1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/powerOfTwo.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <endian.h>
  88 # include <errno.h>
  89 # include <dlfcn.h>
  90 # include <stdio.h>
  91 # include <unistd.h>
  92 # include <sys/resource.h>
  93 # include <pthread.h>
  94 # include <sys/stat.h>
  95 # include <sys/time.h>
  96 # include <sys/times.h>
  97 # include <sys/utsname.h>
  98 # include <sys/socket.h>
  99 # include <sys/wait.h>
 100 # include <pwd.h>
 101 # include <poll.h>
 102 # include <fcntl.h>
 103 # include <string.h>
 104 # include <syscall.h>
 105 # include <sys/sysinfo.h>
 106 # include <gnu/libc-version.h>
 107 # include <sys/ipc.h>
 108 # include <sys/shm.h>
 109 # include <link.h>
 110 # include <stdint.h>
 111 # include <inttypes.h>
 112 # include <sys/ioctl.h>
 113 # include <linux/elf-em.h>
 114 
 115 #ifndef _GNU_SOURCE
 116   #define _GNU_SOURCE
 117   #include <sched.h>
 118   #undef _GNU_SOURCE
 119 #else
 120   #include <sched.h>
 121 #endif
 122 
 123 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 124 // getrusage() is prepared to handle the associated failure.
 125 #ifndef RUSAGE_THREAD
 126   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 127 #endif
 128 
 129 #define MAX_PATH    (2 * K)
 130 
 131 #define MAX_SECS 100000000
 132 
 133 // for timer info max values which include all bits
 134 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 135 
 136 enum CoredumpFilterBit {
 137   FILE_BACKED_PVT_BIT = 1 << 2,
 138   FILE_BACKED_SHARED_BIT = 1 << 3,
 139   LARGEPAGES_BIT = 1 << 6,
 140   DAX_SHARED_BIT = 1 << 8
 141 };
 142 
 143 ////////////////////////////////////////////////////////////////////////////////
 144 // global variables
 145 julong os::Linux::_physical_memory = 0;
 146 
 147 address   os::Linux::_initial_thread_stack_bottom = NULL;
 148 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 149 
 150 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 151 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 152 pthread_t os::Linux::_main_thread;
 153 int os::Linux::_page_size = -1;
 154 bool os::Linux::_supports_fast_thread_cpu_time = false;
 155 const char * os::Linux::_glibc_version = NULL;
 156 const char * os::Linux::_libpthread_version = NULL;
 157 
 158 static jlong initial_time_count=0;
 159 
 160 static int clock_tics_per_sec = 100;
 161 
 162 // If the VM might have been created on the primordial thread, we need to resolve the
 163 // primordial thread stack bounds and check if the current thread might be the
 164 // primordial thread in places. If we know that the primordial thread is never used,
 165 // such as when the VM was created by one of the standard java launchers, we can
 166 // avoid this
 167 static bool suppress_primordial_thread_resolution = false;
 168 
 169 // For diagnostics to print a message once. see run_periodic_checks
 170 static sigset_t check_signal_done;
 171 static bool check_signals = true;
 172 
 173 // Signal number used to suspend/resume a thread
 174 
 175 // do not use any signal number less than SIGSEGV, see 4355769
 176 static int SR_signum = SIGUSR2;
 177 sigset_t SR_sigset;
 178 
 179 // utility functions
 180 
 181 static int SR_initialize();
 182 
 183 julong os::available_memory() {
 184   return Linux::available_memory();
 185 }
 186 
 187 julong os::Linux::available_memory() {
 188   // values in struct sysinfo are "unsigned long"
 189   struct sysinfo si;
 190   julong avail_mem;
 191 
 192   if (OSContainer::is_containerized()) {
 193     jlong mem_limit, mem_usage;
 194     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 196                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 197     }
 198     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 199       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 200     }
 201     if (mem_limit > 0 && mem_usage > 0 ) {
 202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 203       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 204       return avail_mem;
 205     }
 206   }
 207 
 208   sysinfo(&si);
 209   avail_mem = (julong)si.freeram * si.mem_unit;
 210   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 211   return avail_mem;
 212 }
 213 
 214 julong os::physical_memory() {
 215   jlong phys_mem = 0;
 216   if (OSContainer::is_containerized()) {
 217     jlong mem_limit;
 218     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 219       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 220       return mem_limit;
 221     }
 222     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 223                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 224   }
 225 
 226   phys_mem = Linux::physical_memory();
 227   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 228   return phys_mem;
 229 }
 230 
 231 static uint64_t initial_total_ticks = 0;
 232 static uint64_t initial_steal_ticks = 0;
 233 static bool     has_initial_tick_info = false;
 234 
 235 static void next_line(FILE *f) {
 236   int c;
 237   do {
 238     c = fgetc(f);
 239   } while (c != '\n' && c != EOF);
 240 }
 241 
 242 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 243   FILE*         fh;
 244   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 245   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 246   // irq: time  servicing interrupts; softirq: time servicing softirqs
 247   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 248   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 249   uint64_t      stealTicks = 0;
 250   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 251   // control of the Linux kernel
 252   uint64_t      guestNiceTicks = 0;
 253   int           logical_cpu = -1;
 254   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 255   int           n;
 256 
 257   memset(pticks, 0, sizeof(CPUPerfTicks));
 258 
 259   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 260     return false;
 261   }
 262 
 263   if (which_logical_cpu == -1) {
 264     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 266             UINT64_FORMAT " " UINT64_FORMAT " ",
 267             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 268             &iowTicks, &irqTicks, &sirqTicks,
 269             &stealTicks, &guestNiceTicks);
 270   } else {
 271     // Move to next line
 272     next_line(fh);
 273 
 274     // find the line for requested cpu faster to just iterate linefeeds?
 275     for (int i = 0; i < which_logical_cpu; i++) {
 276       next_line(fh);
 277     }
 278 
 279     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 281                UINT64_FORMAT " " UINT64_FORMAT " ",
 282                &logical_cpu, &userTicks, &niceTicks,
 283                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 284                &stealTicks, &guestNiceTicks);
 285   }
 286 
 287   fclose(fh);
 288   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 289     return false;
 290   }
 291   pticks->used       = userTicks + niceTicks;
 292   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 293   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 294                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 295 
 296   if (n > required_tickinfo_count + 3) {
 297     pticks->steal = stealTicks;
 298     pticks->has_steal_ticks = true;
 299   } else {
 300     pticks->steal = 0;
 301     pticks->has_steal_ticks = false;
 302   }
 303 
 304   return true;
 305 }
 306 
 307 // Return true if user is running as root.
 308 
 309 bool os::have_special_privileges() {
 310   static bool init = false;
 311   static bool privileges = false;
 312   if (!init) {
 313     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 314     init = true;
 315   }
 316   return privileges;
 317 }
 318 
 319 
 320 #ifndef SYS_gettid
 321 // i386: 224, ia64: 1105, amd64: 186
 322   #ifdef __ia64__
 323     #define SYS_gettid 1105
 324   #else
 325     #ifdef __i386__
 326       #define SYS_gettid 224
 327     #else
 328       #ifdef __amd64__
 329         #define SYS_gettid 186
 330       #else
 331         #error define gettid for the arch
 332       #endif
 333     #endif
 334   #endif
 335 #endif
 336 
 337 
 338 // pid_t gettid()
 339 //
 340 // Returns the kernel thread id of the currently running thread. Kernel
 341 // thread id is used to access /proc.
 342 pid_t os::Linux::gettid() {
 343   int rslt = syscall(SYS_gettid);
 344   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 345   return (pid_t)rslt;
 346 }
 347 
 348 // Most versions of linux have a bug where the number of processors are
 349 // determined by looking at the /proc file system.  In a chroot environment,
 350 // the system call returns 1.
 351 static bool unsafe_chroot_detected = false;
 352 static const char *unstable_chroot_error = "/proc file system not found.\n"
 353                      "Java may be unstable running multithreaded in a chroot "
 354                      "environment on Linux when /proc filesystem is not mounted.";
 355 
 356 void os::Linux::initialize_system_info() {
 357   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 358   if (processor_count() == 1) {
 359     pid_t pid = os::Linux::gettid();
 360     char fname[32];
 361     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 362     FILE *fp = fopen(fname, "r");
 363     if (fp == NULL) {
 364       unsafe_chroot_detected = true;
 365     } else {
 366       fclose(fp);
 367     }
 368   }
 369   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 370   assert(processor_count() > 0, "linux error");
 371 }
 372 
 373 void os::init_system_properties_values() {
 374   // The next steps are taken in the product version:
 375   //
 376   // Obtain the JAVA_HOME value from the location of libjvm.so.
 377   // This library should be located at:
 378   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 379   //
 380   // If "/jre/lib/" appears at the right place in the path, then we
 381   // assume libjvm.so is installed in a JDK and we use this path.
 382   //
 383   // Otherwise exit with message: "Could not create the Java virtual machine."
 384   //
 385   // The following extra steps are taken in the debugging version:
 386   //
 387   // If "/jre/lib/" does NOT appear at the right place in the path
 388   // instead of exit check for $JAVA_HOME environment variable.
 389   //
 390   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 391   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 392   // it looks like libjvm.so is installed there
 393   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 394   //
 395   // Otherwise exit.
 396   //
 397   // Important note: if the location of libjvm.so changes this
 398   // code needs to be changed accordingly.
 399 
 400   // See ld(1):
 401   //      The linker uses the following search paths to locate required
 402   //      shared libraries:
 403   //        1: ...
 404   //        ...
 405   //        7: The default directories, normally /lib and /usr/lib.
 406 #ifndef OVERRIDE_LIBPATH
 407   #if defined(AMD64) || defined(PPC64) || defined(S390)
 408     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 409   #else
 410     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 411   #endif
 412 #else
 413   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 414 #endif
 415 
 416 // Base path of extensions installed on the system.
 417 #define SYS_EXT_DIR     "/usr/java/packages"
 418 #define EXTENSIONS_DIR  "/lib/ext"
 419 
 420   // Buffer that fits several sprintfs.
 421   // Note that the space for the colon and the trailing null are provided
 422   // by the nulls included by the sizeof operator.
 423   const size_t bufsize =
 424     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 425          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 426   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 427 
 428   // sysclasspath, java_home, dll_dir
 429   {
 430     char *pslash;
 431     os::jvm_path(buf, bufsize);
 432 
 433     // Found the full path to libjvm.so.
 434     // Now cut the path to <java_home>/jre if we can.
 435     pslash = strrchr(buf, '/');
 436     if (pslash != NULL) {
 437       *pslash = '\0';            // Get rid of /libjvm.so.
 438     }
 439     pslash = strrchr(buf, '/');
 440     if (pslash != NULL) {
 441       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 442     }
 443     Arguments::set_dll_dir(buf);
 444 
 445     if (pslash != NULL) {
 446       pslash = strrchr(buf, '/');
 447       if (pslash != NULL) {
 448         *pslash = '\0';        // Get rid of /lib.
 449       }
 450     }
 451     Arguments::set_java_home(buf);
 452     if (!set_boot_path('/', ':')) {
 453       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 454     }
 455   }
 456 
 457   // Where to look for native libraries.
 458   //
 459   // Note: Due to a legacy implementation, most of the library path
 460   // is set in the launcher. This was to accomodate linking restrictions
 461   // on legacy Linux implementations (which are no longer supported).
 462   // Eventually, all the library path setting will be done here.
 463   //
 464   // However, to prevent the proliferation of improperly built native
 465   // libraries, the new path component /usr/java/packages is added here.
 466   // Eventually, all the library path setting will be done here.
 467   {
 468     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 469     // should always exist (until the legacy problem cited above is
 470     // addressed).
 471     const char *v = ::getenv("LD_LIBRARY_PATH");
 472     const char *v_colon = ":";
 473     if (v == NULL) { v = ""; v_colon = ""; }
 474     // That's +1 for the colon and +1 for the trailing '\0'.
 475     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 476                                              strlen(v) + 1 +
 477                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 478                                              mtInternal);
 479     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 480     Arguments::set_library_path(ld_library_path);
 481     FREE_C_HEAP_ARRAY(char, ld_library_path);
 482   }
 483 
 484   // Extensions directories.
 485   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 486   Arguments::set_ext_dirs(buf);
 487 
 488   FREE_C_HEAP_ARRAY(char, buf);
 489 
 490 #undef DEFAULT_LIBPATH
 491 #undef SYS_EXT_DIR
 492 #undef EXTENSIONS_DIR
 493 }
 494 
 495 ////////////////////////////////////////////////////////////////////////////////
 496 // breakpoint support
 497 
 498 void os::breakpoint() {
 499   BREAKPOINT;
 500 }
 501 
 502 extern "C" void breakpoint() {
 503   // use debugger to set breakpoint here
 504 }
 505 
 506 ////////////////////////////////////////////////////////////////////////////////
 507 // signal support
 508 
 509 debug_only(static bool signal_sets_initialized = false);
 510 static sigset_t unblocked_sigs, vm_sigs;
 511 
 512 void os::Linux::signal_sets_init() {
 513   // Should also have an assertion stating we are still single-threaded.
 514   assert(!signal_sets_initialized, "Already initialized");
 515   // Fill in signals that are necessarily unblocked for all threads in
 516   // the VM. Currently, we unblock the following signals:
 517   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 518   //                         by -Xrs (=ReduceSignalUsage));
 519   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 520   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 521   // the dispositions or masks wrt these signals.
 522   // Programs embedding the VM that want to use the above signals for their
 523   // own purposes must, at this time, use the "-Xrs" option to prevent
 524   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 525   // (See bug 4345157, and other related bugs).
 526   // In reality, though, unblocking these signals is really a nop, since
 527   // these signals are not blocked by default.
 528   sigemptyset(&unblocked_sigs);
 529   sigaddset(&unblocked_sigs, SIGILL);
 530   sigaddset(&unblocked_sigs, SIGSEGV);
 531   sigaddset(&unblocked_sigs, SIGBUS);
 532   sigaddset(&unblocked_sigs, SIGFPE);
 533 #if defined(PPC64)
 534   sigaddset(&unblocked_sigs, SIGTRAP);
 535 #endif
 536   sigaddset(&unblocked_sigs, SR_signum);
 537 
 538   if (!ReduceSignalUsage) {
 539     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 540       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 541     }
 542     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 543       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 544     }
 545     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 546       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 547     }
 548   }
 549   // Fill in signals that are blocked by all but the VM thread.
 550   sigemptyset(&vm_sigs);
 551   if (!ReduceSignalUsage) {
 552     sigaddset(&vm_sigs, BREAK_SIGNAL);
 553   }
 554   debug_only(signal_sets_initialized = true);
 555 
 556 }
 557 
 558 // These are signals that are unblocked while a thread is running Java.
 559 // (For some reason, they get blocked by default.)
 560 sigset_t* os::Linux::unblocked_signals() {
 561   assert(signal_sets_initialized, "Not initialized");
 562   return &unblocked_sigs;
 563 }
 564 
 565 // These are the signals that are blocked while a (non-VM) thread is
 566 // running Java. Only the VM thread handles these signals.
 567 sigset_t* os::Linux::vm_signals() {
 568   assert(signal_sets_initialized, "Not initialized");
 569   return &vm_sigs;
 570 }
 571 
 572 void os::Linux::hotspot_sigmask(Thread* thread) {
 573 
 574   //Save caller's signal mask before setting VM signal mask
 575   sigset_t caller_sigmask;
 576   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 577 
 578   OSThread* osthread = thread->osthread();
 579   osthread->set_caller_sigmask(caller_sigmask);
 580 
 581   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 582 
 583   if (!ReduceSignalUsage) {
 584     if (thread->is_VM_thread()) {
 585       // Only the VM thread handles BREAK_SIGNAL ...
 586       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 587     } else {
 588       // ... all other threads block BREAK_SIGNAL
 589       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 590     }
 591   }
 592 }
 593 
 594 //////////////////////////////////////////////////////////////////////////////
 595 // detecting pthread library
 596 
 597 void os::Linux::libpthread_init() {
 598   // Save glibc and pthread version strings.
 599 #if !defined(_CS_GNU_LIBC_VERSION) || \
 600     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 601   #error "glibc too old (< 2.3.2)"
 602 #endif
 603 
 604   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 605   assert(n > 0, "cannot retrieve glibc version");
 606   char *str = (char *)malloc(n, mtInternal);
 607   confstr(_CS_GNU_LIBC_VERSION, str, n);
 608   os::Linux::set_glibc_version(str);
 609 
 610   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 611   assert(n > 0, "cannot retrieve pthread version");
 612   str = (char *)malloc(n, mtInternal);
 613   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 614   os::Linux::set_libpthread_version(str);
 615 }
 616 
 617 /////////////////////////////////////////////////////////////////////////////
 618 // thread stack expansion
 619 
 620 // os::Linux::manually_expand_stack() takes care of expanding the thread
 621 // stack. Note that this is normally not needed: pthread stacks allocate
 622 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 623 // committed. Therefore it is not necessary to expand the stack manually.
 624 //
 625 // Manually expanding the stack was historically needed on LinuxThreads
 626 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 627 // it is kept to deal with very rare corner cases:
 628 //
 629 // For one, user may run the VM on an own implementation of threads
 630 // whose stacks are - like the old LinuxThreads - implemented using
 631 // mmap(MAP_GROWSDOWN).
 632 //
 633 // Also, this coding may be needed if the VM is running on the primordial
 634 // thread. Normally we avoid running on the primordial thread; however,
 635 // user may still invoke the VM on the primordial thread.
 636 //
 637 // The following historical comment describes the details about running
 638 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 639 
 640 
 641 // Force Linux kernel to expand current thread stack. If "bottom" is close
 642 // to the stack guard, caller should block all signals.
 643 //
 644 // MAP_GROWSDOWN:
 645 //   A special mmap() flag that is used to implement thread stacks. It tells
 646 //   kernel that the memory region should extend downwards when needed. This
 647 //   allows early versions of LinuxThreads to only mmap the first few pages
 648 //   when creating a new thread. Linux kernel will automatically expand thread
 649 //   stack as needed (on page faults).
 650 //
 651 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 652 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 653 //   region, it's hard to tell if the fault is due to a legitimate stack
 654 //   access or because of reading/writing non-exist memory (e.g. buffer
 655 //   overrun). As a rule, if the fault happens below current stack pointer,
 656 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 657 //   application (see Linux kernel fault.c).
 658 //
 659 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 660 //   stack overflow detection.
 661 //
 662 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 663 //   not use MAP_GROWSDOWN.
 664 //
 665 // To get around the problem and allow stack banging on Linux, we need to
 666 // manually expand thread stack after receiving the SIGSEGV.
 667 //
 668 // There are two ways to expand thread stack to address "bottom", we used
 669 // both of them in JVM before 1.5:
 670 //   1. adjust stack pointer first so that it is below "bottom", and then
 671 //      touch "bottom"
 672 //   2. mmap() the page in question
 673 //
 674 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 675 // if current sp is already near the lower end of page 101, and we need to
 676 // call mmap() to map page 100, it is possible that part of the mmap() frame
 677 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 678 // That will destroy the mmap() frame and cause VM to crash.
 679 //
 680 // The following code works by adjusting sp first, then accessing the "bottom"
 681 // page to force a page fault. Linux kernel will then automatically expand the
 682 // stack mapping.
 683 //
 684 // _expand_stack_to() assumes its frame size is less than page size, which
 685 // should always be true if the function is not inlined.
 686 
 687 static void NOINLINE _expand_stack_to(address bottom) {
 688   address sp;
 689   size_t size;
 690   volatile char *p;
 691 
 692   // Adjust bottom to point to the largest address within the same page, it
 693   // gives us a one-page buffer if alloca() allocates slightly more memory.
 694   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 695   bottom += os::Linux::page_size() - 1;
 696 
 697   // sp might be slightly above current stack pointer; if that's the case, we
 698   // will alloca() a little more space than necessary, which is OK. Don't use
 699   // os::current_stack_pointer(), as its result can be slightly below current
 700   // stack pointer, causing us to not alloca enough to reach "bottom".
 701   sp = (address)&sp;
 702 
 703   if (sp > bottom) {
 704     size = sp - bottom;
 705     p = (volatile char *)alloca(size);
 706     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 707     p[0] = '\0';
 708   }
 709 }
 710 
 711 void os::Linux::expand_stack_to(address bottom) {
 712   _expand_stack_to(bottom);
 713 }
 714 
 715 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 716   assert(t!=NULL, "just checking");
 717   assert(t->osthread()->expanding_stack(), "expand should be set");
 718 
 719   if (t->is_in_usable_stack(addr)) {
 720     sigset_t mask_all, old_sigset;
 721     sigfillset(&mask_all);
 722     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 723     _expand_stack_to(addr);
 724     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 725     return true;
 726   }
 727   return false;
 728 }
 729 
 730 //////////////////////////////////////////////////////////////////////////////
 731 // create new thread
 732 
 733 // Thread start routine for all newly created threads
 734 static void *thread_native_entry(Thread *thread) {
 735 
 736   thread->record_stack_base_and_size();
 737 
 738   // Try to randomize the cache line index of hot stack frames.
