1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 105 
 106 static int Knob_Bonus               = 100;     // spin success bonus
 107 static int Knob_BonusB              = 100;     // spin success bonus
 108 static int Knob_Penalty             = 200;     // spin failure penalty
 109 static int Knob_Poverty             = 1000;
 110 static int Knob_FixedSpin           = 0;
 111 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 112 static int Knob_UsePause            = 1;
 113 static int Knob_ExitPolicy          = 0;
 114 static int Knob_PreSpin             = 10;      // 20-100 likely better
 115 static int Knob_ResetEvent          = 0;
 116 
 117 static int Knob_FastHSSEC           = 0;
 118 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 119 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 120 static volatile int InitDone        = 0;
 121 
 122 // -----------------------------------------------------------------------------
 123 // Theory of operations -- Monitors lists, thread residency, etc:
 124 //
 125 // * A thread acquires ownership of a monitor by successfully
 126 //   CAS()ing the _owner field from null to non-null.
 127 //
 128 // * Invariant: A thread appears on at most one monitor list --
 129 //   cxq, EntryList or WaitSet -- at any one time.
 130 //
 131 // * Contending threads "push" themselves onto the cxq with CAS
 132 //   and then spin/park.
 133 //
 134 // * After a contending thread eventually acquires the lock it must
 135 //   dequeue itself from either the EntryList or the cxq.
 136 //
 137 // * The exiting thread identifies and unparks an "heir presumptive"
 138 //   tentative successor thread on the EntryList.  Critically, the
 139 //   exiting thread doesn't unlink the successor thread from the EntryList.
 140 //   After having been unparked, the wakee will recontend for ownership of
 141 //   the monitor.   The successor (wakee) will either acquire the lock or
 142 //   re-park itself.
 143 //
 144 //   Succession is provided for by a policy of competitive handoff.
 145 //   The exiting thread does _not_ grant or pass ownership to the
 146 //   successor thread.  (This is also referred to as "handoff" succession").
 147 //   Instead the exiting thread releases ownership and possibly wakes
 148 //   a successor, so the successor can (re)compete for ownership of the lock.
 149 //   If the EntryList is empty but the cxq is populated the exiting
 150 //   thread will drain the cxq into the EntryList.  It does so by
 151 //   by detaching the cxq (installing null with CAS) and folding
 152 //   the threads from the cxq into the EntryList.  The EntryList is
 153 //   doubly linked, while the cxq is singly linked because of the
 154 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 155 //
 156 // * Concurrency invariants:
 157 //
 158 //   -- only the monitor owner may access or mutate the EntryList.
 159 //      The mutex property of the monitor itself protects the EntryList
 160 //      from concurrent interference.
 161 //   -- Only the monitor owner may detach the cxq.
 162 //
 163 // * The monitor entry list operations avoid locks, but strictly speaking
 164 //   they're not lock-free.  Enter is lock-free, exit is not.
 165 //   For a description of 'Methods and apparatus providing non-blocking access
 166 //   to a resource,' see U.S. Pat. No. 7844973.
 167 //
 168 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 169 //   detaching thread.  This mechanism is immune from the ABA corruption.
 170 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 171 //
 172 // * Taken together, the cxq and the EntryList constitute or form a
 173 //   single logical queue of threads stalled trying to acquire the lock.
 174 //   We use two distinct lists to improve the odds of a constant-time
 175 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 176 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 177 //   A key desideratum is to minimize queue & monitor metadata manipulation
 178 //   that occurs while holding the monitor lock -- that is, we want to
 179 //   minimize monitor lock holds times.  Note that even a small amount of
 180 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 181 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 182 //   locks and monitor metadata.
 183 //
 184 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 185 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 186 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 187 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 188 //
 189 //   The EntryList is ordered by the prevailing queue discipline and
 190 //   can be organized in any convenient fashion, such as a doubly-linked list or
 191 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 192 //   to operate in constant-time.  If we need a priority queue then something akin
 193 //   to Solaris' sleepq would work nicely.  Viz.,
 194 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 195 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 196 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 197 //   EntryList accordingly.
 198 //
 199 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 200 //   somewhat similar to an elevator-scan.
 201 //
 202 // * The monitor synchronization subsystem avoids the use of native
 203 //   synchronization primitives except for the narrow platform-specific
 204 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 205 //   the semantics of park-unpark.  Put another way, this monitor implementation
 206 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 207 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 208 //   underlying OS manages the READY<->RUN transitions.
 209 //
 210 // * Waiting threads reside on the WaitSet list -- wait() puts
 211 //   the caller onto the WaitSet.
 212 //
 213 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 214 //   either the EntryList or cxq.  Subsequent exit() operations will
 215 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 216 //   it's likely the notifyee would simply impale itself on the lock held
 217 //   by the notifier.
 218 //
 219 // * An interesting alternative is to encode cxq as (List,LockByte) where
 220 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 221 //   variable, like _recursions, in the scheme.  The threads or Events that form
 222 //   the list would have to be aligned in 256-byte addresses.  A thread would
 223 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 224 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 225 //   Note that is is *not* word-tearing, but it does presume that full-word
 226 //   CAS operations are coherent with intermix with STB operations.  That's true
 227 //   on most common processors.
 228 //
 229 // * See also http://blogs.sun.com/dave
 230 
 231 
 232 void* ObjectMonitor::operator new (size_t size) throw() {
 233   return AllocateHeap(size, mtInternal);
 234 }
 235 void* ObjectMonitor::operator new[] (size_t size) throw() {
 236   return operator new (size);
 237 }
 238 void ObjectMonitor::operator delete(void* p) {
 239   FreeHeap(p);
 240 }
 241 void ObjectMonitor::operator delete[] (void *p) {
 242   operator delete(p);
 243 }
 244 
 245 // -----------------------------------------------------------------------------
 246 // Enter support
 247 
 248 void ObjectMonitor::enter(TRAPS) {
 249   // The following code is ordered to check the most common cases first
 250   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 251   Thread * const Self = THREAD;
 252 
 253   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 254   if (cur == NULL) {
 255     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 256     assert(_recursions == 0, "invariant");
 257     assert(_owner == Self, "invariant");
 258     return;
 259   }
 260 
 261   if (cur == Self) {
 262     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 263     _recursions++;
 264     return;
 265   }
 266 
 267   if (Self->is_lock_owned ((address)cur)) {
 268     assert(_recursions == 0, "internal state error");
 269     _recursions = 1;
 270     // Commute owner from a thread-specific on-stack BasicLockObject address to
 271     // a full-fledged "Thread *".
 272     _owner = Self;
 273     return;
 274   }
 275 
 276   // We've encountered genuine contention.
 277   assert(Self->_Stalled == 0, "invariant");
 278   Self->_Stalled = intptr_t(this);
 279 
 280   // Try one round of spinning *before* enqueueing Self
 281   // and before going through the awkward and expensive state
 282   // transitions.  The following spin is strictly optional ...
 283   // Note that if we acquire the monitor from an initial spin
 284   // we forgo posting JVMTI events and firing DTRACE probes.
 285   if (TrySpin(Self) > 0) {
 286     assert(_owner == Self, "invariant");
 287     assert(_recursions == 0, "invariant");
 288     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 289     Self->_Stalled = 0;
 290     return;
 291   }
 292 
 293   assert(_owner != Self, "invariant");
 294   assert(_succ != Self, "invariant");
 295   assert(Self->is_Java_thread(), "invariant");
 296   JavaThread * jt = (JavaThread *) Self;
 297   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 298   assert(jt->thread_state() != _thread_blocked, "invariant");
 299   assert(this->object() != NULL, "invariant");
 300   assert(_count >= 0, "invariant");
 301 
 302   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 303   // Ensure the object-monitor relationship remains stable while there's contention.
 304   Atomic::inc(&_count);
 305 
 306   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 307   EventJavaMonitorEnter event;
 308   if (event.should_commit()) {
 309     event.set_monitorClass(((oop)this->object())->klass());
 310     event.set_address((uintptr_t)(this->object_addr()));
 311   }
 312 
 313   { // Change java thread status to indicate blocked on monitor enter.
 314     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 315 
 316     Self->set_current_pending_monitor(this);
 317 
 318     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 319     if (JvmtiExport::should_post_monitor_contended_enter()) {
 320       JvmtiExport::post_monitor_contended_enter(jt, this);
 321 
 322       // The current thread does not yet own the monitor and does not
 323       // yet appear on any queues that would get it made the successor.
 324       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 325       // handler cannot accidentally consume an unpark() meant for the
 326       // ParkEvent associated with this ObjectMonitor.
 327     }
 328 
 329     OSThreadContendState osts(Self->osthread());
 330     ThreadBlockInVM tbivm(jt);
 331 
 332     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 333     for (;;) {
 334       jt->set_suspend_equivalent();
 335       // cleared by handle_special_suspend_equivalent_condition()
 336       // or java_suspend_self()
 337 
 338       EnterI(THREAD);
 339 
 340       if (!ExitSuspendEquivalent(jt)) break;
 341 
 342       // We have acquired the contended monitor, but while we were
 343       // waiting another thread suspended us. We don't want to enter
 344       // the monitor while suspended because that would surprise the
 345       // thread that suspended us.
 346       //
 347       _recursions = 0;
 348       _succ = NULL;
 349       exit(false, Self);
 350 
 351       jt->java_suspend_self();
 352     }
 353     Self->set_current_pending_monitor(NULL);
 354 
 355     // We cleared the pending monitor info since we've just gotten past
 356     // the enter-check-for-suspend dance and we now own the monitor free
 357     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 358     // destructor can go to a safepoint at the end of this block. If we
 359     // do a thread dump during that safepoint, then this thread will show
 360     // as having "-locked" the monitor, but the OS and java.lang.Thread
 361     // states will still report that the thread is blocked trying to
 362     // acquire it.
