1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 105 
 106 static int Knob_Bonus               = 100;     // spin success bonus
 107 static int Knob_BonusB              = 100;     // spin success bonus
 108 static int Knob_Penalty             = 200;     // spin failure penalty
 109 static int Knob_Poverty             = 1000;
 110 static int Knob_FixedSpin           = 0;
 111 static int Knob_PreSpin             = 10;      // 20-100 likely better
 112 static int Knob_ResetEvent          = 0;
 113 
 114 static int Knob_FastHSSEC           = 0;
 115 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 116 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 117 static volatile int InitDone        = 0;
 118 
 119 // -----------------------------------------------------------------------------
 120 // Theory of operations -- Monitors lists, thread residency, etc:
 121 //
 122 // * A thread acquires ownership of a monitor by successfully
 123 //   CAS()ing the _owner field from null to non-null.
 124 //
 125 // * Invariant: A thread appears on at most one monitor list --
 126 //   cxq, EntryList or WaitSet -- at any one time.
 127 //
 128 // * Contending threads "push" themselves onto the cxq with CAS
 129 //   and then spin/park.
 130 //
 131 // * After a contending thread eventually acquires the lock it must
 132 //   dequeue itself from either the EntryList or the cxq.
 133 //
 134 // * The exiting thread identifies and unparks an "heir presumptive"
 135 //   tentative successor thread on the EntryList.  Critically, the
 136 //   exiting thread doesn't unlink the successor thread from the EntryList.
 137 //   After having been unparked, the wakee will recontend for ownership of
 138 //   the monitor.   The successor (wakee) will either acquire the lock or
 139 //   re-park itself.
 140 //
 141 //   Succession is provided for by a policy of competitive handoff.
 142 //   The exiting thread does _not_ grant or pass ownership to the
 143 //   successor thread.  (This is also referred to as "handoff" succession").
 144 //   Instead the exiting thread releases ownership and possibly wakes
 145 //   a successor, so the successor can (re)compete for ownership of the lock.
 146 //   If the EntryList is empty but the cxq is populated the exiting
 147 //   thread will drain the cxq into the EntryList.  It does so by
 148 //   by detaching the cxq (installing null with CAS) and folding
 149 //   the threads from the cxq into the EntryList.  The EntryList is
 150 //   doubly linked, while the cxq is singly linked because of the
 151 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 152 //
 153 // * Concurrency invariants:
 154 //
 155 //   -- only the monitor owner may access or mutate the EntryList.
 156 //      The mutex property of the monitor itself protects the EntryList
 157 //      from concurrent interference.
 158 //   -- Only the monitor owner may detach the cxq.
 159 //
 160 // * The monitor entry list operations avoid locks, but strictly speaking
 161 //   they're not lock-free.  Enter is lock-free, exit is not.
 162 //   For a description of 'Methods and apparatus providing non-blocking access
 163 //   to a resource,' see U.S. Pat. No. 7844973.
 164 //
 165 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 166 //   detaching thread.  This mechanism is immune from the ABA corruption.
 167 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 168 //
 169 // * Taken together, the cxq and the EntryList constitute or form a
 170 //   single logical queue of threads stalled trying to acquire the lock.
 171 //   We use two distinct lists to improve the odds of a constant-time
 172 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 173 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 174 //   A key desideratum is to minimize queue & monitor metadata manipulation
 175 //   that occurs while holding the monitor lock -- that is, we want to
 176 //   minimize monitor lock holds times.  Note that even a small amount of
 177 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 178 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 179 //   locks and monitor metadata.
 180 //
 181 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 182 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 183 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 184 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 185 //
 186 //   The EntryList is ordered by the prevailing queue discipline and
 187 //   can be organized in any convenient fashion, such as a doubly-linked list or
 188 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 189 //   to operate in constant-time.  If we need a priority queue then something akin
 190 //   to Solaris' sleepq would work nicely.  Viz.,
 191 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 192 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 193 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 194 //   EntryList accordingly.
 195 //
 196 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 197 //   somewhat similar to an elevator-scan.
 198 //
 199 // * The monitor synchronization subsystem avoids the use of native
 200 //   synchronization primitives except for the narrow platform-specific
 201 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 202 //   the semantics of park-unpark.  Put another way, this monitor implementation
 203 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 204 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 205 //   underlying OS manages the READY<->RUN transitions.
 206 //
 207 // * Waiting threads reside on the WaitSet list -- wait() puts
 208 //   the caller onto the WaitSet.
 209 //
 210 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 211 //   either the EntryList or cxq.  Subsequent exit() operations will
 212 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 213 //   it's likely the notifyee would simply impale itself on the lock held
 214 //   by the notifier.
 215 //
 216 // * An interesting alternative is to encode cxq as (List,LockByte) where
 217 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 218 //   variable, like _recursions, in the scheme.  The threads or Events that form
 219 //   the list would have to be aligned in 256-byte addresses.  A thread would
 220 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 221 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 222 //   Note that is is *not* word-tearing, but it does presume that full-word
 223 //   CAS operations are coherent with intermix with STB operations.  That's true
 224 //   on most common processors.
 225 //
 226 // * See also http://blogs.sun.com/dave
 227 
 228 
 229 void* ObjectMonitor::operator new (size_t size) throw() {
 230   return AllocateHeap(size, mtInternal);
 231 }
 232 void* ObjectMonitor::operator new[] (size_t size) throw() {
 233   return operator new (size);
 234 }
 235 void ObjectMonitor::operator delete(void* p) {
 236   FreeHeap(p);
 237 }
 238 void ObjectMonitor::operator delete[] (void *p) {
 239   operator delete(p);
 240 }
 241 
 242 // -----------------------------------------------------------------------------
 243 // Enter support
 244 
 245 void ObjectMonitor::enter(TRAPS) {
 246   // The following code is ordered to check the most common cases first
 247   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 248   Thread * const Self = THREAD;
 249 
 250   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 251   if (cur == NULL) {
 252     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 253     assert(_recursions == 0, "invariant");
 254     assert(_owner == Self, "invariant");
 255     return;
 256   }
 257 
 258   if (cur == Self) {
 259     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 260     _recursions++;
 261     return;
 262   }
 263 
 264   if (Self->is_lock_owned ((address)cur)) {
 265     assert(_recursions == 0, "internal state error");
 266     _recursions = 1;
 267     // Commute owner from a thread-specific on-stack BasicLockObject address to
 268     // a full-fledged "Thread *".
 269     _owner = Self;
 270     return;
 271   }
 272 
 273   // We've encountered genuine contention.
 274   assert(Self->_Stalled == 0, "invariant");
 275   Self->_Stalled = intptr_t(this);
 276 
 277   // Try one round of spinning *before* enqueueing Self
 278   // and before going through the awkward and expensive state
 279   // transitions.  The following spin is strictly optional ...
 280   // Note that if we acquire the monitor from an initial spin
 281   // we forgo posting JVMTI events and firing DTRACE probes.
 282   if (TrySpin(Self) > 0) {
 283     assert(_owner == Self, "invariant");
 284     assert(_recursions == 0, "invariant");
 285     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 286     Self->_Stalled = 0;
 287     return;
 288   }
 289 
 290   assert(_owner != Self, "invariant");
 291   assert(_succ != Self, "invariant");
 292   assert(Self->is_Java_thread(), "invariant");
 293   JavaThread * jt = (JavaThread *) Self;
 294   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 295   assert(jt->thread_state() != _thread_blocked, "invariant");
 296   assert(this->object() != NULL, "invariant");
 297   assert(_count >= 0, "invariant");
 298 
 299   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 300   // Ensure the object-monitor relationship remains stable while there's contention.
 301   Atomic::inc(&_count);
 302 
 303   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 304   EventJavaMonitorEnter event;
 305   if (event.should_commit()) {
 306     event.set_monitorClass(((oop)this->object())->klass());
 307     event.set_address((uintptr_t)(this->object_addr()));
 308   }
 309 
 310   { // Change java thread status to indicate blocked on monitor enter.
 311     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 312 
 313     Self->set_current_pending_monitor(this);
 314 
 315     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 316     if (JvmtiExport::should_post_monitor_contended_enter()) {
 317       JvmtiExport::post_monitor_contended_enter(jt, this);
 318 
 319       // The current thread does not yet own the monitor and does not
 320       // yet appear on any queues that would get it made the successor.
 321       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 322       // handler cannot accidentally consume an unpark() meant for the
 323       // ParkEvent associated with this ObjectMonitor.
 324     }
 325 
 326     OSThreadContendState osts(Self->osthread());
 327     ThreadBlockInVM tbivm(jt);
 328 
 329     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 330     for (;;) {
 331       jt->set_suspend_equivalent();
 332       // cleared by handle_special_suspend_equivalent_condition()
 333       // or java_suspend_self()
 334 
 335       EnterI(THREAD);
 336 
 337       if (!ExitSuspendEquivalent(jt)) break;
 338 
 339       // We have acquired the contended monitor, but while we were
 340       // waiting another thread suspended us. We don't want to enter
 341       // the monitor while suspended because that would surprise the
 342       // thread that suspended us.
 343       //
 344       _recursions = 0;
 345       _succ = NULL;
 346       exit(false, Self);
 347 
 348       jt->java_suspend_self();
 349     }
 350     Self->set_current_pending_monitor(NULL);
 351 
 352     // We cleared the pending monitor info since we've just gotten past
 353     // the enter-check-for-suspend dance and we now own the monitor free
 354     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 355     // destructor can go to a safepoint at the end of this block. If we
 356     // do a thread dump during that safepoint, then this thread will show
 357     // as having "-locked" the monitor, but the OS and java.lang.Thread
 358     // states will still report that the thread is blocked trying to
 359     // acquire it.