 739   // This helps when threads of the same stack traces evict each other's
 740   // cache lines. The threads can be either from the same JVM instance, or
 741   // from different JVM instances. The benefit is especially true for
 742   // processors with hyperthreading technology.
 743   static int counter = 0;
 744   int pid = os::current_process_id();
 745   alloca(((pid ^ counter++) & 7) * 128);
 746 
 747   thread->initialize_thread_current();
 748 
 749   OSThread* osthread = thread->osthread();
 750   Monitor* sync = osthread->startThread_lock();
 751 
 752   osthread->set_thread_id(os::current_thread_id());
 753 
 754   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 755     os::current_thread_id(), (uintx) pthread_self());
 756 
 757   if (UseNUMA) {
 758     int lgrp_id = os::numa_get_group_id();
 759     if (lgrp_id != -1) {
 760       thread->set_lgrp_id(lgrp_id);
 761     }
 762   }
 763   // initialize signal mask for this thread
 764   os::Linux::hotspot_sigmask(thread);
 765 
 766   // initialize floating point control register
 767   os::Linux::init_thread_fpu_state();
 768 
 769   // handshaking with parent thread
 770   {
 771     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 772 
 773     // notify parent thread
 774     osthread->set_state(INITIALIZED);
 775     sync->notify_all();
 776 
 777     // wait until os::start_thread()
 778     while (osthread->get_state() == INITIALIZED) {
 779       sync->wait_without_safepoint_check();
 780     }
 781   }
 782 
 783   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 784 
 785   // call one more level start routine
 786   thread->call_run();
 787 
 788   // Note: at this point the thread object may already have deleted itself.
 789   // Prevent dereferencing it from here on out.
 790   thread = NULL;
 791 
 792   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 793     os::current_thread_id(), (uintx) pthread_self());
 794 
 795   return 0;
 796 }
 797 
 798 // On Linux, glibc places static TLS blocks (for __thread variables) on
 799 // the thread stack. This decreases the stack size actually available
 800 // to threads.
 801 //
 802 // For large static TLS sizes, this may cause threads to malfunction due
 803 // to insufficient stack space. This is a well-known issue in glibc:
 804 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 805 //
 806 // As a workaround, we call a private but assumed-stable glibc function,
 807 // __pthread_get_minstack() to obtain the minstack size and derive the
 808 // static TLS size from it. We then increase the user requested stack
 809 // size by this TLS size.
 810 //
 811 // Due to compatibility concerns, this size adjustment is opt-in and
 812 // controlled via AdjustStackSizeForTLS.
 813 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 814 
 815 GetMinStack _get_minstack_func = NULL;
 816 
 817 static void get_minstack_init() {
 818   _get_minstack_func =
 819         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 820   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 821                        _get_minstack_func == NULL ? "failed" : "succeeded");
 822 }
 823 
 824 // Returns the size of the static TLS area glibc puts on thread stacks.
 825 // The value is cached on first use, which occurs when the first thread
 826 // is created during VM initialization.
 827 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 828   size_t tls_size = 0;
 829   if (_get_minstack_func != NULL) {
 830     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 831     size_t minstack_size = _get_minstack_func(attr);
 832 
 833     // Remove non-TLS area size included in minstack size returned
 834     // by __pthread_get_minstack() to get the static TLS size.
 835     // In glibc before 2.27, minstack size includes guard_size.
 836     // In glibc 2.27 and later, guard_size is automatically added
 837     // to the stack size by pthread_create and is no longer included
 838     // in minstack size. In both cases, the guard_size is taken into
 839     // account, so there is no need to adjust the result for that.
 840     //
 841     // Although __pthread_get_minstack() is a private glibc function,
 842     // it is expected to have a stable behavior across future glibc
 843     // versions while glibc still allocates the static TLS blocks off
 844     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 845     //
 846     // size_t
 847     // __pthread_get_minstack (const pthread_attr_t *attr)
 848     // {
 849     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 850     // }
 851     //
 852     //
 853     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 854     // if check is done for precaution.
 855     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 856       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 857     }
 858   }
 859 
 860   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 861                        tls_size);
 862   return tls_size;
 863 }
 864 
 865 bool os::create_thread(Thread* thread, ThreadType thr_type,
 866                        size_t req_stack_size) {
 867   assert(thread->osthread() == NULL, "caller responsible");
 868 
 869   // Allocate the OSThread object
 870   OSThread* osthread = new OSThread(NULL, NULL);
 871   if (osthread == NULL) {
 872     return false;
 873   }
 874 
 875   // set the correct thread state
 876   osthread->set_thread_type(thr_type);
 877 
 878   // Initial state is ALLOCATED but not INITIALIZED
 879   osthread->set_state(ALLOCATED);
 880 
 881   thread->set_osthread(osthread);
 882 
 883   // init thread attributes
 884   pthread_attr_t attr;
 885   pthread_attr_init(&attr);
 886   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 887 
 888   // Calculate stack size if it's not specified by caller.
 889   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 890   // In glibc versions prior to 2.7 the guard size mechanism
 891   // is not implemented properly. The posix standard requires adding
 892   // the size of the guard pages to the stack size, instead Linux
 893   // takes the space out of 'stacksize'. Thus we adapt the requested
 894   // stack_size by the size of the guard pages to mimick proper
 895   // behaviour. However, be careful not to end up with a size
 896   // of zero due to overflow. Don't add the guard page in that case.
 897   size_t guard_size = os::Linux::default_guard_size(thr_type);
 898   // Configure glibc guard page. Must happen before calling
 899   // get_static_tls_area_size(), which uses the guard_size.
 900   pthread_attr_setguardsize(&attr, guard_size);
 901 
 902   size_t stack_adjust_size = 0;
 903   if (AdjustStackSizeForTLS) {
 904     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 905     stack_adjust_size += get_static_tls_area_size(&attr);
 906   } else {
 907     stack_adjust_size += guard_size;
 908   }
 909 
 910   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 911   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 912     stack_size += stack_adjust_size;
 913   }
 914   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 915 
 916   int status = pthread_attr_setstacksize(&attr, stack_size);
 917   assert_status(status == 0, status, "pthread_attr_setstacksize");
 918 
 919   ThreadState state;
 920 
 921   {
 922     pthread_t tid;
 923     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 924 
 925     char buf[64];
 926     if (ret == 0) {
 927       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 928         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 929     } else {
 930       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 931         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 932       // Log some OS information which might explain why creating the thread failed.
 933       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 934       LogStream st(Log(os, thread)::info());
 935       os::Posix::print_rlimit_info(&st);
 936       os::print_memory_info(&st);
 937       os::Linux::print_proc_sys_info(&st);
 938       os::Linux::print_container_info(&st);
 939     }
 940 
 941     pthread_attr_destroy(&attr);
 942 
 943     if (ret != 0) {
 944       // Need to clean up stuff we've allocated so far
 945       thread->set_osthread(NULL);
 946       delete osthread;
 947       return false;
 948     }
 949 
 950     // Store pthread info into the OSThread
 951     osthread->set_pthread_id(tid);
 952 
 953     // Wait until child thread is either initialized or aborted
 954     {
 955       Monitor* sync_with_child = osthread->startThread_lock();
 956       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 957       while ((state = osthread->get_state()) == ALLOCATED) {
 958         sync_with_child->wait_without_safepoint_check();
 959       }
 960     }
 961   }
 962 
 963   // Aborted due to thread limit being reached
 964   if (state == ZOMBIE) {
 965     thread->set_osthread(NULL);
 966     delete osthread;
 967     return false;
 968   }
 969 
 970   // The thread is returned suspended (in state INITIALIZED),
 971   // and is started higher up in the call chain
 972   assert(state == INITIALIZED, "race condition");
 973   return true;
 974 }
 975 
 976 /////////////////////////////////////////////////////////////////////////////
 977 // attach existing thread
 978 
 979 // bootstrap the main thread
 980 bool os::create_main_thread(JavaThread* thread) {
 981   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 982   return create_attached_thread(thread);
 983 }
 984 
 985 bool os::create_attached_thread(JavaThread* thread) {
 986 #ifdef ASSERT
 987   thread->verify_not_published();
 988 #endif
 989 
 990   // Allocate the OSThread object
 991   OSThread* osthread = new OSThread(NULL, NULL);
 992 
 993   if (osthread == NULL) {
 994     return false;
 995   }
 996 
 997   // Store pthread info into the OSThread
 998   osthread->set_thread_id(os::Linux::gettid());
 999   osthread->set_pthread_id(::pthread_self());
1000 
1001   // initialize floating point control register
1002   os::Linux::init_thread_fpu_state();
1003 
1004   // Initial thread state is RUNNABLE
1005   osthread->set_state(RUNNABLE);
1006 
1007   thread->set_osthread(osthread);
1008 
1009   if (UseNUMA) {
1010     int lgrp_id = os::numa_get_group_id();
1011     if (lgrp_id != -1) {
1012       thread->set_lgrp_id(lgrp_id);
1013     }
1014   }
1015 
1016   if (os::is_primordial_thread()) {
1017     // If current thread is primordial thread, its stack is mapped on demand,
1018     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1019     // the entire stack region to avoid SEGV in stack banging.
1020     // It is also useful to get around the heap-stack-gap problem on SuSE
1021     // kernel (see 4821821 for details). We first expand stack to the top
1022     // of yellow zone, then enable stack yellow zone (order is significant,
1023     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1024     // is no gap between the last two virtual memory regions.
1025 
1026     JavaThread *jt = (JavaThread *)thread;
1027     address addr = jt->stack_reserved_zone_base();
1028     assert(addr != NULL, "initialization problem?");
1029     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1030 
1031     osthread->set_expanding_stack();
1032     os::Linux::manually_expand_stack(jt, addr);
1033     osthread->clear_expanding_stack();
1034   }
1035 
1036   // initialize signal mask for this thread
1037   // and save the caller's signal mask
1038   os::Linux::hotspot_sigmask(thread);
1039 
1040   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1041     os::current_thread_id(), (uintx) pthread_self());
1042 
1043   return true;
1044 }
1045 
1046 void os::pd_start_thread(Thread* thread) {
1047   OSThread * osthread = thread->osthread();
1048   assert(osthread->get_state() != INITIALIZED, "just checking");
1049   Monitor* sync_with_child = osthread->startThread_lock();
1050   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1051   sync_with_child->notify();
1052 }
1053 
1054 // Free Linux resources related to the OSThread
1055 void os::free_thread(OSThread* osthread) {
1056   assert(osthread != NULL, "osthread not set");
1057 
1058   // We are told to free resources of the argument thread,
1059   // but we can only really operate on the current thread.
1060   assert(Thread::current()->osthread() == osthread,
1061          "os::free_thread but not current thread");
1062 
1063 #ifdef ASSERT
1064   sigset_t current;
1065   sigemptyset(&current);
1066   pthread_sigmask(SIG_SETMASK, NULL, &current);
1067   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1068 #endif
1069 
1070   // Restore caller's signal mask
1071   sigset_t sigmask = osthread->caller_sigmask();
1072   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1073 
1074   delete osthread;
1075 }
1076 
1077 //////////////////////////////////////////////////////////////////////////////
1078 // primordial thread
1079 
1080 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1081 bool os::is_primordial_thread(void) {
1082   if (suppress_primordial_thread_resolution) {
1083     return false;
1084   }
1085   char dummy;
1086   // If called before init complete, thread stack bottom will be null.
1087   // Can be called if fatal error occurs before initialization.
1088   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1089   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1090          os::Linux::initial_thread_stack_size()   != 0,
1091          "os::init did not locate primordial thread's stack region");
1092   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1093       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1094                         os::Linux::initial_thread_stack_size()) {
1095     return true;
1096   } else {
1097     return false;
1098   }
1099 }
1100 
1101 // Find the virtual memory area that contains addr
1102 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1103   FILE *fp = fopen("/proc/self/maps", "r");
1104   if (fp) {
1105     address low, high;
1106     while (!feof(fp)) {
1107       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1108         if (low <= addr && addr < high) {
1109           if (vma_low)  *vma_low  = low;
1110           if (vma_high) *vma_high = high;
1111           fclose(fp);
1112           return true;
1113         }
1114       }
1115       for (;;) {
1116         int ch = fgetc(fp);
1117         if (ch == EOF || ch == (int)'\n') break;
1118       }
1119     }
1120     fclose(fp);
1121   }
1122   return false;
1123 }
1124 
1125 // Locate primordial thread stack. This special handling of primordial thread stack
1126 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1127 // bogus value for the primordial process thread. While the launcher has created
1128 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1129 // JNI invocation API from a primordial thread.
1130 void os::Linux::capture_initial_stack(size_t max_size) {
1131 
1132   // max_size is either 0 (which means accept OS default for thread stacks) or
1133   // a user-specified value known to be at least the minimum needed. If we
1134   // are actually on the primordial thread we can make it appear that we have a
1135   // smaller max_size stack by inserting the guard pages at that location. But we
1136   // cannot do anything to emulate a larger stack than what has been provided by
1137   // the OS or threading library. In fact if we try to use a stack greater than
1138   // what is set by rlimit then we will crash the hosting process.
1139 
1140   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1141   // If this is "unlimited" then it will be a huge value.
1142   struct rlimit rlim;
1143   getrlimit(RLIMIT_STACK, &rlim);
1144   size_t stack_size = rlim.rlim_cur;
1145 
1146   // 6308388: a bug in ld.so will relocate its own .data section to the
1147   //   lower end of primordial stack; reduce ulimit -s value a little bit
1148   //   so we won't install guard page on ld.so's data section.
1149   //   But ensure we don't underflow the stack size - allow 1 page spare
1150   if (stack_size >= (size_t)(3 * page_size())) {
1151     stack_size -= 2 * page_size();
1152   }
1153 
1154   // Try to figure out where the stack base (top) is. This is harder.
1155   //
1156   // When an application is started, glibc saves the initial stack pointer in
1157   // a global variable "__libc_stack_end", which is then used by system
1158   // libraries. __libc_stack_end should be pretty close to stack top. The
1159   // variable is available since the very early days. However, because it is
1160   // a private interface, it could disappear in the future.
1161   //
1162   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1163   // to __libc_stack_end, it is very close to stack top, but isn't the real
1164   // stack top. Note that /proc may not exist if VM is running as a chroot
1165   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1166   // /proc/<pid>/stat could change in the future (though unlikely).
1167   //
1168   // We try __libc_stack_end first. If that doesn't work, look for
1169   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1170   // as a hint, which should work well in most cases.
1171 
1172   uintptr_t stack_start;
1173 
1174   // try __libc_stack_end first
1175   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1176   if (p && *p) {
1177     stack_start = *p;
1178   } else {
1179     // see if we can get the start_stack field from /proc/self/stat
1180     FILE *fp;
1181     int pid;
1182     char state;
1183     int ppid;
1184     int pgrp;
1185     int session;
1186     int nr;
1187     int tpgrp;
1188     unsigned long flags;
1189     unsigned long minflt;
1190     unsigned long cminflt;
1191     unsigned long majflt;
1192     unsigned long cmajflt;
1193     unsigned long utime;
1194     unsigned long stime;
1195     long cutime;
1196     long cstime;
1197     long prio;
1198     long nice;
1199     long junk;
1200     long it_real;
1201     uintptr_t start;
1202     uintptr_t vsize;
1203     intptr_t rss;
1204     uintptr_t rsslim;
1205     uintptr_t scodes;
1206     uintptr_t ecode;
1207     int i;
1208 
1209     // Figure what the primordial thread stack base is. Code is inspired
1210     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1211     // followed by command name surrounded by parentheses, state, etc.
1212     char stat[2048];
1213     int statlen;
1214 
1215     fp = fopen("/proc/self/stat", "r");
1216     if (fp) {
1217       statlen = fread(stat, 1, 2047, fp);
1218       stat[statlen] = '\0';
1219       fclose(fp);
1220 
1221       // Skip pid and the command string. Note that we could be dealing with
1222       // weird command names, e.g. user could decide to rename java launcher
1223       // to "java 1.4.2 :)", then the stat file would look like
1224       //                1234 (java 1.4.2 :)) R ... ...
1225       // We don't really need to know the command string, just find the last
1226       // occurrence of ")" and then start parsing from there. See bug 4726580.
1227       char * s = strrchr(stat, ')');
1228 
1229       i = 0;
1230       if (s) {
1231         // Skip blank chars
1232         do { s++; } while (s && isspace(*s));
1233 
1234 #define _UFM UINTX_FORMAT
1235 #define _DFM INTX_FORMAT
1236 
1237         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1238         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1239         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1240                    &state,          // 3  %c
1241                    &ppid,           // 4  %d
1242                    &pgrp,           // 5  %d
1243                    &session,        // 6  %d
1244                    &nr,             // 7  %d
1245                    &tpgrp,          // 8  %d
1246                    &flags,          // 9  %lu
1247                    &minflt,         // 10 %lu
1248                    &cminflt,        // 11 %lu
1249                    &majflt,         // 12 %lu
1250                    &cmajflt,        // 13 %lu
1251                    &utime,          // 14 %lu
1252                    &stime,          // 15 %lu
1253                    &cutime,         // 16 %ld
1254                    &cstime,         // 17 %ld
1255                    &prio,           // 18 %ld
1256                    &nice,           // 19 %ld
1257                    &junk,           // 20 %ld
1258                    &it_real,        // 21 %ld
1259                    &start,          // 22 UINTX_FORMAT
1260                    &vsize,          // 23 UINTX_FORMAT
1261                    &rss,            // 24 INTX_FORMAT
1262                    &rsslim,         // 25 UINTX_FORMAT
1263                    &scodes,         // 26 UINTX_FORMAT
1264                    &ecode,          // 27 UINTX_FORMAT
1265                    &stack_start);   // 28 UINTX_FORMAT
1266       }
1267 
1268 #undef _UFM
1269 #undef _DFM
1270 
1271       if (i != 28 - 2) {
1272         assert(false, "Bad conversion from /proc/self/stat");
1273         // product mode - assume we are the primordial thread, good luck in the
1274         // embedded case.
1275         warning("Can't detect primordial thread stack location - bad conversion");
1276         stack_start = (uintptr_t) &rlim;
1277       }
1278     } else {
1279       // For some reason we can't open /proc/self/stat (for example, running on
1280       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1281       // most cases, so don't abort:
1282       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1283       stack_start = (uintptr_t) &rlim;
1284     }
1285   }
1286 
1287   // Now we have a pointer (stack_start) very close to the stack top, the
1288   // next thing to do is to figure out the exact location of stack top. We
1289   // can find out the virtual memory area that contains stack_start by
1290   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1291   // and its upper limit is the real stack top. (again, this would fail if
1292   // running inside chroot, because /proc may not exist.)
1293 
1294   uintptr_t stack_top;
1295   address low, high;
1296   if (find_vma((address)stack_start, &low, &high)) {
1297     // success, "high" is the true stack top. (ignore "low", because initial
1298     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1299     stack_top = (uintptr_t)high;
1300   } else {
1301     // failed, likely because /proc/self/maps does not exist
1302     warning("Can't detect primordial thread stack location - find_vma failed");
1303     // best effort: stack_start is normally within a few pages below the real
1304     // stack top, use it as stack top, and reduce stack size so we won't put
1305     // guard page outside stack.
1306     stack_top = stack_start;
1307     stack_size -= 16 * page_size();
1308   }
1309 
1310   // stack_top could be partially down the page so align it
1311   stack_top = align_up(stack_top, page_size());
1312 
1313   // Allowed stack value is minimum of max_size and what we derived from rlimit
1314   if (max_size > 0) {
1315     _initial_thread_stack_size = MIN2(max_size, stack_size);
1316   } else {
1317     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1318     // clamp it at 8MB as we do on Solaris
1319     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1320   }
1321   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1322   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1323 
1324   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1325 
1326   if (log_is_enabled(Info, os, thread)) {
1327     // See if we seem to be on primordial process thread
1328     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1329                       uintptr_t(&rlim) < stack_top;
1330 
1331     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1332                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1333                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1334                          stack_top, intptr_t(_initial_thread_stack_bottom));
1335   }
1336 }
1337 
1338 ////////////////////////////////////////////////////////////////////////////////
1339 // time support
1340 
1341 #ifndef SUPPORTS_CLOCK_MONOTONIC
1342 #error "Build platform doesn't support clock_gettime and related functionality"
1343 #endif
1344 
1345 // Time since start-up in seconds to a fine granularity.
1346 // Used by VMSelfDestructTimer and the MemProfiler.
