1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 105 
 106 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 107 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 108 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 109 static int Knob_Bonus               = 100;     // spin success bonus
 110 static int Knob_BonusB              = 100;     // spin success bonus
 111 static int Knob_Penalty             = 200;     // spin failure penalty
 112 static int Knob_Poverty             = 1000;
 113 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 114 static int Knob_FixedSpin           = 0;
 115 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 116 static int Knob_UsePause            = 1;
 117 static int Knob_ExitPolicy          = 0;
 118 static int Knob_PreSpin             = 10;      // 20-100 likely better
 119 static int Knob_ResetEvent          = 0;
 120 
 121 static int Knob_FastHSSEC           = 0;
 122 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 123 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 124 static volatile int InitDone        = 0;
 125 
 126 // -----------------------------------------------------------------------------
 127 // Theory of operations -- Monitors lists, thread residency, etc:
 128 //
 129 // * A thread acquires ownership of a monitor by successfully
 130 //   CAS()ing the _owner field from null to non-null.
 131 //
 132 // * Invariant: A thread appears on at most one monitor list --
 133 //   cxq, EntryList or WaitSet -- at any one time.
 134 //
 135 // * Contending threads "push" themselves onto the cxq with CAS
 136 //   and then spin/park.
 137 //
 138 // * After a contending thread eventually acquires the lock it must
 139 //   dequeue itself from either the EntryList or the cxq.
 140 //
 141 // * The exiting thread identifies and unparks an "heir presumptive"
 142 //   tentative successor thread on the EntryList.  Critically, the
 143 //   exiting thread doesn't unlink the successor thread from the EntryList.
 144 //   After having been unparked, the wakee will recontend for ownership of
 145 //   the monitor.   The successor (wakee) will either acquire the lock or
 146 //   re-park itself.
 147 //
 148 //   Succession is provided for by a policy of competitive handoff.
 149 //   The exiting thread does _not_ grant or pass ownership to the
 150 //   successor thread.  (This is also referred to as "handoff" succession").
 151 //   Instead the exiting thread releases ownership and possibly wakes
 152 //   a successor, so the successor can (re)compete for ownership of the lock.
 153 //   If the EntryList is empty but the cxq is populated the exiting
 154 //   thread will drain the cxq into the EntryList.  It does so by
 155 //   by detaching the cxq (installing null with CAS) and folding
 156 //   the threads from the cxq into the EntryList.  The EntryList is
 157 //   doubly linked, while the cxq is singly linked because of the
 158 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 159 //
 160 // * Concurrency invariants:
 161 //
 162 //   -- only the monitor owner may access or mutate the EntryList.
 163 //      The mutex property of the monitor itself protects the EntryList
 164 //      from concurrent interference.
 165 //   -- Only the monitor owner may detach the cxq.
 166 //
 167 // * The monitor entry list operations avoid locks, but strictly speaking
 168 //   they're not lock-free.  Enter is lock-free, exit is not.
 169 //   For a description of 'Methods and apparatus providing non-blocking access
 170 //   to a resource,' see U.S. Pat. No. 7844973.
 171 //
 172 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 173 //   detaching thread.  This mechanism is immune from the ABA corruption.
 174 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 175 //
 176 // * Taken together, the cxq and the EntryList constitute or form a
 177 //   single logical queue of threads stalled trying to acquire the lock.
 178 //   We use two distinct lists to improve the odds of a constant-time
 179 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 180 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 181 //   A key desideratum is to minimize queue & monitor metadata manipulation
 182 //   that occurs while holding the monitor lock -- that is, we want to
 183 //   minimize monitor lock holds times.  Note that even a small amount of
 184 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 185 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 186 //   locks and monitor metadata.
 187 //
 188 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 189 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 190 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 191 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 192 //
 193 //   The EntryList is ordered by the prevailing queue discipline and
 194 //   can be organized in any convenient fashion, such as a doubly-linked list or
 195 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 196 //   to operate in constant-time.  If we need a priority queue then something akin
 197 //   to Solaris' sleepq would work nicely.  Viz.,
 198 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 199 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 200 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 201 //   EntryList accordingly.
 202 //
 203 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 204 //   somewhat similar to an elevator-scan.
 205 //
 206 // * The monitor synchronization subsystem avoids the use of native
 207 //   synchronization primitives except for the narrow platform-specific
 208 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 209 //   the semantics of park-unpark.  Put another way, this monitor implementation
 210 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 211 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 212 //   underlying OS manages the READY<->RUN transitions.
 213 //
 214 // * Waiting threads reside on the WaitSet list -- wait() puts
 215 //   the caller onto the WaitSet.
 216 //
 217 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 218 //   either the EntryList or cxq.  Subsequent exit() operations will
 219 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 220 //   it's likely the notifyee would simply impale itself on the lock held
 221 //   by the notifier.
 222 //
 223 // * An interesting alternative is to encode cxq as (List,LockByte) where
 224 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 225 //   variable, like _recursions, in the scheme.  The threads or Events that form
 226 //   the list would have to be aligned in 256-byte addresses.  A thread would
 227 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 228 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 229 //   Note that is is *not* word-tearing, but it does presume that full-word
 230 //   CAS operations are coherent with intermix with STB operations.  That's true
 231 //   on most common processors.
 232 //
 233 // * See also http://blogs.sun.com/dave
 234 
 235 
 236 void* ObjectMonitor::operator new (size_t size) throw() {
 237   return AllocateHeap(size, mtInternal);
 238 }
 239 void* ObjectMonitor::operator new[] (size_t size) throw() {
 240   return operator new (size);
 241 }
 242 void ObjectMonitor::operator delete(void* p) {
 243   FreeHeap(p);
 244 }
 245 void ObjectMonitor::operator delete[] (void *p) {
 246   operator delete(p);
 247 }
 248 
 249 // -----------------------------------------------------------------------------
 250 // Enter support
 251 
 252 void ObjectMonitor::enter(TRAPS) {
 253   // The following code is ordered to check the most common cases first
 254   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 255   Thread * const Self = THREAD;
 256 
 257   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 258   if (cur == NULL) {
 259     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 260     assert(_recursions == 0, "invariant");
 261     assert(_owner == Self, "invariant");
 262     return;
 263   }
 264 
 265   if (cur == Self) {
 266     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 267     _recursions++;
 268     return;
 269   }
 270 
 271   if (Self->is_lock_owned ((address)cur)) {
 272     assert(_recursions == 0, "internal state error");
 273     _recursions = 1;
 274     // Commute owner from a thread-specific on-stack BasicLockObject address to
 275     // a full-fledged "Thread *".
 276     _owner = Self;
 277     return;
 278   }
 279 
 280   // We've encountered genuine contention.
 281   assert(Self->_Stalled == 0, "invariant");
 282   Self->_Stalled = intptr_t(this);
 283 
 284   // Try one round of spinning *before* enqueueing Self
 285   // and before going through the awkward and expensive state
 286   // transitions.  The following spin is strictly optional ...
 287   // Note that if we acquire the monitor from an initial spin
 288   // we forgo posting JVMTI events and firing DTRACE probes.
 289   if (TrySpin(Self) > 0) {
 290     assert(_owner == Self, "invariant");
 291     assert(_recursions == 0, "invariant");
 292     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 293     Self->_Stalled = 0;
 294     return;
 295   }
 296 
 297   assert(_owner != Self, "invariant");
 298   assert(_succ != Self, "invariant");
 299   assert(Self->is_Java_thread(), "invariant");
 300   JavaThread * jt = (JavaThread *) Self;
 301   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 302   assert(jt->thread_state() != _thread_blocked, "invariant");
 303   assert(this->object() != NULL, "invariant");
 304   assert(_count >= 0, "invariant");
 305 
 306   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 307   // Ensure the object-monitor relationship remains stable while there's contention.
 308   Atomic::inc(&_count);
 309 
 310   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 311   EventJavaMonitorEnter event;
 312   if (event.should_commit()) {
 313     event.set_monitorClass(((oop)this->object())->klass());
 314     event.set_address((uintptr_t)(this->object_addr()));
 315   }
 316 
 317   { // Change java thread status to indicate blocked on monitor enter.
 318     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 319 
 320     Self->set_current_pending_monitor(this);
 321 
 322     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 323     if (JvmtiExport::should_post_monitor_contended_enter()) {
 324       JvmtiExport::post_monitor_contended_enter(jt, this);
 325 
 326       // The current thread does not yet own the monitor and does not
 327       // yet appear on any queues that would get it made the successor.
 328       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 329       // handler cannot accidentally consume an unpark() meant for the
 330       // ParkEvent associated with this ObjectMonitor.
 331     }
 332 
 333     OSThreadContendState osts(Self->osthread());
 334     ThreadBlockInVM tbivm(jt);
 335 
 336     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 337     for (;;) {
 338       jt->set_suspend_equivalent();
 339       // cleared by handle_special_suspend_equivalent_condition()
 340       // or java_suspend_self()
 341 
 342       EnterI(THREAD);
 343 
 344       if (!ExitSuspendEquivalent(jt)) break;
 345 
 346       // We have acquired the contended monitor, but while we were
 347       // waiting another thread suspended us. We don't want to enter
 348       // the monitor while suspended because that would surprise the
 349       // thread that suspended us.
 350       //
 351       _recursions = 0;
 352       _succ = NULL;
 353       exit(false, Self);
 354 
 355       jt->java_suspend_self();
 356     }
 357     Self->set_current_pending_monitor(NULL);
 358 
 359     // We cleared the pending monitor info since we've just gotten past
 360     // the enter-check-for-suspend dance and we now own the monitor free
 361     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 362     // destructor can go to a safepoint at the end of this block. If we
 363     // do a thread dump during that safepoint, then this thread will show
 364     // as having "-locked" the monitor, but the OS and java.lang.Thread
 365     // states will still report that the thread is blocked trying to
 366     // acquire it.
