1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_InlineNotify = 1;
 105 int ObjectMonitor::Knob_Verbose      = 0;
 106 int ObjectMonitor::Knob_VerifyInUse  = 0;
 107 int ObjectMonitor::Knob_VerifyMatch  = 0;
 108 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 109 
 110 static int Knob_SpinBase            = 0;       // Floor AKA SpinMin
 111 static int Knob_CASPenalty          = -1;      // Penalty for failed CAS
 112 static int Knob_OXPenalty           = -1;      // Penalty for observed _owner change
 113 static int Knob_SpinSetSucc         = 1;       // spinners set the _succ field
 114 static int Knob_SpinEarly           = 1;
 115 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 116 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 117 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 118 static int Knob_Bonus               = 100;     // spin success bonus
 119 static int Knob_BonusB              = 100;     // spin success bonus
 120 static int Knob_Penalty             = 200;     // spin failure penalty
 121 static int Knob_Poverty             = 1000;
 122 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 123 static int Knob_FixedSpin           = 0;
 124 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 125 static int Knob_UsePause            = 1;
 126 static int Knob_ExitPolicy          = 0;
 127 static int Knob_PreSpin             = 10;      // 20-100 likely better
 128 static int Knob_ResetEvent          = 0;
 129 
 130 static int Knob_FastHSSEC           = 0;
 131 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 132 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 133 static volatile int InitDone        = 0;
 134 
 135 // -----------------------------------------------------------------------------
 136 // Theory of operations -- Monitors lists, thread residency, etc:
 137 //
 138 // * A thread acquires ownership of a monitor by successfully
 139 //   CAS()ing the _owner field from null to non-null.
 140 //
 141 // * Invariant: A thread appears on at most one monitor list --
 142 //   cxq, EntryList or WaitSet -- at any one time.
 143 //
 144 // * Contending threads "push" themselves onto the cxq with CAS
 145 //   and then spin/park.
 146 //
 147 // * After a contending thread eventually acquires the lock it must
 148 //   dequeue itself from either the EntryList or the cxq.
 149 //
 150 // * The exiting thread identifies and unparks an "heir presumptive"
 151 //   tentative successor thread on the EntryList.  Critically, the
 152 //   exiting thread doesn't unlink the successor thread from the EntryList.
 153 //   After having been unparked, the wakee will recontend for ownership of
 154 //   the monitor.   The successor (wakee) will either acquire the lock or
 155 //   re-park itself.
 156 //
 157 //   Succession is provided for by a policy of competitive handoff.
 158 //   The exiting thread does _not_ grant or pass ownership to the
 159 //   successor thread.  (This is also referred to as "handoff" succession").
 160 //   Instead the exiting thread releases ownership and possibly wakes
 161 //   a successor, so the successor can (re)compete for ownership of the lock.
 162 //   If the EntryList is empty but the cxq is populated the exiting
 163 //   thread will drain the cxq into the EntryList.  It does so by
 164 //   by detaching the cxq (installing null with CAS) and folding
 165 //   the threads from the cxq into the EntryList.  The EntryList is
 166 //   doubly linked, while the cxq is singly linked because of the
 167 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 168 //
 169 // * Concurrency invariants:
 170 //
 171 //   -- only the monitor owner may access or mutate the EntryList.
 172 //      The mutex property of the monitor itself protects the EntryList
 173 //      from concurrent interference.
 174 //   -- Only the monitor owner may detach the cxq.
 175 //
 176 // * The monitor entry list operations avoid locks, but strictly speaking
 177 //   they're not lock-free.  Enter is lock-free, exit is not.
 178 //   For a description of 'Methods and apparatus providing non-blocking access
 179 //   to a resource,' see U.S. Pat. No. 7844973.
 180 //
 181 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 182 //   detaching thread.  This mechanism is immune from the ABA corruption.
 183 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 184 //
 185 // * Taken together, the cxq and the EntryList constitute or form a
 186 //   single logical queue of threads stalled trying to acquire the lock.
 187 //   We use two distinct lists to improve the odds of a constant-time
 188 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 189 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 190 //   A key desideratum is to minimize queue & monitor metadata manipulation
 191 //   that occurs while holding the monitor lock -- that is, we want to
 192 //   minimize monitor lock holds times.  Note that even a small amount of
 193 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 194 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 195 //   locks and monitor metadata.
 196 //
 197 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 198 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 199 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 200 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 201 //
 202 //   The EntryList is ordered by the prevailing queue discipline and
 203 //   can be organized in any convenient fashion, such as a doubly-linked list or
 204 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 205 //   to operate in constant-time.  If we need a priority queue then something akin
 206 //   to Solaris' sleepq would work nicely.  Viz.,
 207 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 208 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 209 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 210 //   EntryList accordingly.
 211 //
 212 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 213 //   somewhat similar to an elevator-scan.
 214 //
 215 // * The monitor synchronization subsystem avoids the use of native
 216 //   synchronization primitives except for the narrow platform-specific
 217 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 218 //   the semantics of park-unpark.  Put another way, this monitor implementation
 219 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 220 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 221 //   underlying OS manages the READY<->RUN transitions.
 222 //
 223 // * Waiting threads reside on the WaitSet list -- wait() puts
 224 //   the caller onto the WaitSet.
 225 //
 226 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 227 //   either the EntryList or cxq.  Subsequent exit() operations will
 228 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 229 //   it's likely the notifyee would simply impale itself on the lock held
 230 //   by the notifier.
 231 //
 232 // * An interesting alternative is to encode cxq as (List,LockByte) where
 233 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 234 //   variable, like _recursions, in the scheme.  The threads or Events that form
 235 //   the list would have to be aligned in 256-byte addresses.  A thread would
 236 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 237 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 238 //   Note that is is *not* word-tearing, but it does presume that full-word
 239 //   CAS operations are coherent with intermix with STB operations.  That's true
 240 //   on most common processors.
 241 //
 242 // * See also http://blogs.sun.com/dave
 243 
 244 
 245 void* ObjectMonitor::operator new (size_t size) throw() {
 246   return AllocateHeap(size, mtInternal);
 247 }
 248 void* ObjectMonitor::operator new[] (size_t size) throw() {
 249   return operator new (size);
 250 }
 251 void ObjectMonitor::operator delete(void* p) {
 252   FreeHeap(p);
 253 }
 254 void ObjectMonitor::operator delete[] (void *p) {
 255   operator delete(p);
 256 }
 257 
 258 // -----------------------------------------------------------------------------
 259 // Enter support
 260 
 261 void ObjectMonitor::enter(TRAPS) {
 262   // The following code is ordered to check the most common cases first
 263   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 264   Thread * const Self = THREAD;
 265 
 266   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 267   if (cur == NULL) {
 268     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 269     assert(_recursions == 0, "invariant");
 270     assert(_owner == Self, "invariant");
 271     return;
 272   }
 273 
 274   if (cur == Self) {
 275     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 276     _recursions++;
 277     return;
 278   }
 279 
 280   if (Self->is_lock_owned ((address)cur)) {
 281     assert(_recursions == 0, "internal state error");
 282     _recursions = 1;
 283     // Commute owner from a thread-specific on-stack BasicLockObject address to
 284     // a full-fledged "Thread *".
 285     _owner = Self;
 286     return;
 287   }
 288 
 289   // We've encountered genuine contention.
 290   assert(Self->_Stalled == 0, "invariant");
 291   Self->_Stalled = intptr_t(this);
 292 
 293   // Try one round of spinning *before* enqueueing Self
 294   // and before going through the awkward and expensive state
 295   // transitions.  The following spin is strictly optional ...
 296   // Note that if we acquire the monitor from an initial spin
 297   // we forgo posting JVMTI events and firing DTRACE probes.
 298   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 299     assert(_owner == Self, "invariant");
 300     assert(_recursions == 0, "invariant");
 301     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 302     Self->_Stalled = 0;
 303     return;
 304   }
 305 
 306   assert(_owner != Self, "invariant");
 307   assert(_succ != Self, "invariant");
 308   assert(Self->is_Java_thread(), "invariant");
 309   JavaThread * jt = (JavaThread *) Self;
 310   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 311   assert(jt->thread_state() != _thread_blocked, "invariant");
 312   assert(this->object() != NULL, "invariant");
 313   assert(_count >= 0, "invariant");
 314 
 315   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 316   // Ensure the object-monitor relationship remains stable while there's contention.
 317   Atomic::inc(&_count);
 318 
 319   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 320   EventJavaMonitorEnter event;
 321   if (event.should_commit()) {
 322     event.set_monitorClass(((oop)this->object())->klass());
 323     event.set_address((uintptr_t)(this->object_addr()));
 324   }
 325 
 326   { // Change java thread status to indicate blocked on monitor enter.
 327     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 328 
 329     Self->set_current_pending_monitor(this);
 330 
 331     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 332     if (JvmtiExport::should_post_monitor_contended_enter()) {
 333       JvmtiExport::post_monitor_contended_enter(jt, this);
 334 
 335       // The current thread does not yet own the monitor and does not
 336       // yet appear on any queues that would get it made the successor.
 337       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 338       // handler cannot accidentally consume an unpark() meant for the
 339       // ParkEvent associated with this ObjectMonitor.
 340     }
 341 
 342     OSThreadContendState osts(Self->osthread());
 343     ThreadBlockInVM tbivm(jt);
 344 
 345     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 346     for (;;) {
 347       jt->set_suspend_equivalent();
 348       // cleared by handle_special_suspend_equivalent_condition()
 349       // or java_suspend_self()
 350 
 351       EnterI(THREAD);
 352 
 353       if (!ExitSuspendEquivalent(jt)) break;
 354 
 355       // We have acquired the contended monitor, but while we were
 356       // waiting another thread suspended us. We don't want to enter
 357       // the monitor while suspended because that would surprise the
 358       // thread that suspended us.