 360   }
 361 
 362   Atomic::dec(&_count);
 363   assert(_count >= 0, "invariant");
 364   Self->_Stalled = 0;
 365 
 366   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 367   assert(_recursions == 0, "invariant");
 368   assert(_owner == Self, "invariant");
 369   assert(_succ != Self, "invariant");
 370   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 371 
 372   // The thread -- now the owner -- is back in vm mode.
 373   // Report the glorious news via TI,DTrace and jvmstat.
 374   // The probe effect is non-trivial.  All the reportage occurs
 375   // while we hold the monitor, increasing the length of the critical
 376   // section.  Amdahl's parallel speedup law comes vividly into play.
 377   //
 378   // Another option might be to aggregate the events (thread local or
 379   // per-monitor aggregation) and defer reporting until a more opportune
 380   // time -- such as next time some thread encounters contention but has
 381   // yet to acquire the lock.  While spinning that thread could
 382   // spinning we could increment JVMStat counters, etc.
 383 
 384   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 385   if (JvmtiExport::should_post_monitor_contended_entered()) {
 386     JvmtiExport::post_monitor_contended_entered(jt, this);
 387 
 388     // The current thread already owns the monitor and is not going to
 389     // call park() for the remainder of the monitor enter protocol. So
 390     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 391     // event handler consumed an unpark() issued by the thread that
 392     // just exited the monitor.
 393   }
 394   if (event.should_commit()) {
 395     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 396     event.commit();
 397   }
 398   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 399 }
 400 
 401 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 402 // Callers must compensate as needed.
 403 
 404 int ObjectMonitor::TryLock(Thread * Self) {
 405   void * own = _owner;
 406   if (own != NULL) return 0;
 407   if (Atomic::replace_if_null(Self, &_owner)) {
 408     // Either guarantee _recursions == 0 or set _recursions = 0.
 409     assert(_recursions == 0, "invariant");
 410     assert(_owner == Self, "invariant");
 411     return 1;
 412   }
 413   // The lock had been free momentarily, but we lost the race to the lock.
 414   // Interference -- the CAS failed.
 415   // We can either return -1 or retry.
 416   // Retry doesn't make as much sense because the lock was just acquired.
 417   return -1;
 418 }
 419 
 420 #define MAX_RECHECK_INTERVAL 1000
 421 
 422 void ObjectMonitor::EnterI(TRAPS) {
 423   Thread * const Self = THREAD;
 424   assert(Self->is_Java_thread(), "invariant");
 425   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 426 
 427   // Try the lock - TATAS
 428   if (TryLock (Self) > 0) {
 429     assert(_succ != Self, "invariant");
 430     assert(_owner == Self, "invariant");
 431     assert(_Responsible != Self, "invariant");
 432     return;
 433   }
 434 
 435   DeferredInitialize();
 436 
 437   // We try one round of spinning *before* enqueueing Self.
 438   //
 439   // If the _owner is ready but OFFPROC we could use a YieldTo()
 440   // operation to donate the remainder of this thread's quantum
 441   // to the owner.  This has subtle but beneficial affinity
 442   // effects.
 443 
 444   if (TrySpin(Self) > 0) {
 445     assert(_owner == Self, "invariant");
 446     assert(_succ != Self, "invariant");
 447     assert(_Responsible != Self, "invariant");
 448     return;
 449   }
 450 
 451   // The Spin failed -- Enqueue and park the thread ...
 452   assert(_succ != Self, "invariant");
 453   assert(_owner != Self, "invariant");
 454   assert(_Responsible != Self, "invariant");
 455 
 456   // Enqueue "Self" on ObjectMonitor's _cxq.
 457   //
 458   // Node acts as a proxy for Self.
 459   // As an aside, if were to ever rewrite the synchronization code mostly
 460   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 461   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 462   // as well as eliminate a subset of ABA issues.
 463   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 464 
 465   ObjectWaiter node(Self);
 466   Self->_ParkEvent->reset();
 467   node._prev   = (ObjectWaiter *) 0xBAD;
 468   node.TState  = ObjectWaiter::TS_CXQ;
 469 
 470   // Push "Self" onto the front of the _cxq.
 471   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 472   // Note that spinning tends to reduce the rate at which threads
 473   // enqueue and dequeue on EntryList|cxq.
 474   ObjectWaiter * nxt;
 475   for (;;) {
 476     node._next = nxt = _cxq;
 477     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 478 
 479     // Interference - the CAS failed because _cxq changed.  Just retry.
 480     // As an optional optimization we retry the lock.
 481     if (TryLock (Self) > 0) {
 482       assert(_succ != Self, "invariant");
 483       assert(_owner == Self, "invariant");
 484       assert(_Responsible != Self, "invariant");
 485       return;
 486     }
 487   }
 488 
 489   // Check for cxq|EntryList edge transition to non-null.  This indicates
 490   // the onset of contention.  While contention persists exiting threads
 491   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 492   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 493   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 494   // arrange for one of the contending thread to use a timed park() operations
 495   // to detect and recover from the race.  (Stranding is form of progress failure
 496   // where the monitor is unlocked but all the contending threads remain parked).
 497   // That is, at least one of the contended threads will periodically poll _owner.
 498   // One of the contending threads will become the designated "Responsible" thread.
 499   // The Responsible thread uses a timed park instead of a normal indefinite park
 500   // operation -- it periodically wakes and checks for and recovers from potential
 501   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 502   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 503   // be responsible for a monitor.
 504   //
 505   // Currently, one of the contended threads takes on the added role of "Responsible".
 506   // A viable alternative would be to use a dedicated "stranding checker" thread
 507   // that periodically iterated over all the threads (or active monitors) and unparked
 508   // successors where there was risk of stranding.  This would help eliminate the
 509   // timer scalability issues we see on some platforms as we'd only have one thread
 510   // -- the checker -- parked on a timer.
 511 
 512   if (nxt == NULL && _EntryList == NULL) {
 513     // Try to assume the role of responsible thread for the monitor.
 514     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 515     Atomic::replace_if_null(Self, &_Responsible);
 516   }
 517 
 518   // The lock might have been released while this thread was occupied queueing
 519   // itself onto _cxq.  To close the race and avoid "stranding" and
 520   // progress-liveness failure we must resample-retry _owner before parking.
 521   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 522   // In this case the ST-MEMBAR is accomplished with CAS().
 523   //
 524   // TODO: Defer all thread state transitions until park-time.
 525   // Since state transitions are heavy and inefficient we'd like
 526   // to defer the state transitions until absolutely necessary,
 527   // and in doing so avoid some transitions ...
 528 
 529   int nWakeups = 0;
 530   int recheckInterval = 1;
 531 
 532   for (;;) {
 533 
 534     if (TryLock(Self) > 0) break;
 535     assert(_owner != Self, "invariant");
 536 
 537     // park self
 538     if (_Responsible == Self) {
 539       Self->_ParkEvent->park((jlong) recheckInterval);
 540       // Increase the recheckInterval, but clamp the value.
 541       recheckInterval *= 8;
 542       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 543         recheckInterval = MAX_RECHECK_INTERVAL;
 544       }
 545     } else {
 546       Self->_ParkEvent->park();
 547     }
 548 
 549     if (TryLock(Self) > 0) break;
 550 
 551     // The lock is still contested.
 552     // Keep a tally of the # of futile wakeups.
 553     // Note that the counter is not protected by a lock or updated by atomics.
 554     // That is by design - we trade "lossy" counters which are exposed to
 555     // races during updates for a lower probe effect.
 556 
 557     // This PerfData object can be used in parallel with a safepoint.
 558     // See the work around in PerfDataManager::destroy().
 559     OM_PERFDATA_OP(FutileWakeups, inc());
 560     ++nWakeups;
 561 
 562     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 563     // We can defer clearing _succ until after the spin completes
 564     // TrySpin() must tolerate being called with _succ == Self.
 565     // Try yet another round of adaptive spinning.
 566     if (TrySpin(Self) > 0) break;
 567 
 568     // We can find that we were unpark()ed and redesignated _succ while
 569     // we were spinning.  That's harmless.  If we iterate and call park(),
 570     // park() will consume the event and return immediately and we'll
 571     // just spin again.  This pattern can repeat, leaving _succ to simply
 572     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 573     // Alternately, we can sample fired() here, and if set, forgo spinning
 574     // in the next iteration.
 575 
 576     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 577       Self->_ParkEvent->reset();
 578       OrderAccess::fence();
 579     }
 580     if (_succ == Self) _succ = NULL;
 581 
 582     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 583     OrderAccess::fence();
 584   }
 585 
 586   // Egress :
 587   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 588   // Normally we'll find Self on the EntryList .
 589   // From the perspective of the lock owner (this thread), the
 590   // EntryList is stable and cxq is prepend-only.
 591   // The head of cxq is volatile but the interior is stable.
 592   // In addition, Self.TState is stable.
 593 
 594   assert(_owner == Self, "invariant");
 595   assert(object() != NULL, "invariant");
 596   // I'd like to write:
 597   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 598   // but as we're at a safepoint that's not safe.