 367   }
 368 
 369   Atomic::dec(&_count);
 370   assert(_count >= 0, "invariant");
 371   Self->_Stalled = 0;
 372 
 373   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 374   assert(_recursions == 0, "invariant");
 375   assert(_owner == Self, "invariant");
 376   assert(_succ != Self, "invariant");
 377   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 378 
 379   // The thread -- now the owner -- is back in vm mode.
 380   // Report the glorious news via TI,DTrace and jvmstat.
 381   // The probe effect is non-trivial.  All the reportage occurs
 382   // while we hold the monitor, increasing the length of the critical
 383   // section.  Amdahl's parallel speedup law comes vividly into play.
 384   //
 385   // Another option might be to aggregate the events (thread local or
 386   // per-monitor aggregation) and defer reporting until a more opportune
 387   // time -- such as next time some thread encounters contention but has
 388   // yet to acquire the lock.  While spinning that thread could
 389   // spinning we could increment JVMStat counters, etc.
 390 
 391   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 392   if (JvmtiExport::should_post_monitor_contended_entered()) {
 393     JvmtiExport::post_monitor_contended_entered(jt, this);
 394 
 395     // The current thread already owns the monitor and is not going to
 396     // call park() for the remainder of the monitor enter protocol. So
 397     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 398     // event handler consumed an unpark() issued by the thread that
 399     // just exited the monitor.
 400   }
 401   if (event.should_commit()) {
 402     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 403     event.commit();
 404   }
 405   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 406 }
 407 
 408 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 409 // Callers must compensate as needed.
 410 
 411 int ObjectMonitor::TryLock(Thread * Self) {
 412   void * own = _owner;
 413   if (own != NULL) return 0;
 414   if (Atomic::replace_if_null(Self, &_owner)) {
 415     // Either guarantee _recursions == 0 or set _recursions = 0.
 416     assert(_recursions == 0, "invariant");
 417     assert(_owner == Self, "invariant");
 418     return 1;
 419   }
 420   // The lock had been free momentarily, but we lost the race to the lock.
 421   // Interference -- the CAS failed.
 422   // We can either return -1 or retry.
 423   // Retry doesn't make as much sense because the lock was just acquired.
 424   return -1;
 425 }
 426 
 427 #define MAX_RECHECK_INTERVAL 1000
 428 
 429 void ObjectMonitor::EnterI(TRAPS) {
 430   Thread * const Self = THREAD;
 431   assert(Self->is_Java_thread(), "invariant");
 432   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 433 
 434   // Try the lock - TATAS
 435   if (TryLock (Self) > 0) {
 436     assert(_succ != Self, "invariant");
 437     assert(_owner == Self, "invariant");
 438     assert(_Responsible != Self, "invariant");
 439     return;
 440   }
 441 
 442   DeferredInitialize();
 443 
 444   // We try one round of spinning *before* enqueueing Self.
 445   //
 446   // If the _owner is ready but OFFPROC we could use a YieldTo()
 447   // operation to donate the remainder of this thread's quantum
 448   // to the owner.  This has subtle but beneficial affinity
 449   // effects.
 450 
 451   if (TrySpin(Self) > 0) {
 452     assert(_owner == Self, "invariant");
 453     assert(_succ != Self, "invariant");
 454     assert(_Responsible != Self, "invariant");
 455     return;
 456   }
 457 
 458   // The Spin failed -- Enqueue and park the thread ...
 459   assert(_succ != Self, "invariant");
 460   assert(_owner != Self, "invariant");
 461   assert(_Responsible != Self, "invariant");
 462 
 463   // Enqueue "Self" on ObjectMonitor's _cxq.
 464   //
 465   // Node acts as a proxy for Self.
 466   // As an aside, if were to ever rewrite the synchronization code mostly
 467   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 468   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 469   // as well as eliminate a subset of ABA issues.
 470   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 471 
 472   ObjectWaiter node(Self);
 473   Self->_ParkEvent->reset();
 474   node._prev   = (ObjectWaiter *) 0xBAD;
 475   node.TState  = ObjectWaiter::TS_CXQ;
 476 
 477   // Push "Self" onto the front of the _cxq.
 478   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 479   // Note that spinning tends to reduce the rate at which threads
 480   // enqueue and dequeue on EntryList|cxq.
 481   ObjectWaiter * nxt;
 482   for (;;) {
 483     node._next = nxt = _cxq;
 484     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 485 
 486     // Interference - the CAS failed because _cxq changed.  Just retry.
 487     // As an optional optimization we retry the lock.
 488     if (TryLock (Self) > 0) {
 489       assert(_succ != Self, "invariant");
 490       assert(_owner == Self, "invariant");
 491       assert(_Responsible != Self, "invariant");
 492       return;
 493     }
 494   }
 495 
 496   // Check for cxq|EntryList edge transition to non-null.  This indicates
 497   // the onset of contention.  While contention persists exiting threads
 498   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 499   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 500   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 501   // arrange for one of the contending thread to use a timed park() operations
 502   // to detect and recover from the race.  (Stranding is form of progress failure
 503   // where the monitor is unlocked but all the contending threads remain parked).
 504   // That is, at least one of the contended threads will periodically poll _owner.
 505   // One of the contending threads will become the designated "Responsible" thread.
 506   // The Responsible thread uses a timed park instead of a normal indefinite park
 507   // operation -- it periodically wakes and checks for and recovers from potential
 508   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 509   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 510   // be responsible for a monitor.
 511   //
 512   // Currently, one of the contended threads takes on the added role of "Responsible".
 513   // A viable alternative would be to use a dedicated "stranding checker" thread
 514   // that periodically iterated over all the threads (or active monitors) and unparked
 515   // successors where there was risk of stranding.  This would help eliminate the
 516   // timer scalability issues we see on some platforms as we'd only have one thread
 517   // -- the checker -- parked on a timer.
 518 
 519   if (nxt == NULL && _EntryList == NULL) {
 520     // Try to assume the role of responsible thread for the monitor.
 521     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 522     Atomic::replace_if_null(Self, &_Responsible);
 523   }
 524 
 525   // The lock might have been released while this thread was occupied queueing
 526   // itself onto _cxq.  To close the race and avoid "stranding" and
 527   // progress-liveness failure we must resample-retry _owner before parking.
 528   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 529   // In this case the ST-MEMBAR is accomplished with CAS().
 530   //
 531   // TODO: Defer all thread state transitions until park-time.
 532   // Since state transitions are heavy and inefficient we'd like
 533   // to defer the state transitions until absolutely necessary,
 534   // and in doing so avoid some transitions ...
 535 
 536   int nWakeups = 0;
 537   int recheckInterval = 1;
 538 
 539   for (;;) {
 540 
 541     if (TryLock(Self) > 0) break;
 542     assert(_owner != Self, "invariant");
 543 
 544     // park self
 545     if (_Responsible == Self) {
 546       Self->_ParkEvent->park((jlong) recheckInterval);
 547       // Increase the recheckInterval, but clamp the value.
 548       recheckInterval *= 8;
 549       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 550         recheckInterval = MAX_RECHECK_INTERVAL;
 551       }
 552     } else {
 553       Self->_ParkEvent->park();
 554     }
 555 
 556     if (TryLock(Self) > 0) break;
 557 
 558     // The lock is still contested.
 559     // Keep a tally of the # of futile wakeups.
 560     // Note that the counter is not protected by a lock or updated by atomics.
 561     // That is by design - we trade "lossy" counters which are exposed to
 562     // races during updates for a lower probe effect.
 563 
 564     // This PerfData object can be used in parallel with a safepoint.
 565     // See the work around in PerfDataManager::destroy().
 566     OM_PERFDATA_OP(FutileWakeups, inc());
 567     ++nWakeups;
 568 
 569     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 570     // We can defer clearing _succ until after the spin completes
 571     // TrySpin() must tolerate being called with _succ == Self.
 572     // Try yet another round of adaptive spinning.
 573     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 574 
 575     // We can find that we were unpark()ed and redesignated _succ while
 576     // we were spinning.  That's harmless.  If we iterate and call park(),
 577     // park() will consume the event and return immediately and we'll
 578     // just spin again.  This pattern can repeat, leaving _succ to simply
 579     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 580     // Alternately, we can sample fired() here, and if set, forgo spinning
 581     // in the next iteration.
 582 
 583     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 584       Self->_ParkEvent->reset();
 585       OrderAccess::fence();
 586     }
 587     if (_succ == Self) _succ = NULL;
 588 
 589     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 590     OrderAccess::fence();
 591   }
 592 
 593   // Egress :
 594   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 595   // Normally we'll find Self on the EntryList .
 596   // From the perspective of the lock owner (this thread), the
 597   // EntryList is stable and cxq is prepend-only.
 598   // The head of cxq is volatile but the interior is stable.
 599   // In addition, Self.TState is stable.
 600 
 601   assert(_owner == Self, "invariant");
 602   assert(object() != NULL, "invariant");
 603   // I'd like to write:
 604   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 605   // but as we're at a safepoint that's not safe.
 606 
 607   UnlinkAfterAcquire(Self, &node);
 608   if (_succ == Self) _succ = NULL;
 609 
 610   assert(_succ != Self, "invariant");
 611   if (_Responsible == Self) {
 612     _Responsible = NULL;
 613     OrderAccess::fence(); // Dekker pivot-point
 614 
 615     // We may leave threads on cxq|EntryList without a designated
 616     // "Responsible" thread.  This is benign.  When this thread subsequently
 617     // exits the monitor it can "see" such preexisting "old" threads --
 618     // threads that arrived on the cxq|EntryList before the fence, above --
 619     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 620     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 621     // non-null and elect a new "Responsible" timer thread.
