1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 105 
 106 static int Knob_Bonus               = 100;     // spin success bonus
 107 static int Knob_BonusB              = 100;     // spin success bonus
 108 static int Knob_Penalty             = 200;     // spin failure penalty
 109 static int Knob_Poverty             = 1000;
 110 static int Knob_FixedSpin           = 0;
 111 static int Knob_UsePause            = 1;
 112 static int Knob_ExitPolicy          = 0;
 113 static int Knob_PreSpin             = 10;      // 20-100 likely better
 114 static int Knob_ResetEvent          = 0;
 115 
 116 static int Knob_FastHSSEC           = 0;
 117 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 118 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 119 static volatile int InitDone        = 0;
 120 
 121 // -----------------------------------------------------------------------------
 122 // Theory of operations -- Monitors lists, thread residency, etc:
 123 //
 124 // * A thread acquires ownership of a monitor by successfully
 125 //   CAS()ing the _owner field from null to non-null.
 126 //
 127 // * Invariant: A thread appears on at most one monitor list --
 128 //   cxq, EntryList or WaitSet -- at any one time.
 129 //
 130 // * Contending threads "push" themselves onto the cxq with CAS
 131 //   and then spin/park.
 132 //
 133 // * After a contending thread eventually acquires the lock it must
 134 //   dequeue itself from either the EntryList or the cxq.
 135 //
 136 // * The exiting thread identifies and unparks an "heir presumptive"
 137 //   tentative successor thread on the EntryList.  Critically, the
 138 //   exiting thread doesn't unlink the successor thread from the EntryList.
 139 //   After having been unparked, the wakee will recontend for ownership of
 140 //   the monitor.   The successor (wakee) will either acquire the lock or
 141 //   re-park itself.
 142 //
 143 //   Succession is provided for by a policy of competitive handoff.
 144 //   The exiting thread does _not_ grant or pass ownership to the
 145 //   successor thread.  (This is also referred to as "handoff" succession").
 146 //   Instead the exiting thread releases ownership and possibly wakes
 147 //   a successor, so the successor can (re)compete for ownership of the lock.
 148 //   If the EntryList is empty but the cxq is populated the exiting
 149 //   thread will drain the cxq into the EntryList.  It does so by
 150 //   by detaching the cxq (installing null with CAS) and folding
 151 //   the threads from the cxq into the EntryList.  The EntryList is
 152 //   doubly linked, while the cxq is singly linked because of the
 153 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 154 //
 155 // * Concurrency invariants:
 156 //
 157 //   -- only the monitor owner may access or mutate the EntryList.
 158 //      The mutex property of the monitor itself protects the EntryList
 159 //      from concurrent interference.
 160 //   -- Only the monitor owner may detach the cxq.
 161 //
 162 // * The monitor entry list operations avoid locks, but strictly speaking
 163 //   they're not lock-free.  Enter is lock-free, exit is not.
 164 //   For a description of 'Methods and apparatus providing non-blocking access
 165 //   to a resource,' see U.S. Pat. No. 7844973.
 166 //
 167 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 168 //   detaching thread.  This mechanism is immune from the ABA corruption.
 169 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 170 //
 171 // * Taken together, the cxq and the EntryList constitute or form a
 172 //   single logical queue of threads stalled trying to acquire the lock.
 173 //   We use two distinct lists to improve the odds of a constant-time
 174 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 175 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 176 //   A key desideratum is to minimize queue & monitor metadata manipulation
 177 //   that occurs while holding the monitor lock -- that is, we want to
 178 //   minimize monitor lock holds times.  Note that even a small amount of
 179 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 180 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 181 //   locks and monitor metadata.
 182 //
 183 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 184 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 185 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 186 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 187 //
 188 //   The EntryList is ordered by the prevailing queue discipline and
 189 //   can be organized in any convenient fashion, such as a doubly-linked list or
 190 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 191 //   to operate in constant-time.  If we need a priority queue then something akin
 192 //   to Solaris' sleepq would work nicely.  Viz.,
 193 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 194 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 195 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 196 //   EntryList accordingly.
 197 //
 198 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 199 //   somewhat similar to an elevator-scan.
 200 //
 201 // * The monitor synchronization subsystem avoids the use of native
 202 //   synchronization primitives except for the narrow platform-specific
 203 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 204 //   the semantics of park-unpark.  Put another way, this monitor implementation
 205 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 206 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 207 //   underlying OS manages the READY<->RUN transitions.
 208 //
 209 // * Waiting threads reside on the WaitSet list -- wait() puts
 210 //   the caller onto the WaitSet.
 211 //
 212 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 213 //   either the EntryList or cxq.  Subsequent exit() operations will
 214 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 215 //   it's likely the notifyee would simply impale itself on the lock held
 216 //   by the notifier.
 217 //
 218 // * An interesting alternative is to encode cxq as (List,LockByte) where
 219 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 220 //   variable, like _recursions, in the scheme.  The threads or Events that form
 221 //   the list would have to be aligned in 256-byte addresses.  A thread would
 222 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 223 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 224 //   Note that is is *not* word-tearing, but it does presume that full-word
 225 //   CAS operations are coherent with intermix with STB operations.  That's true
 226 //   on most common processors.
 227 //
 228 // * See also http://blogs.sun.com/dave
 229 
 230 
 231 void* ObjectMonitor::operator new (size_t size) throw() {
 232   return AllocateHeap(size, mtInternal);
 233 }
 234 void* ObjectMonitor::operator new[] (size_t size) throw() {
 235   return operator new (size);
 236 }
 237 void ObjectMonitor::operator delete(void* p) {
 238   FreeHeap(p);
 239 }
 240 void ObjectMonitor::operator delete[] (void *p) {
 241   operator delete(p);
 242 }
 243 
 244 // -----------------------------------------------------------------------------
 245 // Enter support
 246 
 247 void ObjectMonitor::enter(TRAPS) {
 248   // The following code is ordered to check the most common cases first
 249   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 250   Thread * const Self = THREAD;
 251 
 252   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 253   if (cur == NULL) {
 254     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 255     assert(_recursions == 0, "invariant");
 256     assert(_owner == Self, "invariant");
 257     return;
 258   }
 259 
 260   if (cur == Self) {
 261     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 262     _recursions++;
 263     return;
 264   }
 265 
 266   if (Self->is_lock_owned ((address)cur)) {
 267     assert(_recursions == 0, "internal state error");
 268     _recursions = 1;
 269     // Commute owner from a thread-specific on-stack BasicLockObject address to
 270     // a full-fledged "Thread *".
 271     _owner = Self;
 272     return;
 273   }
 274 
 275   // We've encountered genuine contention.
 276   assert(Self->_Stalled == 0, "invariant");
 277   Self->_Stalled = intptr_t(this);
 278 
 279   // Try one round of spinning *before* enqueueing Self
 280   // and before going through the awkward and expensive state
 281   // transitions.  The following spin is strictly optional ...
 282   // Note that if we acquire the monitor from an initial spin
 283   // we forgo posting JVMTI events and firing DTRACE probes.
 284   if (TrySpin(Self) > 0) {
 285     assert(_owner == Self, "invariant");
 286     assert(_recursions == 0, "invariant");
 287     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 288     Self->_Stalled = 0;
 289     return;
 290   }
 291 
 292   assert(_owner != Self, "invariant");
 293   assert(_succ != Self, "invariant");
 294   assert(Self->is_Java_thread(), "invariant");
 295   JavaThread * jt = (JavaThread *) Self;
 296   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 297   assert(jt->thread_state() != _thread_blocked, "invariant");
 298   assert(this->object() != NULL, "invariant");
 299   assert(_count >= 0, "invariant");
 300 
 301   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 302   // Ensure the object-monitor relationship remains stable while there's contention.
 303   Atomic::inc(&_count);
 304 
 305   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 306   EventJavaMonitorEnter event;
 307   if (event.should_commit()) {
 308     event.set_monitorClass(((oop)this->object())->klass());
 309     event.set_address((uintptr_t)(this->object_addr()));
 310   }
 311 
 312   { // Change java thread status to indicate blocked on monitor enter.
 313     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 314 
 315     Self->set_current_pending_monitor(this);
 316 
 317     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 318     if (JvmtiExport::should_post_monitor_contended_enter()) {
 319       JvmtiExport::post_monitor_contended_enter(jt, this);
 320 
 321       // The current thread does not yet own the monitor and does not
 322       // yet appear on any queues that would get it made the successor.
 323       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 324       // handler cannot accidentally consume an unpark() meant for the
 325       // ParkEvent associated with this ObjectMonitor.
 326     }
 327 
 328     OSThreadContendState osts(Self->osthread());
 329     ThreadBlockInVM tbivm(jt);
 330 
 331     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 332     for (;;) {
 333       jt->set_suspend_equivalent();
 334       // cleared by handle_special_suspend_equivalent_condition()
 335       // or java_suspend_self()
 336 
 337       EnterI(THREAD);
 338 
 339       if (!ExitSuspendEquivalent(jt)) break;
 340 
 341       // We have acquired the contended monitor, but while we were
 342       // waiting another thread suspended us. We don't want to enter
 343       // the monitor while suspended because that would surprise the
 344       // thread that suspended us.
 345       //
 346       _recursions = 0;
 347       _succ = NULL;
 348       exit(false, Self);
 349 
 350       jt->java_suspend_self();
 351     }
 352     Self->set_current_pending_monitor(NULL);
 353 
 354     // We cleared the pending monitor info since we've just gotten past
 355     // the enter-check-for-suspend dance and we now own the monitor free
 356     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 357     // destructor can go to a safepoint at the end of this block. If we
 358     // do a thread dump during that safepoint, then this thread will show
 359     // as having "-locked" the monitor, but the OS and java.lang.Thread
 360     // states will still report that the thread is blocked trying to
 361     // acquire it.