1347 double os::elapsedTime() {
1348 
1349   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1350 }
1351 
1352 jlong os::elapsed_counter() {
1353   return javaTimeNanos() - initial_time_count;
1354 }
1355 
1356 jlong os::elapsed_frequency() {
1357   return NANOSECS_PER_SEC; // nanosecond resolution
1358 }
1359 
1360 bool os::supports_vtime() { return true; }
1361 
1362 double os::elapsedVTime() {
1363   struct rusage usage;
1364   int retval = getrusage(RUSAGE_THREAD, &usage);
1365   if (retval == 0) {
1366     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1367   } else {
1368     // better than nothing, but not much
1369     return elapsedTime();
1370   }
1371 }
1372 
1373 jlong os::javaTimeMillis() {
1374   timeval time;
1375   int status = gettimeofday(&time, NULL);
1376   assert(status != -1, "linux error");
1377   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1378 }
1379 
1380 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1381   timeval time;
1382   int status = gettimeofday(&time, NULL);
1383   assert(status != -1, "linux error");
1384   seconds = jlong(time.tv_sec);
1385   nanos = jlong(time.tv_usec) * 1000;
1386 }
1387 
1388 void os::Linux::fast_thread_clock_init() {
1389   if (!UseLinuxPosixThreadCPUClocks) {
1390     return;
1391   }
1392   clockid_t clockid;
1393   struct timespec tp;
1394   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1395       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1396 
1397   // Switch to using fast clocks for thread cpu time if
1398   // the clock_getres() returns 0 error code.
1399   // Note, that some kernels may support the current thread
1400   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1401   // returned by the pthread_getcpuclockid().
1402   // If the fast Posix clocks are supported then the clock_getres()
1403   // must return at least tp.tv_sec == 0 which means a resolution
1404   // better than 1 sec. This is extra check for reliability.
1405 
1406   if (pthread_getcpuclockid_func &&
1407       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1408       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1409     _supports_fast_thread_cpu_time = true;
1410     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1411   }
1412 }
1413 
1414 jlong os::javaTimeNanos() {
1415   if (os::supports_monotonic_clock()) {
1416     struct timespec tp;
1417     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1418     assert(status == 0, "gettime error");
1419     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1420     return result;
1421   } else {
1422     timeval time;
1423     int status = gettimeofday(&time, NULL);
1424     assert(status != -1, "linux error");
1425     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1426     return 1000 * usecs;
1427   }
1428 }
1429 
1430 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1431   if (os::supports_monotonic_clock()) {
1432     info_ptr->max_value = ALL_64_BITS;
1433 
1434     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1435     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1436     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1437   } else {
1438     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1439     info_ptr->max_value = ALL_64_BITS;
1440 
1441     // gettimeofday is a real time clock so it skips
1442     info_ptr->may_skip_backward = true;
1443     info_ptr->may_skip_forward = true;
1444   }
1445 
1446   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1447 }
1448 
1449 // Return the real, user, and system times in seconds from an
1450 // arbitrary fixed point in the past.
1451 bool os::getTimesSecs(double* process_real_time,
1452                       double* process_user_time,
1453                       double* process_system_time) {
1454   struct tms ticks;
1455   clock_t real_ticks = times(&ticks);
1456 
1457   if (real_ticks == (clock_t) (-1)) {
1458     return false;
1459   } else {
1460     double ticks_per_second = (double) clock_tics_per_sec;
1461     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1462     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1463     *process_real_time = ((double) real_ticks) / ticks_per_second;
1464 
1465     return true;
1466   }
1467 }
1468 
1469 
1470 char * os::local_time_string(char *buf, size_t buflen) {
1471   struct tm t;
1472   time_t long_time;
1473   time(&long_time);
1474   localtime_r(&long_time, &t);
1475   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1476                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1477                t.tm_hour, t.tm_min, t.tm_sec);
1478   return buf;
1479 }
1480 
1481 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1482   return localtime_r(clock, res);
1483 }
1484 
1485 ////////////////////////////////////////////////////////////////////////////////
1486 // runtime exit support
1487 
1488 // Note: os::shutdown() might be called very early during initialization, or
1489 // called from signal handler. Before adding something to os::shutdown(), make
1490 // sure it is async-safe and can handle partially initialized VM.
1491 void os::shutdown() {
1492 
1493   // allow PerfMemory to attempt cleanup of any persistent resources
1494   perfMemory_exit();
1495 
1496   // needs to remove object in file system
1497   AttachListener::abort();
1498 
1499   // flush buffered output, finish log files
1500   ostream_abort();
1501 
1502   // Check for abort hook
1503   abort_hook_t abort_hook = Arguments::abort_hook();
1504   if (abort_hook != NULL) {
1505     abort_hook();
1506   }
1507 
1508 }
1509 
1510 // Note: os::abort() might be called very early during initialization, or
1511 // called from signal handler. Before adding something to os::abort(), make
1512 // sure it is async-safe and can handle partially initialized VM.
1513 void os::abort(bool dump_core, void* siginfo, const void* context) {
1514   os::shutdown();
1515   if (dump_core) {
1516     if (DumpPrivateMappingsInCore) {
1517       ClassLoader::close_jrt_image();
1518     }
1519 #ifndef PRODUCT
1520     fdStream out(defaultStream::output_fd());
1521     out.print_raw("Current thread is ");
1522     char buf[16];
1523     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1524     out.print_raw_cr(buf);
1525     out.print_raw_cr("Dumping core ...");
1526 #endif
1527     ::abort(); // dump core
1528   }
1529 
1530   ::exit(1);
1531 }
1532 
1533 // Die immediately, no exit hook, no abort hook, no cleanup.
1534 // Dump a core file, if possible, for debugging.
1535 void os::die() {
1536   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1537     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1538     // and don't take the time to generate a core file.
1539     os::signal_raise(SIGKILL);
1540   } else {
1541     ::abort();
1542   }
1543 }
1544 
1545 // thread_id is kernel thread id (similar to Solaris LWP id)
1546 intx os::current_thread_id() { return os::Linux::gettid(); }
1547 int os::current_process_id() {
1548   return ::getpid();
1549 }
1550 
1551 // DLL functions
1552 
1553 const char* os::dll_file_extension() { return ".so"; }
1554 
1555 // This must be hard coded because it's the system's temporary
1556 // directory not the java application's temp directory, ala java.io.tmpdir.
1557 const char* os::get_temp_directory() { return "/tmp"; }
1558 
1559 static bool file_exists(const char* filename) {
1560   struct stat statbuf;
1561   if (filename == NULL || strlen(filename) == 0) {
1562     return false;
1563   }
1564   return os::stat(filename, &statbuf) == 0;
1565 }
1566 
1567 // check if addr is inside libjvm.so
1568 bool os::address_is_in_vm(address addr) {
1569   static address libjvm_base_addr;
1570   Dl_info dlinfo;
1571 
1572   if (libjvm_base_addr == NULL) {
1573     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1574       libjvm_base_addr = (address)dlinfo.dli_fbase;
1575     }
1576     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1577   }
1578 
1579   if (dladdr((void *)addr, &dlinfo) != 0) {
1580     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1581   }
1582 
1583   return false;
1584 }
1585 
1586 bool os::dll_address_to_function_name(address addr, char *buf,
1587                                       int buflen, int *offset,
1588                                       bool demangle) {
1589   // buf is not optional, but offset is optional
1590   assert(buf != NULL, "sanity check");
1591 
1592   Dl_info dlinfo;
1593 
1594   if (dladdr((void*)addr, &dlinfo) != 0) {
1595     // see if we have a matching symbol
1596     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1597       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1598         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1599       }
1600       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1601       return true;
1602     }
1603     // no matching symbol so try for just file info
1604     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1605       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1606                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1607         return true;
1608       }
1609     }
1610   }
1611 
1612   buf[0] = '\0';
1613   if (offset != NULL) *offset = -1;
1614   return false;
1615 }
1616 
1617 struct _address_to_library_name {
1618   address addr;          // input : memory address
1619   size_t  buflen;        //         size of fname
1620   char*   fname;         // output: library name
1621   address base;          //         library base addr
1622 };
1623 
1624 static int address_to_library_name_callback(struct dl_phdr_info *info,
1625                                             size_t size, void *data) {
1626   int i;
1627   bool found = false;
1628   address libbase = NULL;
1629   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1630 
1631   // iterate through all loadable segments
1632   for (i = 0; i < info->dlpi_phnum; i++) {
1633     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1634     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1635       // base address of a library is the lowest address of its loaded
1636       // segments.
1637       if (libbase == NULL || libbase > segbase) {
1638         libbase = segbase;
1639       }
1640       // see if 'addr' is within current segment
1641       if (segbase <= d->addr &&
1642           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1643         found = true;
1644       }
1645     }
1646   }
1647 
1648   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1649   // so dll_address_to_library_name() can fall through to use dladdr() which
1650   // can figure out executable name from argv[0].
1651   if (found && info->dlpi_name && info->dlpi_name[0]) {
1652     d->base = libbase;
1653     if (d->fname) {
1654       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1655     }
1656     return 1;
1657   }
1658   return 0;
1659 }
1660 
1661 bool os::dll_address_to_library_name(address addr, char* buf,
1662                                      int buflen, int* offset) {
1663   // buf is not optional, but offset is optional
1664   assert(buf != NULL, "sanity check");
1665 
1666   Dl_info dlinfo;
1667   struct _address_to_library_name data;
1668 
1669   // There is a bug in old glibc dladdr() implementation that it could resolve
1670   // to wrong library name if the .so file has a base address != NULL. Here
1671   // we iterate through the program headers of all loaded libraries to find
1672   // out which library 'addr' really belongs to. This workaround can be
1673   // removed once the minimum requirement for glibc is moved to 2.3.x.
1674   data.addr = addr;
1675   data.fname = buf;
1676   data.buflen = buflen;
1677   data.base = NULL;
1678   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1679 
1680   if (rslt) {
1681     // buf already contains library name
1682     if (offset) *offset = addr - data.base;
1683     return true;
1684   }
1685   if (dladdr((void*)addr, &dlinfo) != 0) {
1686     if (dlinfo.dli_fname != NULL) {
1687       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1688     }
1689     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1690       *offset = addr - (address)dlinfo.dli_fbase;
1691     }
1692     return true;
1693   }
1694 
1695   buf[0] = '\0';
1696   if (offset) *offset = -1;
1697   return false;
1698 }
1699 
1700 // Loads .dll/.so and
1701 // in case of error it checks if .dll/.so was built for the
1702 // same architecture as Hotspot is running on
1703 
1704 
1705 // Remember the stack's state. The Linux dynamic linker will change
1706 // the stack to 'executable' at most once, so we must safepoint only once.
1707 bool os::Linux::_stack_is_executable = false;
1708 
1709 // VM operation that loads a library.  This is necessary if stack protection
1710 // of the Java stacks can be lost during loading the library.  If we
1711 // do not stop the Java threads, they can stack overflow before the stacks
1712 // are protected again.
1713 class VM_LinuxDllLoad: public VM_Operation {
1714  private:
1715   const char *_filename;
1716   char *_ebuf;
1717   int _ebuflen;
1718   void *_lib;
1719  public:
1720   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1721     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1722   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1723   void doit() {
1724     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1725     os::Linux::_stack_is_executable = true;
1726   }
1727   void* loaded_library() { return _lib; }
1728 };
1729 
1730 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1731   void * result = NULL;
1732   bool load_attempted = false;
1733 
1734   log_info(os)("attempting shared library load of %s", filename);
1735 
1736   // Check whether the library to load might change execution rights
1737   // of the stack. If they are changed, the protection of the stack
1738   // guard pages will be lost. We need a safepoint to fix this.
1739   //
1740   // See Linux man page execstack(8) for more info.
1741   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1742     if (!ElfFile::specifies_noexecstack(filename)) {
1743       if (!is_init_completed()) {
1744         os::Linux::_stack_is_executable = true;
1745         // This is OK - No Java threads have been created yet, and hence no
1746         // stack guard pages to fix.
1747         //
1748         // Dynamic loader will make all stacks executable after
1749         // this function returns, and will not do that again.
1750         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1751       } else {
1752         warning("You have loaded library %s which might have disabled stack guard. "
1753                 "The VM will try to fix the stack guard now.\n"
1754                 "It's highly recommended that you fix the library with "
1755                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1756                 filename);
1757 
1758         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1759         JavaThread *jt = JavaThread::current();
1760         if (jt->thread_state() != _thread_in_native) {
1761           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1762           // that requires ExecStack. Cannot enter safe point. Let's give up.
1763           warning("Unable to fix stack guard. Giving up.");
1764         } else {
1765           if (!LoadExecStackDllInVMThread) {
1766             // This is for the case where the DLL has an static
1767             // constructor function that executes JNI code. We cannot
1768             // load such DLLs in the VMThread.
1769             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1770           }
1771 
1772           ThreadInVMfromNative tiv(jt);
1773           debug_only(VMNativeEntryWrapper vew;)
1774 
1775           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1776           VMThread::execute(&op);
1777           if (LoadExecStackDllInVMThread) {
1778             result = op.loaded_library();
1779           }
1780           load_attempted = true;
1781         }
1782       }
1783     }
1784   }
1785 
1786   if (!load_attempted) {
1787     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1788   }
1789 
1790   if (result != NULL) {
1791     // Successful loading
1792     return result;
1793   }
1794 
1795   Elf32_Ehdr elf_head;
1796   int diag_msg_max_length=ebuflen-strlen(ebuf);
1797   char* diag_msg_buf=ebuf+strlen(ebuf);
1798 
1799   if (diag_msg_max_length==0) {
1800     // No more space in ebuf for additional diagnostics message
1801     return NULL;
1802   }
1803 
1804 
1805   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1806 
1807   if (file_descriptor < 0) {
1808     // Can't open library, report dlerror() message
1809     return NULL;
1810   }
1811 
1812   bool failed_to_read_elf_head=
1813     (sizeof(elf_head)!=
1814      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1815 
1816   ::close(file_descriptor);
1817   if (failed_to_read_elf_head) {
1818     // file i/o error - report dlerror() msg
1819     return NULL;
1820   }
1821 
1822   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1823     // handle invalid/out of range endianness values
1824     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1825       return NULL;
1826     }
1827 
1828 #if defined(VM_LITTLE_ENDIAN)
1829     // VM is LE, shared object BE
1830     elf_head.e_machine = be16toh(elf_head.e_machine);
1831 #else
1832     // VM is BE, shared object LE
1833     elf_head.e_machine = le16toh(elf_head.e_machine);
1834 #endif
1835   }
1836 
1837   typedef struct {
1838     Elf32_Half    code;         // Actual value as defined in elf.h
1839     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1840     unsigned char elf_class;    // 32 or 64 bit
1841     unsigned char endianness;   // MSB or LSB
1842     char*         name;         // String representation
1843   } arch_t;
1844 
1845 #ifndef EM_AARCH64
1846   #define EM_AARCH64    183               /* ARM AARCH64 */
1847 #endif
1848 #ifndef EM_RISCV
1849   #define EM_RISCV      243               /* RISC-V */
1850 #endif
1851 
1852   static const arch_t arch_array[]={
1853     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1854     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1855     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1856     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1857     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1858 #if defined(VM_LITTLE_ENDIAN)
1859     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1860     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1861 #else
1862     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1863     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1864 #endif
1865     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1866     // we only support 64 bit z architecture
1867     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1868     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1869     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1870     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1871     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1872     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1873     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1874     {EM_RISCV,       EM_RISCV,   ELFCLASS64, ELFDATA2LSB, (char*)"RISC-V"},
1875   };
1876 
1877 #if  (defined IA32)
1878   static  Elf32_Half running_arch_code=EM_386;
1879 #elif   (defined AMD64) || (defined X32)
1880   static  Elf32_Half running_arch_code=EM_X86_64;
1881 #elif  (defined IA64)
1882   static  Elf32_Half running_arch_code=EM_IA_64;
1883 #elif  (defined __powerpc64__)
1884   static  Elf32_Half running_arch_code=EM_PPC64;
1885 #elif  (defined __powerpc__)
1886   static  Elf32_Half running_arch_code=EM_PPC;
1887 #elif  (defined AARCH64)
1888   static  Elf32_Half running_arch_code=EM_AARCH64;
1889 #elif  (defined ARM)
1890   static  Elf32_Half running_arch_code=EM_ARM;
1891 #elif  (defined S390)
1892   static  Elf32_Half running_arch_code=EM_S390;
1893 #elif  (defined ALPHA)
1894   static  Elf32_Half running_arch_code=EM_ALPHA;
1895 #elif  (defined MIPSEL)
1896   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1897 #elif  (defined PARISC)
1898   static  Elf32_Half running_arch_code=EM_PARISC;
1899 #elif  (defined MIPS)
1900   static  Elf32_Half running_arch_code=EM_MIPS;
1901 #elif  (defined M68K)
1902   static  Elf32_Half running_arch_code=EM_68K;
1903 #elif  (defined SH)
1904   static  Elf32_Half running_arch_code=EM_SH;
1905 #elif  (defined RISCV)
1906   static  Elf32_Half running_arch_code=EM_RISCV;
1907 #else
1908     #error Method os::dll_load requires that one of following is defined:\
1909         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, RISCV, S390, SH
1910 #endif
1911 
1912   // Identify compatibility class for VM's architecture and library's architecture
1913   // Obtain string descriptions for architectures
1914 
1915   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1916   int running_arch_index=-1;
1917 
1918   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1919     if (running_arch_code == arch_array[i].code) {
1920       running_arch_index    = i;
1921     }
1922     if (lib_arch.code == arch_array[i].code) {
1923       lib_arch.compat_class = arch_array[i].compat_class;
1924       lib_arch.name         = arch_array[i].name;
1925     }
1926   }
1927 
1928   assert(running_arch_index != -1,
1929          "Didn't find running architecture code (running_arch_code) in arch_array");
1930   if (running_arch_index == -1) {
1931     // Even though running architecture detection failed
1932     // we may still continue with reporting dlerror() message
1933     return NULL;
1934   }
1935 
1936   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1937     if (lib_arch.name != NULL) {
1938       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1939                  " (Possible cause: can't load %s .so on a %s platform)",
1940                  lib_arch.name, arch_array[running_arch_index].name);
1941     } else {
1942       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1943                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1944                  lib_arch.code, arch_array[running_arch_index].name);
1945     }
1946     return NULL;
1947   }
1948 
1949   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1950     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1951     return NULL;
1952   }
1953 
1954   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1955   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1956     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1957     return NULL;
1958   }
1959 
1960   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1961     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1962                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1963                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1964     return NULL;
1965   }
1966 
1967   return NULL;
1968 }
1969 
1970 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1971                                 int ebuflen) {
1972   void * result = ::dlopen(filename, RTLD_LAZY);
1973   if (result == NULL) {
1974     const char* error_report = ::dlerror();
1975     if (error_report == NULL) {
1976       error_report = "dlerror returned no error description";
1977     }
1978     if (ebuf != NULL && ebuflen > 0) {
1979       ::strncpy(ebuf, error_report, ebuflen-1);
1980       ebuf[ebuflen-1]='\0';
1981     }
1982     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1983     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1984   } else {
1985     Events::log(NULL, "Loaded shared library %s", filename);
1986     log_info(os)("shared library load of %s was successful", filename);
1987   }
1988   return result;
1989 }
1990 
1991 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1992                                        int ebuflen) {
1993   void * result = NULL;
1994   if (LoadExecStackDllInVMThread) {
1995     result = dlopen_helper(filename, ebuf, ebuflen);
1996   }
1997 
1998   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1999   // library that requires an executable stack, or which does not have this
2000   // stack attribute set, dlopen changes the stack attribute to executable. The
2001   // read protection of the guard pages gets lost.
2002   //
2003   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2004   // may have been queued at the same time.
2005 
2006   if (!_stack_is_executable) {
2007     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2008       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2009           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2010         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2011           warning("Attempt to reguard stack yellow zone failed.");
2012         }
2013       }
2014     }
2015   }
2016 
2017   return result;
2018 }
2019 
2020 void* os::dll_lookup(void* handle, const char* name) {
2021   void* res = dlsym(handle, name);
2022   return res;
2023 }
2024 
2025 void* os::get_default_process_handle() {
2026   return (void*)::dlopen(NULL, RTLD_LAZY);
2027 }
2028 
2029 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2030   int fd = ::open(filename, O_RDONLY);
2031   if (fd == -1) {
2032     return false;
2033   }
2034 
2035   if (hdr != NULL) {
2036     st->print_cr("%s", hdr);
2037   }
2038 
2039   char buf[33];
2040   int bytes;
2041   buf[32] = '\0';
2042   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2043     st->print_raw(buf, bytes);
2044   }
2045 
2046   ::close(fd);
2047 
2048   return true;
2049 }
2050 
2051 static void _print_ascii_file_h(const char* header, const char* filename, outputStream* st) {
2052   st->print("%s", header);
2053   if (!_print_ascii_file(filename, st)) {
2054     st->print_cr("<Not Available>");
2055   }
2056 }
2057 
2058 void os::print_dll_info(outputStream *st) {
2059   st->print_cr("Dynamic libraries:");
2060 
2061   char fname[32];
2062   pid_t pid = os::Linux::gettid();
2063 
2064   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2065 
2066   if (!_print_ascii_file(fname, st)) {
2067     st->print("Can not get library information for pid = %d\n", pid);
2068   }
2069 }
2070 
2071 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2072   FILE *procmapsFile = NULL;
2073 
2074   // Open the procfs maps file for the current process
2075   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2076     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2077     char line[PATH_MAX + 100];
2078 
2079     // Read line by line from 'file'
2080     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2081       u8 base, top, inode;
2082       char name[sizeof(line)];
2083 
2084       // Parse fields from line, discard perms, offset and device
2085       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %*s %*s %*s " INT64_FORMAT " %s",
2086              &base, &top, &inode, name);
2087       // the last entry 'name' is empty for some entries, so we might have 3 matches instead of 4 for some lines
2088       if (matches < 3) continue;
2089       if (matches == 3) name[0] = '\0';
2090 
2091       // Filter by inode 0 so that we only get file system mapped files.
