1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_VerifyInUse  = 0;
 105 int ObjectMonitor::Knob_VerifyMatch  = 0;
 106 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 107 
 108 static int Knob_SpinBase            = 0;       // Floor AKA SpinMin
 109 static int Knob_CASPenalty          = -1;      // Penalty for failed CAS
 110 static int Knob_OXPenalty           = -1;      // Penalty for observed _owner change
 111 static int Knob_SpinSetSucc         = 1;       // spinners set the _succ field
 112 static int Knob_SpinEarly           = 1;
 113 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 114 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 115 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 116 static int Knob_Bonus               = 100;     // spin success bonus
 117 static int Knob_BonusB              = 100;     // spin success bonus
 118 static int Knob_Penalty             = 200;     // spin failure penalty
 119 static int Knob_Poverty             = 1000;
 120 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 121 static int Knob_FixedSpin           = 0;
 122 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 123 static int Knob_UsePause            = 1;
 124 static int Knob_ExitPolicy          = 0;
 125 static int Knob_PreSpin             = 10;      // 20-100 likely better
 126 static int Knob_ResetEvent          = 0;
 127 
 128 static int Knob_FastHSSEC           = 0;
 129 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 130 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 131 static volatile int InitDone        = 0;
 132 
 133 // -----------------------------------------------------------------------------
 134 // Theory of operations -- Monitors lists, thread residency, etc:
 135 //
 136 // * A thread acquires ownership of a monitor by successfully
 137 //   CAS()ing the _owner field from null to non-null.
 138 //
 139 // * Invariant: A thread appears on at most one monitor list --
 140 //   cxq, EntryList or WaitSet -- at any one time.
 141 //
 142 // * Contending threads "push" themselves onto the cxq with CAS
 143 //   and then spin/park.
 144 //
 145 // * After a contending thread eventually acquires the lock it must
 146 //   dequeue itself from either the EntryList or the cxq.
 147 //
 148 // * The exiting thread identifies and unparks an "heir presumptive"
 149 //   tentative successor thread on the EntryList.  Critically, the
 150 //   exiting thread doesn't unlink the successor thread from the EntryList.
 151 //   After having been unparked, the wakee will recontend for ownership of
 152 //   the monitor.   The successor (wakee) will either acquire the lock or
 153 //   re-park itself.
 154 //
 155 //   Succession is provided for by a policy of competitive handoff.
 156 //   The exiting thread does _not_ grant or pass ownership to the
 157 //   successor thread.  (This is also referred to as "handoff" succession").
 158 //   Instead the exiting thread releases ownership and possibly wakes
 159 //   a successor, so the successor can (re)compete for ownership of the lock.
 160 //   If the EntryList is empty but the cxq is populated the exiting
 161 //   thread will drain the cxq into the EntryList.  It does so by
 162 //   by detaching the cxq (installing null with CAS) and folding
 163 //   the threads from the cxq into the EntryList.  The EntryList is
 164 //   doubly linked, while the cxq is singly linked because of the
 165 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 166 //
 167 // * Concurrency invariants:
 168 //
 169 //   -- only the monitor owner may access or mutate the EntryList.
 170 //      The mutex property of the monitor itself protects the EntryList
 171 //      from concurrent interference.
 172 //   -- Only the monitor owner may detach the cxq.
 173 //
 174 // * The monitor entry list operations avoid locks, but strictly speaking
 175 //   they're not lock-free.  Enter is lock-free, exit is not.
 176 //   For a description of 'Methods and apparatus providing non-blocking access
 177 //   to a resource,' see U.S. Pat. No. 7844973.
 178 //
 179 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 180 //   detaching thread.  This mechanism is immune from the ABA corruption.
 181 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 182 //
 183 // * Taken together, the cxq and the EntryList constitute or form a
 184 //   single logical queue of threads stalled trying to acquire the lock.
 185 //   We use two distinct lists to improve the odds of a constant-time
 186 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 187 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 188 //   A key desideratum is to minimize queue & monitor metadata manipulation
 189 //   that occurs while holding the monitor lock -- that is, we want to
 190 //   minimize monitor lock holds times.  Note that even a small amount of
 191 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 192 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 193 //   locks and monitor metadata.
 194 //
 195 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 196 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 197 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 198 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 199 //
 200 //   The EntryList is ordered by the prevailing queue discipline and
 201 //   can be organized in any convenient fashion, such as a doubly-linked list or
 202 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 203 //   to operate in constant-time.  If we need a priority queue then something akin
 204 //   to Solaris' sleepq would work nicely.  Viz.,
 205 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 206 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 207 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 208 //   EntryList accordingly.
 209 //
 210 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 211 //   somewhat similar to an elevator-scan.
 212 //
 213 // * The monitor synchronization subsystem avoids the use of native
 214 //   synchronization primitives except for the narrow platform-specific
 215 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 216 //   the semantics of park-unpark.  Put another way, this monitor implementation
 217 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 218 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 219 //   underlying OS manages the READY<->RUN transitions.
 220 //
 221 // * Waiting threads reside on the WaitSet list -- wait() puts
 222 //   the caller onto the WaitSet.
 223 //
 224 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 225 //   either the EntryList or cxq.  Subsequent exit() operations will
 226 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 227 //   it's likely the notifyee would simply impale itself on the lock held
 228 //   by the notifier.
 229 //
 230 // * An interesting alternative is to encode cxq as (List,LockByte) where
 231 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 232 //   variable, like _recursions, in the scheme.  The threads or Events that form
 233 //   the list would have to be aligned in 256-byte addresses.  A thread would
 234 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 235 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 236 //   Note that is is *not* word-tearing, but it does presume that full-word
 237 //   CAS operations are coherent with intermix with STB operations.  That's true
 238 //   on most common processors.
 239 //
 240 // * See also http://blogs.sun.com/dave
 241 
 242 
 243 void* ObjectMonitor::operator new (size_t size) throw() {
 244   return AllocateHeap(size, mtInternal);
 245 }
 246 void* ObjectMonitor::operator new[] (size_t size) throw() {
 247   return operator new (size);
 248 }
 249 void ObjectMonitor::operator delete(void* p) {
 250   FreeHeap(p);
 251 }
 252 void ObjectMonitor::operator delete[] (void *p) {
 253   operator delete(p);
 254 }
 255 
 256 // -----------------------------------------------------------------------------
 257 // Enter support
 258 
 259 void ObjectMonitor::enter(TRAPS) {
 260   // The following code is ordered to check the most common cases first
 261   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 262   Thread * const Self = THREAD;
 263 
 264   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 265   if (cur == NULL) {
 266     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 267     assert(_recursions == 0, "invariant");
 268     assert(_owner == Self, "invariant");
 269     return;
 270   }
 271 
 272   if (cur == Self) {
 273     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 274     _recursions++;
 275     return;
 276   }
 277 
 278   if (Self->is_lock_owned ((address)cur)) {
 279     assert(_recursions == 0, "internal state error");
 280     _recursions = 1;
 281     // Commute owner from a thread-specific on-stack BasicLockObject address to
 282     // a full-fledged "Thread *".
 283     _owner = Self;
 284     return;
 285   }
 286 
 287   // We've encountered genuine contention.
 288   assert(Self->_Stalled == 0, "invariant");
 289   Self->_Stalled = intptr_t(this);
 290 
 291   // Try one round of spinning *before* enqueueing Self
 292   // and before going through the awkward and expensive state
 293   // transitions.  The following spin is strictly optional ...
 294   // Note that if we acquire the monitor from an initial spin
 295   // we forgo posting JVMTI events and firing DTRACE probes.
 296   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 297     assert(_owner == Self, "invariant");
 298     assert(_recursions == 0, "invariant");
 299     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 300     Self->_Stalled = 0;
 301     return;
 302   }
 303 
 304   assert(_owner != Self, "invariant");
 305   assert(_succ != Self, "invariant");
 306   assert(Self->is_Java_thread(), "invariant");
 307   JavaThread * jt = (JavaThread *) Self;
 308   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 309   assert(jt->thread_state() != _thread_blocked, "invariant");
 310   assert(this->object() != NULL, "invariant");
 311   assert(_count >= 0, "invariant");
 312 
 313   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 314   // Ensure the object-monitor relationship remains stable while there's contention.
 315   Atomic::inc(&_count);
 316 
 317   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 318   EventJavaMonitorEnter event;
 319   if (event.should_commit()) {
 320     event.set_monitorClass(((oop)this->object())->klass());
 321     event.set_address((uintptr_t)(this->object_addr()));
 322   }
 323 
 324   { // Change java thread status to indicate blocked on monitor enter.
 325     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 326 
 327     Self->set_current_pending_monitor(this);
 328 
 329     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 330     if (JvmtiExport::should_post_monitor_contended_enter()) {
 331       JvmtiExport::post_monitor_contended_enter(jt, this);
 332 
 333       // The current thread does not yet own the monitor and does not
 334       // yet appear on any queues that would get it made the successor.
 335       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 336       // handler cannot accidentally consume an unpark() meant for the
 337       // ParkEvent associated with this ObjectMonitor.
 338     }
 339 
 340     OSThreadContendState osts(Self->osthread());
 341     ThreadBlockInVM tbivm(jt);
 342 
 343     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 344     for (;;) {
 345       jt->set_suspend_equivalent();
 346       // cleared by handle_special_suspend_equivalent_condition()
 347       // or java_suspend_self()
 348 
 349       EnterI(THREAD);
 350 
 351       if (!ExitSuspendEquivalent(jt)) break;
 352 
 353       // We have acquired the contended monitor, but while we were
 354       // waiting another thread suspended us. We don't want to enter
 355       // the monitor while suspended because that would surprise the
 356       // thread that suspended us.