 362   }
 363 
 364   Atomic::dec(&_count);
 365   assert(_count >= 0, "invariant");
 366   Self->_Stalled = 0;
 367 
 368   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 369   assert(_recursions == 0, "invariant");
 370   assert(_owner == Self, "invariant");
 371   assert(_succ != Self, "invariant");
 372   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 373 
 374   // The thread -- now the owner -- is back in vm mode.
 375   // Report the glorious news via TI,DTrace and jvmstat.
 376   // The probe effect is non-trivial.  All the reportage occurs
 377   // while we hold the monitor, increasing the length of the critical
 378   // section.  Amdahl's parallel speedup law comes vividly into play.
 379   //
 380   // Another option might be to aggregate the events (thread local or
 381   // per-monitor aggregation) and defer reporting until a more opportune
 382   // time -- such as next time some thread encounters contention but has
 383   // yet to acquire the lock.  While spinning that thread could
 384   // spinning we could increment JVMStat counters, etc.
 385 
 386   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 387   if (JvmtiExport::should_post_monitor_contended_entered()) {
 388     JvmtiExport::post_monitor_contended_entered(jt, this);
 389 
 390     // The current thread already owns the monitor and is not going to
 391     // call park() for the remainder of the monitor enter protocol. So
 392     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 393     // event handler consumed an unpark() issued by the thread that
 394     // just exited the monitor.
 395   }
 396   if (event.should_commit()) {
 397     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 398     event.commit();
 399   }
 400   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 401 }
 402 
 403 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 404 // Callers must compensate as needed.
 405 
 406 int ObjectMonitor::TryLock(Thread * Self) {
 407   void * own = _owner;
 408   if (own != NULL) return 0;
 409   if (Atomic::replace_if_null(Self, &_owner)) {
 410     // Either guarantee _recursions == 0 or set _recursions = 0.
 411     assert(_recursions == 0, "invariant");
 412     assert(_owner == Self, "invariant");
 413     return 1;
 414   }
 415   // The lock had been free momentarily, but we lost the race to the lock.
 416   // Interference -- the CAS failed.
 417   // We can either return -1 or retry.
 418   // Retry doesn't make as much sense because the lock was just acquired.
 419   return -1;
 420 }
 421 
 422 #define MAX_RECHECK_INTERVAL 1000
 423 
 424 void ObjectMonitor::EnterI(TRAPS) {
 425   Thread * const Self = THREAD;
 426   assert(Self->is_Java_thread(), "invariant");
 427   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 428 
 429   // Try the lock - TATAS
 430   if (TryLock (Self) > 0) {
 431     assert(_succ != Self, "invariant");
 432     assert(_owner == Self, "invariant");
 433     assert(_Responsible != Self, "invariant");
 434     return;
 435   }
 436 
 437   DeferredInitialize();
 438 
 439   // We try one round of spinning *before* enqueueing Self.
 440   //
 441   // If the _owner is ready but OFFPROC we could use a YieldTo()
 442   // operation to donate the remainder of this thread's quantum
 443   // to the owner.  This has subtle but beneficial affinity
 444   // effects.
 445 
 446   if (TrySpin(Self) > 0) {
 447     assert(_owner == Self, "invariant");
 448     assert(_succ != Self, "invariant");
 449     assert(_Responsible != Self, "invariant");
 450     return;
 451   }
 452 
 453   // The Spin failed -- Enqueue and park the thread ...
 454   assert(_succ != Self, "invariant");
 455   assert(_owner != Self, "invariant");
 456   assert(_Responsible != Self, "invariant");
 457 
 458   // Enqueue "Self" on ObjectMonitor's _cxq.
 459   //
 460   // Node acts as a proxy for Self.
 461   // As an aside, if were to ever rewrite the synchronization code mostly
 462   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 463   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 464   // as well as eliminate a subset of ABA issues.
 465   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 466 
 467   ObjectWaiter node(Self);
 468   Self->_ParkEvent->reset();
 469   node._prev   = (ObjectWaiter *) 0xBAD;
 470   node.TState  = ObjectWaiter::TS_CXQ;
 471 
 472   // Push "Self" onto the front of the _cxq.
 473   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 474   // Note that spinning tends to reduce the rate at which threads
 475   // enqueue and dequeue on EntryList|cxq.
 476   ObjectWaiter * nxt;
 477   for (;;) {
 478     node._next = nxt = _cxq;
 479     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 480 
 481     // Interference - the CAS failed because _cxq changed.  Just retry.
 482     // As an optional optimization we retry the lock.
 483     if (TryLock (Self) > 0) {
 484       assert(_succ != Self, "invariant");
 485       assert(_owner == Self, "invariant");
 486       assert(_Responsible != Self, "invariant");
 487       return;
 488     }
 489   }
 490 
 491   // Check for cxq|EntryList edge transition to non-null.  This indicates
 492   // the onset of contention.  While contention persists exiting threads
 493   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 494   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 495   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 496   // arrange for one of the contending thread to use a timed park() operations
 497   // to detect and recover from the race.  (Stranding is form of progress failure
 498   // where the monitor is unlocked but all the contending threads remain parked).
 499   // That is, at least one of the contended threads will periodically poll _owner.
 500   // One of the contending threads will become the designated "Responsible" thread.
 501   // The Responsible thread uses a timed park instead of a normal indefinite park
 502   // operation -- it periodically wakes and checks for and recovers from potential
 503   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 504   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 505   // be responsible for a monitor.
 506   //
 507   // Currently, one of the contended threads takes on the added role of "Responsible".
 508   // A viable alternative would be to use a dedicated "stranding checker" thread
 509   // that periodically iterated over all the threads (or active monitors) and unparked
 510   // successors where there was risk of stranding.  This would help eliminate the
 511   // timer scalability issues we see on some platforms as we'd only have one thread
 512   // -- the checker -- parked on a timer.
 513 
 514   if (nxt == NULL && _EntryList == NULL) {
 515     // Try to assume the role of responsible thread for the monitor.
 516     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 517     Atomic::replace_if_null(Self, &_Responsible);
 518   }
 519 
 520   // The lock might have been released while this thread was occupied queueing
 521   // itself onto _cxq.  To close the race and avoid "stranding" and
 522   // progress-liveness failure we must resample-retry _owner before parking.
 523   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 524   // In this case the ST-MEMBAR is accomplished with CAS().
 525   //
 526   // TODO: Defer all thread state transitions until park-time.
 527   // Since state transitions are heavy and inefficient we'd like
 528   // to defer the state transitions until absolutely necessary,
 529   // and in doing so avoid some transitions ...
 530 
 531   int nWakeups = 0;
 532   int recheckInterval = 1;
 533 
 534   for (;;) {
 535 
 536     if (TryLock(Self) > 0) break;
 537     assert(_owner != Self, "invariant");
 538 
 539     // park self
 540     if (_Responsible == Self) {
 541       Self->_ParkEvent->park((jlong) recheckInterval);
 542       // Increase the recheckInterval, but clamp the value.
 543       recheckInterval *= 8;
 544       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 545         recheckInterval = MAX_RECHECK_INTERVAL;
 546       }
 547     } else {
 548       Self->_ParkEvent->park();
 549     }
 550 
 551     if (TryLock(Self) > 0) break;
 552 
 553     // The lock is still contested.
 554     // Keep a tally of the # of futile wakeups.
 555     // Note that the counter is not protected by a lock or updated by atomics.
 556     // That is by design - we trade "lossy" counters which are exposed to
 557     // races during updates for a lower probe effect.
 558 
 559     // This PerfData object can be used in parallel with a safepoint.
 560     // See the work around in PerfDataManager::destroy().
 561     OM_PERFDATA_OP(FutileWakeups, inc());
 562     ++nWakeups;
 563 
 564     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 565     // We can defer clearing _succ until after the spin completes
 566     // TrySpin() must tolerate being called with _succ == Self.
 567     // Try yet another round of adaptive spinning.
 568     if (TrySpin(Self) > 0) break;
 569 
 570     // We can find that we were unpark()ed and redesignated _succ while
 571     // we were spinning.  That's harmless.  If we iterate and call park(),
 572     // park() will consume the event and return immediately and we'll
 573     // just spin again.  This pattern can repeat, leaving _succ to simply
 574     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 575     // Alternately, we can sample fired() here, and if set, forgo spinning
 576     // in the next iteration.
 577 
 578     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 579       Self->_ParkEvent->reset();
 580       OrderAccess::fence();
 581     }
 582     if (_succ == Self) _succ = NULL;
 583 
 584     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 585     OrderAccess::fence();
 586   }
 587 
 588   // Egress :
 589   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 590   // Normally we'll find Self on the EntryList .
 591   // From the perspective of the lock owner (this thread), the
 592   // EntryList is stable and cxq is prepend-only.
 593   // The head of cxq is volatile but the interior is stable.
 594   // In addition, Self.TState is stable.
 595 
 596   assert(_owner == Self, "invariant");
 597   assert(object() != NULL, "invariant");
 598   // I'd like to write:
 599   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 600   // but as we're at a safepoint that's not safe.
