1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_VerifyMatch  = 0;
 105 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 106 
 107 static int Knob_SpinBase            = 0;       // Floor AKA SpinMin
 108 static int Knob_CASPenalty          = -1;      // Penalty for failed CAS
 109 static int Knob_OXPenalty           = -1;      // Penalty for observed _owner change
 110 static int Knob_SpinSetSucc         = 1;       // spinners set the _succ field
 111 static int Knob_SpinEarly           = 1;
 112 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 113 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 114 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 115 static int Knob_Bonus               = 100;     // spin success bonus
 116 static int Knob_BonusB              = 100;     // spin success bonus
 117 static int Knob_Penalty             = 200;     // spin failure penalty
 118 static int Knob_Poverty             = 1000;
 119 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 120 static int Knob_FixedSpin           = 0;
 121 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 122 static int Knob_UsePause            = 1;
 123 static int Knob_ExitPolicy          = 0;
 124 static int Knob_PreSpin             = 10;      // 20-100 likely better
 125 static int Knob_ResetEvent          = 0;
 126 
 127 static int Knob_FastHSSEC           = 0;
 128 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 129 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 130 static volatile int InitDone        = 0;
 131 
 132 // -----------------------------------------------------------------------------
 133 // Theory of operations -- Monitors lists, thread residency, etc:
 134 //
 135 // * A thread acquires ownership of a monitor by successfully
 136 //   CAS()ing the _owner field from null to non-null.
 137 //
 138 // * Invariant: A thread appears on at most one monitor list --
 139 //   cxq, EntryList or WaitSet -- at any one time.
 140 //
 141 // * Contending threads "push" themselves onto the cxq with CAS
 142 //   and then spin/park.
 143 //
 144 // * After a contending thread eventually acquires the lock it must
 145 //   dequeue itself from either the EntryList or the cxq.
 146 //
 147 // * The exiting thread identifies and unparks an "heir presumptive"
 148 //   tentative successor thread on the EntryList.  Critically, the
 149 //   exiting thread doesn't unlink the successor thread from the EntryList.
 150 //   After having been unparked, the wakee will recontend for ownership of
 151 //   the monitor.   The successor (wakee) will either acquire the lock or
 152 //   re-park itself.
 153 //
 154 //   Succession is provided for by a policy of competitive handoff.
 155 //   The exiting thread does _not_ grant or pass ownership to the
 156 //   successor thread.  (This is also referred to as "handoff" succession").
 157 //   Instead the exiting thread releases ownership and possibly wakes
 158 //   a successor, so the successor can (re)compete for ownership of the lock.
 159 //   If the EntryList is empty but the cxq is populated the exiting
 160 //   thread will drain the cxq into the EntryList.  It does so by
 161 //   by detaching the cxq (installing null with CAS) and folding
 162 //   the threads from the cxq into the EntryList.  The EntryList is
 163 //   doubly linked, while the cxq is singly linked because of the
 164 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 165 //
 166 // * Concurrency invariants:
 167 //
 168 //   -- only the monitor owner may access or mutate the EntryList.
 169 //      The mutex property of the monitor itself protects the EntryList
 170 //      from concurrent interference.
 171 //   -- Only the monitor owner may detach the cxq.
 172 //
 173 // * The monitor entry list operations avoid locks, but strictly speaking
 174 //   they're not lock-free.  Enter is lock-free, exit is not.
 175 //   For a description of 'Methods and apparatus providing non-blocking access
 176 //   to a resource,' see U.S. Pat. No. 7844973.
 177 //
 178 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 179 //   detaching thread.  This mechanism is immune from the ABA corruption.
 180 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 181 //
 182 // * Taken together, the cxq and the EntryList constitute or form a
 183 //   single logical queue of threads stalled trying to acquire the lock.
 184 //   We use two distinct lists to improve the odds of a constant-time
 185 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 186 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 187 //   A key desideratum is to minimize queue & monitor metadata manipulation
 188 //   that occurs while holding the monitor lock -- that is, we want to
 189 //   minimize monitor lock holds times.  Note that even a small amount of
 190 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 191 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 192 //   locks and monitor metadata.
 193 //
 194 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 195 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 196 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 197 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 198 //
 199 //   The EntryList is ordered by the prevailing queue discipline and
 200 //   can be organized in any convenient fashion, such as a doubly-linked list or
 201 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 202 //   to operate in constant-time.  If we need a priority queue then something akin
 203 //   to Solaris' sleepq would work nicely.  Viz.,
 204 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 205 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 206 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 207 //   EntryList accordingly.
 208 //
 209 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 210 //   somewhat similar to an elevator-scan.
 211 //
 212 // * The monitor synchronization subsystem avoids the use of native
 213 //   synchronization primitives except for the narrow platform-specific
 214 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 215 //   the semantics of park-unpark.  Put another way, this monitor implementation
 216 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 217 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 218 //   underlying OS manages the READY<->RUN transitions.
 219 //
 220 // * Waiting threads reside on the WaitSet list -- wait() puts
 221 //   the caller onto the WaitSet.
 222 //
 223 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 224 //   either the EntryList or cxq.  Subsequent exit() operations will
 225 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 226 //   it's likely the notifyee would simply impale itself on the lock held
 227 //   by the notifier.
 228 //
 229 // * An interesting alternative is to encode cxq as (List,LockByte) where
 230 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 231 //   variable, like _recursions, in the scheme.  The threads or Events that form
 232 //   the list would have to be aligned in 256-byte addresses.  A thread would
 233 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 234 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 235 //   Note that is is *not* word-tearing, but it does presume that full-word
 236 //   CAS operations are coherent with intermix with STB operations.  That's true
 237 //   on most common processors.
 238 //
 239 // * See also http://blogs.sun.com/dave
 240 
 241 
 242 void* ObjectMonitor::operator new (size_t size) throw() {
 243   return AllocateHeap(size, mtInternal);
 244 }
 245 void* ObjectMonitor::operator new[] (size_t size) throw() {
 246   return operator new (size);
 247 }
 248 void ObjectMonitor::operator delete(void* p) {
 249   FreeHeap(p);
 250 }
 251 void ObjectMonitor::operator delete[] (void *p) {
 252   operator delete(p);
 253 }
 254 
 255 // -----------------------------------------------------------------------------
 256 // Enter support
 257 
 258 void ObjectMonitor::enter(TRAPS) {
 259   // The following code is ordered to check the most common cases first
 260   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 261   Thread * const Self = THREAD;
 262 
 263   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 264   if (cur == NULL) {
 265     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 266     assert(_recursions == 0, "invariant");
 267     assert(_owner == Self, "invariant");
 268     return;
 269   }
 270 
 271   if (cur == Self) {
 272     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 273     _recursions++;
 274     return;
 275   }
 276 
 277   if (Self->is_lock_owned ((address)cur)) {
 278     assert(_recursions == 0, "internal state error");
 279     _recursions = 1;
 280     // Commute owner from a thread-specific on-stack BasicLockObject address to
 281     // a full-fledged "Thread *".
 282     _owner = Self;
 283     return;
 284   }
 285 
 286   // We've encountered genuine contention.
 287   assert(Self->_Stalled == 0, "invariant");
 288   Self->_Stalled = intptr_t(this);
 289 
 290   // Try one round of spinning *before* enqueueing Self
 291   // and before going through the awkward and expensive state
 292   // transitions.  The following spin is strictly optional ...
 293   // Note that if we acquire the monitor from an initial spin
 294   // we forgo posting JVMTI events and firing DTRACE probes.
 295   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 296     assert(_owner == Self, "invariant");
 297     assert(_recursions == 0, "invariant");
 298     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 299     Self->_Stalled = 0;
 300     return;
 301   }
 302 
 303   assert(_owner != Self, "invariant");
 304   assert(_succ != Self, "invariant");
 305   assert(Self->is_Java_thread(), "invariant");
 306   JavaThread * jt = (JavaThread *) Self;
 307   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 308   assert(jt->thread_state() != _thread_blocked, "invariant");
 309   assert(this->object() != NULL, "invariant");
 310   assert(_count >= 0, "invariant");
 311 
 312   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 313   // Ensure the object-monitor relationship remains stable while there's contention.
 314   Atomic::inc(&_count);
 315 
 316   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 317   EventJavaMonitorEnter event;
 318   if (event.should_commit()) {
 319     event.set_monitorClass(((oop)this->object())->klass());
 320     event.set_address((uintptr_t)(this->object_addr()));
 321   }
 322 
 323   { // Change java thread status to indicate blocked on monitor enter.
 324     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 325 
 326     Self->set_current_pending_monitor(this);
 327 
 328     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 329     if (JvmtiExport::should_post_monitor_contended_enter()) {
 330       JvmtiExport::post_monitor_contended_enter(jt, this);
 331 
 332       // The current thread does not yet own the monitor and does not
 333       // yet appear on any queues that would get it made the successor.
 334       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 335       // handler cannot accidentally consume an unpark() meant for the
 336       // ParkEvent associated with this ObjectMonitor.
 337     }
 338 
 339     OSThreadContendState osts(Self->osthread());
 340     ThreadBlockInVM tbivm(jt);
 341 
 342     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 343     for (;;) {
 344       jt->set_suspend_equivalent();
 345       // cleared by handle_special_suspend_equivalent_condition()
 346       // or java_suspend_self()
 347 
 348       EnterI(THREAD);
 349 
 350       if (!ExitSuspendEquivalent(jt)) break;
 351 
 352       // We have acquired the contended monitor, but while we were
 353       // waiting another thread suspended us. We don't want to enter
 354       // the monitor while suspended because that would surprise the
 355       // thread that suspended us.