 359       //
 360       _recursions = 0;
 361       _succ = NULL;
 362       exit(false, Self);
 363 
 364       jt->java_suspend_self();
 365     }
 366     Self->set_current_pending_monitor(NULL);
 367 
 368     // We cleared the pending monitor info since we've just gotten past
 369     // the enter-check-for-suspend dance and we now own the monitor free
 370     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 371     // destructor can go to a safepoint at the end of this block. If we
 372     // do a thread dump during that safepoint, then this thread will show
 373     // as having "-locked" the monitor, but the OS and java.lang.Thread
 374     // states will still report that the thread is blocked trying to
 375     // acquire it.
 376   }
 377 
 378   Atomic::dec(&_count);
 379   assert(_count >= 0, "invariant");
 380   Self->_Stalled = 0;
 381 
 382   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 383   assert(_recursions == 0, "invariant");
 384   assert(_owner == Self, "invariant");
 385   assert(_succ != Self, "invariant");
 386   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 387 
 388   // The thread -- now the owner -- is back in vm mode.
 389   // Report the glorious news via TI,DTrace and jvmstat.
 390   // The probe effect is non-trivial.  All the reportage occurs
 391   // while we hold the monitor, increasing the length of the critical
 392   // section.  Amdahl's parallel speedup law comes vividly into play.
 393   //
 394   // Another option might be to aggregate the events (thread local or
 395   // per-monitor aggregation) and defer reporting until a more opportune
 396   // time -- such as next time some thread encounters contention but has
 397   // yet to acquire the lock.  While spinning that thread could
 398   // spinning we could increment JVMStat counters, etc.
 399 
 400   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 401   if (JvmtiExport::should_post_monitor_contended_entered()) {
 402     JvmtiExport::post_monitor_contended_entered(jt, this);
 403 
 404     // The current thread already owns the monitor and is not going to
 405     // call park() for the remainder of the monitor enter protocol. So
 406     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 407     // event handler consumed an unpark() issued by the thread that
 408     // just exited the monitor.
 409   }
 410   if (event.should_commit()) {
 411     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 412     event.commit();
 413   }
 414   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 415 }
 416 
 417 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 418 // Callers must compensate as needed.
 419 
 420 int ObjectMonitor::TryLock(Thread * Self) {
 421   void * own = _owner;
 422   if (own != NULL) return 0;
 423   if (Atomic::replace_if_null(Self, &_owner)) {
 424     // Either guarantee _recursions == 0 or set _recursions = 0.
 425     assert(_recursions == 0, "invariant");
 426     assert(_owner == Self, "invariant");
 427     return 1;
 428   }
 429   // The lock had been free momentarily, but we lost the race to the lock.
 430   // Interference -- the CAS failed.
 431   // We can either return -1 or retry.
 432   // Retry doesn't make as much sense because the lock was just acquired.
 433   return -1;
 434 }
 435 
 436 #define MAX_RECHECK_INTERVAL 1000
 437 
 438 void ObjectMonitor::EnterI(TRAPS) {
 439   Thread * const Self = THREAD;
 440   assert(Self->is_Java_thread(), "invariant");
 441   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 442 
 443   // Try the lock - TATAS
 444   if (TryLock (Self) > 0) {
 445     assert(_succ != Self, "invariant");
 446     assert(_owner == Self, "invariant");
 447     assert(_Responsible != Self, "invariant");
 448     return;
 449   }
 450 
 451   DeferredInitialize();
 452 
 453   // We try one round of spinning *before* enqueueing Self.
 454   //
 455   // If the _owner is ready but OFFPROC we could use a YieldTo()
 456   // operation to donate the remainder of this thread's quantum
 457   // to the owner.  This has subtle but beneficial affinity
 458   // effects.
 459 
 460   if (TrySpin (Self) > 0) {
 461     assert(_owner == Self, "invariant");
 462     assert(_succ != Self, "invariant");
 463     assert(_Responsible != Self, "invariant");
 464     return;
 465   }
 466 
 467   // The Spin failed -- Enqueue and park the thread ...
 468   assert(_succ != Self, "invariant");
 469   assert(_owner != Self, "invariant");
 470   assert(_Responsible != Self, "invariant");
 471 
 472   // Enqueue "Self" on ObjectMonitor's _cxq.
 473   //
 474   // Node acts as a proxy for Self.
 475   // As an aside, if were to ever rewrite the synchronization code mostly
 476   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 477   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 478   // as well as eliminate a subset of ABA issues.
 479   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 480 
 481   ObjectWaiter node(Self);
 482   Self->_ParkEvent->reset();
 483   node._prev   = (ObjectWaiter *) 0xBAD;
 484   node.TState  = ObjectWaiter::TS_CXQ;
 485 
 486   // Push "Self" onto the front of the _cxq.
 487   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 488   // Note that spinning tends to reduce the rate at which threads
 489   // enqueue and dequeue on EntryList|cxq.
 490   ObjectWaiter * nxt;
 491   for (;;) {
 492     node._next = nxt = _cxq;
 493     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 494 
 495     // Interference - the CAS failed because _cxq changed.  Just retry.
 496     // As an optional optimization we retry the lock.
 497     if (TryLock (Self) > 0) {
 498       assert(_succ != Self, "invariant");
 499       assert(_owner == Self, "invariant");
 500       assert(_Responsible != Self, "invariant");
 501       return;
 502     }
 503   }
 504 
 505   // Check for cxq|EntryList edge transition to non-null.  This indicates
 506   // the onset of contention.  While contention persists exiting threads
 507   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 508   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 509   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 510   // arrange for one of the contending thread to use a timed park() operations
 511   // to detect and recover from the race.  (Stranding is form of progress failure
 512   // where the monitor is unlocked but all the contending threads remain parked).
 513   // That is, at least one of the contended threads will periodically poll _owner.
 514   // One of the contending threads will become the designated "Responsible" thread.
 515   // The Responsible thread uses a timed park instead of a normal indefinite park
 516   // operation -- it periodically wakes and checks for and recovers from potential
 517   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 518   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 519   // be responsible for a monitor.
 520   //
 521   // Currently, one of the contended threads takes on the added role of "Responsible".
 522   // A viable alternative would be to use a dedicated "stranding checker" thread
 523   // that periodically iterated over all the threads (or active monitors) and unparked
 524   // successors where there was risk of stranding.  This would help eliminate the
 525   // timer scalability issues we see on some platforms as we'd only have one thread
 526   // -- the checker -- parked on a timer.
 527 
 528   if (nxt == NULL && _EntryList == NULL) {
 529     // Try to assume the role of responsible thread for the monitor.
 530     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 531     Atomic::replace_if_null(Self, &_Responsible);
 532   }
 533 
 534   // The lock might have been released while this thread was occupied queueing
 535   // itself onto _cxq.  To close the race and avoid "stranding" and
 536   // progress-liveness failure we must resample-retry _owner before parking.
 537   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 538   // In this case the ST-MEMBAR is accomplished with CAS().
 539   //
 540   // TODO: Defer all thread state transitions until park-time.
 541   // Since state transitions are heavy and inefficient we'd like
 542   // to defer the state transitions until absolutely necessary,
 543   // and in doing so avoid some transitions ...
 544 
 545   int nWakeups = 0;
 546   int recheckInterval = 1;
 547 
 548   for (;;) {
 549 
 550     if (TryLock(Self) > 0) break;
 551     assert(_owner != Self, "invariant");
 552 
 553     // park self
 554     if (_Responsible == Self) {
 555       Self->_ParkEvent->park((jlong) recheckInterval);
 556       // Increase the recheckInterval, but clamp the value.
 557       recheckInterval *= 8;
 558       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 559         recheckInterval = MAX_RECHECK_INTERVAL;
 560       }
 561     } else {
 562       Self->_ParkEvent->park();
 563     }
 564 
 565     if (TryLock(Self) > 0) break;
 566 
 567     // The lock is still contested.
 568     // Keep a tally of the # of futile wakeups.
 569     // Note that the counter is not protected by a lock or updated by atomics.
 570     // That is by design - we trade "lossy" counters which are exposed to
 571     // races during updates for a lower probe effect.
 572 
 573     // This PerfData object can be used in parallel with a safepoint.
 574     // See the work around in PerfDataManager::destroy().
 575     OM_PERFDATA_OP(FutileWakeups, inc());
 576     ++nWakeups;
 577 
 578     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 579     // We can defer clearing _succ until after the spin completes
 580     // TrySpin() must tolerate being called with _succ == Self.
 581     // Try yet another round of adaptive spinning.
 582     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 583 
 584     // We can find that we were unpark()ed and redesignated _succ while
 585     // we were spinning.  That's harmless.  If we iterate and call park(),
 586     // park() will consume the event and return immediately and we'll
 587     // just spin again.  This pattern can repeat, leaving _succ to simply
 588     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 589     // Alternately, we can sample fired() here, and if set, forgo spinning
 590     // in the next iteration.
 591 
 592     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 593       Self->_ParkEvent->reset();
 594       OrderAccess::fence();
 595     }
 596     if (_succ == Self) _succ = NULL;
 597 
 598     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 599     OrderAccess::fence();
 600   }
 601 
 602   // Egress :
 603   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 604   // Normally we'll find Self on the EntryList .
 605   // From the perspective of the lock owner (this thread), the
 606   // EntryList is stable and cxq is prepend-only.
 607   // The head of cxq is volatile but the interior is stable.
 608   // In addition, Self.TState is stable.
 609 
 610   assert(_owner == Self, "invariant");
 611   assert(object() != NULL, "invariant");
 612   // I'd like to write:
 613   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 614   // but as we're at a safepoint that's not safe.