 622     //
 623     // This thread executes:
 624     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 625     //    LD cxq|EntryList               (in subsequent exit)
 626     //
 627     // Entering threads in the slow/contended path execute:
 628     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 629     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 630     //
 631     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 632     // exit operation from floating above the ST Responsible=null.
 633   }
 634 
 635   // We've acquired ownership with CAS().
 636   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 637   // But since the CAS() this thread may have also stored into _succ,
 638   // EntryList, cxq or Responsible.  These meta-data updates must be
 639   // visible __before this thread subsequently drops the lock.
 640   // Consider what could occur if we didn't enforce this constraint --
 641   // STs to monitor meta-data and user-data could reorder with (become
 642   // visible after) the ST in exit that drops ownership of the lock.
 643   // Some other thread could then acquire the lock, but observe inconsistent
 644   // or old monitor meta-data and heap data.  That violates the JMM.
 645   // To that end, the 1-0 exit() operation must have at least STST|LDST
 646   // "release" barrier semantics.  Specifically, there must be at least a
 647   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 648   // the lock.   The barrier ensures that changes to monitor meta-data and data
 649   // protected by the lock will be visible before we release the lock, and
 650   // therefore before some other thread (CPU) has a chance to acquire the lock.
 651   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 652   //
 653   // Critically, any prior STs to _succ or EntryList must be visible before
 654   // the ST of null into _owner in the *subsequent* (following) corresponding
 655   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 656   // execute a serializing instruction.
 657 
 658   return;
 659 }
 660 
 661 // ReenterI() is a specialized inline form of the latter half of the
 662 // contended slow-path from EnterI().  We use ReenterI() only for
 663 // monitor reentry in wait().
 664 //
 665 // In the future we should reconcile EnterI() and ReenterI(), adding
 666 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 667 // loop accordingly.
 668 
 669 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 670   assert(Self != NULL, "invariant");
 671   assert(SelfNode != NULL, "invariant");
 672   assert(SelfNode->_thread == Self, "invariant");
 673   assert(_waiters > 0, "invariant");
 674   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 675   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 676   JavaThread * jt = (JavaThread *) Self;
 677 
 678   int nWakeups = 0;
 679   for (;;) {
 680     ObjectWaiter::TStates v = SelfNode->TState;
 681     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 682     assert(_owner != Self, "invariant");
 683 
 684     if (TryLock(Self) > 0) break;
 685     if (TrySpin(Self) > 0) break;
 686 
 687     // State transition wrappers around park() ...
 688     // ReenterI() wisely defers state transitions until
 689     // it's clear we must park the thread.
 690     {
 691       OSThreadContendState osts(Self->osthread());
 692       ThreadBlockInVM tbivm(jt);
 693 
 694       // cleared by handle_special_suspend_equivalent_condition()
 695       // or java_suspend_self()
 696       jt->set_suspend_equivalent();
 697       Self->_ParkEvent->park();
 698 
 699       // were we externally suspended while we were waiting?
 700       for (;;) {
 701         if (!ExitSuspendEquivalent(jt)) break;
 702         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 703         jt->java_suspend_self();
 704         jt->set_suspend_equivalent();
 705       }
 706     }
 707 
 708     // Try again, but just so we distinguish between futile wakeups and
 709     // successful wakeups.  The following test isn't algorithmically
 710     // necessary, but it helps us maintain sensible statistics.
 711     if (TryLock(Self) > 0) break;
 712 
 713     // The lock is still contested.
 714     // Keep a tally of the # of futile wakeups.
 715     // Note that the counter is not protected by a lock or updated by atomics.
 716     // That is by design - we trade "lossy" counters which are exposed to
 717     // races during updates for a lower probe effect.
 718     ++nWakeups;
 719 
 720     // Assuming this is not a spurious wakeup we'll normally
 721     // find that _succ == Self.
 722     if (_succ == Self) _succ = NULL;
 723 
 724     // Invariant: after clearing _succ a contending thread
 725     // *must* retry  _owner before parking.
 726     OrderAccess::fence();
 727 
 728     // This PerfData object can be used in parallel with a safepoint.
 729     // See the work around in PerfDataManager::destroy().
 730     OM_PERFDATA_OP(FutileWakeups, inc());
 731   }
 732 
 733   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 734   // Normally we'll find Self on the EntryList.
 735   // Unlinking from the EntryList is constant-time and atomic-free.
 736   // From the perspective of the lock owner (this thread), the
 737   // EntryList is stable and cxq is prepend-only.
 738   // The head of cxq is volatile but the interior is stable.
 739   // In addition, Self.TState is stable.
 740 
 741   assert(_owner == Self, "invariant");
 742   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 743   UnlinkAfterAcquire(Self, SelfNode);
 744   if (_succ == Self) _succ = NULL;
 745   assert(_succ != Self, "invariant");
 746   SelfNode->TState = ObjectWaiter::TS_RUN;
 747   OrderAccess::fence();      // see comments at the end of EnterI()
 748 }
 749 
 750 // By convention we unlink a contending thread from EntryList|cxq immediately
 751 // after the thread acquires the lock in ::enter().  Equally, we could defer
 752 // unlinking the thread until ::exit()-time.
 753 
 754 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 755   assert(_owner == Self, "invariant");
 756   assert(SelfNode->_thread == Self, "invariant");
 757 
 758   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 759     // Normal case: remove Self from the DLL EntryList .
 760     // This is a constant-time operation.
 761     ObjectWaiter * nxt = SelfNode->_next;
 762     ObjectWaiter * prv = SelfNode->_prev;
 763     if (nxt != NULL) nxt->_prev = prv;
 764     if (prv != NULL) prv->_next = nxt;
 765     if (SelfNode == _EntryList) _EntryList = nxt;
 766     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 767     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 768   } else {
 769     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 770     // Inopportune interleaving -- Self is still on the cxq.
 771     // This usually means the enqueue of self raced an exiting thread.
 772     // Normally we'll find Self near the front of the cxq, so
 773     // dequeueing is typically fast.  If needbe we can accelerate
 774     // this with some MCS/CHL-like bidirectional list hints and advisory
 775     // back-links so dequeueing from the interior will normally operate
 776     // in constant-time.
 777     // Dequeue Self from either the head (with CAS) or from the interior
 778     // with a linear-time scan and normal non-atomic memory operations.
 779     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 780     // and then unlink Self from EntryList.  We have to drain eventually,
 781     // so it might as well be now.
 782 
 783     ObjectWaiter * v = _cxq;
 784     assert(v != NULL, "invariant");
 785     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 786       // The CAS above can fail from interference IFF a "RAT" arrived.
 787       // In that case Self must be in the interior and can no longer be
 788       // at the head of cxq.
 789       if (v == SelfNode) {
 790         assert(_cxq != v, "invariant");
 791         v = _cxq;          // CAS above failed - start scan at head of list
 792       }
 793       ObjectWaiter * p;
 794       ObjectWaiter * q = NULL;
 795       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 796         q = p;
 797         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 798       }
 799       assert(v != SelfNode, "invariant");
 800       assert(p == SelfNode, "Node not found on cxq");
 801       assert(p != _cxq, "invariant");
 802       assert(q != NULL, "invariant");
 803       assert(q->_next == p, "invariant");
 804       q->_next = p->_next;
 805     }
 806   }
 807 
 808 #ifdef ASSERT
 809   // Diagnostic hygiene ...
 810   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 811   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 812   SelfNode->TState = ObjectWaiter::TS_RUN;
 813 #endif
 814 }
 815 
 816 // -----------------------------------------------------------------------------
 817 // Exit support
 818 //
 819 // exit()
 820 // ~~~~~~
 821 // Note that the collector can't reclaim the objectMonitor or deflate
 822 // the object out from underneath the thread calling ::exit() as the
 823 // thread calling ::exit() never transitions to a stable state.
 824 // This inhibits GC, which in turn inhibits asynchronous (and
 825 // inopportune) reclamation of "this".
 826 //
 827 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 828 // There's one exception to the claim above, however.  EnterI() can call
 829 // exit() to drop a lock if the acquirer has been externally suspended.
 830 // In that case exit() is called with _thread_state as _thread_blocked,
 831 // but the monitor's _count field is > 0, which inhibits reclamation.
 832 //
 833 // 1-0 exit
 834 // ~~~~~~~~
 835 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 836 // the fast-path operators have been optimized so the common ::exit()
 837 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 838 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 839 // greatly improves latency -- MEMBAR and CAS having considerable local
 840 // latency on modern processors -- but at the cost of "stranding".  Absent the
 841 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 842 // ::enter() path, resulting in the entering thread being stranding
 843 // and a progress-liveness failure.   Stranding is extremely rare.
 844 // We use timers (timed park operations) & periodic polling to detect
 845 // and recover from stranding.  Potentially stranded threads periodically
 846 // wake up and poll the lock.  See the usage of the _Responsible variable.
 847 //
 848 // The CAS() in enter provides for safety and exclusion, while the CAS or
 849 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 850 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 851 // We detect and recover from stranding with timers.
 852 //
 853 // If a thread transiently strands it'll park until (a) another
 854 // thread acquires the lock and then drops the lock, at which time the
 855 // exiting thread will notice and unpark the stranded thread, or, (b)
 856 // the timer expires.  If the lock is high traffic then the stranding latency
 857 // will be low due to (a).  If the lock is low traffic then the odds of
 858 // stranding are lower, although the worst-case stranding latency
 859 // is longer.  Critically, we don't want to put excessive load in the
 860 // platform's timer subsystem.  We want to minimize both the timer injection
 861 // rate (timers created/sec) as well as the number of timers active at
 862 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 863 // the integral of the # of active timers at any instant over time).