2092       if (inode != 0) {
2093 
2094         // Call callback with the fields of interest
2095         if(callback(name, (address)base, (address)top, param)) {
2096           // Oops abort, callback aborted
2097           fclose(procmapsFile);
2098           return 1;
2099         }
2100       }
2101     }
2102     fclose(procmapsFile);
2103   }
2104   return 0;
2105 }
2106 
2107 void os::print_os_info_brief(outputStream* st) {
2108   os::Linux::print_distro_info(st);
2109 
2110   os::Posix::print_uname_info(st);
2111 
2112   os::Linux::print_libversion_info(st);
2113 
2114 }
2115 
2116 void os::print_os_info(outputStream* st) {
2117   st->print("OS:");
2118 
2119   os::Linux::print_distro_info(st);
2120 
2121   os::Posix::print_uname_info(st);
2122 
2123   os::Linux::print_uptime_info(st);
2124 
2125   // Print warning if unsafe chroot environment detected
2126   if (unsafe_chroot_detected) {
2127     st->print("WARNING!! ");
2128     st->print_cr("%s", unstable_chroot_error);
2129   }
2130 
2131   os::Linux::print_libversion_info(st);
2132 
2133   os::Posix::print_rlimit_info(st);
2134 
2135   os::Posix::print_load_average(st);
2136 
2137   os::Linux::print_full_memory_info(st);
2138 
2139   os::Linux::print_proc_sys_info(st);
2140 
2141   os::Linux::print_ld_preload_file(st);
2142 
2143   os::Linux::print_container_info(st);
2144 
2145   VM_Version::print_platform_virtualization_info(st);
2146 
2147   os::Linux::print_steal_info(st);
2148 }
2149 
2150 // Try to identify popular distros.
2151 // Most Linux distributions have a /etc/XXX-release file, which contains
2152 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2153 // file that also contains the OS version string. Some have more than one
2154 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2155 // /etc/redhat-release.), so the order is important.
2156 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2157 // their own specific XXX-release file as well as a redhat-release file.
2158 // Because of this the XXX-release file needs to be searched for before the
2159 // redhat-release file.
2160 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2161 // search for redhat-release / SuSE-release needs to be before lsb-release.
2162 // Since the lsb-release file is the new standard it needs to be searched
2163 // before the older style release files.
2164 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2165 // next to last resort.  The os-release file is a new standard that contains
2166 // distribution information and the system-release file seems to be an old
2167 // standard that has been replaced by the lsb-release and os-release files.
2168 // Searching for the debian_version file is the last resort.  It contains
2169 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2170 // "Debian " is printed before the contents of the debian_version file.
2171 
2172 const char* distro_files[] = {
2173   "/etc/oracle-release",
2174   "/etc/mandriva-release",
2175   "/etc/mandrake-release",
2176   "/etc/sun-release",
2177   "/etc/redhat-release",
2178   "/etc/SuSE-release",
2179   "/etc/lsb-release",
2180   "/etc/turbolinux-release",
2181   "/etc/gentoo-release",
2182   "/etc/ltib-release",
2183   "/etc/angstrom-version",
2184   "/etc/system-release",
2185   "/etc/os-release",
2186   NULL };
2187 
2188 void os::Linux::print_distro_info(outputStream* st) {
2189   for (int i = 0;; i++) {
2190     const char* file = distro_files[i];
2191     if (file == NULL) {
2192       break;  // done
2193     }
2194     // If file prints, we found it.
2195     if (_print_ascii_file(file, st)) {
2196       return;
2197     }
2198   }
2199 
2200   if (file_exists("/etc/debian_version")) {
2201     st->print("Debian ");
2202     _print_ascii_file("/etc/debian_version", st);
2203   } else {
2204     st->print("Linux");
2205   }
2206   st->cr();
2207 }
2208 
2209 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2210   char buf[256];
2211   while (fgets(buf, sizeof(buf), fp)) {
2212     // Edit out extra stuff in expected format
2213     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2214       char* ptr = strstr(buf, "\"");  // the name is in quotes
2215       if (ptr != NULL) {
2216         ptr++; // go beyond first quote
2217         char* nl = strchr(ptr, '\"');
2218         if (nl != NULL) *nl = '\0';
2219         strncpy(distro, ptr, length);
2220       } else {
2221         ptr = strstr(buf, "=");
2222         ptr++; // go beyond equals then
2223         char* nl = strchr(ptr, '\n');
2224         if (nl != NULL) *nl = '\0';
2225         strncpy(distro, ptr, length);
2226       }
2227       return;
2228     } else if (get_first_line) {
2229       char* nl = strchr(buf, '\n');
2230       if (nl != NULL) *nl = '\0';
2231       strncpy(distro, buf, length);
2232       return;
2233     }
2234   }
2235   // print last line and close
2236   char* nl = strchr(buf, '\n');
2237   if (nl != NULL) *nl = '\0';
2238   strncpy(distro, buf, length);
2239 }
2240 
2241 static void parse_os_info(char* distro, size_t length, const char* file) {
2242   FILE* fp = fopen(file, "r");
2243   if (fp != NULL) {
2244     // if suse format, print out first line
2245     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2246     parse_os_info_helper(fp, distro, length, get_first_line);
2247     fclose(fp);
2248   }
2249 }
2250 
2251 void os::get_summary_os_info(char* buf, size_t buflen) {
2252   for (int i = 0;; i++) {
2253     const char* file = distro_files[i];
2254     if (file == NULL) {
2255       break; // ran out of distro_files
2256     }
2257     if (file_exists(file)) {
2258       parse_os_info(buf, buflen, file);
2259       return;
2260     }
2261   }
2262   // special case for debian
2263   if (file_exists("/etc/debian_version")) {
2264     strncpy(buf, "Debian ", buflen);
2265     if (buflen > 7) {
2266       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2267     }
2268   } else {
2269     strncpy(buf, "Linux", buflen);
2270   }
2271 }
2272 
2273 void os::Linux::print_libversion_info(outputStream* st) {
2274   // libc, pthread
2275   st->print("libc:");
2276   st->print("%s ", os::Linux::glibc_version());
2277   st->print("%s ", os::Linux::libpthread_version());
2278   st->cr();
2279 }
2280 
2281 void os::Linux::print_proc_sys_info(outputStream* st) {
2282   st->cr();
2283   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2284   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2285   st->cr();
2286   st->cr();
2287 
2288   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2289   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2290   st->cr();
2291   st->cr();
2292 
2293   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2294   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2295   st->cr();
2296   st->cr();
2297 }
2298 
2299 void os::Linux::print_full_memory_info(outputStream* st) {
2300   st->print("\n/proc/meminfo:\n");
2301   _print_ascii_file("/proc/meminfo", st);
2302   st->cr();
2303 
2304   // some information regarding THPs; for details see
2305   // https://www.kernel.org/doc/Documentation/vm/transhuge.txt
2306   st->print_cr("/sys/kernel/mm/transparent_hugepage/enabled:");
2307   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/enabled", st)) {
2308     st->print_cr("  <Not Available>");
2309   }
2310   st->cr();
2311   st->print_cr("/sys/kernel/mm/transparent_hugepage/defrag (defrag/compaction efforts parameter):");
2312   if (!_print_ascii_file("/sys/kernel/mm/transparent_hugepage/defrag", st)) {
2313     st->print_cr("  <Not Available>");
2314   }
2315   st->cr();
2316 }
2317 
2318 void os::Linux::print_ld_preload_file(outputStream* st) {
2319   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2320   st->cr();
2321 }
2322 
2323 void os::Linux::print_uptime_info(outputStream* st) {
2324   struct sysinfo sinfo;
2325   int ret = sysinfo(&sinfo);
2326   if (ret == 0) {
2327     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2328   }
2329 }
2330 
2331 
2332 void os::Linux::print_container_info(outputStream* st) {
2333   if (!OSContainer::is_containerized()) {
2334     return;
2335   }
2336 
2337   st->print("container (cgroup) information:\n");
2338 
2339   const char *p_ct = OSContainer::container_type();
2340   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2341 
2342   char *p = OSContainer::cpu_cpuset_cpus();
2343   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2344   free(p);
2345 
2346   p = OSContainer::cpu_cpuset_memory_nodes();
2347   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2348   free(p);
2349 
2350   int i = OSContainer::active_processor_count();
2351   st->print("active_processor_count: ");
2352   if (i > 0) {
2353     st->print("%d\n", i);
2354   } else {
2355     st->print("not supported\n");
2356   }
2357 
2358   i = OSContainer::cpu_quota();
2359   st->print("cpu_quota: ");
2360   if (i > 0) {
2361     st->print("%d\n", i);
2362   } else {
2363     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2364   }
2365 
2366   i = OSContainer::cpu_period();
2367   st->print("cpu_period: ");
2368   if (i > 0) {
2369     st->print("%d\n", i);
2370   } else {
2371     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2372   }
2373 
2374   i = OSContainer::cpu_shares();
2375   st->print("cpu_shares: ");
2376   if (i > 0) {
2377     st->print("%d\n", i);
2378   } else {
2379     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2380   }
2381 
2382   jlong j = OSContainer::memory_limit_in_bytes();
2383   st->print("memory_limit_in_bytes: ");
2384   if (j > 0) {
2385     st->print(JLONG_FORMAT "\n", j);
2386   } else {
2387     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2388   }
2389 
2390   j = OSContainer::memory_and_swap_limit_in_bytes();
2391   st->print("memory_and_swap_limit_in_bytes: ");
2392   if (j > 0) {
2393     st->print(JLONG_FORMAT "\n", j);
2394   } else {
2395     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2396   }
2397 
2398   j = OSContainer::memory_soft_limit_in_bytes();
2399   st->print("memory_soft_limit_in_bytes: ");
2400   if (j > 0) {
2401     st->print(JLONG_FORMAT "\n", j);
2402   } else {
2403     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2404   }
2405 
2406   j = OSContainer::OSContainer::memory_usage_in_bytes();
2407   st->print("memory_usage_in_bytes: ");
2408   if (j > 0) {
2409     st->print(JLONG_FORMAT "\n", j);
2410   } else {
2411     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2412   }
2413 
2414   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2415   st->print("memory_max_usage_in_bytes: ");
2416   if (j > 0) {
2417     st->print(JLONG_FORMAT "\n", j);
2418   } else {
2419     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2420   }
2421   st->cr();
2422 }
2423 
2424 void os::Linux::print_steal_info(outputStream* st) {
2425   if (has_initial_tick_info) {
2426     CPUPerfTicks pticks;
2427     bool res = os::Linux::get_tick_information(&pticks, -1);
2428 
2429     if (res && pticks.has_steal_ticks) {
2430       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2431       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2432       double steal_ticks_perc = 0.0;
2433       if (total_ticks_difference != 0) {
2434         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2435       }
2436       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2437       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2438     }
2439   }
2440 }
2441 
2442 void os::print_memory_info(outputStream* st) {
2443 
2444   st->print("Memory:");
2445   st->print(" %dk page", os::vm_page_size()>>10);
2446 
2447   // values in struct sysinfo are "unsigned long"
2448   struct sysinfo si;
2449   sysinfo(&si);
2450 
2451   st->print(", physical " UINT64_FORMAT "k",
2452             os::physical_memory() >> 10);
2453   st->print("(" UINT64_FORMAT "k free)",
2454             os::available_memory() >> 10);
2455   st->print(", swap " UINT64_FORMAT "k",
2456             ((jlong)si.totalswap * si.mem_unit) >> 10);
2457   st->print("(" UINT64_FORMAT "k free)",
2458             ((jlong)si.freeswap * si.mem_unit) >> 10);
2459   st->cr();
2460 }
2461 
2462 // Print the first "model name" line and the first "flags" line
2463 // that we find and nothing more. We assume "model name" comes
2464 // before "flags" so if we find a second "model name", then the
2465 // "flags" field is considered missing.
2466 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2467 #if defined(IA32) || defined(AMD64)
2468   // Other platforms have less repetitive cpuinfo files
2469   FILE *fp = fopen("/proc/cpuinfo", "r");
2470   if (fp) {
2471     while (!feof(fp)) {
2472       if (fgets(buf, buflen, fp)) {
2473         // Assume model name comes before flags
2474         bool model_name_printed = false;
2475         if (strstr(buf, "model name") != NULL) {
2476           if (!model_name_printed) {
2477             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2478             st->print_raw(buf);
2479             model_name_printed = true;
2480           } else {
2481             // model name printed but not flags?  Odd, just return
2482             fclose(fp);
2483             return true;
2484           }
2485         }
2486         // print the flags line too
2487         if (strstr(buf, "flags") != NULL) {
2488           st->print_raw(buf);
2489           fclose(fp);
2490           return true;
2491         }
2492       }
2493     }
2494     fclose(fp);
2495   }
2496 #endif // x86 platforms
2497   return false;
2498 }
2499 
2500 // additional information about CPU e.g. available frequency ranges
2501 static void print_sys_devices_cpu_info(outputStream* st, char* buf, size_t buflen) {
2502   _print_ascii_file_h("Online cpus:", "/sys/devices/system/cpu/online", st);
2503   _print_ascii_file_h("Offline cpus:", "/sys/devices/system/cpu/offline", st);
2504 
2505   if (ExtensiveErrorReports) {
2506     // cache related info (cpu 0, should be similar for other CPUs)
2507     for (unsigned int i=0; i < 10; i++) { // handle max. 10 cache entries
2508       char hbuf_level[60];
2509       char hbuf_type[60];
2510       char hbuf_size[60];
2511       char hbuf_coherency_line_size[80];
2512       snprintf(hbuf_level, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/level", i);
2513       snprintf(hbuf_type, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/type", i);
2514       snprintf(hbuf_size, 60, "/sys/devices/system/cpu/cpu0/cache/index%u/size", i);
2515       snprintf(hbuf_coherency_line_size, 80, "/sys/devices/system/cpu/cpu0/cache/index%u/coherency_line_size", i);
2516       if (file_exists(hbuf_level)) {
2517         _print_ascii_file_h("cache level:", hbuf_level, st);
2518         _print_ascii_file_h("cache type:", hbuf_type, st);
2519         _print_ascii_file_h("cache size:", hbuf_size, st);
2520         _print_ascii_file_h("cache coherency line size:", hbuf_coherency_line_size, st);
2521       }
2522     }
2523   }
2524 
2525   // we miss the cpufreq entries on Power and s390x
2526 #if defined(IA32) || defined(AMD64)
2527   _print_ascii_file_h("BIOS frequency limitation:", "/sys/devices/system/cpu/cpu0/cpufreq/bios_limit", st);
2528   _print_ascii_file_h("Frequency switch latency (ns):", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_transition_latency", st);
2529   _print_ascii_file_h("Available cpu frequencies:", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies", st);
2530   // min and max should be in the Available range but still print them (not all info might be available for all kernels)
2531   if (ExtensiveErrorReports) {
2532     _print_ascii_file_h("Maximum cpu frequency:", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", st);
2533     _print_ascii_file_h("Minimum cpu frequency:", "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_min_freq", st);
2534     _print_ascii_file_h("Current cpu frequency:", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq", st);
2535   }
2536   // governors are power schemes, see https://wiki.archlinux.org/index.php/CPU_frequency_scaling
2537   if (ExtensiveErrorReports) {
2538     _print_ascii_file_h("Available governors:", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors", st);
2539   }
2540   _print_ascii_file_h("Current governor:", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor", st);
2541   // Core performance boost, see https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt
2542   // Raise operating frequency of some cores in a multi-core package if certain conditions apply, e.g.
2543   // whole chip is not fully utilized
2544   _print_ascii_file_h("Core performance/turbo boost:", "/sys/devices/system/cpu/cpufreq/boost", st);
2545 #endif
2546 }
2547 
2548 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2549   // Only print the model name if the platform provides this as a summary
2550   if (!print_model_name_and_flags(st, buf, buflen)) {
2551     st->print("\n/proc/cpuinfo:\n");
2552     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2553       st->print_cr("  <Not Available>");
2554     }
2555   }
2556   print_sys_devices_cpu_info(st, buf, buflen);
2557 }
2558 
2559 #if defined(AMD64) || defined(IA32) || defined(X32)
2560 const char* search_string = "model name";
2561 #elif defined(M68K)
2562 const char* search_string = "CPU";
2563 #elif defined(PPC64)
2564 const char* search_string = "cpu";
2565 #elif defined(S390)
2566 const char* search_string = "machine =";
2567 #else
2568 const char* search_string = "Processor";
2569 #endif
2570 
2571 // Parses the cpuinfo file for string representing the model name.
2572 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2573   FILE* fp = fopen("/proc/cpuinfo", "r");
2574   if (fp != NULL) {
2575     while (!feof(fp)) {
2576       char buf[256];
2577       if (fgets(buf, sizeof(buf), fp)) {
2578         char* start = strstr(buf, search_string);
2579         if (start != NULL) {
2580           char *ptr = start + strlen(search_string);
2581           char *end = buf + strlen(buf);
2582           while (ptr != end) {
2583              // skip whitespace and colon for the rest of the name.
2584              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2585                break;
2586              }
2587              ptr++;
2588           }
2589           if (ptr != end) {
2590             // reasonable string, get rid of newline and keep the rest
2591             char* nl = strchr(buf, '\n');
2592             if (nl != NULL) *nl = '\0';
2593             strncpy(cpuinfo, ptr, length);
2594             fclose(fp);
2595             return;
2596           }
2597         }
2598       }
2599     }
2600     fclose(fp);
2601   }
2602   // cpuinfo not found or parsing failed, just print generic string.  The entire
2603   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2604 #if   defined(AARCH64)
2605   strncpy(cpuinfo, "AArch64", length);
2606 #elif defined(AMD64)
2607   strncpy(cpuinfo, "x86_64", length);
2608 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2609   strncpy(cpuinfo, "ARM", length);
2610 #elif defined(IA32)
2611   strncpy(cpuinfo, "x86_32", length);
2612 #elif defined(IA64)
2613   strncpy(cpuinfo, "IA64", length);
2614 #elif defined(PPC)
2615   strncpy(cpuinfo, "PPC64", length);
2616 #elif defined(S390)
2617   strncpy(cpuinfo, "S390", length);
2618 #elif defined(ZERO_LIBARCH)
2619   strncpy(cpuinfo, ZERO_LIBARCH, length);
2620 #else
2621   strncpy(cpuinfo, "unknown", length);
2622 #endif
2623 }
2624 
2625 static void print_signal_handler(outputStream* st, int sig,
2626                                  char* buf, size_t buflen);
2627 
2628 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2629   st->print_cr("Signal Handlers:");
2630   print_signal_handler(st, SIGSEGV, buf, buflen);
2631   print_signal_handler(st, SIGBUS , buf, buflen);
2632   print_signal_handler(st, SIGFPE , buf, buflen);
2633   print_signal_handler(st, SIGPIPE, buf, buflen);
2634   print_signal_handler(st, SIGXFSZ, buf, buflen);
2635   print_signal_handler(st, SIGILL , buf, buflen);
2636   print_signal_handler(st, SR_signum, buf, buflen);
2637   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2638   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2639   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2640   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2641 #if defined(PPC64)
2642   print_signal_handler(st, SIGTRAP, buf, buflen);
2643 #endif
2644 }
2645 
2646 static char saved_jvm_path[MAXPATHLEN] = {0};
2647 
2648 // Find the full path to the current module, libjvm.so
2649 void os::jvm_path(char *buf, jint buflen) {
2650   // Error checking.
2651   if (buflen < MAXPATHLEN) {
2652     assert(false, "must use a large-enough buffer");
2653     buf[0] = '\0';
2654     return;
2655   }
2656   // Lazy resolve the path to current module.
2657   if (saved_jvm_path[0] != 0) {
2658     strcpy(buf, saved_jvm_path);
2659     return;
2660   }
2661 
2662   char dli_fname[MAXPATHLEN];
2663   bool ret = dll_address_to_library_name(
2664                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2665                                          dli_fname, sizeof(dli_fname), NULL);
2666   assert(ret, "cannot locate libjvm");
2667   char *rp = NULL;
2668   if (ret && dli_fname[0] != '\0') {
2669     rp = os::Posix::realpath(dli_fname, buf, buflen);
2670   }
2671   if (rp == NULL) {
2672     return;
2673   }
2674 
2675   if (Arguments::sun_java_launcher_is_altjvm()) {
2676     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2677     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2678     // If "/jre/lib/" appears at the right place in the string, then
2679     // assume we are installed in a JDK and we're done. Otherwise, check
2680     // for a JAVA_HOME environment variable and fix up the path so it
2681     // looks like libjvm.so is installed there (append a fake suffix
2682     // hotspot/libjvm.so).
