1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 105 
 106 static int Knob_Bonus               = 100;     // spin success bonus
 107 static int Knob_BonusB              = 100;     // spin success bonus
 108 static int Knob_Penalty             = 200;     // spin failure penalty
 109 static int Knob_Poverty             = 1000;
 110 static int Knob_FixedSpin           = 0;
 111 static int Knob_ExitPolicy          = 0;
 112 static int Knob_PreSpin             = 10;      // 20-100 likely better
 113 static int Knob_ResetEvent          = 0;
 114 
 115 static int Knob_FastHSSEC           = 0;
 116 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 117 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 118 static volatile int InitDone        = 0;
 119 
 120 // -----------------------------------------------------------------------------
 121 // Theory of operations -- Monitors lists, thread residency, etc:
 122 //
 123 // * A thread acquires ownership of a monitor by successfully
 124 //   CAS()ing the _owner field from null to non-null.
 125 //
 126 // * Invariant: A thread appears on at most one monitor list --
 127 //   cxq, EntryList or WaitSet -- at any one time.
 128 //
 129 // * Contending threads "push" themselves onto the cxq with CAS
 130 //   and then spin/park.
 131 //
 132 // * After a contending thread eventually acquires the lock it must
 133 //   dequeue itself from either the EntryList or the cxq.
 134 //
 135 // * The exiting thread identifies and unparks an "heir presumptive"
 136 //   tentative successor thread on the EntryList.  Critically, the
 137 //   exiting thread doesn't unlink the successor thread from the EntryList.
 138 //   After having been unparked, the wakee will recontend for ownership of
 139 //   the monitor.   The successor (wakee) will either acquire the lock or
 140 //   re-park itself.
 141 //
 142 //   Succession is provided for by a policy of competitive handoff.
 143 //   The exiting thread does _not_ grant or pass ownership to the
 144 //   successor thread.  (This is also referred to as "handoff" succession").
 145 //   Instead the exiting thread releases ownership and possibly wakes
 146 //   a successor, so the successor can (re)compete for ownership of the lock.
 147 //   If the EntryList is empty but the cxq is populated the exiting
 148 //   thread will drain the cxq into the EntryList.  It does so by
 149 //   by detaching the cxq (installing null with CAS) and folding
 150 //   the threads from the cxq into the EntryList.  The EntryList is
 151 //   doubly linked, while the cxq is singly linked because of the
 152 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 153 //
 154 // * Concurrency invariants:
 155 //
 156 //   -- only the monitor owner may access or mutate the EntryList.
 157 //      The mutex property of the monitor itself protects the EntryList
 158 //      from concurrent interference.
 159 //   -- Only the monitor owner may detach the cxq.
 160 //
 161 // * The monitor entry list operations avoid locks, but strictly speaking
 162 //   they're not lock-free.  Enter is lock-free, exit is not.
 163 //   For a description of 'Methods and apparatus providing non-blocking access
 164 //   to a resource,' see U.S. Pat. No. 7844973.
 165 //
 166 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 167 //   detaching thread.  This mechanism is immune from the ABA corruption.
 168 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 169 //
 170 // * Taken together, the cxq and the EntryList constitute or form a
 171 //   single logical queue of threads stalled trying to acquire the lock.
 172 //   We use two distinct lists to improve the odds of a constant-time
 173 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 174 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 175 //   A key desideratum is to minimize queue & monitor metadata manipulation
 176 //   that occurs while holding the monitor lock -- that is, we want to
 177 //   minimize monitor lock holds times.  Note that even a small amount of
 178 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 179 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 180 //   locks and monitor metadata.
 181 //
 182 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 183 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 184 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 185 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 186 //
 187 //   The EntryList is ordered by the prevailing queue discipline and
 188 //   can be organized in any convenient fashion, such as a doubly-linked list or
 189 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 190 //   to operate in constant-time.  If we need a priority queue then something akin
 191 //   to Solaris' sleepq would work nicely.  Viz.,
 192 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 193 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 194 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 195 //   EntryList accordingly.
 196 //
 197 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 198 //   somewhat similar to an elevator-scan.
 199 //
 200 // * The monitor synchronization subsystem avoids the use of native
 201 //   synchronization primitives except for the narrow platform-specific
 202 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 203 //   the semantics of park-unpark.  Put another way, this monitor implementation
 204 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 205 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 206 //   underlying OS manages the READY<->RUN transitions.
 207 //
 208 // * Waiting threads reside on the WaitSet list -- wait() puts
 209 //   the caller onto the WaitSet.
 210 //
 211 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 212 //   either the EntryList or cxq.  Subsequent exit() operations will
 213 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 214 //   it's likely the notifyee would simply impale itself on the lock held
 215 //   by the notifier.
 216 //
 217 // * An interesting alternative is to encode cxq as (List,LockByte) where
 218 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 219 //   variable, like _recursions, in the scheme.  The threads or Events that form
 220 //   the list would have to be aligned in 256-byte addresses.  A thread would
 221 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 222 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 223 //   Note that is is *not* word-tearing, but it does presume that full-word
 224 //   CAS operations are coherent with intermix with STB operations.  That's true
 225 //   on most common processors.
 226 //
 227 // * See also http://blogs.sun.com/dave
 228 
 229 
 230 void* ObjectMonitor::operator new (size_t size) throw() {
 231   return AllocateHeap(size, mtInternal);
 232 }
 233 void* ObjectMonitor::operator new[] (size_t size) throw() {
 234   return operator new (size);
 235 }
 236 void ObjectMonitor::operator delete(void* p) {
 237   FreeHeap(p);
 238 }
 239 void ObjectMonitor::operator delete[] (void *p) {
 240   operator delete(p);
 241 }
 242 
 243 // -----------------------------------------------------------------------------
 244 // Enter support
 245 
 246 void ObjectMonitor::enter(TRAPS) {
 247   // The following code is ordered to check the most common cases first
 248   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 249   Thread * const Self = THREAD;
 250 
 251   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 252   if (cur == NULL) {
 253     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 254     assert(_recursions == 0, "invariant");
 255     assert(_owner == Self, "invariant");
 256     return;
 257   }
 258 
 259   if (cur == Self) {
 260     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 261     _recursions++;
 262     return;
 263   }
 264 
 265   if (Self->is_lock_owned ((address)cur)) {
 266     assert(_recursions == 0, "internal state error");
 267     _recursions = 1;
 268     // Commute owner from a thread-specific on-stack BasicLockObject address to
 269     // a full-fledged "Thread *".
 270     _owner = Self;
 271     return;
 272   }
 273 
 274   // We've encountered genuine contention.
 275   assert(Self->_Stalled == 0, "invariant");
 276   Self->_Stalled = intptr_t(this);
 277 
 278   // Try one round of spinning *before* enqueueing Self
 279   // and before going through the awkward and expensive state
 280   // transitions.  The following spin is strictly optional ...
 281   // Note that if we acquire the monitor from an initial spin
 282   // we forgo posting JVMTI events and firing DTRACE probes.
 283   if (TrySpin(Self) > 0) {
 284     assert(_owner == Self, "invariant");
 285     assert(_recursions == 0, "invariant");
 286     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 287     Self->_Stalled = 0;
 288     return;
 289   }
 290 
 291   assert(_owner != Self, "invariant");
 292   assert(_succ != Self, "invariant");
 293   assert(Self->is_Java_thread(), "invariant");
 294   JavaThread * jt = (JavaThread *) Self;
 295   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 296   assert(jt->thread_state() != _thread_blocked, "invariant");
 297   assert(this->object() != NULL, "invariant");
 298   assert(_count >= 0, "invariant");
 299 
 300   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 301   // Ensure the object-monitor relationship remains stable while there's contention.
 302   Atomic::inc(&_count);
 303 
 304   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 305   EventJavaMonitorEnter event;
 306   if (event.should_commit()) {
 307     event.set_monitorClass(((oop)this->object())->klass());
 308     event.set_address((uintptr_t)(this->object_addr()));
 309   }
 310 
 311   { // Change java thread status to indicate blocked on monitor enter.
 312     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 313 
 314     Self->set_current_pending_monitor(this);
 315 
 316     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 317     if (JvmtiExport::should_post_monitor_contended_enter()) {
 318       JvmtiExport::post_monitor_contended_enter(jt, this);
 319 
 320       // The current thread does not yet own the monitor and does not
 321       // yet appear on any queues that would get it made the successor.
 322       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 323       // handler cannot accidentally consume an unpark() meant for the
 324       // ParkEvent associated with this ObjectMonitor.
 325     }
 326 
 327     OSThreadContendState osts(Self->osthread());
 328     ThreadBlockInVM tbivm(jt);
 329 
 330     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 331     for (;;) {
 332       jt->set_suspend_equivalent();
 333       // cleared by handle_special_suspend_equivalent_condition()
 334       // or java_suspend_self()
 335 
 336       EnterI(THREAD);
 337 
 338       if (!ExitSuspendEquivalent(jt)) break;
 339 
 340       // We have acquired the contended monitor, but while we were
 341       // waiting another thread suspended us. We don't want to enter
 342       // the monitor while suspended because that would surprise the
 343       // thread that suspended us.
 344       //
 345       _recursions = 0;
 346       _succ = NULL;
 347       exit(false, Self);
 348 
 349       jt->java_suspend_self();
 350     }
 351     Self->set_current_pending_monitor(NULL);
 352 
 353     // We cleared the pending monitor info since we've just gotten past
 354     // the enter-check-for-suspend dance and we now own the monitor free
 355     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 356     // destructor can go to a safepoint at the end of this block. If we
 357     // do a thread dump during that safepoint, then this thread will show
 358     // as having "-locked" the monitor, but the OS and java.lang.Thread
 359     // states will still report that the thread is blocked trying to
 360     // acquire it.