 864 // Both impinge on OS scalability.  Given that, at most one thread parked on
 865 // a monitor will use a timer.
 866 //
 867 // There is also the risk of a futile wake-up. If we drop the lock
 868 // another thread can reacquire the lock immediately, and we can
 869 // then wake a thread unnecessarily. This is benign, and we've
 870 // structured the code so the windows are short and the frequency
 871 // of such futile wakups is low.
 872 
 873 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 874   Thread * const Self = THREAD;
 875   if (THREAD != _owner) {
 876     if (THREAD->is_lock_owned((address) _owner)) {
 877       // Transmute _owner from a BasicLock pointer to a Thread address.
 878       // We don't need to hold _mutex for this transition.
 879       // Non-null to Non-null is safe as long as all readers can
 880       // tolerate either flavor.
 881       assert(_recursions == 0, "invariant");
 882       _owner = THREAD;
 883       _recursions = 0;
 884     } else {
 885       // Apparent unbalanced locking ...
 886       // Naively we'd like to throw IllegalMonitorStateException.
 887       // As a practical matter we can neither allocate nor throw an
 888       // exception as ::exit() can be called from leaf routines.
 889       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 890       // Upon deeper reflection, however, in a properly run JVM the only
 891       // way we should encounter this situation is in the presence of
 892       // unbalanced JNI locking. TODO: CheckJNICalls.
 893       // See also: CR4414101
 894       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 895       return;
 896     }
 897   }
 898 
 899   if (_recursions != 0) {
 900     _recursions--;        // this is simple recursive enter
 901     return;
 902   }
 903 
 904   // Invariant: after setting Responsible=null an thread must execute
 905   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 906   _Responsible = NULL;
 907 
 908 #if INCLUDE_JFR
 909   // get the owner's thread id for the MonitorEnter event
 910   // if it is enabled and the thread isn't suspended
 911   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 912     _previous_owner_tid = JFR_THREAD_ID(Self);
 913   }
 914 #endif
 915 
 916   for (;;) {
 917     assert(THREAD == _owner, "invariant");
 918 
 919     if (Knob_ExitPolicy == 0) {
 920       // release semantics: prior loads and stores from within the critical section
 921       // must not float (reorder) past the following store that drops the lock.
 922       // On SPARC that requires MEMBAR #loadstore|#storestore.
 923       // But of course in TSO #loadstore|#storestore is not required.
 924       // I'd like to write one of the following:
 925       // A.  OrderAccess::release() ; _owner = NULL
 926       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 927       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 928       // store into a _dummy variable.  That store is not needed, but can result
 929       // in massive wasteful coherency traffic on classic SMP systems.
 930       // Instead, I use release_store(), which is implemented as just a simple
 931       // ST on x64, x86 and SPARC.
 932       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 933       OrderAccess::storeload();                        // See if we need to wake a successor
 934       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 935         return;
 936       }
 937       // Other threads are blocked trying to acquire the lock.
 938 
 939       // Normally the exiting thread is responsible for ensuring succession,
 940       // but if other successors are ready or other entering threads are spinning
 941       // then this thread can simply store NULL into _owner and exit without
 942       // waking a successor.  The existence of spinners or ready successors
 943       // guarantees proper succession (liveness).  Responsibility passes to the
 944       // ready or running successors.  The exiting thread delegates the duty.
 945       // More precisely, if a successor already exists this thread is absolved
 946       // of the responsibility of waking (unparking) one.
 947       //
 948       // The _succ variable is critical to reducing futile wakeup frequency.
 949       // _succ identifies the "heir presumptive" thread that has been made
 950       // ready (unparked) but that has not yet run.  We need only one such
 951       // successor thread to guarantee progress.
 952       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 953       // section 3.3 "Futile Wakeup Throttling" for details.
 954       //
 955       // Note that spinners in Enter() also set _succ non-null.
 956       // In the current implementation spinners opportunistically set
 957       // _succ so that exiting threads might avoid waking a successor.
 958       // Another less appealing alternative would be for the exiting thread
 959       // to drop the lock and then spin briefly to see if a spinner managed
 960       // to acquire the lock.  If so, the exiting thread could exit
 961       // immediately without waking a successor, otherwise the exiting
 962       // thread would need to dequeue and wake a successor.
 963       // (Note that we'd need to make the post-drop spin short, but no
 964       // shorter than the worst-case round-trip cache-line migration time.
 965       // The dropped lock needs to become visible to the spinner, and then
 966       // the acquisition of the lock by the spinner must become visible to
 967       // the exiting thread).
 968 
 969       // It appears that an heir-presumptive (successor) must be made ready.
 970       // Only the current lock owner can manipulate the EntryList or
 971       // drain _cxq, so we need to reacquire the lock.  If we fail
 972       // to reacquire the lock the responsibility for ensuring succession
 973       // falls to the new owner.
 974       //
 975       if (!Atomic::replace_if_null(THREAD, &_owner)) {
 976         return;
 977       }
 978     } else {
 979       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 980         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 981         OrderAccess::storeload();
 982         // Ratify the previously observed values.
 983         if (_cxq == NULL || _succ != NULL) {
 984           return;
 985         }
 986 
 987         // inopportune interleaving -- the exiting thread (this thread)
 988         // in the fast-exit path raced an entering thread in the slow-enter
 989         // path.
 990         // We have two choices:
 991         // A.  Try to reacquire the lock.
 992         //     If the CAS() fails return immediately, otherwise
 993         //     we either restart/rerun the exit operation, or simply
 994         //     fall-through into the code below which wakes a successor.
 995         // B.  If the elements forming the EntryList|cxq are TSM
 996         //     we could simply unpark() the lead thread and return
 997         //     without having set _succ.
 998         if (!Atomic::replace_if_null(THREAD, &_owner)) {
 999           return;
1000         }
1001       }
1002     }
1003 
1004     guarantee(_owner == THREAD, "invariant");
1005 
1006     ObjectWaiter * w = NULL;
1007     int QMode = Knob_QMode;
1008 
1009     if (QMode == 2 && _cxq != NULL) {
1010       // QMode == 2 : cxq has precedence over EntryList.
1011       // Try to directly wake a successor from the cxq.
1012       // If successful, the successor will need to unlink itself from cxq.
1013       w = _cxq;
1014       assert(w != NULL, "invariant");
1015       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1016       ExitEpilog(Self, w);
1017       return;
1018     }
1019 
1020     if (QMode == 3 && _cxq != NULL) {
1021       // Aggressively drain cxq into EntryList at the first opportunity.
1022       // This policy ensure that recently-run threads live at the head of EntryList.
1023       // Drain _cxq into EntryList - bulk transfer.
1024       // First, detach _cxq.
1025       // The following loop is tantamount to: w = swap(&cxq, NULL)
1026       w = _cxq;
1027       for (;;) {
1028         assert(w != NULL, "Invariant");
1029         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1030         if (u == w) break;
1031         w = u;
1032       }
1033       assert(w != NULL, "invariant");
1034 
1035       ObjectWaiter * q = NULL;
1036       ObjectWaiter * p;
1037       for (p = w; p != NULL; p = p->_next) {
1038         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1039         p->TState = ObjectWaiter::TS_ENTER;
1040         p->_prev = q;
1041         q = p;
1042       }
1043 
1044       // Append the RATs to the EntryList
1045       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1046       ObjectWaiter * Tail;
1047       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1048            Tail = Tail->_next)
1049         /* empty */;
1050       if (Tail == NULL) {
1051         _EntryList = w;
1052       } else {
1053         Tail->_next = w;
1054         w->_prev = Tail;
1055       }
1056 
1057       // Fall thru into code that tries to wake a successor from EntryList
1058     }
1059 
1060     if (QMode == 4 && _cxq != NULL) {
1061       // Aggressively drain cxq into EntryList at the first opportunity.
1062       // This policy ensure that recently-run threads live at the head of EntryList.
1063 
1064       // Drain _cxq into EntryList - bulk transfer.
1065       // First, detach _cxq.
1066       // The following loop is tantamount to: w = swap(&cxq, NULL)
1067       w = _cxq;
1068       for (;;) {
1069         assert(w != NULL, "Invariant");
1070         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1071         if (u == w) break;
1072         w = u;
1073       }
1074       assert(w != NULL, "invariant");
1075 
1076       ObjectWaiter * q = NULL;
1077       ObjectWaiter * p;
1078       for (p = w; p != NULL; p = p->_next) {
1079         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1080         p->TState = ObjectWaiter::TS_ENTER;
1081         p->_prev = q;
1082         q = p;
1083       }
1084 
1085       // Prepend the RATs to the EntryList
1086       if (_EntryList != NULL) {
1087         q->_next = _EntryList;
1088         _EntryList->_prev = q;
1089       }
1090       _EntryList = w;
1091 
1092       // Fall thru into code that tries to wake a successor from EntryList
1093     }
1094 
1095     w = _EntryList;
1096     if (w != NULL) {
1097       // I'd like to write: guarantee (w->_thread != Self).
1098       // But in practice an exiting thread may find itself on the EntryList.
1099       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1100       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1101       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1102       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1103       // release the lock "O".  T2 resumes immediately after the ST of null into
1104       // _owner, above.  T2 notices that the EntryList is populated, so it
1105       // reacquires the lock and then finds itself on the EntryList.
1106       // Given all that, we have to tolerate the circumstance where "w" is
1107       // associated with Self.