 363   }
 364 
 365   Atomic::dec(&_count);
 366   assert(_count >= 0, "invariant");
 367   Self->_Stalled = 0;
 368 
 369   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 370   assert(_recursions == 0, "invariant");
 371   assert(_owner == Self, "invariant");
 372   assert(_succ != Self, "invariant");
 373   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 374 
 375   // The thread -- now the owner -- is back in vm mode.
 376   // Report the glorious news via TI,DTrace and jvmstat.
 377   // The probe effect is non-trivial.  All the reportage occurs
 378   // while we hold the monitor, increasing the length of the critical
 379   // section.  Amdahl's parallel speedup law comes vividly into play.
 380   //
 381   // Another option might be to aggregate the events (thread local or
 382   // per-monitor aggregation) and defer reporting until a more opportune
 383   // time -- such as next time some thread encounters contention but has
 384   // yet to acquire the lock.  While spinning that thread could
 385   // spinning we could increment JVMStat counters, etc.
 386 
 387   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 388   if (JvmtiExport::should_post_monitor_contended_entered()) {
 389     JvmtiExport::post_monitor_contended_entered(jt, this);
 390 
 391     // The current thread already owns the monitor and is not going to
 392     // call park() for the remainder of the monitor enter protocol. So
 393     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 394     // event handler consumed an unpark() issued by the thread that
 395     // just exited the monitor.
 396   }
 397   if (event.should_commit()) {
 398     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 399     event.commit();
 400   }
 401   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 402 }
 403 
 404 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 405 // Callers must compensate as needed.
 406 
 407 int ObjectMonitor::TryLock(Thread * Self) {
 408   void * own = _owner;
 409   if (own != NULL) return 0;
 410   if (Atomic::replace_if_null(Self, &_owner)) {
 411     // Either guarantee _recursions == 0 or set _recursions = 0.
 412     assert(_recursions == 0, "invariant");
 413     assert(_owner == Self, "invariant");
 414     return 1;
 415   }
 416   // The lock had been free momentarily, but we lost the race to the lock.
 417   // Interference -- the CAS failed.
 418   // We can either return -1 or retry.
 419   // Retry doesn't make as much sense because the lock was just acquired.
 420   return -1;
 421 }
 422 
 423 #define MAX_RECHECK_INTERVAL 1000
 424 
 425 void ObjectMonitor::EnterI(TRAPS) {
 426   Thread * const Self = THREAD;
 427   assert(Self->is_Java_thread(), "invariant");
 428   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 429 
 430   // Try the lock - TATAS
 431   if (TryLock (Self) > 0) {
 432     assert(_succ != Self, "invariant");
 433     assert(_owner == Self, "invariant");
 434     assert(_Responsible != Self, "invariant");
 435     return;
 436   }
 437 
 438   DeferredInitialize();
 439 
 440   // We try one round of spinning *before* enqueueing Self.
 441   //
 442   // If the _owner is ready but OFFPROC we could use a YieldTo()
 443   // operation to donate the remainder of this thread's quantum
 444   // to the owner.  This has subtle but beneficial affinity
 445   // effects.
 446 
 447   if (TrySpin(Self) > 0) {
 448     assert(_owner == Self, "invariant");
 449     assert(_succ != Self, "invariant");
 450     assert(_Responsible != Self, "invariant");
 451     return;
 452   }
 453 
 454   // The Spin failed -- Enqueue and park the thread ...
 455   assert(_succ != Self, "invariant");
 456   assert(_owner != Self, "invariant");
 457   assert(_Responsible != Self, "invariant");
 458 
 459   // Enqueue "Self" on ObjectMonitor's _cxq.
 460   //
 461   // Node acts as a proxy for Self.
 462   // As an aside, if were to ever rewrite the synchronization code mostly
 463   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 464   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 465   // as well as eliminate a subset of ABA issues.
 466   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 467 
 468   ObjectWaiter node(Self);
 469   Self->_ParkEvent->reset();
 470   node._prev   = (ObjectWaiter *) 0xBAD;
 471   node.TState  = ObjectWaiter::TS_CXQ;
 472 
 473   // Push "Self" onto the front of the _cxq.
 474   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 475   // Note that spinning tends to reduce the rate at which threads
 476   // enqueue and dequeue on EntryList|cxq.
 477   ObjectWaiter * nxt;
 478   for (;;) {
 479     node._next = nxt = _cxq;
 480     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 481 
 482     // Interference - the CAS failed because _cxq changed.  Just retry.
 483     // As an optional optimization we retry the lock.
 484     if (TryLock (Self) > 0) {
 485       assert(_succ != Self, "invariant");
 486       assert(_owner == Self, "invariant");
 487       assert(_Responsible != Self, "invariant");
 488       return;
 489     }
 490   }
 491 
 492   // Check for cxq|EntryList edge transition to non-null.  This indicates
 493   // the onset of contention.  While contention persists exiting threads
 494   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 495   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 496   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 497   // arrange for one of the contending thread to use a timed park() operations
 498   // to detect and recover from the race.  (Stranding is form of progress failure
 499   // where the monitor is unlocked but all the contending threads remain parked).
 500   // That is, at least one of the contended threads will periodically poll _owner.
 501   // One of the contending threads will become the designated "Responsible" thread.
 502   // The Responsible thread uses a timed park instead of a normal indefinite park
 503   // operation -- it periodically wakes and checks for and recovers from potential
 504   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 505   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 506   // be responsible for a monitor.
 507   //
 508   // Currently, one of the contended threads takes on the added role of "Responsible".
 509   // A viable alternative would be to use a dedicated "stranding checker" thread
 510   // that periodically iterated over all the threads (or active monitors) and unparked
 511   // successors where there was risk of stranding.  This would help eliminate the
 512   // timer scalability issues we see on some platforms as we'd only have one thread
 513   // -- the checker -- parked on a timer.
 514 
 515   if (nxt == NULL && _EntryList == NULL) {
 516     // Try to assume the role of responsible thread for the monitor.
 517     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 518     Atomic::replace_if_null(Self, &_Responsible);
 519   }
 520 
 521   // The lock might have been released while this thread was occupied queueing
 522   // itself onto _cxq.  To close the race and avoid "stranding" and
 523   // progress-liveness failure we must resample-retry _owner before parking.
 524   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 525   // In this case the ST-MEMBAR is accomplished with CAS().
 526   //
 527   // TODO: Defer all thread state transitions until park-time.
 528   // Since state transitions are heavy and inefficient we'd like
 529   // to defer the state transitions until absolutely necessary,
 530   // and in doing so avoid some transitions ...
 531 
 532   int nWakeups = 0;
 533   int recheckInterval = 1;
 534 
 535   for (;;) {
 536 
 537     if (TryLock(Self) > 0) break;
 538     assert(_owner != Self, "invariant");
 539 
 540     // park self
 541     if (_Responsible == Self) {
 542       Self->_ParkEvent->park((jlong) recheckInterval);
 543       // Increase the recheckInterval, but clamp the value.
 544       recheckInterval *= 8;
 545       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 546         recheckInterval = MAX_RECHECK_INTERVAL;
 547       }
 548     } else {
 549       Self->_ParkEvent->park();
 550     }
 551 
 552     if (TryLock(Self) > 0) break;
 553 
 554     // The lock is still contested.
 555     // Keep a tally of the # of futile wakeups.
 556     // Note that the counter is not protected by a lock or updated by atomics.
 557     // That is by design - we trade "lossy" counters which are exposed to
 558     // races during updates for a lower probe effect.
 559 
 560     // This PerfData object can be used in parallel with a safepoint.
 561     // See the work around in PerfDataManager::destroy().
 562     OM_PERFDATA_OP(FutileWakeups, inc());
 563     ++nWakeups;
 564 
 565     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 566     // We can defer clearing _succ until after the spin completes
 567     // TrySpin() must tolerate being called with _succ == Self.
 568     // Try yet another round of adaptive spinning.
 569     if (TrySpin(Self) > 0) break;
 570 
 571     // We can find that we were unpark()ed and redesignated _succ while
 572     // we were spinning.  That's harmless.  If we iterate and call park(),
 573     // park() will consume the event and return immediately and we'll
 574     // just spin again.  This pattern can repeat, leaving _succ to simply
 575     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 576     // Alternately, we can sample fired() here, and if set, forgo spinning
 577     // in the next iteration.
 578 
 579     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 580       Self->_ParkEvent->reset();
 581       OrderAccess::fence();
 582     }
 583     if (_succ == Self) _succ = NULL;
 584 
 585     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 586     OrderAccess::fence();
 587   }
 588 
 589   // Egress :
 590   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 591   // Normally we'll find Self on the EntryList .
 592   // From the perspective of the lock owner (this thread), the
 593   // EntryList is stable and cxq is prepend-only.
 594   // The head of cxq is volatile but the interior is stable.
 595   // In addition, Self.TState is stable.
 596 
 597   assert(_owner == Self, "invariant");
 598   assert(object() != NULL, "invariant");
 599   // I'd like to write:
 600   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 601   // but as we're at a safepoint that's not safe.