 361   }
 362 
 363   Atomic::dec(&_count);
 364   assert(_count >= 0, "invariant");
 365   Self->_Stalled = 0;
 366 
 367   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 368   assert(_recursions == 0, "invariant");
 369   assert(_owner == Self, "invariant");
 370   assert(_succ != Self, "invariant");
 371   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 372 
 373   // The thread -- now the owner -- is back in vm mode.
 374   // Report the glorious news via TI,DTrace and jvmstat.
 375   // The probe effect is non-trivial.  All the reportage occurs
 376   // while we hold the monitor, increasing the length of the critical
 377   // section.  Amdahl's parallel speedup law comes vividly into play.
 378   //
 379   // Another option might be to aggregate the events (thread local or
 380   // per-monitor aggregation) and defer reporting until a more opportune
 381   // time -- such as next time some thread encounters contention but has
 382   // yet to acquire the lock.  While spinning that thread could
 383   // spinning we could increment JVMStat counters, etc.
 384 
 385   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 386   if (JvmtiExport::should_post_monitor_contended_entered()) {
 387     JvmtiExport::post_monitor_contended_entered(jt, this);
 388 
 389     // The current thread already owns the monitor and is not going to
 390     // call park() for the remainder of the monitor enter protocol. So
 391     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 392     // event handler consumed an unpark() issued by the thread that
 393     // just exited the monitor.
 394   }
 395   if (event.should_commit()) {
 396     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 397     event.commit();
 398   }
 399   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 400 }
 401 
 402 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 403 // Callers must compensate as needed.
 404 
 405 int ObjectMonitor::TryLock(Thread * Self) {
 406   void * own = _owner;
 407   if (own != NULL) return 0;
 408   if (Atomic::replace_if_null(Self, &_owner)) {
 409     // Either guarantee _recursions == 0 or set _recursions = 0.
 410     assert(_recursions == 0, "invariant");
 411     assert(_owner == Self, "invariant");
 412     return 1;
 413   }
 414   // The lock had been free momentarily, but we lost the race to the lock.
 415   // Interference -- the CAS failed.
 416   // We can either return -1 or retry.
 417   // Retry doesn't make as much sense because the lock was just acquired.
 418   return -1;
 419 }
 420 
 421 #define MAX_RECHECK_INTERVAL 1000
 422 
 423 void ObjectMonitor::EnterI(TRAPS) {
 424   Thread * const Self = THREAD;
 425   assert(Self->is_Java_thread(), "invariant");
 426   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 427 
 428   // Try the lock - TATAS
 429   if (TryLock (Self) > 0) {
 430     assert(_succ != Self, "invariant");
 431     assert(_owner == Self, "invariant");
 432     assert(_Responsible != Self, "invariant");
 433     return;
 434   }
 435 
 436   DeferredInitialize();
 437 
 438   // We try one round of spinning *before* enqueueing Self.
 439   //
 440   // If the _owner is ready but OFFPROC we could use a YieldTo()
 441   // operation to donate the remainder of this thread's quantum
 442   // to the owner.  This has subtle but beneficial affinity
 443   // effects.
 444 
 445   if (TrySpin(Self) > 0) {
 446     assert(_owner == Self, "invariant");
 447     assert(_succ != Self, "invariant");
 448     assert(_Responsible != Self, "invariant");
 449     return;
 450   }
 451 
 452   // The Spin failed -- Enqueue and park the thread ...
 453   assert(_succ != Self, "invariant");
 454   assert(_owner != Self, "invariant");
 455   assert(_Responsible != Self, "invariant");
 456 
 457   // Enqueue "Self" on ObjectMonitor's _cxq.
 458   //
 459   // Node acts as a proxy for Self.
 460   // As an aside, if were to ever rewrite the synchronization code mostly
 461   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 462   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 463   // as well as eliminate a subset of ABA issues.
 464   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 465 
 466   ObjectWaiter node(Self);
 467   Self->_ParkEvent->reset();
 468   node._prev   = (ObjectWaiter *) 0xBAD;
 469   node.TState  = ObjectWaiter::TS_CXQ;
 470 
 471   // Push "Self" onto the front of the _cxq.
 472   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 473   // Note that spinning tends to reduce the rate at which threads
 474   // enqueue and dequeue on EntryList|cxq.
 475   ObjectWaiter * nxt;
 476   for (;;) {
 477     node._next = nxt = _cxq;
 478     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 479 
 480     // Interference - the CAS failed because _cxq changed.  Just retry.
 481     // As an optional optimization we retry the lock.
 482     if (TryLock (Self) > 0) {
 483       assert(_succ != Self, "invariant");
 484       assert(_owner == Self, "invariant");
 485       assert(_Responsible != Self, "invariant");
 486       return;
 487     }
 488   }
 489 
 490   // Check for cxq|EntryList edge transition to non-null.  This indicates
 491   // the onset of contention.  While contention persists exiting threads
 492   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 493   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 494   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 495   // arrange for one of the contending thread to use a timed park() operations
 496   // to detect and recover from the race.  (Stranding is form of progress failure
 497   // where the monitor is unlocked but all the contending threads remain parked).
 498   // That is, at least one of the contended threads will periodically poll _owner.
 499   // One of the contending threads will become the designated "Responsible" thread.
 500   // The Responsible thread uses a timed park instead of a normal indefinite park
 501   // operation -- it periodically wakes and checks for and recovers from potential
 502   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 503   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 504   // be responsible for a monitor.
 505   //
 506   // Currently, one of the contended threads takes on the added role of "Responsible".
 507   // A viable alternative would be to use a dedicated "stranding checker" thread
 508   // that periodically iterated over all the threads (or active monitors) and unparked
 509   // successors where there was risk of stranding.  This would help eliminate the
 510   // timer scalability issues we see on some platforms as we'd only have one thread
 511   // -- the checker -- parked on a timer.
 512 
 513   if (nxt == NULL && _EntryList == NULL) {
 514     // Try to assume the role of responsible thread for the monitor.
 515     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 516     Atomic::replace_if_null(Self, &_Responsible);
 517   }
 518 
 519   // The lock might have been released while this thread was occupied queueing
 520   // itself onto _cxq.  To close the race and avoid "stranding" and
 521   // progress-liveness failure we must resample-retry _owner before parking.
 522   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 523   // In this case the ST-MEMBAR is accomplished with CAS().
 524   //
 525   // TODO: Defer all thread state transitions until park-time.
 526   // Since state transitions are heavy and inefficient we'd like
 527   // to defer the state transitions until absolutely necessary,
 528   // and in doing so avoid some transitions ...
 529 
 530   int nWakeups = 0;
 531   int recheckInterval = 1;
 532 
 533   for (;;) {
 534 
 535     if (TryLock(Self) > 0) break;
 536     assert(_owner != Self, "invariant");
 537 
 538     // park self
 539     if (_Responsible == Self) {
 540       Self->_ParkEvent->park((jlong) recheckInterval);
 541       // Increase the recheckInterval, but clamp the value.
 542       recheckInterval *= 8;
 543       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 544         recheckInterval = MAX_RECHECK_INTERVAL;
 545       }
 546     } else {
 547       Self->_ParkEvent->park();
 548     }
 549 
 550     if (TryLock(Self) > 0) break;
 551 
 552     // The lock is still contested.
 553     // Keep a tally of the # of futile wakeups.
 554     // Note that the counter is not protected by a lock or updated by atomics.
 555     // That is by design - we trade "lossy" counters which are exposed to
 556     // races during updates for a lower probe effect.
 557 
 558     // This PerfData object can be used in parallel with a safepoint.
 559     // See the work around in PerfDataManager::destroy().
 560     OM_PERFDATA_OP(FutileWakeups, inc());
 561     ++nWakeups;
 562 
 563     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 564     // We can defer clearing _succ until after the spin completes
 565     // TrySpin() must tolerate being called with _succ == Self.
 566     // Try yet another round of adaptive spinning.
 567     if (TrySpin(Self) > 0) break;
 568 
 569     // We can find that we were unpark()ed and redesignated _succ while
 570     // we were spinning.  That's harmless.  If we iterate and call park(),
 571     // park() will consume the event and return immediately and we'll
 572     // just spin again.  This pattern can repeat, leaving _succ to simply
 573     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 574     // Alternately, we can sample fired() here, and if set, forgo spinning
 575     // in the next iteration.
 576 
 577     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 578       Self->_ParkEvent->reset();
 579       OrderAccess::fence();
 580     }
 581     if (_succ == Self) _succ = NULL;
 582 
 583     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 584     OrderAccess::fence();
 585   }
 586 
 587   // Egress :
 588   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 589   // Normally we'll find Self on the EntryList .
 590   // From the perspective of the lock owner (this thread), the
 591   // EntryList is stable and cxq is prepend-only.
 592   // The head of cxq is volatile but the interior is stable.
 593   // In addition, Self.TState is stable.
 594 
 595   assert(_owner == Self, "invariant");
 596   assert(object() != NULL, "invariant");
 597   // I'd like to write:
 598   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 599   // but as we're at a safepoint that's not safe.