1108       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1109       ExitEpilog(Self, w);
1110       return;
1111     }
1112 
1113     // If we find that both _cxq and EntryList are null then just
1114     // re-run the exit protocol from the top.
1115     w = _cxq;
1116     if (w == NULL) continue;
1117 
1118     // Drain _cxq into EntryList - bulk transfer.
1119     // First, detach _cxq.
1120     // The following loop is tantamount to: w = swap(&cxq, NULL)
1121     for (;;) {
1122       assert(w != NULL, "Invariant");
1123       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1124       if (u == w) break;
1125       w = u;
1126     }
1127 
1128     assert(w != NULL, "invariant");
1129     assert(_EntryList == NULL, "invariant");
1130 
1131     // Convert the LIFO SLL anchored by _cxq into a DLL.
1132     // The list reorganization step operates in O(LENGTH(w)) time.
1133     // It's critical that this step operate quickly as
1134     // "Self" still holds the outer-lock, restricting parallelism
1135     // and effectively lengthening the critical section.
1136     // Invariant: s chases t chases u.
1137     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1138     // we have faster access to the tail.
1139 
1140     if (QMode == 1) {
1141       // QMode == 1 : drain cxq to EntryList, reversing order
1142       // We also reverse the order of the list.
1143       ObjectWaiter * s = NULL;
1144       ObjectWaiter * t = w;
1145       ObjectWaiter * u = NULL;
1146       while (t != NULL) {
1147         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1148         t->TState = ObjectWaiter::TS_ENTER;
1149         u = t->_next;
1150         t->_prev = u;
1151         t->_next = s;
1152         s = t;
1153         t = u;
1154       }
1155       _EntryList  = s;
1156       assert(s != NULL, "invariant");
1157     } else {
1158       // QMode == 0 or QMode == 2
1159       _EntryList = w;
1160       ObjectWaiter * q = NULL;
1161       ObjectWaiter * p;
1162       for (p = w; p != NULL; p = p->_next) {
1163         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1164         p->TState = ObjectWaiter::TS_ENTER;
1165         p->_prev = q;
1166         q = p;
1167       }
1168     }
1169 
1170     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1171     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1172 
1173     // See if we can abdicate to a spinner instead of waking a thread.
1174     // A primary goal of the implementation is to reduce the
1175     // context-switch rate.
1176     if (_succ != NULL) continue;
1177 
1178     w = _EntryList;
1179     if (w != NULL) {
1180       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1181       ExitEpilog(Self, w);
1182       return;
1183     }
1184   }
1185 }
1186 
1187 // ExitSuspendEquivalent:
1188 // A faster alternate to handle_special_suspend_equivalent_condition()
1189 //
1190 // handle_special_suspend_equivalent_condition() unconditionally
1191 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1192 // operations have high latency.  Note that in ::enter() we call HSSEC
1193 // while holding the monitor, so we effectively lengthen the critical sections.
1194 //
1195 // There are a number of possible solutions:
1196 //
1197 // A.  To ameliorate the problem we might also defer state transitions
1198 //     to as late as possible -- just prior to parking.
1199 //     Given that, we'd call HSSEC after having returned from park(),
1200 //     but before attempting to acquire the monitor.  This is only a
1201 //     partial solution.  It avoids calling HSSEC while holding the
1202 //     monitor (good), but it still increases successor reacquisition latency --
1203 //     the interval between unparking a successor and the time the successor
1204 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1205 //     If we use this technique we can also avoid EnterI()-exit() loop
1206 //     in ::enter() where we iteratively drop the lock and then attempt
1207 //     to reacquire it after suspending.
1208 //
1209 // B.  In the future we might fold all the suspend bits into a
1210 //     composite per-thread suspend flag and then update it with CAS().
1211 //     Alternately, a Dekker-like mechanism with multiple variables
1212 //     would suffice:
1213 //       ST Self->_suspend_equivalent = false
1214 //       MEMBAR
1215 //       LD Self_>_suspend_flags
1216 //
1217 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1218 // with a more efficient implementation, the need to use "FastHSSEC" has
1219 // decreased. - Dave
1220 
1221 
1222 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1223   const int Mode = Knob_FastHSSEC;
1224   if (Mode && !jSelf->is_external_suspend()) {
1225     assert(jSelf->is_suspend_equivalent(), "invariant");
1226     jSelf->clear_suspend_equivalent();
1227     if (2 == Mode) OrderAccess::storeload();
1228     if (!jSelf->is_external_suspend()) return false;
1229     // We raced a suspension -- fall thru into the slow path
1230     jSelf->set_suspend_equivalent();
1231   }
1232   return jSelf->handle_special_suspend_equivalent_condition();
1233 }
1234 
1235 
1236 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1237   assert(_owner == Self, "invariant");
1238 
1239   // Exit protocol:
1240   // 1. ST _succ = wakee
1241   // 2. membar #loadstore|#storestore;
1242   // 2. ST _owner = NULL
1243   // 3. unpark(wakee)
1244 
1245   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1246   ParkEvent * Trigger = Wakee->_event;
1247 
1248   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1249   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1250   // out-of-scope (non-extant).
1251   Wakee  = NULL;
1252 
1253   // Drop the lock
1254   OrderAccess::release_store(&_owner, (void*)NULL);
1255   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1256 
1257   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1258   Trigger->unpark();
1259 
1260   // Maintain stats and report events to JVMTI
1261   OM_PERFDATA_OP(Parks, inc());
1262 }
1263 
1264 
1265 // -----------------------------------------------------------------------------
1266 // Class Loader deadlock handling.
1267 //
1268 // complete_exit exits a lock returning recursion count
1269 // complete_exit/reenter operate as a wait without waiting
1270 // complete_exit requires an inflated monitor
1271 // The _owner field is not always the Thread addr even with an
1272 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1273 // thread due to contention.
1274 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1275   Thread * const Self = THREAD;
1276   assert(Self->is_Java_thread(), "Must be Java thread!");
1277   JavaThread *jt = (JavaThread *)THREAD;
1278 
1279   DeferredInitialize();
1280 
1281   if (THREAD != _owner) {
1282     if (THREAD->is_lock_owned ((address)_owner)) {
1283       assert(_recursions == 0, "internal state error");
1284       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1285       _recursions = 0;
1286     }
1287   }
1288 
1289   guarantee(Self == _owner, "complete_exit not owner");
1290   intptr_t save = _recursions; // record the old recursion count
1291   _recursions = 0;        // set the recursion level to be 0
1292   exit(true, Self);           // exit the monitor
1293   guarantee(_owner != Self, "invariant");
1294   return save;
1295 }
1296 
1297 // reenter() enters a lock and sets recursion count
1298 // complete_exit/reenter operate as a wait without waiting
1299 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1300   Thread * const Self = THREAD;
1301   assert(Self->is_Java_thread(), "Must be Java thread!");
1302   JavaThread *jt = (JavaThread *)THREAD;
1303 
1304   guarantee(_owner != Self, "reenter already owner");
1305   enter(THREAD);       // enter the monitor
1306   guarantee(_recursions == 0, "reenter recursion");
1307   _recursions = recursions;
1308   return;
1309 }
1310 
1311 
1312 // -----------------------------------------------------------------------------
1313 // A macro is used below because there may already be a pending
1314 // exception which should not abort the execution of the routines
1315 // which use this (which is why we don't put this into check_slow and
1316 // call it with a CHECK argument).
1317 
1318 #define CHECK_OWNER()                                                       \
1319   do {                                                                      \
1320     if (THREAD != _owner) {                                                 \
1321       if (THREAD->is_lock_owned((address) _owner)) {                        \
1322         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1323         _recursions = 0;                                                    \
1324       } else {                                                              \
1325         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1326       }                                                                     \
1327     }                                                                       \
1328   } while (false)
1329 
1330 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1331 // TODO-FIXME: remove check_slow() -- it's likely dead.
1332 
1333 void ObjectMonitor::check_slow(TRAPS) {
1334   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1335   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1336 }
1337 
1338 static int Adjust(volatile int * adr, int dx) {
1339   int v;
1340   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1341   return v;
1342 }
1343 
1344 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1345                                     ObjectMonitor* monitor,
1346                                     jlong notifier_tid,
1347                                     jlong timeout,
1348                                     bool timedout) {
1349   assert(event != NULL, "invariant");
1350   assert(monitor != NULL, "invariant");
1351   event->set_monitorClass(((oop)monitor->object())->klass());
1352   event->set_timeout(timeout);
1353   event->set_address((uintptr_t)monitor->object_addr());
1354   event->set_notifier(notifier_tid);
1355   event->set_timedOut(timedout);
1356   event->commit();
1357 }
1358 
1359 // -----------------------------------------------------------------------------
1360 // Wait/Notify/NotifyAll
1361 //
1362 // Note: a subset of changes to ObjectMonitor::wait()
1363 // will need to be replicated in complete_exit
1364 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1365   Thread * const Self = THREAD;
1366   assert(Self->is_Java_thread(), "Must be Java thread!");
1367   JavaThread *jt = (JavaThread *)THREAD;
1368 
1369   DeferredInitialize();
1370 
1371   // Throw IMSX or IEX.
1372   CHECK_OWNER();
1373 
1374   EventJavaMonitorWait event;
1375 
1376   // check for a pending interrupt
1377   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1378     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1379     if (JvmtiExport::should_post_monitor_waited()) {
1380       // Note: 'false' parameter is passed here because the
1381       // wait was not timed out due to thread interrupt.
1382       JvmtiExport::post_monitor_waited(jt, this, false);
1383 
1384       // In this short circuit of the monitor wait protocol, the
1385       // current thread never drops ownership of the monitor and
1386       // never gets added to the wait queue so the current thread
1387       // cannot be made the successor. This means that the
1388       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1389       // consume an unpark() meant for the ParkEvent associated with
1390       // this ObjectMonitor.