 601 
 602   UnlinkAfterAcquire(Self, &node);
 603   if (_succ == Self) _succ = NULL;
 604 
 605   assert(_succ != Self, "invariant");
 606   if (_Responsible == Self) {
 607     _Responsible = NULL;
 608     OrderAccess::fence(); // Dekker pivot-point
 609 
 610     // We may leave threads on cxq|EntryList without a designated
 611     // "Responsible" thread.  This is benign.  When this thread subsequently
 612     // exits the monitor it can "see" such preexisting "old" threads --
 613     // threads that arrived on the cxq|EntryList before the fence, above --
 614     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 615     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 616     // non-null and elect a new "Responsible" timer thread.
 617     //
 618     // This thread executes:
 619     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 620     //    LD cxq|EntryList               (in subsequent exit)
 621     //
 622     // Entering threads in the slow/contended path execute:
 623     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 624     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 625     //
 626     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 627     // exit operation from floating above the ST Responsible=null.
 628   }
 629 
 630   // We've acquired ownership with CAS().
 631   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 632   // But since the CAS() this thread may have also stored into _succ,
 633   // EntryList, cxq or Responsible.  These meta-data updates must be
 634   // visible __before this thread subsequently drops the lock.
 635   // Consider what could occur if we didn't enforce this constraint --
 636   // STs to monitor meta-data and user-data could reorder with (become
 637   // visible after) the ST in exit that drops ownership of the lock.
 638   // Some other thread could then acquire the lock, but observe inconsistent
 639   // or old monitor meta-data and heap data.  That violates the JMM.
 640   // To that end, the 1-0 exit() operation must have at least STST|LDST
 641   // "release" barrier semantics.  Specifically, there must be at least a
 642   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 643   // the lock.   The barrier ensures that changes to monitor meta-data and data
 644   // protected by the lock will be visible before we release the lock, and
 645   // therefore before some other thread (CPU) has a chance to acquire the lock.
 646   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 647   //
 648   // Critically, any prior STs to _succ or EntryList must be visible before
 649   // the ST of null into _owner in the *subsequent* (following) corresponding
 650   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 651   // execute a serializing instruction.
 652 
 653   return;
 654 }
 655 
 656 // ReenterI() is a specialized inline form of the latter half of the
 657 // contended slow-path from EnterI().  We use ReenterI() only for
 658 // monitor reentry in wait().
 659 //
 660 // In the future we should reconcile EnterI() and ReenterI().
 661 
 662 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 663   assert(Self != NULL, "invariant");
 664   assert(SelfNode != NULL, "invariant");
 665   assert(SelfNode->_thread == Self, "invariant");
 666   assert(_waiters > 0, "invariant");
 667   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 668   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 669   JavaThread * jt = (JavaThread *) Self;
 670 
 671   int nWakeups = 0;
 672   for (;;) {
 673     ObjectWaiter::TStates v = SelfNode->TState;
 674     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 675     assert(_owner != Self, "invariant");
 676 
 677     if (TryLock(Self) > 0) break;
 678     if (TrySpin(Self) > 0) break;
 679 
 680     // State transition wrappers around park() ...
 681     // ReenterI() wisely defers state transitions until
 682     // it's clear we must park the thread.
 683     {
 684       OSThreadContendState osts(Self->osthread());
 685       ThreadBlockInVM tbivm(jt);
 686 
 687       // cleared by handle_special_suspend_equivalent_condition()
 688       // or java_suspend_self()
 689       jt->set_suspend_equivalent();
 690       Self->_ParkEvent->park();
 691 
 692       // were we externally suspended while we were waiting?
 693       for (;;) {
 694         if (!ExitSuspendEquivalent(jt)) break;
 695         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 696         jt->java_suspend_self();
 697         jt->set_suspend_equivalent();
 698       }
 699     }
 700 
 701     // Try again, but just so we distinguish between futile wakeups and
 702     // successful wakeups.  The following test isn't algorithmically
 703     // necessary, but it helps us maintain sensible statistics.
 704     if (TryLock(Self) > 0) break;
 705 
 706     // The lock is still contested.
 707     // Keep a tally of the # of futile wakeups.
 708     // Note that the counter is not protected by a lock or updated by atomics.
 709     // That is by design - we trade "lossy" counters which are exposed to
 710     // races during updates for a lower probe effect.
 711     ++nWakeups;
 712 
 713     // Assuming this is not a spurious wakeup we'll normally
 714     // find that _succ == Self.
 715     if (_succ == Self) _succ = NULL;
 716 
 717     // Invariant: after clearing _succ a contending thread
 718     // *must* retry  _owner before parking.
 719     OrderAccess::fence();
 720 
 721     // This PerfData object can be used in parallel with a safepoint.
 722     // See the work around in PerfDataManager::destroy().
 723     OM_PERFDATA_OP(FutileWakeups, inc());
 724   }
 725 
 726   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 727   // Normally we'll find Self on the EntryList.
 728   // Unlinking from the EntryList is constant-time and atomic-free.
 729   // From the perspective of the lock owner (this thread), the
 730   // EntryList is stable and cxq is prepend-only.
 731   // The head of cxq is volatile but the interior is stable.
 732   // In addition, Self.TState is stable.
 733 
 734   assert(_owner == Self, "invariant");
 735   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 736   UnlinkAfterAcquire(Self, SelfNode);
 737   if (_succ == Self) _succ = NULL;
 738   assert(_succ != Self, "invariant");
 739   SelfNode->TState = ObjectWaiter::TS_RUN;
 740   OrderAccess::fence();      // see comments at the end of EnterI()
 741 }
 742 
 743 // By convention we unlink a contending thread from EntryList|cxq immediately
 744 // after the thread acquires the lock in ::enter().  Equally, we could defer
 745 // unlinking the thread until ::exit()-time.
 746 
 747 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 748   assert(_owner == Self, "invariant");
 749   assert(SelfNode->_thread == Self, "invariant");
 750 
 751   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 752     // Normal case: remove Self from the DLL EntryList .
 753     // This is a constant-time operation.
 754     ObjectWaiter * nxt = SelfNode->_next;
 755     ObjectWaiter * prv = SelfNode->_prev;
 756     if (nxt != NULL) nxt->_prev = prv;
 757     if (prv != NULL) prv->_next = nxt;
 758     if (SelfNode == _EntryList) _EntryList = nxt;
 759     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 760     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 761   } else {
 762     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 763     // Inopportune interleaving -- Self is still on the cxq.
 764     // This usually means the enqueue of self raced an exiting thread.
 765     // Normally we'll find Self near the front of the cxq, so
 766     // dequeueing is typically fast.  If needbe we can accelerate
 767     // this with some MCS/CHL-like bidirectional list hints and advisory
 768     // back-links so dequeueing from the interior will normally operate
 769     // in constant-time.
 770     // Dequeue Self from either the head (with CAS) or from the interior
 771     // with a linear-time scan and normal non-atomic memory operations.
 772     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 773     // and then unlink Self from EntryList.  We have to drain eventually,
 774     // so it might as well be now.
 775 
 776     ObjectWaiter * v = _cxq;
 777     assert(v != NULL, "invariant");
 778     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 779       // The CAS above can fail from interference IFF a "RAT" arrived.
 780       // In that case Self must be in the interior and can no longer be
 781       // at the head of cxq.
 782       if (v == SelfNode) {
 783         assert(_cxq != v, "invariant");
 784         v = _cxq;          // CAS above failed - start scan at head of list
 785       }
 786       ObjectWaiter * p;
 787       ObjectWaiter * q = NULL;
 788       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 789         q = p;
 790         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 791       }
 792       assert(v != SelfNode, "invariant");
 793       assert(p == SelfNode, "Node not found on cxq");
 794       assert(p != _cxq, "invariant");
 795       assert(q != NULL, "invariant");
 796       assert(q->_next == p, "invariant");
 797       q->_next = p->_next;
 798     }
 799   }
 800 
 801 #ifdef ASSERT
 802   // Diagnostic hygiene ...
 803   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 804   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 805   SelfNode->TState = ObjectWaiter::TS_RUN;
 806 #endif
 807 }
 808 
 809 // -----------------------------------------------------------------------------
 810 // Exit support
 811 //
 812 // exit()
 813 // ~~~~~~
 814 // Note that the collector can't reclaim the objectMonitor or deflate
 815 // the object out from underneath the thread calling ::exit() as the
 816 // thread calling ::exit() never transitions to a stable state.
 817 // This inhibits GC, which in turn inhibits asynchronous (and
 818 // inopportune) reclamation of "this".
 819 //
 820 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 821 // There's one exception to the claim above, however.  EnterI() can call
 822 // exit() to drop a lock if the acquirer has been externally suspended.
 823 // In that case exit() is called with _thread_state as _thread_blocked,
 824 // but the monitor's _count field is > 0, which inhibits reclamation.
 825 //
 826 // 1-0 exit
 827 // ~~~~~~~~
 828 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 829 // the fast-path operators have been optimized so the common ::exit()
 830 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 831 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 832 // greatly improves latency -- MEMBAR and CAS having considerable local
 833 // latency on modern processors -- but at the cost of "stranding".  Absent the
 834 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 835 // ::enter() path, resulting in the entering thread being stranding
 836 // and a progress-liveness failure.   Stranding is extremely rare.
 837 // We use timers (timed park operations) & periodic polling to detect
 838 // and recover from stranding.  Potentially stranded threads periodically
 839 // wake up and poll the lock.  See the usage of the _Responsible variable.
 840 //
 841 // The CAS() in enter provides for safety and exclusion, while the CAS or
 842 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 843 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 844 // We detect and recover from stranding with timers.