 600 
 601   UnlinkAfterAcquire(Self, &node);
 602   if (_succ == Self) _succ = NULL;
 603 
 604   assert(_succ != Self, "invariant");
 605   if (_Responsible == Self) {
 606     _Responsible = NULL;
 607     OrderAccess::fence(); // Dekker pivot-point
 608 
 609     // We may leave threads on cxq|EntryList without a designated
 610     // "Responsible" thread.  This is benign.  When this thread subsequently
 611     // exits the monitor it can "see" such preexisting "old" threads --
 612     // threads that arrived on the cxq|EntryList before the fence, above --
 613     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 614     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 615     // non-null and elect a new "Responsible" timer thread.
 616     //
 617     // This thread executes:
 618     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 619     //    LD cxq|EntryList               (in subsequent exit)
 620     //
 621     // Entering threads in the slow/contended path execute:
 622     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 623     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 624     //
 625     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 626     // exit operation from floating above the ST Responsible=null.
 627   }
 628 
 629   // We've acquired ownership with CAS().
 630   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 631   // But since the CAS() this thread may have also stored into _succ,
 632   // EntryList, cxq or Responsible.  These meta-data updates must be
 633   // visible __before this thread subsequently drops the lock.
 634   // Consider what could occur if we didn't enforce this constraint --
 635   // STs to monitor meta-data and user-data could reorder with (become
 636   // visible after) the ST in exit that drops ownership of the lock.
 637   // Some other thread could then acquire the lock, but observe inconsistent
 638   // or old monitor meta-data and heap data.  That violates the JMM.
 639   // To that end, the 1-0 exit() operation must have at least STST|LDST
 640   // "release" barrier semantics.  Specifically, there must be at least a
 641   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 642   // the lock.   The barrier ensures that changes to monitor meta-data and data
 643   // protected by the lock will be visible before we release the lock, and
 644   // therefore before some other thread (CPU) has a chance to acquire the lock.
 645   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 646   //
 647   // Critically, any prior STs to _succ or EntryList must be visible before
 648   // the ST of null into _owner in the *subsequent* (following) corresponding
 649   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 650   // execute a serializing instruction.
 651 
 652   return;
 653 }
 654 
 655 // ReenterI() is a specialized inline form of the latter half of the
 656 // contended slow-path from EnterI().  We use ReenterI() only for
 657 // monitor reentry in wait().
 658 //
 659 // In the future we should reconcile EnterI() and ReenterI().
 660 
 661 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 662   assert(Self != NULL, "invariant");
 663   assert(SelfNode != NULL, "invariant");
 664   assert(SelfNode->_thread == Self, "invariant");
 665   assert(_waiters > 0, "invariant");
 666   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 667   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 668   JavaThread * jt = (JavaThread *) Self;
 669 
 670   int nWakeups = 0;
 671   for (;;) {
 672     ObjectWaiter::TStates v = SelfNode->TState;
 673     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 674     assert(_owner != Self, "invariant");
 675 
 676     if (TryLock(Self) > 0) break;
 677     if (TrySpin(Self) > 0) break;
 678 
 679     // State transition wrappers around park() ...
 680     // ReenterI() wisely defers state transitions until
 681     // it's clear we must park the thread.
 682     {
 683       OSThreadContendState osts(Self->osthread());
 684       ThreadBlockInVM tbivm(jt);
 685 
 686       // cleared by handle_special_suspend_equivalent_condition()
 687       // or java_suspend_self()
 688       jt->set_suspend_equivalent();
 689       Self->_ParkEvent->park();
 690 
 691       // were we externally suspended while we were waiting?
 692       for (;;) {
 693         if (!ExitSuspendEquivalent(jt)) break;
 694         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 695         jt->java_suspend_self();
 696         jt->set_suspend_equivalent();
 697       }
 698     }
 699 
 700     // Try again, but just so we distinguish between futile wakeups and
 701     // successful wakeups.  The following test isn't algorithmically
 702     // necessary, but it helps us maintain sensible statistics.
 703     if (TryLock(Self) > 0) break;
 704 
 705     // The lock is still contested.
 706     // Keep a tally of the # of futile wakeups.
 707     // Note that the counter is not protected by a lock or updated by atomics.
 708     // That is by design - we trade "lossy" counters which are exposed to
 709     // races during updates for a lower probe effect.
 710     ++nWakeups;
 711 
 712     // Assuming this is not a spurious wakeup we'll normally
 713     // find that _succ == Self.
 714     if (_succ == Self) _succ = NULL;
 715 
 716     // Invariant: after clearing _succ a contending thread
 717     // *must* retry  _owner before parking.
 718     OrderAccess::fence();
 719 
 720     // This PerfData object can be used in parallel with a safepoint.
 721     // See the work around in PerfDataManager::destroy().
 722     OM_PERFDATA_OP(FutileWakeups, inc());
 723   }
 724 
 725   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 726   // Normally we'll find Self on the EntryList.
 727   // Unlinking from the EntryList is constant-time and atomic-free.
 728   // From the perspective of the lock owner (this thread), the
 729   // EntryList is stable and cxq is prepend-only.
 730   // The head of cxq is volatile but the interior is stable.
 731   // In addition, Self.TState is stable.
 732 
 733   assert(_owner == Self, "invariant");
 734   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 735   UnlinkAfterAcquire(Self, SelfNode);
 736   if (_succ == Self) _succ = NULL;
 737   assert(_succ != Self, "invariant");
 738   SelfNode->TState = ObjectWaiter::TS_RUN;
 739   OrderAccess::fence();      // see comments at the end of EnterI()
 740 }
 741 
 742 // By convention we unlink a contending thread from EntryList|cxq immediately
 743 // after the thread acquires the lock in ::enter().  Equally, we could defer
 744 // unlinking the thread until ::exit()-time.
 745 
 746 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 747   assert(_owner == Self, "invariant");
 748   assert(SelfNode->_thread == Self, "invariant");
 749 
 750   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 751     // Normal case: remove Self from the DLL EntryList .
 752     // This is a constant-time operation.
 753     ObjectWaiter * nxt = SelfNode->_next;
 754     ObjectWaiter * prv = SelfNode->_prev;
 755     if (nxt != NULL) nxt->_prev = prv;
 756     if (prv != NULL) prv->_next = nxt;
 757     if (SelfNode == _EntryList) _EntryList = nxt;
 758     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 759     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 760   } else {
 761     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 762     // Inopportune interleaving -- Self is still on the cxq.
 763     // This usually means the enqueue of self raced an exiting thread.
 764     // Normally we'll find Self near the front of the cxq, so
 765     // dequeueing is typically fast.  If needbe we can accelerate
 766     // this with some MCS/CHL-like bidirectional list hints and advisory
 767     // back-links so dequeueing from the interior will normally operate
 768     // in constant-time.
 769     // Dequeue Self from either the head (with CAS) or from the interior
 770     // with a linear-time scan and normal non-atomic memory operations.
 771     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 772     // and then unlink Self from EntryList.  We have to drain eventually,
 773     // so it might as well be now.
 774 
 775     ObjectWaiter * v = _cxq;
 776     assert(v != NULL, "invariant");
 777     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 778       // The CAS above can fail from interference IFF a "RAT" arrived.
 779       // In that case Self must be in the interior and can no longer be
 780       // at the head of cxq.
 781       if (v == SelfNode) {
 782         assert(_cxq != v, "invariant");
 783         v = _cxq;          // CAS above failed - start scan at head of list
 784       }
 785       ObjectWaiter * p;
 786       ObjectWaiter * q = NULL;
 787       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 788         q = p;
 789         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 790       }
 791       assert(v != SelfNode, "invariant");
 792       assert(p == SelfNode, "Node not found on cxq");
 793       assert(p != _cxq, "invariant");
 794       assert(q != NULL, "invariant");
 795       assert(q->_next == p, "invariant");
 796       q->_next = p->_next;
 797     }
 798   }
 799 
 800 #ifdef ASSERT
 801   // Diagnostic hygiene ...
 802   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 803   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 804   SelfNode->TState = ObjectWaiter::TS_RUN;
 805 #endif
 806 }
 807 
 808 // -----------------------------------------------------------------------------
 809 // Exit support
 810 //
 811 // exit()
 812 // ~~~~~~
 813 // Note that the collector can't reclaim the objectMonitor or deflate
 814 // the object out from underneath the thread calling ::exit() as the
 815 // thread calling ::exit() never transitions to a stable state.
 816 // This inhibits GC, which in turn inhibits asynchronous (and
 817 // inopportune) reclamation of "this".
 818 //
 819 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 820 // There's one exception to the claim above, however.  EnterI() can call
 821 // exit() to drop a lock if the acquirer has been externally suspended.
 822 // In that case exit() is called with _thread_state as _thread_blocked,
 823 // but the monitor's _count field is > 0, which inhibits reclamation.
 824 //
 825 // 1-0 exit
 826 // ~~~~~~~~
 827 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 828 // the fast-path operators have been optimized so the common ::exit()
 829 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 830 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 831 // greatly improves latency -- MEMBAR and CAS having considerable local
 832 // latency on modern processors -- but at the cost of "stranding".  Absent the
 833 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 834 // ::enter() path, resulting in the entering thread being stranding
 835 // and a progress-liveness failure.   Stranding is extremely rare.
 836 // We use timers (timed park operations) & periodic polling to detect
 837 // and recover from stranding.  Potentially stranded threads periodically
 838 // wake up and poll the lock.  See the usage of the _Responsible variable.
 839 //
 840 // The CAS() in enter provides for safety and exclusion, while the CAS or
 841 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 842 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 843 // We detect and recover from stranding with timers.