 615 
 616   UnlinkAfterAcquire(Self, &node);
 617   if (_succ == Self) _succ = NULL;
 618 
 619   assert(_succ != Self, "invariant");
 620   if (_Responsible == Self) {
 621     _Responsible = NULL;
 622     OrderAccess::fence(); // Dekker pivot-point
 623 
 624     // We may leave threads on cxq|EntryList without a designated
 625     // "Responsible" thread.  This is benign.  When this thread subsequently
 626     // exits the monitor it can "see" such preexisting "old" threads --
 627     // threads that arrived on the cxq|EntryList before the fence, above --
 628     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 629     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 630     // non-null and elect a new "Responsible" timer thread.
 631     //
 632     // This thread executes:
 633     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 634     //    LD cxq|EntryList               (in subsequent exit)
 635     //
 636     // Entering threads in the slow/contended path execute:
 637     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 638     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 639     //
 640     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 641     // exit operation from floating above the ST Responsible=null.
 642   }
 643 
 644   // We've acquired ownership with CAS().
 645   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 646   // But since the CAS() this thread may have also stored into _succ,
 647   // EntryList, cxq or Responsible.  These meta-data updates must be
 648   // visible __before this thread subsequently drops the lock.
 649   // Consider what could occur if we didn't enforce this constraint --
 650   // STs to monitor meta-data and user-data could reorder with (become
 651   // visible after) the ST in exit that drops ownership of the lock.
 652   // Some other thread could then acquire the lock, but observe inconsistent
 653   // or old monitor meta-data and heap data.  That violates the JMM.
 654   // To that end, the 1-0 exit() operation must have at least STST|LDST
 655   // "release" barrier semantics.  Specifically, there must be at least a
 656   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 657   // the lock.   The barrier ensures that changes to monitor meta-data and data
 658   // protected by the lock will be visible before we release the lock, and
 659   // therefore before some other thread (CPU) has a chance to acquire the lock.
 660   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 661   //
 662   // Critically, any prior STs to _succ or EntryList must be visible before
 663   // the ST of null into _owner in the *subsequent* (following) corresponding
 664   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 665   // execute a serializing instruction.
 666 
 667   return;
 668 }
 669 
 670 // ReenterI() is a specialized inline form of the latter half of the
 671 // contended slow-path from EnterI().  We use ReenterI() only for
 672 // monitor reentry in wait().
 673 //
 674 // In the future we should reconcile EnterI() and ReenterI(), adding
 675 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 676 // loop accordingly.
 677 
 678 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 679   assert(Self != NULL, "invariant");
 680   assert(SelfNode != NULL, "invariant");
 681   assert(SelfNode->_thread == Self, "invariant");
 682   assert(_waiters > 0, "invariant");
 683   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 684   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 685   JavaThread * jt = (JavaThread *) Self;
 686 
 687   int nWakeups = 0;
 688   for (;;) {
 689     ObjectWaiter::TStates v = SelfNode->TState;
 690     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 691     assert(_owner != Self, "invariant");
 692 
 693     if (TryLock(Self) > 0) break;
 694     if (TrySpin(Self) > 0) break;
 695 
 696     // State transition wrappers around park() ...
 697     // ReenterI() wisely defers state transitions until
 698     // it's clear we must park the thread.
 699     {
 700       OSThreadContendState osts(Self->osthread());
 701       ThreadBlockInVM tbivm(jt);
 702 
 703       // cleared by handle_special_suspend_equivalent_condition()
 704       // or java_suspend_self()
 705       jt->set_suspend_equivalent();
 706       Self->_ParkEvent->park();
 707 
 708       // were we externally suspended while we were waiting?
 709       for (;;) {
 710         if (!ExitSuspendEquivalent(jt)) break;
 711         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 712         jt->java_suspend_self();
 713         jt->set_suspend_equivalent();
 714       }
 715     }
 716 
 717     // Try again, but just so we distinguish between futile wakeups and
 718     // successful wakeups.  The following test isn't algorithmically
 719     // necessary, but it helps us maintain sensible statistics.
 720     if (TryLock(Self) > 0) break;
 721 
 722     // The lock is still contested.
 723     // Keep a tally of the # of futile wakeups.
 724     // Note that the counter is not protected by a lock or updated by atomics.
 725     // That is by design - we trade "lossy" counters which are exposed to
 726     // races during updates for a lower probe effect.
 727     ++nWakeups;
 728 
 729     // Assuming this is not a spurious wakeup we'll normally
 730     // find that _succ == Self.
 731     if (_succ == Self) _succ = NULL;
 732 
 733     // Invariant: after clearing _succ a contending thread
 734     // *must* retry  _owner before parking.
 735     OrderAccess::fence();
 736 
 737     // This PerfData object can be used in parallel with a safepoint.
 738     // See the work around in PerfDataManager::destroy().
 739     OM_PERFDATA_OP(FutileWakeups, inc());
 740   }
 741 
 742   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 743   // Normally we'll find Self on the EntryList.
 744   // Unlinking from the EntryList is constant-time and atomic-free.
 745   // From the perspective of the lock owner (this thread), the
 746   // EntryList is stable and cxq is prepend-only.
 747   // The head of cxq is volatile but the interior is stable.
 748   // In addition, Self.TState is stable.
 749 
 750   assert(_owner == Self, "invariant");
 751   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 752   UnlinkAfterAcquire(Self, SelfNode);
 753   if (_succ == Self) _succ = NULL;
 754   assert(_succ != Self, "invariant");
 755   SelfNode->TState = ObjectWaiter::TS_RUN;
 756   OrderAccess::fence();      // see comments at the end of EnterI()
 757 }
 758 
 759 // By convention we unlink a contending thread from EntryList|cxq immediately
 760 // after the thread acquires the lock in ::enter().  Equally, we could defer
 761 // unlinking the thread until ::exit()-time.
 762 
 763 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 764   assert(_owner == Self, "invariant");
 765   assert(SelfNode->_thread == Self, "invariant");
 766 
 767   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 768     // Normal case: remove Self from the DLL EntryList .
 769     // This is a constant-time operation.
 770     ObjectWaiter * nxt = SelfNode->_next;
 771     ObjectWaiter * prv = SelfNode->_prev;
 772     if (nxt != NULL) nxt->_prev = prv;
 773     if (prv != NULL) prv->_next = nxt;
 774     if (SelfNode == _EntryList) _EntryList = nxt;
 775     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 776     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 777   } else {
 778     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 779     // Inopportune interleaving -- Self is still on the cxq.
 780     // This usually means the enqueue of self raced an exiting thread.
 781     // Normally we'll find Self near the front of the cxq, so
 782     // dequeueing is typically fast.  If needbe we can accelerate
 783     // this with some MCS/CHL-like bidirectional list hints and advisory
 784     // back-links so dequeueing from the interior will normally operate
 785     // in constant-time.
 786     // Dequeue Self from either the head (with CAS) or from the interior
 787     // with a linear-time scan and normal non-atomic memory operations.
 788     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 789     // and then unlink Self from EntryList.  We have to drain eventually,
 790     // so it might as well be now.
 791 
 792     ObjectWaiter * v = _cxq;
 793     assert(v != NULL, "invariant");
 794     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 795       // The CAS above can fail from interference IFF a "RAT" arrived.
 796       // In that case Self must be in the interior and can no longer be
 797       // at the head of cxq.
 798       if (v == SelfNode) {
 799         assert(_cxq != v, "invariant");
 800         v = _cxq;          // CAS above failed - start scan at head of list
 801       }
 802       ObjectWaiter * p;
 803       ObjectWaiter * q = NULL;
 804       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 805         q = p;
 806         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 807       }
 808       assert(v != SelfNode, "invariant");
 809       assert(p == SelfNode, "Node not found on cxq");
 810       assert(p != _cxq, "invariant");
 811       assert(q != NULL, "invariant");
 812       assert(q->_next == p, "invariant");
 813       q->_next = p->_next;
 814     }
 815   }
 816 
 817 #ifdef ASSERT
 818   // Diagnostic hygiene ...
 819   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 820   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 821   SelfNode->TState = ObjectWaiter::TS_RUN;
 822 #endif
 823 }
 824 
 825 // -----------------------------------------------------------------------------
 826 // Exit support
 827 //
 828 // exit()
 829 // ~~~~~~
 830 // Note that the collector can't reclaim the objectMonitor or deflate
 831 // the object out from underneath the thread calling ::exit() as the
 832 // thread calling ::exit() never transitions to a stable state.
 833 // This inhibits GC, which in turn inhibits asynchronous (and
 834 // inopportune) reclamation of "this".
 835 //
 836 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 837 // There's one exception to the claim above, however.  EnterI() can call
 838 // exit() to drop a lock if the acquirer has been externally suspended.
 839 // In that case exit() is called with _thread_state as _thread_blocked,
 840 // but the monitor's _count field is > 0, which inhibits reclamation.
 841 //
 842 // 1-0 exit
 843 // ~~~~~~~~
 844 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 845 // the fast-path operators have been optimized so the common ::exit()
 846 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 847 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 848 // greatly improves latency -- MEMBAR and CAS having considerable local
 849 // latency on modern processors -- but at the cost of "stranding".  Absent the
 850 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 851 // ::enter() path, resulting in the entering thread being stranding
 852 // and a progress-liveness failure.   Stranding is extremely rare.
 853 // We use timers (timed park operations) & periodic polling to detect
 854 // and recover from stranding.  Potentially stranded threads periodically
 855 // wake up and poll the lock.  See the usage of the _Responsible variable.
 856 //
 857 // The CAS() in enter provides for safety and exclusion, while the CAS or
 858 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 859 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 860 // We detect and recover from stranding with timers.