 599 
 600   UnlinkAfterAcquire(Self, &node);
 601   if (_succ == Self) _succ = NULL;
 602 
 603   assert(_succ != Self, "invariant");
 604   if (_Responsible == Self) {
 605     _Responsible = NULL;
 606     OrderAccess::fence(); // Dekker pivot-point
 607 
 608     // We may leave threads on cxq|EntryList without a designated
 609     // "Responsible" thread.  This is benign.  When this thread subsequently
 610     // exits the monitor it can "see" such preexisting "old" threads --
 611     // threads that arrived on the cxq|EntryList before the fence, above --
 612     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 613     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 614     // non-null and elect a new "Responsible" timer thread.
 615     //
 616     // This thread executes:
 617     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 618     //    LD cxq|EntryList               (in subsequent exit)
 619     //
 620     // Entering threads in the slow/contended path execute:
 621     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 622     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 623     //
 624     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 625     // exit operation from floating above the ST Responsible=null.
 626   }
 627 
 628   // We've acquired ownership with CAS().
 629   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 630   // But since the CAS() this thread may have also stored into _succ,
 631   // EntryList, cxq or Responsible.  These meta-data updates must be
 632   // visible __before this thread subsequently drops the lock.
 633   // Consider what could occur if we didn't enforce this constraint --
 634   // STs to monitor meta-data and user-data could reorder with (become
 635   // visible after) the ST in exit that drops ownership of the lock.
 636   // Some other thread could then acquire the lock, but observe inconsistent
 637   // or old monitor meta-data and heap data.  That violates the JMM.
 638   // To that end, the 1-0 exit() operation must have at least STST|LDST
 639   // "release" barrier semantics.  Specifically, there must be at least a
 640   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 641   // the lock.   The barrier ensures that changes to monitor meta-data and data
 642   // protected by the lock will be visible before we release the lock, and
 643   // therefore before some other thread (CPU) has a chance to acquire the lock.
 644   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 645   //
 646   // Critically, any prior STs to _succ or EntryList must be visible before
 647   // the ST of null into _owner in the *subsequent* (following) corresponding
 648   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 649   // execute a serializing instruction.
 650 
 651   return;
 652 }
 653 
 654 // ReenterI() is a specialized inline form of the latter half of the
 655 // contended slow-path from EnterI().  We use ReenterI() only for
 656 // monitor reentry in wait().
 657 //
 658 // In the future we should reconcile EnterI() and ReenterI().
 659 
 660 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 661   assert(Self != NULL, "invariant");
 662   assert(SelfNode != NULL, "invariant");
 663   assert(SelfNode->_thread == Self, "invariant");
 664   assert(_waiters > 0, "invariant");
 665   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 666   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 667   JavaThread * jt = (JavaThread *) Self;
 668 
 669   int nWakeups = 0;
 670   for (;;) {
 671     ObjectWaiter::TStates v = SelfNode->TState;
 672     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 673     assert(_owner != Self, "invariant");
 674 
 675     if (TryLock(Self) > 0) break;
 676     if (TrySpin(Self) > 0) break;
 677 
 678     // State transition wrappers around park() ...
 679     // ReenterI() wisely defers state transitions until
 680     // it's clear we must park the thread.
 681     {
 682       OSThreadContendState osts(Self->osthread());
 683       ThreadBlockInVM tbivm(jt);
 684 
 685       // cleared by handle_special_suspend_equivalent_condition()
 686       // or java_suspend_self()
 687       jt->set_suspend_equivalent();
 688       Self->_ParkEvent->park();
 689 
 690       // were we externally suspended while we were waiting?
 691       for (;;) {
 692         if (!ExitSuspendEquivalent(jt)) break;
 693         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 694         jt->java_suspend_self();
 695         jt->set_suspend_equivalent();
 696       }
 697     }
 698 
 699     // Try again, but just so we distinguish between futile wakeups and
 700     // successful wakeups.  The following test isn't algorithmically
 701     // necessary, but it helps us maintain sensible statistics.
 702     if (TryLock(Self) > 0) break;
 703 
 704     // The lock is still contested.
 705     // Keep a tally of the # of futile wakeups.
 706     // Note that the counter is not protected by a lock or updated by atomics.
 707     // That is by design - we trade "lossy" counters which are exposed to
 708     // races during updates for a lower probe effect.
 709     ++nWakeups;
 710 
 711     // Assuming this is not a spurious wakeup we'll normally
 712     // find that _succ == Self.
 713     if (_succ == Self) _succ = NULL;
 714 
 715     // Invariant: after clearing _succ a contending thread
 716     // *must* retry  _owner before parking.
 717     OrderAccess::fence();
 718 
 719     // This PerfData object can be used in parallel with a safepoint.
 720     // See the work around in PerfDataManager::destroy().
 721     OM_PERFDATA_OP(FutileWakeups, inc());
 722   }
 723 
 724   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 725   // Normally we'll find Self on the EntryList.
 726   // Unlinking from the EntryList is constant-time and atomic-free.
 727   // From the perspective of the lock owner (this thread), the
 728   // EntryList is stable and cxq is prepend-only.
 729   // The head of cxq is volatile but the interior is stable.
 730   // In addition, Self.TState is stable.
 731 
 732   assert(_owner == Self, "invariant");
 733   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 734   UnlinkAfterAcquire(Self, SelfNode);
 735   if (_succ == Self) _succ = NULL;
 736   assert(_succ != Self, "invariant");
 737   SelfNode->TState = ObjectWaiter::TS_RUN;
 738   OrderAccess::fence();      // see comments at the end of EnterI()
 739 }
 740 
 741 // By convention we unlink a contending thread from EntryList|cxq immediately
 742 // after the thread acquires the lock in ::enter().  Equally, we could defer
 743 // unlinking the thread until ::exit()-time.
 744 
 745 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 746   assert(_owner == Self, "invariant");
 747   assert(SelfNode->_thread == Self, "invariant");
 748 
 749   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 750     // Normal case: remove Self from the DLL EntryList .
 751     // This is a constant-time operation.
 752     ObjectWaiter * nxt = SelfNode->_next;
 753     ObjectWaiter * prv = SelfNode->_prev;
 754     if (nxt != NULL) nxt->_prev = prv;
 755     if (prv != NULL) prv->_next = nxt;
 756     if (SelfNode == _EntryList) _EntryList = nxt;
 757     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 758     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 759   } else {
 760     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 761     // Inopportune interleaving -- Self is still on the cxq.
 762     // This usually means the enqueue of self raced an exiting thread.
 763     // Normally we'll find Self near the front of the cxq, so
 764     // dequeueing is typically fast.  If needbe we can accelerate
 765     // this with some MCS/CHL-like bidirectional list hints and advisory
 766     // back-links so dequeueing from the interior will normally operate
 767     // in constant-time.
 768     // Dequeue Self from either the head (with CAS) or from the interior
 769     // with a linear-time scan and normal non-atomic memory operations.
 770     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 771     // and then unlink Self from EntryList.  We have to drain eventually,
 772     // so it might as well be now.
 773 
 774     ObjectWaiter * v = _cxq;
 775     assert(v != NULL, "invariant");
 776     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 777       // The CAS above can fail from interference IFF a "RAT" arrived.
 778       // In that case Self must be in the interior and can no longer be
 779       // at the head of cxq.
 780       if (v == SelfNode) {
 781         assert(_cxq != v, "invariant");
 782         v = _cxq;          // CAS above failed - start scan at head of list
 783       }
 784       ObjectWaiter * p;
 785       ObjectWaiter * q = NULL;
 786       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 787         q = p;
 788         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 789       }
 790       assert(v != SelfNode, "invariant");
 791       assert(p == SelfNode, "Node not found on cxq");
 792       assert(p != _cxq, "invariant");
 793       assert(q != NULL, "invariant");
 794       assert(q->_next == p, "invariant");
 795       q->_next = p->_next;
 796     }
 797   }
 798 
 799 #ifdef ASSERT
 800   // Diagnostic hygiene ...
 801   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 802   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 803   SelfNode->TState = ObjectWaiter::TS_RUN;
 804 #endif
 805 }
 806 
 807 // -----------------------------------------------------------------------------
 808 // Exit support
 809 //
 810 // exit()
 811 // ~~~~~~
 812 // Note that the collector can't reclaim the objectMonitor or deflate
 813 // the object out from underneath the thread calling ::exit() as the
 814 // thread calling ::exit() never transitions to a stable state.
 815 // This inhibits GC, which in turn inhibits asynchronous (and
 816 // inopportune) reclamation of "this".
 817 //
 818 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 819 // There's one exception to the claim above, however.  EnterI() can call
 820 // exit() to drop a lock if the acquirer has been externally suspended.
 821 // In that case exit() is called with _thread_state as _thread_blocked,
 822 // but the monitor's _count field is > 0, which inhibits reclamation.
 823 //
 824 // 1-0 exit
 825 // ~~~~~~~~
 826 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 827 // the fast-path operators have been optimized so the common ::exit()
 828 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 829 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 830 // greatly improves latency -- MEMBAR and CAS having considerable local
 831 // latency on modern processors -- but at the cost of "stranding".  Absent the
 832 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 833 // ::enter() path, resulting in the entering thread being stranding
 834 // and a progress-liveness failure.   Stranding is extremely rare.
 835 // We use timers (timed park operations) & periodic polling to detect
 836 // and recover from stranding.  Potentially stranded threads periodically
 837 // wake up and poll the lock.  See the usage of the _Responsible variable.