 844 //
 845 // If a thread transiently strands it'll park until (a) another
 846 // thread acquires the lock and then drops the lock, at which time the
 847 // exiting thread will notice and unpark the stranded thread, or, (b)
 848 // the timer expires.  If the lock is high traffic then the stranding latency
 849 // will be low due to (a).  If the lock is low traffic then the odds of
 850 // stranding are lower, although the worst-case stranding latency
 851 // is longer.  Critically, we don't want to put excessive load in the
 852 // platform's timer subsystem.  We want to minimize both the timer injection
 853 // rate (timers created/sec) as well as the number of timers active at
 854 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 855 // the integral of the # of active timers at any instant over time).
 856 // Both impinge on OS scalability.  Given that, at most one thread parked on
 857 // a monitor will use a timer.
 858 //
 859 // There is also the risk of a futile wake-up. If we drop the lock
 860 // another thread can reacquire the lock immediately, and we can
 861 // then wake a thread unnecessarily. This is benign, and we've
 862 // structured the code so the windows are short and the frequency
 863 // of such futile wakups is low.
 864 
 865 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 866   Thread * const Self = THREAD;
 867   if (THREAD != _owner) {
 868     if (THREAD->is_lock_owned((address) _owner)) {
 869       // Transmute _owner from a BasicLock pointer to a Thread address.
 870       // We don't need to hold _mutex for this transition.
 871       // Non-null to Non-null is safe as long as all readers can
 872       // tolerate either flavor.
 873       assert(_recursions == 0, "invariant");
 874       _owner = THREAD;
 875       _recursions = 0;
 876     } else {
 877       // Apparent unbalanced locking ...
 878       // Naively we'd like to throw IllegalMonitorStateException.
 879       // As a practical matter we can neither allocate nor throw an
 880       // exception as ::exit() can be called from leaf routines.
 881       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 882       // Upon deeper reflection, however, in a properly run JVM the only
 883       // way we should encounter this situation is in the presence of
 884       // unbalanced JNI locking. TODO: CheckJNICalls.
 885       // See also: CR4414101
 886       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 887       return;
 888     }
 889   }
 890 
 891   if (_recursions != 0) {
 892     _recursions--;        // this is simple recursive enter
 893     return;
 894   }
 895 
 896   // Invariant: after setting Responsible=null an thread must execute
 897   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 898   _Responsible = NULL;
 899 
 900 #if INCLUDE_JFR
 901   // get the owner's thread id for the MonitorEnter event
 902   // if it is enabled and the thread isn't suspended
 903   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 904     _previous_owner_tid = JFR_THREAD_ID(Self);
 905   }
 906 #endif
 907 
 908   for (;;) {
 909     assert(THREAD == _owner, "invariant");
 910 
 911     if (Knob_ExitPolicy == 0) {
 912       // release semantics: prior loads and stores from within the critical section
 913       // must not float (reorder) past the following store that drops the lock.
 914       // On SPARC that requires MEMBAR #loadstore|#storestore.
 915       // But of course in TSO #loadstore|#storestore is not required.
 916       // I'd like to write one of the following:
 917       // A.  OrderAccess::release() ; _owner = NULL
 918       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 919       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 920       // store into a _dummy variable.  That store is not needed, but can result
 921       // in massive wasteful coherency traffic on classic SMP systems.
 922       // Instead, I use release_store(), which is implemented as just a simple
 923       // ST on x64, x86 and SPARC.
 924       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 925       OrderAccess::storeload();                        // See if we need to wake a successor
 926       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 927         return;
 928       }
 929       // Other threads are blocked trying to acquire the lock.
 930 
 931       // Normally the exiting thread is responsible for ensuring succession,
 932       // but if other successors are ready or other entering threads are spinning
 933       // then this thread can simply store NULL into _owner and exit without
 934       // waking a successor.  The existence of spinners or ready successors
 935       // guarantees proper succession (liveness).  Responsibility passes to the
 936       // ready or running successors.  The exiting thread delegates the duty.
 937       // More precisely, if a successor already exists this thread is absolved
 938       // of the responsibility of waking (unparking) one.
 939       //
 940       // The _succ variable is critical to reducing futile wakeup frequency.
 941       // _succ identifies the "heir presumptive" thread that has been made
 942       // ready (unparked) but that has not yet run.  We need only one such
 943       // successor thread to guarantee progress.
 944       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 945       // section 3.3 "Futile Wakeup Throttling" for details.
 946       //
 947       // Note that spinners in Enter() also set _succ non-null.
 948       // In the current implementation spinners opportunistically set
 949       // _succ so that exiting threads might avoid waking a successor.
 950       // Another less appealing alternative would be for the exiting thread
 951       // to drop the lock and then spin briefly to see if a spinner managed
 952       // to acquire the lock.  If so, the exiting thread could exit
 953       // immediately without waking a successor, otherwise the exiting
 954       // thread would need to dequeue and wake a successor.
 955       // (Note that we'd need to make the post-drop spin short, but no
 956       // shorter than the worst-case round-trip cache-line migration time.
 957       // The dropped lock needs to become visible to the spinner, and then
 958       // the acquisition of the lock by the spinner must become visible to
 959       // the exiting thread).
 960 
 961       // It appears that an heir-presumptive (successor) must be made ready.
 962       // Only the current lock owner can manipulate the EntryList or
 963       // drain _cxq, so we need to reacquire the lock.  If we fail
 964       // to reacquire the lock the responsibility for ensuring succession
 965       // falls to the new owner.
 966       //
 967       if (!Atomic::replace_if_null(THREAD, &_owner)) {
 968         return;
 969       }
 970     } else {
 971       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 972         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 973         OrderAccess::storeload();
 974         // Ratify the previously observed values.
 975         if (_cxq == NULL || _succ != NULL) {
 976           return;
 977         }
 978 
 979         // inopportune interleaving -- the exiting thread (this thread)
 980         // in the fast-exit path raced an entering thread in the slow-enter
 981         // path.
 982         // We have two choices:
 983         // A.  Try to reacquire the lock.
 984         //     If the CAS() fails return immediately, otherwise
 985         //     we either restart/rerun the exit operation, or simply
 986         //     fall-through into the code below which wakes a successor.
 987         // B.  If the elements forming the EntryList|cxq are TSM
 988         //     we could simply unpark() the lead thread and return
 989         //     without having set _succ.
 990         if (!Atomic::replace_if_null(THREAD, &_owner)) {
 991           return;
 992         }
 993       }
 994     }
 995 
 996     guarantee(_owner == THREAD, "invariant");
 997 
 998     ObjectWaiter * w = NULL;
 999     int QMode = Knob_QMode;
1000 
1001     if (QMode == 2 && _cxq != NULL) {
1002       // QMode == 2 : cxq has precedence over EntryList.
1003       // Try to directly wake a successor from the cxq.
1004       // If successful, the successor will need to unlink itself from cxq.
1005       w = _cxq;
1006       assert(w != NULL, "invariant");
1007       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1008       ExitEpilog(Self, w);
1009       return;
1010     }
1011 
1012     if (QMode == 3 && _cxq != NULL) {
1013       // Aggressively drain cxq into EntryList at the first opportunity.
1014       // This policy ensure that recently-run threads live at the head of EntryList.
1015       // Drain _cxq into EntryList - bulk transfer.
1016       // First, detach _cxq.
1017       // The following loop is tantamount to: w = swap(&cxq, NULL)
1018       w = _cxq;
1019       for (;;) {
1020         assert(w != NULL, "Invariant");
1021         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1022         if (u == w) break;
1023         w = u;
1024       }
1025       assert(w != NULL, "invariant");
1026 
1027       ObjectWaiter * q = NULL;
1028       ObjectWaiter * p;
1029       for (p = w; p != NULL; p = p->_next) {
1030         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1031         p->TState = ObjectWaiter::TS_ENTER;
1032         p->_prev = q;
1033         q = p;
1034       }
1035 
1036       // Append the RATs to the EntryList
1037       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1038       ObjectWaiter * Tail;
1039       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1040            Tail = Tail->_next)
1041         /* empty */;
1042       if (Tail == NULL) {
1043         _EntryList = w;
1044       } else {
1045         Tail->_next = w;
1046         w->_prev = Tail;
1047       }
1048 
1049       // Fall thru into code that tries to wake a successor from EntryList
1050     }
1051 
1052     if (QMode == 4 && _cxq != NULL) {
1053       // Aggressively drain cxq into EntryList at the first opportunity.
1054       // This policy ensure that recently-run threads live at the head of EntryList.
1055 
1056       // Drain _cxq into EntryList - bulk transfer.
1057       // First, detach _cxq.
1058       // The following loop is tantamount to: w = swap(&cxq, NULL)
1059       w = _cxq;
1060       for (;;) {
1061         assert(w != NULL, "Invariant");
1062         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1063         if (u == w) break;
1064         w = u;
1065       }
1066       assert(w != NULL, "invariant");
1067 
1068       ObjectWaiter * q = NULL;
1069       ObjectWaiter * p;
1070       for (p = w; p != NULL; p = p->_next) {
1071         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1072         p->TState = ObjectWaiter::TS_ENTER;
1073         p->_prev = q;
1074         q = p;
1075       }
1076 
1077       // Prepend the RATs to the EntryList
1078       if (_EntryList != NULL) {
1079         q->_next = _EntryList;
1080         _EntryList->_prev = q;
1081       }
1082       _EntryList = w;
1083 
1084       // Fall thru into code that tries to wake a successor from EntryList
1085     }
1086 
1087     w = _EntryList;
1088     if (w != NULL) {
1089       // I'd like to write: guarantee (w->_thread != Self).
1090       // But in practice an exiting thread may find itself on the EntryList.
1091       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1092       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1093       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1094       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1095       // release the lock "O".  T2 resumes immediately after the ST of null into
1096       // _owner, above.  T2 notices that the EntryList is populated, so it
1097       // reacquires the lock and then finds itself on the EntryList.