1391     }
1392     if (event.should_commit()) {
1393       post_monitor_wait_event(&event, this, 0, millis, false);
1394     }
1395     THROW(vmSymbols::java_lang_InterruptedException());
1396     return;
1397   }
1398 
1399   assert(Self->_Stalled == 0, "invariant");
1400   Self->_Stalled = intptr_t(this);
1401   jt->set_current_waiting_monitor(this);
1402 
1403   // create a node to be put into the queue
1404   // Critically, after we reset() the event but prior to park(), we must check
1405   // for a pending interrupt.
1406   ObjectWaiter node(Self);
1407   node.TState = ObjectWaiter::TS_WAIT;
1408   Self->_ParkEvent->reset();
1409   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1410 
1411   // Enter the waiting queue, which is a circular doubly linked list in this case
1412   // but it could be a priority queue or any data structure.
1413   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1414   // by the the owner of the monitor *except* in the case where park()
1415   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1416   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1417 
1418   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1419   AddWaiter(&node);
1420   Thread::SpinRelease(&_WaitSetLock);
1421 
1422   _Responsible = NULL;
1423 
1424   intptr_t save = _recursions; // record the old recursion count
1425   _waiters++;                  // increment the number of waiters
1426   _recursions = 0;             // set the recursion level to be 1
1427   exit(true, Self);                    // exit the monitor
1428   guarantee(_owner != Self, "invariant");
1429 
1430   // The thread is on the WaitSet list - now park() it.
1431   // On MP systems it's conceivable that a brief spin before we park
1432   // could be profitable.
1433   //
1434   // TODO-FIXME: change the following logic to a loop of the form
1435   //   while (!timeout && !interrupted && _notified == 0) park()
1436 
1437   int ret = OS_OK;
1438   int WasNotified = 0;
1439   { // State transition wrappers
1440     OSThread* osthread = Self->osthread();
1441     OSThreadWaitState osts(osthread, true);
1442     {
1443       ThreadBlockInVM tbivm(jt);
1444       // Thread is in thread_blocked state and oop access is unsafe.
1445       jt->set_suspend_equivalent();
1446 
1447       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1448         // Intentionally empty
1449       } else if (node._notified == 0) {
1450         if (millis <= 0) {
1451           Self->_ParkEvent->park();
1452         } else {
1453           ret = Self->_ParkEvent->park(millis);
1454         }
1455       }
1456 
1457       // were we externally suspended while we were waiting?
1458       if (ExitSuspendEquivalent (jt)) {
1459         // TODO-FIXME: add -- if succ == Self then succ = null.
1460         jt->java_suspend_self();
1461       }
1462 
1463     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1464 
1465     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1466     // from the WaitSet to the EntryList.
1467     // See if we need to remove Node from the WaitSet.
1468     // We use double-checked locking to avoid grabbing _WaitSetLock
1469     // if the thread is not on the wait queue.
1470     //
1471     // Note that we don't need a fence before the fetch of TState.
1472     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1473     // written by the is thread. (perhaps the fetch might even be satisfied
1474     // by a look-aside into the processor's own store buffer, although given
1475     // the length of the code path between the prior ST and this load that's
1476     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1477     // then we'll acquire the lock and then re-fetch a fresh TState value.
1478     // That is, we fail toward safety.
1479 
1480     if (node.TState == ObjectWaiter::TS_WAIT) {
1481       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1482       if (node.TState == ObjectWaiter::TS_WAIT) {
1483         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1484         assert(node._notified == 0, "invariant");
1485         node.TState = ObjectWaiter::TS_RUN;
1486       }
1487       Thread::SpinRelease(&_WaitSetLock);
1488     }
1489 
1490     // The thread is now either on off-list (TS_RUN),
1491     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1492     // The Node's TState variable is stable from the perspective of this thread.
1493     // No other threads will asynchronously modify TState.
1494     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1495     OrderAccess::loadload();
1496     if (_succ == Self) _succ = NULL;
1497     WasNotified = node._notified;
1498 
1499     // Reentry phase -- reacquire the monitor.
1500     // re-enter contended monitor after object.wait().
1501     // retain OBJECT_WAIT state until re-enter successfully completes
1502     // Thread state is thread_in_vm and oop access is again safe,
1503     // although the raw address of the object may have changed.
1504     // (Don't cache naked oops over safepoints, of course).
1505 
1506     // post monitor waited event. Note that this is past-tense, we are done waiting.
1507     if (JvmtiExport::should_post_monitor_waited()) {
1508       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1509 
1510       if (node._notified != 0 && _succ == Self) {
1511         // In this part of the monitor wait-notify-reenter protocol it
1512         // is possible (and normal) for another thread to do a fastpath
1513         // monitor enter-exit while this thread is still trying to get
1514         // to the reenter portion of the protocol.
1515         //
1516         // The ObjectMonitor was notified and the current thread is
1517         // the successor which also means that an unpark() has already
1518         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1519         // consume the unpark() that was done when the successor was
1520         // set because the same ParkEvent is shared between Java
1521         // monitors and JVM/TI RawMonitors (for now).
1522         //
1523         // We redo the unpark() to ensure forward progress, i.e., we
1524         // don't want all pending threads hanging (parked) with none
1525         // entering the unlocked monitor.
1526         node._event->unpark();
1527       }
1528     }
1529 
1530     if (event.should_commit()) {
1531       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1532     }
1533 
1534     OrderAccess::fence();
1535 
1536     assert(Self->_Stalled != 0, "invariant");
1537     Self->_Stalled = 0;
1538 
1539     assert(_owner != Self, "invariant");
1540     ObjectWaiter::TStates v = node.TState;
1541     if (v == ObjectWaiter::TS_RUN) {
1542       enter(Self);
1543     } else {
1544       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1545       ReenterI(Self, &node);
1546       node.wait_reenter_end(this);
1547     }
1548 
1549     // Self has reacquired the lock.
1550     // Lifecycle - the node representing Self must not appear on any queues.
1551     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1552     // want residual elements associated with this thread left on any lists.
1553     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1554     assert(_owner == Self, "invariant");
1555     assert(_succ != Self, "invariant");
1556   } // OSThreadWaitState()
1557 
1558   jt->set_current_waiting_monitor(NULL);
1559 
1560   guarantee(_recursions == 0, "invariant");
1561   _recursions = save;     // restore the old recursion count
1562   _waiters--;             // decrement the number of waiters
1563 
1564   // Verify a few postconditions
1565   assert(_owner == Self, "invariant");
1566   assert(_succ != Self, "invariant");
1567   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1568 
1569   // check if the notification happened
1570   if (!WasNotified) {
1571     // no, it could be timeout or Thread.interrupt() or both
1572     // check for interrupt event, otherwise it is timeout
1573     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1574       THROW(vmSymbols::java_lang_InterruptedException());
1575     }
1576   }
1577 
1578   // NOTE: Spurious wake up will be consider as timeout.
1579   // Monitor notify has precedence over thread interrupt.
1580 }
1581 
1582 
1583 // Consider:
1584 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1585 // then instead of transferring a thread from the WaitSet to the EntryList
1586 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1587 
1588 void ObjectMonitor::INotify(Thread * Self) {
1589   const int policy = Knob_MoveNotifyee;
1590 
1591   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1592   ObjectWaiter * iterator = DequeueWaiter();
1593   if (iterator != NULL) {
1594     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1595     guarantee(iterator->_notified == 0, "invariant");
1596     // Disposition - what might we do with iterator ?
1597     // a.  add it directly to the EntryList - either tail (policy == 1)
1598     //     or head (policy == 0).
1599     // b.  push it onto the front of the _cxq (policy == 2).
1600     // For now we use (b).
1601     if (policy != 4) {
1602       iterator->TState = ObjectWaiter::TS_ENTER;
1603     }
1604     iterator->_notified = 1;
1605     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1606 
1607     ObjectWaiter * list = _EntryList;
1608     if (list != NULL) {
1609       assert(list->_prev == NULL, "invariant");
1610       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1611       assert(list != iterator, "invariant");
1612     }
1613 
1614     if (policy == 0) {       // prepend to EntryList
1615       if (list == NULL) {
1616         iterator->_next = iterator->_prev = NULL;
1617         _EntryList = iterator;
1618       } else {
1619         list->_prev = iterator;
1620         iterator->_next = list;
1621         iterator->_prev = NULL;
1622         _EntryList = iterator;
1623       }
1624     } else if (policy == 1) {      // append to EntryList
1625       if (list == NULL) {
1626         iterator->_next = iterator->_prev = NULL;
1627         _EntryList = iterator;
1628       } else {
1629         // CONSIDER:  finding the tail currently requires a linear-time walk of
1630         // the EntryList.  We can make tail access constant-time by converting to
1631         // a CDLL instead of using our current DLL.