 356       //
 357       _recursions = 0;
 358       _succ = NULL;
 359       exit(false, Self);
 360 
 361       jt->java_suspend_self();
 362     }
 363     Self->set_current_pending_monitor(NULL);
 364 
 365     // We cleared the pending monitor info since we've just gotten past
 366     // the enter-check-for-suspend dance and we now own the monitor free
 367     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 368     // destructor can go to a safepoint at the end of this block. If we
 369     // do a thread dump during that safepoint, then this thread will show
 370     // as having "-locked" the monitor, but the OS and java.lang.Thread
 371     // states will still report that the thread is blocked trying to
 372     // acquire it.
 373   }
 374 
 375   Atomic::dec(&_count);
 376   assert(_count >= 0, "invariant");
 377   Self->_Stalled = 0;
 378 
 379   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 380   assert(_recursions == 0, "invariant");
 381   assert(_owner == Self, "invariant");
 382   assert(_succ != Self, "invariant");
 383   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 384 
 385   // The thread -- now the owner -- is back in vm mode.
 386   // Report the glorious news via TI,DTrace and jvmstat.
 387   // The probe effect is non-trivial.  All the reportage occurs
 388   // while we hold the monitor, increasing the length of the critical
 389   // section.  Amdahl's parallel speedup law comes vividly into play.
 390   //
 391   // Another option might be to aggregate the events (thread local or
 392   // per-monitor aggregation) and defer reporting until a more opportune
 393   // time -- such as next time some thread encounters contention but has
 394   // yet to acquire the lock.  While spinning that thread could
 395   // spinning we could increment JVMStat counters, etc.
 396 
 397   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 398   if (JvmtiExport::should_post_monitor_contended_entered()) {
 399     JvmtiExport::post_monitor_contended_entered(jt, this);
 400 
 401     // The current thread already owns the monitor and is not going to
 402     // call park() for the remainder of the monitor enter protocol. So
 403     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 404     // event handler consumed an unpark() issued by the thread that
 405     // just exited the monitor.
 406   }
 407   if (event.should_commit()) {
 408     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 409     event.commit();
 410   }
 411   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 412 }
 413 
 414 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 415 // Callers must compensate as needed.
 416 
 417 int ObjectMonitor::TryLock(Thread * Self) {
 418   void * own = _owner;
 419   if (own != NULL) return 0;
 420   if (Atomic::replace_if_null(Self, &_owner)) {
 421     // Either guarantee _recursions == 0 or set _recursions = 0.
 422     assert(_recursions == 0, "invariant");
 423     assert(_owner == Self, "invariant");
 424     return 1;
 425   }
 426   // The lock had been free momentarily, but we lost the race to the lock.
 427   // Interference -- the CAS failed.
 428   // We can either return -1 or retry.
 429   // Retry doesn't make as much sense because the lock was just acquired.
 430   return -1;
 431 }
 432 
 433 #define MAX_RECHECK_INTERVAL 1000
 434 
 435 void ObjectMonitor::EnterI(TRAPS) {
 436   Thread * const Self = THREAD;
 437   assert(Self->is_Java_thread(), "invariant");
 438   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 439 
 440   // Try the lock - TATAS
 441   if (TryLock (Self) > 0) {
 442     assert(_succ != Self, "invariant");
 443     assert(_owner == Self, "invariant");
 444     assert(_Responsible != Self, "invariant");
 445     return;
 446   }
 447 
 448   DeferredInitialize();
 449 
 450   // We try one round of spinning *before* enqueueing Self.
 451   //
 452   // If the _owner is ready but OFFPROC we could use a YieldTo()
 453   // operation to donate the remainder of this thread's quantum
 454   // to the owner.  This has subtle but beneficial affinity
 455   // effects.
 456 
 457   if (TrySpin (Self) > 0) {
 458     assert(_owner == Self, "invariant");
 459     assert(_succ != Self, "invariant");
 460     assert(_Responsible != Self, "invariant");
 461     return;
 462   }
 463 
 464   // The Spin failed -- Enqueue and park the thread ...
 465   assert(_succ != Self, "invariant");
 466   assert(_owner != Self, "invariant");
 467   assert(_Responsible != Self, "invariant");
 468 
 469   // Enqueue "Self" on ObjectMonitor's _cxq.
 470   //
 471   // Node acts as a proxy for Self.
 472   // As an aside, if were to ever rewrite the synchronization code mostly
 473   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 474   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 475   // as well as eliminate a subset of ABA issues.
 476   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 477 
 478   ObjectWaiter node(Self);
 479   Self->_ParkEvent->reset();
 480   node._prev   = (ObjectWaiter *) 0xBAD;
 481   node.TState  = ObjectWaiter::TS_CXQ;
 482 
 483   // Push "Self" onto the front of the _cxq.
 484   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 485   // Note that spinning tends to reduce the rate at which threads
 486   // enqueue and dequeue on EntryList|cxq.
 487   ObjectWaiter * nxt;
 488   for (;;) {
 489     node._next = nxt = _cxq;
 490     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 491 
 492     // Interference - the CAS failed because _cxq changed.  Just retry.
 493     // As an optional optimization we retry the lock.
 494     if (TryLock (Self) > 0) {
 495       assert(_succ != Self, "invariant");
 496       assert(_owner == Self, "invariant");
 497       assert(_Responsible != Self, "invariant");
 498       return;
 499     }
 500   }
 501 
 502   // Check for cxq|EntryList edge transition to non-null.  This indicates
 503   // the onset of contention.  While contention persists exiting threads
 504   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 505   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 506   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 507   // arrange for one of the contending thread to use a timed park() operations
 508   // to detect and recover from the race.  (Stranding is form of progress failure
 509   // where the monitor is unlocked but all the contending threads remain parked).
 510   // That is, at least one of the contended threads will periodically poll _owner.
 511   // One of the contending threads will become the designated "Responsible" thread.
 512   // The Responsible thread uses a timed park instead of a normal indefinite park
 513   // operation -- it periodically wakes and checks for and recovers from potential
 514   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 515   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 516   // be responsible for a monitor.
 517   //
 518   // Currently, one of the contended threads takes on the added role of "Responsible".
 519   // A viable alternative would be to use a dedicated "stranding checker" thread
 520   // that periodically iterated over all the threads (or active monitors) and unparked
 521   // successors where there was risk of stranding.  This would help eliminate the
 522   // timer scalability issues we see on some platforms as we'd only have one thread
 523   // -- the checker -- parked on a timer.
 524 
 525   if (nxt == NULL && _EntryList == NULL) {
 526     // Try to assume the role of responsible thread for the monitor.
 527     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 528     Atomic::replace_if_null(Self, &_Responsible);
 529   }
 530 
 531   // The lock might have been released while this thread was occupied queueing
 532   // itself onto _cxq.  To close the race and avoid "stranding" and
 533   // progress-liveness failure we must resample-retry _owner before parking.
 534   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 535   // In this case the ST-MEMBAR is accomplished with CAS().
 536   //
 537   // TODO: Defer all thread state transitions until park-time.
 538   // Since state transitions are heavy and inefficient we'd like
 539   // to defer the state transitions until absolutely necessary,
 540   // and in doing so avoid some transitions ...
 541 
 542   int nWakeups = 0;
 543   int recheckInterval = 1;
 544 
 545   for (;;) {
 546 
 547     if (TryLock(Self) > 0) break;
 548     assert(_owner != Self, "invariant");
 549 
 550     // park self
 551     if (_Responsible == Self) {
 552       Self->_ParkEvent->park((jlong) recheckInterval);
 553       // Increase the recheckInterval, but clamp the value.
 554       recheckInterval *= 8;
 555       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 556         recheckInterval = MAX_RECHECK_INTERVAL;
 557       }
 558     } else {
 559       Self->_ParkEvent->park();
 560     }
 561 
 562     if (TryLock(Self) > 0) break;
 563 
 564     // The lock is still contested.
 565     // Keep a tally of the # of futile wakeups.
 566     // Note that the counter is not protected by a lock or updated by atomics.
 567     // That is by design - we trade "lossy" counters which are exposed to
 568     // races during updates for a lower probe effect.
 569 
 570     // This PerfData object can be used in parallel with a safepoint.
 571     // See the work around in PerfDataManager::destroy().
 572     OM_PERFDATA_OP(FutileWakeups, inc());
 573     ++nWakeups;
 574 
 575     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 576     // We can defer clearing _succ until after the spin completes
 577     // TrySpin() must tolerate being called with _succ == Self.
 578     // Try yet another round of adaptive spinning.
 579     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 580 
 581     // We can find that we were unpark()ed and redesignated _succ while
 582     // we were spinning.  That's harmless.  If we iterate and call park(),
 583     // park() will consume the event and return immediately and we'll
 584     // just spin again.  This pattern can repeat, leaving _succ to simply
 585     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 586     // Alternately, we can sample fired() here, and if set, forgo spinning
 587     // in the next iteration.
 588 
 589     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 590       Self->_ParkEvent->reset();
 591       OrderAccess::fence();
 592     }
 593     if (_succ == Self) _succ = NULL;
 594 
 595     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 596     OrderAccess::fence();
 597   }
 598 
 599   // Egress :
 600   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 601   // Normally we'll find Self on the EntryList .
 602   // From the perspective of the lock owner (this thread), the
 603   // EntryList is stable and cxq is prepend-only.
 604   // The head of cxq is volatile but the interior is stable.
 605   // In addition, Self.TState is stable.
 606 
 607   assert(_owner == Self, "invariant");
 608   assert(object() != NULL, "invariant");
 609   // I'd like to write:
 610   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 611   // but as we're at a safepoint that's not safe.