 602 
 603   UnlinkAfterAcquire(Self, &node);
 604   if (_succ == Self) _succ = NULL;
 605 
 606   assert(_succ != Self, "invariant");
 607   if (_Responsible == Self) {
 608     _Responsible = NULL;
 609     OrderAccess::fence(); // Dekker pivot-point
 610 
 611     // We may leave threads on cxq|EntryList without a designated
 612     // "Responsible" thread.  This is benign.  When this thread subsequently
 613     // exits the monitor it can "see" such preexisting "old" threads --
 614     // threads that arrived on the cxq|EntryList before the fence, above --
 615     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 616     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 617     // non-null and elect a new "Responsible" timer thread.
 618     //
 619     // This thread executes:
 620     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 621     //    LD cxq|EntryList               (in subsequent exit)
 622     //
 623     // Entering threads in the slow/contended path execute:
 624     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 625     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 626     //
 627     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 628     // exit operation from floating above the ST Responsible=null.
 629   }
 630 
 631   // We've acquired ownership with CAS().
 632   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 633   // But since the CAS() this thread may have also stored into _succ,
 634   // EntryList, cxq or Responsible.  These meta-data updates must be
 635   // visible __before this thread subsequently drops the lock.
 636   // Consider what could occur if we didn't enforce this constraint --
 637   // STs to monitor meta-data and user-data could reorder with (become
 638   // visible after) the ST in exit that drops ownership of the lock.
 639   // Some other thread could then acquire the lock, but observe inconsistent
 640   // or old monitor meta-data and heap data.  That violates the JMM.
 641   // To that end, the 1-0 exit() operation must have at least STST|LDST
 642   // "release" barrier semantics.  Specifically, there must be at least a
 643   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 644   // the lock.   The barrier ensures that changes to monitor meta-data and data
 645   // protected by the lock will be visible before we release the lock, and
 646   // therefore before some other thread (CPU) has a chance to acquire the lock.
 647   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 648   //
 649   // Critically, any prior STs to _succ or EntryList must be visible before
 650   // the ST of null into _owner in the *subsequent* (following) corresponding
 651   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 652   // execute a serializing instruction.
 653 
 654   return;
 655 }
 656 
 657 // ReenterI() is a specialized inline form of the latter half of the
 658 // contended slow-path from EnterI().  We use ReenterI() only for
 659 // monitor reentry in wait().
 660 //
 661 // In the future we should reconcile EnterI() and ReenterI().
 662 
 663 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 664   assert(Self != NULL, "invariant");
 665   assert(SelfNode != NULL, "invariant");
 666   assert(SelfNode->_thread == Self, "invariant");
 667   assert(_waiters > 0, "invariant");
 668   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 669   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 670   JavaThread * jt = (JavaThread *) Self;
 671 
 672   int nWakeups = 0;
 673   for (;;) {
 674     ObjectWaiter::TStates v = SelfNode->TState;
 675     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 676     assert(_owner != Self, "invariant");
 677 
 678     if (TryLock(Self) > 0) break;
 679     if (TrySpin(Self) > 0) break;
 680 
 681     // State transition wrappers around park() ...
 682     // ReenterI() wisely defers state transitions until
 683     // it's clear we must park the thread.
 684     {
 685       OSThreadContendState osts(Self->osthread());
 686       ThreadBlockInVM tbivm(jt);
 687 
 688       // cleared by handle_special_suspend_equivalent_condition()
 689       // or java_suspend_self()
 690       jt->set_suspend_equivalent();
 691       Self->_ParkEvent->park();
 692 
 693       // were we externally suspended while we were waiting?
 694       for (;;) {
 695         if (!ExitSuspendEquivalent(jt)) break;
 696         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 697         jt->java_suspend_self();
 698         jt->set_suspend_equivalent();
 699       }
 700     }
 701 
 702     // Try again, but just so we distinguish between futile wakeups and
 703     // successful wakeups.  The following test isn't algorithmically
 704     // necessary, but it helps us maintain sensible statistics.
 705     if (TryLock(Self) > 0) break;
 706 
 707     // The lock is still contested.
 708     // Keep a tally of the # of futile wakeups.
 709     // Note that the counter is not protected by a lock or updated by atomics.
 710     // That is by design - we trade "lossy" counters which are exposed to
 711     // races during updates for a lower probe effect.
 712     ++nWakeups;
 713 
 714     // Assuming this is not a spurious wakeup we'll normally
 715     // find that _succ == Self.
 716     if (_succ == Self) _succ = NULL;
 717 
 718     // Invariant: after clearing _succ a contending thread
 719     // *must* retry  _owner before parking.
 720     OrderAccess::fence();
 721 
 722     // This PerfData object can be used in parallel with a safepoint.
 723     // See the work around in PerfDataManager::destroy().
 724     OM_PERFDATA_OP(FutileWakeups, inc());
 725   }
 726 
 727   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 728   // Normally we'll find Self on the EntryList.
 729   // Unlinking from the EntryList is constant-time and atomic-free.
 730   // From the perspective of the lock owner (this thread), the
 731   // EntryList is stable and cxq is prepend-only.
 732   // The head of cxq is volatile but the interior is stable.
 733   // In addition, Self.TState is stable.
 734 
 735   assert(_owner == Self, "invariant");
 736   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 737   UnlinkAfterAcquire(Self, SelfNode);
 738   if (_succ == Self) _succ = NULL;
 739   assert(_succ != Self, "invariant");
 740   SelfNode->TState = ObjectWaiter::TS_RUN;
 741   OrderAccess::fence();      // see comments at the end of EnterI()
 742 }
 743 
 744 // By convention we unlink a contending thread from EntryList|cxq immediately
 745 // after the thread acquires the lock in ::enter().  Equally, we could defer
 746 // unlinking the thread until ::exit()-time.
 747 
 748 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 749   assert(_owner == Self, "invariant");
 750   assert(SelfNode->_thread == Self, "invariant");
 751 
 752   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 753     // Normal case: remove Self from the DLL EntryList .
 754     // This is a constant-time operation.
 755     ObjectWaiter * nxt = SelfNode->_next;
 756     ObjectWaiter * prv = SelfNode->_prev;
 757     if (nxt != NULL) nxt->_prev = prv;
 758     if (prv != NULL) prv->_next = nxt;
 759     if (SelfNode == _EntryList) _EntryList = nxt;
 760     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 761     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 762   } else {
 763     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 764     // Inopportune interleaving -- Self is still on the cxq.
 765     // This usually means the enqueue of self raced an exiting thread.
 766     // Normally we'll find Self near the front of the cxq, so
 767     // dequeueing is typically fast.  If needbe we can accelerate
 768     // this with some MCS/CHL-like bidirectional list hints and advisory
 769     // back-links so dequeueing from the interior will normally operate
 770     // in constant-time.
 771     // Dequeue Self from either the head (with CAS) or from the interior
 772     // with a linear-time scan and normal non-atomic memory operations.
 773     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 774     // and then unlink Self from EntryList.  We have to drain eventually,
 775     // so it might as well be now.
 776 
 777     ObjectWaiter * v = _cxq;
 778     assert(v != NULL, "invariant");
 779     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 780       // The CAS above can fail from interference IFF a "RAT" arrived.
 781       // In that case Self must be in the interior and can no longer be
 782       // at the head of cxq.
 783       if (v == SelfNode) {
 784         assert(_cxq != v, "invariant");
 785         v = _cxq;          // CAS above failed - start scan at head of list
 786       }
 787       ObjectWaiter * p;
 788       ObjectWaiter * q = NULL;
 789       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 790         q = p;
 791         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 792       }
 793       assert(v != SelfNode, "invariant");
 794       assert(p == SelfNode, "Node not found on cxq");
 795       assert(p != _cxq, "invariant");
 796       assert(q != NULL, "invariant");
 797       assert(q->_next == p, "invariant");
 798       q->_next = p->_next;
 799     }
 800   }
 801 
 802 #ifdef ASSERT
 803   // Diagnostic hygiene ...
 804   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 805   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 806   SelfNode->TState = ObjectWaiter::TS_RUN;
 807 #endif
 808 }
 809 
 810 // -----------------------------------------------------------------------------
 811 // Exit support
 812 //
 813 // exit()
 814 // ~~~~~~
 815 // Note that the collector can't reclaim the objectMonitor or deflate
 816 // the object out from underneath the thread calling ::exit() as the
 817 // thread calling ::exit() never transitions to a stable state.
 818 // This inhibits GC, which in turn inhibits asynchronous (and
 819 // inopportune) reclamation of "this".
 820 //
 821 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 822 // There's one exception to the claim above, however.  EnterI() can call
 823 // exit() to drop a lock if the acquirer has been externally suspended.
 824 // In that case exit() is called with _thread_state as _thread_blocked,
 825 // but the monitor's _count field is > 0, which inhibits reclamation.
 826 //
 827 // 1-0 exit
 828 // ~~~~~~~~
 829 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 830 // the fast-path operators have been optimized so the common ::exit()
 831 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 832 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 833 // greatly improves latency -- MEMBAR and CAS having considerable local
 834 // latency on modern processors -- but at the cost of "stranding".  Absent the
 835 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 836 // ::enter() path, resulting in the entering thread being stranding
 837 // and a progress-liveness failure.   Stranding is extremely rare.
 838 // We use timers (timed park operations) & periodic polling to detect
 839 // and recover from stranding.  Potentially stranded threads periodically
 840 // wake up and poll the lock.  See the usage of the _Responsible variable.
 841 //
 842 // The CAS() in enter provides for safety and exclusion, while the CAS or
 843 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 844 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 845 // We detect and recover from stranding with timers.