1632         ObjectWaiter * tail;
1633         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1634         assert(tail != NULL && tail->_next == NULL, "invariant");
1635         tail->_next = iterator;
1636         iterator->_prev = tail;
1637         iterator->_next = NULL;
1638       }
1639     } else if (policy == 2) {      // prepend to cxq
1640       if (list == NULL) {
1641         iterator->_next = iterator->_prev = NULL;
1642         _EntryList = iterator;
1643       } else {
1644         iterator->TState = ObjectWaiter::TS_CXQ;
1645         for (;;) {
1646           ObjectWaiter * front = _cxq;
1647           iterator->_next = front;
1648           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1649             break;
1650           }
1651         }
1652       }
1653     } else if (policy == 3) {      // append to cxq
1654       iterator->TState = ObjectWaiter::TS_CXQ;
1655       for (;;) {
1656         ObjectWaiter * tail = _cxq;
1657         if (tail == NULL) {
1658           iterator->_next = NULL;
1659           if (Atomic::replace_if_null(iterator, &_cxq)) {
1660             break;
1661           }
1662         } else {
1663           while (tail->_next != NULL) tail = tail->_next;
1664           tail->_next = iterator;
1665           iterator->_prev = tail;
1666           iterator->_next = NULL;
1667           break;
1668         }
1669       }
1670     } else {
1671       ParkEvent * ev = iterator->_event;
1672       iterator->TState = ObjectWaiter::TS_RUN;
1673       OrderAccess::fence();
1674       ev->unpark();
1675     }
1676 
1677     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1678     // move the add-to-EntryList operation, above, outside the critical section
1679     // protected by _WaitSetLock.  In practice that's not useful.  With the
1680     // exception of  wait() timeouts and interrupts the monitor owner
1681     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1682     // on _WaitSetLock so it's not profitable to reduce the length of the
1683     // critical section.
1684 
1685     if (policy < 4) {
1686       iterator->wait_reenter_begin(this);
1687     }
1688   }
1689   Thread::SpinRelease(&_WaitSetLock);
1690 }
1691 
1692 // Consider: a not-uncommon synchronization bug is to use notify() when
1693 // notifyAll() is more appropriate, potentially resulting in stranded
1694 // threads; this is one example of a lost wakeup. A useful diagnostic
1695 // option is to force all notify() operations to behave as notifyAll().
1696 //
1697 // Note: We can also detect many such problems with a "minimum wait".
1698 // When the "minimum wait" is set to a small non-zero timeout value
1699 // and the program does not hang whereas it did absent "minimum wait",
1700 // that suggests a lost wakeup bug.
1701 
1702 void ObjectMonitor::notify(TRAPS) {
1703   CHECK_OWNER();
1704   if (_WaitSet == NULL) {
1705     return;
1706   }
1707   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1708   INotify(THREAD);
1709   OM_PERFDATA_OP(Notifications, inc(1));
1710 }
1711 
1712 
1713 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1714 // from the waitset to the EntryList. This could be done more efficiently with a
1715 // single bulk transfer but in practice it's not time-critical. Beware too,
1716 // that in prepend-mode we invert the order of the waiters. Let's say that the
1717 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1718 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1719 
1720 void ObjectMonitor::notifyAll(TRAPS) {
1721   CHECK_OWNER();
1722   if (_WaitSet == NULL) {
1723     return;
1724   }
1725 
1726   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1727   int tally = 0;
1728   while (_WaitSet != NULL) {
1729     tally++;
1730     INotify(THREAD);
1731   }
1732 
1733   OM_PERFDATA_OP(Notifications, inc(tally));
1734 }
1735 
1736 // -----------------------------------------------------------------------------
1737 // Adaptive Spinning Support
1738 //
1739 // Adaptive spin-then-block - rational spinning
1740 //
1741 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1742 // algorithm.  On high order SMP systems it would be better to start with
1743 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1744 // a contending thread could enqueue itself on the cxq and then spin locally
1745 // on a thread-specific variable such as its ParkEvent._Event flag.
1746 // That's left as an exercise for the reader.  Note that global spinning is
1747 // not problematic on Niagara, as the L2 cache serves the interconnect and
1748 // has both low latency and massive bandwidth.
1749 //
1750 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1751 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1752 // (duration) or we can fix the count at approximately the duration of
1753 // a context switch and vary the frequency.   Of course we could also
1754 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1755 // For a description of 'Adaptive spin-then-block mutual exclusion in
1756 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1757 //
1758 // This implementation varies the duration "D", where D varies with
1759 // the success rate of recent spin attempts. (D is capped at approximately
1760 // length of a round-trip context switch).  The success rate for recent
1761 // spin attempts is a good predictor of the success rate of future spin
1762 // attempts.  The mechanism adapts automatically to varying critical
1763 // section length (lock modality), system load and degree of parallelism.
1764 // D is maintained per-monitor in _SpinDuration and is initialized
1765 // optimistically.  Spin frequency is fixed at 100%.
1766 //
1767 // Note that _SpinDuration is volatile, but we update it without locks
1768 // or atomics.  The code is designed so that _SpinDuration stays within
1769 // a reasonable range even in the presence of races.  The arithmetic
1770 // operations on _SpinDuration are closed over the domain of legal values,
1771 // so at worst a race will install and older but still legal value.
1772 // At the very worst this introduces some apparent non-determinism.
1773 // We might spin when we shouldn't or vice-versa, but since the spin
1774 // count are relatively short, even in the worst case, the effect is harmless.
1775 //
1776 // Care must be taken that a low "D" value does not become an
1777 // an absorbing state.  Transient spinning failures -- when spinning
1778 // is overall profitable -- should not cause the system to converge
1779 // on low "D" values.  We want spinning to be stable and predictable
1780 // and fairly responsive to change and at the same time we don't want
1781 // it to oscillate, become metastable, be "too" non-deterministic,
1782 // or converge on or enter undesirable stable absorbing states.
1783 //
1784 // We implement a feedback-based control system -- using past behavior
1785 // to predict future behavior.  We face two issues: (a) if the
1786 // input signal is random then the spin predictor won't provide optimal
1787 // results, and (b) if the signal frequency is too high then the control
1788 // system, which has some natural response lag, will "chase" the signal.
1789 // (b) can arise from multimodal lock hold times.  Transient preemption
1790 // can also result in apparent bimodal lock hold times.
1791 // Although sub-optimal, neither condition is particularly harmful, as
1792 // in the worst-case we'll spin when we shouldn't or vice-versa.
1793 // The maximum spin duration is rather short so the failure modes aren't bad.
1794 // To be conservative, I've tuned the gain in system to bias toward
1795 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1796 // "rings" or oscillates between spinning and not spinning.  This happens
1797 // when spinning is just on the cusp of profitability, however, so the
1798 // situation is not dire.  The state is benign -- there's no need to add
1799 // hysteresis control to damp the transition rate between spinning and
1800 // not spinning.
1801 
1802 // Spinning: Fixed frequency (100%), vary duration
1803 int ObjectMonitor::TrySpin(Thread * Self) {
1804   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1805   int ctr = Knob_FixedSpin;
1806   if (ctr != 0) {
1807     while (--ctr >= 0) {
1808       if (TryLock(Self) > 0) return 1;
1809       SpinPause();
1810     }
1811     return 0;
1812   }
1813 
1814   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1815     if (TryLock(Self) > 0) {
1816       // Increase _SpinDuration ...
1817       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1818       // Raising _SpurDuration to the poverty line is key.
1819       int x = _SpinDuration;
1820       if (x < Knob_SpinLimit) {
1821         if (x < Knob_Poverty) x = Knob_Poverty;
1822         _SpinDuration = x + Knob_BonusB;
1823       }
1824       return 1;
1825     }
1826     SpinPause();
1827   }
1828 
1829   // Admission control - verify preconditions for spinning
1830   //
1831   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1832   // becoming an absorbing state.  Put another way, we spin briefly to
1833   // sample, just in case the system load, parallelism, contention, or lock
1834   // modality changed.
1835   //
1836   // Consider the following alternative:
1837   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1838   // spin attempt.  "Periodically" might mean after a tally of
1839   // the # of failed spin attempts (or iterations) reaches some threshold.
1840   // This takes us into the realm of 1-out-of-N spinning, where we
1841   // hold the duration constant but vary the frequency.
1842 
1843   ctr = _SpinDuration;
1844   if (ctr <= 0) return 0;
1845 
1846   if (Knob_SuccRestrict && _succ != NULL) return 0;
1847   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1848     return 0;
1849   }
1850 
1851   int MaxSpin = Knob_MaxSpinners;
1852   if (MaxSpin >= 0) {
1853     if (_Spinner > MaxSpin) {
1854       return 0;
1855     }
1856     // Slightly racy, but benign ...
1857     Adjust(&_Spinner, 1);
1858   }
1859 
1860   // We're good to spin ... spin ingress.
1861   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1862   // when preparing to LD...CAS _owner, etc and the CAS is likely
1863   // to succeed.
1864   if (_succ == NULL) {
1865     _succ = Self;
1866   }
1867   Thread * prv = NULL;
1868 
1869   // There are three ways to exit the following loop:
1870   // 1.  A successful spin where this thread has acquired the lock.
1871   // 2.  Spin failure with prejudice
1872   // 3.  Spin failure without prejudice
1873 
1874   while (--ctr >= 0) {
1875 
1876     // Periodic polling -- Check for pending GC
1877     // Threads may spin while they're unsafe.
1878     // We don't want spinning threads to delay the JVM from reaching
1879     // a stop-the-world safepoint or to steal cycles from GC.
1880     // If we detect a pending safepoint we abort in order that
1881     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1882     // this thread, if safe, doesn't steal cycles from GC.
1883     // This is in keeping with the "no loitering in runtime" rule.
1884     // We periodically check to see if there's a safepoint pending.
1885     if ((ctr & 0xFF) == 0) {
1886       if (SafepointMechanism::poll(Self)) {
1887         goto Abort;           // abrupt spin egress
1888       }
1889       if (Knob_UsePause & 1) SpinPause();
1890     }
1891 
1892     if (Knob_UsePause & 2) SpinPause();
1893 
1894     // Probe _owner with TATAS
1895     // If this thread observes the monitor transition or flicker
1896     // from locked to unlocked to locked, then the odds that this
1897     // thread will acquire the lock in this spin attempt go down
1898     // considerably.  The same argument applies if the CAS fails
1899     // or if we observe _owner change from one non-null value to
1900     // another non-null value.   In such cases we might abort
1901     // the spin without prejudice or apply a "penalty" to the
1902     // spin count-down variable "ctr", reducing it by 100, say.