 845 //
 846 // If a thread transiently strands it'll park until (a) another
 847 // thread acquires the lock and then drops the lock, at which time the
 848 // exiting thread will notice and unpark the stranded thread, or, (b)
 849 // the timer expires.  If the lock is high traffic then the stranding latency
 850 // will be low due to (a).  If the lock is low traffic then the odds of
 851 // stranding are lower, although the worst-case stranding latency
 852 // is longer.  Critically, we don't want to put excessive load in the
 853 // platform's timer subsystem.  We want to minimize both the timer injection
 854 // rate (timers created/sec) as well as the number of timers active at
 855 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 856 // the integral of the # of active timers at any instant over time).
 857 // Both impinge on OS scalability.  Given that, at most one thread parked on
 858 // a monitor will use a timer.
 859 //
 860 // There is also the risk of a futile wake-up. If we drop the lock
 861 // another thread can reacquire the lock immediately, and we can
 862 // then wake a thread unnecessarily. This is benign, and we've
 863 // structured the code so the windows are short and the frequency
 864 // of such futile wakups is low.
 865 
 866 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 867   Thread * const Self = THREAD;
 868   if (THREAD != _owner) {
 869     if (THREAD->is_lock_owned((address) _owner)) {
 870       // Transmute _owner from a BasicLock pointer to a Thread address.
 871       // We don't need to hold _mutex for this transition.
 872       // Non-null to Non-null is safe as long as all readers can
 873       // tolerate either flavor.
 874       assert(_recursions == 0, "invariant");
 875       _owner = THREAD;
 876       _recursions = 0;
 877     } else {
 878       // Apparent unbalanced locking ...
 879       // Naively we'd like to throw IllegalMonitorStateException.
 880       // As a practical matter we can neither allocate nor throw an
 881       // exception as ::exit() can be called from leaf routines.
 882       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 883       // Upon deeper reflection, however, in a properly run JVM the only
 884       // way we should encounter this situation is in the presence of
 885       // unbalanced JNI locking. TODO: CheckJNICalls.
 886       // See also: CR4414101
 887       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 888       return;
 889     }
 890   }
 891 
 892   if (_recursions != 0) {
 893     _recursions--;        // this is simple recursive enter
 894     return;
 895   }
 896 
 897   // Invariant: after setting Responsible=null an thread must execute
 898   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 899   _Responsible = NULL;
 900 
 901 #if INCLUDE_JFR
 902   // get the owner's thread id for the MonitorEnter event
 903   // if it is enabled and the thread isn't suspended
 904   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 905     _previous_owner_tid = JFR_THREAD_ID(Self);
 906   }
 907 #endif
 908 
 909   for (;;) {
 910     assert(THREAD == _owner, "invariant");
 911 
 912     if (Knob_ExitPolicy == 0) {
 913       // release semantics: prior loads and stores from within the critical section
 914       // must not float (reorder) past the following store that drops the lock.
 915       // On SPARC that requires MEMBAR #loadstore|#storestore.
 916       // But of course in TSO #loadstore|#storestore is not required.
 917       // I'd like to write one of the following:
 918       // A.  OrderAccess::release() ; _owner = NULL
 919       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 920       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 921       // store into a _dummy variable.  That store is not needed, but can result
 922       // in massive wasteful coherency traffic on classic SMP systems.
 923       // Instead, I use release_store(), which is implemented as just a simple
 924       // ST on x64, x86 and SPARC.
 925       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 926       OrderAccess::storeload();                        // See if we need to wake a successor
 927       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 928         return;
 929       }
 930       // Other threads are blocked trying to acquire the lock.
 931 
 932       // Normally the exiting thread is responsible for ensuring succession,
 933       // but if other successors are ready or other entering threads are spinning
 934       // then this thread can simply store NULL into _owner and exit without
 935       // waking a successor.  The existence of spinners or ready successors
 936       // guarantees proper succession (liveness).  Responsibility passes to the
 937       // ready or running successors.  The exiting thread delegates the duty.
 938       // More precisely, if a successor already exists this thread is absolved
 939       // of the responsibility of waking (unparking) one.
 940       //
 941       // The _succ variable is critical to reducing futile wakeup frequency.
 942       // _succ identifies the "heir presumptive" thread that has been made
 943       // ready (unparked) but that has not yet run.  We need only one such
 944       // successor thread to guarantee progress.
 945       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 946       // section 3.3 "Futile Wakeup Throttling" for details.
 947       //
 948       // Note that spinners in Enter() also set _succ non-null.
 949       // In the current implementation spinners opportunistically set
 950       // _succ so that exiting threads might avoid waking a successor.
 951       // Another less appealing alternative would be for the exiting thread
 952       // to drop the lock and then spin briefly to see if a spinner managed
 953       // to acquire the lock.  If so, the exiting thread could exit
 954       // immediately without waking a successor, otherwise the exiting
 955       // thread would need to dequeue and wake a successor.
 956       // (Note that we'd need to make the post-drop spin short, but no
 957       // shorter than the worst-case round-trip cache-line migration time.
 958       // The dropped lock needs to become visible to the spinner, and then
 959       // the acquisition of the lock by the spinner must become visible to
 960       // the exiting thread).
 961 
 962       // It appears that an heir-presumptive (successor) must be made ready.
 963       // Only the current lock owner can manipulate the EntryList or
 964       // drain _cxq, so we need to reacquire the lock.  If we fail
 965       // to reacquire the lock the responsibility for ensuring succession
 966       // falls to the new owner.
 967       //
 968       if (!Atomic::replace_if_null(THREAD, &_owner)) {
 969         return;
 970       }
 971     } else {
 972       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 973         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 974         OrderAccess::storeload();
 975         // Ratify the previously observed values.
 976         if (_cxq == NULL || _succ != NULL) {
 977           return;
 978         }
 979 
 980         // inopportune interleaving -- the exiting thread (this thread)
 981         // in the fast-exit path raced an entering thread in the slow-enter
 982         // path.
 983         // We have two choices:
 984         // A.  Try to reacquire the lock.
 985         //     If the CAS() fails return immediately, otherwise
 986         //     we either restart/rerun the exit operation, or simply
 987         //     fall-through into the code below which wakes a successor.
 988         // B.  If the elements forming the EntryList|cxq are TSM
 989         //     we could simply unpark() the lead thread and return
 990         //     without having set _succ.
 991         if (!Atomic::replace_if_null(THREAD, &_owner)) {
 992           return;
 993         }
 994       }
 995     }
 996 
 997     guarantee(_owner == THREAD, "invariant");
 998 
 999     ObjectWaiter * w = NULL;
1000     int QMode = Knob_QMode;
1001 
1002     if (QMode == 2 && _cxq != NULL) {
1003       // QMode == 2 : cxq has precedence over EntryList.
1004       // Try to directly wake a successor from the cxq.
1005       // If successful, the successor will need to unlink itself from cxq.
1006       w = _cxq;
1007       assert(w != NULL, "invariant");
1008       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1009       ExitEpilog(Self, w);
1010       return;
1011     }
1012 
1013     if (QMode == 3 && _cxq != NULL) {
1014       // Aggressively drain cxq into EntryList at the first opportunity.
1015       // This policy ensure that recently-run threads live at the head of EntryList.
1016       // Drain _cxq into EntryList - bulk transfer.
1017       // First, detach _cxq.
1018       // The following loop is tantamount to: w = swap(&cxq, NULL)
1019       w = _cxq;
1020       for (;;) {
1021         assert(w != NULL, "Invariant");
1022         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1023         if (u == w) break;
1024         w = u;
1025       }
1026       assert(w != NULL, "invariant");
1027 
1028       ObjectWaiter * q = NULL;
1029       ObjectWaiter * p;
1030       for (p = w; p != NULL; p = p->_next) {
1031         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1032         p->TState = ObjectWaiter::TS_ENTER;
1033         p->_prev = q;
1034         q = p;
1035       }
1036 
1037       // Append the RATs to the EntryList
1038       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1039       ObjectWaiter * Tail;
1040       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1041            Tail = Tail->_next)
1042         /* empty */;
1043       if (Tail == NULL) {
1044         _EntryList = w;
1045       } else {
1046         Tail->_next = w;
1047         w->_prev = Tail;
1048       }
1049 
1050       // Fall thru into code that tries to wake a successor from EntryList
1051     }
1052 
1053     if (QMode == 4 && _cxq != NULL) {
1054       // Aggressively drain cxq into EntryList at the first opportunity.
1055       // This policy ensure that recently-run threads live at the head of EntryList.
1056 
1057       // Drain _cxq into EntryList - bulk transfer.
1058       // First, detach _cxq.
1059       // The following loop is tantamount to: w = swap(&cxq, NULL)
1060       w = _cxq;
1061       for (;;) {
1062         assert(w != NULL, "Invariant");
1063         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1064         if (u == w) break;
1065         w = u;
1066       }
1067       assert(w != NULL, "invariant");
1068 
1069       ObjectWaiter * q = NULL;
1070       ObjectWaiter * p;
1071       for (p = w; p != NULL; p = p->_next) {
1072         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1073         p->TState = ObjectWaiter::TS_ENTER;
1074         p->_prev = q;
1075         q = p;
1076       }
1077 
1078       // Prepend the RATs to the EntryList
1079       if (_EntryList != NULL) {
1080         q->_next = _EntryList;
1081         _EntryList->_prev = q;
1082       }
1083       _EntryList = w;
1084 
1085       // Fall thru into code that tries to wake a successor from EntryList
1086     }
1087 
1088     w = _EntryList;
1089     if (w != NULL) {
1090       // I'd like to write: guarantee (w->_thread != Self).
1091       // But in practice an exiting thread may find itself on the EntryList.
1092       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1093       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1094       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1095       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1096       // release the lock "O".  T2 resumes immediately after the ST of null into
1097       // _owner, above.  T2 notices that the EntryList is populated, so it
1098       // reacquires the lock and then finds itself on the EntryList.