 846 //
 847 // If a thread transiently strands it'll park until (a) another
 848 // thread acquires the lock and then drops the lock, at which time the
 849 // exiting thread will notice and unpark the stranded thread, or, (b)
 850 // the timer expires.  If the lock is high traffic then the stranding latency
 851 // will be low due to (a).  If the lock is low traffic then the odds of
 852 // stranding are lower, although the worst-case stranding latency
 853 // is longer.  Critically, we don't want to put excessive load in the
 854 // platform's timer subsystem.  We want to minimize both the timer injection
 855 // rate (timers created/sec) as well as the number of timers active at
 856 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 857 // the integral of the # of active timers at any instant over time).
 858 // Both impinge on OS scalability.  Given that, at most one thread parked on
 859 // a monitor will use a timer.
 860 //
 861 // There is also the risk of a futile wake-up. If we drop the lock
 862 // another thread can reacquire the lock immediately, and we can
 863 // then wake a thread unnecessarily. This is benign, and we've
 864 // structured the code so the windows are short and the frequency
 865 // of such futile wakups is low.
 866 
 867 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 868   Thread * const Self = THREAD;
 869   if (THREAD != _owner) {
 870     if (THREAD->is_lock_owned((address) _owner)) {
 871       // Transmute _owner from a BasicLock pointer to a Thread address.
 872       // We don't need to hold _mutex for this transition.
 873       // Non-null to Non-null is safe as long as all readers can
 874       // tolerate either flavor.
 875       assert(_recursions == 0, "invariant");
 876       _owner = THREAD;
 877       _recursions = 0;
 878     } else {
 879       // Apparent unbalanced locking ...
 880       // Naively we'd like to throw IllegalMonitorStateException.
 881       // As a practical matter we can neither allocate nor throw an
 882       // exception as ::exit() can be called from leaf routines.
 883       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 884       // Upon deeper reflection, however, in a properly run JVM the only
 885       // way we should encounter this situation is in the presence of
 886       // unbalanced JNI locking. TODO: CheckJNICalls.
 887       // See also: CR4414101
 888       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 889       return;
 890     }
 891   }
 892 
 893   if (_recursions != 0) {
 894     _recursions--;        // this is simple recursive enter
 895     return;
 896   }
 897 
 898   // Invariant: after setting Responsible=null an thread must execute
 899   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 900   _Responsible = NULL;
 901 
 902 #if INCLUDE_JFR
 903   // get the owner's thread id for the MonitorEnter event
 904   // if it is enabled and the thread isn't suspended
 905   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 906     _previous_owner_tid = JFR_THREAD_ID(Self);
 907   }
 908 #endif
 909 
 910   for (;;) {
 911     assert(THREAD == _owner, "invariant");
 912 
 913     if (Knob_ExitPolicy == 0) {
 914       // release semantics: prior loads and stores from within the critical section
 915       // must not float (reorder) past the following store that drops the lock.
 916       // On SPARC that requires MEMBAR #loadstore|#storestore.
 917       // But of course in TSO #loadstore|#storestore is not required.
 918       // I'd like to write one of the following:
 919       // A.  OrderAccess::release() ; _owner = NULL
 920       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 921       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 922       // store into a _dummy variable.  That store is not needed, but can result
 923       // in massive wasteful coherency traffic on classic SMP systems.
 924       // Instead, I use release_store(), which is implemented as just a simple
 925       // ST on x64, x86 and SPARC.
 926       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 927       OrderAccess::storeload();                        // See if we need to wake a successor
 928       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 929         return;
 930       }
 931       // Other threads are blocked trying to acquire the lock.
 932 
 933       // Normally the exiting thread is responsible for ensuring succession,
 934       // but if other successors are ready or other entering threads are spinning
 935       // then this thread can simply store NULL into _owner and exit without
 936       // waking a successor.  The existence of spinners or ready successors
 937       // guarantees proper succession (liveness).  Responsibility passes to the
 938       // ready or running successors.  The exiting thread delegates the duty.
 939       // More precisely, if a successor already exists this thread is absolved
 940       // of the responsibility of waking (unparking) one.
 941       //
 942       // The _succ variable is critical to reducing futile wakeup frequency.
 943       // _succ identifies the "heir presumptive" thread that has been made
 944       // ready (unparked) but that has not yet run.  We need only one such
 945       // successor thread to guarantee progress.
 946       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 947       // section 3.3 "Futile Wakeup Throttling" for details.
 948       //
 949       // Note that spinners in Enter() also set _succ non-null.
 950       // In the current implementation spinners opportunistically set
 951       // _succ so that exiting threads might avoid waking a successor.
 952       // Another less appealing alternative would be for the exiting thread
 953       // to drop the lock and then spin briefly to see if a spinner managed
 954       // to acquire the lock.  If so, the exiting thread could exit
 955       // immediately without waking a successor, otherwise the exiting
 956       // thread would need to dequeue and wake a successor.
 957       // (Note that we'd need to make the post-drop spin short, but no
 958       // shorter than the worst-case round-trip cache-line migration time.
 959       // The dropped lock needs to become visible to the spinner, and then
 960       // the acquisition of the lock by the spinner must become visible to
 961       // the exiting thread).
 962 
 963       // It appears that an heir-presumptive (successor) must be made ready.
 964       // Only the current lock owner can manipulate the EntryList or
 965       // drain _cxq, so we need to reacquire the lock.  If we fail
 966       // to reacquire the lock the responsibility for ensuring succession
 967       // falls to the new owner.
 968       //
 969       if (!Atomic::replace_if_null(THREAD, &_owner)) {
 970         return;
 971       }
 972     } else {
 973       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 974         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 975         OrderAccess::storeload();
 976         // Ratify the previously observed values.
 977         if (_cxq == NULL || _succ != NULL) {
 978           return;
 979         }
 980 
 981         // inopportune interleaving -- the exiting thread (this thread)
 982         // in the fast-exit path raced an entering thread in the slow-enter
 983         // path.
 984         // We have two choices:
 985         // A.  Try to reacquire the lock.
 986         //     If the CAS() fails return immediately, otherwise
 987         //     we either restart/rerun the exit operation, or simply
 988         //     fall-through into the code below which wakes a successor.
 989         // B.  If the elements forming the EntryList|cxq are TSM
 990         //     we could simply unpark() the lead thread and return
 991         //     without having set _succ.
 992         if (!Atomic::replace_if_null(THREAD, &_owner)) {
 993           return;
 994         }
 995       }
 996     }
 997 
 998     guarantee(_owner == THREAD, "invariant");
 999 
1000     ObjectWaiter * w = NULL;
1001     int QMode = Knob_QMode;
1002 
1003     if (QMode == 2 && _cxq != NULL) {
1004       // QMode == 2 : cxq has precedence over EntryList.
1005       // Try to directly wake a successor from the cxq.
1006       // If successful, the successor will need to unlink itself from cxq.
1007       w = _cxq;
1008       assert(w != NULL, "invariant");
1009       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1010       ExitEpilog(Self, w);
1011       return;
1012     }
1013 
1014     if (QMode == 3 && _cxq != NULL) {
1015       // Aggressively drain cxq into EntryList at the first opportunity.
1016       // This policy ensure that recently-run threads live at the head of EntryList.
1017       // Drain _cxq into EntryList - bulk transfer.
1018       // First, detach _cxq.
1019       // The following loop is tantamount to: w = swap(&cxq, NULL)
1020       w = _cxq;
1021       for (;;) {
1022         assert(w != NULL, "Invariant");
1023         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1024         if (u == w) break;
1025         w = u;
1026       }
1027       assert(w != NULL, "invariant");
1028 
1029       ObjectWaiter * q = NULL;
1030       ObjectWaiter * p;
1031       for (p = w; p != NULL; p = p->_next) {
1032         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1033         p->TState = ObjectWaiter::TS_ENTER;
1034         p->_prev = q;
1035         q = p;
1036       }
1037 
1038       // Append the RATs to the EntryList
1039       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1040       ObjectWaiter * Tail;
1041       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1042            Tail = Tail->_next)
1043         /* empty */;
1044       if (Tail == NULL) {
1045         _EntryList = w;
1046       } else {
1047         Tail->_next = w;
1048         w->_prev = Tail;
1049       }
1050 
1051       // Fall thru into code that tries to wake a successor from EntryList
1052     }
1053 
1054     if (QMode == 4 && _cxq != NULL) {
1055       // Aggressively drain cxq into EntryList at the first opportunity.
1056       // This policy ensure that recently-run threads live at the head of EntryList.
1057 
1058       // Drain _cxq into EntryList - bulk transfer.
1059       // First, detach _cxq.
1060       // The following loop is tantamount to: w = swap(&cxq, NULL)
1061       w = _cxq;
1062       for (;;) {
1063         assert(w != NULL, "Invariant");
1064         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1065         if (u == w) break;
1066         w = u;
1067       }
1068       assert(w != NULL, "invariant");
1069 
1070       ObjectWaiter * q = NULL;
1071       ObjectWaiter * p;
1072       for (p = w; p != NULL; p = p->_next) {
1073         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1074         p->TState = ObjectWaiter::TS_ENTER;
1075         p->_prev = q;
1076         q = p;
1077       }
1078 
1079       // Prepend the RATs to the EntryList
1080       if (_EntryList != NULL) {
1081         q->_next = _EntryList;
1082         _EntryList->_prev = q;
1083       }
1084       _EntryList = w;
1085 
1086       // Fall thru into code that tries to wake a successor from EntryList
1087     }
1088 
1089     w = _EntryList;
1090     if (w != NULL) {
1091       // I'd like to write: guarantee (w->_thread != Self).
1092       // But in practice an exiting thread may find itself on the EntryList.
1093       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1094       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1095       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1096       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1097       // release the lock "O".  T2 resumes immediately after the ST of null into
1098       // _owner, above.  T2 notices that the EntryList is populated, so it
1099       // reacquires the lock and then finds itself on the EntryList.