1903 
1904     Thread * ox = (Thread *) _owner;
1905     if (ox == NULL) {
1906       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1907       if (ox == NULL) {
1908         // The CAS succeeded -- this thread acquired ownership
1909         // Take care of some bookkeeping to exit spin state.
1910         if (_succ == Self) {
1911           _succ = NULL;
1912         }
1913         if (MaxSpin > 0) Adjust(&_Spinner, -1);
1914 
1915         // Increase _SpinDuration :
1916         // The spin was successful (profitable) so we tend toward
1917         // longer spin attempts in the future.
1918         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1919         // If we acquired the lock early in the spin cycle it
1920         // makes sense to increase _SpinDuration proportionally.
1921         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1922         int x = _SpinDuration;
1923         if (x < Knob_SpinLimit) {
1924           if (x < Knob_Poverty) x = Knob_Poverty;
1925           _SpinDuration = x + Knob_Bonus;
1926         }
1927         return 1;
1928       }
1929 
1930       // The CAS failed ... we can take any of the following actions:
1931       // * penalize: ctr -= CASPenalty
1932       // * exit spin with prejudice -- goto Abort;
1933       // * exit spin without prejudice.
1934       // * Since CAS is high-latency, retry again immediately.
1935       prv = ox;
1936       goto Abort;
1937     }
1938 
1939     // Did lock ownership change hands ?
1940     if (ox != prv && prv != NULL) {
1941       goto Abort;
1942     }
1943     prv = ox;
1944 
1945     // Abort the spin if the owner is not executing.
1946     // The owner must be executing in order to drop the lock.
1947     // Spinning while the owner is OFFPROC is idiocy.
1948     // Consider: ctr -= RunnablePenalty ;
1949     if (Knob_OState && NotRunnable (Self, ox)) {
1950       goto Abort;
1951     }
1952     if (_succ == NULL) {
1953       _succ = Self;
1954     }
1955   }
1956 
1957   // Spin failed with prejudice -- reduce _SpinDuration.
1958   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1959   // AIMD is globally stable.
1960   {
1961     int x = _SpinDuration;
1962     if (x > 0) {
1963       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1964       // This is globally sample and tends to damp the response.
1965       x -= Knob_Penalty;
1966       if (x < 0) x = 0;
1967       _SpinDuration = x;
1968     }
1969   }
1970 
1971  Abort:
1972   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
1973   if (_succ == Self) {
1974     _succ = NULL;
1975     // Invariant: after setting succ=null a contending thread
1976     // must recheck-retry _owner before parking.  This usually happens
1977     // in the normal usage of TrySpin(), but it's safest
1978     // to make TrySpin() as foolproof as possible.
1979     OrderAccess::fence();
1980     if (TryLock(Self) > 0) return 1;
1981   }
1982   return 0;
1983 }
1984 
1985 // NotRunnable() -- informed spinning
1986 //
1987 // Don't bother spinning if the owner is not eligible to drop the lock.
1988 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1989 // The thread must be runnable in order to drop the lock in timely fashion.
1990 // If the _owner is not runnable then spinning will not likely be
1991 // successful (profitable).
1992 //
1993 // Beware -- the thread referenced by _owner could have died
1994 // so a simply fetch from _owner->_thread_state might trap.
1995 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1996 // Because of the lifecycle issues, the _thread_state values
1997 // observed by NotRunnable() might be garbage.  NotRunnable must
1998 // tolerate this and consider the observed _thread_state value
1999 // as advisory.
2000 //
2001 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2002 // a thread pointer.
2003 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2004 // with the LSB of _owner.  Another option would be to probabilistically probe
2005 // the putative _owner->TypeTag value.
2006 //
2007 // Checking _thread_state isn't perfect.  Even if the thread is
2008 // in_java it might be blocked on a page-fault or have been preempted
2009 // and sitting on a ready/dispatch queue.
2010 //
2011 // The return value from NotRunnable() is *advisory* -- the
2012 // result is based on sampling and is not necessarily coherent.
2013 // The caller must tolerate false-negative and false-positive errors.
2014 // Spinning, in general, is probabilistic anyway.
2015 
2016 
2017 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2018   // Check ox->TypeTag == 2BAD.
2019   if (ox == NULL) return 0;
2020 
2021   // Avoid transitive spinning ...
2022   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2023   // Immediately after T1 acquires L it's possible that T2, also
2024   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2025   // This occurs transiently after T1 acquired L but before
2026   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2027   // its spin in this circumstance.
2028   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2029 
2030   if (BlockedOn == 1) return 1;
2031   if (BlockedOn != 0) {
2032     return BlockedOn != intptr_t(this) && _owner == ox;
2033   }
2034 
2035   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2036   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2037   // consider also: jst != _thread_in_Java -- but that's overspecific.
2038   return jst == _thread_blocked || jst == _thread_in_native;
2039 }
2040 
2041 
2042 // -----------------------------------------------------------------------------
2043 // WaitSet management ...
2044 
2045 ObjectWaiter::ObjectWaiter(Thread* thread) {
2046   _next     = NULL;
2047   _prev     = NULL;
2048   _notified = 0;
2049   _notifier_tid = 0;
2050   TState    = TS_RUN;
2051   _thread   = thread;
2052   _event    = thread->_ParkEvent;
2053   _active   = false;
2054   assert(_event != NULL, "invariant");
2055 }
2056 
2057 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2058   JavaThread *jt = (JavaThread *)this->_thread;
2059   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2060 }
2061 
2062 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2063   JavaThread *jt = (JavaThread *)this->_thread;
2064   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2065 }
2066 
2067 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2068   assert(node != NULL, "should not add NULL node");
2069   assert(node->_prev == NULL, "node already in list");
2070   assert(node->_next == NULL, "node already in list");
2071   // put node at end of queue (circular doubly linked list)
2072   if (_WaitSet == NULL) {
2073     _WaitSet = node;
2074     node->_prev = node;
2075     node->_next = node;
2076   } else {
2077     ObjectWaiter* head = _WaitSet;
2078     ObjectWaiter* tail = head->_prev;
2079     assert(tail->_next == head, "invariant check");
2080     tail->_next = node;
2081     head->_prev = node;
2082     node->_next = head;
2083     node->_prev = tail;
2084   }
2085 }
2086 
2087 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2088   // dequeue the very first waiter
2089   ObjectWaiter* waiter = _WaitSet;
2090   if (waiter) {
2091     DequeueSpecificWaiter(waiter);
2092   }
2093   return waiter;
2094 }
2095 
2096 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2097   assert(node != NULL, "should not dequeue NULL node");
2098   assert(node->_prev != NULL, "node already removed from list");
2099   assert(node->_next != NULL, "node already removed from list");
2100   // when the waiter has woken up because of interrupt,
2101   // timeout or other spurious wake-up, dequeue the
2102   // waiter from waiting list
2103   ObjectWaiter* next = node->_next;
2104   if (next == node) {
2105     assert(node->_prev == node, "invariant check");
2106     _WaitSet = NULL;
2107   } else {
2108     ObjectWaiter* prev = node->_prev;
2109     assert(prev->_next == node, "invariant check");
2110     assert(next->_prev == node, "invariant check");
2111     next->_prev = prev;
2112     prev->_next = next;
2113     if (_WaitSet == node) {
2114       _WaitSet = next;
2115     }
2116   }
2117   node->_next = NULL;
2118   node->_prev = NULL;
2119 }
2120 
2121 // -----------------------------------------------------------------------------
2122 // PerfData support
2123 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2124 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2125 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2126 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2127 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2128 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2129 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2130 
2131 // One-shot global initialization for the sync subsystem.
2132 // We could also defer initialization and initialize on-demand
2133 // the first time we call inflate().  Initialization would
2134 // be protected - like so many things - by the MonitorCache_lock.
2135 
2136 void ObjectMonitor::Initialize() {
2137   static int InitializationCompleted = 0;
2138   assert(InitializationCompleted == 0, "invariant");
2139   InitializationCompleted = 1;
2140   if (UsePerfData) {
2141     EXCEPTION_MARK;
2142 #define NEWPERFCOUNTER(n)                                                \
2143   {                                                                      \
2144     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2145                                         CHECK);                          \
2146   }
2147 #define NEWPERFVARIABLE(n)                                                \
2148   {                                                                       \
2149     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2150                                          CHECK);                          \
2151   }
2152     NEWPERFCOUNTER(_sync_Inflations);
2153     NEWPERFCOUNTER(_sync_Deflations);
2154     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2155     NEWPERFCOUNTER(_sync_FutileWakeups);
2156     NEWPERFCOUNTER(_sync_Parks);
2157     NEWPERFCOUNTER(_sync_Notifications);
2158     NEWPERFVARIABLE(_sync_MonExtant);
2159 #undef NEWPERFCOUNTER
2160 #undef NEWPERFVARIABLE
2161   }
2162 }
2163 
2164 void ObjectMonitor::DeferredInitialize() {
2165   if (InitDone > 0) return;
2166   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2167     while (InitDone != 1) /* empty */;
2168     return;
2169   }
2170 
2171   // One-shot global initialization ...
2172   // The initialization is idempotent, so we don't need locks.
2173   // In the future consider doing this via os::init_2().
2174 
2175   if (!os::is_MP()) {
2176     Knob_SpinLimit = 0;
2177     Knob_PreSpin   = 0;
2178     Knob_FixedSpin = -1;
2179   }
2180 
2181   OrderAccess::fence();
2182   InitDone = 1;
2183 }
2184