2683     const char *p = buf + strlen(buf) - 1;
2684     for (int count = 0; p > buf && count < 5; ++count) {
2685       for (--p; p > buf && *p != '/'; --p)
2686         /* empty */ ;
2687     }
2688 
2689     if (strncmp(p, "/jre/lib/", 9) != 0) {
2690       // Look for JAVA_HOME in the environment.
2691       char* java_home_var = ::getenv("JAVA_HOME");
2692       if (java_home_var != NULL && java_home_var[0] != 0) {
2693         char* jrelib_p;
2694         int len;
2695 
2696         // Check the current module name "libjvm.so".
2697         p = strrchr(buf, '/');
2698         if (p == NULL) {
2699           return;
2700         }
2701         assert(strstr(p, "/libjvm") == p, "invalid library name");
2702 
2703         rp = os::Posix::realpath(java_home_var, buf, buflen);
2704         if (rp == NULL) {
2705           return;
2706         }
2707 
2708         // determine if this is a legacy image or modules image
2709         // modules image doesn't have "jre" subdirectory
2710         len = strlen(buf);
2711         assert(len < buflen, "Ran out of buffer room");
2712         jrelib_p = buf + len;
2713         snprintf(jrelib_p, buflen-len, "/jre/lib");
2714         if (0 != access(buf, F_OK)) {
2715           snprintf(jrelib_p, buflen-len, "/lib");
2716         }
2717 
2718         if (0 == access(buf, F_OK)) {
2719           // Use current module name "libjvm.so"
2720           len = strlen(buf);
2721           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2722         } else {
2723           // Go back to path of .so
2724           rp = os::Posix::realpath(dli_fname, buf, buflen);
2725           if (rp == NULL) {
2726             return;
2727           }
2728         }
2729       }
2730     }
2731   }
2732 
2733   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2734   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2735 }
2736 
2737 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2738   // no prefix required, not even "_"
2739 }
2740 
2741 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2742   // no suffix required
2743 }
2744 
2745 ////////////////////////////////////////////////////////////////////////////////
2746 // sun.misc.Signal support
2747 
2748 static void UserHandler(int sig, void *siginfo, void *context) {
2749   // Ctrl-C is pressed during error reporting, likely because the error
2750   // handler fails to abort. Let VM die immediately.
2751   if (sig == SIGINT && VMError::is_error_reported()) {
2752     os::die();
2753   }
2754 
2755   os::signal_notify(sig);
2756 }
2757 
2758 void* os::user_handler() {
2759   return CAST_FROM_FN_PTR(void*, UserHandler);
2760 }
2761 
2762 extern "C" {
2763   typedef void (*sa_handler_t)(int);
2764   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2765 }
2766 
2767 void* os::signal(int signal_number, void* handler) {
2768   struct sigaction sigAct, oldSigAct;
2769 
2770   sigfillset(&(sigAct.sa_mask));
2771   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2772   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2773 
2774   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2775     // -1 means registration failed
2776     return (void *)-1;
2777   }
2778 
2779   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2780 }
2781 
2782 void os::signal_raise(int signal_number) {
2783   ::raise(signal_number);
2784 }
2785 
2786 // The following code is moved from os.cpp for making this
2787 // code platform specific, which it is by its very nature.
2788 
2789 // Will be modified when max signal is changed to be dynamic
2790 int os::sigexitnum_pd() {
2791   return NSIG;
2792 }
2793 
2794 // a counter for each possible signal value
2795 static volatile jint pending_signals[NSIG+1] = { 0 };
2796 
2797 // Linux(POSIX) specific hand shaking semaphore.
2798 static Semaphore* sig_sem = NULL;
2799 static PosixSemaphore sr_semaphore;
2800 
2801 static void jdk_misc_signal_init() {
2802   // Initialize signal structures
2803   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2804 
2805   // Initialize signal semaphore
2806   sig_sem = new Semaphore();
2807 }
2808 
2809 void os::signal_notify(int sig) {
2810   if (sig_sem != NULL) {
2811     Atomic::inc(&pending_signals[sig]);
2812     sig_sem->signal();
2813   } else {
2814     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2815     // initialization isn't called.
2816     assert(ReduceSignalUsage, "signal semaphore should be created");
2817   }
2818 }
2819 
2820 static int check_pending_signals() {
2821   for (;;) {
2822     for (int i = 0; i < NSIG + 1; i++) {
2823       jint n = pending_signals[i];
2824       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2825         return i;
2826       }
2827     }
2828     JavaThread *thread = JavaThread::current();
2829     ThreadBlockInVM tbivm(thread);
2830 
2831     bool threadIsSuspended;
2832     do {
2833       thread->set_suspend_equivalent();
2834       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2835       sig_sem->wait();
2836 
2837       // were we externally suspended while we were waiting?
2838       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2839       if (threadIsSuspended) {
2840         // The semaphore has been incremented, but while we were waiting
2841         // another thread suspended us. We don't want to continue running
2842         // while suspended because that would surprise the thread that
2843         // suspended us.
2844         sig_sem->signal();
2845 
2846         thread->java_suspend_self();
2847       }
2848     } while (threadIsSuspended);
2849   }
2850 }
2851 
2852 int os::signal_wait() {
2853   return check_pending_signals();
2854 }
2855 
2856 ////////////////////////////////////////////////////////////////////////////////
2857 // Virtual Memory
2858 
2859 int os::vm_page_size() {
2860   // Seems redundant as all get out
2861   assert(os::Linux::page_size() != -1, "must call os::init");
2862   return os::Linux::page_size();
2863 }
2864 
2865 // Solaris allocates memory by pages.
2866 int os::vm_allocation_granularity() {
2867   assert(os::Linux::page_size() != -1, "must call os::init");
2868   return os::Linux::page_size();
2869 }
2870 
2871 // Rationale behind this function:
2872 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2873 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2874 //  samples for JITted code. Here we create private executable mapping over the code cache
2875 //  and then we can use standard (well, almost, as mapping can change) way to provide
2876 //  info for the reporting script by storing timestamp and location of symbol
2877 void linux_wrap_code(char* base, size_t size) {
2878   static volatile jint cnt = 0;
2879 
2880   if (!UseOprofile) {
2881     return;
2882   }
2883 
2884   char buf[PATH_MAX+1];
2885   int num = Atomic::add(&cnt, 1);
2886 
2887   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2888            os::get_temp_directory(), os::current_process_id(), num);
2889   unlink(buf);
2890 
2891   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2892 
2893   if (fd != -1) {
2894     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2895     if (rv != (off_t)-1) {
2896       if (::write(fd, "", 1) == 1) {
2897         mmap(base, size,
2898              PROT_READ|PROT_WRITE|PROT_EXEC,
2899              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2900       }
2901     }
2902     ::close(fd);
2903     unlink(buf);
2904   }
2905 }
2906 
2907 static bool recoverable_mmap_error(int err) {
2908   // See if the error is one we can let the caller handle. This
2909   // list of errno values comes from JBS-6843484. I can't find a
2910   // Linux man page that documents this specific set of errno
2911   // values so while this list currently matches Solaris, it may
2912   // change as we gain experience with this failure mode.
2913   switch (err) {
2914   case EBADF:
2915   case EINVAL:
2916   case ENOTSUP:
2917     // let the caller deal with these errors
2918     return true;
2919 
2920   default:
2921     // Any remaining errors on this OS can cause our reserved mapping
2922     // to be lost. That can cause confusion where different data
2923     // structures think they have the same memory mapped. The worst
2924     // scenario is if both the VM and a library think they have the
2925     // same memory mapped.
2926     return false;
2927   }
2928 }
2929 
2930 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2931                                     int err) {
2932   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2933           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2934           os::strerror(err), err);
2935 }
2936 
2937 static void warn_fail_commit_memory(char* addr, size_t size,
2938                                     size_t alignment_hint, bool exec,
2939                                     int err) {
2940   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2941           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2942           alignment_hint, exec, os::strerror(err), err);
2943 }
2944 
2945 // NOTE: Linux kernel does not really reserve the pages for us.
2946 //       All it does is to check if there are enough free pages
2947 //       left at the time of mmap(). This could be a potential
2948 //       problem.
2949 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2950   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2951   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2952                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2953   if (res != (uintptr_t) MAP_FAILED) {
2954     if (UseNUMAInterleaving) {
2955       numa_make_global(addr, size);
2956     }
2957     return 0;
2958   }
2959 
2960   int err = errno;  // save errno from mmap() call above
2961 
2962   if (!recoverable_mmap_error(err)) {
2963     warn_fail_commit_memory(addr, size, exec, err);
2964     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2965   }
2966 
2967   return err;
2968 }
2969 
2970 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2971   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2972 }
2973 
2974 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2975                                   const char* mesg) {
2976   assert(mesg != NULL, "mesg must be specified");
2977   int err = os::Linux::commit_memory_impl(addr, size, exec);
2978   if (err != 0) {
2979     // the caller wants all commit errors to exit with the specified mesg:
2980     warn_fail_commit_memory(addr, size, exec, err);
2981     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2982   }
2983 }
2984 
2985 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2986 #ifndef MAP_HUGETLB
2987   #define MAP_HUGETLB 0x40000
2988 #endif
2989 
2990 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2991 #ifndef MADV_HUGEPAGE
2992   #define MADV_HUGEPAGE 14
2993 #endif
2994 
2995 int os::Linux::commit_memory_impl(char* addr, size_t size,
2996                                   size_t alignment_hint, bool exec) {
2997   int err = os::Linux::commit_memory_impl(addr, size, exec);
2998   if (err == 0) {
2999     realign_memory(addr, size, alignment_hint);
3000   }
3001   return err;
3002 }
3003 
3004 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3005                           bool exec) {
3006   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
3007 }
3008 
3009 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3010                                   size_t alignment_hint, bool exec,
3011                                   const char* mesg) {
3012   assert(mesg != NULL, "mesg must be specified");
3013   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
3014   if (err != 0) {
3015     // the caller wants all commit errors to exit with the specified mesg:
3016     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
3017     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3018   }
3019 }
3020 
3021 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
3022   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
3023     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
3024     // be supported or the memory may already be backed by huge pages.
3025     ::madvise(addr, bytes, MADV_HUGEPAGE);
3026   }
3027 }
3028 
3029 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
3030   // This method works by doing an mmap over an existing mmaping and effectively discarding
3031   // the existing pages. However it won't work for SHM-based large pages that cannot be
3032   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
3033   // small pages on top of the SHM segment. This method always works for small pages, so we
3034   // allow that in any case.
3035   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
3036     commit_memory(addr, bytes, alignment_hint, !ExecMem);
3037   }
3038 }
3039 
3040 void os::numa_make_global(char *addr, size_t bytes) {
3041   Linux::numa_interleave_memory(addr, bytes);
3042 }
3043 
3044 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
3045 // bind policy to MPOL_PREFERRED for the current thread.
3046 #define USE_MPOL_PREFERRED 0
3047 
3048 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
3049   // To make NUMA and large pages more robust when both enabled, we need to ease
3050   // the requirements on where the memory should be allocated. MPOL_BIND is the
3051   // default policy and it will force memory to be allocated on the specified
3052   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
3053   // the specified node, but will not force it. Using this policy will prevent
3054   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
3055   // free large pages.
3056   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3057   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3058 }
3059 
3060 bool os::numa_topology_changed() { return false; }
3061 
3062 size_t os::numa_get_groups_num() {
3063   // Return just the number of nodes in which it's possible to allocate memory
3064   // (in numa terminology, configured nodes).
3065   return Linux::numa_num_configured_nodes();
3066 }
3067 
3068 int os::numa_get_group_id() {
3069   int cpu_id = Linux::sched_getcpu();
3070   if (cpu_id != -1) {
3071     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3072     if (lgrp_id != -1) {
3073       return lgrp_id;
3074     }
3075   }
3076   return 0;
3077 }
3078 
3079 int os::numa_get_group_id_for_address(const void* address) {
3080   void** pages = const_cast<void**>(&address);
3081   int id = -1;
3082 
3083   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3084     return -1;
3085   }
3086   if (id < 0) {
3087     return -1;
3088   }
3089   return id;
3090 }
3091 
3092 int os::Linux::get_existing_num_nodes() {
3093   int node;
3094   int highest_node_number = Linux::numa_max_node();
3095   int num_nodes = 0;
3096 
3097   // Get the total number of nodes in the system including nodes without memory.
3098   for (node = 0; node <= highest_node_number; node++) {
3099     if (is_node_in_existing_nodes(node)) {
3100       num_nodes++;
3101     }
3102   }
3103   return num_nodes;
3104 }
3105 
3106 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3107   int highest_node_number = Linux::numa_max_node();
3108   size_t i = 0;
3109 
3110   // Map all node ids in which it is possible to allocate memory. Also nodes are
3111   // not always consecutively available, i.e. available from 0 to the highest
3112   // node number. If the nodes have been bound explicitly using numactl membind,
3113   // then allocate memory from those nodes only.
3114   for (int node = 0; node <= highest_node_number; node++) {
3115     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3116       ids[i++] = node;
3117     }
3118   }
3119   return i;
3120 }
3121 
3122 bool os::get_page_info(char *start, page_info* info) {
3123   return false;
3124 }
3125 
3126 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3127                      page_info* page_found) {
3128   return end;
3129 }
3130 
3131 
3132 int os::Linux::sched_getcpu_syscall(void) {
3133   unsigned int cpu = 0;
3134   int retval = -1;
3135 
3136 #if defined(IA32)
3137   #ifndef SYS_getcpu
3138     #define SYS_getcpu 318
3139   #endif
3140   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3141 #elif defined(AMD64)
3142 // Unfortunately we have to bring all these macros here from vsyscall.h
3143 // to be able to compile on old linuxes.
3144   #define __NR_vgetcpu 2
3145   #define VSYSCALL_START (-10UL << 20)
3146   #define VSYSCALL_SIZE 1024
3147   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3148   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3149   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3150   retval = vgetcpu(&cpu, NULL, NULL);
3151 #endif
3152 
3153   return (retval == -1) ? retval : cpu;
3154 }
3155 
3156 void os::Linux::sched_getcpu_init() {
3157   // sched_getcpu() should be in libc.
3158   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3159                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3160 
3161   // If it's not, try a direct syscall.
3162   if (sched_getcpu() == -1) {
3163     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3164                                     (void*)&sched_getcpu_syscall));
3165   }
3166 
3167   if (sched_getcpu() == -1) {
3168     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3169   }
3170 }
3171 
3172 // Something to do with the numa-aware allocator needs these symbols
3173 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3174 extern "C" JNIEXPORT void numa_error(char *where) { }
3175 
3176 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3177 // load symbol from base version instead.
3178 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3179   void *f = dlvsym(handle, name, "libnuma_1.1");
3180   if (f == NULL) {
3181     f = dlsym(handle, name);
3182   }
3183   return f;
3184 }
3185 
3186 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3187 // Return NULL if the symbol is not defined in this particular version.
3188 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3189   return dlvsym(handle, name, "libnuma_1.2");
3190 }
3191 
3192 bool os::Linux::libnuma_init() {
3193   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3194     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3195     if (handle != NULL) {
3196       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3197                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3198       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3199                                        libnuma_dlsym(handle, "numa_max_node")));
3200       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3201                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3202       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3203                                         libnuma_dlsym(handle, "numa_available")));
3204       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3205                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3206       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3207                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3208       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3209                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3210       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3211                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3212       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3213                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3214       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3215                                        libnuma_dlsym(handle, "numa_distance")));
3216       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3217                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3218       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3219                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3220       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3221                                          libnuma_dlsym(handle, "numa_move_pages")));
3222       set_numa_set_preferred(CAST_TO_FN_PTR(numa_set_preferred_func_t,
3223                                             libnuma_dlsym(handle, "numa_set_preferred")));
3224 
3225       if (numa_available() != -1) {
3226         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3227         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3228         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3229         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3230         set_numa_membind_bitmask(_numa_get_membind());
3231         // Create an index -> node mapping, since nodes are not always consecutive
3232         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3233         rebuild_nindex_to_node_map();
3234         // Create a cpu -> node mapping
3235         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3236         rebuild_cpu_to_node_map();
3237         return true;
3238       }
3239     }
3240   }
3241   return false;
3242 }
3243 
3244 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3245   // Creating guard page is very expensive. Java thread has HotSpot
3246   // guard pages, only enable glibc guard page for non-Java threads.
3247   // (Remember: compiler thread is a Java thread, too!)
3248   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3249 }
3250 
3251 void os::Linux::rebuild_nindex_to_node_map() {
3252   int highest_node_number = Linux::numa_max_node();
3253 
3254   nindex_to_node()->clear();
3255   for (int node = 0; node <= highest_node_number; node++) {
3256     if (Linux::is_node_in_existing_nodes(node)) {
3257       nindex_to_node()->append(node);
3258     }
3259   }
3260 }
3261 
3262 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3263 // The table is later used in get_node_by_cpu().
3264 void os::Linux::rebuild_cpu_to_node_map() {
3265   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3266                               // in libnuma (possible values are starting from 16,
3267                               // and continuing up with every other power of 2, but less
3268                               // than the maximum number of CPUs supported by kernel), and
3269                               // is a subject to change (in libnuma version 2 the requirements
3270                               // are more reasonable) we'll just hardcode the number they use
3271                               // in the library.
3272   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3273 
3274   size_t cpu_num = processor_count();
3275   size_t cpu_map_size = NCPUS / BitsPerCLong;
3276   size_t cpu_map_valid_size =
3277     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3278 
3279   cpu_to_node()->clear();
3280   cpu_to_node()->at_grow(cpu_num - 1);
3281 
3282   size_t node_num = get_existing_num_nodes();
3283 
3284   int distance = 0;
3285   int closest_distance = INT_MAX;
3286   int closest_node = 0;
3287   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3288   for (size_t i = 0; i < node_num; i++) {
3289     // Check if node is configured (not a memory-less node). If it is not, find
3290     // the closest configured node. Check also if node is bound, i.e. it's allowed
3291     // to allocate memory from the node. If it's not allowed, map cpus in that node
3292     // to the closest node from which memory allocation is allowed.
3293     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3294         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3295       closest_distance = INT_MAX;
3296       // Check distance from all remaining nodes in the system. Ignore distance
3297       // from itself, from another non-configured node, and from another non-bound
3298       // node.
3299       for (size_t m = 0; m < node_num; m++) {
3300         if (m != i &&
3301             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3302             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3303           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3304           // If a closest node is found, update. There is always at least one
3305           // configured and bound node in the system so there is always at least
3306           // one node close.
3307           if (distance != 0 && distance < closest_distance) {
3308             closest_distance = distance;
3309             closest_node = nindex_to_node()->at(m);
3310           }
3311         }
3312       }
3313      } else {
3314        // Current node is already a configured node.
3315        closest_node = nindex_to_node()->at(i);
3316      }
3317 
3318     // Get cpus from the original node and map them to the closest node. If node
3319     // is a configured node (not a memory-less node), then original node and
3320     // closest node are the same.
3321     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3322       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3323         if (cpu_map[j] != 0) {
3324           for (size_t k = 0; k < BitsPerCLong; k++) {
3325             if (cpu_map[j] & (1UL << k)) {
3326               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3327             }
3328           }
3329         }
3330       }
3331     }
3332   }
3333   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3334 }
3335 
3336 int os::Linux::get_node_by_cpu(int cpu_id) {
3337   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3338     return cpu_to_node()->at(cpu_id);
3339   }
3340   return -1;
3341 }
3342 
3343 GrowableArray<int>* os::Linux::_cpu_to_node;
3344 GrowableArray<int>* os::Linux::_nindex_to_node;
3345 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3346 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3347 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3348 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3349 os::Linux::numa_available_func_t os::Linux::_numa_available;
3350 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3351 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3352 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3353 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3354 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3355 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3356 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3357 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3358 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3359 os::Linux::numa_set_preferred_func_t os::Linux::_numa_set_preferred;
3360 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3361 unsigned long* os::Linux::_numa_all_nodes;
3362 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3363 struct bitmask* os::Linux::_numa_nodes_ptr;
3364 struct bitmask* os::Linux::_numa_interleave_bitmask;
3365 struct bitmask* os::Linux::_numa_membind_bitmask;
3366 
3367 bool os::pd_uncommit_memory(char* addr, size_t size) {
3368   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3369                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3370   return res  != (uintptr_t) MAP_FAILED;
3371 }
3372 
3373 static address get_stack_commited_bottom(address bottom, size_t size) {
3374   address nbot = bottom;
3375   address ntop = bottom + size;
3376 
3377   size_t page_sz = os::vm_page_size();
3378   unsigned pages = size / page_sz;
3379 
3380   unsigned char vec[1];
3381   unsigned imin = 1, imax = pages + 1, imid;
3382   int mincore_return_value = 0;
3383 
3384   assert(imin <= imax, "Unexpected page size");
3385 
3386   while (imin < imax) {
3387     imid = (imax + imin) / 2;
3388     nbot = ntop - (imid * page_sz);
3389 
3390     // Use a trick with mincore to check whether the page is mapped or not.