 838 //
 839 // The CAS() in enter provides for safety and exclusion, while the CAS or
 840 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 841 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 842 // We detect and recover from stranding with timers.
 843 //
 844 // If a thread transiently strands it'll park until (a) another
 845 // thread acquires the lock and then drops the lock, at which time the
 846 // exiting thread will notice and unpark the stranded thread, or, (b)
 847 // the timer expires.  If the lock is high traffic then the stranding latency
 848 // will be low due to (a).  If the lock is low traffic then the odds of
 849 // stranding are lower, although the worst-case stranding latency
 850 // is longer.  Critically, we don't want to put excessive load in the
 851 // platform's timer subsystem.  We want to minimize both the timer injection
 852 // rate (timers created/sec) as well as the number of timers active at
 853 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 854 // the integral of the # of active timers at any instant over time).
 855 // Both impinge on OS scalability.  Given that, at most one thread parked on
 856 // a monitor will use a timer.
 857 //
 858 // There is also the risk of a futile wake-up. If we drop the lock
 859 // another thread can reacquire the lock immediately, and we can
 860 // then wake a thread unnecessarily. This is benign, and we've
 861 // structured the code so the windows are short and the frequency
 862 // of such futile wakups is low.
 863 
 864 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 865   Thread * const Self = THREAD;
 866   if (THREAD != _owner) {
 867     if (THREAD->is_lock_owned((address) _owner)) {
 868       // Transmute _owner from a BasicLock pointer to a Thread address.
 869       // We don't need to hold _mutex for this transition.
 870       // Non-null to Non-null is safe as long as all readers can
 871       // tolerate either flavor.
 872       assert(_recursions == 0, "invariant");
 873       _owner = THREAD;
 874       _recursions = 0;
 875     } else {
 876       // Apparent unbalanced locking ...
 877       // Naively we'd like to throw IllegalMonitorStateException.
 878       // As a practical matter we can neither allocate nor throw an
 879       // exception as ::exit() can be called from leaf routines.
 880       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 881       // Upon deeper reflection, however, in a properly run JVM the only
 882       // way we should encounter this situation is in the presence of
 883       // unbalanced JNI locking. TODO: CheckJNICalls.
 884       // See also: CR4414101
 885       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 886       return;
 887     }
 888   }
 889 
 890   if (_recursions != 0) {
 891     _recursions--;        // this is simple recursive enter
 892     return;
 893   }
 894 
 895   // Invariant: after setting Responsible=null an thread must execute
 896   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 897   _Responsible = NULL;
 898 
 899 #if INCLUDE_JFR
 900   // get the owner's thread id for the MonitorEnter event
 901   // if it is enabled and the thread isn't suspended
 902   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 903     _previous_owner_tid = JFR_THREAD_ID(Self);
 904   }
 905 #endif
 906 
 907   for (;;) {
 908     assert(THREAD == _owner, "invariant");
 909 
 910     // release semantics: prior loads and stores from within the critical section
 911     // must not float (reorder) past the following store that drops the lock.
 912     // On SPARC that requires MEMBAR #loadstore|#storestore.
 913     // But of course in TSO #loadstore|#storestore is not required.
 914     OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 915     OrderAccess::storeload();                        // See if we need to wake a successor
 916     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 917       return;
 918     }
 919     // Other threads are blocked trying to acquire the lock.
 920 
 921     // Normally the exiting thread is responsible for ensuring succession,
 922     // but if other successors are ready or other entering threads are spinning
 923     // then this thread can simply store NULL into _owner and exit without
 924     // waking a successor.  The existence of spinners or ready successors
 925     // guarantees proper succession (liveness).  Responsibility passes to the
 926     // ready or running successors.  The exiting thread delegates the duty.
 927     // More precisely, if a successor already exists this thread is absolved
 928     // of the responsibility of waking (unparking) one.
 929     //
 930     // The _succ variable is critical to reducing futile wakeup frequency.
 931     // _succ identifies the "heir presumptive" thread that has been made
 932     // ready (unparked) but that has not yet run.  We need only one such
 933     // successor thread to guarantee progress.
 934     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 935     // section 3.3 "Futile Wakeup Throttling" for details.
 936     //
 937     // Note that spinners in Enter() also set _succ non-null.
 938     // In the current implementation spinners opportunistically set
 939     // _succ so that exiting threads might avoid waking a successor.
 940     // Another less appealing alternative would be for the exiting thread
 941     // to drop the lock and then spin briefly to see if a spinner managed
 942     // to acquire the lock.  If so, the exiting thread could exit
 943     // immediately without waking a successor, otherwise the exiting
 944     // thread would need to dequeue and wake a successor.
 945     // (Note that we'd need to make the post-drop spin short, but no
 946     // shorter than the worst-case round-trip cache-line migration time.
 947     // The dropped lock needs to become visible to the spinner, and then
 948     // the acquisition of the lock by the spinner must become visible to
 949     // the exiting thread).
 950 
 951     // It appears that an heir-presumptive (successor) must be made ready.
 952     // Only the current lock owner can manipulate the EntryList or
 953     // drain _cxq, so we need to reacquire the lock.  If we fail
 954     // to reacquire the lock the responsibility for ensuring succession
 955     // falls to the new owner.
 956     //
 957     if (!Atomic::replace_if_null(THREAD, &_owner)) {
 958       return;
 959     }
 960 
 961     guarantee(_owner == THREAD, "invariant");
 962 
 963     ObjectWaiter * w = NULL;
 964     int QMode = Knob_QMode;
 965 
 966     if (QMode == 2 && _cxq != NULL) {
 967       // QMode == 2 : cxq has precedence over EntryList.
 968       // Try to directly wake a successor from the cxq.
 969       // If successful, the successor will need to unlink itself from cxq.
 970       w = _cxq;
 971       assert(w != NULL, "invariant");
 972       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
 973       ExitEpilog(Self, w);
 974       return;
 975     }
 976 
 977     if (QMode == 3 && _cxq != NULL) {
 978       // Aggressively drain cxq into EntryList at the first opportunity.
 979       // This policy ensure that recently-run threads live at the head of EntryList.
 980       // Drain _cxq into EntryList - bulk transfer.
 981       // First, detach _cxq.
 982       // The following loop is tantamount to: w = swap(&cxq, NULL)
 983       w = _cxq;
 984       for (;;) {
 985         assert(w != NULL, "Invariant");
 986         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
 987         if (u == w) break;
 988         w = u;
 989       }
 990       assert(w != NULL, "invariant");
 991 
 992       ObjectWaiter * q = NULL;
 993       ObjectWaiter * p;
 994       for (p = w; p != NULL; p = p->_next) {
 995         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
 996         p->TState = ObjectWaiter::TS_ENTER;
 997         p->_prev = q;
 998         q = p;
 999       }
1000 
1001       // Append the RATs to the EntryList
1002       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1003       ObjectWaiter * Tail;
1004       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1005            Tail = Tail->_next)
1006         /* empty */;
1007       if (Tail == NULL) {
1008         _EntryList = w;
1009       } else {
1010         Tail->_next = w;
1011         w->_prev = Tail;
1012       }
1013 
1014       // Fall thru into code that tries to wake a successor from EntryList
1015     }
1016 
1017     if (QMode == 4 && _cxq != NULL) {
1018       // Aggressively drain cxq into EntryList at the first opportunity.
1019       // This policy ensure that recently-run threads live at the head of EntryList.
1020 
1021       // Drain _cxq into EntryList - bulk transfer.
1022       // First, detach _cxq.
1023       // The following loop is tantamount to: w = swap(&cxq, NULL)
1024       w = _cxq;
1025       for (;;) {
1026         assert(w != NULL, "Invariant");
1027         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1028         if (u == w) break;
1029         w = u;
1030       }
1031       assert(w != NULL, "invariant");
1032 
1033       ObjectWaiter * q = NULL;
1034       ObjectWaiter * p;
1035       for (p = w; p != NULL; p = p->_next) {
1036         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1037         p->TState = ObjectWaiter::TS_ENTER;
1038         p->_prev = q;
1039         q = p;
1040       }
1041 
1042       // Prepend the RATs to the EntryList
1043       if (_EntryList != NULL) {
1044         q->_next = _EntryList;
1045         _EntryList->_prev = q;
1046       }
1047       _EntryList = w;
1048 
1049       // Fall thru into code that tries to wake a successor from EntryList
1050     }
1051 
1052     w = _EntryList;
1053     if (w != NULL) {
1054       // I'd like to write: guarantee (w->_thread != Self).
1055       // But in practice an exiting thread may find itself on the EntryList.
1056       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1057       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1058       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1059       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1060       // release the lock "O".  T2 resumes immediately after the ST of null into
1061       // _owner, above.  T2 notices that the EntryList is populated, so it
1062       // reacquires the lock and then finds itself on the EntryList.
1063       // Given all that, we have to tolerate the circumstance where "w" is
1064       // associated with Self.
1065       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1066       ExitEpilog(Self, w);
1067       return;
1068     }
1069 
1070     // If we find that both _cxq and EntryList are null then just
1071     // re-run the exit protocol from the top.
1072     w = _cxq;
1073     if (w == NULL) continue;
1074 
1075     // Drain _cxq into EntryList - bulk transfer.
1076     // First, detach _cxq.
1077     // The following loop is tantamount to: w = swap(&cxq, NULL)
1078     for (;;) {
1079       assert(w != NULL, "Invariant");
1080       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1081       if (u == w) break;
1082       w = u;
1083     }
1084 
1085     assert(w != NULL, "invariant");
1086     assert(_EntryList == NULL, "invariant");
1087 
1088     // Convert the LIFO SLL anchored by _cxq into a DLL.