 612 
 613   UnlinkAfterAcquire(Self, &node);
 614   if (_succ == Self) _succ = NULL;
 615 
 616   assert(_succ != Self, "invariant");
 617   if (_Responsible == Self) {
 618     _Responsible = NULL;
 619     OrderAccess::fence(); // Dekker pivot-point
 620 
 621     // We may leave threads on cxq|EntryList without a designated
 622     // "Responsible" thread.  This is benign.  When this thread subsequently
 623     // exits the monitor it can "see" such preexisting "old" threads --
 624     // threads that arrived on the cxq|EntryList before the fence, above --
 625     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 626     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 627     // non-null and elect a new "Responsible" timer thread.
 628     //
 629     // This thread executes:
 630     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 631     //    LD cxq|EntryList               (in subsequent exit)
 632     //
 633     // Entering threads in the slow/contended path execute:
 634     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 635     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 636     //
 637     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 638     // exit operation from floating above the ST Responsible=null.
 639   }
 640 
 641   // We've acquired ownership with CAS().
 642   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 643   // But since the CAS() this thread may have also stored into _succ,
 644   // EntryList, cxq or Responsible.  These meta-data updates must be
 645   // visible __before this thread subsequently drops the lock.
 646   // Consider what could occur if we didn't enforce this constraint --
 647   // STs to monitor meta-data and user-data could reorder with (become
 648   // visible after) the ST in exit that drops ownership of the lock.
 649   // Some other thread could then acquire the lock, but observe inconsistent
 650   // or old monitor meta-data and heap data.  That violates the JMM.
 651   // To that end, the 1-0 exit() operation must have at least STST|LDST
 652   // "release" barrier semantics.  Specifically, there must be at least a
 653   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 654   // the lock.   The barrier ensures that changes to monitor meta-data and data
 655   // protected by the lock will be visible before we release the lock, and
 656   // therefore before some other thread (CPU) has a chance to acquire the lock.
 657   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 658   //
 659   // Critically, any prior STs to _succ or EntryList must be visible before
 660   // the ST of null into _owner in the *subsequent* (following) corresponding
 661   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 662   // execute a serializing instruction.
 663 
 664   return;
 665 }
 666 
 667 // ReenterI() is a specialized inline form of the latter half of the
 668 // contended slow-path from EnterI().  We use ReenterI() only for
 669 // monitor reentry in wait().
 670 //
 671 // In the future we should reconcile EnterI() and ReenterI(), adding
 672 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 673 // loop accordingly.
 674 
 675 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 676   assert(Self != NULL, "invariant");
 677   assert(SelfNode != NULL, "invariant");
 678   assert(SelfNode->_thread == Self, "invariant");
 679   assert(_waiters > 0, "invariant");
 680   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 681   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 682   JavaThread * jt = (JavaThread *) Self;
 683 
 684   int nWakeups = 0;
 685   for (;;) {
 686     ObjectWaiter::TStates v = SelfNode->TState;
 687     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 688     assert(_owner != Self, "invariant");
 689 
 690     if (TryLock(Self) > 0) break;
 691     if (TrySpin(Self) > 0) break;
 692 
 693     // State transition wrappers around park() ...
 694     // ReenterI() wisely defers state transitions until
 695     // it's clear we must park the thread.
 696     {
 697       OSThreadContendState osts(Self->osthread());
 698       ThreadBlockInVM tbivm(jt);
 699 
 700       // cleared by handle_special_suspend_equivalent_condition()
 701       // or java_suspend_self()
 702       jt->set_suspend_equivalent();
 703       Self->_ParkEvent->park();
 704 
 705       // were we externally suspended while we were waiting?
 706       for (;;) {
 707         if (!ExitSuspendEquivalent(jt)) break;
 708         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 709         jt->java_suspend_self();
 710         jt->set_suspend_equivalent();
 711       }
 712     }
 713 
 714     // Try again, but just so we distinguish between futile wakeups and
 715     // successful wakeups.  The following test isn't algorithmically
 716     // necessary, but it helps us maintain sensible statistics.
 717     if (TryLock(Self) > 0) break;
 718 
 719     // The lock is still contested.
 720     // Keep a tally of the # of futile wakeups.
 721     // Note that the counter is not protected by a lock or updated by atomics.
 722     // That is by design - we trade "lossy" counters which are exposed to
 723     // races during updates for a lower probe effect.
 724     ++nWakeups;
 725 
 726     // Assuming this is not a spurious wakeup we'll normally
 727     // find that _succ == Self.
 728     if (_succ == Self) _succ = NULL;
 729 
 730     // Invariant: after clearing _succ a contending thread
 731     // *must* retry  _owner before parking.
 732     OrderAccess::fence();
 733 
 734     // This PerfData object can be used in parallel with a safepoint.
 735     // See the work around in PerfDataManager::destroy().
 736     OM_PERFDATA_OP(FutileWakeups, inc());
 737   }
 738 
 739   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 740   // Normally we'll find Self on the EntryList.
 741   // Unlinking from the EntryList is constant-time and atomic-free.
 742   // From the perspective of the lock owner (this thread), the
 743   // EntryList is stable and cxq is prepend-only.
 744   // The head of cxq is volatile but the interior is stable.
 745   // In addition, Self.TState is stable.
 746 
 747   assert(_owner == Self, "invariant");
 748   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 749   UnlinkAfterAcquire(Self, SelfNode);
 750   if (_succ == Self) _succ = NULL;
 751   assert(_succ != Self, "invariant");
 752   SelfNode->TState = ObjectWaiter::TS_RUN;
 753   OrderAccess::fence();      // see comments at the end of EnterI()
 754 }
 755 
 756 // By convention we unlink a contending thread from EntryList|cxq immediately
 757 // after the thread acquires the lock in ::enter().  Equally, we could defer
 758 // unlinking the thread until ::exit()-time.
 759 
 760 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 761   assert(_owner == Self, "invariant");
 762   assert(SelfNode->_thread == Self, "invariant");
 763 
 764   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 765     // Normal case: remove Self from the DLL EntryList .
 766     // This is a constant-time operation.
 767     ObjectWaiter * nxt = SelfNode->_next;
 768     ObjectWaiter * prv = SelfNode->_prev;
 769     if (nxt != NULL) nxt->_prev = prv;
 770     if (prv != NULL) prv->_next = nxt;
 771     if (SelfNode == _EntryList) _EntryList = nxt;
 772     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 773     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 774   } else {
 775     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 776     // Inopportune interleaving -- Self is still on the cxq.
 777     // This usually means the enqueue of self raced an exiting thread.
 778     // Normally we'll find Self near the front of the cxq, so
 779     // dequeueing is typically fast.  If needbe we can accelerate
 780     // this with some MCS/CHL-like bidirectional list hints and advisory
 781     // back-links so dequeueing from the interior will normally operate
 782     // in constant-time.
 783     // Dequeue Self from either the head (with CAS) or from the interior
 784     // with a linear-time scan and normal non-atomic memory operations.
 785     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 786     // and then unlink Self from EntryList.  We have to drain eventually,
 787     // so it might as well be now.
 788 
 789     ObjectWaiter * v = _cxq;
 790     assert(v != NULL, "invariant");
 791     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 792       // The CAS above can fail from interference IFF a "RAT" arrived.
 793       // In that case Self must be in the interior and can no longer be
 794       // at the head of cxq.
 795       if (v == SelfNode) {
 796         assert(_cxq != v, "invariant");
 797         v = _cxq;          // CAS above failed - start scan at head of list
 798       }
 799       ObjectWaiter * p;
 800       ObjectWaiter * q = NULL;
 801       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 802         q = p;
 803         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 804       }
 805       assert(v != SelfNode, "invariant");
 806       assert(p == SelfNode, "Node not found on cxq");
 807       assert(p != _cxq, "invariant");
 808       assert(q != NULL, "invariant");
 809       assert(q->_next == p, "invariant");
 810       q->_next = p->_next;
 811     }
 812   }
 813 
 814 #ifdef ASSERT
 815   // Diagnostic hygiene ...
 816   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 817   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 818   SelfNode->TState = ObjectWaiter::TS_RUN;
 819 #endif
 820 }
 821 
 822 // -----------------------------------------------------------------------------
 823 // Exit support
 824 //
 825 // exit()
 826 // ~~~~~~
 827 // Note that the collector can't reclaim the objectMonitor or deflate
 828 // the object out from underneath the thread calling ::exit() as the
 829 // thread calling ::exit() never transitions to a stable state.
 830 // This inhibits GC, which in turn inhibits asynchronous (and
 831 // inopportune) reclamation of "this".
 832 //
 833 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 834 // There's one exception to the claim above, however.  EnterI() can call
 835 // exit() to drop a lock if the acquirer has been externally suspended.
 836 // In that case exit() is called with _thread_state as _thread_blocked,
 837 // but the monitor's _count field is > 0, which inhibits reclamation.
 838 //
 839 // 1-0 exit
 840 // ~~~~~~~~
 841 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 842 // the fast-path operators have been optimized so the common ::exit()
 843 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 844 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 845 // greatly improves latency -- MEMBAR and CAS having considerable local
 846 // latency on modern processors -- but at the cost of "stranding".  Absent the
 847 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 848 // ::enter() path, resulting in the entering thread being stranding
 849 // and a progress-liveness failure.   Stranding is extremely rare.
 850 // We use timers (timed park operations) & periodic polling to detect
 851 // and recover from stranding.  Potentially stranded threads periodically
 852 // wake up and poll the lock.  See the usage of the _Responsible variable.
 853 //
 854 // The CAS() in enter provides for safety and exclusion, while the CAS or
 855 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 856 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 857 // We detect and recover from stranding with timers.
 858 //
 859 // If a thread transiently strands it'll park until (a) another
 860 // thread acquires the lock and then drops the lock, at which time the
 861 // exiting thread will notice and unpark the stranded thread, or, (b)
 862 // the timer expires.  If the lock is high traffic then the stranding latency
 863 // will be low due to (a).  If the lock is low traffic then the odds of
 864 // stranding are lower, although the worst-case stranding latency
 865 // is longer.  Critically, we don't want to put excessive load in the
 866 // platform's timer subsystem.  We want to minimize both the timer injection
 867 // rate (timers created/sec) as well as the number of timers active at
 868 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 869 // the integral of the # of active timers at any instant over time).
