
2123     head->_prev = node;
2124     node->_next = head;
2125     node->_prev = tail;
2126   }
2127 }
2128 
2129 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2130   // dequeue the very first waiter
2131   ObjectWaiter* waiter = _WaitSet;
2132   if (waiter) {
2133     DequeueSpecificWaiter(waiter);
2134   }
2135   return waiter;
2136 }
2137 
2138 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2139   assert(node != NULL, "should not dequeue NULL node");
2140   assert(node->_prev != NULL, "node already removed from list");
2141   assert(node->_next != NULL, "node already removed from list");
2142   // when the waiter has woken up because of interrupt,
2143   // timeout or other spurious wake-up, dequeue the
2144   // waiter from waiting list
2145   ObjectWaiter* next = node->_next;
2146   if (next == node) {
2147     assert(node->_prev == node, "invariant check");
2148     _WaitSet = NULL;
2149   } else {
2150     ObjectWaiter* prev = node->_prev;
2151     assert(prev->_next == node, "invariant check");
2152     assert(next->_prev == node, "invariant check");
2153     next->_prev = prev;
2154     prev->_next = next;
2155     if (_WaitSet == node) {
2156       _WaitSet = next;
2157     }
2158   }
2159   node->_next = NULL;
2160   node->_prev = NULL;
2161 }
2162 
2163 // -----------------------------------------------------------------------------
2164 // PerfData support
2165 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2166 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2167 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2168 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2169 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2170 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2171 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2172 
2173 // One-shot global initialization for the sync subsystem.
2174 // We could also defer initialization and initialize on-demand
2175 // the first time we call inflate().  Initialization would
2176 // be protected - like so many things - by the MonitorCache_lock.
2177 
2178 void ObjectMonitor::Initialize() {
2179   static int InitializationCompleted = 0;
2180   assert(InitializationCompleted == 0, "invariant");
2181   InitializationCompleted = 1;
2182   if (UsePerfData) {
2183     EXCEPTION_MARK;
2184 #define NEWPERFCOUNTER(n)                                                \
2185   {                                                                      \
2186     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2187                                         CHECK);                          \
2188   }
2189 #define NEWPERFVARIABLE(n)                                                \
2190   {                                                                       \
2191     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2192                                          CHECK);                          \
2193   }
2194     NEWPERFCOUNTER(_sync_Inflations);
2195     NEWPERFCOUNTER(_sync_Deflations);
2196     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2197     NEWPERFCOUNTER(_sync_FutileWakeups);
2198     NEWPERFCOUNTER(_sync_Parks);
2199     NEWPERFCOUNTER(_sync_Notifications);
2200     NEWPERFVARIABLE(_sync_MonExtant);
2201 #undef NEWPERFCOUNTER
2202 #undef NEWPERFVARIABLE
2203   }
2204 }
2205 
2206 void ObjectMonitor::DeferredInitialize() {
2207   if (InitDone > 0) return;
2208   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2209     while (InitDone != 1) /* empty */;
2210     return;
2211   }
2212 
2213   // One-shot global initialization ...
2214   // The initialization is idempotent, so we don't need locks.
2215   // In the future consider doing this via os::init_2().
2216 
2217   if (os::is_MP()) {
2218     BackOffMask = (1 << Knob_SpinBackOff) - 1;
2219     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2220   } else {
2221     Knob_SpinLimit = 0;
2222     Knob_SpinBase  = 0;
2223     Knob_PreSpin   = 0;
2224     Knob_FixedSpin = -1;
2225   }
2226 
2227   OrderAccess::fence();
2228   InitDone = 1;
2229 }
2230