3391     // mincore sets vec to 1 if page resides in memory and to 0 if page
3392     // is swapped output but if page we are asking for is unmapped
3393     // it returns -1,ENOMEM
3394     mincore_return_value = mincore(nbot, page_sz, vec);
3395 
3396     if (mincore_return_value == -1) {
3397       // Page is not mapped go up
3398       // to find first mapped page
3399       if (errno != EAGAIN) {
3400         assert(errno == ENOMEM, "Unexpected mincore errno");
3401         imax = imid;
3402       }
3403     } else {
3404       // Page is mapped go down
3405       // to find first not mapped page
3406       imin = imid + 1;
3407     }
3408   }
3409 
3410   nbot = nbot + page_sz;
3411 
3412   // Adjust stack bottom one page up if last checked page is not mapped
3413   if (mincore_return_value == -1) {
3414     nbot = nbot + page_sz;
3415   }
3416 
3417   return nbot;
3418 }
3419 
3420 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3421   int mincore_return_value;
3422   const size_t stripe = 1024;  // query this many pages each time
3423   unsigned char vec[stripe + 1];
3424   // set a guard
3425   vec[stripe] = 'X';
3426 
3427   const size_t page_sz = os::vm_page_size();
3428   size_t pages = size / page_sz;
3429 
3430   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3431   assert(is_aligned(size, page_sz), "Size must be page aligned");
3432 
3433   committed_start = NULL;
3434 
3435   int loops = (pages + stripe - 1) / stripe;
3436   int committed_pages = 0;
3437   address loop_base = start;
3438   bool found_range = false;
3439 
3440   for (int index = 0; index < loops && !found_range; index ++) {
3441     assert(pages > 0, "Nothing to do");
3442     int pages_to_query = (pages >= stripe) ? stripe : pages;
3443     pages -= pages_to_query;
3444 
3445     // Get stable read
3446     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3447 
3448     // During shutdown, some memory goes away without properly notifying NMT,
3449     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3450     // Bailout and return as not committed for now.
3451     if (mincore_return_value == -1 && errno == ENOMEM) {
3452       return false;
3453     }
3454 
3455     assert(vec[stripe] == 'X', "overflow guard");
3456     assert(mincore_return_value == 0, "Range must be valid");
3457     // Process this stripe
3458     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3459       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3460         // End of current contiguous region
3461         if (committed_start != NULL) {
3462           found_range = true;
3463           break;
3464         }
3465       } else { // committed
3466         // Start of region
3467         if (committed_start == NULL) {
3468           committed_start = loop_base + page_sz * vecIdx;
3469         }
3470         committed_pages ++;
3471       }
3472     }
3473 
3474     loop_base += pages_to_query * page_sz;
3475   }
3476 
3477   if (committed_start != NULL) {
3478     assert(committed_pages > 0, "Must have committed region");
3479     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3480     assert(committed_start >= start && committed_start < start + size, "Out of range");
3481     committed_size = page_sz * committed_pages;
3482     return true;
3483   } else {
3484     assert(committed_pages == 0, "Should not have committed region");
3485     return false;
3486   }
3487 }
3488 
3489 
3490 // Linux uses a growable mapping for the stack, and if the mapping for
3491 // the stack guard pages is not removed when we detach a thread the
3492 // stack cannot grow beyond the pages where the stack guard was
3493 // mapped.  If at some point later in the process the stack expands to
3494 // that point, the Linux kernel cannot expand the stack any further
3495 // because the guard pages are in the way, and a segfault occurs.
3496 //
3497 // However, it's essential not to split the stack region by unmapping
3498 // a region (leaving a hole) that's already part of the stack mapping,
3499 // so if the stack mapping has already grown beyond the guard pages at
3500 // the time we create them, we have to truncate the stack mapping.
3501 // So, we need to know the extent of the stack mapping when
3502 // create_stack_guard_pages() is called.
3503 
3504 // We only need this for stacks that are growable: at the time of
3505 // writing thread stacks don't use growable mappings (i.e. those
3506 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3507 // only applies to the main thread.
3508 
3509 // If the (growable) stack mapping already extends beyond the point
3510 // where we're going to put our guard pages, truncate the mapping at
3511 // that point by munmap()ping it.  This ensures that when we later
3512 // munmap() the guard pages we don't leave a hole in the stack
3513 // mapping. This only affects the main/primordial thread
3514 
3515 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3516   if (os::is_primordial_thread()) {
3517     // As we manually grow stack up to bottom inside create_attached_thread(),
3518     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3519     // we don't need to do anything special.
3520     // Check it first, before calling heavy function.
3521     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3522     unsigned char vec[1];
3523 
3524     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3525       // Fallback to slow path on all errors, including EAGAIN
3526       stack_extent = (uintptr_t) get_stack_commited_bottom(
3527                                                            os::Linux::initial_thread_stack_bottom(),
3528                                                            (size_t)addr - stack_extent);
3529     }
3530 
3531     if (stack_extent < (uintptr_t)addr) {
3532       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3533     }
3534   }
3535 
3536   return os::commit_memory(addr, size, !ExecMem);
3537 }
3538 
3539 // If this is a growable mapping, remove the guard pages entirely by
3540 // munmap()ping them.  If not, just call uncommit_memory(). This only
3541 // affects the main/primordial thread, but guard against future OS changes.
3542 // It's safe to always unmap guard pages for primordial thread because we
3543 // always place it right after end of the mapped region.
3544 
3545 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3546   uintptr_t stack_extent, stack_base;
3547 
3548   if (os::is_primordial_thread()) {
3549     return ::munmap(addr, size) == 0;
3550   }
3551 
3552   return os::uncommit_memory(addr, size);
3553 }
3554 
3555 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3556 // at 'requested_addr'. If there are existing memory mappings at the same
3557 // location, however, they will be overwritten. If 'fixed' is false,
3558 // 'requested_addr' is only treated as a hint, the return value may or
3559 // may not start from the requested address. Unlike Linux mmap(), this
3560 // function returns NULL to indicate failure.
3561 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3562   char * addr;
3563   int flags;
3564 
3565   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3566   if (fixed) {
3567     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3568     flags |= MAP_FIXED;
3569   }
3570 
3571   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3572   // touch an uncommitted page. Otherwise, the read/write might
3573   // succeed if we have enough swap space to back the physical page.
3574   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3575                        flags, -1, 0);
3576 
3577   return addr == MAP_FAILED ? NULL : addr;
3578 }
3579 
3580 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3581 //   (req_addr != NULL) or with a given alignment.
3582 //  - bytes shall be a multiple of alignment.
3583 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3584 //  - alignment sets the alignment at which memory shall be allocated.
3585 //     It must be a multiple of allocation granularity.
3586 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3587 //  req_addr or NULL.
3588 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3589 
3590   size_t extra_size = bytes;
3591   if (req_addr == NULL && alignment > 0) {
3592     extra_size += alignment;
3593   }
3594 
3595   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3596     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3597     -1, 0);
3598   if (start == MAP_FAILED) {
3599     start = NULL;
3600   } else {
3601     if (req_addr != NULL) {
3602       if (start != req_addr) {
3603         ::munmap(start, extra_size);
3604         start = NULL;
3605       }
3606     } else {
3607       char* const start_aligned = align_up(start, alignment);
3608       char* const end_aligned = start_aligned + bytes;
3609       char* const end = start + extra_size;
3610       if (start_aligned > start) {
3611         ::munmap(start, start_aligned - start);
3612       }
3613       if (end_aligned < end) {
3614         ::munmap(end_aligned, end - end_aligned);
3615       }
3616       start = start_aligned;
3617     }
3618   }
3619   return start;
3620 }
3621 
3622 static int anon_munmap(char * addr, size_t size) {
3623   return ::munmap(addr, size) == 0;
3624 }
3625 
3626 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3627                             size_t alignment_hint) {
3628   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3629 }
3630 
3631 bool os::pd_release_memory(char* addr, size_t size) {
3632   return anon_munmap(addr, size);
3633 }
3634 
3635 static bool linux_mprotect(char* addr, size_t size, int prot) {
3636   // Linux wants the mprotect address argument to be page aligned.
3637   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3638 
3639   // According to SUSv3, mprotect() should only be used with mappings
3640   // established by mmap(), and mmap() always maps whole pages. Unaligned
3641   // 'addr' likely indicates problem in the VM (e.g. trying to change
3642   // protection of malloc'ed or statically allocated memory). Check the
3643   // caller if you hit this assert.
3644   assert(addr == bottom, "sanity check");
3645 
3646   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3647   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3648   return ::mprotect(bottom, size, prot) == 0;
3649 }
3650 
3651 // Set protections specified
3652 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3653                         bool is_committed) {
3654   unsigned int p = 0;
3655   switch (prot) {
3656   case MEM_PROT_NONE: p = PROT_NONE; break;
3657   case MEM_PROT_READ: p = PROT_READ; break;
3658   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3659   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3660   default:
3661     ShouldNotReachHere();
3662   }
3663   // is_committed is unused.
3664   return linux_mprotect(addr, bytes, p);
3665 }
3666 
3667 bool os::guard_memory(char* addr, size_t size) {
3668   return linux_mprotect(addr, size, PROT_NONE);
3669 }
3670 
3671 bool os::unguard_memory(char* addr, size_t size) {
3672   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3673 }
3674 
3675 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3676                                                     size_t page_size) {
3677   bool result = false;
3678   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3679                  MAP_ANONYMOUS|MAP_PRIVATE,
3680                  -1, 0);
3681   if (p != MAP_FAILED) {
3682     void *aligned_p = align_up(p, page_size);
3683 
3684     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3685 
3686     munmap(p, page_size * 2);
3687   }
3688 
3689   if (warn && !result) {
3690     warning("TransparentHugePages is not supported by the operating system.");
3691   }
3692 
3693   return result;
3694 }
3695 
3696 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3697   bool result = false;
3698   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3699                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3700                  -1, 0);
3701 
3702   if (p != MAP_FAILED) {
3703     // We don't know if this really is a huge page or not.
3704     FILE *fp = fopen("/proc/self/maps", "r");
3705     if (fp) {
3706       while (!feof(fp)) {
3707         char chars[257];
3708         long x = 0;
3709         if (fgets(chars, sizeof(chars), fp)) {
3710           if (sscanf(chars, "%lx-%*x", &x) == 1
3711               && x == (long)p) {
3712             if (strstr (chars, "hugepage")) {
3713               result = true;
3714               break;
3715             }
3716           }
3717         }
3718       }
3719       fclose(fp);
3720     }
3721     munmap(p, page_size);
3722   }
3723 
3724   if (warn && !result) {
3725     warning("HugeTLBFS is not supported by the operating system.");
3726   }
3727 
3728   return result;
3729 }
3730 
3731 // From the coredump_filter documentation:
3732 //
3733 // - (bit 0) anonymous private memory
3734 // - (bit 1) anonymous shared memory
3735 // - (bit 2) file-backed private memory
3736 // - (bit 3) file-backed shared memory
3737 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3738 //           effective only if the bit 2 is cleared)
3739 // - (bit 5) hugetlb private memory
3740 // - (bit 6) hugetlb shared memory
3741 // - (bit 7) dax private memory
3742 // - (bit 8) dax shared memory
3743 //
3744 static void set_coredump_filter(CoredumpFilterBit bit) {
3745   FILE *f;
3746   long cdm;
3747 
3748   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3749     return;
3750   }
3751 
3752   if (fscanf(f, "%lx", &cdm) != 1) {
3753     fclose(f);
3754     return;
3755   }
3756 
3757   long saved_cdm = cdm;
3758   rewind(f);
3759   cdm |= bit;
3760 
3761   if (cdm != saved_cdm) {
3762     fprintf(f, "%#lx", cdm);
3763   }
3764 
3765   fclose(f);
3766 }
3767 
3768 // Large page support
3769 
3770 static size_t _large_page_size = 0;
3771 
3772 size_t os::Linux::find_large_page_size() {
3773   size_t large_page_size = 0;
3774 
3775   // large_page_size on Linux is used to round up heap size. x86 uses either
3776   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3777   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3778   // page as large as 256M.
3779   //
3780   // Here we try to figure out page size by parsing /proc/meminfo and looking
3781   // for a line with the following format:
3782   //    Hugepagesize:     2048 kB
3783   //
3784   // If we can't determine the value (e.g. /proc is not mounted, or the text
3785   // format has been changed), we'll use the largest page size supported by
3786   // the processor.
3787 
3788 #ifndef ZERO
3789   large_page_size =
3790     AARCH64_ONLY(2 * M)
3791     AMD64_ONLY(2 * M)
3792     ARM32_ONLY(2 * M)
3793     IA32_ONLY(4 * M)
3794     IA64_ONLY(256 * M)
3795     PPC_ONLY(4 * M)
3796     S390_ONLY(1 * M);
3797 #endif // ZERO
3798 
3799   FILE *fp = fopen("/proc/meminfo", "r");
3800   if (fp) {
3801     while (!feof(fp)) {
3802       int x = 0;
3803       char buf[16];
3804       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3805         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3806           large_page_size = x * K;
3807           break;
3808         }
3809       } else {
3810         // skip to next line
3811         for (;;) {
3812           int ch = fgetc(fp);
3813           if (ch == EOF || ch == (int)'\n') break;
3814         }
3815       }
3816     }
3817     fclose(fp);
3818   }
3819 
3820   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3821     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3822             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3823             proper_unit_for_byte_size(large_page_size));
3824   }
3825 
3826   return large_page_size;
3827 }
3828 
3829 size_t os::Linux::setup_large_page_size() {
3830   _large_page_size = Linux::find_large_page_size();
3831   const size_t default_page_size = (size_t)Linux::page_size();
3832   if (_large_page_size > default_page_size) {
3833     _page_sizes[0] = _large_page_size;
3834     _page_sizes[1] = default_page_size;
3835     _page_sizes[2] = 0;
3836   }
3837 
3838   return _large_page_size;
3839 }
3840 
3841 bool os::Linux::setup_large_page_type(size_t page_size) {
3842   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3843       FLAG_IS_DEFAULT(UseSHM) &&
3844       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3845 
3846     // The type of large pages has not been specified by the user.
3847 
3848     // Try UseHugeTLBFS and then UseSHM.
3849     UseHugeTLBFS = UseSHM = true;
3850 
3851     // Don't try UseTransparentHugePages since there are known
3852     // performance issues with it turned on. This might change in the future.
3853     UseTransparentHugePages = false;
3854   }
3855 
3856   if (UseTransparentHugePages) {
3857     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3858     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3859       UseHugeTLBFS = false;
3860       UseSHM = false;
3861       return true;
3862     }
3863     UseTransparentHugePages = false;
3864   }
3865 
3866   if (UseHugeTLBFS) {
3867     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3868     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3869       UseSHM = false;
3870       return true;
3871     }
3872     UseHugeTLBFS = false;
3873   }
3874 
3875   return UseSHM;
3876 }
3877 
3878 void os::large_page_init() {
3879   if (!UseLargePages &&
3880       !UseTransparentHugePages &&
3881       !UseHugeTLBFS &&
3882       !UseSHM) {
3883     // Not using large pages.
3884     return;
3885   }
3886 
3887   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3888     // The user explicitly turned off large pages.
3889     // Ignore the rest of the large pages flags.
3890     UseTransparentHugePages = false;
3891     UseHugeTLBFS = false;
3892     UseSHM = false;
3893     return;
3894   }
3895 
3896   size_t large_page_size = Linux::setup_large_page_size();
3897   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3898 
3899   set_coredump_filter(LARGEPAGES_BIT);
3900 }
3901 
3902 #ifndef SHM_HUGETLB
3903   #define SHM_HUGETLB 04000
3904 #endif
3905 
3906 #define shm_warning_format(format, ...)              \
3907   do {                                               \
3908     if (UseLargePages &&                             \
3909         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3910          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3911          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3912       warning(format, __VA_ARGS__);                  \
3913     }                                                \
3914   } while (0)
3915 
3916 #define shm_warning(str) shm_warning_format("%s", str)
3917 
3918 #define shm_warning_with_errno(str)                \
3919   do {                                             \
3920     int err = errno;                               \
3921     shm_warning_format(str " (error = %d)", err);  \
3922   } while (0)
3923 
3924 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3925   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3926 
3927   if (!is_aligned(alignment, SHMLBA)) {
3928     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3929     return NULL;
3930   }
3931 
3932   // To ensure that we get 'alignment' aligned memory from shmat,
3933   // we pre-reserve aligned virtual memory and then attach to that.
3934 
3935   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3936   if (pre_reserved_addr == NULL) {
3937     // Couldn't pre-reserve aligned memory.
3938     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3939     return NULL;
3940   }
3941 
3942   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3943   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3944 
3945   if ((intptr_t)addr == -1) {
3946     int err = errno;
3947     shm_warning_with_errno("Failed to attach shared memory.");
3948 
3949     assert(err != EACCES, "Unexpected error");
3950     assert(err != EIDRM,  "Unexpected error");
3951     assert(err != EINVAL, "Unexpected error");
3952 
3953     // Since we don't know if the kernel unmapped the pre-reserved memory area
3954     // we can't unmap it, since that would potentially unmap memory that was
3955     // mapped from other threads.
3956     return NULL;
3957   }
3958 
3959   return addr;
3960 }
3961 
3962 static char* shmat_at_address(int shmid, char* req_addr) {
3963   if (!is_aligned(req_addr, SHMLBA)) {
3964     assert(false, "Requested address needs to be SHMLBA aligned");
3965     return NULL;
3966   }
3967 
3968   char* addr = (char*)shmat(shmid, req_addr, 0);
3969 
3970   if ((intptr_t)addr == -1) {
3971     shm_warning_with_errno("Failed to attach shared memory.");
3972     return NULL;
3973   }
3974 
3975   return addr;
3976 }
3977 
3978 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3979   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3980   if (req_addr != NULL) {
3981     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3982     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3983     return shmat_at_address(shmid, req_addr);
3984   }
3985 
3986   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3987   // return large page size aligned memory addresses when req_addr == NULL.
3988   // However, if the alignment is larger than the large page size, we have
3989   // to manually ensure that the memory returned is 'alignment' aligned.
3990   if (alignment > os::large_page_size()) {
3991     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3992     return shmat_with_alignment(shmid, bytes, alignment);
3993   } else {
3994     return shmat_at_address(shmid, NULL);
3995   }
3996 }
3997 
3998 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3999                                             char* req_addr, bool exec) {
4000   // "exec" is passed in but not used.  Creating the shared image for
4001   // the code cache doesn't have an SHM_X executable permission to check.
4002   assert(UseLargePages && UseSHM, "only for SHM large pages");
4003   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4004   assert(is_aligned(req_addr, alignment), "Unaligned address");
4005 
4006   if (!is_aligned(bytes, os::large_page_size())) {
4007     return NULL; // Fallback to small pages.
4008   }
4009 
4010   // Create a large shared memory region to attach to based on size.
4011   // Currently, size is the total size of the heap.
4012   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
4013   if (shmid == -1) {
4014     // Possible reasons for shmget failure:
4015     // 1. shmmax is too small for Java heap.
4016     //    > check shmmax value: cat /proc/sys/kernel/shmmax
4017     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
4018     // 2. not enough large page memory.
4019     //    > check available large pages: cat /proc/meminfo
4020     //    > increase amount of large pages:
4021     //          echo new_value > /proc/sys/vm/nr_hugepages
4022     //      Note 1: different Linux may use different name for this property,
4023     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
4024     //      Note 2: it's possible there's enough physical memory available but
4025     //            they are so fragmented after a long run that they can't
4026     //            coalesce into large pages. Try to reserve large pages when
4027     //            the system is still "fresh".
4028     shm_warning_with_errno("Failed to reserve shared memory.");
4029     return NULL;
4030   }
4031 
4032   // Attach to the region.
4033   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
4034 
4035   // Remove shmid. If shmat() is successful, the actual shared memory segment
4036   // will be deleted when it's detached by shmdt() or when the process
4037   // terminates. If shmat() is not successful this will remove the shared
4038   // segment immediately.
4039   shmctl(shmid, IPC_RMID, NULL);
4040 
4041   return addr;
4042 }
4043 
4044 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
4045                                         int error) {
4046   assert(error == ENOMEM, "Only expect to fail if no memory is available");
4047 
4048   bool warn_on_failure = UseLargePages &&
4049       (!FLAG_IS_DEFAULT(UseLargePages) ||
4050        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
4051        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
4052 
4053   if (warn_on_failure) {
4054     char msg[128];
4055     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
4056                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
4057     warning("%s", msg);
4058   }
4059 }
4060 
4061 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4062                                                         char* req_addr,
4063                                                         bool exec) {
4064   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4065   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4066   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4067 
4068   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4069   char* addr = (char*)::mmap(req_addr, bytes, prot,
4070                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
4071                              -1, 0);
4072 
4073   if (addr == MAP_FAILED) {
4074     warn_on_large_pages_failure(req_addr, bytes, errno);
4075     return NULL;
4076   }
4077 
4078   assert(is_aligned(addr, os::large_page_size()), "Must be");
4079 
4080   return addr;
4081 }
4082 
4083 // Reserve memory using mmap(MAP_HUGETLB).
4084 //  - bytes shall be a multiple of alignment.
4085 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4086 //  - alignment sets the alignment at which memory shall be allocated.
4087 //     It must be a multiple of allocation granularity.