 870 // Both impinge on OS scalability.  Given that, at most one thread parked on
 871 // a monitor will use a timer.
 872 //
 873 // There is also the risk of a futile wake-up. If we drop the lock
 874 // another thread can reacquire the lock immediately, and we can
 875 // then wake a thread unnecessarily. This is benign, and we've
 876 // structured the code so the windows are short and the frequency
 877 // of such futile wakups is low.
 878 
 879 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 880   Thread * const Self = THREAD;
 881   if (THREAD != _owner) {
 882     if (THREAD->is_lock_owned((address) _owner)) {
 883       // Transmute _owner from a BasicLock pointer to a Thread address.
 884       // We don't need to hold _mutex for this transition.
 885       // Non-null to Non-null is safe as long as all readers can
 886       // tolerate either flavor.
 887       assert(_recursions == 0, "invariant");
 888       _owner = THREAD;
 889       _recursions = 0;
 890     } else {
 891       // Apparent unbalanced locking ...
 892       // Naively we'd like to throw IllegalMonitorStateException.
 893       // As a practical matter we can neither allocate nor throw an
 894       // exception as ::exit() can be called from leaf routines.
 895       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 896       // Upon deeper reflection, however, in a properly run JVM the only
 897       // way we should encounter this situation is in the presence of
 898       // unbalanced JNI locking. TODO: CheckJNICalls.
 899       // See also: CR4414101
 900       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 901       return;
 902     }
 903   }
 904 
 905   if (_recursions != 0) {
 906     _recursions--;        // this is simple recursive enter
 907     return;
 908   }
 909 
 910   // Invariant: after setting Responsible=null an thread must execute
 911   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 912   _Responsible = NULL;
 913 
 914 #if INCLUDE_JFR
 915   // get the owner's thread id for the MonitorEnter event
 916   // if it is enabled and the thread isn't suspended
 917   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 918     _previous_owner_tid = JFR_THREAD_ID(Self);
 919   }
 920 #endif
 921 
 922   for (;;) {
 923     assert(THREAD == _owner, "invariant");
 924 
 925     if (Knob_ExitPolicy == 0) {
 926       // release semantics: prior loads and stores from within the critical section
 927       // must not float (reorder) past the following store that drops the lock.
 928       // On SPARC that requires MEMBAR #loadstore|#storestore.
 929       // But of course in TSO #loadstore|#storestore is not required.
 930       // I'd like to write one of the following:
 931       // A.  OrderAccess::release() ; _owner = NULL
 932       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 933       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 934       // store into a _dummy variable.  That store is not needed, but can result
 935       // in massive wasteful coherency traffic on classic SMP systems.
 936       // Instead, I use release_store(), which is implemented as just a simple
 937       // ST on x64, x86 and SPARC.
 938       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 939       OrderAccess::storeload();                        // See if we need to wake a successor
 940       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 941         return;
 942       }
 943       // Other threads are blocked trying to acquire the lock.
 944 
 945       // Normally the exiting thread is responsible for ensuring succession,
 946       // but if other successors are ready or other entering threads are spinning
 947       // then this thread can simply store NULL into _owner and exit without
 948       // waking a successor.  The existence of spinners or ready successors
 949       // guarantees proper succession (liveness).  Responsibility passes to the
 950       // ready or running successors.  The exiting thread delegates the duty.
 951       // More precisely, if a successor already exists this thread is absolved
 952       // of the responsibility of waking (unparking) one.
 953       //
 954       // The _succ variable is critical to reducing futile wakeup frequency.
 955       // _succ identifies the "heir presumptive" thread that has been made
 956       // ready (unparked) but that has not yet run.  We need only one such
 957       // successor thread to guarantee progress.
 958       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 959       // section 3.3 "Futile Wakeup Throttling" for details.
 960       //
 961       // Note that spinners in Enter() also set _succ non-null.
 962       // In the current implementation spinners opportunistically set
 963       // _succ so that exiting threads might avoid waking a successor.
 964       // Another less appealing alternative would be for the exiting thread
 965       // to drop the lock and then spin briefly to see if a spinner managed
 966       // to acquire the lock.  If so, the exiting thread could exit
 967       // immediately without waking a successor, otherwise the exiting
 968       // thread would need to dequeue and wake a successor.
 969       // (Note that we'd need to make the post-drop spin short, but no
 970       // shorter than the worst-case round-trip cache-line migration time.
 971       // The dropped lock needs to become visible to the spinner, and then
 972       // the acquisition of the lock by the spinner must become visible to
 973       // the exiting thread).
 974 
 975       // It appears that an heir-presumptive (successor) must be made ready.
 976       // Only the current lock owner can manipulate the EntryList or
 977       // drain _cxq, so we need to reacquire the lock.  If we fail
 978       // to reacquire the lock the responsibility for ensuring succession
 979       // falls to the new owner.
 980       //
 981       if (!Atomic::replace_if_null(THREAD, &_owner)) {
 982         return;
 983       }
 984     } else {
 985       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 986         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 987         OrderAccess::storeload();
 988         // Ratify the previously observed values.
 989         if (_cxq == NULL || _succ != NULL) {
 990           return;
 991         }
 992 
 993         // inopportune interleaving -- the exiting thread (this thread)
 994         // in the fast-exit path raced an entering thread in the slow-enter
 995         // path.
 996         // We have two choices:
 997         // A.  Try to reacquire the lock.
 998         //     If the CAS() fails return immediately, otherwise
 999         //     we either restart/rerun the exit operation, or simply
1000         //     fall-through into the code below which wakes a successor.
1001         // B.  If the elements forming the EntryList|cxq are TSM
1002         //     we could simply unpark() the lead thread and return
1003         //     without having set _succ.
1004         if (!Atomic::replace_if_null(THREAD, &_owner)) {
1005           return;
1006         }
1007       }
1008     }
1009 
1010     guarantee(_owner == THREAD, "invariant");
1011 
1012     ObjectWaiter * w = NULL;
1013     int QMode = Knob_QMode;
1014 
1015     if (QMode == 2 && _cxq != NULL) {
1016       // QMode == 2 : cxq has precedence over EntryList.
1017       // Try to directly wake a successor from the cxq.
1018       // If successful, the successor will need to unlink itself from cxq.
1019       w = _cxq;
1020       assert(w != NULL, "invariant");
1021       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1022       ExitEpilog(Self, w);
1023       return;
1024     }
1025 
1026     if (QMode == 3 && _cxq != NULL) {
1027       // Aggressively drain cxq into EntryList at the first opportunity.
1028       // This policy ensure that recently-run threads live at the head of EntryList.
1029       // Drain _cxq into EntryList - bulk transfer.
1030       // First, detach _cxq.
1031       // The following loop is tantamount to: w = swap(&cxq, NULL)
1032       w = _cxq;
1033       for (;;) {
1034         assert(w != NULL, "Invariant");
1035         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1036         if (u == w) break;
1037         w = u;
1038       }
1039       assert(w != NULL, "invariant");
1040 
1041       ObjectWaiter * q = NULL;
1042       ObjectWaiter * p;
1043       for (p = w; p != NULL; p = p->_next) {
1044         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1045         p->TState = ObjectWaiter::TS_ENTER;
1046         p->_prev = q;
1047         q = p;
1048       }
1049 
1050       // Append the RATs to the EntryList
1051       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1052       ObjectWaiter * Tail;
1053       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1054            Tail = Tail->_next)
1055         /* empty */;
1056       if (Tail == NULL) {
1057         _EntryList = w;
1058       } else {
1059         Tail->_next = w;
1060         w->_prev = Tail;
1061       }
1062 
1063       // Fall thru into code that tries to wake a successor from EntryList
1064     }
1065 
1066     if (QMode == 4 && _cxq != NULL) {
1067       // Aggressively drain cxq into EntryList at the first opportunity.
1068       // This policy ensure that recently-run threads live at the head of EntryList.
1069 
1070       // Drain _cxq into EntryList - bulk transfer.
1071       // First, detach _cxq.
1072       // The following loop is tantamount to: w = swap(&cxq, NULL)
1073       w = _cxq;
1074       for (;;) {
1075         assert(w != NULL, "Invariant");
1076         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1077         if (u == w) break;
1078         w = u;
1079       }
1080       assert(w != NULL, "invariant");
1081 
1082       ObjectWaiter * q = NULL;
1083       ObjectWaiter * p;
1084       for (p = w; p != NULL; p = p->_next) {
1085         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1086         p->TState = ObjectWaiter::TS_ENTER;
1087         p->_prev = q;
1088         q = p;
1089       }
1090 
1091       // Prepend the RATs to the EntryList
1092       if (_EntryList != NULL) {
1093         q->_next = _EntryList;
1094         _EntryList->_prev = q;
1095       }
1096       _EntryList = w;
1097 
1098       // Fall thru into code that tries to wake a successor from EntryList
1099     }
1100 
1101     w = _EntryList;
1102     if (w != NULL) {
1103       // I'd like to write: guarantee (w->_thread != Self).
1104       // But in practice an exiting thread may find itself on the EntryList.
1105       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1106       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1107       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1108       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1109       // release the lock "O".  T2 resumes immediately after the ST of null into
1110       // _owner, above.  T2 notices that the EntryList is populated, so it
1111       // reacquires the lock and then finds itself on the EntryList.
1112       // Given all that, we have to tolerate the circumstance where "w" is
1113       // associated with Self.