 357       //
 358       _recursions = 0;
 359       _succ = NULL;
 360       exit(false, Self);
 361 
 362       jt->java_suspend_self();
 363     }
 364     Self->set_current_pending_monitor(NULL);
 365 
 366     // We cleared the pending monitor info since we've just gotten past
 367     // the enter-check-for-suspend dance and we now own the monitor free
 368     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 369     // destructor can go to a safepoint at the end of this block. If we
 370     // do a thread dump during that safepoint, then this thread will show
 371     // as having "-locked" the monitor, but the OS and java.lang.Thread
 372     // states will still report that the thread is blocked trying to
 373     // acquire it.
 374   }
 375 
 376   Atomic::dec(&_count);
 377   assert(_count >= 0, "invariant");
 378   Self->_Stalled = 0;
 379 
 380   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 381   assert(_recursions == 0, "invariant");
 382   assert(_owner == Self, "invariant");
 383   assert(_succ != Self, "invariant");
 384   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 385 
 386   // The thread -- now the owner -- is back in vm mode.
 387   // Report the glorious news via TI,DTrace and jvmstat.
 388   // The probe effect is non-trivial.  All the reportage occurs
 389   // while we hold the monitor, increasing the length of the critical
 390   // section.  Amdahl's parallel speedup law comes vividly into play.
 391   //
 392   // Another option might be to aggregate the events (thread local or
 393   // per-monitor aggregation) and defer reporting until a more opportune
 394   // time -- such as next time some thread encounters contention but has
 395   // yet to acquire the lock.  While spinning that thread could
 396   // spinning we could increment JVMStat counters, etc.
 397 
 398   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 399   if (JvmtiExport::should_post_monitor_contended_entered()) {
 400     JvmtiExport::post_monitor_contended_entered(jt, this);
 401 
 402     // The current thread already owns the monitor and is not going to
 403     // call park() for the remainder of the monitor enter protocol. So
 404     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 405     // event handler consumed an unpark() issued by the thread that
 406     // just exited the monitor.
 407   }
 408   if (event.should_commit()) {
 409     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 410     event.commit();
 411   }
 412   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 413 }
 414 
 415 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 416 // Callers must compensate as needed.
 417 
 418 int ObjectMonitor::TryLock(Thread * Self) {
 419   void * own = _owner;
 420   if (own != NULL) return 0;
 421   if (Atomic::replace_if_null(Self, &_owner)) {
 422     // Either guarantee _recursions == 0 or set _recursions = 0.
 423     assert(_recursions == 0, "invariant");
 424     assert(_owner == Self, "invariant");
 425     return 1;
 426   }
 427   // The lock had been free momentarily, but we lost the race to the lock.
 428   // Interference -- the CAS failed.
 429   // We can either return -1 or retry.
 430   // Retry doesn't make as much sense because the lock was just acquired.
 431   return -1;
 432 }
 433 
 434 #define MAX_RECHECK_INTERVAL 1000
 435 
 436 void ObjectMonitor::EnterI(TRAPS) {
 437   Thread * const Self = THREAD;
 438   assert(Self->is_Java_thread(), "invariant");
 439   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 440 
 441   // Try the lock - TATAS
 442   if (TryLock (Self) > 0) {
 443     assert(_succ != Self, "invariant");
 444     assert(_owner == Self, "invariant");
 445     assert(_Responsible != Self, "invariant");
 446     return;
 447   }
 448 
 449   DeferredInitialize();
 450 
 451   // We try one round of spinning *before* enqueueing Self.
 452   //
 453   // If the _owner is ready but OFFPROC we could use a YieldTo()
 454   // operation to donate the remainder of this thread's quantum
 455   // to the owner.  This has subtle but beneficial affinity
 456   // effects.
 457 
 458   if (TrySpin (Self) > 0) {
 459     assert(_owner == Self, "invariant");
 460     assert(_succ != Self, "invariant");
 461     assert(_Responsible != Self, "invariant");
 462     return;
 463   }
 464 
 465   // The Spin failed -- Enqueue and park the thread ...
 466   assert(_succ != Self, "invariant");
 467   assert(_owner != Self, "invariant");
 468   assert(_Responsible != Self, "invariant");
 469 
 470   // Enqueue "Self" on ObjectMonitor's _cxq.
 471   //
 472   // Node acts as a proxy for Self.
 473   // As an aside, if were to ever rewrite the synchronization code mostly
 474   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 475   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 476   // as well as eliminate a subset of ABA issues.
 477   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 478 
 479   ObjectWaiter node(Self);
 480   Self->_ParkEvent->reset();
 481   node._prev   = (ObjectWaiter *) 0xBAD;
 482   node.TState  = ObjectWaiter::TS_CXQ;
 483 
 484   // Push "Self" onto the front of the _cxq.
 485   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 486   // Note that spinning tends to reduce the rate at which threads
 487   // enqueue and dequeue on EntryList|cxq.
 488   ObjectWaiter * nxt;
 489   for (;;) {
 490     node._next = nxt = _cxq;
 491     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 492 
 493     // Interference - the CAS failed because _cxq changed.  Just retry.
 494     // As an optional optimization we retry the lock.
 495     if (TryLock (Self) > 0) {
 496       assert(_succ != Self, "invariant");
 497       assert(_owner == Self, "invariant");
 498       assert(_Responsible != Self, "invariant");
 499       return;
 500     }
 501   }
 502 
 503   // Check for cxq|EntryList edge transition to non-null.  This indicates
 504   // the onset of contention.  While contention persists exiting threads
 505   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 506   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 507   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 508   // arrange for one of the contending thread to use a timed park() operations
 509   // to detect and recover from the race.  (Stranding is form of progress failure
 510   // where the monitor is unlocked but all the contending threads remain parked).
 511   // That is, at least one of the contended threads will periodically poll _owner.
 512   // One of the contending threads will become the designated "Responsible" thread.
 513   // The Responsible thread uses a timed park instead of a normal indefinite park
 514   // operation -- it periodically wakes and checks for and recovers from potential
 515   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 516   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 517   // be responsible for a monitor.
 518   //
 519   // Currently, one of the contended threads takes on the added role of "Responsible".
 520   // A viable alternative would be to use a dedicated "stranding checker" thread
 521   // that periodically iterated over all the threads (or active monitors) and unparked
 522   // successors where there was risk of stranding.  This would help eliminate the
 523   // timer scalability issues we see on some platforms as we'd only have one thread
 524   // -- the checker -- parked on a timer.
 525 
 526   if (nxt == NULL && _EntryList == NULL) {
 527     // Try to assume the role of responsible thread for the monitor.
 528     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 529     Atomic::replace_if_null(Self, &_Responsible);
 530   }
 531 
 532   // The lock might have been released while this thread was occupied queueing
 533   // itself onto _cxq.  To close the race and avoid "stranding" and
 534   // progress-liveness failure we must resample-retry _owner before parking.
 535   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 536   // In this case the ST-MEMBAR is accomplished with CAS().
 537   //
 538   // TODO: Defer all thread state transitions until park-time.
 539   // Since state transitions are heavy and inefficient we'd like
 540   // to defer the state transitions until absolutely necessary,
 541   // and in doing so avoid some transitions ...
 542 
 543   int nWakeups = 0;
 544   int recheckInterval = 1;
 545 
 546   for (;;) {
 547 
 548     if (TryLock(Self) > 0) break;
 549     assert(_owner != Self, "invariant");
 550 
 551     // park self
 552     if (_Responsible == Self) {
 553       Self->_ParkEvent->park((jlong) recheckInterval);
 554       // Increase the recheckInterval, but clamp the value.
 555       recheckInterval *= 8;
 556       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 557         recheckInterval = MAX_RECHECK_INTERVAL;
 558       }
 559     } else {
 560       Self->_ParkEvent->park();
 561     }
 562 
 563     if (TryLock(Self) > 0) break;
 564 
 565     // The lock is still contested.
 566     // Keep a tally of the # of futile wakeups.
 567     // Note that the counter is not protected by a lock or updated by atomics.
 568     // That is by design - we trade "lossy" counters which are exposed to
 569     // races during updates for a lower probe effect.
 570 
 571     // This PerfData object can be used in parallel with a safepoint.
 572     // See the work around in PerfDataManager::destroy().
 573     OM_PERFDATA_OP(FutileWakeups, inc());
 574     ++nWakeups;
 575 
 576     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 577     // We can defer clearing _succ until after the spin completes
 578     // TrySpin() must tolerate being called with _succ == Self.
 579     // Try yet another round of adaptive spinning.
 580     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 581 
 582     // We can find that we were unpark()ed and redesignated _succ while
 583     // we were spinning.  That's harmless.  If we iterate and call park(),
 584     // park() will consume the event and return immediately and we'll
 585     // just spin again.  This pattern can repeat, leaving _succ to simply
 586     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 587     // Alternately, we can sample fired() here, and if set, forgo spinning
 588     // in the next iteration.
 589 
 590     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 591       Self->_ParkEvent->reset();
 592       OrderAccess::fence();
 593     }
 594     if (_succ == Self) _succ = NULL;
 595 
 596     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 597     OrderAccess::fence();
 598   }
 599 
 600   // Egress :
 601   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 602   // Normally we'll find Self on the EntryList .
 603   // From the perspective of the lock owner (this thread), the
 604   // EntryList is stable and cxq is prepend-only.
 605   // The head of cxq is volatile but the interior is stable.
 606   // In addition, Self.TState is stable.
 607 
 608   assert(_owner == Self, "invariant");
 609   assert(object() != NULL, "invariant");
 610   // I'd like to write:
 611   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 612   // but as we're at a safepoint that's not safe.