1089     // The list reorganization step operates in O(LENGTH(w)) time.
1090     // It's critical that this step operate quickly as
1091     // "Self" still holds the outer-lock, restricting parallelism
1092     // and effectively lengthening the critical section.
1093     // Invariant: s chases t chases u.
1094     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1095     // we have faster access to the tail.
1096 
1097     if (QMode == 1) {
1098       // QMode == 1 : drain cxq to EntryList, reversing order
1099       // We also reverse the order of the list.
1100       ObjectWaiter * s = NULL;
1101       ObjectWaiter * t = w;
1102       ObjectWaiter * u = NULL;
1103       while (t != NULL) {
1104         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1105         t->TState = ObjectWaiter::TS_ENTER;
1106         u = t->_next;
1107         t->_prev = u;
1108         t->_next = s;
1109         s = t;
1110         t = u;
1111       }
1112       _EntryList  = s;
1113       assert(s != NULL, "invariant");
1114     } else {
1115       // QMode == 0 or QMode == 2
1116       _EntryList = w;
1117       ObjectWaiter * q = NULL;
1118       ObjectWaiter * p;
1119       for (p = w; p != NULL; p = p->_next) {
1120         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1121         p->TState = ObjectWaiter::TS_ENTER;
1122         p->_prev = q;
1123         q = p;
1124       }
1125     }
1126 
1127     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1128     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1129 
1130     // See if we can abdicate to a spinner instead of waking a thread.
1131     // A primary goal of the implementation is to reduce the
1132     // context-switch rate.
1133     if (_succ != NULL) continue;
1134 
1135     w = _EntryList;
1136     if (w != NULL) {
1137       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1138       ExitEpilog(Self, w);
1139       return;
1140     }
1141   }
1142 }
1143 
1144 // ExitSuspendEquivalent:
1145 // A faster alternate to handle_special_suspend_equivalent_condition()
1146 //
1147 // handle_special_suspend_equivalent_condition() unconditionally
1148 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1149 // operations have high latency.  Note that in ::enter() we call HSSEC
1150 // while holding the monitor, so we effectively lengthen the critical sections.
1151 //
1152 // There are a number of possible solutions:
1153 //
1154 // A.  To ameliorate the problem we might also defer state transitions
1155 //     to as late as possible -- just prior to parking.
1156 //     Given that, we'd call HSSEC after having returned from park(),
1157 //     but before attempting to acquire the monitor.  This is only a
1158 //     partial solution.  It avoids calling HSSEC while holding the
1159 //     monitor (good), but it still increases successor reacquisition latency --
1160 //     the interval between unparking a successor and the time the successor
1161 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1162 //     If we use this technique we can also avoid EnterI()-exit() loop
1163 //     in ::enter() where we iteratively drop the lock and then attempt
1164 //     to reacquire it after suspending.
1165 //
1166 // B.  In the future we might fold all the suspend bits into a
1167 //     composite per-thread suspend flag and then update it with CAS().
1168 //     Alternately, a Dekker-like mechanism with multiple variables
1169 //     would suffice:
1170 //       ST Self->_suspend_equivalent = false
1171 //       MEMBAR
1172 //       LD Self_>_suspend_flags
1173 //
1174 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1175 // with a more efficient implementation, the need to use "FastHSSEC" has
1176 // decreased. - Dave
1177 
1178 
1179 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1180   const int Mode = Knob_FastHSSEC;
1181   if (Mode && !jSelf->is_external_suspend()) {
1182     assert(jSelf->is_suspend_equivalent(), "invariant");
1183     jSelf->clear_suspend_equivalent();
1184     if (2 == Mode) OrderAccess::storeload();
1185     if (!jSelf->is_external_suspend()) return false;
1186     // We raced a suspension -- fall thru into the slow path
1187     jSelf->set_suspend_equivalent();
1188   }
1189   return jSelf->handle_special_suspend_equivalent_condition();
1190 }
1191 
1192 
1193 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1194   assert(_owner == Self, "invariant");
1195 
1196   // Exit protocol:
1197   // 1. ST _succ = wakee
1198   // 2. membar #loadstore|#storestore;
1199   // 2. ST _owner = NULL
1200   // 3. unpark(wakee)
1201 
1202   _succ = Wakee->_thread;
1203   ParkEvent * Trigger = Wakee->_event;
1204 
1205   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1206   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1207   // out-of-scope (non-extant).
1208   Wakee  = NULL;
1209 
1210   // Drop the lock
1211   OrderAccess::release_store(&_owner, (void*)NULL);
1212   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1213 
1214   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1215   Trigger->unpark();
1216 
1217   // Maintain stats and report events to JVMTI
1218   OM_PERFDATA_OP(Parks, inc());
1219 }
1220 
1221 
1222 // -----------------------------------------------------------------------------
1223 // Class Loader deadlock handling.
1224 //
1225 // complete_exit exits a lock returning recursion count
1226 // complete_exit/reenter operate as a wait without waiting
1227 // complete_exit requires an inflated monitor
1228 // The _owner field is not always the Thread addr even with an
1229 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1230 // thread due to contention.
1231 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1232   Thread * const Self = THREAD;
1233   assert(Self->is_Java_thread(), "Must be Java thread!");
1234   JavaThread *jt = (JavaThread *)THREAD;
1235 
1236   DeferredInitialize();
1237 
1238   if (THREAD != _owner) {
1239     if (THREAD->is_lock_owned ((address)_owner)) {
1240       assert(_recursions == 0, "internal state error");
1241       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1242       _recursions = 0;
1243     }
1244   }
1245 
1246   guarantee(Self == _owner, "complete_exit not owner");
1247   intptr_t save = _recursions; // record the old recursion count
1248   _recursions = 0;        // set the recursion level to be 0
1249   exit(true, Self);           // exit the monitor
1250   guarantee(_owner != Self, "invariant");
1251   return save;
1252 }
1253 
1254 // reenter() enters a lock and sets recursion count
1255 // complete_exit/reenter operate as a wait without waiting
1256 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1257   Thread * const Self = THREAD;
1258   assert(Self->is_Java_thread(), "Must be Java thread!");
1259   JavaThread *jt = (JavaThread *)THREAD;
1260 
1261   guarantee(_owner != Self, "reenter already owner");
1262   enter(THREAD);       // enter the monitor
1263   guarantee(_recursions == 0, "reenter recursion");
1264   _recursions = recursions;
1265   return;
1266 }
1267 
1268 
1269 // -----------------------------------------------------------------------------
1270 // A macro is used below because there may already be a pending
1271 // exception which should not abort the execution of the routines
1272 // which use this (which is why we don't put this into check_slow and
1273 // call it with a CHECK argument).
1274 
1275 #define CHECK_OWNER()                                                       \
1276   do {                                                                      \
1277     if (THREAD != _owner) {                                                 \
1278       if (THREAD->is_lock_owned((address) _owner)) {                        \
1279         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1280         _recursions = 0;                                                    \
1281       } else {                                                              \
1282         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1283       }                                                                     \
1284     }                                                                       \
1285   } while (false)
1286 
1287 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1288 // TODO-FIXME: remove check_slow() -- it's likely dead.
1289 
1290 void ObjectMonitor::check_slow(TRAPS) {
1291   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1292   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1293 }
1294 
1295 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1296                                     ObjectMonitor* monitor,
1297                                     jlong notifier_tid,
1298                                     jlong timeout,
1299                                     bool timedout) {
1300   assert(event != NULL, "invariant");
1301   assert(monitor != NULL, "invariant");
1302   event->set_monitorClass(((oop)monitor->object())->klass());
1303   event->set_timeout(timeout);
1304   event->set_address((uintptr_t)monitor->object_addr());
1305   event->set_notifier(notifier_tid);
1306   event->set_timedOut(timedout);
1307   event->commit();
1308 }
1309 
1310 // -----------------------------------------------------------------------------
1311 // Wait/Notify/NotifyAll
1312 //
1313 // Note: a subset of changes to ObjectMonitor::wait()
1314 // will need to be replicated in complete_exit
1315 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1316   Thread * const Self = THREAD;
1317   assert(Self->is_Java_thread(), "Must be Java thread!");
1318   JavaThread *jt = (JavaThread *)THREAD;
1319 
1320   DeferredInitialize();
1321 
1322   // Throw IMSX or IEX.
1323   CHECK_OWNER();
1324 
1325   EventJavaMonitorWait event;
1326 
1327   // check for a pending interrupt
1328   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1329     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1330     if (JvmtiExport::should_post_monitor_waited()) {
1331       // Note: 'false' parameter is passed here because the
1332       // wait was not timed out due to thread interrupt.
1333       JvmtiExport::post_monitor_waited(jt, this, false);
1334 
1335       // In this short circuit of the monitor wait protocol, the
1336       // current thread never drops ownership of the monitor and
1337       // never gets added to the wait queue so the current thread
1338       // cannot be made the successor. This means that the
1339       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1340       // consume an unpark() meant for the ParkEvent associated with
1341       // this ObjectMonitor.