1100       // Given all that, we have to tolerate the circumstance where "w" is
1101       // associated with Self.
1102       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1103       ExitEpilog(Self, w);
1104       return;
1105     }
1106 
1107     // If we find that both _cxq and EntryList are null then just
1108     // re-run the exit protocol from the top.
1109     w = _cxq;
1110     if (w == NULL) continue;
1111 
1112     // Drain _cxq into EntryList - bulk transfer.
1113     // First, detach _cxq.
1114     // The following loop is tantamount to: w = swap(&cxq, NULL)
1115     for (;;) {
1116       assert(w != NULL, "Invariant");
1117       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1118       if (u == w) break;
1119       w = u;
1120     }
1121 
1122     assert(w != NULL, "invariant");
1123     assert(_EntryList == NULL, "invariant");
1124 
1125     // Convert the LIFO SLL anchored by _cxq into a DLL.
1126     // The list reorganization step operates in O(LENGTH(w)) time.
1127     // It's critical that this step operate quickly as
1128     // "Self" still holds the outer-lock, restricting parallelism
1129     // and effectively lengthening the critical section.
1130     // Invariant: s chases t chases u.
1131     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1132     // we have faster access to the tail.
1133 
1134     if (QMode == 1) {
1135       // QMode == 1 : drain cxq to EntryList, reversing order
1136       // We also reverse the order of the list.
1137       ObjectWaiter * s = NULL;
1138       ObjectWaiter * t = w;
1139       ObjectWaiter * u = NULL;
1140       while (t != NULL) {
1141         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1142         t->TState = ObjectWaiter::TS_ENTER;
1143         u = t->_next;
1144         t->_prev = u;
1145         t->_next = s;
1146         s = t;
1147         t = u;
1148       }
1149       _EntryList  = s;
1150       assert(s != NULL, "invariant");
1151     } else {
1152       // QMode == 0 or QMode == 2
1153       _EntryList = w;
1154       ObjectWaiter * q = NULL;
1155       ObjectWaiter * p;
1156       for (p = w; p != NULL; p = p->_next) {
1157         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1158         p->TState = ObjectWaiter::TS_ENTER;
1159         p->_prev = q;
1160         q = p;
1161       }
1162     }
1163 
1164     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1165     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1166 
1167     // See if we can abdicate to a spinner instead of waking a thread.
1168     // A primary goal of the implementation is to reduce the
1169     // context-switch rate.
1170     if (_succ != NULL) continue;
1171 
1172     w = _EntryList;
1173     if (w != NULL) {
1174       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1175       ExitEpilog(Self, w);
1176       return;
1177     }
1178   }
1179 }
1180 
1181 // ExitSuspendEquivalent:
1182 // A faster alternate to handle_special_suspend_equivalent_condition()
1183 //
1184 // handle_special_suspend_equivalent_condition() unconditionally
1185 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1186 // operations have high latency.  Note that in ::enter() we call HSSEC
1187 // while holding the monitor, so we effectively lengthen the critical sections.
1188 //
1189 // There are a number of possible solutions:
1190 //
1191 // A.  To ameliorate the problem we might also defer state transitions
1192 //     to as late as possible -- just prior to parking.
1193 //     Given that, we'd call HSSEC after having returned from park(),
1194 //     but before attempting to acquire the monitor.  This is only a
1195 //     partial solution.  It avoids calling HSSEC while holding the
1196 //     monitor (good), but it still increases successor reacquisition latency --
1197 //     the interval between unparking a successor and the time the successor
1198 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1199 //     If we use this technique we can also avoid EnterI()-exit() loop
1200 //     in ::enter() where we iteratively drop the lock and then attempt
1201 //     to reacquire it after suspending.
1202 //
1203 // B.  In the future we might fold all the suspend bits into a
1204 //     composite per-thread suspend flag and then update it with CAS().
1205 //     Alternately, a Dekker-like mechanism with multiple variables
1206 //     would suffice:
1207 //       ST Self->_suspend_equivalent = false
1208 //       MEMBAR
1209 //       LD Self_>_suspend_flags
1210 //
1211 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1212 // with a more efficient implementation, the need to use "FastHSSEC" has
1213 // decreased. - Dave
1214 
1215 
1216 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1217   const int Mode = Knob_FastHSSEC;
1218   if (Mode && !jSelf->is_external_suspend()) {
1219     assert(jSelf->is_suspend_equivalent(), "invariant");
1220     jSelf->clear_suspend_equivalent();
1221     if (2 == Mode) OrderAccess::storeload();
1222     if (!jSelf->is_external_suspend()) return false;
1223     // We raced a suspension -- fall thru into the slow path
1224     jSelf->set_suspend_equivalent();
1225   }
1226   return jSelf->handle_special_suspend_equivalent_condition();
1227 }
1228 
1229 
1230 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1231   assert(_owner == Self, "invariant");
1232 
1233   // Exit protocol:
1234   // 1. ST _succ = wakee
1235   // 2. membar #loadstore|#storestore;
1236   // 2. ST _owner = NULL
1237   // 3. unpark(wakee)
1238 
1239   _succ = Wakee->_thread;
1240   ParkEvent * Trigger = Wakee->_event;
1241 
1242   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1243   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1244   // out-of-scope (non-extant).
1245   Wakee  = NULL;
1246 
1247   // Drop the lock
1248   OrderAccess::release_store(&_owner, (void*)NULL);
1249   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1250 
1251   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1252   Trigger->unpark();
1253 
1254   // Maintain stats and report events to JVMTI
1255   OM_PERFDATA_OP(Parks, inc());
1256 }
1257 
1258 
1259 // -----------------------------------------------------------------------------
1260 // Class Loader deadlock handling.
1261 //
1262 // complete_exit exits a lock returning recursion count
1263 // complete_exit/reenter operate as a wait without waiting
1264 // complete_exit requires an inflated monitor
1265 // The _owner field is not always the Thread addr even with an
1266 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1267 // thread due to contention.
1268 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1269   Thread * const Self = THREAD;
1270   assert(Self->is_Java_thread(), "Must be Java thread!");
1271   JavaThread *jt = (JavaThread *)THREAD;
1272 
1273   DeferredInitialize();
1274 
1275   if (THREAD != _owner) {
1276     if (THREAD->is_lock_owned ((address)_owner)) {
1277       assert(_recursions == 0, "internal state error");
1278       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1279       _recursions = 0;
1280     }
1281   }
1282 
1283   guarantee(Self == _owner, "complete_exit not owner");
1284   intptr_t save = _recursions; // record the old recursion count
1285   _recursions = 0;        // set the recursion level to be 0
1286   exit(true, Self);           // exit the monitor
1287   guarantee(_owner != Self, "invariant");
1288   return save;
1289 }
1290 
1291 // reenter() enters a lock and sets recursion count
1292 // complete_exit/reenter operate as a wait without waiting
1293 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1294   Thread * const Self = THREAD;
1295   assert(Self->is_Java_thread(), "Must be Java thread!");
1296   JavaThread *jt = (JavaThread *)THREAD;
1297 
1298   guarantee(_owner != Self, "reenter already owner");
1299   enter(THREAD);       // enter the monitor
1300   guarantee(_recursions == 0, "reenter recursion");
1301   _recursions = recursions;
1302   return;
1303 }
1304 
1305 
1306 // -----------------------------------------------------------------------------
1307 // A macro is used below because there may already be a pending
1308 // exception which should not abort the execution of the routines
1309 // which use this (which is why we don't put this into check_slow and
1310 // call it with a CHECK argument).
1311 
1312 #define CHECK_OWNER()                                                       \
1313   do {                                                                      \
1314     if (THREAD != _owner) {                                                 \
1315       if (THREAD->is_lock_owned((address) _owner)) {                        \
1316         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1317         _recursions = 0;                                                    \
1318       } else {                                                              \
1319         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1320       }                                                                     \
1321     }                                                                       \
1322   } while (false)
1323 
1324 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1325 // TODO-FIXME: remove check_slow() -- it's likely dead.
1326 
1327 void ObjectMonitor::check_slow(TRAPS) {
1328   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1329   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1330 }
1331 
1332 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1333                                     ObjectMonitor* monitor,
1334                                     jlong notifier_tid,
1335                                     jlong timeout,
1336                                     bool timedout) {
1337   assert(event != NULL, "invariant");
1338   assert(monitor != NULL, "invariant");
1339   event->set_monitorClass(((oop)monitor->object())->klass());
1340   event->set_timeout(timeout);
1341   event->set_address((uintptr_t)monitor->object_addr());
1342   event->set_notifier(notifier_tid);
1343   event->set_timedOut(timedout);
1344   event->commit();
1345 }
1346 
1347 // -----------------------------------------------------------------------------
1348 // Wait/Notify/NotifyAll
1349 //
1350 // Note: a subset of changes to ObjectMonitor::wait()
1351 // will need to be replicated in complete_exit
1352 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1353   Thread * const Self = THREAD;
1354   assert(Self->is_Java_thread(), "Must be Java thread!");
1355   JavaThread *jt = (JavaThread *)THREAD;
1356 
1357   DeferredInitialize();
1358 
1359   // Throw IMSX or IEX.
1360   CHECK_OWNER();
1361 
1362   EventJavaMonitorWait event;
1363 
1364   // check for a pending interrupt
1365   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1366     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1367     if (JvmtiExport::should_post_monitor_waited()) {
1368       // Note: 'false' parameter is passed here because the
1369       // wait was not timed out due to thread interrupt.