 613 
 614   UnlinkAfterAcquire(Self, &node);
 615   if (_succ == Self) _succ = NULL;
 616 
 617   assert(_succ != Self, "invariant");
 618   if (_Responsible == Self) {
 619     _Responsible = NULL;
 620     OrderAccess::fence(); // Dekker pivot-point
 621 
 622     // We may leave threads on cxq|EntryList without a designated
 623     // "Responsible" thread.  This is benign.  When this thread subsequently
 624     // exits the monitor it can "see" such preexisting "old" threads --
 625     // threads that arrived on the cxq|EntryList before the fence, above --
 626     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 627     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 628     // non-null and elect a new "Responsible" timer thread.
 629     //
 630     // This thread executes:
 631     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 632     //    LD cxq|EntryList               (in subsequent exit)
 633     //
 634     // Entering threads in the slow/contended path execute:
 635     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 636     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 637     //
 638     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 639     // exit operation from floating above the ST Responsible=null.
 640   }
 641 
 642   // We've acquired ownership with CAS().
 643   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 644   // But since the CAS() this thread may have also stored into _succ,
 645   // EntryList, cxq or Responsible.  These meta-data updates must be
 646   // visible __before this thread subsequently drops the lock.
 647   // Consider what could occur if we didn't enforce this constraint --
 648   // STs to monitor meta-data and user-data could reorder with (become
 649   // visible after) the ST in exit that drops ownership of the lock.
 650   // Some other thread could then acquire the lock, but observe inconsistent
 651   // or old monitor meta-data and heap data.  That violates the JMM.
 652   // To that end, the 1-0 exit() operation must have at least STST|LDST
 653   // "release" barrier semantics.  Specifically, there must be at least a
 654   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 655   // the lock.   The barrier ensures that changes to monitor meta-data and data
 656   // protected by the lock will be visible before we release the lock, and
 657   // therefore before some other thread (CPU) has a chance to acquire the lock.
 658   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 659   //
 660   // Critically, any prior STs to _succ or EntryList must be visible before
 661   // the ST of null into _owner in the *subsequent* (following) corresponding
 662   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 663   // execute a serializing instruction.
 664 
 665   return;
 666 }
 667 
 668 // ReenterI() is a specialized inline form of the latter half of the
 669 // contended slow-path from EnterI().  We use ReenterI() only for
 670 // monitor reentry in wait().
 671 //
 672 // In the future we should reconcile EnterI() and ReenterI(), adding
 673 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 674 // loop accordingly.
 675 
 676 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 677   assert(Self != NULL, "invariant");
 678   assert(SelfNode != NULL, "invariant");
 679   assert(SelfNode->_thread == Self, "invariant");
 680   assert(_waiters > 0, "invariant");
 681   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 682   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 683   JavaThread * jt = (JavaThread *) Self;
 684 
 685   int nWakeups = 0;
 686   for (;;) {
 687     ObjectWaiter::TStates v = SelfNode->TState;
 688     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 689     assert(_owner != Self, "invariant");
 690 
 691     if (TryLock(Self) > 0) break;
 692     if (TrySpin(Self) > 0) break;
 693 
 694     // State transition wrappers around park() ...
 695     // ReenterI() wisely defers state transitions until
 696     // it's clear we must park the thread.
 697     {
 698       OSThreadContendState osts(Self->osthread());
 699       ThreadBlockInVM tbivm(jt);
 700 
 701       // cleared by handle_special_suspend_equivalent_condition()
 702       // or java_suspend_self()
 703       jt->set_suspend_equivalent();
 704       Self->_ParkEvent->park();
 705 
 706       // were we externally suspended while we were waiting?
 707       for (;;) {
 708         if (!ExitSuspendEquivalent(jt)) break;
 709         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 710         jt->java_suspend_self();
 711         jt->set_suspend_equivalent();
 712       }
 713     }
 714 
 715     // Try again, but just so we distinguish between futile wakeups and
 716     // successful wakeups.  The following test isn't algorithmically
 717     // necessary, but it helps us maintain sensible statistics.
 718     if (TryLock(Self) > 0) break;
 719 
 720     // The lock is still contested.
 721     // Keep a tally of the # of futile wakeups.
 722     // Note that the counter is not protected by a lock or updated by atomics.
 723     // That is by design - we trade "lossy" counters which are exposed to
 724     // races during updates for a lower probe effect.
 725     ++nWakeups;
 726 
 727     // Assuming this is not a spurious wakeup we'll normally
 728     // find that _succ == Self.
 729     if (_succ == Self) _succ = NULL;
 730 
 731     // Invariant: after clearing _succ a contending thread
 732     // *must* retry  _owner before parking.
 733     OrderAccess::fence();
 734 
 735     // This PerfData object can be used in parallel with a safepoint.
 736     // See the work around in PerfDataManager::destroy().
 737     OM_PERFDATA_OP(FutileWakeups, inc());
 738   }
 739 
 740   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 741   // Normally we'll find Self on the EntryList.
 742   // Unlinking from the EntryList is constant-time and atomic-free.
 743   // From the perspective of the lock owner (this thread), the
 744   // EntryList is stable and cxq is prepend-only.
 745   // The head of cxq is volatile but the interior is stable.
 746   // In addition, Self.TState is stable.
 747 
 748   assert(_owner == Self, "invariant");
 749   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 750   UnlinkAfterAcquire(Self, SelfNode);
 751   if (_succ == Self) _succ = NULL;
 752   assert(_succ != Self, "invariant");
 753   SelfNode->TState = ObjectWaiter::TS_RUN;
 754   OrderAccess::fence();      // see comments at the end of EnterI()
 755 }
 756 
 757 // By convention we unlink a contending thread from EntryList|cxq immediately
 758 // after the thread acquires the lock in ::enter().  Equally, we could defer
 759 // unlinking the thread until ::exit()-time.
 760 
 761 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 762   assert(_owner == Self, "invariant");
 763   assert(SelfNode->_thread == Self, "invariant");
 764 
 765   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 766     // Normal case: remove Self from the DLL EntryList .
 767     // This is a constant-time operation.
 768     ObjectWaiter * nxt = SelfNode->_next;
 769     ObjectWaiter * prv = SelfNode->_prev;
 770     if (nxt != NULL) nxt->_prev = prv;
 771     if (prv != NULL) prv->_next = nxt;
 772     if (SelfNode == _EntryList) _EntryList = nxt;
 773     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 774     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 775   } else {
 776     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 777     // Inopportune interleaving -- Self is still on the cxq.
 778     // This usually means the enqueue of self raced an exiting thread.
 779     // Normally we'll find Self near the front of the cxq, so
 780     // dequeueing is typically fast.  If needbe we can accelerate
 781     // this with some MCS/CHL-like bidirectional list hints and advisory
 782     // back-links so dequeueing from the interior will normally operate
 783     // in constant-time.
 784     // Dequeue Self from either the head (with CAS) or from the interior
 785     // with a linear-time scan and normal non-atomic memory operations.
 786     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 787     // and then unlink Self from EntryList.  We have to drain eventually,
 788     // so it might as well be now.
 789 
 790     ObjectWaiter * v = _cxq;
 791     assert(v != NULL, "invariant");
 792     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 793       // The CAS above can fail from interference IFF a "RAT" arrived.
 794       // In that case Self must be in the interior and can no longer be
 795       // at the head of cxq.
 796       if (v == SelfNode) {
 797         assert(_cxq != v, "invariant");
 798         v = _cxq;          // CAS above failed - start scan at head of list
 799       }
 800       ObjectWaiter * p;
 801       ObjectWaiter * q = NULL;
 802       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 803         q = p;
 804         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 805       }
 806       assert(v != SelfNode, "invariant");
 807       assert(p == SelfNode, "Node not found on cxq");
 808       assert(p != _cxq, "invariant");
 809       assert(q != NULL, "invariant");
 810       assert(q->_next == p, "invariant");
 811       q->_next = p->_next;
 812     }
 813   }
 814 
 815 #ifdef ASSERT
 816   // Diagnostic hygiene ...
 817   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 818   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 819   SelfNode->TState = ObjectWaiter::TS_RUN;
 820 #endif
 821 }
 822 
 823 // -----------------------------------------------------------------------------
 824 // Exit support
 825 //
 826 // exit()
 827 // ~~~~~~
 828 // Note that the collector can't reclaim the objectMonitor or deflate
 829 // the object out from underneath the thread calling ::exit() as the
 830 // thread calling ::exit() never transitions to a stable state.
 831 // This inhibits GC, which in turn inhibits asynchronous (and
 832 // inopportune) reclamation of "this".
 833 //
 834 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 835 // There's one exception to the claim above, however.  EnterI() can call
 836 // exit() to drop a lock if the acquirer has been externally suspended.
 837 // In that case exit() is called with _thread_state as _thread_blocked,
 838 // but the monitor's _count field is > 0, which inhibits reclamation.
 839 //
 840 // 1-0 exit
 841 // ~~~~~~~~
 842 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 843 // the fast-path operators have been optimized so the common ::exit()
 844 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 845 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 846 // greatly improves latency -- MEMBAR and CAS having considerable local
 847 // latency on modern processors -- but at the cost of "stranding".  Absent the
 848 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 849 // ::enter() path, resulting in the entering thread being stranding
 850 // and a progress-liveness failure.   Stranding is extremely rare.
 851 // We use timers (timed park operations) & periodic polling to detect
 852 // and recover from stranding.  Potentially stranded threads periodically
 853 // wake up and poll the lock.  See the usage of the _Responsible variable.
 854 //
 855 // The CAS() in enter provides for safety and exclusion, while the CAS or
 856 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 857 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 858 // We detect and recover from stranding with timers.