1342     }
1343     if (event.should_commit()) {
1344       post_monitor_wait_event(&event, this, 0, millis, false);
1345     }
1346     THROW(vmSymbols::java_lang_InterruptedException());
1347     return;
1348   }
1349 
1350   assert(Self->_Stalled == 0, "invariant");
1351   Self->_Stalled = intptr_t(this);
1352   jt->set_current_waiting_monitor(this);
1353 
1354   // create a node to be put into the queue
1355   // Critically, after we reset() the event but prior to park(), we must check
1356   // for a pending interrupt.
1357   ObjectWaiter node(Self);
1358   node.TState = ObjectWaiter::TS_WAIT;
1359   Self->_ParkEvent->reset();
1360   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1361 
1362   // Enter the waiting queue, which is a circular doubly linked list in this case
1363   // but it could be a priority queue or any data structure.
1364   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1365   // by the the owner of the monitor *except* in the case where park()
1366   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1367   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1368 
1369   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1370   AddWaiter(&node);
1371   Thread::SpinRelease(&_WaitSetLock);
1372 
1373   _Responsible = NULL;
1374 
1375   intptr_t save = _recursions; // record the old recursion count
1376   _waiters++;                  // increment the number of waiters
1377   _recursions = 0;             // set the recursion level to be 1
1378   exit(true, Self);                    // exit the monitor
1379   guarantee(_owner != Self, "invariant");
1380 
1381   // The thread is on the WaitSet list - now park() it.
1382   // On MP systems it's conceivable that a brief spin before we park
1383   // could be profitable.
1384   //
1385   // TODO-FIXME: change the following logic to a loop of the form
1386   //   while (!timeout && !interrupted && _notified == 0) park()
1387 
1388   int ret = OS_OK;
1389   int WasNotified = 0;
1390   { // State transition wrappers
1391     OSThread* osthread = Self->osthread();
1392     OSThreadWaitState osts(osthread, true);
1393     {
1394       ThreadBlockInVM tbivm(jt);
1395       // Thread is in thread_blocked state and oop access is unsafe.
1396       jt->set_suspend_equivalent();
1397 
1398       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1399         // Intentionally empty
1400       } else if (node._notified == 0) {
1401         if (millis <= 0) {
1402           Self->_ParkEvent->park();
1403         } else {
1404           ret = Self->_ParkEvent->park(millis);
1405         }
1406       }
1407 
1408       // were we externally suspended while we were waiting?
1409       if (ExitSuspendEquivalent (jt)) {
1410         // TODO-FIXME: add -- if succ == Self then succ = null.
1411         jt->java_suspend_self();
1412       }
1413 
1414     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1415 
1416     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1417     // from the WaitSet to the EntryList.
1418     // See if we need to remove Node from the WaitSet.
1419     // We use double-checked locking to avoid grabbing _WaitSetLock
1420     // if the thread is not on the wait queue.
1421     //
1422     // Note that we don't need a fence before the fetch of TState.
1423     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1424     // written by the is thread. (perhaps the fetch might even be satisfied
1425     // by a look-aside into the processor's own store buffer, although given
1426     // the length of the code path between the prior ST and this load that's
1427     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1428     // then we'll acquire the lock and then re-fetch a fresh TState value.
1429     // That is, we fail toward safety.
1430 
1431     if (node.TState == ObjectWaiter::TS_WAIT) {
1432       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1433       if (node.TState == ObjectWaiter::TS_WAIT) {
1434         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1435         assert(node._notified == 0, "invariant");
1436         node.TState = ObjectWaiter::TS_RUN;
1437       }
1438       Thread::SpinRelease(&_WaitSetLock);
1439     }
1440 
1441     // The thread is now either on off-list (TS_RUN),
1442     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1443     // The Node's TState variable is stable from the perspective of this thread.
1444     // No other threads will asynchronously modify TState.
1445     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1446     OrderAccess::loadload();
1447     if (_succ == Self) _succ = NULL;
1448     WasNotified = node._notified;
1449 
1450     // Reentry phase -- reacquire the monitor.
1451     // re-enter contended monitor after object.wait().
1452     // retain OBJECT_WAIT state until re-enter successfully completes
1453     // Thread state is thread_in_vm and oop access is again safe,
1454     // although the raw address of the object may have changed.
1455     // (Don't cache naked oops over safepoints, of course).
1456 
1457     // post monitor waited event. Note that this is past-tense, we are done waiting.
1458     if (JvmtiExport::should_post_monitor_waited()) {
1459       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1460 
1461       if (node._notified != 0 && _succ == Self) {
1462         // In this part of the monitor wait-notify-reenter protocol it
1463         // is possible (and normal) for another thread to do a fastpath
1464         // monitor enter-exit while this thread is still trying to get
1465         // to the reenter portion of the protocol.
1466         //
1467         // The ObjectMonitor was notified and the current thread is
1468         // the successor which also means that an unpark() has already
1469         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1470         // consume the unpark() that was done when the successor was
1471         // set because the same ParkEvent is shared between Java
1472         // monitors and JVM/TI RawMonitors (for now).
1473         //
1474         // We redo the unpark() to ensure forward progress, i.e., we
1475         // don't want all pending threads hanging (parked) with none
1476         // entering the unlocked monitor.
1477         node._event->unpark();
1478       }
1479     }
1480 
1481     if (event.should_commit()) {
1482       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1483     }
1484 
1485     OrderAccess::fence();
1486 
1487     assert(Self->_Stalled != 0, "invariant");
1488     Self->_Stalled = 0;
1489 
1490     assert(_owner != Self, "invariant");
1491     ObjectWaiter::TStates v = node.TState;
1492     if (v == ObjectWaiter::TS_RUN) {
1493       enter(Self);
1494     } else {
1495       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1496       ReenterI(Self, &node);
1497       node.wait_reenter_end(this);
1498     }
1499 
1500     // Self has reacquired the lock.
1501     // Lifecycle - the node representing Self must not appear on any queues.
1502     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1503     // want residual elements associated with this thread left on any lists.
1504     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1505     assert(_owner == Self, "invariant");
1506     assert(_succ != Self, "invariant");
1507   } // OSThreadWaitState()
1508 
1509   jt->set_current_waiting_monitor(NULL);
1510 
1511   guarantee(_recursions == 0, "invariant");
1512   _recursions = save;     // restore the old recursion count
1513   _waiters--;             // decrement the number of waiters
1514 
1515   // Verify a few postconditions
1516   assert(_owner == Self, "invariant");
1517   assert(_succ != Self, "invariant");
1518   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1519 
1520   // check if the notification happened
1521   if (!WasNotified) {
1522     // no, it could be timeout or Thread.interrupt() or both
1523     // check for interrupt event, otherwise it is timeout
1524     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1525       THROW(vmSymbols::java_lang_InterruptedException());
1526     }
1527   }
1528 
1529   // NOTE: Spurious wake up will be consider as timeout.
1530   // Monitor notify has precedence over thread interrupt.
1531 }
1532 
1533 
1534 // Consider:
1535 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1536 // then instead of transferring a thread from the WaitSet to the EntryList
1537 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1538 
1539 void ObjectMonitor::INotify(Thread * Self) {
1540   const int policy = Knob_MoveNotifyee;
1541 
1542   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1543   ObjectWaiter * iterator = DequeueWaiter();
1544   if (iterator != NULL) {
1545     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1546     guarantee(iterator->_notified == 0, "invariant");
1547     // Disposition - what might we do with iterator ?
1548     // a.  add it directly to the EntryList - either tail (policy == 1)
1549     //     or head (policy == 0).
1550     // b.  push it onto the front of the _cxq (policy == 2).
1551     // For now we use (b).
1552     if (policy != 4) {
1553       iterator->TState = ObjectWaiter::TS_ENTER;
1554     }
1555     iterator->_notified = 1;
1556     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1557 
1558     ObjectWaiter * list = _EntryList;
1559     if (list != NULL) {
1560       assert(list->_prev == NULL, "invariant");
1561       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1562       assert(list != iterator, "invariant");
1563     }
1564 
1565     if (policy == 0) {       // prepend to EntryList
1566       if (list == NULL) {
1567         iterator->_next = iterator->_prev = NULL;
1568         _EntryList = iterator;
1569       } else {
1570         list->_prev = iterator;
1571         iterator->_next = list;
1572         iterator->_prev = NULL;
1573         _EntryList = iterator;
1574       }
1575     } else if (policy == 1) {      // append to EntryList
1576       if (list == NULL) {
1577         iterator->_next = iterator->_prev = NULL;
1578         _EntryList = iterator;
1579       } else {
1580         // CONSIDER:  finding the tail currently requires a linear-time walk of
1581         // the EntryList.  We can make tail access constant-time by converting to
1582         // a CDLL instead of using our current DLL.