 861 //
 862 // If a thread transiently strands it'll park until (a) another
 863 // thread acquires the lock and then drops the lock, at which time the
 864 // exiting thread will notice and unpark the stranded thread, or, (b)
 865 // the timer expires.  If the lock is high traffic then the stranding latency
 866 // will be low due to (a).  If the lock is low traffic then the odds of
 867 // stranding are lower, although the worst-case stranding latency
 868 // is longer.  Critically, we don't want to put excessive load in the
 869 // platform's timer subsystem.  We want to minimize both the timer injection
 870 // rate (timers created/sec) as well as the number of timers active at
 871 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 872 // the integral of the # of active timers at any instant over time).
 873 // Both impinge on OS scalability.  Given that, at most one thread parked on
 874 // a monitor will use a timer.
 875 //
 876 // There is also the risk of a futile wake-up. If we drop the lock
 877 // another thread can reacquire the lock immediately, and we can
 878 // then wake a thread unnecessarily. This is benign, and we've
 879 // structured the code so the windows are short and the frequency
 880 // of such futile wakups is low.
 881 
 882 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 883   Thread * const Self = THREAD;
 884   if (THREAD != _owner) {
 885     if (THREAD->is_lock_owned((address) _owner)) {
 886       // Transmute _owner from a BasicLock pointer to a Thread address.
 887       // We don't need to hold _mutex for this transition.
 888       // Non-null to Non-null is safe as long as all readers can
 889       // tolerate either flavor.
 890       assert(_recursions == 0, "invariant");
 891       _owner = THREAD;
 892       _recursions = 0;
 893     } else {
 894       // Apparent unbalanced locking ...
 895       // Naively we'd like to throw IllegalMonitorStateException.
 896       // As a practical matter we can neither allocate nor throw an
 897       // exception as ::exit() can be called from leaf routines.
 898       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 899       // Upon deeper reflection, however, in a properly run JVM the only
 900       // way we should encounter this situation is in the presence of
 901       // unbalanced JNI locking. TODO: CheckJNICalls.
 902       // See also: CR4414101
 903       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 904       return;
 905     }
 906   }
 907 
 908   if (_recursions != 0) {
 909     _recursions--;        // this is simple recursive enter
 910     return;
 911   }
 912 
 913   // Invariant: after setting Responsible=null an thread must execute
 914   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 915   _Responsible = NULL;
 916 
 917 #if INCLUDE_JFR
 918   // get the owner's thread id for the MonitorEnter event
 919   // if it is enabled and the thread isn't suspended
 920   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 921     _previous_owner_tid = JFR_THREAD_ID(Self);
 922   }
 923 #endif
 924 
 925   for (;;) {
 926     assert(THREAD == _owner, "invariant");
 927 
 928     if (Knob_ExitPolicy == 0) {
 929       // release semantics: prior loads and stores from within the critical section
 930       // must not float (reorder) past the following store that drops the lock.
 931       // On SPARC that requires MEMBAR #loadstore|#storestore.
 932       // But of course in TSO #loadstore|#storestore is not required.
 933       // I'd like to write one of the following:
 934       // A.  OrderAccess::release() ; _owner = NULL
 935       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 936       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 937       // store into a _dummy variable.  That store is not needed, but can result
 938       // in massive wasteful coherency traffic on classic SMP systems.
 939       // Instead, I use release_store(), which is implemented as just a simple
 940       // ST on x64, x86 and SPARC.
 941       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 942       OrderAccess::storeload();                        // See if we need to wake a successor
 943       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 944         return;
 945       }
 946       // Other threads are blocked trying to acquire the lock.
 947 
 948       // Normally the exiting thread is responsible for ensuring succession,
 949       // but if other successors are ready or other entering threads are spinning
 950       // then this thread can simply store NULL into _owner and exit without
 951       // waking a successor.  The existence of spinners or ready successors
 952       // guarantees proper succession (liveness).  Responsibility passes to the
 953       // ready or running successors.  The exiting thread delegates the duty.
 954       // More precisely, if a successor already exists this thread is absolved
 955       // of the responsibility of waking (unparking) one.
 956       //
 957       // The _succ variable is critical to reducing futile wakeup frequency.
 958       // _succ identifies the "heir presumptive" thread that has been made
 959       // ready (unparked) but that has not yet run.  We need only one such
 960       // successor thread to guarantee progress.
 961       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 962       // section 3.3 "Futile Wakeup Throttling" for details.
 963       //
 964       // Note that spinners in Enter() also set _succ non-null.
 965       // In the current implementation spinners opportunistically set
 966       // _succ so that exiting threads might avoid waking a successor.
 967       // Another less appealing alternative would be for the exiting thread
 968       // to drop the lock and then spin briefly to see if a spinner managed
 969       // to acquire the lock.  If so, the exiting thread could exit
 970       // immediately without waking a successor, otherwise the exiting
 971       // thread would need to dequeue and wake a successor.
 972       // (Note that we'd need to make the post-drop spin short, but no
 973       // shorter than the worst-case round-trip cache-line migration time.
 974       // The dropped lock needs to become visible to the spinner, and then
 975       // the acquisition of the lock by the spinner must become visible to
 976       // the exiting thread).
 977 
 978       // It appears that an heir-presumptive (successor) must be made ready.
 979       // Only the current lock owner can manipulate the EntryList or
 980       // drain _cxq, so we need to reacquire the lock.  If we fail
 981       // to reacquire the lock the responsibility for ensuring succession
 982       // falls to the new owner.
 983       //
 984       if (!Atomic::replace_if_null(THREAD, &_owner)) {
 985         return;
 986       }
 987     } else {
 988       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 989         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 990         OrderAccess::storeload();
 991         // Ratify the previously observed values.
 992         if (_cxq == NULL || _succ != NULL) {
 993           return;
 994         }
 995 
 996         // inopportune interleaving -- the exiting thread (this thread)
 997         // in the fast-exit path raced an entering thread in the slow-enter
 998         // path.
 999         // We have two choices:
1000         // A.  Try to reacquire the lock.
1001         //     If the CAS() fails return immediately, otherwise
1002         //     we either restart/rerun the exit operation, or simply
1003         //     fall-through into the code below which wakes a successor.
1004         // B.  If the elements forming the EntryList|cxq are TSM
1005         //     we could simply unpark() the lead thread and return
1006         //     without having set _succ.
1007         if (!Atomic::replace_if_null(THREAD, &_owner)) {
1008           return;
1009         }
1010       }
1011     }
1012 
1013     guarantee(_owner == THREAD, "invariant");
1014 
1015     ObjectWaiter * w = NULL;
1016     int QMode = Knob_QMode;
1017 
1018     if (QMode == 2 && _cxq != NULL) {
1019       // QMode == 2 : cxq has precedence over EntryList.
1020       // Try to directly wake a successor from the cxq.
1021       // If successful, the successor will need to unlink itself from cxq.
1022       w = _cxq;
1023       assert(w != NULL, "invariant");
1024       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1025       ExitEpilog(Self, w);
1026       return;
1027     }
1028 
1029     if (QMode == 3 && _cxq != NULL) {
1030       // Aggressively drain cxq into EntryList at the first opportunity.
1031       // This policy ensure that recently-run threads live at the head of EntryList.
1032       // Drain _cxq into EntryList - bulk transfer.
1033       // First, detach _cxq.
1034       // The following loop is tantamount to: w = swap(&cxq, NULL)
1035       w = _cxq;
1036       for (;;) {
1037         assert(w != NULL, "Invariant");
1038         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1039         if (u == w) break;
1040         w = u;
1041       }
1042       assert(w != NULL, "invariant");
1043 
1044       ObjectWaiter * q = NULL;
1045       ObjectWaiter * p;
1046       for (p = w; p != NULL; p = p->_next) {
1047         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1048         p->TState = ObjectWaiter::TS_ENTER;
1049         p->_prev = q;
1050         q = p;
1051       }
1052 
1053       // Append the RATs to the EntryList
1054       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1055       ObjectWaiter * Tail;
1056       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1057            Tail = Tail->_next)
1058         /* empty */;
1059       if (Tail == NULL) {
1060         _EntryList = w;
1061       } else {
1062         Tail->_next = w;
1063         w->_prev = Tail;
1064       }
1065 
1066       // Fall thru into code that tries to wake a successor from EntryList
1067     }
1068 
1069     if (QMode == 4 && _cxq != NULL) {
1070       // Aggressively drain cxq into EntryList at the first opportunity.
1071       // This policy ensure that recently-run threads live at the head of EntryList.
1072 
1073       // Drain _cxq into EntryList - bulk transfer.
1074       // First, detach _cxq.
1075       // The following loop is tantamount to: w = swap(&cxq, NULL)
1076       w = _cxq;
1077       for (;;) {
1078         assert(w != NULL, "Invariant");
1079         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1080         if (u == w) break;
1081         w = u;
1082       }
1083       assert(w != NULL, "invariant");
1084 
1085       ObjectWaiter * q = NULL;
1086       ObjectWaiter * p;
1087       for (p = w; p != NULL; p = p->_next) {
1088         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1089         p->TState = ObjectWaiter::TS_ENTER;
1090         p->_prev = q;
1091         q = p;
1092       }
1093 
1094       // Prepend the RATs to the EntryList
1095       if (_EntryList != NULL) {
1096         q->_next = _EntryList;
1097         _EntryList->_prev = q;
1098       }
1099       _EntryList = w;
1100 
1101       // Fall thru into code that tries to wake a successor from EntryList
1102     }
1103 
1104     w = _EntryList;
1105     if (w != NULL) {
1106       // I'd like to write: guarantee (w->_thread != Self).
1107       // But in practice an exiting thread may find itself on the EntryList.
1108       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1109       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1110       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1111       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1112       // release the lock "O".  T2 resumes immediately after the ST of null into
1113       // _owner, above.  T2 notices that the EntryList is populated, so it
1114       // reacquires the lock and then finds itself on the EntryList.
1115       // Given all that, we have to tolerate the circumstance where "w" is
1116       // associated with Self.