 859 //
 860 // If a thread transiently strands it'll park until (a) another
 861 // thread acquires the lock and then drops the lock, at which time the
 862 // exiting thread will notice and unpark the stranded thread, or, (b)
 863 // the timer expires.  If the lock is high traffic then the stranding latency
 864 // will be low due to (a).  If the lock is low traffic then the odds of
 865 // stranding are lower, although the worst-case stranding latency
 866 // is longer.  Critically, we don't want to put excessive load in the
 867 // platform's timer subsystem.  We want to minimize both the timer injection
 868 // rate (timers created/sec) as well as the number of timers active at
 869 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 870 // the integral of the # of active timers at any instant over time).
 871 // Both impinge on OS scalability.  Given that, at most one thread parked on
 872 // a monitor will use a timer.
 873 //
 874 // There is also the risk of a futile wake-up. If we drop the lock
 875 // another thread can reacquire the lock immediately, and we can
 876 // then wake a thread unnecessarily. This is benign, and we've
 877 // structured the code so the windows are short and the frequency
 878 // of such futile wakups is low.
 879 
 880 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 881   Thread * const Self = THREAD;
 882   if (THREAD != _owner) {
 883     if (THREAD->is_lock_owned((address) _owner)) {
 884       // Transmute _owner from a BasicLock pointer to a Thread address.
 885       // We don't need to hold _mutex for this transition.
 886       // Non-null to Non-null is safe as long as all readers can
 887       // tolerate either flavor.
 888       assert(_recursions == 0, "invariant");
 889       _owner = THREAD;
 890       _recursions = 0;
 891     } else {
 892       // Apparent unbalanced locking ...
 893       // Naively we'd like to throw IllegalMonitorStateException.
 894       // As a practical matter we can neither allocate nor throw an
 895       // exception as ::exit() can be called from leaf routines.
 896       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 897       // Upon deeper reflection, however, in a properly run JVM the only
 898       // way we should encounter this situation is in the presence of
 899       // unbalanced JNI locking. TODO: CheckJNICalls.
 900       // See also: CR4414101
 901       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 902       return;
 903     }
 904   }
 905 
 906   if (_recursions != 0) {
 907     _recursions--;        // this is simple recursive enter
 908     return;
 909   }
 910 
 911   // Invariant: after setting Responsible=null an thread must execute
 912   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 913   _Responsible = NULL;
 914 
 915 #if INCLUDE_JFR
 916   // get the owner's thread id for the MonitorEnter event
 917   // if it is enabled and the thread isn't suspended
 918   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 919     _previous_owner_tid = JFR_THREAD_ID(Self);
 920   }
 921 #endif
 922 
 923   for (;;) {
 924     assert(THREAD == _owner, "invariant");
 925 
 926     if (Knob_ExitPolicy == 0) {
 927       // release semantics: prior loads and stores from within the critical section
 928       // must not float (reorder) past the following store that drops the lock.
 929       // On SPARC that requires MEMBAR #loadstore|#storestore.
 930       // But of course in TSO #loadstore|#storestore is not required.
 931       // I'd like to write one of the following:
 932       // A.  OrderAccess::release() ; _owner = NULL
 933       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 934       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 935       // store into a _dummy variable.  That store is not needed, but can result
 936       // in massive wasteful coherency traffic on classic SMP systems.
 937       // Instead, I use release_store(), which is implemented as just a simple
 938       // ST on x64, x86 and SPARC.
 939       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 940       OrderAccess::storeload();                        // See if we need to wake a successor
 941       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 942         return;
 943       }
 944       // Other threads are blocked trying to acquire the lock.
 945 
 946       // Normally the exiting thread is responsible for ensuring succession,
 947       // but if other successors are ready or other entering threads are spinning
 948       // then this thread can simply store NULL into _owner and exit without
 949       // waking a successor.  The existence of spinners or ready successors
 950       // guarantees proper succession (liveness).  Responsibility passes to the
 951       // ready or running successors.  The exiting thread delegates the duty.
 952       // More precisely, if a successor already exists this thread is absolved
 953       // of the responsibility of waking (unparking) one.
 954       //
 955       // The _succ variable is critical to reducing futile wakeup frequency.
 956       // _succ identifies the "heir presumptive" thread that has been made
 957       // ready (unparked) but that has not yet run.  We need only one such
 958       // successor thread to guarantee progress.
 959       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 960       // section 3.3 "Futile Wakeup Throttling" for details.
 961       //
 962       // Note that spinners in Enter() also set _succ non-null.
 963       // In the current implementation spinners opportunistically set
 964       // _succ so that exiting threads might avoid waking a successor.
 965       // Another less appealing alternative would be for the exiting thread
 966       // to drop the lock and then spin briefly to see if a spinner managed
 967       // to acquire the lock.  If so, the exiting thread could exit
 968       // immediately without waking a successor, otherwise the exiting
 969       // thread would need to dequeue and wake a successor.
 970       // (Note that we'd need to make the post-drop spin short, but no
 971       // shorter than the worst-case round-trip cache-line migration time.
 972       // The dropped lock needs to become visible to the spinner, and then
 973       // the acquisition of the lock by the spinner must become visible to
 974       // the exiting thread).
 975 
 976       // It appears that an heir-presumptive (successor) must be made ready.
 977       // Only the current lock owner can manipulate the EntryList or
 978       // drain _cxq, so we need to reacquire the lock.  If we fail
 979       // to reacquire the lock the responsibility for ensuring succession
 980       // falls to the new owner.
 981       //
 982       if (!Atomic::replace_if_null(THREAD, &_owner)) {
 983         return;
 984       }
 985     } else {
 986       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 987         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 988         OrderAccess::storeload();
 989         // Ratify the previously observed values.
 990         if (_cxq == NULL || _succ != NULL) {
 991           return;
 992         }
 993 
 994         // inopportune interleaving -- the exiting thread (this thread)
 995         // in the fast-exit path raced an entering thread in the slow-enter
 996         // path.
 997         // We have two choices:
 998         // A.  Try to reacquire the lock.
 999         //     If the CAS() fails return immediately, otherwise
1000         //     we either restart/rerun the exit operation, or simply
1001         //     fall-through into the code below which wakes a successor.
1002         // B.  If the elements forming the EntryList|cxq are TSM
1003         //     we could simply unpark() the lead thread and return
1004         //     without having set _succ.
1005         if (!Atomic::replace_if_null(THREAD, &_owner)) {
1006           return;
1007         }
1008       }
1009     }
1010 
1011     guarantee(_owner == THREAD, "invariant");
1012 
1013     ObjectWaiter * w = NULL;
1014     int QMode = Knob_QMode;
1015 
1016     if (QMode == 2 && _cxq != NULL) {
1017       // QMode == 2 : cxq has precedence over EntryList.
1018       // Try to directly wake a successor from the cxq.
1019       // If successful, the successor will need to unlink itself from cxq.
1020       w = _cxq;
1021       assert(w != NULL, "invariant");
1022       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1023       ExitEpilog(Self, w);
1024       return;
1025     }
1026 
1027     if (QMode == 3 && _cxq != NULL) {
1028       // Aggressively drain cxq into EntryList at the first opportunity.
1029       // This policy ensure that recently-run threads live at the head of EntryList.
1030       // Drain _cxq into EntryList - bulk transfer.
1031       // First, detach _cxq.
1032       // The following loop is tantamount to: w = swap(&cxq, NULL)
1033       w = _cxq;
1034       for (;;) {
1035         assert(w != NULL, "Invariant");
1036         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1037         if (u == w) break;
1038         w = u;
1039       }
1040       assert(w != NULL, "invariant");
1041 
1042       ObjectWaiter * q = NULL;
1043       ObjectWaiter * p;
1044       for (p = w; p != NULL; p = p->_next) {
1045         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1046         p->TState = ObjectWaiter::TS_ENTER;
1047         p->_prev = q;
1048         q = p;
1049       }
1050 
1051       // Append the RATs to the EntryList
1052       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1053       ObjectWaiter * Tail;
1054       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1055            Tail = Tail->_next)
1056         /* empty */;
1057       if (Tail == NULL) {
1058         _EntryList = w;
1059       } else {
1060         Tail->_next = w;
1061         w->_prev = Tail;
1062       }
1063 
1064       // Fall thru into code that tries to wake a successor from EntryList
1065     }
1066 
1067     if (QMode == 4 && _cxq != NULL) {
1068       // Aggressively drain cxq into EntryList at the first opportunity.
1069       // This policy ensure that recently-run threads live at the head of EntryList.
1070 
1071       // Drain _cxq into EntryList - bulk transfer.
1072       // First, detach _cxq.
1073       // The following loop is tantamount to: w = swap(&cxq, NULL)
1074       w = _cxq;
1075       for (;;) {
1076         assert(w != NULL, "Invariant");
1077         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1078         if (u == w) break;
1079         w = u;
1080       }
1081       assert(w != NULL, "invariant");
1082 
1083       ObjectWaiter * q = NULL;
1084       ObjectWaiter * p;
1085       for (p = w; p != NULL; p = p->_next) {
1086         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1087         p->TState = ObjectWaiter::TS_ENTER;
1088         p->_prev = q;
1089         q = p;
1090       }
1091 
1092       // Prepend the RATs to the EntryList
1093       if (_EntryList != NULL) {
1094         q->_next = _EntryList;
1095         _EntryList->_prev = q;
1096       }
1097       _EntryList = w;
1098 
1099       // Fall thru into code that tries to wake a successor from EntryList
1100     }
1101 
1102     w = _EntryList;
1103     if (w != NULL) {
1104       // I'd like to write: guarantee (w->_thread != Self).
1105       // But in practice an exiting thread may find itself on the EntryList.
1106       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1107       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1108       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1109       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1110       // release the lock "O".  T2 resumes immediately after the ST of null into
1111       // _owner, above.  T2 notices that the EntryList is populated, so it
1112       // reacquires the lock and then finds itself on the EntryList.
1113       // Given all that, we have to tolerate the circumstance where "w" is
1114       // associated with Self.