1583         ObjectWaiter * tail;
1584         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1585         assert(tail != NULL && tail->_next == NULL, "invariant");
1586         tail->_next = iterator;
1587         iterator->_prev = tail;
1588         iterator->_next = NULL;
1589       }
1590     } else if (policy == 2) {      // prepend to cxq
1591       if (list == NULL) {
1592         iterator->_next = iterator->_prev = NULL;
1593         _EntryList = iterator;
1594       } else {
1595         iterator->TState = ObjectWaiter::TS_CXQ;
1596         for (;;) {
1597           ObjectWaiter * front = _cxq;
1598           iterator->_next = front;
1599           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1600             break;
1601           }
1602         }
1603       }
1604     } else if (policy == 3) {      // append to cxq
1605       iterator->TState = ObjectWaiter::TS_CXQ;
1606       for (;;) {
1607         ObjectWaiter * tail = _cxq;
1608         if (tail == NULL) {
1609           iterator->_next = NULL;
1610           if (Atomic::replace_if_null(iterator, &_cxq)) {
1611             break;
1612           }
1613         } else {
1614           while (tail->_next != NULL) tail = tail->_next;
1615           tail->_next = iterator;
1616           iterator->_prev = tail;
1617           iterator->_next = NULL;
1618           break;
1619         }
1620       }
1621     } else {
1622       ParkEvent * ev = iterator->_event;
1623       iterator->TState = ObjectWaiter::TS_RUN;
1624       OrderAccess::fence();
1625       ev->unpark();
1626     }
1627 
1628     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1629     // move the add-to-EntryList operation, above, outside the critical section
1630     // protected by _WaitSetLock.  In practice that's not useful.  With the
1631     // exception of  wait() timeouts and interrupts the monitor owner
1632     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1633     // on _WaitSetLock so it's not profitable to reduce the length of the
1634     // critical section.
1635 
1636     if (policy < 4) {
1637       iterator->wait_reenter_begin(this);
1638     }
1639   }
1640   Thread::SpinRelease(&_WaitSetLock);
1641 }
1642 
1643 // Consider: a not-uncommon synchronization bug is to use notify() when
1644 // notifyAll() is more appropriate, potentially resulting in stranded
1645 // threads; this is one example of a lost wakeup. A useful diagnostic
1646 // option is to force all notify() operations to behave as notifyAll().
1647 //
1648 // Note: We can also detect many such problems with a "minimum wait".
1649 // When the "minimum wait" is set to a small non-zero timeout value
1650 // and the program does not hang whereas it did absent "minimum wait",
1651 // that suggests a lost wakeup bug.
1652 
1653 void ObjectMonitor::notify(TRAPS) {
1654   CHECK_OWNER();
1655   if (_WaitSet == NULL) {
1656     return;
1657   }
1658   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1659   INotify(THREAD);
1660   OM_PERFDATA_OP(Notifications, inc(1));
1661 }
1662 
1663 
1664 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1665 // from the waitset to the EntryList. This could be done more efficiently with a
1666 // single bulk transfer but in practice it's not time-critical. Beware too,
1667 // that in prepend-mode we invert the order of the waiters. Let's say that the
1668 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1669 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1670 
1671 void ObjectMonitor::notifyAll(TRAPS) {
1672   CHECK_OWNER();
1673   if (_WaitSet == NULL) {
1674     return;
1675   }
1676 
1677   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1678   int tally = 0;
1679   while (_WaitSet != NULL) {
1680     tally++;
1681     INotify(THREAD);
1682   }
1683 
1684   OM_PERFDATA_OP(Notifications, inc(tally));
1685 }
1686 
1687 // -----------------------------------------------------------------------------
1688 // Adaptive Spinning Support
1689 //
1690 // Adaptive spin-then-block - rational spinning
1691 //
1692 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1693 // algorithm.  On high order SMP systems it would be better to start with
1694 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1695 // a contending thread could enqueue itself on the cxq and then spin locally
1696 // on a thread-specific variable such as its ParkEvent._Event flag.
1697 // That's left as an exercise for the reader.  Note that global spinning is
1698 // not problematic on Niagara, as the L2 cache serves the interconnect and
1699 // has both low latency and massive bandwidth.
1700 //
1701 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1702 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1703 // (duration) or we can fix the count at approximately the duration of
1704 // a context switch and vary the frequency.   Of course we could also
1705 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1706 // For a description of 'Adaptive spin-then-block mutual exclusion in
1707 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1708 //
1709 // This implementation varies the duration "D", where D varies with
1710 // the success rate of recent spin attempts. (D is capped at approximately
1711 // length of a round-trip context switch).  The success rate for recent
1712 // spin attempts is a good predictor of the success rate of future spin
1713 // attempts.  The mechanism adapts automatically to varying critical
1714 // section length (lock modality), system load and degree of parallelism.
1715 // D is maintained per-monitor in _SpinDuration and is initialized
1716 // optimistically.  Spin frequency is fixed at 100%.
1717 //
1718 // Note that _SpinDuration is volatile, but we update it without locks
1719 // or atomics.  The code is designed so that _SpinDuration stays within
1720 // a reasonable range even in the presence of races.  The arithmetic
1721 // operations on _SpinDuration are closed over the domain of legal values,
1722 // so at worst a race will install and older but still legal value.
1723 // At the very worst this introduces some apparent non-determinism.
1724 // We might spin when we shouldn't or vice-versa, but since the spin
1725 // count are relatively short, even in the worst case, the effect is harmless.
1726 //
1727 // Care must be taken that a low "D" value does not become an
1728 // an absorbing state.  Transient spinning failures -- when spinning
1729 // is overall profitable -- should not cause the system to converge
1730 // on low "D" values.  We want spinning to be stable and predictable
1731 // and fairly responsive to change and at the same time we don't want
1732 // it to oscillate, become metastable, be "too" non-deterministic,
1733 // or converge on or enter undesirable stable absorbing states.
1734 //
1735 // We implement a feedback-based control system -- using past behavior
1736 // to predict future behavior.  We face two issues: (a) if the
1737 // input signal is random then the spin predictor won't provide optimal
1738 // results, and (b) if the signal frequency is too high then the control
1739 // system, which has some natural response lag, will "chase" the signal.
1740 // (b) can arise from multimodal lock hold times.  Transient preemption
1741 // can also result in apparent bimodal lock hold times.
1742 // Although sub-optimal, neither condition is particularly harmful, as
1743 // in the worst-case we'll spin when we shouldn't or vice-versa.
1744 // The maximum spin duration is rather short so the failure modes aren't bad.
1745 // To be conservative, I've tuned the gain in system to bias toward
1746 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1747 // "rings" or oscillates between spinning and not spinning.  This happens
1748 // when spinning is just on the cusp of profitability, however, so the
1749 // situation is not dire.  The state is benign -- there's no need to add
1750 // hysteresis control to damp the transition rate between spinning and
1751 // not spinning.
1752 
1753 // Spinning: Fixed frequency (100%), vary duration
1754 int ObjectMonitor::TrySpin(Thread * Self) {
1755   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1756   int ctr = Knob_FixedSpin;
1757   if (ctr != 0) {
1758     while (--ctr >= 0) {
1759       if (TryLock(Self) > 0) return 1;
1760       SpinPause();
1761     }
1762     return 0;
1763   }
1764 
1765   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1766     if (TryLock(Self) > 0) {
1767       // Increase _SpinDuration ...
1768       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1769       // Raising _SpurDuration to the poverty line is key.
1770       int x = _SpinDuration;
1771       if (x < Knob_SpinLimit) {
1772         if (x < Knob_Poverty) x = Knob_Poverty;
1773         _SpinDuration = x + Knob_BonusB;
1774       }
1775       return 1;
1776     }
1777     SpinPause();
1778   }
1779 
1780   // Admission control - verify preconditions for spinning
1781   //
1782   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1783   // becoming an absorbing state.  Put another way, we spin briefly to
1784   // sample, just in case the system load, parallelism, contention, or lock
1785   // modality changed.
1786   //
1787   // Consider the following alternative:
1788   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1789   // spin attempt.  "Periodically" might mean after a tally of
1790   // the # of failed spin attempts (or iterations) reaches some threshold.
1791   // This takes us into the realm of 1-out-of-N spinning, where we
1792   // hold the duration constant but vary the frequency.
1793 
1794   ctr = _SpinDuration;
1795   if (ctr <= 0) return 0;
1796 
1797   if (NotRunnable(Self, (Thread *) _owner)) {
1798     return 0;
1799   }
1800 
1801   // We're good to spin ... spin ingress.
1802   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1803   // when preparing to LD...CAS _owner, etc and the CAS is likely
1804   // to succeed.
1805   if (_succ == NULL) {
1806     _succ = Self;
1807   }
1808   Thread * prv = NULL;
1809 
1810   // There are three ways to exit the following loop:
1811   // 1.  A successful spin where this thread has acquired the lock.
1812   // 2.  Spin failure with prejudice
1813   // 3.  Spin failure without prejudice
1814 
1815   while (--ctr >= 0) {
1816 
1817     // Periodic polling -- Check for pending GC
1818     // Threads may spin while they're unsafe.
1819     // We don't want spinning threads to delay the JVM from reaching
1820     // a stop-the-world safepoint or to steal cycles from GC.
1821     // If we detect a pending safepoint we abort in order that
1822     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1823     // this thread, if safe, doesn't steal cycles from GC.
1824     // This is in keeping with the "no loitering in runtime" rule.
1825     // We periodically check to see if there's a safepoint pending.
1826     if ((ctr & 0xFF) == 0) {
1827       if (SafepointMechanism::poll(Self)) {
1828         goto Abort;           // abrupt spin egress
1829       }
1830       SpinPause();
1831     }
1832 
1833     // Probe _owner with TATAS
1834     // If this thread observes the monitor transition or flicker
1835     // from locked to unlocked to locked, then the odds that this
1836     // thread will acquire the lock in this spin attempt go down
1837     // considerably.  The same argument applies if the CAS fails
1838     // or if we observe _owner change from one non-null value to
1839     // another non-null value.   In such cases we might abort
1840     // the spin without prejudice or apply a "penalty" to the
1841     // spin count-down variable "ctr", reducing it by 100, say.