1099       // Given all that, we have to tolerate the circumstance where "w" is
1100       // associated with Self.
1101       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1102       ExitEpilog(Self, w);
1103       return;
1104     }
1105 
1106     // If we find that both _cxq and EntryList are null then just
1107     // re-run the exit protocol from the top.
1108     w = _cxq;
1109     if (w == NULL) continue;
1110 
1111     // Drain _cxq into EntryList - bulk transfer.
1112     // First, detach _cxq.
1113     // The following loop is tantamount to: w = swap(&cxq, NULL)
1114     for (;;) {
1115       assert(w != NULL, "Invariant");
1116       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1117       if (u == w) break;
1118       w = u;
1119     }
1120 
1121     assert(w != NULL, "invariant");
1122     assert(_EntryList == NULL, "invariant");
1123 
1124     // Convert the LIFO SLL anchored by _cxq into a DLL.
1125     // The list reorganization step operates in O(LENGTH(w)) time.
1126     // It's critical that this step operate quickly as
1127     // "Self" still holds the outer-lock, restricting parallelism
1128     // and effectively lengthening the critical section.
1129     // Invariant: s chases t chases u.
1130     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1131     // we have faster access to the tail.
1132 
1133     if (QMode == 1) {
1134       // QMode == 1 : drain cxq to EntryList, reversing order
1135       // We also reverse the order of the list.
1136       ObjectWaiter * s = NULL;
1137       ObjectWaiter * t = w;
1138       ObjectWaiter * u = NULL;
1139       while (t != NULL) {
1140         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1141         t->TState = ObjectWaiter::TS_ENTER;
1142         u = t->_next;
1143         t->_prev = u;
1144         t->_next = s;
1145         s = t;
1146         t = u;
1147       }
1148       _EntryList  = s;
1149       assert(s != NULL, "invariant");
1150     } else {
1151       // QMode == 0 or QMode == 2
1152       _EntryList = w;
1153       ObjectWaiter * q = NULL;
1154       ObjectWaiter * p;
1155       for (p = w; p != NULL; p = p->_next) {
1156         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1157         p->TState = ObjectWaiter::TS_ENTER;
1158         p->_prev = q;
1159         q = p;
1160       }
1161     }
1162 
1163     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1164     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1165 
1166     // See if we can abdicate to a spinner instead of waking a thread.
1167     // A primary goal of the implementation is to reduce the
1168     // context-switch rate.
1169     if (_succ != NULL) continue;
1170 
1171     w = _EntryList;
1172     if (w != NULL) {
1173       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1174       ExitEpilog(Self, w);
1175       return;
1176     }
1177   }
1178 }
1179 
1180 // ExitSuspendEquivalent:
1181 // A faster alternate to handle_special_suspend_equivalent_condition()
1182 //
1183 // handle_special_suspend_equivalent_condition() unconditionally
1184 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1185 // operations have high latency.  Note that in ::enter() we call HSSEC
1186 // while holding the monitor, so we effectively lengthen the critical sections.
1187 //
1188 // There are a number of possible solutions:
1189 //
1190 // A.  To ameliorate the problem we might also defer state transitions
1191 //     to as late as possible -- just prior to parking.
1192 //     Given that, we'd call HSSEC after having returned from park(),
1193 //     but before attempting to acquire the monitor.  This is only a
1194 //     partial solution.  It avoids calling HSSEC while holding the
1195 //     monitor (good), but it still increases successor reacquisition latency --
1196 //     the interval between unparking a successor and the time the successor
1197 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1198 //     If we use this technique we can also avoid EnterI()-exit() loop
1199 //     in ::enter() where we iteratively drop the lock and then attempt
1200 //     to reacquire it after suspending.
1201 //
1202 // B.  In the future we might fold all the suspend bits into a
1203 //     composite per-thread suspend flag and then update it with CAS().
1204 //     Alternately, a Dekker-like mechanism with multiple variables
1205 //     would suffice:
1206 //       ST Self->_suspend_equivalent = false
1207 //       MEMBAR
1208 //       LD Self_>_suspend_flags
1209 //
1210 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1211 // with a more efficient implementation, the need to use "FastHSSEC" has
1212 // decreased. - Dave
1213 
1214 
1215 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1216   const int Mode = Knob_FastHSSEC;
1217   if (Mode && !jSelf->is_external_suspend()) {
1218     assert(jSelf->is_suspend_equivalent(), "invariant");
1219     jSelf->clear_suspend_equivalent();
1220     if (2 == Mode) OrderAccess::storeload();
1221     if (!jSelf->is_external_suspend()) return false;
1222     // We raced a suspension -- fall thru into the slow path
1223     jSelf->set_suspend_equivalent();
1224   }
1225   return jSelf->handle_special_suspend_equivalent_condition();
1226 }
1227 
1228 
1229 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1230   assert(_owner == Self, "invariant");
1231 
1232   // Exit protocol:
1233   // 1. ST _succ = wakee
1234   // 2. membar #loadstore|#storestore;
1235   // 2. ST _owner = NULL
1236   // 3. unpark(wakee)
1237 
1238   _succ = Wakee->_thread;
1239   ParkEvent * Trigger = Wakee->_event;
1240 
1241   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1242   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1243   // out-of-scope (non-extant).
1244   Wakee  = NULL;
1245 
1246   // Drop the lock
1247   OrderAccess::release_store(&_owner, (void*)NULL);
1248   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1249 
1250   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1251   Trigger->unpark();
1252 
1253   // Maintain stats and report events to JVMTI
1254   OM_PERFDATA_OP(Parks, inc());
1255 }
1256 
1257 
1258 // -----------------------------------------------------------------------------
1259 // Class Loader deadlock handling.
1260 //
1261 // complete_exit exits a lock returning recursion count
1262 // complete_exit/reenter operate as a wait without waiting
1263 // complete_exit requires an inflated monitor
1264 // The _owner field is not always the Thread addr even with an
1265 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1266 // thread due to contention.
1267 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1268   Thread * const Self = THREAD;
1269   assert(Self->is_Java_thread(), "Must be Java thread!");
1270   JavaThread *jt = (JavaThread *)THREAD;
1271 
1272   DeferredInitialize();
1273 
1274   if (THREAD != _owner) {
1275     if (THREAD->is_lock_owned ((address)_owner)) {
1276       assert(_recursions == 0, "internal state error");
1277       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1278       _recursions = 0;
1279     }
1280   }
1281 
1282   guarantee(Self == _owner, "complete_exit not owner");
1283   intptr_t save = _recursions; // record the old recursion count
1284   _recursions = 0;        // set the recursion level to be 0
1285   exit(true, Self);           // exit the monitor
1286   guarantee(_owner != Self, "invariant");
1287   return save;
1288 }
1289 
1290 // reenter() enters a lock and sets recursion count
1291 // complete_exit/reenter operate as a wait without waiting
1292 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1293   Thread * const Self = THREAD;
1294   assert(Self->is_Java_thread(), "Must be Java thread!");
1295   JavaThread *jt = (JavaThread *)THREAD;
1296 
1297   guarantee(_owner != Self, "reenter already owner");
1298   enter(THREAD);       // enter the monitor
1299   guarantee(_recursions == 0, "reenter recursion");
1300   _recursions = recursions;
1301   return;
1302 }
1303 
1304 
1305 // -----------------------------------------------------------------------------
1306 // A macro is used below because there may already be a pending
1307 // exception which should not abort the execution of the routines
1308 // which use this (which is why we don't put this into check_slow and
1309 // call it with a CHECK argument).
1310 
1311 #define CHECK_OWNER()                                                       \
1312   do {                                                                      \
1313     if (THREAD != _owner) {                                                 \
1314       if (THREAD->is_lock_owned((address) _owner)) {                        \
1315         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1316         _recursions = 0;                                                    \
1317       } else {                                                              \
1318         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1319       }                                                                     \
1320     }                                                                       \
1321   } while (false)
1322 
1323 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1324 // TODO-FIXME: remove check_slow() -- it's likely dead.
1325 
1326 void ObjectMonitor::check_slow(TRAPS) {
1327   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1328   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1329 }
1330 
1331 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1332                                     ObjectMonitor* monitor,
1333                                     jlong notifier_tid,
1334                                     jlong timeout,
1335                                     bool timedout) {
1336   assert(event != NULL, "invariant");
1337   assert(monitor != NULL, "invariant");
1338   event->set_monitorClass(((oop)monitor->object())->klass());
1339   event->set_timeout(timeout);
1340   event->set_address((uintptr_t)monitor->object_addr());
1341   event->set_notifier(notifier_tid);
1342   event->set_timedOut(timedout);
1343   event->commit();
1344 }
1345 
1346 // -----------------------------------------------------------------------------
1347 // Wait/Notify/NotifyAll
1348 //
1349 // Note: a subset of changes to ObjectMonitor::wait()
1350 // will need to be replicated in complete_exit
1351 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1352   Thread * const Self = THREAD;
1353   assert(Self->is_Java_thread(), "Must be Java thread!");
1354   JavaThread *jt = (JavaThread *)THREAD;
1355 
1356   DeferredInitialize();
1357 
1358   // Throw IMSX or IEX.
1359   CHECK_OWNER();
1360 
1361   EventJavaMonitorWait event;
1362 
1363   // check for a pending interrupt
1364   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1365     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1366     if (JvmtiExport::should_post_monitor_waited()) {
1367       // Note: 'false' parameter is passed here because the
1368       // wait was not timed out due to thread interrupt.