1115       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1116       ExitEpilog(Self, w);
1117       return;
1118     }
1119 
1120     // If we find that both _cxq and EntryList are null then just
1121     // re-run the exit protocol from the top.
1122     w = _cxq;
1123     if (w == NULL) continue;
1124 
1125     // Drain _cxq into EntryList - bulk transfer.
1126     // First, detach _cxq.
1127     // The following loop is tantamount to: w = swap(&cxq, NULL)
1128     for (;;) {
1129       assert(w != NULL, "Invariant");
1130       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1131       if (u == w) break;
1132       w = u;
1133     }
1134 
1135     assert(w != NULL, "invariant");
1136     assert(_EntryList == NULL, "invariant");
1137 
1138     // Convert the LIFO SLL anchored by _cxq into a DLL.
1139     // The list reorganization step operates in O(LENGTH(w)) time.
1140     // It's critical that this step operate quickly as
1141     // "Self" still holds the outer-lock, restricting parallelism
1142     // and effectively lengthening the critical section.
1143     // Invariant: s chases t chases u.
1144     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1145     // we have faster access to the tail.
1146 
1147     if (QMode == 1) {
1148       // QMode == 1 : drain cxq to EntryList, reversing order
1149       // We also reverse the order of the list.
1150       ObjectWaiter * s = NULL;
1151       ObjectWaiter * t = w;
1152       ObjectWaiter * u = NULL;
1153       while (t != NULL) {
1154         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1155         t->TState = ObjectWaiter::TS_ENTER;
1156         u = t->_next;
1157         t->_prev = u;
1158         t->_next = s;
1159         s = t;
1160         t = u;
1161       }
1162       _EntryList  = s;
1163       assert(s != NULL, "invariant");
1164     } else {
1165       // QMode == 0 or QMode == 2
1166       _EntryList = w;
1167       ObjectWaiter * q = NULL;
1168       ObjectWaiter * p;
1169       for (p = w; p != NULL; p = p->_next) {
1170         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1171         p->TState = ObjectWaiter::TS_ENTER;
1172         p->_prev = q;
1173         q = p;
1174       }
1175     }
1176 
1177     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1178     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1179 
1180     // See if we can abdicate to a spinner instead of waking a thread.
1181     // A primary goal of the implementation is to reduce the
1182     // context-switch rate.
1183     if (_succ != NULL) continue;
1184 
1185     w = _EntryList;
1186     if (w != NULL) {
1187       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1188       ExitEpilog(Self, w);
1189       return;
1190     }
1191   }
1192 }
1193 
1194 // ExitSuspendEquivalent:
1195 // A faster alternate to handle_special_suspend_equivalent_condition()
1196 //
1197 // handle_special_suspend_equivalent_condition() unconditionally
1198 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1199 // operations have high latency.  Note that in ::enter() we call HSSEC
1200 // while holding the monitor, so we effectively lengthen the critical sections.
1201 //
1202 // There are a number of possible solutions:
1203 //
1204 // A.  To ameliorate the problem we might also defer state transitions
1205 //     to as late as possible -- just prior to parking.
1206 //     Given that, we'd call HSSEC after having returned from park(),
1207 //     but before attempting to acquire the monitor.  This is only a
1208 //     partial solution.  It avoids calling HSSEC while holding the
1209 //     monitor (good), but it still increases successor reacquisition latency --
1210 //     the interval between unparking a successor and the time the successor
1211 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1212 //     If we use this technique we can also avoid EnterI()-exit() loop
1213 //     in ::enter() where we iteratively drop the lock and then attempt
1214 //     to reacquire it after suspending.
1215 //
1216 // B.  In the future we might fold all the suspend bits into a
1217 //     composite per-thread suspend flag and then update it with CAS().
1218 //     Alternately, a Dekker-like mechanism with multiple variables
1219 //     would suffice:
1220 //       ST Self->_suspend_equivalent = false
1221 //       MEMBAR
1222 //       LD Self_>_suspend_flags
1223 //
1224 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1225 // with a more efficient implementation, the need to use "FastHSSEC" has
1226 // decreased. - Dave
1227 
1228 
1229 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1230   const int Mode = Knob_FastHSSEC;
1231   if (Mode && !jSelf->is_external_suspend()) {
1232     assert(jSelf->is_suspend_equivalent(), "invariant");
1233     jSelf->clear_suspend_equivalent();
1234     if (2 == Mode) OrderAccess::storeload();
1235     if (!jSelf->is_external_suspend()) return false;
1236     // We raced a suspension -- fall thru into the slow path
1237     jSelf->set_suspend_equivalent();
1238   }
1239   return jSelf->handle_special_suspend_equivalent_condition();
1240 }
1241 
1242 
1243 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1244   assert(_owner == Self, "invariant");
1245 
1246   // Exit protocol:
1247   // 1. ST _succ = wakee
1248   // 2. membar #loadstore|#storestore;
1249   // 2. ST _owner = NULL
1250   // 3. unpark(wakee)
1251 
1252   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1253   ParkEvent * Trigger = Wakee->_event;
1254 
1255   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1256   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1257   // out-of-scope (non-extant).
1258   Wakee  = NULL;
1259 
1260   // Drop the lock
1261   OrderAccess::release_store(&_owner, (void*)NULL);
1262   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1263 
1264   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1265   Trigger->unpark();
1266 
1267   // Maintain stats and report events to JVMTI
1268   OM_PERFDATA_OP(Parks, inc());
1269 }
1270 
1271 
1272 // -----------------------------------------------------------------------------
1273 // Class Loader deadlock handling.
1274 //
1275 // complete_exit exits a lock returning recursion count
1276 // complete_exit/reenter operate as a wait without waiting
1277 // complete_exit requires an inflated monitor
1278 // The _owner field is not always the Thread addr even with an
1279 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1280 // thread due to contention.
1281 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1282   Thread * const Self = THREAD;
1283   assert(Self->is_Java_thread(), "Must be Java thread!");
1284   JavaThread *jt = (JavaThread *)THREAD;
1285 
1286   DeferredInitialize();
1287 
1288   if (THREAD != _owner) {
1289     if (THREAD->is_lock_owned ((address)_owner)) {
1290       assert(_recursions == 0, "internal state error");
1291       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1292       _recursions = 0;
1293     }
1294   }
1295 
1296   guarantee(Self == _owner, "complete_exit not owner");
1297   intptr_t save = _recursions; // record the old recursion count
1298   _recursions = 0;        // set the recursion level to be 0
1299   exit(true, Self);           // exit the monitor
1300   guarantee(_owner != Self, "invariant");
1301   return save;
1302 }
1303 
1304 // reenter() enters a lock and sets recursion count
1305 // complete_exit/reenter operate as a wait without waiting
1306 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1307   Thread * const Self = THREAD;
1308   assert(Self->is_Java_thread(), "Must be Java thread!");
1309   JavaThread *jt = (JavaThread *)THREAD;
1310 
1311   guarantee(_owner != Self, "reenter already owner");
1312   enter(THREAD);       // enter the monitor
1313   guarantee(_recursions == 0, "reenter recursion");
1314   _recursions = recursions;
1315   return;
1316 }
1317 
1318 
1319 // -----------------------------------------------------------------------------
1320 // A macro is used below because there may already be a pending
1321 // exception which should not abort the execution of the routines
1322 // which use this (which is why we don't put this into check_slow and
1323 // call it with a CHECK argument).
1324 
1325 #define CHECK_OWNER()                                                       \
1326   do {                                                                      \
1327     if (THREAD != _owner) {                                                 \
1328       if (THREAD->is_lock_owned((address) _owner)) {                        \
1329         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1330         _recursions = 0;                                                    \
1331       } else {                                                              \
1332         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1333       }                                                                     \
1334     }                                                                       \
1335   } while (false)
1336 
1337 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1338 // TODO-FIXME: remove check_slow() -- it's likely dead.
1339 
1340 void ObjectMonitor::check_slow(TRAPS) {
1341   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1342   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1343 }
1344 
1345 static int Adjust(volatile int * adr, int dx) {
1346   int v;
1347   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1348   return v;
1349 }
1350 
1351 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1352                                     ObjectMonitor* monitor,
1353                                     jlong notifier_tid,
1354                                     jlong timeout,
1355                                     bool timedout) {
1356   assert(event != NULL, "invariant");
1357   assert(monitor != NULL, "invariant");
1358   event->set_monitorClass(((oop)monitor->object())->klass());
1359   event->set_timeout(timeout);
1360   event->set_address((uintptr_t)monitor->object_addr());
1361   event->set_notifier(notifier_tid);
1362   event->set_timedOut(timedout);
1363   event->commit();
1364 }
1365 
1366 // -----------------------------------------------------------------------------
1367 // Wait/Notify/NotifyAll
1368 //
1369 // Note: a subset of changes to ObjectMonitor::wait()
1370 // will need to be replicated in complete_exit
1371 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1372   Thread * const Self = THREAD;
1373   assert(Self->is_Java_thread(), "Must be Java thread!");
1374   JavaThread *jt = (JavaThread *)THREAD;
1375 
1376   DeferredInitialize();
1377 
1378   // Throw IMSX or IEX.
1379   CHECK_OWNER();
1380 
1381   EventJavaMonitorWait event;
1382 
1383   // check for a pending interrupt
1384   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1385     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1386     if (JvmtiExport::should_post_monitor_waited()) {
1387       // Note: 'false' parameter is passed here because the
1388       // wait was not timed out due to thread interrupt.
1389       JvmtiExport::post_monitor_waited(jt, this, false);
1390 
1391       // In this short circuit of the monitor wait protocol, the
1392       // current thread never drops ownership of the monitor and
1393       // never gets added to the wait queue so the current thread
1394       // cannot be made the successor. This means that the
1395       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1396       // consume an unpark() meant for the ParkEvent associated with
1397       // this ObjectMonitor.