1098       // Given all that, we have to tolerate the circumstance where "w" is
1099       // associated with Self.
1100       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1101       ExitEpilog(Self, w);
1102       return;
1103     }
1104 
1105     // If we find that both _cxq and EntryList are null then just
1106     // re-run the exit protocol from the top.
1107     w = _cxq;
1108     if (w == NULL) continue;
1109 
1110     // Drain _cxq into EntryList - bulk transfer.
1111     // First, detach _cxq.
1112     // The following loop is tantamount to: w = swap(&cxq, NULL)
1113     for (;;) {
1114       assert(w != NULL, "Invariant");
1115       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1116       if (u == w) break;
1117       w = u;
1118     }
1119 
1120     assert(w != NULL, "invariant");
1121     assert(_EntryList == NULL, "invariant");
1122 
1123     // Convert the LIFO SLL anchored by _cxq into a DLL.
1124     // The list reorganization step operates in O(LENGTH(w)) time.
1125     // It's critical that this step operate quickly as
1126     // "Self" still holds the outer-lock, restricting parallelism
1127     // and effectively lengthening the critical section.
1128     // Invariant: s chases t chases u.
1129     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1130     // we have faster access to the tail.
1131 
1132     if (QMode == 1) {
1133       // QMode == 1 : drain cxq to EntryList, reversing order
1134       // We also reverse the order of the list.
1135       ObjectWaiter * s = NULL;
1136       ObjectWaiter * t = w;
1137       ObjectWaiter * u = NULL;
1138       while (t != NULL) {
1139         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1140         t->TState = ObjectWaiter::TS_ENTER;
1141         u = t->_next;
1142         t->_prev = u;
1143         t->_next = s;
1144         s = t;
1145         t = u;
1146       }
1147       _EntryList  = s;
1148       assert(s != NULL, "invariant");
1149     } else {
1150       // QMode == 0 or QMode == 2
1151       _EntryList = w;
1152       ObjectWaiter * q = NULL;
1153       ObjectWaiter * p;
1154       for (p = w; p != NULL; p = p->_next) {
1155         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1156         p->TState = ObjectWaiter::TS_ENTER;
1157         p->_prev = q;
1158         q = p;
1159       }
1160     }
1161 
1162     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1163     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1164 
1165     // See if we can abdicate to a spinner instead of waking a thread.
1166     // A primary goal of the implementation is to reduce the
1167     // context-switch rate.
1168     if (_succ != NULL) continue;
1169 
1170     w = _EntryList;
1171     if (w != NULL) {
1172       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1173       ExitEpilog(Self, w);
1174       return;
1175     }
1176   }
1177 }
1178 
1179 // ExitSuspendEquivalent:
1180 // A faster alternate to handle_special_suspend_equivalent_condition()
1181 //
1182 // handle_special_suspend_equivalent_condition() unconditionally
1183 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1184 // operations have high latency.  Note that in ::enter() we call HSSEC
1185 // while holding the monitor, so we effectively lengthen the critical sections.
1186 //
1187 // There are a number of possible solutions:
1188 //
1189 // A.  To ameliorate the problem we might also defer state transitions
1190 //     to as late as possible -- just prior to parking.
1191 //     Given that, we'd call HSSEC after having returned from park(),
1192 //     but before attempting to acquire the monitor.  This is only a
1193 //     partial solution.  It avoids calling HSSEC while holding the
1194 //     monitor (good), but it still increases successor reacquisition latency --
1195 //     the interval between unparking a successor and the time the successor
1196 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1197 //     If we use this technique we can also avoid EnterI()-exit() loop
1198 //     in ::enter() where we iteratively drop the lock and then attempt
1199 //     to reacquire it after suspending.
1200 //
1201 // B.  In the future we might fold all the suspend bits into a
1202 //     composite per-thread suspend flag and then update it with CAS().
1203 //     Alternately, a Dekker-like mechanism with multiple variables
1204 //     would suffice:
1205 //       ST Self->_suspend_equivalent = false
1206 //       MEMBAR
1207 //       LD Self_>_suspend_flags
1208 //
1209 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1210 // with a more efficient implementation, the need to use "FastHSSEC" has
1211 // decreased. - Dave
1212 
1213 
1214 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1215   const int Mode = Knob_FastHSSEC;
1216   if (Mode && !jSelf->is_external_suspend()) {
1217     assert(jSelf->is_suspend_equivalent(), "invariant");
1218     jSelf->clear_suspend_equivalent();
1219     if (2 == Mode) OrderAccess::storeload();
1220     if (!jSelf->is_external_suspend()) return false;
1221     // We raced a suspension -- fall thru into the slow path
1222     jSelf->set_suspend_equivalent();
1223   }
1224   return jSelf->handle_special_suspend_equivalent_condition();
1225 }
1226 
1227 
1228 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1229   assert(_owner == Self, "invariant");
1230 
1231   // Exit protocol:
1232   // 1. ST _succ = wakee
1233   // 2. membar #loadstore|#storestore;
1234   // 2. ST _owner = NULL
1235   // 3. unpark(wakee)
1236 
1237   _succ = Wakee->_thread;
1238   ParkEvent * Trigger = Wakee->_event;
1239 
1240   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1241   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1242   // out-of-scope (non-extant).
1243   Wakee  = NULL;
1244 
1245   // Drop the lock
1246   OrderAccess::release_store(&_owner, (void*)NULL);
1247   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1248 
1249   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1250   Trigger->unpark();
1251 
1252   // Maintain stats and report events to JVMTI
1253   OM_PERFDATA_OP(Parks, inc());
1254 }
1255 
1256 
1257 // -----------------------------------------------------------------------------
1258 // Class Loader deadlock handling.
1259 //
1260 // complete_exit exits a lock returning recursion count
1261 // complete_exit/reenter operate as a wait without waiting
1262 // complete_exit requires an inflated monitor
1263 // The _owner field is not always the Thread addr even with an
1264 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1265 // thread due to contention.
1266 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1267   Thread * const Self = THREAD;
1268   assert(Self->is_Java_thread(), "Must be Java thread!");
1269   JavaThread *jt = (JavaThread *)THREAD;
1270 
1271   DeferredInitialize();
1272 
1273   if (THREAD != _owner) {
1274     if (THREAD->is_lock_owned ((address)_owner)) {
1275       assert(_recursions == 0, "internal state error");
1276       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1277       _recursions = 0;
1278     }
1279   }
1280 
1281   guarantee(Self == _owner, "complete_exit not owner");
1282   intptr_t save = _recursions; // record the old recursion count
1283   _recursions = 0;        // set the recursion level to be 0
1284   exit(true, Self);           // exit the monitor
1285   guarantee(_owner != Self, "invariant");
1286   return save;
1287 }
1288 
1289 // reenter() enters a lock and sets recursion count
1290 // complete_exit/reenter operate as a wait without waiting
1291 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1292   Thread * const Self = THREAD;
1293   assert(Self->is_Java_thread(), "Must be Java thread!");
1294   JavaThread *jt = (JavaThread *)THREAD;
1295 
1296   guarantee(_owner != Self, "reenter already owner");
1297   enter(THREAD);       // enter the monitor
1298   guarantee(_recursions == 0, "reenter recursion");
1299   _recursions = recursions;
1300   return;
1301 }
1302 
1303 
1304 // -----------------------------------------------------------------------------
1305 // A macro is used below because there may already be a pending
1306 // exception which should not abort the execution of the routines
1307 // which use this (which is why we don't put this into check_slow and
1308 // call it with a CHECK argument).
1309 
1310 #define CHECK_OWNER()                                                       \
1311   do {                                                                      \
1312     if (THREAD != _owner) {                                                 \
1313       if (THREAD->is_lock_owned((address) _owner)) {                        \
1314         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1315         _recursions = 0;                                                    \
1316       } else {                                                              \
1317         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1318       }                                                                     \
1319     }                                                                       \
1320   } while (false)
1321 
1322 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1323 // TODO-FIXME: remove check_slow() -- it's likely dead.
1324 
1325 void ObjectMonitor::check_slow(TRAPS) {
1326   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1327   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1328 }
1329 
1330 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1331                                     ObjectMonitor* monitor,
1332                                     jlong notifier_tid,
1333                                     jlong timeout,
1334                                     bool timedout) {
1335   assert(event != NULL, "invariant");
1336   assert(monitor != NULL, "invariant");
1337   event->set_monitorClass(((oop)monitor->object())->klass());
1338   event->set_timeout(timeout);
1339   event->set_address((uintptr_t)monitor->object_addr());
1340   event->set_notifier(notifier_tid);
1341   event->set_timedOut(timedout);
1342   event->commit();
1343 }
1344 
1345 // -----------------------------------------------------------------------------
1346 // Wait/Notify/NotifyAll
1347 //
1348 // Note: a subset of changes to ObjectMonitor::wait()
1349 // will need to be replicated in complete_exit
1350 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1351   Thread * const Self = THREAD;
1352   assert(Self->is_Java_thread(), "Must be Java thread!");
1353   JavaThread *jt = (JavaThread *)THREAD;
1354 
1355   DeferredInitialize();
1356 
1357   // Throw IMSX or IEX.
1358   CHECK_OWNER();
1359 
1360   EventJavaMonitorWait event;
1361 
1362   // check for a pending interrupt
1363   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1364     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1365     if (JvmtiExport::should_post_monitor_waited()) {
1366       // Note: 'false' parameter is passed here because the
1367       // wait was not timed out due to thread interrupt.