1369       JvmtiExport::post_monitor_waited(jt, this, false);
1370 
1371       // In this short circuit of the monitor wait protocol, the
1372       // current thread never drops ownership of the monitor and
1373       // never gets added to the wait queue so the current thread
1374       // cannot be made the successor. This means that the
1375       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1376       // consume an unpark() meant for the ParkEvent associated with
1377       // this ObjectMonitor.
1378     }
1379     if (event.should_commit()) {
1380       post_monitor_wait_event(&event, this, 0, millis, false);
1381     }
1382     THROW(vmSymbols::java_lang_InterruptedException());
1383     return;
1384   }
1385 
1386   assert(Self->_Stalled == 0, "invariant");
1387   Self->_Stalled = intptr_t(this);
1388   jt->set_current_waiting_monitor(this);
1389 
1390   // create a node to be put into the queue
1391   // Critically, after we reset() the event but prior to park(), we must check
1392   // for a pending interrupt.
1393   ObjectWaiter node(Self);
1394   node.TState = ObjectWaiter::TS_WAIT;
1395   Self->_ParkEvent->reset();
1396   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1397 
1398   // Enter the waiting queue, which is a circular doubly linked list in this case
1399   // but it could be a priority queue or any data structure.
1400   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1401   // by the the owner of the monitor *except* in the case where park()
1402   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1403   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1404 
1405   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1406   AddWaiter(&node);
1407   Thread::SpinRelease(&_WaitSetLock);
1408 
1409   _Responsible = NULL;
1410 
1411   intptr_t save = _recursions; // record the old recursion count
1412   _waiters++;                  // increment the number of waiters
1413   _recursions = 0;             // set the recursion level to be 1
1414   exit(true, Self);                    // exit the monitor
1415   guarantee(_owner != Self, "invariant");
1416 
1417   // The thread is on the WaitSet list - now park() it.
1418   // On MP systems it's conceivable that a brief spin before we park
1419   // could be profitable.
1420   //
1421   // TODO-FIXME: change the following logic to a loop of the form
1422   //   while (!timeout && !interrupted && _notified == 0) park()
1423 
1424   int ret = OS_OK;
1425   int WasNotified = 0;
1426   { // State transition wrappers
1427     OSThread* osthread = Self->osthread();
1428     OSThreadWaitState osts(osthread, true);
1429     {
1430       ThreadBlockInVM tbivm(jt);
1431       // Thread is in thread_blocked state and oop access is unsafe.
1432       jt->set_suspend_equivalent();
1433 
1434       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1435         // Intentionally empty
1436       } else if (node._notified == 0) {
1437         if (millis <= 0) {
1438           Self->_ParkEvent->park();
1439         } else {
1440           ret = Self->_ParkEvent->park(millis);
1441         }
1442       }
1443 
1444       // were we externally suspended while we were waiting?
1445       if (ExitSuspendEquivalent (jt)) {
1446         // TODO-FIXME: add -- if succ == Self then succ = null.
1447         jt->java_suspend_self();
1448       }
1449 
1450     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1451 
1452     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1453     // from the WaitSet to the EntryList.
1454     // See if we need to remove Node from the WaitSet.
1455     // We use double-checked locking to avoid grabbing _WaitSetLock
1456     // if the thread is not on the wait queue.
1457     //
1458     // Note that we don't need a fence before the fetch of TState.
1459     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1460     // written by the is thread. (perhaps the fetch might even be satisfied
1461     // by a look-aside into the processor's own store buffer, although given
1462     // the length of the code path between the prior ST and this load that's
1463     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1464     // then we'll acquire the lock and then re-fetch a fresh TState value.
1465     // That is, we fail toward safety.
1466 
1467     if (node.TState == ObjectWaiter::TS_WAIT) {
1468       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1469       if (node.TState == ObjectWaiter::TS_WAIT) {
1470         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1471         assert(node._notified == 0, "invariant");
1472         node.TState = ObjectWaiter::TS_RUN;
1473       }
1474       Thread::SpinRelease(&_WaitSetLock);
1475     }
1476 
1477     // The thread is now either on off-list (TS_RUN),
1478     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1479     // The Node's TState variable is stable from the perspective of this thread.
1480     // No other threads will asynchronously modify TState.
1481     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1482     OrderAccess::loadload();
1483     if (_succ == Self) _succ = NULL;
1484     WasNotified = node._notified;
1485 
1486     // Reentry phase -- reacquire the monitor.
1487     // re-enter contended monitor after object.wait().
1488     // retain OBJECT_WAIT state until re-enter successfully completes
1489     // Thread state is thread_in_vm and oop access is again safe,
1490     // although the raw address of the object may have changed.
1491     // (Don't cache naked oops over safepoints, of course).
1492 
1493     // post monitor waited event. Note that this is past-tense, we are done waiting.
1494     if (JvmtiExport::should_post_monitor_waited()) {
1495       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1496 
1497       if (node._notified != 0 && _succ == Self) {
1498         // In this part of the monitor wait-notify-reenter protocol it
1499         // is possible (and normal) for another thread to do a fastpath
1500         // monitor enter-exit while this thread is still trying to get
1501         // to the reenter portion of the protocol.
1502         //
1503         // The ObjectMonitor was notified and the current thread is
1504         // the successor which also means that an unpark() has already
1505         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1506         // consume the unpark() that was done when the successor was
1507         // set because the same ParkEvent is shared between Java
1508         // monitors and JVM/TI RawMonitors (for now).
1509         //
1510         // We redo the unpark() to ensure forward progress, i.e., we
1511         // don't want all pending threads hanging (parked) with none
1512         // entering the unlocked monitor.
1513         node._event->unpark();
1514       }
1515     }
1516 
1517     if (event.should_commit()) {
1518       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1519     }
1520 
1521     OrderAccess::fence();
1522 
1523     assert(Self->_Stalled != 0, "invariant");
1524     Self->_Stalled = 0;
1525 
1526     assert(_owner != Self, "invariant");
1527     ObjectWaiter::TStates v = node.TState;
1528     if (v == ObjectWaiter::TS_RUN) {
1529       enter(Self);
1530     } else {
1531       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1532       ReenterI(Self, &node);
1533       node.wait_reenter_end(this);
1534     }
1535 
1536     // Self has reacquired the lock.
1537     // Lifecycle - the node representing Self must not appear on any queues.
1538     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1539     // want residual elements associated with this thread left on any lists.
1540     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1541     assert(_owner == Self, "invariant");
1542     assert(_succ != Self, "invariant");
1543   } // OSThreadWaitState()
1544 
1545   jt->set_current_waiting_monitor(NULL);
1546 
1547   guarantee(_recursions == 0, "invariant");
1548   _recursions = save;     // restore the old recursion count
1549   _waiters--;             // decrement the number of waiters
1550 
1551   // Verify a few postconditions
1552   assert(_owner == Self, "invariant");
1553   assert(_succ != Self, "invariant");
1554   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1555 
1556   // check if the notification happened
1557   if (!WasNotified) {
1558     // no, it could be timeout or Thread.interrupt() or both
1559     // check for interrupt event, otherwise it is timeout
1560     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1561       THROW(vmSymbols::java_lang_InterruptedException());
1562     }
1563   }
1564 
1565   // NOTE: Spurious wake up will be consider as timeout.
1566   // Monitor notify has precedence over thread interrupt.
1567 }
1568 
1569 
1570 // Consider:
1571 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1572 // then instead of transferring a thread from the WaitSet to the EntryList
1573 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1574 
1575 void ObjectMonitor::INotify(Thread * Self) {
1576   const int policy = Knob_MoveNotifyee;
1577 
1578   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1579   ObjectWaiter * iterator = DequeueWaiter();
1580   if (iterator != NULL) {
1581     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1582     guarantee(iterator->_notified == 0, "invariant");
1583     // Disposition - what might we do with iterator ?
1584     // a.  add it directly to the EntryList - either tail (policy == 1)
1585     //     or head (policy == 0).
1586     // b.  push it onto the front of the _cxq (policy == 2).
1587     // For now we use (b).
1588     if (policy != 4) {
1589       iterator->TState = ObjectWaiter::TS_ENTER;
1590     }
1591     iterator->_notified = 1;
1592     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1593 
1594     ObjectWaiter * list = _EntryList;
1595     if (list != NULL) {
1596       assert(list->_prev == NULL, "invariant");
1597       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1598       assert(list != iterator, "invariant");
1599     }
1600 
1601     if (policy == 0) {       // prepend to EntryList
1602       if (list == NULL) {
1603         iterator->_next = iterator->_prev = NULL;
1604         _EntryList = iterator;
1605       } else {
1606         list->_prev = iterator;
1607         iterator->_next = list;
1608         iterator->_prev = NULL;
1609         _EntryList = iterator;
1610       }
1611     } else if (policy == 1) {      // append to EntryList
1612       if (list == NULL) {
1613         iterator->_next = iterator->_prev = NULL;
1614         _EntryList = iterator;
1615       } else {
1616         // CONSIDER:  finding the tail currently requires a linear-time walk of
1617         // the EntryList.  We can make tail access constant-time by converting to
1618         // a CDLL instead of using our current DLL.