1114       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1115       ExitEpilog(Self, w);
1116       return;
1117     }
1118 
1119     // If we find that both _cxq and EntryList are null then just
1120     // re-run the exit protocol from the top.
1121     w = _cxq;
1122     if (w == NULL) continue;
1123 
1124     // Drain _cxq into EntryList - bulk transfer.
1125     // First, detach _cxq.
1126     // The following loop is tantamount to: w = swap(&cxq, NULL)
1127     for (;;) {
1128       assert(w != NULL, "Invariant");
1129       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1130       if (u == w) break;
1131       w = u;
1132     }
1133 
1134     assert(w != NULL, "invariant");
1135     assert(_EntryList == NULL, "invariant");
1136 
1137     // Convert the LIFO SLL anchored by _cxq into a DLL.
1138     // The list reorganization step operates in O(LENGTH(w)) time.
1139     // It's critical that this step operate quickly as
1140     // "Self" still holds the outer-lock, restricting parallelism
1141     // and effectively lengthening the critical section.
1142     // Invariant: s chases t chases u.
1143     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1144     // we have faster access to the tail.
1145 
1146     if (QMode == 1) {
1147       // QMode == 1 : drain cxq to EntryList, reversing order
1148       // We also reverse the order of the list.
1149       ObjectWaiter * s = NULL;
1150       ObjectWaiter * t = w;
1151       ObjectWaiter * u = NULL;
1152       while (t != NULL) {
1153         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1154         t->TState = ObjectWaiter::TS_ENTER;
1155         u = t->_next;
1156         t->_prev = u;
1157         t->_next = s;
1158         s = t;
1159         t = u;
1160       }
1161       _EntryList  = s;
1162       assert(s != NULL, "invariant");
1163     } else {
1164       // QMode == 0 or QMode == 2
1165       _EntryList = w;
1166       ObjectWaiter * q = NULL;
1167       ObjectWaiter * p;
1168       for (p = w; p != NULL; p = p->_next) {
1169         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1170         p->TState = ObjectWaiter::TS_ENTER;
1171         p->_prev = q;
1172         q = p;
1173       }
1174     }
1175 
1176     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1177     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1178 
1179     // See if we can abdicate to a spinner instead of waking a thread.
1180     // A primary goal of the implementation is to reduce the
1181     // context-switch rate.
1182     if (_succ != NULL) continue;
1183 
1184     w = _EntryList;
1185     if (w != NULL) {
1186       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1187       ExitEpilog(Self, w);
1188       return;
1189     }
1190   }
1191 }
1192 
1193 // ExitSuspendEquivalent:
1194 // A faster alternate to handle_special_suspend_equivalent_condition()
1195 //
1196 // handle_special_suspend_equivalent_condition() unconditionally
1197 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1198 // operations have high latency.  Note that in ::enter() we call HSSEC
1199 // while holding the monitor, so we effectively lengthen the critical sections.
1200 //
1201 // There are a number of possible solutions:
1202 //
1203 // A.  To ameliorate the problem we might also defer state transitions
1204 //     to as late as possible -- just prior to parking.
1205 //     Given that, we'd call HSSEC after having returned from park(),
1206 //     but before attempting to acquire the monitor.  This is only a
1207 //     partial solution.  It avoids calling HSSEC while holding the
1208 //     monitor (good), but it still increases successor reacquisition latency --
1209 //     the interval between unparking a successor and the time the successor
1210 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1211 //     If we use this technique we can also avoid EnterI()-exit() loop
1212 //     in ::enter() where we iteratively drop the lock and then attempt
1213 //     to reacquire it after suspending.
1214 //
1215 // B.  In the future we might fold all the suspend bits into a
1216 //     composite per-thread suspend flag and then update it with CAS().
1217 //     Alternately, a Dekker-like mechanism with multiple variables
1218 //     would suffice:
1219 //       ST Self->_suspend_equivalent = false
1220 //       MEMBAR
1221 //       LD Self_>_suspend_flags
1222 //
1223 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1224 // with a more efficient implementation, the need to use "FastHSSEC" has
1225 // decreased. - Dave
1226 
1227 
1228 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1229   const int Mode = Knob_FastHSSEC;
1230   if (Mode && !jSelf->is_external_suspend()) {
1231     assert(jSelf->is_suspend_equivalent(), "invariant");
1232     jSelf->clear_suspend_equivalent();
1233     if (2 == Mode) OrderAccess::storeload();
1234     if (!jSelf->is_external_suspend()) return false;
1235     // We raced a suspension -- fall thru into the slow path
1236     jSelf->set_suspend_equivalent();
1237   }
1238   return jSelf->handle_special_suspend_equivalent_condition();
1239 }
1240 
1241 
1242 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1243   assert(_owner == Self, "invariant");
1244 
1245   // Exit protocol:
1246   // 1. ST _succ = wakee
1247   // 2. membar #loadstore|#storestore;
1248   // 2. ST _owner = NULL
1249   // 3. unpark(wakee)
1250 
1251   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1252   ParkEvent * Trigger = Wakee->_event;
1253 
1254   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1255   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1256   // out-of-scope (non-extant).
1257   Wakee  = NULL;
1258 
1259   // Drop the lock
1260   OrderAccess::release_store(&_owner, (void*)NULL);
1261   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1262 
1263   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1264   Trigger->unpark();
1265 
1266   // Maintain stats and report events to JVMTI
1267   OM_PERFDATA_OP(Parks, inc());
1268 }
1269 
1270 
1271 // -----------------------------------------------------------------------------
1272 // Class Loader deadlock handling.
1273 //
1274 // complete_exit exits a lock returning recursion count
1275 // complete_exit/reenter operate as a wait without waiting
1276 // complete_exit requires an inflated monitor
1277 // The _owner field is not always the Thread addr even with an
1278 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1279 // thread due to contention.
1280 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1281   Thread * const Self = THREAD;
1282   assert(Self->is_Java_thread(), "Must be Java thread!");
1283   JavaThread *jt = (JavaThread *)THREAD;
1284 
1285   DeferredInitialize();
1286 
1287   if (THREAD != _owner) {
1288     if (THREAD->is_lock_owned ((address)_owner)) {
1289       assert(_recursions == 0, "internal state error");
1290       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1291       _recursions = 0;
1292     }
1293   }
1294 
1295   guarantee(Self == _owner, "complete_exit not owner");
1296   intptr_t save = _recursions; // record the old recursion count
1297   _recursions = 0;        // set the recursion level to be 0
1298   exit(true, Self);           // exit the monitor
1299   guarantee(_owner != Self, "invariant");
1300   return save;
1301 }
1302 
1303 // reenter() enters a lock and sets recursion count
1304 // complete_exit/reenter operate as a wait without waiting
1305 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1306   Thread * const Self = THREAD;
1307   assert(Self->is_Java_thread(), "Must be Java thread!");
1308   JavaThread *jt = (JavaThread *)THREAD;
1309 
1310   guarantee(_owner != Self, "reenter already owner");
1311   enter(THREAD);       // enter the monitor
1312   guarantee(_recursions == 0, "reenter recursion");
1313   _recursions = recursions;
1314   return;
1315 }
1316 
1317 
1318 // -----------------------------------------------------------------------------
1319 // A macro is used below because there may already be a pending
1320 // exception which should not abort the execution of the routines
1321 // which use this (which is why we don't put this into check_slow and
1322 // call it with a CHECK argument).
1323 
1324 #define CHECK_OWNER()                                                       \
1325   do {                                                                      \
1326     if (THREAD != _owner) {                                                 \
1327       if (THREAD->is_lock_owned((address) _owner)) {                        \
1328         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1329         _recursions = 0;                                                    \
1330       } else {                                                              \
1331         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1332       }                                                                     \
1333     }                                                                       \
1334   } while (false)
1335 
1336 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1337 // TODO-FIXME: remove check_slow() -- it's likely dead.
1338 
1339 void ObjectMonitor::check_slow(TRAPS) {
1340   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1341   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1342 }
1343 
1344 static int Adjust(volatile int * adr, int dx) {
1345   int v;
1346   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1347   return v;
1348 }
1349 
1350 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1351                                     ObjectMonitor* monitor,
1352                                     jlong notifier_tid,
1353                                     jlong timeout,
1354                                     bool timedout) {
1355   assert(event != NULL, "invariant");
1356   assert(monitor != NULL, "invariant");
1357   event->set_monitorClass(((oop)monitor->object())->klass());
1358   event->set_timeout(timeout);
1359   event->set_address((uintptr_t)monitor->object_addr());
1360   event->set_notifier(notifier_tid);
1361   event->set_timedOut(timedout);
1362   event->commit();
1363 }
1364 
1365 // -----------------------------------------------------------------------------
1366 // Wait/Notify/NotifyAll
1367 //
1368 // Note: a subset of changes to ObjectMonitor::wait()
1369 // will need to be replicated in complete_exit
1370 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1371   Thread * const Self = THREAD;
1372   assert(Self->is_Java_thread(), "Must be Java thread!");
1373   JavaThread *jt = (JavaThread *)THREAD;
1374 
1375   DeferredInitialize();
1376 
1377   // Throw IMSX or IEX.
1378   CHECK_OWNER();
1379 
1380   EventJavaMonitorWait event;
1381 
1382   // check for a pending interrupt
1383   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1384     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1385     if (JvmtiExport::should_post_monitor_waited()) {
1386       // Note: 'false' parameter is passed here because the
1387       // wait was not timed out due to thread interrupt.
1388       JvmtiExport::post_monitor_waited(jt, this, false);
1389 
1390       // In this short circuit of the monitor wait protocol, the
1391       // current thread never drops ownership of the monitor and
1392       // never gets added to the wait queue so the current thread
1393       // cannot be made the successor. This means that the
1394       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1395       // consume an unpark() meant for the ParkEvent associated with
1396       // this ObjectMonitor.