1368       JvmtiExport::post_monitor_waited(jt, this, false);
1369 
1370       // In this short circuit of the monitor wait protocol, the
1371       // current thread never drops ownership of the monitor and
1372       // never gets added to the wait queue so the current thread
1373       // cannot be made the successor. This means that the
1374       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1375       // consume an unpark() meant for the ParkEvent associated with
1376       // this ObjectMonitor.
1377     }
1378     if (event.should_commit()) {
1379       post_monitor_wait_event(&event, this, 0, millis, false);
1380     }
1381     THROW(vmSymbols::java_lang_InterruptedException());
1382     return;
1383   }
1384 
1385   assert(Self->_Stalled == 0, "invariant");
1386   Self->_Stalled = intptr_t(this);
1387   jt->set_current_waiting_monitor(this);
1388 
1389   // create a node to be put into the queue
1390   // Critically, after we reset() the event but prior to park(), we must check
1391   // for a pending interrupt.
1392   ObjectWaiter node(Self);
1393   node.TState = ObjectWaiter::TS_WAIT;
1394   Self->_ParkEvent->reset();
1395   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1396 
1397   // Enter the waiting queue, which is a circular doubly linked list in this case
1398   // but it could be a priority queue or any data structure.
1399   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1400   // by the the owner of the monitor *except* in the case where park()
1401   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1402   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1403 
1404   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1405   AddWaiter(&node);
1406   Thread::SpinRelease(&_WaitSetLock);
1407 
1408   _Responsible = NULL;
1409 
1410   intptr_t save = _recursions; // record the old recursion count
1411   _waiters++;                  // increment the number of waiters
1412   _recursions = 0;             // set the recursion level to be 1
1413   exit(true, Self);                    // exit the monitor
1414   guarantee(_owner != Self, "invariant");
1415 
1416   // The thread is on the WaitSet list - now park() it.
1417   // On MP systems it's conceivable that a brief spin before we park
1418   // could be profitable.
1419   //
1420   // TODO-FIXME: change the following logic to a loop of the form
1421   //   while (!timeout && !interrupted && _notified == 0) park()
1422 
1423   int ret = OS_OK;
1424   int WasNotified = 0;
1425   { // State transition wrappers
1426     OSThread* osthread = Self->osthread();
1427     OSThreadWaitState osts(osthread, true);
1428     {
1429       ThreadBlockInVM tbivm(jt);
1430       // Thread is in thread_blocked state and oop access is unsafe.
1431       jt->set_suspend_equivalent();
1432 
1433       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1434         // Intentionally empty
1435       } else if (node._notified == 0) {
1436         if (millis <= 0) {
1437           Self->_ParkEvent->park();
1438         } else {
1439           ret = Self->_ParkEvent->park(millis);
1440         }
1441       }
1442 
1443       // were we externally suspended while we were waiting?
1444       if (ExitSuspendEquivalent (jt)) {
1445         // TODO-FIXME: add -- if succ == Self then succ = null.
1446         jt->java_suspend_self();
1447       }
1448 
1449     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1450 
1451     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1452     // from the WaitSet to the EntryList.
1453     // See if we need to remove Node from the WaitSet.
1454     // We use double-checked locking to avoid grabbing _WaitSetLock
1455     // if the thread is not on the wait queue.
1456     //
1457     // Note that we don't need a fence before the fetch of TState.
1458     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1459     // written by the is thread. (perhaps the fetch might even be satisfied
1460     // by a look-aside into the processor's own store buffer, although given
1461     // the length of the code path between the prior ST and this load that's
1462     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1463     // then we'll acquire the lock and then re-fetch a fresh TState value.
1464     // That is, we fail toward safety.
1465 
1466     if (node.TState == ObjectWaiter::TS_WAIT) {
1467       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1468       if (node.TState == ObjectWaiter::TS_WAIT) {
1469         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1470         assert(node._notified == 0, "invariant");
1471         node.TState = ObjectWaiter::TS_RUN;
1472       }
1473       Thread::SpinRelease(&_WaitSetLock);
1474     }
1475 
1476     // The thread is now either on off-list (TS_RUN),
1477     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1478     // The Node's TState variable is stable from the perspective of this thread.
1479     // No other threads will asynchronously modify TState.
1480     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1481     OrderAccess::loadload();
1482     if (_succ == Self) _succ = NULL;
1483     WasNotified = node._notified;
1484 
1485     // Reentry phase -- reacquire the monitor.
1486     // re-enter contended monitor after object.wait().
1487     // retain OBJECT_WAIT state until re-enter successfully completes
1488     // Thread state is thread_in_vm and oop access is again safe,
1489     // although the raw address of the object may have changed.
1490     // (Don't cache naked oops over safepoints, of course).
1491 
1492     // post monitor waited event. Note that this is past-tense, we are done waiting.
1493     if (JvmtiExport::should_post_monitor_waited()) {
1494       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1495 
1496       if (node._notified != 0 && _succ == Self) {
1497         // In this part of the monitor wait-notify-reenter protocol it
1498         // is possible (and normal) for another thread to do a fastpath
1499         // monitor enter-exit while this thread is still trying to get
1500         // to the reenter portion of the protocol.
1501         //
1502         // The ObjectMonitor was notified and the current thread is
1503         // the successor which also means that an unpark() has already
1504         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1505         // consume the unpark() that was done when the successor was
1506         // set because the same ParkEvent is shared between Java
1507         // monitors and JVM/TI RawMonitors (for now).
1508         //
1509         // We redo the unpark() to ensure forward progress, i.e., we
1510         // don't want all pending threads hanging (parked) with none
1511         // entering the unlocked monitor.
1512         node._event->unpark();
1513       }
1514     }
1515 
1516     if (event.should_commit()) {
1517       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1518     }
1519 
1520     OrderAccess::fence();
1521 
1522     assert(Self->_Stalled != 0, "invariant");
1523     Self->_Stalled = 0;
1524 
1525     assert(_owner != Self, "invariant");
1526     ObjectWaiter::TStates v = node.TState;
1527     if (v == ObjectWaiter::TS_RUN) {
1528       enter(Self);
1529     } else {
1530       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1531       ReenterI(Self, &node);
1532       node.wait_reenter_end(this);
1533     }
1534 
1535     // Self has reacquired the lock.
1536     // Lifecycle - the node representing Self must not appear on any queues.
1537     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1538     // want residual elements associated with this thread left on any lists.
1539     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1540     assert(_owner == Self, "invariant");
1541     assert(_succ != Self, "invariant");
1542   } // OSThreadWaitState()
1543 
1544   jt->set_current_waiting_monitor(NULL);
1545 
1546   guarantee(_recursions == 0, "invariant");
1547   _recursions = save;     // restore the old recursion count
1548   _waiters--;             // decrement the number of waiters
1549 
1550   // Verify a few postconditions
1551   assert(_owner == Self, "invariant");
1552   assert(_succ != Self, "invariant");
1553   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1554 
1555   // check if the notification happened
1556   if (!WasNotified) {
1557     // no, it could be timeout or Thread.interrupt() or both
1558     // check for interrupt event, otherwise it is timeout
1559     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1560       THROW(vmSymbols::java_lang_InterruptedException());
1561     }
1562   }
1563 
1564   // NOTE: Spurious wake up will be consider as timeout.
1565   // Monitor notify has precedence over thread interrupt.
1566 }
1567 
1568 
1569 // Consider:
1570 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1571 // then instead of transferring a thread from the WaitSet to the EntryList
1572 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1573 
1574 void ObjectMonitor::INotify(Thread * Self) {
1575   const int policy = Knob_MoveNotifyee;
1576 
1577   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1578   ObjectWaiter * iterator = DequeueWaiter();
1579   if (iterator != NULL) {
1580     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1581     guarantee(iterator->_notified == 0, "invariant");
1582     // Disposition - what might we do with iterator ?
1583     // a.  add it directly to the EntryList - either tail (policy == 1)
1584     //     or head (policy == 0).
1585     // b.  push it onto the front of the _cxq (policy == 2).
1586     // For now we use (b).
1587     if (policy != 4) {
1588       iterator->TState = ObjectWaiter::TS_ENTER;
1589     }
1590     iterator->_notified = 1;
1591     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1592 
1593     ObjectWaiter * list = _EntryList;
1594     if (list != NULL) {
1595       assert(list->_prev == NULL, "invariant");
1596       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1597       assert(list != iterator, "invariant");
1598     }
1599 
1600     if (policy == 0) {       // prepend to EntryList
1601       if (list == NULL) {
1602         iterator->_next = iterator->_prev = NULL;
1603         _EntryList = iterator;
1604       } else {
1605         list->_prev = iterator;
1606         iterator->_next = list;
1607         iterator->_prev = NULL;
1608         _EntryList = iterator;
1609       }
1610     } else if (policy == 1) {      // append to EntryList
1611       if (list == NULL) {
1612         iterator->_next = iterator->_prev = NULL;
1613         _EntryList = iterator;
1614       } else {
1615         // CONSIDER:  finding the tail currently requires a linear-time walk of
1616         // the EntryList.  We can make tail access constant-time by converting to
1617         // a CDLL instead of using our current DLL.