1619         ObjectWaiter * tail;
1620         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1621         assert(tail != NULL && tail->_next == NULL, "invariant");
1622         tail->_next = iterator;
1623         iterator->_prev = tail;
1624         iterator->_next = NULL;
1625       }
1626     } else if (policy == 2) {      // prepend to cxq
1627       if (list == NULL) {
1628         iterator->_next = iterator->_prev = NULL;
1629         _EntryList = iterator;
1630       } else {
1631         iterator->TState = ObjectWaiter::TS_CXQ;
1632         for (;;) {
1633           ObjectWaiter * front = _cxq;
1634           iterator->_next = front;
1635           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1636             break;
1637           }
1638         }
1639       }
1640     } else if (policy == 3) {      // append to cxq
1641       iterator->TState = ObjectWaiter::TS_CXQ;
1642       for (;;) {
1643         ObjectWaiter * tail = _cxq;
1644         if (tail == NULL) {
1645           iterator->_next = NULL;
1646           if (Atomic::replace_if_null(iterator, &_cxq)) {
1647             break;
1648           }
1649         } else {
1650           while (tail->_next != NULL) tail = tail->_next;
1651           tail->_next = iterator;
1652           iterator->_prev = tail;
1653           iterator->_next = NULL;
1654           break;
1655         }
1656       }
1657     } else {
1658       ParkEvent * ev = iterator->_event;
1659       iterator->TState = ObjectWaiter::TS_RUN;
1660       OrderAccess::fence();
1661       ev->unpark();
1662     }
1663 
1664     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1665     // move the add-to-EntryList operation, above, outside the critical section
1666     // protected by _WaitSetLock.  In practice that's not useful.  With the
1667     // exception of  wait() timeouts and interrupts the monitor owner
1668     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1669     // on _WaitSetLock so it's not profitable to reduce the length of the
1670     // critical section.
1671 
1672     if (policy < 4) {
1673       iterator->wait_reenter_begin(this);
1674     }
1675   }
1676   Thread::SpinRelease(&_WaitSetLock);
1677 }
1678 
1679 // Consider: a not-uncommon synchronization bug is to use notify() when
1680 // notifyAll() is more appropriate, potentially resulting in stranded
1681 // threads; this is one example of a lost wakeup. A useful diagnostic
1682 // option is to force all notify() operations to behave as notifyAll().
1683 //
1684 // Note: We can also detect many such problems with a "minimum wait".
1685 // When the "minimum wait" is set to a small non-zero timeout value
1686 // and the program does not hang whereas it did absent "minimum wait",
1687 // that suggests a lost wakeup bug.
1688 
1689 void ObjectMonitor::notify(TRAPS) {
1690   CHECK_OWNER();
1691   if (_WaitSet == NULL) {
1692     return;
1693   }
1694   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1695   INotify(THREAD);
1696   OM_PERFDATA_OP(Notifications, inc(1));
1697 }
1698 
1699 
1700 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1701 // from the waitset to the EntryList. This could be done more efficiently with a
1702 // single bulk transfer but in practice it's not time-critical. Beware too,
1703 // that in prepend-mode we invert the order of the waiters. Let's say that the
1704 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1705 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1706 
1707 void ObjectMonitor::notifyAll(TRAPS) {
1708   CHECK_OWNER();
1709   if (_WaitSet == NULL) {
1710     return;
1711   }
1712 
1713   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1714   int tally = 0;
1715   while (_WaitSet != NULL) {
1716     tally++;
1717     INotify(THREAD);
1718   }
1719 
1720   OM_PERFDATA_OP(Notifications, inc(tally));
1721 }
1722 
1723 // -----------------------------------------------------------------------------
1724 // Adaptive Spinning Support
1725 //
1726 // Adaptive spin-then-block - rational spinning
1727 //
1728 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1729 // algorithm.  On high order SMP systems it would be better to start with
1730 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1731 // a contending thread could enqueue itself on the cxq and then spin locally
1732 // on a thread-specific variable such as its ParkEvent._Event flag.
1733 // That's left as an exercise for the reader.  Note that global spinning is
1734 // not problematic on Niagara, as the L2 cache serves the interconnect and
1735 // has both low latency and massive bandwidth.
1736 //
1737 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1738 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1739 // (duration) or we can fix the count at approximately the duration of
1740 // a context switch and vary the frequency.   Of course we could also
1741 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1742 // For a description of 'Adaptive spin-then-block mutual exclusion in
1743 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1744 //
1745 // This implementation varies the duration "D", where D varies with
1746 // the success rate of recent spin attempts. (D is capped at approximately
1747 // length of a round-trip context switch).  The success rate for recent
1748 // spin attempts is a good predictor of the success rate of future spin
1749 // attempts.  The mechanism adapts automatically to varying critical
1750 // section length (lock modality), system load and degree of parallelism.
1751 // D is maintained per-monitor in _SpinDuration and is initialized
1752 // optimistically.  Spin frequency is fixed at 100%.
1753 //
1754 // Note that _SpinDuration is volatile, but we update it without locks
1755 // or atomics.  The code is designed so that _SpinDuration stays within
1756 // a reasonable range even in the presence of races.  The arithmetic
1757 // operations on _SpinDuration are closed over the domain of legal values,
1758 // so at worst a race will install and older but still legal value.
1759 // At the very worst this introduces some apparent non-determinism.
1760 // We might spin when we shouldn't or vice-versa, but since the spin
1761 // count are relatively short, even in the worst case, the effect is harmless.
1762 //
1763 // Care must be taken that a low "D" value does not become an
1764 // an absorbing state.  Transient spinning failures -- when spinning
1765 // is overall profitable -- should not cause the system to converge
1766 // on low "D" values.  We want spinning to be stable and predictable
1767 // and fairly responsive to change and at the same time we don't want
1768 // it to oscillate, become metastable, be "too" non-deterministic,
1769 // or converge on or enter undesirable stable absorbing states.
1770 //
1771 // We implement a feedback-based control system -- using past behavior
1772 // to predict future behavior.  We face two issues: (a) if the
1773 // input signal is random then the spin predictor won't provide optimal
1774 // results, and (b) if the signal frequency is too high then the control
1775 // system, which has some natural response lag, will "chase" the signal.
1776 // (b) can arise from multimodal lock hold times.  Transient preemption
1777 // can also result in apparent bimodal lock hold times.
1778 // Although sub-optimal, neither condition is particularly harmful, as
1779 // in the worst-case we'll spin when we shouldn't or vice-versa.
1780 // The maximum spin duration is rather short so the failure modes aren't bad.
1781 // To be conservative, I've tuned the gain in system to bias toward
1782 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1783 // "rings" or oscillates between spinning and not spinning.  This happens
1784 // when spinning is just on the cusp of profitability, however, so the
1785 // situation is not dire.  The state is benign -- there's no need to add
1786 // hysteresis control to damp the transition rate between spinning and
1787 // not spinning.
1788 
1789 // Spinning: Fixed frequency (100%), vary duration
1790 int ObjectMonitor::TrySpin(Thread * Self) {
1791   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1792   int ctr = Knob_FixedSpin;
1793   if (ctr != 0) {
1794     while (--ctr >= 0) {
1795       if (TryLock(Self) > 0) return 1;
1796       SpinPause();
1797     }
1798     return 0;
1799   }
1800 
1801   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1802     if (TryLock(Self) > 0) {
1803       // Increase _SpinDuration ...
1804       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1805       // Raising _SpurDuration to the poverty line is key.
1806       int x = _SpinDuration;
1807       if (x < Knob_SpinLimit) {
1808         if (x < Knob_Poverty) x = Knob_Poverty;
1809         _SpinDuration = x + Knob_BonusB;
1810       }
1811       return 1;
1812     }
1813     SpinPause();
1814   }
1815 
1816   // Admission control - verify preconditions for spinning
1817   //
1818   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1819   // becoming an absorbing state.  Put another way, we spin briefly to
1820   // sample, just in case the system load, parallelism, contention, or lock
1821   // modality changed.
1822   //
1823   // Consider the following alternative:
1824   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1825   // spin attempt.  "Periodically" might mean after a tally of
1826   // the # of failed spin attempts (or iterations) reaches some threshold.
1827   // This takes us into the realm of 1-out-of-N spinning, where we
1828   // hold the duration constant but vary the frequency.
1829 
1830   ctr = _SpinDuration;
1831   if (ctr <= 0) return 0;
1832 
1833   if (NotRunnable(Self, (Thread *) _owner)) {
1834     return 0;
1835   }
1836 
1837   // We're good to spin ... spin ingress.
1838   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1839   // when preparing to LD...CAS _owner, etc and the CAS is likely
1840   // to succeed.
1841   if (_succ == NULL) {
1842     _succ = Self;
1843   }
1844   Thread * prv = NULL;
1845 
1846   // There are three ways to exit the following loop:
1847   // 1.  A successful spin where this thread has acquired the lock.
1848   // 2.  Spin failure with prejudice
1849   // 3.  Spin failure without prejudice
1850 
1851   while (--ctr >= 0) {
1852 
1853     // Periodic polling -- Check for pending GC
1854     // Threads may spin while they're unsafe.
1855     // We don't want spinning threads to delay the JVM from reaching
1856     // a stop-the-world safepoint or to steal cycles from GC.
1857     // If we detect a pending safepoint we abort in order that
1858     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1859     // this thread, if safe, doesn't steal cycles from GC.
1860     // This is in keeping with the "no loitering in runtime" rule.
1861     // We periodically check to see if there's a safepoint pending.
1862     if ((ctr & 0xFF) == 0) {
1863       if (SafepointMechanism::poll(Self)) {
1864         goto Abort;           // abrupt spin egress
1865       }
1866       if (Knob_UsePause & 1) SpinPause();
1867     }
1868 
1869     if (Knob_UsePause & 2) SpinPause();
1870 
1871     // Probe _owner with TATAS
1872     // If this thread observes the monitor transition or flicker
1873     // from locked to unlocked to locked, then the odds that this
1874     // thread will acquire the lock in this spin attempt go down
1875     // considerably.  The same argument applies if the CAS fails
1876     // or if we observe _owner change from one non-null value to
1877     // another non-null value.   In such cases we might abort
1878     // the spin without prejudice or apply a "penalty" to the
1879     // spin count-down variable "ctr", reducing it by 100, say.