1117       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1118       ExitEpilog(Self, w);
1119       return;
1120     }
1121 
1122     // If we find that both _cxq and EntryList are null then just
1123     // re-run the exit protocol from the top.
1124     w = _cxq;
1125     if (w == NULL) continue;
1126 
1127     // Drain _cxq into EntryList - bulk transfer.
1128     // First, detach _cxq.
1129     // The following loop is tantamount to: w = swap(&cxq, NULL)
1130     for (;;) {
1131       assert(w != NULL, "Invariant");
1132       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1133       if (u == w) break;
1134       w = u;
1135     }
1136 
1137     assert(w != NULL, "invariant");
1138     assert(_EntryList == NULL, "invariant");
1139 
1140     // Convert the LIFO SLL anchored by _cxq into a DLL.
1141     // The list reorganization step operates in O(LENGTH(w)) time.
1142     // It's critical that this step operate quickly as
1143     // "Self" still holds the outer-lock, restricting parallelism
1144     // and effectively lengthening the critical section.
1145     // Invariant: s chases t chases u.
1146     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1147     // we have faster access to the tail.
1148 
1149     if (QMode == 1) {
1150       // QMode == 1 : drain cxq to EntryList, reversing order
1151       // We also reverse the order of the list.
1152       ObjectWaiter * s = NULL;
1153       ObjectWaiter * t = w;
1154       ObjectWaiter * u = NULL;
1155       while (t != NULL) {
1156         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1157         t->TState = ObjectWaiter::TS_ENTER;
1158         u = t->_next;
1159         t->_prev = u;
1160         t->_next = s;
1161         s = t;
1162         t = u;
1163       }
1164       _EntryList  = s;
1165       assert(s != NULL, "invariant");
1166     } else {
1167       // QMode == 0 or QMode == 2
1168       _EntryList = w;
1169       ObjectWaiter * q = NULL;
1170       ObjectWaiter * p;
1171       for (p = w; p != NULL; p = p->_next) {
1172         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1173         p->TState = ObjectWaiter::TS_ENTER;
1174         p->_prev = q;
1175         q = p;
1176       }
1177     }
1178 
1179     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1180     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1181 
1182     // See if we can abdicate to a spinner instead of waking a thread.
1183     // A primary goal of the implementation is to reduce the
1184     // context-switch rate.
1185     if (_succ != NULL) continue;
1186 
1187     w = _EntryList;
1188     if (w != NULL) {
1189       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1190       ExitEpilog(Self, w);
1191       return;
1192     }
1193   }
1194 }
1195 
1196 // ExitSuspendEquivalent:
1197 // A faster alternate to handle_special_suspend_equivalent_condition()
1198 //
1199 // handle_special_suspend_equivalent_condition() unconditionally
1200 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1201 // operations have high latency.  Note that in ::enter() we call HSSEC
1202 // while holding the monitor, so we effectively lengthen the critical sections.
1203 //
1204 // There are a number of possible solutions:
1205 //
1206 // A.  To ameliorate the problem we might also defer state transitions
1207 //     to as late as possible -- just prior to parking.
1208 //     Given that, we'd call HSSEC after having returned from park(),
1209 //     but before attempting to acquire the monitor.  This is only a
1210 //     partial solution.  It avoids calling HSSEC while holding the
1211 //     monitor (good), but it still increases successor reacquisition latency --
1212 //     the interval between unparking a successor and the time the successor
1213 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1214 //     If we use this technique we can also avoid EnterI()-exit() loop
1215 //     in ::enter() where we iteratively drop the lock and then attempt
1216 //     to reacquire it after suspending.
1217 //
1218 // B.  In the future we might fold all the suspend bits into a
1219 //     composite per-thread suspend flag and then update it with CAS().
1220 //     Alternately, a Dekker-like mechanism with multiple variables
1221 //     would suffice:
1222 //       ST Self->_suspend_equivalent = false
1223 //       MEMBAR
1224 //       LD Self_>_suspend_flags
1225 //
1226 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1227 // with a more efficient implementation, the need to use "FastHSSEC" has
1228 // decreased. - Dave
1229 
1230 
1231 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1232   const int Mode = Knob_FastHSSEC;
1233   if (Mode && !jSelf->is_external_suspend()) {
1234     assert(jSelf->is_suspend_equivalent(), "invariant");
1235     jSelf->clear_suspend_equivalent();
1236     if (2 == Mode) OrderAccess::storeload();
1237     if (!jSelf->is_external_suspend()) return false;
1238     // We raced a suspension -- fall thru into the slow path
1239     jSelf->set_suspend_equivalent();
1240   }
1241   return jSelf->handle_special_suspend_equivalent_condition();
1242 }
1243 
1244 
1245 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1246   assert(_owner == Self, "invariant");
1247 
1248   // Exit protocol:
1249   // 1. ST _succ = wakee
1250   // 2. membar #loadstore|#storestore;
1251   // 2. ST _owner = NULL
1252   // 3. unpark(wakee)
1253 
1254   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1255   ParkEvent * Trigger = Wakee->_event;
1256 
1257   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1258   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1259   // out-of-scope (non-extant).
1260   Wakee  = NULL;
1261 
1262   // Drop the lock
1263   OrderAccess::release_store(&_owner, (void*)NULL);
1264   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1265 
1266   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1267   Trigger->unpark();
1268 
1269   // Maintain stats and report events to JVMTI
1270   OM_PERFDATA_OP(Parks, inc());
1271 }
1272 
1273 
1274 // -----------------------------------------------------------------------------
1275 // Class Loader deadlock handling.
1276 //
1277 // complete_exit exits a lock returning recursion count
1278 // complete_exit/reenter operate as a wait without waiting
1279 // complete_exit requires an inflated monitor
1280 // The _owner field is not always the Thread addr even with an
1281 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1282 // thread due to contention.
1283 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1284   Thread * const Self = THREAD;
1285   assert(Self->is_Java_thread(), "Must be Java thread!");
1286   JavaThread *jt = (JavaThread *)THREAD;
1287 
1288   DeferredInitialize();
1289 
1290   if (THREAD != _owner) {
1291     if (THREAD->is_lock_owned ((address)_owner)) {
1292       assert(_recursions == 0, "internal state error");
1293       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1294       _recursions = 0;
1295     }
1296   }
1297 
1298   guarantee(Self == _owner, "complete_exit not owner");
1299   intptr_t save = _recursions; // record the old recursion count
1300   _recursions = 0;        // set the recursion level to be 0
1301   exit(true, Self);           // exit the monitor
1302   guarantee(_owner != Self, "invariant");
1303   return save;
1304 }
1305 
1306 // reenter() enters a lock and sets recursion count
1307 // complete_exit/reenter operate as a wait without waiting
1308 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1309   Thread * const Self = THREAD;
1310   assert(Self->is_Java_thread(), "Must be Java thread!");
1311   JavaThread *jt = (JavaThread *)THREAD;
1312 
1313   guarantee(_owner != Self, "reenter already owner");
1314   enter(THREAD);       // enter the monitor
1315   guarantee(_recursions == 0, "reenter recursion");
1316   _recursions = recursions;
1317   return;
1318 }
1319 
1320 
1321 // -----------------------------------------------------------------------------
1322 // A macro is used below because there may already be a pending
1323 // exception which should not abort the execution of the routines
1324 // which use this (which is why we don't put this into check_slow and
1325 // call it with a CHECK argument).
1326 
1327 #define CHECK_OWNER()                                                       \
1328   do {                                                                      \
1329     if (THREAD != _owner) {                                                 \
1330       if (THREAD->is_lock_owned((address) _owner)) {                        \
1331         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1332         _recursions = 0;                                                    \
1333       } else {                                                              \
1334         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1335       }                                                                     \
1336     }                                                                       \
1337   } while (false)
1338 
1339 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1340 // TODO-FIXME: remove check_slow() -- it's likely dead.
1341 
1342 void ObjectMonitor::check_slow(TRAPS) {
1343   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1344   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1345 }
1346 
1347 static int Adjust(volatile int * adr, int dx) {
1348   int v;
1349   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1350   return v;
1351 }
1352 
1353 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1354                                     ObjectMonitor* monitor,
1355                                     jlong notifier_tid,
1356                                     jlong timeout,
1357                                     bool timedout) {
1358   assert(event != NULL, "invariant");
1359   assert(monitor != NULL, "invariant");
1360   event->set_monitorClass(((oop)monitor->object())->klass());
1361   event->set_timeout(timeout);
1362   event->set_address((uintptr_t)monitor->object_addr());
1363   event->set_notifier(notifier_tid);
1364   event->set_timedOut(timedout);
1365   event->commit();
1366 }
1367 
1368 // -----------------------------------------------------------------------------
1369 // Wait/Notify/NotifyAll
1370 //
1371 // Note: a subset of changes to ObjectMonitor::wait()
1372 // will need to be replicated in complete_exit
1373 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1374   Thread * const Self = THREAD;
1375   assert(Self->is_Java_thread(), "Must be Java thread!");
1376   JavaThread *jt = (JavaThread *)THREAD;
1377 
1378   DeferredInitialize();
1379 
1380   // Throw IMSX or IEX.
1381   CHECK_OWNER();
1382 
1383   EventJavaMonitorWait event;
1384 
1385   // check for a pending interrupt
1386   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1387     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1388     if (JvmtiExport::should_post_monitor_waited()) {
1389       // Note: 'false' parameter is passed here because the
1390       // wait was not timed out due to thread interrupt.
1391       JvmtiExport::post_monitor_waited(jt, this, false);
1392 
1393       // In this short circuit of the monitor wait protocol, the
1394       // current thread never drops ownership of the monitor and
1395       // never gets added to the wait queue so the current thread
1396       // cannot be made the successor. This means that the
1397       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1398       // consume an unpark() meant for the ParkEvent associated with
1399       // this ObjectMonitor.