1618         ObjectWaiter * tail;
1619         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1620         assert(tail != NULL && tail->_next == NULL, "invariant");
1621         tail->_next = iterator;
1622         iterator->_prev = tail;
1623         iterator->_next = NULL;
1624       }
1625     } else if (policy == 2) {      // prepend to cxq
1626       if (list == NULL) {
1627         iterator->_next = iterator->_prev = NULL;
1628         _EntryList = iterator;
1629       } else {
1630         iterator->TState = ObjectWaiter::TS_CXQ;
1631         for (;;) {
1632           ObjectWaiter * front = _cxq;
1633           iterator->_next = front;
1634           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1635             break;
1636           }
1637         }
1638       }
1639     } else if (policy == 3) {      // append to cxq
1640       iterator->TState = ObjectWaiter::TS_CXQ;
1641       for (;;) {
1642         ObjectWaiter * tail = _cxq;
1643         if (tail == NULL) {
1644           iterator->_next = NULL;
1645           if (Atomic::replace_if_null(iterator, &_cxq)) {
1646             break;
1647           }
1648         } else {
1649           while (tail->_next != NULL) tail = tail->_next;
1650           tail->_next = iterator;
1651           iterator->_prev = tail;
1652           iterator->_next = NULL;
1653           break;
1654         }
1655       }
1656     } else {
1657       ParkEvent * ev = iterator->_event;
1658       iterator->TState = ObjectWaiter::TS_RUN;
1659       OrderAccess::fence();
1660       ev->unpark();
1661     }
1662 
1663     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1664     // move the add-to-EntryList operation, above, outside the critical section
1665     // protected by _WaitSetLock.  In practice that's not useful.  With the
1666     // exception of  wait() timeouts and interrupts the monitor owner
1667     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1668     // on _WaitSetLock so it's not profitable to reduce the length of the
1669     // critical section.
1670 
1671     if (policy < 4) {
1672       iterator->wait_reenter_begin(this);
1673     }
1674   }
1675   Thread::SpinRelease(&_WaitSetLock);
1676 }
1677 
1678 // Consider: a not-uncommon synchronization bug is to use notify() when
1679 // notifyAll() is more appropriate, potentially resulting in stranded
1680 // threads; this is one example of a lost wakeup. A useful diagnostic
1681 // option is to force all notify() operations to behave as notifyAll().
1682 //
1683 // Note: We can also detect many such problems with a "minimum wait".
1684 // When the "minimum wait" is set to a small non-zero timeout value
1685 // and the program does not hang whereas it did absent "minimum wait",
1686 // that suggests a lost wakeup bug.
1687 
1688 void ObjectMonitor::notify(TRAPS) {
1689   CHECK_OWNER();
1690   if (_WaitSet == NULL) {
1691     return;
1692   }
1693   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1694   INotify(THREAD);
1695   OM_PERFDATA_OP(Notifications, inc(1));
1696 }
1697 
1698 
1699 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1700 // from the waitset to the EntryList. This could be done more efficiently with a
1701 // single bulk transfer but in practice it's not time-critical. Beware too,
1702 // that in prepend-mode we invert the order of the waiters. Let's say that the
1703 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1704 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1705 
1706 void ObjectMonitor::notifyAll(TRAPS) {
1707   CHECK_OWNER();
1708   if (_WaitSet == NULL) {
1709     return;
1710   }
1711 
1712   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1713   int tally = 0;
1714   while (_WaitSet != NULL) {
1715     tally++;
1716     INotify(THREAD);
1717   }
1718 
1719   OM_PERFDATA_OP(Notifications, inc(tally));
1720 }
1721 
1722 // -----------------------------------------------------------------------------
1723 // Adaptive Spinning Support
1724 //
1725 // Adaptive spin-then-block - rational spinning
1726 //
1727 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1728 // algorithm.  On high order SMP systems it would be better to start with
1729 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1730 // a contending thread could enqueue itself on the cxq and then spin locally
1731 // on a thread-specific variable such as its ParkEvent._Event flag.
1732 // That's left as an exercise for the reader.  Note that global spinning is
1733 // not problematic on Niagara, as the L2 cache serves the interconnect and
1734 // has both low latency and massive bandwidth.
1735 //
1736 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1737 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1738 // (duration) or we can fix the count at approximately the duration of
1739 // a context switch and vary the frequency.   Of course we could also
1740 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1741 // For a description of 'Adaptive spin-then-block mutual exclusion in
1742 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1743 //
1744 // This implementation varies the duration "D", where D varies with
1745 // the success rate of recent spin attempts. (D is capped at approximately
1746 // length of a round-trip context switch).  The success rate for recent
1747 // spin attempts is a good predictor of the success rate of future spin
1748 // attempts.  The mechanism adapts automatically to varying critical
1749 // section length (lock modality), system load and degree of parallelism.
1750 // D is maintained per-monitor in _SpinDuration and is initialized
1751 // optimistically.  Spin frequency is fixed at 100%.
1752 //
1753 // Note that _SpinDuration is volatile, but we update it without locks
1754 // or atomics.  The code is designed so that _SpinDuration stays within
1755 // a reasonable range even in the presence of races.  The arithmetic
1756 // operations on _SpinDuration are closed over the domain of legal values,
1757 // so at worst a race will install and older but still legal value.
1758 // At the very worst this introduces some apparent non-determinism.
1759 // We might spin when we shouldn't or vice-versa, but since the spin
1760 // count are relatively short, even in the worst case, the effect is harmless.
1761 //
1762 // Care must be taken that a low "D" value does not become an
1763 // an absorbing state.  Transient spinning failures -- when spinning
1764 // is overall profitable -- should not cause the system to converge
1765 // on low "D" values.  We want spinning to be stable and predictable
1766 // and fairly responsive to change and at the same time we don't want
1767 // it to oscillate, become metastable, be "too" non-deterministic,
1768 // or converge on or enter undesirable stable absorbing states.
1769 //
1770 // We implement a feedback-based control system -- using past behavior
1771 // to predict future behavior.  We face two issues: (a) if the
1772 // input signal is random then the spin predictor won't provide optimal
1773 // results, and (b) if the signal frequency is too high then the control
1774 // system, which has some natural response lag, will "chase" the signal.
1775 // (b) can arise from multimodal lock hold times.  Transient preemption
1776 // can also result in apparent bimodal lock hold times.
1777 // Although sub-optimal, neither condition is particularly harmful, as
1778 // in the worst-case we'll spin when we shouldn't or vice-versa.
1779 // The maximum spin duration is rather short so the failure modes aren't bad.
1780 // To be conservative, I've tuned the gain in system to bias toward
1781 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1782 // "rings" or oscillates between spinning and not spinning.  This happens
1783 // when spinning is just on the cusp of profitability, however, so the
1784 // situation is not dire.  The state is benign -- there's no need to add
1785 // hysteresis control to damp the transition rate between spinning and
1786 // not spinning.
1787 
1788 // Spinning: Fixed frequency (100%), vary duration
1789 int ObjectMonitor::TrySpin(Thread * Self) {
1790   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1791   int ctr = Knob_FixedSpin;
1792   if (ctr != 0) {
1793     while (--ctr >= 0) {
1794       if (TryLock(Self) > 0) return 1;
1795       SpinPause();
1796     }
1797     return 0;
1798   }
1799 
1800   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1801     if (TryLock(Self) > 0) {
1802       // Increase _SpinDuration ...
1803       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1804       // Raising _SpurDuration to the poverty line is key.
1805       int x = _SpinDuration;
1806       if (x < Knob_SpinLimit) {
1807         if (x < Knob_Poverty) x = Knob_Poverty;
1808         _SpinDuration = x + Knob_BonusB;
1809       }
1810       return 1;
1811     }
1812     SpinPause();
1813   }
1814 
1815   // Admission control - verify preconditions for spinning
1816   //
1817   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1818   // becoming an absorbing state.  Put another way, we spin briefly to
1819   // sample, just in case the system load, parallelism, contention, or lock
1820   // modality changed.
1821   //
1822   // Consider the following alternative:
1823   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1824   // spin attempt.  "Periodically" might mean after a tally of
1825   // the # of failed spin attempts (or iterations) reaches some threshold.
1826   // This takes us into the realm of 1-out-of-N spinning, where we
1827   // hold the duration constant but vary the frequency.
1828 
1829   ctr = _SpinDuration;
1830   if (ctr <= 0) return 0;
1831 
1832   if (NotRunnable(Self, (Thread *) _owner)) {
1833     return 0;
1834   }
1835 
1836   // We're good to spin ... spin ingress.
1837   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1838   // when preparing to LD...CAS _owner, etc and the CAS is likely
1839   // to succeed.
1840   if (_succ == NULL) {
1841     _succ = Self;
1842   }
1843   Thread * prv = NULL;
1844 
1845   // There are three ways to exit the following loop:
1846   // 1.  A successful spin where this thread has acquired the lock.
1847   // 2.  Spin failure with prejudice
1848   // 3.  Spin failure without prejudice
1849 
1850   while (--ctr >= 0) {
1851 
1852     // Periodic polling -- Check for pending GC
1853     // Threads may spin while they're unsafe.
1854     // We don't want spinning threads to delay the JVM from reaching
1855     // a stop-the-world safepoint or to steal cycles from GC.
1856     // If we detect a pending safepoint we abort in order that
1857     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1858     // this thread, if safe, doesn't steal cycles from GC.
1859     // This is in keeping with the "no loitering in runtime" rule.
1860     // We periodically check to see if there's a safepoint pending.
1861     if ((ctr & 0xFF) == 0) {
1862       if (SafepointMechanism::poll(Self)) {
1863         goto Abort;           // abrupt spin egress
1864       }
1865       SpinPause();
1866     }
1867 
1868     // Probe _owner with TATAS
1869     // If this thread observes the monitor transition or flicker
1870     // from locked to unlocked to locked, then the odds that this
1871     // thread will acquire the lock in this spin attempt go down
1872     // considerably.  The same argument applies if the CAS fails
1873     // or if we observe _owner change from one non-null value to
1874     // another non-null value.   In such cases we might abort
1875     // the spin without prejudice or apply a "penalty" to the
1876     // spin count-down variable "ctr", reducing it by 100, say.