4088 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4089 //  req_addr or NULL.
4090 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4091                                                          size_t alignment,
4092                                                          char* req_addr,
4093                                                          bool exec) {
4094   size_t large_page_size = os::large_page_size();
4095   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4096 
4097   assert(is_aligned(req_addr, alignment), "Must be");
4098   assert(is_aligned(bytes, alignment), "Must be");
4099 
4100   // First reserve - but not commit - the address range in small pages.
4101   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4102 
4103   if (start == NULL) {
4104     return NULL;
4105   }
4106 
4107   assert(is_aligned(start, alignment), "Must be");
4108 
4109   char* end = start + bytes;
4110 
4111   // Find the regions of the allocated chunk that can be promoted to large pages.
4112   char* lp_start = align_up(start, large_page_size);
4113   char* lp_end   = align_down(end, large_page_size);
4114 
4115   size_t lp_bytes = lp_end - lp_start;
4116 
4117   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4118 
4119   if (lp_bytes == 0) {
4120     // The mapped region doesn't even span the start and the end of a large page.
4121     // Fall back to allocate a non-special area.
4122     ::munmap(start, end - start);
4123     return NULL;
4124   }
4125 
4126   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4127 
4128   void* result;
4129 
4130   // Commit small-paged leading area.
4131   if (start != lp_start) {
4132     result = ::mmap(start, lp_start - start, prot,
4133                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4134                     -1, 0);
4135     if (result == MAP_FAILED) {
4136       ::munmap(lp_start, end - lp_start);
4137       return NULL;
4138     }
4139   }
4140 
4141   // Commit large-paged area.
4142   result = ::mmap(lp_start, lp_bytes, prot,
4143                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4144                   -1, 0);
4145   if (result == MAP_FAILED) {
4146     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4147     // If the mmap above fails, the large pages region will be unmapped and we
4148     // have regions before and after with small pages. Release these regions.
4149     //
4150     // |  mapped  |  unmapped  |  mapped  |
4151     // ^          ^            ^          ^
4152     // start      lp_start     lp_end     end
4153     //
4154     ::munmap(start, lp_start - start);
4155     ::munmap(lp_end, end - lp_end);
4156     return NULL;
4157   }
4158 
4159   // Commit small-paged trailing area.
4160   if (lp_end != end) {
4161     result = ::mmap(lp_end, end - lp_end, prot,
4162                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4163                     -1, 0);
4164     if (result == MAP_FAILED) {
4165       ::munmap(start, lp_end - start);
4166       return NULL;
4167     }
4168   }
4169 
4170   return start;
4171 }
4172 
4173 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4174                                                    size_t alignment,
4175                                                    char* req_addr,
4176                                                    bool exec) {
4177   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4178   assert(is_aligned(req_addr, alignment), "Must be");
4179   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4180   assert(is_power_of_2(os::large_page_size()), "Must be");
4181   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4182 
4183   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4184     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4185   } else {
4186     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4187   }
4188 }
4189 
4190 char* os::pd_reserve_memory_special(size_t bytes, size_t alignment,
4191                                     char* req_addr, bool exec) {
4192   assert(UseLargePages, "only for large pages");
4193 
4194   char* addr;
4195   if (UseSHM) {
4196     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4197   } else {
4198     assert(UseHugeTLBFS, "must be");
4199     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4200   }
4201 
4202   if (addr != NULL) {
4203     if (UseNUMAInterleaving) {
4204       numa_make_global(addr, bytes);
4205     }
4206   }
4207 
4208   return addr;
4209 }
4210 
4211 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4212   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4213   return shmdt(base) == 0;
4214 }
4215 
4216 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4217   return pd_release_memory(base, bytes);
4218 }
4219 
4220 bool os::pd_release_memory_special(char* base, size_t bytes) {
4221   assert(UseLargePages, "only for large pages");
4222   bool res;
4223 
4224   if (UseSHM) {
4225     res = os::Linux::release_memory_special_shm(base, bytes);
4226   } else {
4227     assert(UseHugeTLBFS, "must be");
4228     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4229   }
4230   return res;
4231 }
4232 
4233 size_t os::large_page_size() {
4234   return _large_page_size;
4235 }
4236 
4237 // With SysV SHM the entire memory region must be allocated as shared
4238 // memory.
4239 // HugeTLBFS allows application to commit large page memory on demand.
4240 // However, when committing memory with HugeTLBFS fails, the region
4241 // that was supposed to be committed will lose the old reservation
4242 // and allow other threads to steal that memory region. Because of this
4243 // behavior we can't commit HugeTLBFS memory.
4244 bool os::can_commit_large_page_memory() {
4245   return UseTransparentHugePages;
4246 }
4247 
4248 bool os::can_execute_large_page_memory() {
4249   return UseTransparentHugePages || UseHugeTLBFS;
4250 }
4251 
4252 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4253   assert(file_desc >= 0, "file_desc is not valid");
4254   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4255   if (result != NULL) {
4256     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4257       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4258     }
4259   }
4260   return result;
4261 }
4262 
4263 // Reserve memory at an arbitrary address, only if that area is
4264 // available (and not reserved for something else).
4265 
4266 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4267   // Assert only that the size is a multiple of the page size, since
4268   // that's all that mmap requires, and since that's all we really know
4269   // about at this low abstraction level.  If we need higher alignment,
4270   // we can either pass an alignment to this method or verify alignment
4271   // in one of the methods further up the call chain.  See bug 5044738.
4272   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4273 
4274   // Repeatedly allocate blocks until the block is allocated at the
4275   // right spot.
4276 
4277   // Linux mmap allows caller to pass an address as hint; give it a try first,
4278   // if kernel honors the hint then we can return immediately.
4279   char * addr = anon_mmap(requested_addr, bytes, false);
4280   if (addr == requested_addr) {
4281     return requested_addr;
4282   }
4283 
4284   if (addr != NULL) {
4285     // mmap() is successful but it fails to reserve at the requested address
4286     anon_munmap(addr, bytes);
4287   }
4288 
4289   return NULL;
4290 }
4291 
4292 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4293 void os::infinite_sleep() {
4294   while (true) {    // sleep forever ...
4295     ::sleep(100);   // ... 100 seconds at a time
4296   }
4297 }
4298 
4299 // Used to convert frequent JVM_Yield() to nops
4300 bool os::dont_yield() {
4301   return DontYieldALot;
4302 }
4303 
4304 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4305 // actually give up the CPU. Since skip buddy (v2.6.28):
4306 //
4307 // * Sets the yielding task as skip buddy for current CPU's run queue.
4308 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4309 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4310 //
4311 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4312 // getting re-scheduled immediately.
4313 //
4314 void os::naked_yield() {
4315   sched_yield();
4316 }
4317 
4318 ////////////////////////////////////////////////////////////////////////////////
4319 // thread priority support
4320 
4321 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4322 // only supports dynamic priority, static priority must be zero. For real-time
4323 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4324 // However, for large multi-threaded applications, SCHED_RR is not only slower
4325 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4326 // of 5 runs - Sep 2005).
4327 //
4328 // The following code actually changes the niceness of kernel-thread/LWP. It
4329 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4330 // not the entire user process, and user level threads are 1:1 mapped to kernel
4331 // threads. It has always been the case, but could change in the future. For
4332 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4333 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4334 // (e.g., root privilege or CAP_SYS_NICE capability).
4335 
4336 int os::java_to_os_priority[CriticalPriority + 1] = {
4337   19,              // 0 Entry should never be used
4338 
4339    4,              // 1 MinPriority
4340    3,              // 2
4341    2,              // 3
4342 
4343    1,              // 4
4344    0,              // 5 NormPriority
4345   -1,              // 6
4346 
4347   -2,              // 7
4348   -3,              // 8
4349   -4,              // 9 NearMaxPriority
4350 
4351   -5,              // 10 MaxPriority
4352 
4353   -5               // 11 CriticalPriority
4354 };
4355 
4356 static int prio_init() {
4357   if (ThreadPriorityPolicy == 1) {
4358     if (geteuid() != 0) {
4359       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy) && !FLAG_IS_JIMAGE_RESOURCE(ThreadPriorityPolicy)) {
4360         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4361                 "e.g., being the root user. If the necessary permission is not " \
4362                 "possessed, changes to priority will be silently ignored.");
4363       }
4364     }
4365   }
4366   if (UseCriticalJavaThreadPriority) {
4367     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4368   }
4369   return 0;
4370 }
4371 
4372 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4373   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4374 
4375   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4376   return (ret == 0) ? OS_OK : OS_ERR;
4377 }
4378 
4379 OSReturn os::get_native_priority(const Thread* const thread,
4380                                  int *priority_ptr) {
4381   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4382     *priority_ptr = java_to_os_priority[NormPriority];
4383     return OS_OK;
4384   }
4385 
4386   errno = 0;
4387   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4388   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4389 }
4390 
4391 ////////////////////////////////////////////////////////////////////////////////
4392 // suspend/resume support
4393 
4394 //  The low-level signal-based suspend/resume support is a remnant from the
4395 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4396 //  within hotspot. Currently used by JFR's OSThreadSampler
4397 //
4398 //  The remaining code is greatly simplified from the more general suspension
4399 //  code that used to be used.
4400 //
4401 //  The protocol is quite simple:
4402 //  - suspend:
4403 //      - sends a signal to the target thread
4404 //      - polls the suspend state of the osthread using a yield loop
4405 //      - target thread signal handler (SR_handler) sets suspend state
4406 //        and blocks in sigsuspend until continued
4407 //  - resume:
4408 //      - sets target osthread state to continue
4409 //      - sends signal to end the sigsuspend loop in the SR_handler
4410 //
4411 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4412 //  but is checked for NULL in SR_handler as a thread termination indicator.
4413 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4414 //
4415 //  Note that resume_clear_context() and suspend_save_context() are needed
4416 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4417 //  which in part is used by:
4418 //    - Forte Analyzer: AsyncGetCallTrace()
4419 //    - StackBanging: get_frame_at_stack_banging_point()
4420 
4421 static void resume_clear_context(OSThread *osthread) {
4422   osthread->set_ucontext(NULL);
4423   osthread->set_siginfo(NULL);
4424 }
4425 
4426 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4427                                  ucontext_t* context) {
4428   osthread->set_ucontext(context);
4429   osthread->set_siginfo(siginfo);
4430 }
4431 
4432 // Handler function invoked when a thread's execution is suspended or
4433 // resumed. We have to be careful that only async-safe functions are
4434 // called here (Note: most pthread functions are not async safe and
4435 // should be avoided.)
4436 //
4437 // Note: sigwait() is a more natural fit than sigsuspend() from an
4438 // interface point of view, but sigwait() prevents the signal hander
4439 // from being run. libpthread would get very confused by not having
4440 // its signal handlers run and prevents sigwait()'s use with the
4441 // mutex granting granting signal.
4442 //
4443 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4444 //
4445 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4446   // Save and restore errno to avoid confusing native code with EINTR
4447   // after sigsuspend.
4448   int old_errno = errno;
4449 
4450   Thread* thread = Thread::current_or_null_safe();
4451   assert(thread != NULL, "Missing current thread in SR_handler");
4452 
4453   // On some systems we have seen signal delivery get "stuck" until the signal
4454   // mask is changed as part of thread termination. Check that the current thread
4455   // has not already terminated (via SR_lock()) - else the following assertion
4456   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4457   // destructor has completed.
4458 
4459   if (thread->SR_lock() == NULL) {
4460     return;
4461   }
4462 
4463   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4464 
4465   OSThread* osthread = thread->osthread();
4466 
4467   os::SuspendResume::State current = osthread->sr.state();
4468   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4469     suspend_save_context(osthread, siginfo, context);
4470 
4471     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4472     os::SuspendResume::State state = osthread->sr.suspended();
4473     if (state == os::SuspendResume::SR_SUSPENDED) {
4474       sigset_t suspend_set;  // signals for sigsuspend()
4475       sigemptyset(&suspend_set);
4476       // get current set of blocked signals and unblock resume signal
4477       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4478       sigdelset(&suspend_set, SR_signum);
4479 
4480       sr_semaphore.signal();
4481       // wait here until we are resumed
4482       while (1) {
4483         sigsuspend(&suspend_set);
4484 
4485         os::SuspendResume::State result = osthread->sr.running();
4486         if (result == os::SuspendResume::SR_RUNNING) {
4487           sr_semaphore.signal();
4488           break;
4489         }
4490       }
4491 
4492     } else if (state == os::SuspendResume::SR_RUNNING) {
4493       // request was cancelled, continue
4494     } else {
4495       ShouldNotReachHere();
4496     }
4497 
4498     resume_clear_context(osthread);
4499   } else if (current == os::SuspendResume::SR_RUNNING) {
4500     // request was cancelled, continue
4501   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4502     // ignore
4503   } else {
4504     // ignore
4505   }
4506 
4507   errno = old_errno;
4508 }
4509 
4510 static int SR_initialize() {
4511   struct sigaction act;
4512   char *s;
4513 
4514   // Get signal number to use for suspend/resume
4515   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4516     int sig = ::strtol(s, 0, 10);
4517     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4518         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4519       SR_signum = sig;
4520     } else {
4521       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4522               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4523     }
4524   }
4525 
4526   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4527          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4528 
4529   sigemptyset(&SR_sigset);
4530   sigaddset(&SR_sigset, SR_signum);
4531 
4532   // Set up signal handler for suspend/resume
4533   act.sa_flags = SA_RESTART|SA_SIGINFO;
4534   act.sa_handler = (void (*)(int)) SR_handler;
4535 
4536   // SR_signum is blocked by default.
4537   // 4528190 - We also need to block pthread restart signal (32 on all
4538   // supported Linux platforms). Note that LinuxThreads need to block
4539   // this signal for all threads to work properly. So we don't have
4540   // to use hard-coded signal number when setting up the mask.
4541   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4542 
4543   if (sigaction(SR_signum, &act, 0) == -1) {
4544     return -1;
4545   }
4546 
4547   // Save signal flag
4548   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4549   return 0;
4550 }
4551 
4552 static int sr_notify(OSThread* osthread) {
4553   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4554   assert_status(status == 0, status, "pthread_kill");
4555   return status;
4556 }
4557 
4558 // "Randomly" selected value for how long we want to spin
4559 // before bailing out on suspending a thread, also how often
4560 // we send a signal to a thread we want to resume
4561 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4562 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4563 
4564 // returns true on success and false on error - really an error is fatal
4565 // but this seems the normal response to library errors
4566 static bool do_suspend(OSThread* osthread) {
4567   assert(osthread->sr.is_running(), "thread should be running");
4568   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4569 
4570   // mark as suspended and send signal
4571   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4572     // failed to switch, state wasn't running?
4573     ShouldNotReachHere();
4574     return false;
4575   }
4576 
4577   if (sr_notify(osthread) != 0) {
4578     ShouldNotReachHere();
4579   }
4580 
4581   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4582   while (true) {
4583     if (sr_semaphore.timedwait(2)) {
4584       break;
4585     } else {
4586       // timeout
4587       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4588       if (cancelled == os::SuspendResume::SR_RUNNING) {
4589         return false;
4590       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4591         // make sure that we consume the signal on the semaphore as well
4592         sr_semaphore.wait();
4593         break;
4594       } else {
4595         ShouldNotReachHere();
4596         return false;
4597       }
4598     }
4599   }
4600 
4601   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4602   return true;
4603 }
4604 
4605 static void do_resume(OSThread* osthread) {
4606   assert(osthread->sr.is_suspended(), "thread should be suspended");
4607   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4608 
4609   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4610     // failed to switch to WAKEUP_REQUEST
4611     ShouldNotReachHere();
4612     return;
4613   }
4614 
4615   while (true) {
4616     if (sr_notify(osthread) == 0) {
4617       if (sr_semaphore.timedwait(2)) {
4618         if (osthread->sr.is_running()) {
4619           return;
4620         }
4621       }
4622     } else {
4623       ShouldNotReachHere();
4624     }
4625   }
4626 
4627   guarantee(osthread->sr.is_running(), "Must be running!");
4628 }
4629 
4630 ///////////////////////////////////////////////////////////////////////////////////
4631 // signal handling (except suspend/resume)
4632 
4633 // This routine may be used by user applications as a "hook" to catch signals.
4634 // The user-defined signal handler must pass unrecognized signals to this
4635 // routine, and if it returns true (non-zero), then the signal handler must
4636 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4637 // routine will never retun false (zero), but instead will execute a VM panic
4638 // routine kill the process.
4639 //
4640 // If this routine returns false, it is OK to call it again.  This allows
4641 // the user-defined signal handler to perform checks either before or after
4642 // the VM performs its own checks.  Naturally, the user code would be making
4643 // a serious error if it tried to handle an exception (such as a null check
4644 // or breakpoint) that the VM was generating for its own correct operation.
4645 //
4646 // This routine may recognize any of the following kinds of signals:
4647 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4648 // It should be consulted by handlers for any of those signals.
4649 //
4650 // The caller of this routine must pass in the three arguments supplied
4651 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4652 // field of the structure passed to sigaction().  This routine assumes that
4653 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4654 //
4655 // Note that the VM will print warnings if it detects conflicting signal
4656 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4657 //
4658 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4659                                                  siginfo_t* siginfo,
4660                                                  void* ucontext,
4661                                                  int abort_if_unrecognized);
4662 
4663 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4664   assert(info != NULL && uc != NULL, "it must be old kernel");
4665   int orig_errno = errno;  // Preserve errno value over signal handler.
4666   JVM_handle_linux_signal(sig, info, uc, true);
4667   errno = orig_errno;
4668 }
4669 
4670 
4671 // This boolean allows users to forward their own non-matching signals
4672 // to JVM_handle_linux_signal, harmlessly.
4673 bool os::Linux::signal_handlers_are_installed = false;
4674 
4675 // For signal-chaining
4676 bool os::Linux::libjsig_is_loaded = false;
4677 typedef struct sigaction *(*get_signal_t)(int);
4678 get_signal_t os::Linux::get_signal_action = NULL;
4679 
4680 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4681   struct sigaction *actp = NULL;
4682 
4683   if (libjsig_is_loaded) {
4684     // Retrieve the old signal handler from libjsig
4685     actp = (*get_signal_action)(sig);
4686   }
4687   if (actp == NULL) {
4688     // Retrieve the preinstalled signal handler from jvm
4689     actp = os::Posix::get_preinstalled_handler(sig);
4690   }
4691 
4692   return actp;
4693 }
4694 
4695 static bool call_chained_handler(struct sigaction *actp, int sig,
4696                                  siginfo_t *siginfo, void *context) {
4697   // Call the old signal handler
4698   if (actp->sa_handler == SIG_DFL) {
4699     // It's more reasonable to let jvm treat it as an unexpected exception
4700     // instead of taking the default action.
4701     return false;
4702   } else if (actp->sa_handler != SIG_IGN) {
4703     if ((actp->sa_flags & SA_NODEFER) == 0) {
4704       // automaticlly block the signal
4705       sigaddset(&(actp->sa_mask), sig);
4706     }
4707 
4708     sa_handler_t hand = NULL;
4709     sa_sigaction_t sa = NULL;
4710     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4711     // retrieve the chained handler
4712     if (siginfo_flag_set) {
4713       sa = actp->sa_sigaction;
4714     } else {
4715       hand = actp->sa_handler;
4716     }
4717 
4718     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4719       actp->sa_handler = SIG_DFL;
4720     }
4721 
4722     // try to honor the signal mask
4723     sigset_t oset;
4724     sigemptyset(&oset);
4725     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4726 
4727     // call into the chained handler
4728     if (siginfo_flag_set) {
4729       (*sa)(sig, siginfo, context);
4730     } else {
4731       (*hand)(sig);
4732     }
4733 
4734     // restore the signal mask
4735     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4736   }
4737   // Tell jvm's signal handler the signal is taken care of.
4738   return true;
4739 }
4740 
4741 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4742   bool chained = false;
4743   // signal-chaining
4744   if (UseSignalChaining) {
4745     struct sigaction *actp = get_chained_signal_action(sig);
4746     if (actp != NULL) {
4747       chained = call_chained_handler(actp, sig, siginfo, context);
4748     }
4749   }
4750   return chained;
4751 }
4752 
4753 // for diagnostic
4754 int sigflags[NSIG];
4755 
4756 int os::Linux::get_our_sigflags(int sig) {
4757   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4758   return sigflags[sig];
4759 }
4760 
4761 void os::Linux::set_our_sigflags(int sig, int flags) {
4762   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4763   if (sig > 0 && sig < NSIG) {
4764     sigflags[sig] = flags;
4765   }
4766 }
4767 
4768 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4769   // Check for overwrite.
4770   struct sigaction oldAct;
4771   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4772 
4773   void* oldhand = oldAct.sa_sigaction
4774                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4775                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4776   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4777       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4778       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4779     if (AllowUserSignalHandlers || !set_installed) {
4780       // Do not overwrite; user takes responsibility to forward to us.
4781       return;
4782     } else if (UseSignalChaining) {
4783       // save the old handler in jvm
4784       os::Posix::save_preinstalled_handler(sig, oldAct);
4785       // libjsig also interposes the sigaction() call below and saves the
4786       // old sigaction on it own.