1398     }
1399     if (event.should_commit()) {
1400       post_monitor_wait_event(&event, this, 0, millis, false);
1401     }
1402     THROW(vmSymbols::java_lang_InterruptedException());
1403     return;
1404   }
1405 
1406   assert(Self->_Stalled == 0, "invariant");
1407   Self->_Stalled = intptr_t(this);
1408   jt->set_current_waiting_monitor(this);
1409 
1410   // create a node to be put into the queue
1411   // Critically, after we reset() the event but prior to park(), we must check
1412   // for a pending interrupt.
1413   ObjectWaiter node(Self);
1414   node.TState = ObjectWaiter::TS_WAIT;
1415   Self->_ParkEvent->reset();
1416   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1417 
1418   // Enter the waiting queue, which is a circular doubly linked list in this case
1419   // but it could be a priority queue or any data structure.
1420   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1421   // by the the owner of the monitor *except* in the case where park()
1422   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1423   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1424 
1425   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1426   AddWaiter(&node);
1427   Thread::SpinRelease(&_WaitSetLock);
1428 
1429   _Responsible = NULL;
1430 
1431   intptr_t save = _recursions; // record the old recursion count
1432   _waiters++;                  // increment the number of waiters
1433   _recursions = 0;             // set the recursion level to be 1
1434   exit(true, Self);                    // exit the monitor
1435   guarantee(_owner != Self, "invariant");
1436 
1437   // The thread is on the WaitSet list - now park() it.
1438   // On MP systems it's conceivable that a brief spin before we park
1439   // could be profitable.
1440   //
1441   // TODO-FIXME: change the following logic to a loop of the form
1442   //   while (!timeout && !interrupted && _notified == 0) park()
1443 
1444   int ret = OS_OK;
1445   int WasNotified = 0;
1446   { // State transition wrappers
1447     OSThread* osthread = Self->osthread();
1448     OSThreadWaitState osts(osthread, true);
1449     {
1450       ThreadBlockInVM tbivm(jt);
1451       // Thread is in thread_blocked state and oop access is unsafe.
1452       jt->set_suspend_equivalent();
1453 
1454       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1455         // Intentionally empty
1456       } else if (node._notified == 0) {
1457         if (millis <= 0) {
1458           Self->_ParkEvent->park();
1459         } else {
1460           ret = Self->_ParkEvent->park(millis);
1461         }
1462       }
1463 
1464       // were we externally suspended while we were waiting?
1465       if (ExitSuspendEquivalent (jt)) {
1466         // TODO-FIXME: add -- if succ == Self then succ = null.
1467         jt->java_suspend_self();
1468       }
1469 
1470     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1471 
1472     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1473     // from the WaitSet to the EntryList.
1474     // See if we need to remove Node from the WaitSet.
1475     // We use double-checked locking to avoid grabbing _WaitSetLock
1476     // if the thread is not on the wait queue.
1477     //
1478     // Note that we don't need a fence before the fetch of TState.
1479     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1480     // written by the is thread. (perhaps the fetch might even be satisfied
1481     // by a look-aside into the processor's own store buffer, although given
1482     // the length of the code path between the prior ST and this load that's
1483     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1484     // then we'll acquire the lock and then re-fetch a fresh TState value.
1485     // That is, we fail toward safety.
1486 
1487     if (node.TState == ObjectWaiter::TS_WAIT) {
1488       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1489       if (node.TState == ObjectWaiter::TS_WAIT) {
1490         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1491         assert(node._notified == 0, "invariant");
1492         node.TState = ObjectWaiter::TS_RUN;
1493       }
1494       Thread::SpinRelease(&_WaitSetLock);
1495     }
1496 
1497     // The thread is now either on off-list (TS_RUN),
1498     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1499     // The Node's TState variable is stable from the perspective of this thread.
1500     // No other threads will asynchronously modify TState.
1501     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1502     OrderAccess::loadload();
1503     if (_succ == Self) _succ = NULL;
1504     WasNotified = node._notified;
1505 
1506     // Reentry phase -- reacquire the monitor.
1507     // re-enter contended monitor after object.wait().
1508     // retain OBJECT_WAIT state until re-enter successfully completes
1509     // Thread state is thread_in_vm and oop access is again safe,
1510     // although the raw address of the object may have changed.
1511     // (Don't cache naked oops over safepoints, of course).
1512 
1513     // post monitor waited event. Note that this is past-tense, we are done waiting.
1514     if (JvmtiExport::should_post_monitor_waited()) {
1515       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1516 
1517       if (node._notified != 0 && _succ == Self) {
1518         // In this part of the monitor wait-notify-reenter protocol it
1519         // is possible (and normal) for another thread to do a fastpath
1520         // monitor enter-exit while this thread is still trying to get
1521         // to the reenter portion of the protocol.
1522         //
1523         // The ObjectMonitor was notified and the current thread is
1524         // the successor which also means that an unpark() has already
1525         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1526         // consume the unpark() that was done when the successor was
1527         // set because the same ParkEvent is shared between Java
1528         // monitors and JVM/TI RawMonitors (for now).
1529         //
1530         // We redo the unpark() to ensure forward progress, i.e., we
1531         // don't want all pending threads hanging (parked) with none
1532         // entering the unlocked monitor.
1533         node._event->unpark();
1534       }
1535     }
1536 
1537     if (event.should_commit()) {
1538       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1539     }
1540 
1541     OrderAccess::fence();
1542 
1543     assert(Self->_Stalled != 0, "invariant");
1544     Self->_Stalled = 0;
1545 
1546     assert(_owner != Self, "invariant");
1547     ObjectWaiter::TStates v = node.TState;
1548     if (v == ObjectWaiter::TS_RUN) {
1549       enter(Self);
1550     } else {
1551       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1552       ReenterI(Self, &node);
1553       node.wait_reenter_end(this);
1554     }
1555 
1556     // Self has reacquired the lock.
1557     // Lifecycle - the node representing Self must not appear on any queues.
1558     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1559     // want residual elements associated with this thread left on any lists.
1560     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1561     assert(_owner == Self, "invariant");
1562     assert(_succ != Self, "invariant");
1563   } // OSThreadWaitState()
1564 
1565   jt->set_current_waiting_monitor(NULL);
1566 
1567   guarantee(_recursions == 0, "invariant");
1568   _recursions = save;     // restore the old recursion count
1569   _waiters--;             // decrement the number of waiters
1570 
1571   // Verify a few postconditions
1572   assert(_owner == Self, "invariant");
1573   assert(_succ != Self, "invariant");
1574   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1575 
1576   // check if the notification happened
1577   if (!WasNotified) {
1578     // no, it could be timeout or Thread.interrupt() or both
1579     // check for interrupt event, otherwise it is timeout
1580     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1581       THROW(vmSymbols::java_lang_InterruptedException());
1582     }
1583   }
1584 
1585   // NOTE: Spurious wake up will be consider as timeout.
1586   // Monitor notify has precedence over thread interrupt.
1587 }
1588 
1589 
1590 // Consider:
1591 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1592 // then instead of transferring a thread from the WaitSet to the EntryList
1593 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1594 
1595 void ObjectMonitor::INotify(Thread * Self) {
1596   const int policy = Knob_MoveNotifyee;
1597 
1598   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1599   ObjectWaiter * iterator = DequeueWaiter();
1600   if (iterator != NULL) {
1601     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1602     guarantee(iterator->_notified == 0, "invariant");
1603     // Disposition - what might we do with iterator ?
1604     // a.  add it directly to the EntryList - either tail (policy == 1)
1605     //     or head (policy == 0).
1606     // b.  push it onto the front of the _cxq (policy == 2).
1607     // For now we use (b).
1608     if (policy != 4) {
1609       iterator->TState = ObjectWaiter::TS_ENTER;
1610     }
1611     iterator->_notified = 1;
1612     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1613 
1614     ObjectWaiter * list = _EntryList;
1615     if (list != NULL) {
1616       assert(list->_prev == NULL, "invariant");
1617       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1618       assert(list != iterator, "invariant");
1619     }
1620 
1621     if (policy == 0) {       // prepend to EntryList
1622       if (list == NULL) {
1623         iterator->_next = iterator->_prev = NULL;
1624         _EntryList = iterator;
1625       } else {
1626         list->_prev = iterator;
1627         iterator->_next = list;
1628         iterator->_prev = NULL;
1629         _EntryList = iterator;
1630       }
1631     } else if (policy == 1) {      // append to EntryList
1632       if (list == NULL) {
1633         iterator->_next = iterator->_prev = NULL;
1634         _EntryList = iterator;
1635       } else {
1636         // CONSIDER:  finding the tail currently requires a linear-time walk of
1637         // the EntryList.  We can make tail access constant-time by converting to
1638         // a CDLL instead of using our current DLL.
1639         ObjectWaiter * tail;
1640         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1641         assert(tail != NULL && tail->_next == NULL, "invariant");
1642         tail->_next = iterator;
1643         iterator->_prev = tail;
1644         iterator->_next = NULL;
1645       }
1646     } else if (policy == 2) {      // prepend to cxq
1647       if (list == NULL) {
1648         iterator->_next = iterator->_prev = NULL;
1649         _EntryList = iterator;
1650       } else {
1651         iterator->TState = ObjectWaiter::TS_CXQ;
1652         for (;;) {
1653           ObjectWaiter * front = _cxq;
1654           iterator->_next = front;
1655           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1656             break;
1657           }
1658         }
1659       }
1660     } else if (policy == 3) {      // append to cxq
1661       iterator->TState = ObjectWaiter::TS_CXQ;
1662       for (;;) {
1663         ObjectWaiter * tail = _cxq;
1664         if (tail == NULL) {
1665           iterator->_next = NULL;
1666           if (Atomic::replace_if_null(iterator, &_cxq)) {
1667             break;
1668           }
1669         } else {
1670           while (tail->_next != NULL) tail = tail->_next;
1671           tail->_next = iterator;
1672           iterator->_prev = tail;
1673           iterator->_next = NULL;
1674           break;
1675         }
1676       }
1677     } else {
1678       ParkEvent * ev = iterator->_event;
1679       iterator->TState = ObjectWaiter::TS_RUN;
1680       OrderAccess::fence();
1681       ev->unpark();
1682     }
1683 
1684     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1685     // move the add-to-EntryList operation, above, outside the critical section
1686     // protected by _WaitSetLock.  In practice that's not useful.  With the
1687     // exception of  wait() timeouts and interrupts the monitor owner
1688     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1689     // on _WaitSetLock so it's not profitable to reduce the length of the
1690     // critical section.