1877 
1878     Thread * ox = (Thread *) _owner;
1879     if (ox == NULL) {
1880       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1881       if (ox == NULL) {
1882         // The CAS succeeded -- this thread acquired ownership
1883         // Take care of some bookkeeping to exit spin state.
1884         if (_succ == Self) {
1885           _succ = NULL;
1886         }
1887 
1888         // Increase _SpinDuration :
1889         // The spin was successful (profitable) so we tend toward
1890         // longer spin attempts in the future.
1891         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1892         // If we acquired the lock early in the spin cycle it
1893         // makes sense to increase _SpinDuration proportionally.
1894         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1895         int x = _SpinDuration;
1896         if (x < Knob_SpinLimit) {
1897           if (x < Knob_Poverty) x = Knob_Poverty;
1898           _SpinDuration = x + Knob_Bonus;
1899         }
1900         return 1;
1901       }
1902 
1903       // The CAS failed ... we can take any of the following actions:
1904       // * penalize: ctr -= CASPenalty
1905       // * exit spin with prejudice -- goto Abort;
1906       // * exit spin without prejudice.
1907       // * Since CAS is high-latency, retry again immediately.
1908       prv = ox;
1909       goto Abort;
1910     }
1911 
1912     // Did lock ownership change hands ?
1913     if (ox != prv && prv != NULL) {
1914       goto Abort;
1915     }
1916     prv = ox;
1917 
1918     // Abort the spin if the owner is not executing.
1919     // The owner must be executing in order to drop the lock.
1920     // Spinning while the owner is OFFPROC is idiocy.
1921     // Consider: ctr -= RunnablePenalty ;
1922     if (NotRunnable(Self, ox)) {
1923       goto Abort;
1924     }
1925     if (_succ == NULL) {
1926       _succ = Self;
1927     }
1928   }
1929 
1930   // Spin failed with prejudice -- reduce _SpinDuration.
1931   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1932   // AIMD is globally stable.
1933   {
1934     int x = _SpinDuration;
1935     if (x > 0) {
1936       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1937       // This is globally sample and tends to damp the response.
1938       x -= Knob_Penalty;
1939       if (x < 0) x = 0;
1940       _SpinDuration = x;
1941     }
1942   }
1943 
1944  Abort:
1945   if (_succ == Self) {
1946     _succ = NULL;
1947     // Invariant: after setting succ=null a contending thread
1948     // must recheck-retry _owner before parking.  This usually happens
1949     // in the normal usage of TrySpin(), but it's safest
1950     // to make TrySpin() as foolproof as possible.
1951     OrderAccess::fence();
1952     if (TryLock(Self) > 0) return 1;
1953   }
1954   return 0;
1955 }
1956 
1957 // NotRunnable() -- informed spinning
1958 //
1959 // Don't bother spinning if the owner is not eligible to drop the lock.
1960 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1961 // The thread must be runnable in order to drop the lock in timely fashion.
1962 // If the _owner is not runnable then spinning will not likely be
1963 // successful (profitable).
1964 //
1965 // Beware -- the thread referenced by _owner could have died
1966 // so a simply fetch from _owner->_thread_state might trap.
1967 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1968 // Because of the lifecycle issues, the _thread_state values
1969 // observed by NotRunnable() might be garbage.  NotRunnable must
1970 // tolerate this and consider the observed _thread_state value
1971 // as advisory.
1972 //
1973 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1974 // a thread pointer.
1975 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1976 // with the LSB of _owner.  Another option would be to probabilistically probe
1977 // the putative _owner->TypeTag value.
1978 //
1979 // Checking _thread_state isn't perfect.  Even if the thread is
1980 // in_java it might be blocked on a page-fault or have been preempted
1981 // and sitting on a ready/dispatch queue.
1982 //
1983 // The return value from NotRunnable() is *advisory* -- the
1984 // result is based on sampling and is not necessarily coherent.
1985 // The caller must tolerate false-negative and false-positive errors.
1986 // Spinning, in general, is probabilistic anyway.
1987 
1988 
1989 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1990   // Check ox->TypeTag == 2BAD.
1991   if (ox == NULL) return 0;
1992 
1993   // Avoid transitive spinning ...
1994   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1995   // Immediately after T1 acquires L it's possible that T2, also
1996   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1997   // This occurs transiently after T1 acquired L but before
1998   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1999   // its spin in this circumstance.
2000   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2001 
2002   if (BlockedOn == 1) return 1;
2003   if (BlockedOn != 0) {
2004     return BlockedOn != intptr_t(this) && _owner == ox;
2005   }
2006 
2007   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2008   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2009   // consider also: jst != _thread_in_Java -- but that's overspecific.
2010   return jst == _thread_blocked || jst == _thread_in_native;
2011 }
2012 
2013 
2014 // -----------------------------------------------------------------------------
2015 // WaitSet management ...
2016 
2017 ObjectWaiter::ObjectWaiter(Thread* thread) {
2018   _next     = NULL;
2019   _prev     = NULL;
2020   _notified = 0;
2021   _notifier_tid = 0;
2022   TState    = TS_RUN;
2023   _thread   = thread;
2024   _event    = thread->_ParkEvent;
2025   _active   = false;
2026   assert(_event != NULL, "invariant");
2027 }
2028 
2029 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2030   JavaThread *jt = (JavaThread *)this->_thread;
2031   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2032 }
2033 
2034 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2035   JavaThread *jt = (JavaThread *)this->_thread;
2036   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2037 }
2038 
2039 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2040   assert(node != NULL, "should not add NULL node");
2041   assert(node->_prev == NULL, "node already in list");
2042   assert(node->_next == NULL, "node already in list");
2043   // put node at end of queue (circular doubly linked list)
2044   if (_WaitSet == NULL) {
2045     _WaitSet = node;
2046     node->_prev = node;
2047     node->_next = node;
2048   } else {
2049     ObjectWaiter* head = _WaitSet;
2050     ObjectWaiter* tail = head->_prev;
2051     assert(tail->_next == head, "invariant check");
2052     tail->_next = node;
2053     head->_prev = node;
2054     node->_next = head;
2055     node->_prev = tail;
2056   }
2057 }
2058 
2059 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2060   // dequeue the very first waiter
2061   ObjectWaiter* waiter = _WaitSet;
2062   if (waiter) {
2063     DequeueSpecificWaiter(waiter);
2064   }
2065   return waiter;
2066 }
2067 
2068 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2069   assert(node != NULL, "should not dequeue NULL node");
2070   assert(node->_prev != NULL, "node already removed from list");
2071   assert(node->_next != NULL, "node already removed from list");
2072   // when the waiter has woken up because of interrupt,
2073   // timeout or other spurious wake-up, dequeue the
2074   // waiter from waiting list
2075   ObjectWaiter* next = node->_next;
2076   if (next == node) {
2077     assert(node->_prev == node, "invariant check");
2078     _WaitSet = NULL;
2079   } else {
2080     ObjectWaiter* prev = node->_prev;
2081     assert(prev->_next == node, "invariant check");
2082     assert(next->_prev == node, "invariant check");
2083     next->_prev = prev;
2084     prev->_next = next;
2085     if (_WaitSet == node) {
2086       _WaitSet = next;
2087     }
2088   }
2089   node->_next = NULL;
2090   node->_prev = NULL;
2091 }
2092 
2093 // -----------------------------------------------------------------------------
2094 // PerfData support
2095 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2096 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2097 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2098 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2099 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2100 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2101 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2102 
2103 // One-shot global initialization for the sync subsystem.
2104 // We could also defer initialization and initialize on-demand
2105 // the first time we call inflate().  Initialization would
2106 // be protected - like so many things - by the MonitorCache_lock.
2107 
2108 void ObjectMonitor::Initialize() {
2109   static int InitializationCompleted = 0;
2110   assert(InitializationCompleted == 0, "invariant");
2111   InitializationCompleted = 1;
2112   if (UsePerfData) {
2113     EXCEPTION_MARK;
2114 #define NEWPERFCOUNTER(n)                                                \
2115   {                                                                      \
2116     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2117                                         CHECK);                          \
2118   }
2119 #define NEWPERFVARIABLE(n)                                                \
2120   {                                                                       \
2121     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2122                                          CHECK);                          \
2123   }
2124     NEWPERFCOUNTER(_sync_Inflations);
2125     NEWPERFCOUNTER(_sync_Deflations);
2126     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2127     NEWPERFCOUNTER(_sync_FutileWakeups);
2128     NEWPERFCOUNTER(_sync_Parks);
2129     NEWPERFCOUNTER(_sync_Notifications);
2130     NEWPERFVARIABLE(_sync_MonExtant);
2131 #undef NEWPERFCOUNTER
2132 #undef NEWPERFVARIABLE
2133   }
2134 }
2135 
2136 void ObjectMonitor::DeferredInitialize() {
2137   if (InitDone > 0) return;
2138   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2139     while (InitDone != 1) /* empty */;
2140     return;
2141   }
2142 
2143   // One-shot global initialization ...
2144   // The initialization is idempotent, so we don't need locks.
2145   // In the future consider doing this via os::init_2().
2146 
2147   if (!os::is_MP()) {
2148     Knob_SpinLimit = 0;
2149     Knob_PreSpin   = 0;
2150     Knob_FixedSpin = -1;
2151   }
2152 
2153   OrderAccess::fence();
2154   InitDone = 1;
2155 }
2156