1397     }
1398     if (event.should_commit()) {
1399       post_monitor_wait_event(&event, this, 0, millis, false);
1400     }
1401     THROW(vmSymbols::java_lang_InterruptedException());
1402     return;
1403   }
1404 
1405   assert(Self->_Stalled == 0, "invariant");
1406   Self->_Stalled = intptr_t(this);
1407   jt->set_current_waiting_monitor(this);
1408 
1409   // create a node to be put into the queue
1410   // Critically, after we reset() the event but prior to park(), we must check
1411   // for a pending interrupt.
1412   ObjectWaiter node(Self);
1413   node.TState = ObjectWaiter::TS_WAIT;
1414   Self->_ParkEvent->reset();
1415   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1416 
1417   // Enter the waiting queue, which is a circular doubly linked list in this case
1418   // but it could be a priority queue or any data structure.
1419   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1420   // by the the owner of the monitor *except* in the case where park()
1421   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1422   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1423 
1424   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1425   AddWaiter(&node);
1426   Thread::SpinRelease(&_WaitSetLock);
1427 
1428   _Responsible = NULL;
1429 
1430   intptr_t save = _recursions; // record the old recursion count
1431   _waiters++;                  // increment the number of waiters
1432   _recursions = 0;             // set the recursion level to be 1
1433   exit(true, Self);                    // exit the monitor
1434   guarantee(_owner != Self, "invariant");
1435 
1436   // The thread is on the WaitSet list - now park() it.
1437   // On MP systems it's conceivable that a brief spin before we park
1438   // could be profitable.
1439   //
1440   // TODO-FIXME: change the following logic to a loop of the form
1441   //   while (!timeout && !interrupted && _notified == 0) park()
1442 
1443   int ret = OS_OK;
1444   int WasNotified = 0;
1445   { // State transition wrappers
1446     OSThread* osthread = Self->osthread();
1447     OSThreadWaitState osts(osthread, true);
1448     {
1449       ThreadBlockInVM tbivm(jt);
1450       // Thread is in thread_blocked state and oop access is unsafe.
1451       jt->set_suspend_equivalent();
1452 
1453       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1454         // Intentionally empty
1455       } else if (node._notified == 0) {
1456         if (millis <= 0) {
1457           Self->_ParkEvent->park();
1458         } else {
1459           ret = Self->_ParkEvent->park(millis);
1460         }
1461       }
1462 
1463       // were we externally suspended while we were waiting?
1464       if (ExitSuspendEquivalent (jt)) {
1465         // TODO-FIXME: add -- if succ == Self then succ = null.
1466         jt->java_suspend_self();
1467       }
1468 
1469     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1470 
1471     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1472     // from the WaitSet to the EntryList.
1473     // See if we need to remove Node from the WaitSet.
1474     // We use double-checked locking to avoid grabbing _WaitSetLock
1475     // if the thread is not on the wait queue.
1476     //
1477     // Note that we don't need a fence before the fetch of TState.
1478     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1479     // written by the is thread. (perhaps the fetch might even be satisfied
1480     // by a look-aside into the processor's own store buffer, although given
1481     // the length of the code path between the prior ST and this load that's
1482     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1483     // then we'll acquire the lock and then re-fetch a fresh TState value.
1484     // That is, we fail toward safety.
1485 
1486     if (node.TState == ObjectWaiter::TS_WAIT) {
1487       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1488       if (node.TState == ObjectWaiter::TS_WAIT) {
1489         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1490         assert(node._notified == 0, "invariant");
1491         node.TState = ObjectWaiter::TS_RUN;
1492       }
1493       Thread::SpinRelease(&_WaitSetLock);
1494     }
1495 
1496     // The thread is now either on off-list (TS_RUN),
1497     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1498     // The Node's TState variable is stable from the perspective of this thread.
1499     // No other threads will asynchronously modify TState.
1500     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1501     OrderAccess::loadload();
1502     if (_succ == Self) _succ = NULL;
1503     WasNotified = node._notified;
1504 
1505     // Reentry phase -- reacquire the monitor.
1506     // re-enter contended monitor after object.wait().
1507     // retain OBJECT_WAIT state until re-enter successfully completes
1508     // Thread state is thread_in_vm and oop access is again safe,
1509     // although the raw address of the object may have changed.
1510     // (Don't cache naked oops over safepoints, of course).
1511 
1512     // post monitor waited event. Note that this is past-tense, we are done waiting.
1513     if (JvmtiExport::should_post_monitor_waited()) {
1514       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1515 
1516       if (node._notified != 0 && _succ == Self) {
1517         // In this part of the monitor wait-notify-reenter protocol it
1518         // is possible (and normal) for another thread to do a fastpath
1519         // monitor enter-exit while this thread is still trying to get
1520         // to the reenter portion of the protocol.
1521         //
1522         // The ObjectMonitor was notified and the current thread is
1523         // the successor which also means that an unpark() has already
1524         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1525         // consume the unpark() that was done when the successor was
1526         // set because the same ParkEvent is shared between Java
1527         // monitors and JVM/TI RawMonitors (for now).
1528         //
1529         // We redo the unpark() to ensure forward progress, i.e., we
1530         // don't want all pending threads hanging (parked) with none
1531         // entering the unlocked monitor.
1532         node._event->unpark();
1533       }
1534     }
1535 
1536     if (event.should_commit()) {
1537       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1538     }
1539 
1540     OrderAccess::fence();
1541 
1542     assert(Self->_Stalled != 0, "invariant");
1543     Self->_Stalled = 0;
1544 
1545     assert(_owner != Self, "invariant");
1546     ObjectWaiter::TStates v = node.TState;
1547     if (v == ObjectWaiter::TS_RUN) {
1548       enter(Self);
1549     } else {
1550       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1551       ReenterI(Self, &node);
1552       node.wait_reenter_end(this);
1553     }
1554 
1555     // Self has reacquired the lock.
1556     // Lifecycle - the node representing Self must not appear on any queues.
1557     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1558     // want residual elements associated with this thread left on any lists.
1559     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1560     assert(_owner == Self, "invariant");
1561     assert(_succ != Self, "invariant");
1562   } // OSThreadWaitState()
1563 
1564   jt->set_current_waiting_monitor(NULL);
1565 
1566   guarantee(_recursions == 0, "invariant");
1567   _recursions = save;     // restore the old recursion count
1568   _waiters--;             // decrement the number of waiters
1569 
1570   // Verify a few postconditions
1571   assert(_owner == Self, "invariant");
1572   assert(_succ != Self, "invariant");
1573   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1574 
1575   // check if the notification happened
1576   if (!WasNotified) {
1577     // no, it could be timeout or Thread.interrupt() or both
1578     // check for interrupt event, otherwise it is timeout
1579     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1580       THROW(vmSymbols::java_lang_InterruptedException());
1581     }
1582   }
1583 
1584   // NOTE: Spurious wake up will be consider as timeout.
1585   // Monitor notify has precedence over thread interrupt.
1586 }
1587 
1588 
1589 // Consider:
1590 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1591 // then instead of transferring a thread from the WaitSet to the EntryList
1592 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1593 
1594 void ObjectMonitor::INotify(Thread * Self) {
1595   const int policy = Knob_MoveNotifyee;
1596 
1597   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1598   ObjectWaiter * iterator = DequeueWaiter();
1599   if (iterator != NULL) {
1600     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1601     guarantee(iterator->_notified == 0, "invariant");
1602     // Disposition - what might we do with iterator ?
1603     // a.  add it directly to the EntryList - either tail (policy == 1)
1604     //     or head (policy == 0).
1605     // b.  push it onto the front of the _cxq (policy == 2).
1606     // For now we use (b).
1607     if (policy != 4) {
1608       iterator->TState = ObjectWaiter::TS_ENTER;
1609     }
1610     iterator->_notified = 1;
1611     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1612 
1613     ObjectWaiter * list = _EntryList;
1614     if (list != NULL) {
1615       assert(list->_prev == NULL, "invariant");
1616       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1617       assert(list != iterator, "invariant");
1618     }
1619 
1620     if (policy == 0) {       // prepend to EntryList
1621       if (list == NULL) {
1622         iterator->_next = iterator->_prev = NULL;
1623         _EntryList = iterator;
1624       } else {
1625         list->_prev = iterator;
1626         iterator->_next = list;
1627         iterator->_prev = NULL;
1628         _EntryList = iterator;
1629       }
1630     } else if (policy == 1) {      // append to EntryList
1631       if (list == NULL) {
1632         iterator->_next = iterator->_prev = NULL;
1633         _EntryList = iterator;
1634       } else {
1635         // CONSIDER:  finding the tail currently requires a linear-time walk of
1636         // the EntryList.  We can make tail access constant-time by converting to
1637         // a CDLL instead of using our current DLL.
1638         ObjectWaiter * tail;
1639         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1640         assert(tail != NULL && tail->_next == NULL, "invariant");
1641         tail->_next = iterator;
1642         iterator->_prev = tail;
1643         iterator->_next = NULL;
1644       }
1645     } else if (policy == 2) {      // prepend to cxq
1646       if (list == NULL) {
1647         iterator->_next = iterator->_prev = NULL;
1648         _EntryList = iterator;
1649       } else {
1650         iterator->TState = ObjectWaiter::TS_CXQ;
1651         for (;;) {
1652           ObjectWaiter * front = _cxq;
1653           iterator->_next = front;
1654           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1655             break;
1656           }
1657         }
1658       }
1659     } else if (policy == 3) {      // append to cxq
1660       iterator->TState = ObjectWaiter::TS_CXQ;
1661       for (;;) {
1662         ObjectWaiter * tail = _cxq;
1663         if (tail == NULL) {
1664           iterator->_next = NULL;
1665           if (Atomic::replace_if_null(iterator, &_cxq)) {
1666             break;
1667           }
1668         } else {
1669           while (tail->_next != NULL) tail = tail->_next;
1670           tail->_next = iterator;
1671           iterator->_prev = tail;
1672           iterator->_next = NULL;
1673           break;
1674         }
1675       }
1676     } else {
1677       ParkEvent * ev = iterator->_event;
1678       iterator->TState = ObjectWaiter::TS_RUN;
1679       OrderAccess::fence();
1680       ev->unpark();
1681     }
1682 
1683     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1684     // move the add-to-EntryList operation, above, outside the critical section
1685     // protected by _WaitSetLock.  In practice that's not useful.  With the
1686     // exception of  wait() timeouts and interrupts the monitor owner
1687     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1688     // on _WaitSetLock so it's not profitable to reduce the length of the
1689     // critical section.