1370       JvmtiExport::post_monitor_waited(jt, this, false);
1371 
1372       // In this short circuit of the monitor wait protocol, the
1373       // current thread never drops ownership of the monitor and
1374       // never gets added to the wait queue so the current thread
1375       // cannot be made the successor. This means that the
1376       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1377       // consume an unpark() meant for the ParkEvent associated with
1378       // this ObjectMonitor.
1379     }
1380     if (event.should_commit()) {
1381       post_monitor_wait_event(&event, this, 0, millis, false);
1382     }
1383     THROW(vmSymbols::java_lang_InterruptedException());
1384     return;
1385   }
1386 
1387   assert(Self->_Stalled == 0, "invariant");
1388   Self->_Stalled = intptr_t(this);
1389   jt->set_current_waiting_monitor(this);
1390 
1391   // create a node to be put into the queue
1392   // Critically, after we reset() the event but prior to park(), we must check
1393   // for a pending interrupt.
1394   ObjectWaiter node(Self);
1395   node.TState = ObjectWaiter::TS_WAIT;
1396   Self->_ParkEvent->reset();
1397   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1398 
1399   // Enter the waiting queue, which is a circular doubly linked list in this case
1400   // but it could be a priority queue or any data structure.
1401   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1402   // by the the owner of the monitor *except* in the case where park()
1403   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1404   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1405 
1406   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1407   AddWaiter(&node);
1408   Thread::SpinRelease(&_WaitSetLock);
1409 
1410   _Responsible = NULL;
1411 
1412   intptr_t save = _recursions; // record the old recursion count
1413   _waiters++;                  // increment the number of waiters
1414   _recursions = 0;             // set the recursion level to be 1
1415   exit(true, Self);                    // exit the monitor
1416   guarantee(_owner != Self, "invariant");
1417 
1418   // The thread is on the WaitSet list - now park() it.
1419   // On MP systems it's conceivable that a brief spin before we park
1420   // could be profitable.
1421   //
1422   // TODO-FIXME: change the following logic to a loop of the form
1423   //   while (!timeout && !interrupted && _notified == 0) park()
1424 
1425   int ret = OS_OK;
1426   int WasNotified = 0;
1427   { // State transition wrappers
1428     OSThread* osthread = Self->osthread();
1429     OSThreadWaitState osts(osthread, true);
1430     {
1431       ThreadBlockInVM tbivm(jt);
1432       // Thread is in thread_blocked state and oop access is unsafe.
1433       jt->set_suspend_equivalent();
1434 
1435       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1436         // Intentionally empty
1437       } else if (node._notified == 0) {
1438         if (millis <= 0) {
1439           Self->_ParkEvent->park();
1440         } else {
1441           ret = Self->_ParkEvent->park(millis);
1442         }
1443       }
1444 
1445       // were we externally suspended while we were waiting?
1446       if (ExitSuspendEquivalent (jt)) {
1447         // TODO-FIXME: add -- if succ == Self then succ = null.
1448         jt->java_suspend_self();
1449       }
1450 
1451     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1452 
1453     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1454     // from the WaitSet to the EntryList.
1455     // See if we need to remove Node from the WaitSet.
1456     // We use double-checked locking to avoid grabbing _WaitSetLock
1457     // if the thread is not on the wait queue.
1458     //
1459     // Note that we don't need a fence before the fetch of TState.
1460     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1461     // written by the is thread. (perhaps the fetch might even be satisfied
1462     // by a look-aside into the processor's own store buffer, although given
1463     // the length of the code path between the prior ST and this load that's
1464     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1465     // then we'll acquire the lock and then re-fetch a fresh TState value.
1466     // That is, we fail toward safety.
1467 
1468     if (node.TState == ObjectWaiter::TS_WAIT) {
1469       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1470       if (node.TState == ObjectWaiter::TS_WAIT) {
1471         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1472         assert(node._notified == 0, "invariant");
1473         node.TState = ObjectWaiter::TS_RUN;
1474       }
1475       Thread::SpinRelease(&_WaitSetLock);
1476     }
1477 
1478     // The thread is now either on off-list (TS_RUN),
1479     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1480     // The Node's TState variable is stable from the perspective of this thread.
1481     // No other threads will asynchronously modify TState.
1482     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1483     OrderAccess::loadload();
1484     if (_succ == Self) _succ = NULL;
1485     WasNotified = node._notified;
1486 
1487     // Reentry phase -- reacquire the monitor.
1488     // re-enter contended monitor after object.wait().
1489     // retain OBJECT_WAIT state until re-enter successfully completes
1490     // Thread state is thread_in_vm and oop access is again safe,
1491     // although the raw address of the object may have changed.
1492     // (Don't cache naked oops over safepoints, of course).
1493 
1494     // post monitor waited event. Note that this is past-tense, we are done waiting.
1495     if (JvmtiExport::should_post_monitor_waited()) {
1496       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1497 
1498       if (node._notified != 0 && _succ == Self) {
1499         // In this part of the monitor wait-notify-reenter protocol it
1500         // is possible (and normal) for another thread to do a fastpath
1501         // monitor enter-exit while this thread is still trying to get
1502         // to the reenter portion of the protocol.
1503         //
1504         // The ObjectMonitor was notified and the current thread is
1505         // the successor which also means that an unpark() has already
1506         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1507         // consume the unpark() that was done when the successor was
1508         // set because the same ParkEvent is shared between Java
1509         // monitors and JVM/TI RawMonitors (for now).
1510         //
1511         // We redo the unpark() to ensure forward progress, i.e., we
1512         // don't want all pending threads hanging (parked) with none
1513         // entering the unlocked monitor.
1514         node._event->unpark();
1515       }
1516     }
1517 
1518     if (event.should_commit()) {
1519       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1520     }
1521 
1522     OrderAccess::fence();
1523 
1524     assert(Self->_Stalled != 0, "invariant");
1525     Self->_Stalled = 0;
1526 
1527     assert(_owner != Self, "invariant");
1528     ObjectWaiter::TStates v = node.TState;
1529     if (v == ObjectWaiter::TS_RUN) {
1530       enter(Self);
1531     } else {
1532       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1533       ReenterI(Self, &node);
1534       node.wait_reenter_end(this);
1535     }
1536 
1537     // Self has reacquired the lock.
1538     // Lifecycle - the node representing Self must not appear on any queues.
1539     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1540     // want residual elements associated with this thread left on any lists.
1541     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1542     assert(_owner == Self, "invariant");
1543     assert(_succ != Self, "invariant");
1544   } // OSThreadWaitState()
1545 
1546   jt->set_current_waiting_monitor(NULL);
1547 
1548   guarantee(_recursions == 0, "invariant");
1549   _recursions = save;     // restore the old recursion count
1550   _waiters--;             // decrement the number of waiters
1551 
1552   // Verify a few postconditions
1553   assert(_owner == Self, "invariant");
1554   assert(_succ != Self, "invariant");
1555   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1556 
1557   // check if the notification happened
1558   if (!WasNotified) {
1559     // no, it could be timeout or Thread.interrupt() or both
1560     // check for interrupt event, otherwise it is timeout
1561     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1562       THROW(vmSymbols::java_lang_InterruptedException());
1563     }
1564   }
1565 
1566   // NOTE: Spurious wake up will be consider as timeout.
1567   // Monitor notify has precedence over thread interrupt.
1568 }
1569 
1570 
1571 // Consider:
1572 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1573 // then instead of transferring a thread from the WaitSet to the EntryList
1574 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1575 
1576 void ObjectMonitor::INotify(Thread * Self) {
1577   const int policy = Knob_MoveNotifyee;
1578 
1579   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1580   ObjectWaiter * iterator = DequeueWaiter();
1581   if (iterator != NULL) {
1582     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1583     guarantee(iterator->_notified == 0, "invariant");
1584     // Disposition - what might we do with iterator ?
1585     // a.  add it directly to the EntryList - either tail (policy == 1)
1586     //     or head (policy == 0).
1587     // b.  push it onto the front of the _cxq (policy == 2).
1588     // For now we use (b).
1589     if (policy != 4) {
1590       iterator->TState = ObjectWaiter::TS_ENTER;
1591     }
1592     iterator->_notified = 1;
1593     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1594 
1595     ObjectWaiter * list = _EntryList;
1596     if (list != NULL) {
1597       assert(list->_prev == NULL, "invariant");
1598       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1599       assert(list != iterator, "invariant");
1600     }
1601 
1602     if (policy == 0) {       // prepend to EntryList
1603       if (list == NULL) {
1604         iterator->_next = iterator->_prev = NULL;
1605         _EntryList = iterator;
1606       } else {
1607         list->_prev = iterator;
1608         iterator->_next = list;
1609         iterator->_prev = NULL;
1610         _EntryList = iterator;
1611       }
1612     } else if (policy == 1) {      // append to EntryList
1613       if (list == NULL) {
1614         iterator->_next = iterator->_prev = NULL;
1615         _EntryList = iterator;
1616       } else {
1617         // CONSIDER:  finding the tail currently requires a linear-time walk of
1618         // the EntryList.  We can make tail access constant-time by converting to
1619         // a CDLL instead of using our current DLL.