1880 
1881     Thread * ox = (Thread *) _owner;
1882     if (ox == NULL) {
1883       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1884       if (ox == NULL) {
1885         // The CAS succeeded -- this thread acquired ownership
1886         // Take care of some bookkeeping to exit spin state.
1887         if (_succ == Self) {
1888           _succ = NULL;
1889         }
1890 
1891         // Increase _SpinDuration :
1892         // The spin was successful (profitable) so we tend toward
1893         // longer spin attempts in the future.
1894         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1895         // If we acquired the lock early in the spin cycle it
1896         // makes sense to increase _SpinDuration proportionally.
1897         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1898         int x = _SpinDuration;
1899         if (x < Knob_SpinLimit) {
1900           if (x < Knob_Poverty) x = Knob_Poverty;
1901           _SpinDuration = x + Knob_Bonus;
1902         }
1903         return 1;
1904       }
1905 
1906       // The CAS failed ... we can take any of the following actions:
1907       // * penalize: ctr -= CASPenalty
1908       // * exit spin with prejudice -- goto Abort;
1909       // * exit spin without prejudice.
1910       // * Since CAS is high-latency, retry again immediately.
1911       prv = ox;
1912       goto Abort;
1913     }
1914 
1915     // Did lock ownership change hands ?
1916     if (ox != prv && prv != NULL) {
1917       goto Abort;
1918     }
1919     prv = ox;
1920 
1921     // Abort the spin if the owner is not executing.
1922     // The owner must be executing in order to drop the lock.
1923     // Spinning while the owner is OFFPROC is idiocy.
1924     // Consider: ctr -= RunnablePenalty ;
1925     if (NotRunnable(Self, ox)) {
1926       goto Abort;
1927     }
1928     if (_succ == NULL) {
1929       _succ = Self;
1930     }
1931   }
1932 
1933   // Spin failed with prejudice -- reduce _SpinDuration.
1934   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1935   // AIMD is globally stable.
1936   {
1937     int x = _SpinDuration;
1938     if (x > 0) {
1939       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1940       // This is globally sample and tends to damp the response.
1941       x -= Knob_Penalty;
1942       if (x < 0) x = 0;
1943       _SpinDuration = x;
1944     }
1945   }
1946 
1947  Abort:
1948   if (_succ == Self) {
1949     _succ = NULL;
1950     // Invariant: after setting succ=null a contending thread
1951     // must recheck-retry _owner before parking.  This usually happens
1952     // in the normal usage of TrySpin(), but it's safest
1953     // to make TrySpin() as foolproof as possible.
1954     OrderAccess::fence();
1955     if (TryLock(Self) > 0) return 1;
1956   }
1957   return 0;
1958 }
1959 
1960 // NotRunnable() -- informed spinning
1961 //
1962 // Don't bother spinning if the owner is not eligible to drop the lock.
1963 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1964 // The thread must be runnable in order to drop the lock in timely fashion.
1965 // If the _owner is not runnable then spinning will not likely be
1966 // successful (profitable).
1967 //
1968 // Beware -- the thread referenced by _owner could have died
1969 // so a simply fetch from _owner->_thread_state might trap.
1970 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1971 // Because of the lifecycle issues, the _thread_state values
1972 // observed by NotRunnable() might be garbage.  NotRunnable must
1973 // tolerate this and consider the observed _thread_state value
1974 // as advisory.
1975 //
1976 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1977 // a thread pointer.
1978 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1979 // with the LSB of _owner.  Another option would be to probabilistically probe
1980 // the putative _owner->TypeTag value.
1981 //
1982 // Checking _thread_state isn't perfect.  Even if the thread is
1983 // in_java it might be blocked on a page-fault or have been preempted
1984 // and sitting on a ready/dispatch queue.
1985 //
1986 // The return value from NotRunnable() is *advisory* -- the
1987 // result is based on sampling and is not necessarily coherent.
1988 // The caller must tolerate false-negative and false-positive errors.
1989 // Spinning, in general, is probabilistic anyway.
1990 
1991 
1992 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1993   // Check ox->TypeTag == 2BAD.
1994   if (ox == NULL) return 0;
1995 
1996   // Avoid transitive spinning ...
1997   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1998   // Immediately after T1 acquires L it's possible that T2, also
1999   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2000   // This occurs transiently after T1 acquired L but before
2001   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2002   // its spin in this circumstance.
2003   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2004 
2005   if (BlockedOn == 1) return 1;
2006   if (BlockedOn != 0) {
2007     return BlockedOn != intptr_t(this) && _owner == ox;
2008   }
2009 
2010   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2011   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2012   // consider also: jst != _thread_in_Java -- but that's overspecific.
2013   return jst == _thread_blocked || jst == _thread_in_native;
2014 }
2015 
2016 
2017 // -----------------------------------------------------------------------------
2018 // WaitSet management ...
2019 
2020 ObjectWaiter::ObjectWaiter(Thread* thread) {
2021   _next     = NULL;
2022   _prev     = NULL;
2023   _notified = 0;
2024   _notifier_tid = 0;
2025   TState    = TS_RUN;
2026   _thread   = thread;
2027   _event    = thread->_ParkEvent;
2028   _active   = false;
2029   assert(_event != NULL, "invariant");
2030 }
2031 
2032 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2033   JavaThread *jt = (JavaThread *)this->_thread;
2034   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2035 }
2036 
2037 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2038   JavaThread *jt = (JavaThread *)this->_thread;
2039   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2040 }
2041 
2042 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2043   assert(node != NULL, "should not add NULL node");
2044   assert(node->_prev == NULL, "node already in list");
2045   assert(node->_next == NULL, "node already in list");
2046   // put node at end of queue (circular doubly linked list)
2047   if (_WaitSet == NULL) {
2048     _WaitSet = node;
2049     node->_prev = node;
2050     node->_next = node;
2051   } else {
2052     ObjectWaiter* head = _WaitSet;
2053     ObjectWaiter* tail = head->_prev;
2054     assert(tail->_next == head, "invariant check");
2055     tail->_next = node;
2056     head->_prev = node;
2057     node->_next = head;
2058     node->_prev = tail;
2059   }
2060 }
2061 
2062 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2063   // dequeue the very first waiter
2064   ObjectWaiter* waiter = _WaitSet;
2065   if (waiter) {
2066     DequeueSpecificWaiter(waiter);
2067   }
2068   return waiter;
2069 }
2070 
2071 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2072   assert(node != NULL, "should not dequeue NULL node");
2073   assert(node->_prev != NULL, "node already removed from list");
2074   assert(node->_next != NULL, "node already removed from list");
2075   // when the waiter has woken up because of interrupt,
2076   // timeout or other spurious wake-up, dequeue the
2077   // waiter from waiting list
2078   ObjectWaiter* next = node->_next;
2079   if (next == node) {
2080     assert(node->_prev == node, "invariant check");
2081     _WaitSet = NULL;
2082   } else {
2083     ObjectWaiter* prev = node->_prev;
2084     assert(prev->_next == node, "invariant check");
2085     assert(next->_prev == node, "invariant check");
2086     next->_prev = prev;
2087     prev->_next = next;
2088     if (_WaitSet == node) {
2089       _WaitSet = next;
2090     }
2091   }
2092   node->_next = NULL;
2093   node->_prev = NULL;
2094 }
2095 
2096 // -----------------------------------------------------------------------------
2097 // PerfData support
2098 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2099 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2100 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2101 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2102 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2103 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2104 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2105 
2106 // One-shot global initialization for the sync subsystem.
2107 // We could also defer initialization and initialize on-demand
2108 // the first time we call inflate().  Initialization would
2109 // be protected - like so many things - by the MonitorCache_lock.
2110 
2111 void ObjectMonitor::Initialize() {
2112   static int InitializationCompleted = 0;
2113   assert(InitializationCompleted == 0, "invariant");
2114   InitializationCompleted = 1;
2115   if (UsePerfData) {
2116     EXCEPTION_MARK;
2117 #define NEWPERFCOUNTER(n)                                                \
2118   {                                                                      \
2119     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2120                                         CHECK);                          \
2121   }
2122 #define NEWPERFVARIABLE(n)                                                \
2123   {                                                                       \
2124     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2125                                          CHECK);                          \
2126   }
2127     NEWPERFCOUNTER(_sync_Inflations);
2128     NEWPERFCOUNTER(_sync_Deflations);
2129     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2130     NEWPERFCOUNTER(_sync_FutileWakeups);
2131     NEWPERFCOUNTER(_sync_Parks);
2132     NEWPERFCOUNTER(_sync_Notifications);
2133     NEWPERFVARIABLE(_sync_MonExtant);
2134 #undef NEWPERFCOUNTER
2135 #undef NEWPERFVARIABLE
2136   }
2137 }
2138 
2139 void ObjectMonitor::DeferredInitialize() {
2140   if (InitDone > 0) return;
2141   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2142     while (InitDone != 1) /* empty */;
2143     return;
2144   }
2145 
2146   // One-shot global initialization ...
2147   // The initialization is idempotent, so we don't need locks.
2148   // In the future consider doing this via os::init_2().
2149 
2150   if (!os::is_MP()) {
2151     Knob_SpinLimit = 0;
2152     Knob_PreSpin   = 0;
2153     Knob_FixedSpin = -1;
2154   }
2155 
2156   OrderAccess::fence();
2157   InitDone = 1;
2158 }
2159