1690 
1691     if (policy < 4) {
1692       iterator->wait_reenter_begin(this);
1693     }
1694   }
1695   Thread::SpinRelease(&_WaitSetLock);
1696 }
1697 
1698 // Consider: a not-uncommon synchronization bug is to use notify() when
1699 // notifyAll() is more appropriate, potentially resulting in stranded
1700 // threads; this is one example of a lost wakeup. A useful diagnostic
1701 // option is to force all notify() operations to behave as notifyAll().
1702 //
1703 // Note: We can also detect many such problems with a "minimum wait".
1704 // When the "minimum wait" is set to a small non-zero timeout value
1705 // and the program does not hang whereas it did absent "minimum wait",
1706 // that suggests a lost wakeup bug.
1707 
1708 void ObjectMonitor::notify(TRAPS) {
1709   CHECK_OWNER();
1710   if (_WaitSet == NULL) {
1711     return;
1712   }
1713   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1714   INotify(THREAD);
1715   OM_PERFDATA_OP(Notifications, inc(1));
1716 }
1717 
1718 
1719 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1720 // from the waitset to the EntryList. This could be done more efficiently with a
1721 // single bulk transfer but in practice it's not time-critical. Beware too,
1722 // that in prepend-mode we invert the order of the waiters. Let's say that the
1723 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1724 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1725 
1726 void ObjectMonitor::notifyAll(TRAPS) {
1727   CHECK_OWNER();
1728   if (_WaitSet == NULL) {
1729     return;
1730   }
1731 
1732   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1733   int tally = 0;
1734   while (_WaitSet != NULL) {
1735     tally++;
1736     INotify(THREAD);
1737   }
1738 
1739   OM_PERFDATA_OP(Notifications, inc(tally));
1740 }
1741 
1742 // -----------------------------------------------------------------------------
1743 // Adaptive Spinning Support
1744 //
1745 // Adaptive spin-then-block - rational spinning
1746 //
1747 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1748 // algorithm.  On high order SMP systems it would be better to start with
1749 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1750 // a contending thread could enqueue itself on the cxq and then spin locally
1751 // on a thread-specific variable such as its ParkEvent._Event flag.
1752 // That's left as an exercise for the reader.  Note that global spinning is
1753 // not problematic on Niagara, as the L2 cache serves the interconnect and
1754 // has both low latency and massive bandwidth.
1755 //
1756 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1757 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1758 // (duration) or we can fix the count at approximately the duration of
1759 // a context switch and vary the frequency.   Of course we could also
1760 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1761 // For a description of 'Adaptive spin-then-block mutual exclusion in
1762 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1763 //
1764 // This implementation varies the duration "D", where D varies with
1765 // the success rate of recent spin attempts. (D is capped at approximately
1766 // length of a round-trip context switch).  The success rate for recent
1767 // spin attempts is a good predictor of the success rate of future spin
1768 // attempts.  The mechanism adapts automatically to varying critical
1769 // section length (lock modality), system load and degree of parallelism.
1770 // D is maintained per-monitor in _SpinDuration and is initialized
1771 // optimistically.  Spin frequency is fixed at 100%.
1772 //
1773 // Note that _SpinDuration is volatile, but we update it without locks
1774 // or atomics.  The code is designed so that _SpinDuration stays within
1775 // a reasonable range even in the presence of races.  The arithmetic
1776 // operations on _SpinDuration are closed over the domain of legal values,
1777 // so at worst a race will install and older but still legal value.
1778 // At the very worst this introduces some apparent non-determinism.
1779 // We might spin when we shouldn't or vice-versa, but since the spin
1780 // count are relatively short, even in the worst case, the effect is harmless.
1781 //
1782 // Care must be taken that a low "D" value does not become an
1783 // an absorbing state.  Transient spinning failures -- when spinning
1784 // is overall profitable -- should not cause the system to converge
1785 // on low "D" values.  We want spinning to be stable and predictable
1786 // and fairly responsive to change and at the same time we don't want
1787 // it to oscillate, become metastable, be "too" non-deterministic,
1788 // or converge on or enter undesirable stable absorbing states.
1789 //
1790 // We implement a feedback-based control system -- using past behavior
1791 // to predict future behavior.  We face two issues: (a) if the
1792 // input signal is random then the spin predictor won't provide optimal
1793 // results, and (b) if the signal frequency is too high then the control
1794 // system, which has some natural response lag, will "chase" the signal.
1795 // (b) can arise from multimodal lock hold times.  Transient preemption
1796 // can also result in apparent bimodal lock hold times.
1797 // Although sub-optimal, neither condition is particularly harmful, as
1798 // in the worst-case we'll spin when we shouldn't or vice-versa.
1799 // The maximum spin duration is rather short so the failure modes aren't bad.
1800 // To be conservative, I've tuned the gain in system to bias toward
1801 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1802 // "rings" or oscillates between spinning and not spinning.  This happens
1803 // when spinning is just on the cusp of profitability, however, so the
1804 // situation is not dire.  The state is benign -- there's no need to add
1805 // hysteresis control to damp the transition rate between spinning and
1806 // not spinning.
1807 
1808 // Spinning: Fixed frequency (100%), vary duration
1809 int ObjectMonitor::TrySpin(Thread * Self) {
1810   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1811   int ctr = Knob_FixedSpin;
1812   if (ctr != 0) {
1813     while (--ctr >= 0) {
1814       if (TryLock(Self) > 0) return 1;
1815       SpinPause();
1816     }
1817     return 0;
1818   }
1819 
1820   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1821     if (TryLock(Self) > 0) {
1822       // Increase _SpinDuration ...
1823       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1824       // Raising _SpurDuration to the poverty line is key.
1825       int x = _SpinDuration;
1826       if (x < Knob_SpinLimit) {
1827         if (x < Knob_Poverty) x = Knob_Poverty;
1828         _SpinDuration = x + Knob_BonusB;
1829       }
1830       return 1;
1831     }
1832     SpinPause();
1833   }
1834 
1835   // Admission control - verify preconditions for spinning
1836   //
1837   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1838   // becoming an absorbing state.  Put another way, we spin briefly to
1839   // sample, just in case the system load, parallelism, contention, or lock
1840   // modality changed.
1841   //
1842   // Consider the following alternative:
1843   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1844   // spin attempt.  "Periodically" might mean after a tally of
1845   // the # of failed spin attempts (or iterations) reaches some threshold.
1846   // This takes us into the realm of 1-out-of-N spinning, where we
1847   // hold the duration constant but vary the frequency.
1848 
1849   ctr = _SpinDuration;
1850   if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
1851   if (ctr <= 0) return 0;
1852 
1853   if (Knob_SuccRestrict && _succ != NULL) return 0;
1854   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1855     return 0;
1856   }
1857 
1858   int MaxSpin = Knob_MaxSpinners;
1859   if (MaxSpin >= 0) {
1860     if (_Spinner > MaxSpin) {
1861       return 0;
1862     }
1863     // Slightly racy, but benign ...
1864     Adjust(&_Spinner, 1);
1865   }
1866 
1867   // We're good to spin ... spin ingress.
1868   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1869   // when preparing to LD...CAS _owner, etc and the CAS is likely
1870   // to succeed.
1871   int caspty  = Knob_CASPenalty;
1872   int oxpty   = Knob_OXPenalty;
1873   int sss     = Knob_SpinSetSucc;
1874   if (sss && _succ == NULL) _succ = Self;
1875   Thread * prv = NULL;
1876 
1877   // There are three ways to exit the following loop:
1878   // 1.  A successful spin where this thread has acquired the lock.
1879   // 2.  Spin failure with prejudice
1880   // 3.  Spin failure without prejudice
1881 
1882   while (--ctr >= 0) {
1883 
1884     // Periodic polling -- Check for pending GC
1885     // Threads may spin while they're unsafe.
1886     // We don't want spinning threads to delay the JVM from reaching
1887     // a stop-the-world safepoint or to steal cycles from GC.
1888     // If we detect a pending safepoint we abort in order that
1889     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1890     // this thread, if safe, doesn't steal cycles from GC.
1891     // This is in keeping with the "no loitering in runtime" rule.
1892     // We periodically check to see if there's a safepoint pending.
1893     if ((ctr & 0xFF) == 0) {
1894       if (SafepointMechanism::poll(Self)) {
1895         goto Abort;           // abrupt spin egress
1896       }
1897       if (Knob_UsePause & 1) SpinPause();
1898     }
1899 
1900     if (Knob_UsePause & 2) SpinPause();
1901 
1902     // Probe _owner with TATAS
1903     // If this thread observes the monitor transition or flicker
1904     // from locked to unlocked to locked, then the odds that this
1905     // thread will acquire the lock in this spin attempt go down
1906     // considerably.  The same argument applies if the CAS fails
1907     // or if we observe _owner change from one non-null value to
1908     // another non-null value.   In such cases we might abort
1909     // the spin without prejudice or apply a "penalty" to the
1910     // spin count-down variable "ctr", reducing it by 100, say.