1842 
1843     Thread * ox = (Thread *) _owner;
1844     if (ox == NULL) {
1845       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
1846       if (ox == NULL) {
1847         // The CAS succeeded -- this thread acquired ownership
1848         // Take care of some bookkeeping to exit spin state.
1849         if (_succ == Self) {
1850           _succ = NULL;
1851         }
1852 
1853         // Increase _SpinDuration :
1854         // The spin was successful (profitable) so we tend toward
1855         // longer spin attempts in the future.
1856         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1857         // If we acquired the lock early in the spin cycle it
1858         // makes sense to increase _SpinDuration proportionally.
1859         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1860         int x = _SpinDuration;
1861         if (x < Knob_SpinLimit) {
1862           if (x < Knob_Poverty) x = Knob_Poverty;
1863           _SpinDuration = x + Knob_Bonus;
1864         }
1865         return 1;
1866       }
1867 
1868       // The CAS failed ... we can take any of the following actions:
1869       // * penalize: ctr -= CASPenalty
1870       // * exit spin with prejudice -- goto Abort;
1871       // * exit spin without prejudice.
1872       // * Since CAS is high-latency, retry again immediately.
1873       prv = ox;
1874       goto Abort;
1875     }
1876 
1877     // Did lock ownership change hands ?
1878     if (ox != prv && prv != NULL) {
1879       goto Abort;
1880     }
1881     prv = ox;
1882 
1883     // Abort the spin if the owner is not executing.
1884     // The owner must be executing in order to drop the lock.
1885     // Spinning while the owner is OFFPROC is idiocy.
1886     // Consider: ctr -= RunnablePenalty ;
1887     if (NotRunnable(Self, ox)) {
1888       goto Abort;
1889     }
1890     if (_succ == NULL) {
1891       _succ = Self;
1892     }
1893   }
1894 
1895   // Spin failed with prejudice -- reduce _SpinDuration.
1896   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1897   // AIMD is globally stable.
1898   {
1899     int x = _SpinDuration;
1900     if (x > 0) {
1901       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1902       // This is globally sample and tends to damp the response.
1903       x -= Knob_Penalty;
1904       if (x < 0) x = 0;
1905       _SpinDuration = x;
1906     }
1907   }
1908 
1909  Abort:
1910   if (_succ == Self) {
1911     _succ = NULL;
1912     // Invariant: after setting succ=null a contending thread
1913     // must recheck-retry _owner before parking.  This usually happens
1914     // in the normal usage of TrySpin(), but it's safest
1915     // to make TrySpin() as foolproof as possible.
1916     OrderAccess::fence();
1917     if (TryLock(Self) > 0) return 1;
1918   }
1919   return 0;
1920 }
1921 
1922 // NotRunnable() -- informed spinning
1923 //
1924 // Don't bother spinning if the owner is not eligible to drop the lock.
1925 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
1926 // The thread must be runnable in order to drop the lock in timely fashion.
1927 // If the _owner is not runnable then spinning will not likely be
1928 // successful (profitable).
1929 //
1930 // Beware -- the thread referenced by _owner could have died
1931 // so a simply fetch from _owner->_thread_state might trap.
1932 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
1933 // Because of the lifecycle issues, the _thread_state values
1934 // observed by NotRunnable() might be garbage.  NotRunnable must
1935 // tolerate this and consider the observed _thread_state value
1936 // as advisory.
1937 //
1938 // Beware too, that _owner is sometimes a BasicLock address and sometimes
1939 // a thread pointer.
1940 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
1941 // with the LSB of _owner.  Another option would be to probabilistically probe
1942 // the putative _owner->TypeTag value.
1943 //
1944 // Checking _thread_state isn't perfect.  Even if the thread is
1945 // in_java it might be blocked on a page-fault or have been preempted
1946 // and sitting on a ready/dispatch queue.
1947 //
1948 // The return value from NotRunnable() is *advisory* -- the
1949 // result is based on sampling and is not necessarily coherent.
1950 // The caller must tolerate false-negative and false-positive errors.
1951 // Spinning, in general, is probabilistic anyway.
1952 
1953 
1954 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
1955   // Check ox->TypeTag == 2BAD.
1956   if (ox == NULL) return 0;
1957 
1958   // Avoid transitive spinning ...
1959   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
1960   // Immediately after T1 acquires L it's possible that T2, also
1961   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
1962   // This occurs transiently after T1 acquired L but before
1963   // T1 managed to clear T1.Stalled.  T2 does not need to abort
1964   // its spin in this circumstance.
1965   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
1966 
1967   if (BlockedOn == 1) return 1;
1968   if (BlockedOn != 0) {
1969     return BlockedOn != intptr_t(this) && _owner == ox;
1970   }
1971 
1972   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
1973   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
1974   // consider also: jst != _thread_in_Java -- but that's overspecific.
1975   return jst == _thread_blocked || jst == _thread_in_native;
1976 }
1977 
1978 
1979 // -----------------------------------------------------------------------------
1980 // WaitSet management ...
1981 
1982 ObjectWaiter::ObjectWaiter(Thread* thread) {
1983   _next     = NULL;
1984   _prev     = NULL;
1985   _notified = 0;
1986   _notifier_tid = 0;
1987   TState    = TS_RUN;
1988   _thread   = thread;
1989   _event    = thread->_ParkEvent;
1990   _active   = false;
1991   assert(_event != NULL, "invariant");
1992 }
1993 
1994 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
1995   JavaThread *jt = (JavaThread *)this->_thread;
1996   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
1997 }
1998 
1999 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2000   JavaThread *jt = (JavaThread *)this->_thread;
2001   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2002 }
2003 
2004 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2005   assert(node != NULL, "should not add NULL node");
2006   assert(node->_prev == NULL, "node already in list");
2007   assert(node->_next == NULL, "node already in list");
2008   // put node at end of queue (circular doubly linked list)
2009   if (_WaitSet == NULL) {
2010     _WaitSet = node;
2011     node->_prev = node;
2012     node->_next = node;
2013   } else {
2014     ObjectWaiter* head = _WaitSet;
2015     ObjectWaiter* tail = head->_prev;
2016     assert(tail->_next == head, "invariant check");
2017     tail->_next = node;
2018     head->_prev = node;
2019     node->_next = head;
2020     node->_prev = tail;
2021   }
2022 }
2023 
2024 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2025   // dequeue the very first waiter
2026   ObjectWaiter* waiter = _WaitSet;
2027   if (waiter) {
2028     DequeueSpecificWaiter(waiter);
2029   }
2030   return waiter;
2031 }
2032 
2033 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2034   assert(node != NULL, "should not dequeue NULL node");
2035   assert(node->_prev != NULL, "node already removed from list");
2036   assert(node->_next != NULL, "node already removed from list");
2037   // when the waiter has woken up because of interrupt,
2038   // timeout or other spurious wake-up, dequeue the
2039   // waiter from waiting list
2040   ObjectWaiter* next = node->_next;
2041   if (next == node) {
2042     assert(node->_prev == node, "invariant check");
2043     _WaitSet = NULL;
2044   } else {
2045     ObjectWaiter* prev = node->_prev;
2046     assert(prev->_next == node, "invariant check");
2047     assert(next->_prev == node, "invariant check");
2048     next->_prev = prev;
2049     prev->_next = next;
2050     if (_WaitSet == node) {
2051       _WaitSet = next;
2052     }
2053   }
2054   node->_next = NULL;
2055   node->_prev = NULL;
2056 }
2057 
2058 // -----------------------------------------------------------------------------
2059 // PerfData support
2060 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2061 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2062 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2063 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2064 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2065 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2066 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2067 
2068 // One-shot global initialization for the sync subsystem.
2069 // We could also defer initialization and initialize on-demand
2070 // the first time we call inflate().  Initialization would
2071 // be protected - like so many things - by the MonitorCache_lock.
2072 
2073 void ObjectMonitor::Initialize() {
2074   static int InitializationCompleted = 0;
2075   assert(InitializationCompleted == 0, "invariant");
2076   InitializationCompleted = 1;
2077   if (UsePerfData) {
2078     EXCEPTION_MARK;
2079 #define NEWPERFCOUNTER(n)                                                \
2080   {                                                                      \
2081     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2082                                         CHECK);                          \
2083   }
2084 #define NEWPERFVARIABLE(n)                                                \
2085   {                                                                       \
2086     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2087                                          CHECK);                          \
2088   }
2089     NEWPERFCOUNTER(_sync_Inflations);
2090     NEWPERFCOUNTER(_sync_Deflations);
2091     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2092     NEWPERFCOUNTER(_sync_FutileWakeups);
2093     NEWPERFCOUNTER(_sync_Parks);
2094     NEWPERFCOUNTER(_sync_Notifications);
2095     NEWPERFVARIABLE(_sync_MonExtant);
2096 #undef NEWPERFCOUNTER
2097 #undef NEWPERFVARIABLE
2098   }
2099 }
2100 
2101 void ObjectMonitor::DeferredInitialize() {
2102   if (InitDone > 0) return;
2103   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2104     while (InitDone != 1) /* empty */;
2105     return;
2106   }
2107 
2108   // One-shot global initialization ...
2109   // The initialization is idempotent, so we don't need locks.
2110   // In the future consider doing this via os::init_2().
2111 
2112   if (!os::is_MP()) {
2113     Knob_SpinLimit = 0;
2114     Knob_PreSpin   = 0;
2115     Knob_FixedSpin = -1;
2116   }
2117 
2118   OrderAccess::fence();
2119   InitDone = 1;
2120 }
2121