1400     }
1401     if (event.should_commit()) {
1402       post_monitor_wait_event(&event, this, 0, millis, false);
1403     }
1404     THROW(vmSymbols::java_lang_InterruptedException());
1405     return;
1406   }
1407 
1408   assert(Self->_Stalled == 0, "invariant");
1409   Self->_Stalled = intptr_t(this);
1410   jt->set_current_waiting_monitor(this);
1411 
1412   // create a node to be put into the queue
1413   // Critically, after we reset() the event but prior to park(), we must check
1414   // for a pending interrupt.
1415   ObjectWaiter node(Self);
1416   node.TState = ObjectWaiter::TS_WAIT;
1417   Self->_ParkEvent->reset();
1418   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1419 
1420   // Enter the waiting queue, which is a circular doubly linked list in this case
1421   // but it could be a priority queue or any data structure.
1422   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1423   // by the the owner of the monitor *except* in the case where park()
1424   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1425   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1426 
1427   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1428   AddWaiter(&node);
1429   Thread::SpinRelease(&_WaitSetLock);
1430 
1431   _Responsible = NULL;
1432 
1433   intptr_t save = _recursions; // record the old recursion count
1434   _waiters++;                  // increment the number of waiters
1435   _recursions = 0;             // set the recursion level to be 1
1436   exit(true, Self);                    // exit the monitor
1437   guarantee(_owner != Self, "invariant");
1438 
1439   // The thread is on the WaitSet list - now park() it.
1440   // On MP systems it's conceivable that a brief spin before we park
1441   // could be profitable.
1442   //
1443   // TODO-FIXME: change the following logic to a loop of the form
1444   //   while (!timeout && !interrupted && _notified == 0) park()
1445 
1446   int ret = OS_OK;
1447   int WasNotified = 0;
1448   { // State transition wrappers
1449     OSThread* osthread = Self->osthread();
1450     OSThreadWaitState osts(osthread, true);
1451     {
1452       ThreadBlockInVM tbivm(jt);
1453       // Thread is in thread_blocked state and oop access is unsafe.
1454       jt->set_suspend_equivalent();
1455 
1456       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1457         // Intentionally empty
1458       } else if (node._notified == 0) {
1459         if (millis <= 0) {
1460           Self->_ParkEvent->park();
1461         } else {
1462           ret = Self->_ParkEvent->park(millis);
1463         }
1464       }
1465 
1466       // were we externally suspended while we were waiting?
1467       if (ExitSuspendEquivalent (jt)) {
1468         // TODO-FIXME: add -- if succ == Self then succ = null.
1469         jt->java_suspend_self();
1470       }
1471 
1472     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1473 
1474     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1475     // from the WaitSet to the EntryList.
1476     // See if we need to remove Node from the WaitSet.
1477     // We use double-checked locking to avoid grabbing _WaitSetLock
1478     // if the thread is not on the wait queue.
1479     //
1480     // Note that we don't need a fence before the fetch of TState.
1481     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1482     // written by the is thread. (perhaps the fetch might even be satisfied
1483     // by a look-aside into the processor's own store buffer, although given
1484     // the length of the code path between the prior ST and this load that's
1485     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1486     // then we'll acquire the lock and then re-fetch a fresh TState value.
1487     // That is, we fail toward safety.
1488 
1489     if (node.TState == ObjectWaiter::TS_WAIT) {
1490       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1491       if (node.TState == ObjectWaiter::TS_WAIT) {
1492         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1493         assert(node._notified == 0, "invariant");
1494         node.TState = ObjectWaiter::TS_RUN;
1495       }
1496       Thread::SpinRelease(&_WaitSetLock);
1497     }
1498 
1499     // The thread is now either on off-list (TS_RUN),
1500     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1501     // The Node's TState variable is stable from the perspective of this thread.
1502     // No other threads will asynchronously modify TState.
1503     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1504     OrderAccess::loadload();
1505     if (_succ == Self) _succ = NULL;
1506     WasNotified = node._notified;
1507 
1508     // Reentry phase -- reacquire the monitor.
1509     // re-enter contended monitor after object.wait().
1510     // retain OBJECT_WAIT state until re-enter successfully completes
1511     // Thread state is thread_in_vm and oop access is again safe,
1512     // although the raw address of the object may have changed.
1513     // (Don't cache naked oops over safepoints, of course).
1514 
1515     // post monitor waited event. Note that this is past-tense, we are done waiting.
1516     if (JvmtiExport::should_post_monitor_waited()) {
1517       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1518 
1519       if (node._notified != 0 && _succ == Self) {
1520         // In this part of the monitor wait-notify-reenter protocol it
1521         // is possible (and normal) for another thread to do a fastpath
1522         // monitor enter-exit while this thread is still trying to get
1523         // to the reenter portion of the protocol.
1524         //
1525         // The ObjectMonitor was notified and the current thread is
1526         // the successor which also means that an unpark() has already
1527         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1528         // consume the unpark() that was done when the successor was
1529         // set because the same ParkEvent is shared between Java
1530         // monitors and JVM/TI RawMonitors (for now).
1531         //
1532         // We redo the unpark() to ensure forward progress, i.e., we
1533         // don't want all pending threads hanging (parked) with none
1534         // entering the unlocked monitor.
1535         node._event->unpark();
1536       }
1537     }
1538 
1539     if (event.should_commit()) {
1540       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1541     }
1542 
1543     OrderAccess::fence();
1544 
1545     assert(Self->_Stalled != 0, "invariant");
1546     Self->_Stalled = 0;
1547 
1548     assert(_owner != Self, "invariant");
1549     ObjectWaiter::TStates v = node.TState;
1550     if (v == ObjectWaiter::TS_RUN) {
1551       enter(Self);
1552     } else {
1553       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1554       ReenterI(Self, &node);
1555       node.wait_reenter_end(this);
1556     }
1557 
1558     // Self has reacquired the lock.
1559     // Lifecycle - the node representing Self must not appear on any queues.
1560     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1561     // want residual elements associated with this thread left on any lists.
1562     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1563     assert(_owner == Self, "invariant");
1564     assert(_succ != Self, "invariant");
1565   } // OSThreadWaitState()
1566 
1567   jt->set_current_waiting_monitor(NULL);
1568 
1569   guarantee(_recursions == 0, "invariant");
1570   _recursions = save;     // restore the old recursion count
1571   _waiters--;             // decrement the number of waiters
1572 
1573   // Verify a few postconditions
1574   assert(_owner == Self, "invariant");
1575   assert(_succ != Self, "invariant");
1576   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1577 
1578   // check if the notification happened
1579   if (!WasNotified) {
1580     // no, it could be timeout or Thread.interrupt() or both
1581     // check for interrupt event, otherwise it is timeout
1582     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1583       THROW(vmSymbols::java_lang_InterruptedException());
1584     }
1585   }
1586 
1587   // NOTE: Spurious wake up will be consider as timeout.
1588   // Monitor notify has precedence over thread interrupt.
1589 }
1590 
1591 
1592 // Consider:
1593 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1594 // then instead of transferring a thread from the WaitSet to the EntryList
1595 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1596 
1597 void ObjectMonitor::INotify(Thread * Self) {
1598   const int policy = Knob_MoveNotifyee;
1599 
1600   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1601   ObjectWaiter * iterator = DequeueWaiter();
1602   if (iterator != NULL) {
1603     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1604     guarantee(iterator->_notified == 0, "invariant");
1605     // Disposition - what might we do with iterator ?
1606     // a.  add it directly to the EntryList - either tail (policy == 1)
1607     //     or head (policy == 0).
1608     // b.  push it onto the front of the _cxq (policy == 2).
1609     // For now we use (b).
1610     if (policy != 4) {
1611       iterator->TState = ObjectWaiter::TS_ENTER;
1612     }
1613     iterator->_notified = 1;
1614     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1615 
1616     ObjectWaiter * list = _EntryList;
1617     if (list != NULL) {
1618       assert(list->_prev == NULL, "invariant");
1619       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1620       assert(list != iterator, "invariant");
1621     }
1622 
1623     if (policy == 0) {       // prepend to EntryList
1624       if (list == NULL) {
1625         iterator->_next = iterator->_prev = NULL;
1626         _EntryList = iterator;
1627       } else {
1628         list->_prev = iterator;
1629         iterator->_next = list;
1630         iterator->_prev = NULL;
1631         _EntryList = iterator;
1632       }
1633     } else if (policy == 1) {      // append to EntryList
1634       if (list == NULL) {
1635         iterator->_next = iterator->_prev = NULL;
1636         _EntryList = iterator;
1637       } else {
1638         // CONSIDER:  finding the tail currently requires a linear-time walk of
1639         // the EntryList.  We can make tail access constant-time by converting to
1640         // a CDLL instead of using our current DLL.
1641         ObjectWaiter * tail;
1642         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1643         assert(tail != NULL && tail->_next == NULL, "invariant");
1644         tail->_next = iterator;
1645         iterator->_prev = tail;
1646         iterator->_next = NULL;
1647       }
1648     } else if (policy == 2) {      // prepend to cxq
1649       if (list == NULL) {
1650         iterator->_next = iterator->_prev = NULL;
1651         _EntryList = iterator;
1652       } else {
1653         iterator->TState = ObjectWaiter::TS_CXQ;
1654         for (;;) {
1655           ObjectWaiter * front = _cxq;
1656           iterator->_next = front;
1657           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1658             break;
1659           }
1660         }
1661       }
1662     } else if (policy == 3) {      // append to cxq
1663       iterator->TState = ObjectWaiter::TS_CXQ;
1664       for (;;) {
1665         ObjectWaiter * tail = _cxq;
1666         if (tail == NULL) {
1667           iterator->_next = NULL;
1668           if (Atomic::replace_if_null(iterator, &_cxq)) {
1669             break;
1670           }
1671         } else {
1672           while (tail->_next != NULL) tail = tail->_next;
1673           tail->_next = iterator;
1674           iterator->_prev = tail;
1675           iterator->_next = NULL;
1676           break;
1677         }
1678       }
1679     } else {
1680       ParkEvent * ev = iterator->_event;
1681       iterator->TState = ObjectWaiter::TS_RUN;
1682       OrderAccess::fence();
1683       ev->unpark();
1684     }
1685 
1686     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1687     // move the add-to-EntryList operation, above, outside the critical section
1688     // protected by _WaitSetLock.  In practice that's not useful.  With the
1689     // exception of  wait() timeouts and interrupts the monitor owner
1690     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1691     // on _WaitSetLock so it's not profitable to reduce the length of the
1692     // critical section.