1911 
1912     Thread * ox = (Thread *) _owner;
1913     if (ox == NULL) {
1914       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1915       if (ox == NULL) {
1916         // The CAS succeeded -- this thread acquired ownership
1917         // Take care of some bookkeeping to exit spin state.
1918         if (sss && _succ == Self) {
1919           _succ = NULL;
1920         }
1921         if (MaxSpin > 0) Adjust(&_Spinner, -1);
1922 
1923         // Increase _SpinDuration :
1924         // The spin was successful (profitable) so we tend toward
1925         // longer spin attempts in the future.
1926         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1927         // If we acquired the lock early in the spin cycle it
1928         // makes sense to increase _SpinDuration proportionally.
1929         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1930         int x = _SpinDuration;
1931         if (x < Knob_SpinLimit) {
1932           if (x < Knob_Poverty) x = Knob_Poverty;
1933           _SpinDuration = x + Knob_Bonus;
1934         }
1935         return 1;
1936       }
1937 
1938       // The CAS failed ... we can take any of the following actions:
1939       // * penalize: ctr -= Knob_CASPenalty
1940       // * exit spin with prejudice -- goto Abort;
1941       // * exit spin without prejudice.
1942       // * Since CAS is high-latency, retry again immediately.
1943       prv = ox;
1944       if (caspty == -2) break;
1945       if (caspty == -1) goto Abort;
1946       ctr -= caspty;
1947       continue;
1948     }
1949 
1950     // Did lock ownership change hands ?
1951     if (ox != prv && prv != NULL) {
1952       if (oxpty == -2) break;
1953       if (oxpty == -1) goto Abort;
1954       ctr -= oxpty;
1955     }
1956     prv = ox;
1957 
1958     // Abort the spin if the owner is not executing.
1959     // The owner must be executing in order to drop the lock.
1960     // Spinning while the owner is OFFPROC is idiocy.
1961     // Consider: ctr -= RunnablePenalty ;
1962     if (Knob_OState && NotRunnable (Self, ox)) {
1963       goto Abort;
1964     }
1965     if (sss && _succ == NULL) _succ = Self;
1966   }
1967 
1968   // Spin failed with prejudice -- reduce _SpinDuration.
1969   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1970   // AIMD is globally stable.
1971   {
1972     int x = _SpinDuration;
1973     if (x > 0) {
1974       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1975       // This is globally sample and tends to damp the response.
1976       x -= Knob_Penalty;
1977       if (x < 0) x = 0;
1978       _SpinDuration = x;
1979     }
1980   }
1981 
1982  Abort:
1983   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
1984   if (sss && _succ == Self) {
1985     _succ = NULL;
1986     // Invariant: after setting succ=null a contending thread
1987     // must recheck-retry _owner before parking.  This usually happens
1988     // in the normal usage of TrySpin(), but it's safest
1989     // to make TrySpin() as foolproof as possible.
1990     OrderAccess::fence();
1991     if (TryLock(Self) > 0) return 1;
1992   }
1993   return 0;
1994 }
1995 
1996 // NotRunnable() -- informed spinning
1997 //
1998 // Don't bother spinning if the owner is not eligible to drop the lock.
1999 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2000 // The thread must be runnable in order to drop the lock in timely fashion.
2001 // If the _owner is not runnable then spinning will not likely be
2002 // successful (profitable).
2003 //
2004 // Beware -- the thread referenced by _owner could have died
2005 // so a simply fetch from _owner->_thread_state might trap.
2006 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2007 // Because of the lifecycle issues, the _thread_state values
2008 // observed by NotRunnable() might be garbage.  NotRunnable must
2009 // tolerate this and consider the observed _thread_state value
2010 // as advisory.
2011 //
2012 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2013 // a thread pointer.
2014 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2015 // with the LSB of _owner.  Another option would be to probabilistically probe
2016 // the putative _owner->TypeTag value.
2017 //
2018 // Checking _thread_state isn't perfect.  Even if the thread is
2019 // in_java it might be blocked on a page-fault or have been preempted
2020 // and sitting on a ready/dispatch queue.
2021 //
2022 // The return value from NotRunnable() is *advisory* -- the
2023 // result is based on sampling and is not necessarily coherent.
2024 // The caller must tolerate false-negative and false-positive errors.
2025 // Spinning, in general, is probabilistic anyway.
2026 
2027 
2028 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2029   // Check ox->TypeTag == 2BAD.
2030   if (ox == NULL) return 0;
2031 
2032   // Avoid transitive spinning ...
2033   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2034   // Immediately after T1 acquires L it's possible that T2, also
2035   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2036   // This occurs transiently after T1 acquired L but before
2037   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2038   // its spin in this circumstance.
2039   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2040 
2041   if (BlockedOn == 1) return 1;
2042   if (BlockedOn != 0) {
2043     return BlockedOn != intptr_t(this) && _owner == ox;
2044   }
2045 
2046   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2047   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2048   // consider also: jst != _thread_in_Java -- but that's overspecific.
2049   return jst == _thread_blocked || jst == _thread_in_native;
2050 }
2051 
2052 
2053 // -----------------------------------------------------------------------------
2054 // WaitSet management ...
2055 
2056 ObjectWaiter::ObjectWaiter(Thread* thread) {
2057   _next     = NULL;
2058   _prev     = NULL;
2059   _notified = 0;
2060   _notifier_tid = 0;
2061   TState    = TS_RUN;
2062   _thread   = thread;
2063   _event    = thread->_ParkEvent;
2064   _active   = false;
2065   assert(_event != NULL, "invariant");
2066 }
2067 
2068 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2069   JavaThread *jt = (JavaThread *)this->_thread;
2070   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2071 }
2072 
2073 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2074   JavaThread *jt = (JavaThread *)this->_thread;
2075   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2076 }
2077 
2078 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2079   assert(node != NULL, "should not add NULL node");
2080   assert(node->_prev == NULL, "node already in list");
2081   assert(node->_next == NULL, "node already in list");
2082   // put node at end of queue (circular doubly linked list)
2083   if (_WaitSet == NULL) {
2084     _WaitSet = node;
2085     node->_prev = node;
2086     node->_next = node;
2087   } else {
2088     ObjectWaiter* head = _WaitSet;
2089     ObjectWaiter* tail = head->_prev;
2090     assert(tail->_next == head, "invariant check");
2091     tail->_next = node;
2092     head->_prev = node;
2093     node->_next = head;
2094     node->_prev = tail;
2095   }
2096 }
2097 
2098 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2099   // dequeue the very first waiter
2100   ObjectWaiter* waiter = _WaitSet;
2101   if (waiter) {
2102     DequeueSpecificWaiter(waiter);
2103   }
2104   return waiter;
2105 }
2106 
2107 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2108   assert(node != NULL, "should not dequeue NULL node");
2109   assert(node->_prev != NULL, "node already removed from list");
2110   assert(node->_next != NULL, "node already removed from list");
2111   // when the waiter has woken up because of interrupt,
2112   // timeout or other spurious wake-up, dequeue the
2113   // waiter from waiting list
2114   ObjectWaiter* next = node->_next;
2115   if (next == node) {
2116     assert(node->_prev == node, "invariant check");
2117     _WaitSet = NULL;
2118   } else {
2119     ObjectWaiter* prev = node->_prev;
2120     assert(prev->_next == node, "invariant check");
2121     assert(next->_prev == node, "invariant check");
2122     next->_prev = prev;
2123     prev->_next = next;
2124     if (_WaitSet == node) {
2125       _WaitSet = next;
2126     }
2127   }
2128   node->_next = NULL;
2129   node->_prev = NULL;
2130 }
2131 
2132 // -----------------------------------------------------------------------------
2133 // PerfData support
2134 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2135 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2136 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2137 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2138 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2139 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2140 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2141 
2142 // One-shot global initialization for the sync subsystem.
2143 // We could also defer initialization and initialize on-demand
2144 // the first time we call inflate().  Initialization would
2145 // be protected - like so many things - by the MonitorCache_lock.
2146 
2147 void ObjectMonitor::Initialize() {
2148   static int InitializationCompleted = 0;
2149   assert(InitializationCompleted == 0, "invariant");
2150   InitializationCompleted = 1;
2151   if (UsePerfData) {
2152     EXCEPTION_MARK;
2153 #define NEWPERFCOUNTER(n)                                                \
2154   {                                                                      \
2155     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2156                                         CHECK);                          \
2157   }
2158 #define NEWPERFVARIABLE(n)                                                \
2159   {                                                                       \
2160     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2161                                          CHECK);                          \
2162   }
2163     NEWPERFCOUNTER(_sync_Inflations);
2164     NEWPERFCOUNTER(_sync_Deflations);
2165     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2166     NEWPERFCOUNTER(_sync_FutileWakeups);
2167     NEWPERFCOUNTER(_sync_Parks);
2168     NEWPERFCOUNTER(_sync_Notifications);
2169     NEWPERFVARIABLE(_sync_MonExtant);
2170 #undef NEWPERFCOUNTER
2171 #undef NEWPERFVARIABLE
2172   }
2173 }
2174 
2175 void ObjectMonitor::DeferredInitialize() {
2176   if (InitDone > 0) return;
2177   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2178     while (InitDone != 1) /* empty */;
2179     return;
2180   }
2181 
2182   // One-shot global initialization ...
2183   // The initialization is idempotent, so we don't need locks.
2184   // In the future consider doing this via os::init_2().
2185 
2186   if (!os::is_MP()) {
2187     Knob_SpinLimit = 0;
2188     Knob_SpinBase  = 0;
2189     Knob_PreSpin   = 0;
2190     Knob_FixedSpin = -1;
2191   }
2192 
2193   OrderAccess::fence();
2194   InitDone = 1;
2195 }
2196