1691 
1692     if (policy < 4) {
1693       iterator->wait_reenter_begin(this);
1694     }
1695   }
1696   Thread::SpinRelease(&_WaitSetLock);
1697 }
1698 
1699 // Consider: a not-uncommon synchronization bug is to use notify() when
1700 // notifyAll() is more appropriate, potentially resulting in stranded
1701 // threads; this is one example of a lost wakeup. A useful diagnostic
1702 // option is to force all notify() operations to behave as notifyAll().
1703 //
1704 // Note: We can also detect many such problems with a "minimum wait".
1705 // When the "minimum wait" is set to a small non-zero timeout value
1706 // and the program does not hang whereas it did absent "minimum wait",
1707 // that suggests a lost wakeup bug.
1708 
1709 void ObjectMonitor::notify(TRAPS) {
1710   CHECK_OWNER();
1711   if (_WaitSet == NULL) {
1712     return;
1713   }
1714   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1715   INotify(THREAD);
1716   OM_PERFDATA_OP(Notifications, inc(1));
1717 }
1718 
1719 
1720 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1721 // from the waitset to the EntryList. This could be done more efficiently with a
1722 // single bulk transfer but in practice it's not time-critical. Beware too,
1723 // that in prepend-mode we invert the order of the waiters. Let's say that the
1724 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1725 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1726 
1727 void ObjectMonitor::notifyAll(TRAPS) {
1728   CHECK_OWNER();
1729   if (_WaitSet == NULL) {
1730     return;
1731   }
1732 
1733   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1734   int tally = 0;
1735   while (_WaitSet != NULL) {
1736     tally++;
1737     INotify(THREAD);
1738   }
1739 
1740   OM_PERFDATA_OP(Notifications, inc(tally));
1741 }
1742 
1743 // -----------------------------------------------------------------------------
1744 // Adaptive Spinning Support
1745 //
1746 // Adaptive spin-then-block - rational spinning
1747 //
1748 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1749 // algorithm.  On high order SMP systems it would be better to start with
1750 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1751 // a contending thread could enqueue itself on the cxq and then spin locally
1752 // on a thread-specific variable such as its ParkEvent._Event flag.
1753 // That's left as an exercise for the reader.  Note that global spinning is
1754 // not problematic on Niagara, as the L2 cache serves the interconnect and
1755 // has both low latency and massive bandwidth.
1756 //
1757 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1758 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1759 // (duration) or we can fix the count at approximately the duration of
1760 // a context switch and vary the frequency.   Of course we could also
1761 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1762 // For a description of 'Adaptive spin-then-block mutual exclusion in
1763 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1764 //
1765 // This implementation varies the duration "D", where D varies with
1766 // the success rate of recent spin attempts. (D is capped at approximately
1767 // length of a round-trip context switch).  The success rate for recent
1768 // spin attempts is a good predictor of the success rate of future spin
1769 // attempts.  The mechanism adapts automatically to varying critical
1770 // section length (lock modality), system load and degree of parallelism.
1771 // D is maintained per-monitor in _SpinDuration and is initialized
1772 // optimistically.  Spin frequency is fixed at 100%.
1773 //
1774 // Note that _SpinDuration is volatile, but we update it without locks
1775 // or atomics.  The code is designed so that _SpinDuration stays within
1776 // a reasonable range even in the presence of races.  The arithmetic
1777 // operations on _SpinDuration are closed over the domain of legal values,
1778 // so at worst a race will install and older but still legal value.
1779 // At the very worst this introduces some apparent non-determinism.
1780 // We might spin when we shouldn't or vice-versa, but since the spin
1781 // count are relatively short, even in the worst case, the effect is harmless.
1782 //
1783 // Care must be taken that a low "D" value does not become an
1784 // an absorbing state.  Transient spinning failures -- when spinning
1785 // is overall profitable -- should not cause the system to converge
1786 // on low "D" values.  We want spinning to be stable and predictable
1787 // and fairly responsive to change and at the same time we don't want
1788 // it to oscillate, become metastable, be "too" non-deterministic,
1789 // or converge on or enter undesirable stable absorbing states.
1790 //
1791 // We implement a feedback-based control system -- using past behavior
1792 // to predict future behavior.  We face two issues: (a) if the
1793 // input signal is random then the spin predictor won't provide optimal
1794 // results, and (b) if the signal frequency is too high then the control
1795 // system, which has some natural response lag, will "chase" the signal.
1796 // (b) can arise from multimodal lock hold times.  Transient preemption
1797 // can also result in apparent bimodal lock hold times.
1798 // Although sub-optimal, neither condition is particularly harmful, as
1799 // in the worst-case we'll spin when we shouldn't or vice-versa.
1800 // The maximum spin duration is rather short so the failure modes aren't bad.
1801 // To be conservative, I've tuned the gain in system to bias toward
1802 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1803 // "rings" or oscillates between spinning and not spinning.  This happens
1804 // when spinning is just on the cusp of profitability, however, so the
1805 // situation is not dire.  The state is benign -- there's no need to add
1806 // hysteresis control to damp the transition rate between spinning and
1807 // not spinning.
1808 
1809 // Spinning: Fixed frequency (100%), vary duration
1810 int ObjectMonitor::TrySpin(Thread * Self) {
1811   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1812   int ctr = Knob_FixedSpin;
1813   if (ctr != 0) {
1814     while (--ctr >= 0) {
1815       if (TryLock(Self) > 0) return 1;
1816       SpinPause();
1817     }
1818     return 0;
1819   }
1820 
1821   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1822     if (TryLock(Self) > 0) {
1823       // Increase _SpinDuration ...
1824       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1825       // Raising _SpurDuration to the poverty line is key.
1826       int x = _SpinDuration;
1827       if (x < Knob_SpinLimit) {
1828         if (x < Knob_Poverty) x = Knob_Poverty;
1829         _SpinDuration = x + Knob_BonusB;
1830       }
1831       return 1;
1832     }
1833     SpinPause();
1834   }
1835 
1836   // Admission control - verify preconditions for spinning
1837   //
1838   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1839   // becoming an absorbing state.  Put another way, we spin briefly to
1840   // sample, just in case the system load, parallelism, contention, or lock
1841   // modality changed.
1842   //
1843   // Consider the following alternative:
1844   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1845   // spin attempt.  "Periodically" might mean after a tally of
1846   // the # of failed spin attempts (or iterations) reaches some threshold.
1847   // This takes us into the realm of 1-out-of-N spinning, where we
1848   // hold the duration constant but vary the frequency.
1849 
1850   ctr = _SpinDuration;
1851   if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
1852   if (ctr <= 0) return 0;
1853 
1854   if (Knob_SuccRestrict && _succ != NULL) return 0;
1855   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1856     return 0;
1857   }
1858 
1859   int MaxSpin = Knob_MaxSpinners;
1860   if (MaxSpin >= 0) {
1861     if (_Spinner > MaxSpin) {
1862       return 0;
1863     }
1864     // Slightly racy, but benign ...
1865     Adjust(&_Spinner, 1);
1866   }
1867 
1868   // We're good to spin ... spin ingress.
1869   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1870   // when preparing to LD...CAS _owner, etc and the CAS is likely
1871   // to succeed.
1872   int caspty  = Knob_CASPenalty;
1873   int oxpty   = Knob_OXPenalty;
1874   int sss     = Knob_SpinSetSucc;
1875   if (sss && _succ == NULL) _succ = Self;
1876   Thread * prv = NULL;
1877 
1878   // There are three ways to exit the following loop:
1879   // 1.  A successful spin where this thread has acquired the lock.
1880   // 2.  Spin failure with prejudice
1881   // 3.  Spin failure without prejudice
1882 
1883   while (--ctr >= 0) {
1884 
1885     // Periodic polling -- Check for pending GC
1886     // Threads may spin while they're unsafe.
1887     // We don't want spinning threads to delay the JVM from reaching
1888     // a stop-the-world safepoint or to steal cycles from GC.
1889     // If we detect a pending safepoint we abort in order that
1890     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1891     // this thread, if safe, doesn't steal cycles from GC.
1892     // This is in keeping with the "no loitering in runtime" rule.
1893     // We periodically check to see if there's a safepoint pending.
1894     if ((ctr & 0xFF) == 0) {
1895       if (SafepointMechanism::poll(Self)) {
1896         goto Abort;           // abrupt spin egress
1897       }
1898       if (Knob_UsePause & 1) SpinPause();
1899     }
1900 
1901     if (Knob_UsePause & 2) SpinPause();
1902 
1903     // Probe _owner with TATAS
1904     // If this thread observes the monitor transition or flicker
1905     // from locked to unlocked to locked, then the odds that this
1906     // thread will acquire the lock in this spin attempt go down
1907     // considerably.  The same argument applies if the CAS fails
1908     // or if we observe _owner change from one non-null value to
1909     // another non-null value.   In such cases we might abort
1910     // the spin without prejudice or apply a "penalty" to the
1911     // spin count-down variable "ctr", reducing it by 100, say.