1693 
1694     if (policy < 4) {
1695       iterator->wait_reenter_begin(this);
1696     }
1697   }
1698   Thread::SpinRelease(&_WaitSetLock);
1699 }
1700 
1701 // Consider: a not-uncommon synchronization bug is to use notify() when
1702 // notifyAll() is more appropriate, potentially resulting in stranded
1703 // threads; this is one example of a lost wakeup. A useful diagnostic
1704 // option is to force all notify() operations to behave as notifyAll().
1705 //
1706 // Note: We can also detect many such problems with a "minimum wait".
1707 // When the "minimum wait" is set to a small non-zero timeout value
1708 // and the program does not hang whereas it did absent "minimum wait",
1709 // that suggests a lost wakeup bug.
1710 
1711 void ObjectMonitor::notify(TRAPS) {
1712   CHECK_OWNER();
1713   if (_WaitSet == NULL) {
1714     return;
1715   }
1716   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1717   INotify(THREAD);
1718   OM_PERFDATA_OP(Notifications, inc(1));
1719 }
1720 
1721 
1722 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1723 // from the waitset to the EntryList. This could be done more efficiently with a
1724 // single bulk transfer but in practice it's not time-critical. Beware too,
1725 // that in prepend-mode we invert the order of the waiters. Let's say that the
1726 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1727 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1728 
1729 void ObjectMonitor::notifyAll(TRAPS) {
1730   CHECK_OWNER();
1731   if (_WaitSet == NULL) {
1732     return;
1733   }
1734 
1735   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1736   int tally = 0;
1737   while (_WaitSet != NULL) {
1738     tally++;
1739     INotify(THREAD);
1740   }
1741 
1742   OM_PERFDATA_OP(Notifications, inc(tally));
1743 }
1744 
1745 // -----------------------------------------------------------------------------
1746 // Adaptive Spinning Support
1747 //
1748 // Adaptive spin-then-block - rational spinning
1749 //
1750 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1751 // algorithm.  On high order SMP systems it would be better to start with
1752 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1753 // a contending thread could enqueue itself on the cxq and then spin locally
1754 // on a thread-specific variable such as its ParkEvent._Event flag.
1755 // That's left as an exercise for the reader.  Note that global spinning is
1756 // not problematic on Niagara, as the L2 cache serves the interconnect and
1757 // has both low latency and massive bandwidth.
1758 //
1759 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1760 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1761 // (duration) or we can fix the count at approximately the duration of
1762 // a context switch and vary the frequency.   Of course we could also
1763 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1764 // For a description of 'Adaptive spin-then-block mutual exclusion in
1765 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1766 //
1767 // This implementation varies the duration "D", where D varies with
1768 // the success rate of recent spin attempts. (D is capped at approximately
1769 // length of a round-trip context switch).  The success rate for recent
1770 // spin attempts is a good predictor of the success rate of future spin
1771 // attempts.  The mechanism adapts automatically to varying critical
1772 // section length (lock modality), system load and degree of parallelism.
1773 // D is maintained per-monitor in _SpinDuration and is initialized
1774 // optimistically.  Spin frequency is fixed at 100%.
1775 //
1776 // Note that _SpinDuration is volatile, but we update it without locks
1777 // or atomics.  The code is designed so that _SpinDuration stays within
1778 // a reasonable range even in the presence of races.  The arithmetic
1779 // operations on _SpinDuration are closed over the domain of legal values,
1780 // so at worst a race will install and older but still legal value.
1781 // At the very worst this introduces some apparent non-determinism.
1782 // We might spin when we shouldn't or vice-versa, but since the spin
1783 // count are relatively short, even in the worst case, the effect is harmless.
1784 //
1785 // Care must be taken that a low "D" value does not become an
1786 // an absorbing state.  Transient spinning failures -- when spinning
1787 // is overall profitable -- should not cause the system to converge
1788 // on low "D" values.  We want spinning to be stable and predictable
1789 // and fairly responsive to change and at the same time we don't want
1790 // it to oscillate, become metastable, be "too" non-deterministic,
1791 // or converge on or enter undesirable stable absorbing states.
1792 //
1793 // We implement a feedback-based control system -- using past behavior
1794 // to predict future behavior.  We face two issues: (a) if the
1795 // input signal is random then the spin predictor won't provide optimal
1796 // results, and (b) if the signal frequency is too high then the control
1797 // system, which has some natural response lag, will "chase" the signal.
1798 // (b) can arise from multimodal lock hold times.  Transient preemption
1799 // can also result in apparent bimodal lock hold times.
1800 // Although sub-optimal, neither condition is particularly harmful, as
1801 // in the worst-case we'll spin when we shouldn't or vice-versa.
1802 // The maximum spin duration is rather short so the failure modes aren't bad.
1803 // To be conservative, I've tuned the gain in system to bias toward
1804 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1805 // "rings" or oscillates between spinning and not spinning.  This happens
1806 // when spinning is just on the cusp of profitability, however, so the
1807 // situation is not dire.  The state is benign -- there's no need to add
1808 // hysteresis control to damp the transition rate between spinning and
1809 // not spinning.
1810 
1811 // Spinning: Fixed frequency (100%), vary duration
1812 int ObjectMonitor::TrySpin(Thread * Self) {
1813   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1814   int ctr = Knob_FixedSpin;
1815   if (ctr != 0) {
1816     while (--ctr >= 0) {
1817       if (TryLock(Self) > 0) return 1;
1818       SpinPause();
1819     }
1820     return 0;
1821   }
1822 
1823   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1824     if (TryLock(Self) > 0) {
1825       // Increase _SpinDuration ...
1826       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1827       // Raising _SpurDuration to the poverty line is key.
1828       int x = _SpinDuration;
1829       if (x < Knob_SpinLimit) {
1830         if (x < Knob_Poverty) x = Knob_Poverty;
1831         _SpinDuration = x + Knob_BonusB;
1832       }
1833       return 1;
1834     }
1835     SpinPause();
1836   }
1837 
1838   // Admission control - verify preconditions for spinning
1839   //
1840   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1841   // becoming an absorbing state.  Put another way, we spin briefly to
1842   // sample, just in case the system load, parallelism, contention, or lock
1843   // modality changed.
1844   //
1845   // Consider the following alternative:
1846   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1847   // spin attempt.  "Periodically" might mean after a tally of
1848   // the # of failed spin attempts (or iterations) reaches some threshold.
1849   // This takes us into the realm of 1-out-of-N spinning, where we
1850   // hold the duration constant but vary the frequency.
1851 
1852   ctr = _SpinDuration;
1853   if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
1854   if (ctr <= 0) return 0;
1855 
1856   if (Knob_SuccRestrict && _succ != NULL) return 0;
1857   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1858     return 0;
1859   }
1860 
1861   int MaxSpin = Knob_MaxSpinners;
1862   if (MaxSpin >= 0) {
1863     if (_Spinner > MaxSpin) {
1864       return 0;
1865     }
1866     // Slightly racy, but benign ...
1867     Adjust(&_Spinner, 1);
1868   }
1869 
1870   // We're good to spin ... spin ingress.
1871   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1872   // when preparing to LD...CAS _owner, etc and the CAS is likely
1873   // to succeed.
1874   int caspty  = Knob_CASPenalty;
1875   int oxpty   = Knob_OXPenalty;
1876   int sss     = Knob_SpinSetSucc;
1877   if (sss && _succ == NULL) _succ = Self;
1878   Thread * prv = NULL;
1879 
1880   // There are three ways to exit the following loop:
1881   // 1.  A successful spin where this thread has acquired the lock.
1882   // 2.  Spin failure with prejudice
1883   // 3.  Spin failure without prejudice
1884 
1885   while (--ctr >= 0) {
1886 
1887     // Periodic polling -- Check for pending GC
1888     // Threads may spin while they're unsafe.
1889     // We don't want spinning threads to delay the JVM from reaching
1890     // a stop-the-world safepoint or to steal cycles from GC.
1891     // If we detect a pending safepoint we abort in order that
1892     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1893     // this thread, if safe, doesn't steal cycles from GC.
1894     // This is in keeping with the "no loitering in runtime" rule.
1895     // We periodically check to see if there's a safepoint pending.
1896     if ((ctr & 0xFF) == 0) {
1897       if (SafepointMechanism::poll(Self)) {
1898         goto Abort;           // abrupt spin egress
1899       }
1900       if (Knob_UsePause & 1) SpinPause();
1901     }
1902 
1903     if (Knob_UsePause & 2) SpinPause();
1904 
1905     // Probe _owner with TATAS
1906     // If this thread observes the monitor transition or flicker
1907     // from locked to unlocked to locked, then the odds that this
1908     // thread will acquire the lock in this spin attempt go down
1909     // considerably.  The same argument applies if the CAS fails
1910     // or if we observe _owner change from one non-null value to
1911     // another non-null value.   In such cases we might abort
1912     // the spin without prejudice or apply a "penalty" to the
1913     // spin count-down variable "ctr", reducing it by 100, say.