1620         ObjectWaiter * tail;
1621         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1622         assert(tail != NULL && tail->_next == NULL, "invariant");
1623         tail->_next = iterator;
1624         iterator->_prev = tail;
1625         iterator->_next = NULL;
1626       }
1627     } else if (policy == 2) {      // prepend to cxq
1628       if (list == NULL) {
1629         iterator->_next = iterator->_prev = NULL;
1630         _EntryList = iterator;
1631       } else {
1632         iterator->TState = ObjectWaiter::TS_CXQ;
1633         for (;;) {
1634           ObjectWaiter * front = _cxq;
1635           iterator->_next = front;
1636           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1637             break;
1638           }
1639         }
1640       }
1641     } else if (policy == 3) {      // append to cxq
1642       iterator->TState = ObjectWaiter::TS_CXQ;
1643       for (;;) {
1644         ObjectWaiter * tail = _cxq;
1645         if (tail == NULL) {
1646           iterator->_next = NULL;
1647           if (Atomic::replace_if_null(iterator, &_cxq)) {
1648             break;
1649           }
1650         } else {
1651           while (tail->_next != NULL) tail = tail->_next;
1652           tail->_next = iterator;
1653           iterator->_prev = tail;
1654           iterator->_next = NULL;
1655           break;
1656         }
1657       }
1658     } else {
1659       ParkEvent * ev = iterator->_event;
1660       iterator->TState = ObjectWaiter::TS_RUN;
1661       OrderAccess::fence();
1662       ev->unpark();
1663     }
1664 
1665     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1666     // move the add-to-EntryList operation, above, outside the critical section
1667     // protected by _WaitSetLock.  In practice that's not useful.  With the
1668     // exception of  wait() timeouts and interrupts the monitor owner
1669     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1670     // on _WaitSetLock so it's not profitable to reduce the length of the
1671     // critical section.
1672 
1673     if (policy < 4) {
1674       iterator->wait_reenter_begin(this);
1675     }
1676   }
1677   Thread::SpinRelease(&_WaitSetLock);
1678 }
1679 
1680 // Consider: a not-uncommon synchronization bug is to use notify() when
1681 // notifyAll() is more appropriate, potentially resulting in stranded
1682 // threads; this is one example of a lost wakeup. A useful diagnostic
1683 // option is to force all notify() operations to behave as notifyAll().
1684 //
1685 // Note: We can also detect many such problems with a "minimum wait".
1686 // When the "minimum wait" is set to a small non-zero timeout value
1687 // and the program does not hang whereas it did absent "minimum wait",
1688 // that suggests a lost wakeup bug.
1689 
1690 void ObjectMonitor::notify(TRAPS) {
1691   CHECK_OWNER();
1692   if (_WaitSet == NULL) {
1693     return;
1694   }
1695   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1696   INotify(THREAD);
1697   OM_PERFDATA_OP(Notifications, inc(1));
1698 }
1699 
1700 
1701 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1702 // from the waitset to the EntryList. This could be done more efficiently with a
1703 // single bulk transfer but in practice it's not time-critical. Beware too,
1704 // that in prepend-mode we invert the order of the waiters. Let's say that the
1705 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1706 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1707 
1708 void ObjectMonitor::notifyAll(TRAPS) {
1709   CHECK_OWNER();
1710   if (_WaitSet == NULL) {
1711     return;
1712   }
1713 
1714   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1715   int tally = 0;
1716   while (_WaitSet != NULL) {
1717     tally++;
1718     INotify(THREAD);
1719   }
1720 
1721   OM_PERFDATA_OP(Notifications, inc(tally));
1722 }
1723 
1724 // -----------------------------------------------------------------------------
1725 // Adaptive Spinning Support
1726 //
1727 // Adaptive spin-then-block - rational spinning
1728 //
1729 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1730 // algorithm.  On high order SMP systems it would be better to start with
1731 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1732 // a contending thread could enqueue itself on the cxq and then spin locally
1733 // on a thread-specific variable such as its ParkEvent._Event flag.
1734 // That's left as an exercise for the reader.  Note that global spinning is
1735 // not problematic on Niagara, as the L2 cache serves the interconnect and
1736 // has both low latency and massive bandwidth.
1737 //
1738 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1739 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1740 // (duration) or we can fix the count at approximately the duration of
1741 // a context switch and vary the frequency.   Of course we could also
1742 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1743 // For a description of 'Adaptive spin-then-block mutual exclusion in
1744 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1745 //
1746 // This implementation varies the duration "D", where D varies with
1747 // the success rate of recent spin attempts. (D is capped at approximately
1748 // length of a round-trip context switch).  The success rate for recent
1749 // spin attempts is a good predictor of the success rate of future spin
1750 // attempts.  The mechanism adapts automatically to varying critical
1751 // section length (lock modality), system load and degree of parallelism.
1752 // D is maintained per-monitor in _SpinDuration and is initialized
1753 // optimistically.  Spin frequency is fixed at 100%.
1754 //
1755 // Note that _SpinDuration is volatile, but we update it without locks
1756 // or atomics.  The code is designed so that _SpinDuration stays within
1757 // a reasonable range even in the presence of races.  The arithmetic
1758 // operations on _SpinDuration are closed over the domain of legal values,
1759 // so at worst a race will install and older but still legal value.
1760 // At the very worst this introduces some apparent non-determinism.
1761 // We might spin when we shouldn't or vice-versa, but since the spin
1762 // count are relatively short, even in the worst case, the effect is harmless.
1763 //
1764 // Care must be taken that a low "D" value does not become an
1765 // an absorbing state.  Transient spinning failures -- when spinning
1766 // is overall profitable -- should not cause the system to converge
1767 // on low "D" values.  We want spinning to be stable and predictable
1768 // and fairly responsive to change and at the same time we don't want
1769 // it to oscillate, become metastable, be "too" non-deterministic,
1770 // or converge on or enter undesirable stable absorbing states.
1771 //
1772 // We implement a feedback-based control system -- using past behavior
1773 // to predict future behavior.  We face two issues: (a) if the
1774 // input signal is random then the spin predictor won't provide optimal
1775 // results, and (b) if the signal frequency is too high then the control
1776 // system, which has some natural response lag, will "chase" the signal.
1777 // (b) can arise from multimodal lock hold times.  Transient preemption
1778 // can also result in apparent bimodal lock hold times.
1779 // Although sub-optimal, neither condition is particularly harmful, as
1780 // in the worst-case we'll spin when we shouldn't or vice-versa.
1781 // The maximum spin duration is rather short so the failure modes aren't bad.
1782 // To be conservative, I've tuned the gain in system to bias toward
1783 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1784 // "rings" or oscillates between spinning and not spinning.  This happens
1785 // when spinning is just on the cusp of profitability, however, so the
1786 // situation is not dire.  The state is benign -- there's no need to add
1787 // hysteresis control to damp the transition rate between spinning and
1788 // not spinning.
1789 
1790 // Spinning: Fixed frequency (100%), vary duration
1791 int ObjectMonitor::TrySpin(Thread * Self) {
1792   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1793   int ctr = Knob_FixedSpin;
1794   if (ctr != 0) {
1795     while (--ctr >= 0) {
1796       if (TryLock(Self) > 0) return 1;
1797       SpinPause();
1798     }
1799     return 0;
1800   }
1801 
1802   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1803     if (TryLock(Self) > 0) {
1804       // Increase _SpinDuration ...
1805       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1806       // Raising _SpurDuration to the poverty line is key.
1807       int x = _SpinDuration;
1808       if (x < Knob_SpinLimit) {
1809         if (x < Knob_Poverty) x = Knob_Poverty;
1810         _SpinDuration = x + Knob_BonusB;
1811       }
1812       return 1;
1813     }
1814     SpinPause();
1815   }
1816 
1817   // Admission control - verify preconditions for spinning
1818   //
1819   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1820   // becoming an absorbing state.  Put another way, we spin briefly to
1821   // sample, just in case the system load, parallelism, contention, or lock
1822   // modality changed.
1823   //
1824   // Consider the following alternative:
1825   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1826   // spin attempt.  "Periodically" might mean after a tally of
1827   // the # of failed spin attempts (or iterations) reaches some threshold.
1828   // This takes us into the realm of 1-out-of-N spinning, where we
1829   // hold the duration constant but vary the frequency.
1830 
1831   ctr = _SpinDuration;
1832   if (ctr <= 0) return 0;
1833 
1834   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1835     return 0;
1836   }
1837 
1838   // We're good to spin ... spin ingress.
1839   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1840   // when preparing to LD...CAS _owner, etc and the CAS is likely
1841   // to succeed.
1842   if (_succ == NULL) {
1843     _succ = Self;
1844   }
1845   Thread * prv = NULL;
1846 
1847   // There are three ways to exit the following loop:
1848   // 1.  A successful spin where this thread has acquired the lock.
1849   // 2.  Spin failure with prejudice
1850   // 3.  Spin failure without prejudice
1851 
1852   while (--ctr >= 0) {
1853 
1854     // Periodic polling -- Check for pending GC
1855     // Threads may spin while they're unsafe.
1856     // We don't want spinning threads to delay the JVM from reaching
1857     // a stop-the-world safepoint or to steal cycles from GC.
1858     // If we detect a pending safepoint we abort in order that
1859     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1860     // this thread, if safe, doesn't steal cycles from GC.
1861     // This is in keeping with the "no loitering in runtime" rule.
1862     // We periodically check to see if there's a safepoint pending.
1863     if ((ctr & 0xFF) == 0) {
1864       if (SafepointMechanism::poll(Self)) {
1865         goto Abort;           // abrupt spin egress
1866       }
1867       if (Knob_UsePause & 1) SpinPause();
1868     }
1869 
1870     if (Knob_UsePause & 2) SpinPause();
1871 
1872     // Probe _owner with TATAS
1873     // If this thread observes the monitor transition or flicker
1874     // from locked to unlocked to locked, then the odds that this
1875     // thread will acquire the lock in this spin attempt go down
1876     // considerably.  The same argument applies if the CAS fails
1877     // or if we observe _owner change from one non-null value to
1878     // another non-null value.   In such cases we might abort
1879     // the spin without prejudice or apply a "penalty" to the
1880     // spin count-down variable "ctr", reducing it by 100, say.