1912 
1913     Thread * ox = (Thread *) _owner;
1914     if (ox == NULL) {
1915       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1916       if (ox == NULL) {
1917         // The CAS succeeded -- this thread acquired ownership
1918         // Take care of some bookkeeping to exit spin state.
1919         if (sss && _succ == Self) {
1920           _succ = NULL;
1921         }
1922         if (MaxSpin > 0) Adjust(&_Spinner, -1);
1923 
1924         // Increase _SpinDuration :
1925         // The spin was successful (profitable) so we tend toward
1926         // longer spin attempts in the future.
1927         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1928         // If we acquired the lock early in the spin cycle it
1929         // makes sense to increase _SpinDuration proportionally.
1930         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1931         int x = _SpinDuration;
1932         if (x < Knob_SpinLimit) {
1933           if (x < Knob_Poverty) x = Knob_Poverty;
1934           _SpinDuration = x + Knob_Bonus;
1935         }
1936         return 1;
1937       }
1938 
1939       // The CAS failed ... we can take any of the following actions:
1940       // * penalize: ctr -= Knob_CASPenalty
1941       // * exit spin with prejudice -- goto Abort;
1942       // * exit spin without prejudice.
1943       // * Since CAS is high-latency, retry again immediately.
1944       prv = ox;
1945       if (caspty == -2) break;
1946       if (caspty == -1) goto Abort;
1947       ctr -= caspty;
1948       continue;
1949     }
1950 
1951     // Did lock ownership change hands ?
1952     if (ox != prv && prv != NULL) {
1953       if (oxpty == -2) break;
1954       if (oxpty == -1) goto Abort;
1955       ctr -= oxpty;
1956     }
1957     prv = ox;
1958 
1959     // Abort the spin if the owner is not executing.
1960     // The owner must be executing in order to drop the lock.
1961     // Spinning while the owner is OFFPROC is idiocy.
1962     // Consider: ctr -= RunnablePenalty ;
1963     if (Knob_OState && NotRunnable (Self, ox)) {
1964       goto Abort;
1965     }
1966     if (sss && _succ == NULL) _succ = Self;
1967   }
1968 
1969   // Spin failed with prejudice -- reduce _SpinDuration.
1970   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1971   // AIMD is globally stable.
1972   {
1973     int x = _SpinDuration;
1974     if (x > 0) {
1975       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1976       // This is globally sample and tends to damp the response.
1977       x -= Knob_Penalty;
1978       if (x < 0) x = 0;
1979       _SpinDuration = x;
1980     }
1981   }
1982 
1983  Abort:
1984   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
1985   if (sss && _succ == Self) {
1986     _succ = NULL;
1987     // Invariant: after setting succ=null a contending thread
1988     // must recheck-retry _owner before parking.  This usually happens
1989     // in the normal usage of TrySpin(), but it's safest
1990     // to make TrySpin() as foolproof as possible.
1991     OrderAccess::fence();
1992     if (TryLock(Self) > 0) return 1;
1993   }
1994   return 0;
1995 }
1996 
1997 // NotRunnable() -- informed spinning
1998 //
1999 // Don't bother spinning if the owner is not eligible to drop the lock.
2000 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2001 // The thread must be runnable in order to drop the lock in timely fashion.
2002 // If the _owner is not runnable then spinning will not likely be
2003 // successful (profitable).
2004 //
2005 // Beware -- the thread referenced by _owner could have died
2006 // so a simply fetch from _owner->_thread_state might trap.
2007 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2008 // Because of the lifecycle issues, the _thread_state values
2009 // observed by NotRunnable() might be garbage.  NotRunnable must
2010 // tolerate this and consider the observed _thread_state value
2011 // as advisory.
2012 //
2013 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2014 // a thread pointer.
2015 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2016 // with the LSB of _owner.  Another option would be to probabilistically probe
2017 // the putative _owner->TypeTag value.
2018 //
2019 // Checking _thread_state isn't perfect.  Even if the thread is
2020 // in_java it might be blocked on a page-fault or have been preempted
2021 // and sitting on a ready/dispatch queue.
2022 //
2023 // The return value from NotRunnable() is *advisory* -- the
2024 // result is based on sampling and is not necessarily coherent.
2025 // The caller must tolerate false-negative and false-positive errors.
2026 // Spinning, in general, is probabilistic anyway.
2027 
2028 
2029 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2030   // Check ox->TypeTag == 2BAD.
2031   if (ox == NULL) return 0;
2032 
2033   // Avoid transitive spinning ...
2034   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2035   // Immediately after T1 acquires L it's possible that T2, also
2036   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2037   // This occurs transiently after T1 acquired L but before
2038   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2039   // its spin in this circumstance.
2040   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2041 
2042   if (BlockedOn == 1) return 1;
2043   if (BlockedOn != 0) {
2044     return BlockedOn != intptr_t(this) && _owner == ox;
2045   }
2046 
2047   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2048   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2049   // consider also: jst != _thread_in_Java -- but that's overspecific.
2050   return jst == _thread_blocked || jst == _thread_in_native;
2051 }
2052 
2053 
2054 // -----------------------------------------------------------------------------
2055 // WaitSet management ...
2056 
2057 ObjectWaiter::ObjectWaiter(Thread* thread) {
2058   _next     = NULL;
2059   _prev     = NULL;
2060   _notified = 0;
2061   _notifier_tid = 0;
2062   TState    = TS_RUN;
2063   _thread   = thread;
2064   _event    = thread->_ParkEvent;
2065   _active   = false;
2066   assert(_event != NULL, "invariant");
2067 }
2068 
2069 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2070   JavaThread *jt = (JavaThread *)this->_thread;
2071   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2072 }
2073 
2074 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2075   JavaThread *jt = (JavaThread *)this->_thread;
2076   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2077 }
2078 
2079 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2080   assert(node != NULL, "should not add NULL node");
2081   assert(node->_prev == NULL, "node already in list");
2082   assert(node->_next == NULL, "node already in list");
2083   // put node at end of queue (circular doubly linked list)
2084   if (_WaitSet == NULL) {
2085     _WaitSet = node;
2086     node->_prev = node;
2087     node->_next = node;
2088   } else {
2089     ObjectWaiter* head = _WaitSet;
2090     ObjectWaiter* tail = head->_prev;
2091     assert(tail->_next == head, "invariant check");
2092     tail->_next = node;
2093     head->_prev = node;
2094     node->_next = head;
2095     node->_prev = tail;
2096   }
2097 }
2098 
2099 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2100   // dequeue the very first waiter
2101   ObjectWaiter* waiter = _WaitSet;
2102   if (waiter) {
2103     DequeueSpecificWaiter(waiter);
2104   }
2105   return waiter;
2106 }
2107 
2108 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2109   assert(node != NULL, "should not dequeue NULL node");
2110   assert(node->_prev != NULL, "node already removed from list");
2111   assert(node->_next != NULL, "node already removed from list");
2112   // when the waiter has woken up because of interrupt,
2113   // timeout or other spurious wake-up, dequeue the
2114   // waiter from waiting list
2115   ObjectWaiter* next = node->_next;
2116   if (next == node) {
2117     assert(node->_prev == node, "invariant check");
2118     _WaitSet = NULL;
2119   } else {
2120     ObjectWaiter* prev = node->_prev;
2121     assert(prev->_next == node, "invariant check");
2122     assert(next->_prev == node, "invariant check");
2123     next->_prev = prev;
2124     prev->_next = next;
2125     if (_WaitSet == node) {
2126       _WaitSet = next;
2127     }
2128   }
2129   node->_next = NULL;
2130   node->_prev = NULL;
2131 }
2132 
2133 // -----------------------------------------------------------------------------
2134 // PerfData support
2135 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2136 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2137 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2138 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2139 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2140 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2141 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2142 
2143 // One-shot global initialization for the sync subsystem.
2144 // We could also defer initialization and initialize on-demand
2145 // the first time we call inflate().  Initialization would
2146 // be protected - like so many things - by the MonitorCache_lock.
2147 
2148 void ObjectMonitor::Initialize() {
2149   static int InitializationCompleted = 0;
2150   assert(InitializationCompleted == 0, "invariant");
2151   InitializationCompleted = 1;
2152   if (UsePerfData) {
2153     EXCEPTION_MARK;
2154 #define NEWPERFCOUNTER(n)                                                \
2155   {                                                                      \
2156     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2157                                         CHECK);                          \
2158   }
2159 #define NEWPERFVARIABLE(n)                                                \
2160   {                                                                       \
2161     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2162                                          CHECK);                          \
2163   }
2164     NEWPERFCOUNTER(_sync_Inflations);
2165     NEWPERFCOUNTER(_sync_Deflations);
2166     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2167     NEWPERFCOUNTER(_sync_FutileWakeups);
2168     NEWPERFCOUNTER(_sync_Parks);
2169     NEWPERFCOUNTER(_sync_Notifications);
2170     NEWPERFVARIABLE(_sync_MonExtant);
2171 #undef NEWPERFCOUNTER
2172 #undef NEWPERFVARIABLE
2173   }
2174 }
2175 
2176 void ObjectMonitor::DeferredInitialize() {
2177   if (InitDone > 0) return;
2178   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2179     while (InitDone != 1) /* empty */;
2180     return;
2181   }
2182 
2183   // One-shot global initialization ...
2184   // The initialization is idempotent, so we don't need locks.
2185   // In the future consider doing this via os::init_2().
2186 
2187   if (!os::is_MP()) {
2188     Knob_SpinLimit = 0;
2189     Knob_SpinBase  = 0;
2190     Knob_PreSpin   = 0;
2191     Knob_FixedSpin = -1;
2192   }
2193 
2194   OrderAccess::fence();
2195   InitDone = 1;
2196 }
2197