1914 
1915     Thread * ox = (Thread *) _owner;
1916     if (ox == NULL) {
1917       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1918       if (ox == NULL) {
1919         // The CAS succeeded -- this thread acquired ownership
1920         // Take care of some bookkeeping to exit spin state.
1921         if (sss && _succ == Self) {
1922           _succ = NULL;
1923         }
1924         if (MaxSpin > 0) Adjust(&_Spinner, -1);
1925 
1926         // Increase _SpinDuration :
1927         // The spin was successful (profitable) so we tend toward
1928         // longer spin attempts in the future.
1929         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1930         // If we acquired the lock early in the spin cycle it
1931         // makes sense to increase _SpinDuration proportionally.
1932         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1933         int x = _SpinDuration;
1934         if (x < Knob_SpinLimit) {
1935           if (x < Knob_Poverty) x = Knob_Poverty;
1936           _SpinDuration = x + Knob_Bonus;
1937         }
1938         return 1;
1939       }
1940 
1941       // The CAS failed ... we can take any of the following actions:
1942       // * penalize: ctr -= Knob_CASPenalty
1943       // * exit spin with prejudice -- goto Abort;
1944       // * exit spin without prejudice.
1945       // * Since CAS is high-latency, retry again immediately.
1946       prv = ox;
1947       if (caspty == -2) break;
1948       if (caspty == -1) goto Abort;
1949       ctr -= caspty;
1950       continue;
1951     }
1952 
1953     // Did lock ownership change hands ?
1954     if (ox != prv && prv != NULL) {
1955       if (oxpty == -2) break;
1956       if (oxpty == -1) goto Abort;
1957       ctr -= oxpty;
1958     }
1959     prv = ox;
1960 
1961     // Abort the spin if the owner is not executing.
1962     // The owner must be executing in order to drop the lock.
1963     // Spinning while the owner is OFFPROC is idiocy.
1964     // Consider: ctr -= RunnablePenalty ;
1965     if (Knob_OState && NotRunnable (Self, ox)) {
1966       goto Abort;
1967     }
1968     if (sss && _succ == NULL) _succ = Self;
1969   }
1970 
1971   // Spin failed with prejudice -- reduce _SpinDuration.
1972   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1973   // AIMD is globally stable.
1974   {
1975     int x = _SpinDuration;
1976     if (x > 0) {
1977       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1978       // This is globally sample and tends to damp the response.
1979       x -= Knob_Penalty;
1980       if (x < 0) x = 0;
1981       _SpinDuration = x;
1982     }
1983   }
1984 
1985  Abort:
1986   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
1987   if (sss && _succ == Self) {
1988     _succ = NULL;
1989     // Invariant: after setting succ=null a contending thread
1990     // must recheck-retry _owner before parking.  This usually happens
1991     // in the normal usage of TrySpin(), but it's safest
1992     // to make TrySpin() as foolproof as possible.
1993     OrderAccess::fence();
1994     if (TryLock(Self) > 0) return 1;
1995   }
1996   return 0;
1997 }
1998 
1999 // NotRunnable() -- informed spinning
2000 //
2001 // Don't bother spinning if the owner is not eligible to drop the lock.
2002 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2003 // The thread must be runnable in order to drop the lock in timely fashion.
2004 // If the _owner is not runnable then spinning will not likely be
2005 // successful (profitable).
2006 //
2007 // Beware -- the thread referenced by _owner could have died
2008 // so a simply fetch from _owner->_thread_state might trap.
2009 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2010 // Because of the lifecycle issues, the _thread_state values
2011 // observed by NotRunnable() might be garbage.  NotRunnable must
2012 // tolerate this and consider the observed _thread_state value
2013 // as advisory.
2014 //
2015 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2016 // a thread pointer.
2017 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2018 // with the LSB of _owner.  Another option would be to probabilistically probe
2019 // the putative _owner->TypeTag value.
2020 //
2021 // Checking _thread_state isn't perfect.  Even if the thread is
2022 // in_java it might be blocked on a page-fault or have been preempted
2023 // and sitting on a ready/dispatch queue.
2024 //
2025 // The return value from NotRunnable() is *advisory* -- the
2026 // result is based on sampling and is not necessarily coherent.
2027 // The caller must tolerate false-negative and false-positive errors.
2028 // Spinning, in general, is probabilistic anyway.
2029 
2030 
2031 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2032   // Check ox->TypeTag == 2BAD.
2033   if (ox == NULL) return 0;
2034 
2035   // Avoid transitive spinning ...
2036   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2037   // Immediately after T1 acquires L it's possible that T2, also
2038   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2039   // This occurs transiently after T1 acquired L but before
2040   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2041   // its spin in this circumstance.
2042   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2043 
2044   if (BlockedOn == 1) return 1;
2045   if (BlockedOn != 0) {
2046     return BlockedOn != intptr_t(this) && _owner == ox;
2047   }
2048 
2049   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2050   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2051   // consider also: jst != _thread_in_Java -- but that's overspecific.
2052   return jst == _thread_blocked || jst == _thread_in_native;
2053 }
2054 
2055 
2056 // -----------------------------------------------------------------------------
2057 // WaitSet management ...
2058 
2059 ObjectWaiter::ObjectWaiter(Thread* thread) {
2060   _next     = NULL;
2061   _prev     = NULL;
2062   _notified = 0;
2063   _notifier_tid = 0;
2064   TState    = TS_RUN;
2065   _thread   = thread;
2066   _event    = thread->_ParkEvent;
2067   _active   = false;
2068   assert(_event != NULL, "invariant");
2069 }
2070 
2071 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2072   JavaThread *jt = (JavaThread *)this->_thread;
2073   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2074 }
2075 
2076 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2077   JavaThread *jt = (JavaThread *)this->_thread;
2078   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2079 }
2080 
2081 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2082   assert(node != NULL, "should not add NULL node");
2083   assert(node->_prev == NULL, "node already in list");
2084   assert(node->_next == NULL, "node already in list");
2085   // put node at end of queue (circular doubly linked list)
2086   if (_WaitSet == NULL) {
2087     _WaitSet = node;
2088     node->_prev = node;
2089     node->_next = node;
2090   } else {
2091     ObjectWaiter* head = _WaitSet;
2092     ObjectWaiter* tail = head->_prev;
2093     assert(tail->_next == head, "invariant check");
2094     tail->_next = node;
2095     head->_prev = node;
2096     node->_next = head;
2097     node->_prev = tail;
2098   }
2099 }
2100 
2101 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2102   // dequeue the very first waiter
2103   ObjectWaiter* waiter = _WaitSet;
2104   if (waiter) {
2105     DequeueSpecificWaiter(waiter);
2106   }
2107   return waiter;
2108 }
2109 
2110 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2111   assert(node != NULL, "should not dequeue NULL node");
2112   assert(node->_prev != NULL, "node already removed from list");
2113   assert(node->_next != NULL, "node already removed from list");
2114   // when the waiter has woken up because of interrupt,
2115   // timeout or other spurious wake-up, dequeue the
2116   // waiter from waiting list
2117   ObjectWaiter* next = node->_next;
2118   if (next == node) {
2119     assert(node->_prev == node, "invariant check");
2120     _WaitSet = NULL;
2121   } else {
2122     ObjectWaiter* prev = node->_prev;
2123     assert(prev->_next == node, "invariant check");
2124     assert(next->_prev == node, "invariant check");
2125     next->_prev = prev;
2126     prev->_next = next;
2127     if (_WaitSet == node) {
2128       _WaitSet = next;
2129     }
2130   }
2131   node->_next = NULL;
2132   node->_prev = NULL;
2133 }
2134 
2135 // -----------------------------------------------------------------------------
2136 // PerfData support
2137 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2138 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2139 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2140 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2141 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2142 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2143 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2144 
2145 // One-shot global initialization for the sync subsystem.
2146 // We could also defer initialization and initialize on-demand
2147 // the first time we call inflate().  Initialization would
2148 // be protected - like so many things - by the MonitorCache_lock.
2149 
2150 void ObjectMonitor::Initialize() {
2151   static int InitializationCompleted = 0;
2152   assert(InitializationCompleted == 0, "invariant");
2153   InitializationCompleted = 1;
2154   if (UsePerfData) {
2155     EXCEPTION_MARK;
2156 #define NEWPERFCOUNTER(n)                                                \
2157   {                                                                      \
2158     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2159                                         CHECK);                          \
2160   }
2161 #define NEWPERFVARIABLE(n)                                                \
2162   {                                                                       \
2163     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2164                                          CHECK);                          \
2165   }
2166     NEWPERFCOUNTER(_sync_Inflations);
2167     NEWPERFCOUNTER(_sync_Deflations);
2168     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2169     NEWPERFCOUNTER(_sync_FutileWakeups);
2170     NEWPERFCOUNTER(_sync_Parks);
2171     NEWPERFCOUNTER(_sync_Notifications);
2172     NEWPERFVARIABLE(_sync_MonExtant);
2173 #undef NEWPERFCOUNTER
2174 #undef NEWPERFVARIABLE
2175   }
2176 }
2177 
2178 void ObjectMonitor::DeferredInitialize() {
2179   if (InitDone > 0) return;
2180   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2181     while (InitDone != 1) /* empty */;
2182     return;
2183   }
2184 
2185   // One-shot global initialization ...
2186   // The initialization is idempotent, so we don't need locks.
2187   // In the future consider doing this via os::init_2().
2188 
2189   if (!os::is_MP()) {
2190     Knob_SpinLimit = 0;
2191     Knob_SpinBase  = 0;
2192     Knob_PreSpin   = 0;
2193     Knob_FixedSpin = -1;
2194   }
2195 
2196   OrderAccess::fence();
2197   InitDone = 1;
2198 }
2199