1881 
1882     Thread * ox = (Thread *) _owner;
1883     if (ox == NULL) {
1884       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1885       if (ox == NULL) {
1886         // The CAS succeeded -- this thread acquired ownership
1887         // Take care of some bookkeeping to exit spin state.
1888         if (_succ == Self) {
1889           _succ = NULL;
1890         }
1891 
1892         // Increase _SpinDuration :
1893         // The spin was successful (profitable) so we tend toward
1894         // longer spin attempts in the future.
1895         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1896         // If we acquired the lock early in the spin cycle it
1897         // makes sense to increase _SpinDuration proportionally.
1898         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1899         int x = _SpinDuration;
1900         if (x < Knob_SpinLimit) {
1901           if (x < Knob_Poverty) x = Knob_Poverty;
1902           _SpinDuration = x + Knob_Bonus;
1903         }
1904         return 1;
1905       }
1906 
1907       // The CAS failed ... we can take any of the following actions:
1908       // * penalize: ctr -= CASPenalty
1909       // * exit spin with prejudice -- goto Abort;
1910       // * exit spin without prejudice.
1911       // * Since CAS is high-latency, retry again immediately.
1912       prv = ox;
1913       goto Abort;
1914     }
1915 
1916     // Did lock ownership change hands ?
1917     if (ox != prv && prv != NULL) {
1918       goto Abort;
1919     }
1920     prv = ox;
1921 
1922     // Abort the spin if the owner is not executing.
1923     // The owner must be executing in order to drop the lock.
1924     // Spinning while the owner is OFFPROC is idiocy.
1925     // Consider: ctr -= RunnablePenalty ;
1926     if (Knob_OState && NotRunnable (Self, ox)) {
1927       goto Abort;
1928     }
1929     if (_succ == NULL) {
1930       _succ = Self;
1931     }
1932   }
1933 
1934   // Spin failed with prejudice -- reduce _SpinDuration.
1935   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1936   // AIMD is globally stable.
1937   {
1938     int x = _SpinDuration;
1939     if (x > 0) {
1940       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1941       // This is globally sample and tends to damp the response.
1942       x -= Knob_Penalty;
1943       if (x < 0) x = 0;
1944       _SpinDuration = x;
1945     }
1946   }
1947 
1948  Abort:
1949   if (_succ == Self) {
1950     _succ = NULL;
1951     // Invariant: after setting succ=null a contending thread
1952     // must recheck-retry _owner before parking.  This usually happens
1953     // in the normal usage of TrySpin(), but it's safest
1954     // to make TrySpin() as foolproof as possible.
1955     OrderAccess::fence();
1956     if (TryLock(Self) > 0) return 1;
1957   }
1958   return 0;
1959 }
1960 
1961 // NotRunnable() -- informed spinning
1962 //
1963 // Don't bother spinning if the owner is not eligible to drop the lock.
1964 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1965 // The thread must be runnable in order to drop the lock in timely fashion.
1966 // If the _owner is not runnable then spinning will not likely be
1967 // successful (profitable).
1968 //
1969 // Beware -- the thread referenced by _owner could have died
1970 // so a simply fetch from _owner->_thread_state might trap.
1971 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1972 // Because of the lifecycle issues, the _thread_state values
1973 // observed by NotRunnable() might be garbage.  NotRunnable must
1974 // tolerate this and consider the observed _thread_state value
1975 // as advisory.
1976 //
1977 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1978 // a thread pointer.
1979 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1980 // with the LSB of _owner.  Another option would be to probabilistically probe
1981 // the putative _owner->TypeTag value.
1982 //
1983 // Checking _thread_state isn't perfect.  Even if the thread is
1984 // in_java it might be blocked on a page-fault or have been preempted
1985 // and sitting on a ready/dispatch queue.
1986 //
1987 // The return value from NotRunnable() is *advisory* -- the
1988 // result is based on sampling and is not necessarily coherent.
1989 // The caller must tolerate false-negative and false-positive errors.
1990 // Spinning, in general, is probabilistic anyway.
1991 
1992 
1993 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1994   // Check ox->TypeTag == 2BAD.
1995   if (ox == NULL) return 0;
1996 
1997   // Avoid transitive spinning ...
1998   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1999   // Immediately after T1 acquires L it's possible that T2, also
2000   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2001   // This occurs transiently after T1 acquired L but before
2002   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2003   // its spin in this circumstance.
2004   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2005 
2006   if (BlockedOn == 1) return 1;
2007   if (BlockedOn != 0) {
2008     return BlockedOn != intptr_t(this) && _owner == ox;
2009   }
2010 
2011   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2012   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2013   // consider also: jst != _thread_in_Java -- but that's overspecific.
2014   return jst == _thread_blocked || jst == _thread_in_native;
2015 }
2016 
2017 
2018 // -----------------------------------------------------------------------------
2019 // WaitSet management ...
2020 
2021 ObjectWaiter::ObjectWaiter(Thread* thread) {
2022   _next     = NULL;
2023   _prev     = NULL;
2024   _notified = 0;
2025   _notifier_tid = 0;
2026   TState    = TS_RUN;
2027   _thread   = thread;
2028   _event    = thread->_ParkEvent;
2029   _active   = false;
2030   assert(_event != NULL, "invariant");
2031 }
2032 
2033 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2034   JavaThread *jt = (JavaThread *)this->_thread;
2035   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2036 }
2037 
2038 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2039   JavaThread *jt = (JavaThread *)this->_thread;
2040   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2041 }
2042 
2043 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2044   assert(node != NULL, "should not add NULL node");
2045   assert(node->_prev == NULL, "node already in list");
2046   assert(node->_next == NULL, "node already in list");
2047   // put node at end of queue (circular doubly linked list)
2048   if (_WaitSet == NULL) {
2049     _WaitSet = node;
2050     node->_prev = node;
2051     node->_next = node;
2052   } else {
2053     ObjectWaiter* head = _WaitSet;
2054     ObjectWaiter* tail = head->_prev;
2055     assert(tail->_next == head, "invariant check");
2056     tail->_next = node;
2057     head->_prev = node;
2058     node->_next = head;
2059     node->_prev = tail;
2060   }
2061 }
2062 
2063 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2064   // dequeue the very first waiter
2065   ObjectWaiter* waiter = _WaitSet;
2066   if (waiter) {
2067     DequeueSpecificWaiter(waiter);
2068   }
2069   return waiter;
2070 }
2071 
2072 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2073   assert(node != NULL, "should not dequeue NULL node");
2074   assert(node->_prev != NULL, "node already removed from list");
2075   assert(node->_next != NULL, "node already removed from list");
2076   // when the waiter has woken up because of interrupt,
2077   // timeout or other spurious wake-up, dequeue the
2078   // waiter from waiting list
2079   ObjectWaiter* next = node->_next;
2080   if (next == node) {
2081     assert(node->_prev == node, "invariant check");
2082     _WaitSet = NULL;
2083   } else {
2084     ObjectWaiter* prev = node->_prev;
2085     assert(prev->_next == node, "invariant check");
2086     assert(next->_prev == node, "invariant check");
2087     next->_prev = prev;
2088     prev->_next = next;
2089     if (_WaitSet == node) {
2090       _WaitSet = next;
2091     }
2092   }
2093   node->_next = NULL;
2094   node->_prev = NULL;
2095 }
2096 
2097 // -----------------------------------------------------------------------------
2098 // PerfData support
2099 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2100 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2101 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2102 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2103 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2104 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2105 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2106 
2107 // One-shot global initialization for the sync subsystem.
2108 // We could also defer initialization and initialize on-demand
2109 // the first time we call inflate().  Initialization would
2110 // be protected - like so many things - by the MonitorCache_lock.
2111 
2112 void ObjectMonitor::Initialize() {
2113   static int InitializationCompleted = 0;
2114   assert(InitializationCompleted == 0, "invariant");
2115   InitializationCompleted = 1;
2116   if (UsePerfData) {
2117     EXCEPTION_MARK;
2118 #define NEWPERFCOUNTER(n)                                                \
2119   {                                                                      \
2120     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2121                                         CHECK);                          \
2122   }
2123 #define NEWPERFVARIABLE(n)                                                \
2124   {                                                                       \
2125     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2126                                          CHECK);                          \
2127   }
2128     NEWPERFCOUNTER(_sync_Inflations);
2129     NEWPERFCOUNTER(_sync_Deflations);
2130     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2131     NEWPERFCOUNTER(_sync_FutileWakeups);
2132     NEWPERFCOUNTER(_sync_Parks);
2133     NEWPERFCOUNTER(_sync_Notifications);
2134     NEWPERFVARIABLE(_sync_MonExtant);
2135 #undef NEWPERFCOUNTER
2136 #undef NEWPERFVARIABLE
2137   }
2138 }
2139 
2140 void ObjectMonitor::DeferredInitialize() {
2141   if (InitDone > 0) return;
2142   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2143     while (InitDone != 1) /* empty */;
2144     return;
2145   }
2146 
2147   // One-shot global initialization ...
2148   // The initialization is idempotent, so we don't need locks.
2149   // In the future consider doing this via os::init_2().
2150 
2151   if (!os::is_MP()) {
2152     Knob_SpinLimit = 0;
2153     Knob_PreSpin   = 0;
2154     Knob_FixedSpin = -1;
2155   }
2156 
2157   OrderAccess::fence();
2158   InitDone = 1;
2159 }
2160