4787     } else {
4788       fatal("Encountered unexpected pre-existing sigaction handler "
4789             "%#lx for signal %d.", (long)oldhand, sig);
4790     }
4791   }
4792 
4793   struct sigaction sigAct;
4794   sigfillset(&(sigAct.sa_mask));
4795   sigAct.sa_handler = SIG_DFL;
4796   if (!set_installed) {
4797     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4798   } else {
4799     sigAct.sa_sigaction = signalHandler;
4800     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4801   }
4802   // Save flags, which are set by ours
4803   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4804   sigflags[sig] = sigAct.sa_flags;
4805 
4806   int ret = sigaction(sig, &sigAct, &oldAct);
4807   assert(ret == 0, "check");
4808 
4809   void* oldhand2  = oldAct.sa_sigaction
4810                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4811                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4812   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4813 }
4814 
4815 // install signal handlers for signals that HotSpot needs to
4816 // handle in order to support Java-level exception handling.
4817 
4818 void os::Linux::install_signal_handlers() {
4819   if (!signal_handlers_are_installed) {
4820     signal_handlers_are_installed = true;
4821 
4822     // signal-chaining
4823     typedef void (*signal_setting_t)();
4824     signal_setting_t begin_signal_setting = NULL;
4825     signal_setting_t end_signal_setting = NULL;
4826     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4827                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4828     if (begin_signal_setting != NULL) {
4829       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4830                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4831       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4832                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4833       libjsig_is_loaded = true;
4834       assert(UseSignalChaining, "should enable signal-chaining");
4835     }
4836     if (libjsig_is_loaded) {
4837       // Tell libjsig jvm is setting signal handlers
4838       (*begin_signal_setting)();
4839     }
4840 
4841     set_signal_handler(SIGSEGV, true);
4842     set_signal_handler(SIGPIPE, true);
4843     set_signal_handler(SIGBUS, true);
4844     set_signal_handler(SIGILL, true);
4845     set_signal_handler(SIGFPE, true);
4846 #if defined(PPC64)
4847     set_signal_handler(SIGTRAP, true);
4848 #endif
4849     set_signal_handler(SIGXFSZ, true);
4850 
4851     if (libjsig_is_loaded) {
4852       // Tell libjsig jvm finishes setting signal handlers
4853       (*end_signal_setting)();
4854     }
4855 
4856     // We don't activate signal checker if libjsig is in place, we trust ourselves
4857     // and if UserSignalHandler is installed all bets are off.
4858     // Log that signal checking is off only if -verbose:jni is specified.
4859     if (CheckJNICalls) {
4860       if (libjsig_is_loaded) {
4861         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4862         check_signals = false;
4863       }
4864       if (AllowUserSignalHandlers) {
4865         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4866         check_signals = false;
4867       }
4868     }
4869   }
4870 }
4871 
4872 // This is the fastest way to get thread cpu time on Linux.
4873 // Returns cpu time (user+sys) for any thread, not only for current.
4874 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4875 // It might work on 2.6.10+ with a special kernel/glibc patch.
4876 // For reference, please, see IEEE Std 1003.1-2004:
4877 //   http://www.unix.org/single_unix_specification
4878 
4879 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4880   struct timespec tp;
4881   int rc = os::Posix::clock_gettime(clockid, &tp);
4882   assert(rc == 0, "clock_gettime is expected to return 0 code");
4883 
4884   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4885 }
4886 
4887 /////
4888 // glibc on Linux platform uses non-documented flag
4889 // to indicate, that some special sort of signal
4890 // trampoline is used.
4891 // We will never set this flag, and we should
4892 // ignore this flag in our diagnostic
4893 #ifdef SIGNIFICANT_SIGNAL_MASK
4894   #undef SIGNIFICANT_SIGNAL_MASK
4895 #endif
4896 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4897 
4898 static const char* get_signal_handler_name(address handler,
4899                                            char* buf, int buflen) {
4900   int offset = 0;
4901   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4902   if (found) {
4903     // skip directory names
4904     const char *p1, *p2;
4905     p1 = buf;
4906     size_t len = strlen(os::file_separator());
4907     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4908     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4909   } else {
4910     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4911   }
4912   return buf;
4913 }
4914 
4915 static void print_signal_handler(outputStream* st, int sig,
4916                                  char* buf, size_t buflen) {
4917   struct sigaction sa;
4918 
4919   sigaction(sig, NULL, &sa);
4920 
4921   // See comment for SIGNIFICANT_SIGNAL_MASK define
4922   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4923 
4924   st->print("%s: ", os::exception_name(sig, buf, buflen));
4925 
4926   address handler = (sa.sa_flags & SA_SIGINFO)
4927     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4928     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4929 
4930   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4931     st->print("SIG_DFL");
4932   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4933     st->print("SIG_IGN");
4934   } else {
4935     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4936   }
4937 
4938   st->print(", sa_mask[0]=");
4939   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4940 
4941   address rh = VMError::get_resetted_sighandler(sig);
4942   // May be, handler was resetted by VMError?
4943   if (rh != NULL) {
4944     handler = rh;
4945     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4946   }
4947 
4948   st->print(", sa_flags=");
4949   os::Posix::print_sa_flags(st, sa.sa_flags);
4950 
4951   // Check: is it our handler?
4952   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4953       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4954     // It is our signal handler
4955     // check for flags, reset system-used one!
4956     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4957       st->print(
4958                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4959                 os::Linux::get_our_sigflags(sig));
4960     }
4961   }
4962   st->cr();
4963 }
4964 
4965 
4966 #define DO_SIGNAL_CHECK(sig)                      \
4967   do {                                            \
4968     if (!sigismember(&check_signal_done, sig)) {  \
4969       os::Linux::check_signal_handler(sig);       \
4970     }                                             \
4971   } while (0)
4972 
4973 // This method is a periodic task to check for misbehaving JNI applications
4974 // under CheckJNI, we can add any periodic checks here
4975 
4976 void os::run_periodic_checks() {
4977   if (check_signals == false) return;
4978 
4979   // SEGV and BUS if overridden could potentially prevent
4980   // generation of hs*.log in the event of a crash, debugging
4981   // such a case can be very challenging, so we absolutely
4982   // check the following for a good measure:
4983   DO_SIGNAL_CHECK(SIGSEGV);
4984   DO_SIGNAL_CHECK(SIGILL);
4985   DO_SIGNAL_CHECK(SIGFPE);
4986   DO_SIGNAL_CHECK(SIGBUS);
4987   DO_SIGNAL_CHECK(SIGPIPE);
4988   DO_SIGNAL_CHECK(SIGXFSZ);
4989 #if defined(PPC64)
4990   DO_SIGNAL_CHECK(SIGTRAP);
4991 #endif
4992 
4993   // ReduceSignalUsage allows the user to override these handlers
4994   // see comments at the very top and jvm_md.h
4995   if (!ReduceSignalUsage) {
4996     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4997     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4998     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4999     DO_SIGNAL_CHECK(BREAK_SIGNAL);
5000   }
5001 
5002   DO_SIGNAL_CHECK(SR_signum);
5003 }
5004 
5005 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
5006 
5007 static os_sigaction_t os_sigaction = NULL;
5008 
5009 void os::Linux::check_signal_handler(int sig) {
5010   char buf[O_BUFLEN];
5011   address jvmHandler = NULL;
5012 
5013 
5014   struct sigaction act;
5015   if (os_sigaction == NULL) {
5016     // only trust the default sigaction, in case it has been interposed
5017     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
5018     if (os_sigaction == NULL) return;
5019   }
5020 
5021   os_sigaction(sig, (struct sigaction*)NULL, &act);
5022 
5023 
5024   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
5025 
5026   address thisHandler = (act.sa_flags & SA_SIGINFO)
5027     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
5028     : CAST_FROM_FN_PTR(address, act.sa_handler);
5029 
5030 
5031   switch (sig) {
5032   case SIGSEGV:
5033   case SIGBUS:
5034   case SIGFPE:
5035   case SIGPIPE:
5036   case SIGILL:
5037   case SIGXFSZ:
5038     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5039     break;
5040 
5041   case SHUTDOWN1_SIGNAL:
5042   case SHUTDOWN2_SIGNAL:
5043   case SHUTDOWN3_SIGNAL:
5044   case BREAK_SIGNAL:
5045     jvmHandler = (address)user_handler();
5046     break;
5047 
5048   default:
5049     if (sig == SR_signum) {
5050       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5051     } else {
5052       return;
5053     }
5054     break;
5055   }
5056 
5057   if (thisHandler != jvmHandler) {
5058     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5059     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5060     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5061     // No need to check this sig any longer
5062     sigaddset(&check_signal_done, sig);
5063     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5064     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5065       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5066                     exception_name(sig, buf, O_BUFLEN));
5067     }
5068   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5069     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5070     tty->print("expected:");
5071     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5072     tty->cr();
5073     tty->print("  found:");
5074     os::Posix::print_sa_flags(tty, act.sa_flags);
5075     tty->cr();
5076     // No need to check this sig any longer
5077     sigaddset(&check_signal_done, sig);
5078   }
5079 
5080   // Dump all the signal
5081   if (sigismember(&check_signal_done, sig)) {
5082     print_signal_handlers(tty, buf, O_BUFLEN);
5083   }
5084 }
5085 
5086 extern void report_error(char* file_name, int line_no, char* title,
5087                          char* format, ...);
5088 
5089 // this is called _before_ most of the global arguments have been parsed
5090 void os::init(void) {
5091   char dummy;   // used to get a guess on initial stack address
5092 
5093   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5094 
5095   init_random(1234567);
5096 
5097   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5098   if (Linux::page_size() == -1) {
5099     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5100           os::strerror(errno));
5101   }
5102   init_page_sizes((size_t) Linux::page_size());
5103 
5104   Linux::initialize_system_info();
5105 
5106   os::Linux::CPUPerfTicks pticks;
5107   bool res = os::Linux::get_tick_information(&pticks, -1);
5108 
5109   if (res && pticks.has_steal_ticks) {
5110     has_initial_tick_info = true;
5111     initial_total_ticks = pticks.total;
5112     initial_steal_ticks = pticks.steal;
5113   }
5114 
5115   // _main_thread points to the thread that created/loaded the JVM.
5116   Linux::_main_thread = pthread_self();
5117 
5118   // retrieve entry point for pthread_setname_np
5119   Linux::_pthread_setname_np =
5120     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5121 
5122   os::Posix::init();
5123 
5124   initial_time_count = javaTimeNanos();
5125 
5126   // Always warn if no monotonic clock available
5127   if (!os::Posix::supports_monotonic_clock()) {
5128     warning("No monotonic clock was available - timed services may "    \
5129             "be adversely affected if the time-of-day clock changes");
5130   }
5131 }
5132 
5133 // To install functions for atexit system call
5134 extern "C" {
5135   static void perfMemory_exit_helper() {
5136     perfMemory_exit();
5137   }
5138 }
5139 
5140 void os::pd_init_container_support() {
5141   OSContainer::init();
5142 }
5143 
5144 void os::Linux::numa_init() {
5145 
5146   // Java can be invoked as
5147   // 1. Without numactl and heap will be allocated/configured on all nodes as
5148   //    per the system policy.
5149   // 2. With numactl --interleave:
5150   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5151   //      API for membind case bitmask is reset.
5152   //      Interleave is only hint and Kernel can fallback to other nodes if
5153   //      no memory is available on the target nodes.
5154   // 3. With numactl --membind:
5155   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5156   //      interleave case returns bitmask of all nodes.
5157   // numa_all_nodes_ptr holds bitmask of all nodes.
5158   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5159   // bitmask when externally configured to run on all or fewer nodes.
5160 
5161   if (!Linux::libnuma_init()) {
5162     UseNUMA = false;
5163   } else {
5164     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5165       // If there's only one node (they start from 0) or if the process
5166       // is bound explicitly to a single node using membind, disable NUMA unless
5167       // user explicilty forces NUMA optimizations on single-node/UMA systems
5168       UseNUMA = ForceNUMA;
5169     } else {
5170 
5171       LogTarget(Info,os) log;
5172       LogStream ls(log);
5173 
5174       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5175 
5176       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5177       const char* numa_mode = "membind";
5178 
5179       if (Linux::is_running_in_interleave_mode()) {
5180         bmp = Linux::_numa_interleave_bitmask;
5181         numa_mode = "interleave";
5182       }
5183 
5184       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5185                " Heap will be configured using NUMA memory nodes:", numa_mode);
5186 
5187       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5188         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5189           ls.print(" %d", node);
5190         }
5191       }
5192     }
5193   }
5194 
5195   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5196     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5197     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5198     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5199     // and disable adaptive resizing.
5200     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5201       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5202               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5203       UseAdaptiveSizePolicy = false;
5204       UseAdaptiveNUMAChunkSizing = false;
5205     }
5206   }
5207 }
5208 
5209 // this is called _after_ the global arguments have been parsed
5210 jint os::init_2(void) {
5211 
5212   // This could be set after os::Posix::init() but all platforms
5213   // have to set it the same so we have to mirror Solaris.
5214   DEBUG_ONLY(os::set_mutex_init_done();)
5215 
5216   os::Posix::init_2();
5217 
5218   Linux::fast_thread_clock_init();
5219 
5220   // initialize suspend/resume support - must do this before signal_sets_init()
5221   if (SR_initialize() != 0) {
5222     perror("SR_initialize failed");
5223     return JNI_ERR;
5224   }
5225 
5226   Linux::signal_sets_init();
5227   Linux::install_signal_handlers();
5228   // Initialize data for jdk.internal.misc.Signal
5229   if (!ReduceSignalUsage) {
5230     jdk_misc_signal_init();
5231   }
5232 
5233   if (AdjustStackSizeForTLS) {
5234     get_minstack_init();
5235   }
5236 
5237   // Check and sets minimum stack sizes against command line options
5238   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5239     return JNI_ERR;
5240   }
5241 
5242 #if defined(IA32)
5243   // Need to ensure we've determined the process's initial stack to
5244   // perform the workaround
5245   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5246   workaround_expand_exec_shield_cs_limit();
5247 #else
5248   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5249   if (!suppress_primordial_thread_resolution) {
5250     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5251   }
5252 #endif
5253 
5254   Linux::libpthread_init();
5255   Linux::sched_getcpu_init();
5256   log_info(os)("HotSpot is running with %s, %s",
5257                Linux::glibc_version(), Linux::libpthread_version());
5258 
5259   if (UseNUMA) {
5260     Linux::numa_init();
5261   }
5262 
5263   if (MaxFDLimit) {
5264     // set the number of file descriptors to max. print out error
5265     // if getrlimit/setrlimit fails but continue regardless.
5266     struct rlimit nbr_files;
5267     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5268     if (status != 0) {
5269       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5270     } else {
5271       nbr_files.rlim_cur = nbr_files.rlim_max;
5272       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5273       if (status != 0) {
5274         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5275       }
5276     }
5277   }
5278 
5279   // at-exit methods are called in the reverse order of their registration.
5280   // atexit functions are called on return from main or as a result of a
5281   // call to exit(3C). There can be only 32 of these functions registered
5282   // and atexit() does not set errno.
5283 
5284   if (PerfAllowAtExitRegistration) {
5285     // only register atexit functions if PerfAllowAtExitRegistration is set.
5286     // atexit functions can be delayed until process exit time, which
5287     // can be problematic for embedded VM situations. Embedded VMs should
5288     // call DestroyJavaVM() to assure that VM resources are released.
5289 
5290     // note: perfMemory_exit_helper atexit function may be removed in
5291     // the future if the appropriate cleanup code can be added to the
5292     // VM_Exit VMOperation's doit method.
5293     if (atexit(perfMemory_exit_helper) != 0) {
5294       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5295     }
5296   }
5297 
5298   // initialize thread priority policy
5299   prio_init();
5300 
5301   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5302     set_coredump_filter(DAX_SHARED_BIT);
5303   }
5304 
5305   if (DumpPrivateMappingsInCore) {
5306     set_coredump_filter(FILE_BACKED_PVT_BIT);
5307   }
5308 
5309   if (DumpSharedMappingsInCore) {
5310     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5311   }
5312 
5313   return JNI_OK;
5314 }
5315 
5316 // older glibc versions don't have this macro (which expands to
5317 // an optimized bit-counting function) so we have to roll our own
5318 #ifndef CPU_COUNT
5319 
5320 static int _cpu_count(const cpu_set_t* cpus) {
5321   int count = 0;
5322   // only look up to the number of configured processors
5323   for (int i = 0; i < os::processor_count(); i++) {
5324     if (CPU_ISSET(i, cpus)) {
5325       count++;
5326     }
5327   }
5328   return count;
5329 }
5330 
5331 #define CPU_COUNT(cpus) _cpu_count(cpus)
5332 
5333 #endif // CPU_COUNT
5334 
5335 // Get the current number of available processors for this process.
5336 // This value can change at any time during a process's lifetime.
5337 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5338 // If it appears there may be more than 1024 processors then we do a
5339 // dynamic check - see 6515172 for details.
5340 // If anything goes wrong we fallback to returning the number of online
5341 // processors - which can be greater than the number available to the process.
5342 int os::Linux::active_processor_count() {
5343   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5344   cpu_set_t* cpus_p = &cpus;
5345   int cpus_size = sizeof(cpu_set_t);
5346 
5347   int configured_cpus = os::processor_count();  // upper bound on available cpus
5348   int cpu_count = 0;
5349 
5350 // old build platforms may not support dynamic cpu sets
5351 #ifdef CPU_ALLOC
5352 
5353   // To enable easy testing of the dynamic path on different platforms we
5354   // introduce a diagnostic flag: UseCpuAllocPath
5355   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5356     // kernel may use a mask bigger than cpu_set_t
5357     log_trace(os)("active_processor_count: using dynamic path %s"
5358                   "- configured processors: %d",
5359                   UseCpuAllocPath ? "(forced) " : "",
5360                   configured_cpus);
5361     cpus_p = CPU_ALLOC(configured_cpus);
5362     if (cpus_p != NULL) {
5363       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5364       // zero it just to be safe
5365       CPU_ZERO_S(cpus_size, cpus_p);
5366     }
5367     else {
5368        // failed to allocate so fallback to online cpus
5369        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5370        log_trace(os)("active_processor_count: "
5371                      "CPU_ALLOC failed (%s) - using "
5372                      "online processor count: %d",
5373                      os::strerror(errno), online_cpus);
5374        return online_cpus;
5375     }
5376   }
5377   else {
5378     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5379                   configured_cpus);
5380   }
5381 #else // CPU_ALLOC
5382 // these stubs won't be executed
5383 #define CPU_COUNT_S(size, cpus) -1
5384 #define CPU_FREE(cpus)
5385 
5386   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5387                 configured_cpus);
5388 #endif // CPU_ALLOC
5389 
5390   // pid 0 means the current thread - which we have to assume represents the process
5391   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5392     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5393       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5394     }
5395     else {
5396       cpu_count = CPU_COUNT(cpus_p);
5397     }
5398     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5399   }
5400   else {
5401     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5402     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5403             "which may exceed available processors", os::strerror(errno), cpu_count);
5404   }
5405 
5406   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5407     CPU_FREE(cpus_p);
5408   }
5409 
5410   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5411   return cpu_count;
5412 }
5413 
5414 // Determine the active processor count from one of
5415 // three different sources:
5416 //
5417 // 1. User option -XX:ActiveProcessorCount
5418 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5419 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5420 //
5421 // Option 1, if specified, will always override.
5422 // If the cgroup subsystem is active and configured, we
5423 // will return the min of the cgroup and option 2 results.
5424 // This is required since tools, such as numactl, that
5425 // alter cpu affinity do not update cgroup subsystem
5426 // cpuset configuration files.
5427 int os::active_processor_count() {
5428   // User has overridden the number of active processors
5429   if (ActiveProcessorCount > 0) {
5430     log_trace(os)("active_processor_count: "
5431                   "active processor count set by user : %d",
5432                   ActiveProcessorCount);
5433     return ActiveProcessorCount;
5434   }
5435 
5436   int active_cpus;
5437   if (OSContainer::is_containerized()) {
5438     active_cpus = OSContainer::active_processor_count();
5439     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5440                    active_cpus);
5441   } else {
5442     active_cpus = os::Linux::active_processor_count();
5443   }
5444 
5445   return active_cpus;
5446 }
5447 
5448 uint os::processor_id() {
5449   const int id = Linux::sched_getcpu();
5450   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5451   return (uint)id;
5452 }
5453 
5454 void os::set_native_thread_name(const char *name) {
5455   if (Linux::_pthread_setname_np) {
5456     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5457     snprintf(buf, sizeof(buf), "%s", name);
5458     buf[sizeof(buf) - 1] = '\0';
5459     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5460     // ERANGE should not happen; all other errors should just be ignored.
5461     assert(rc != ERANGE, "pthread_setname_np failed");
5462   }
5463 }
5464 
5465 bool os::bind_to_processor(uint processor_id) {
5466   // Not yet implemented.
5467   return false;
5468 }
5469 
5470 ///
5471 
5472 void os::SuspendedThreadTask::internal_do_task() {
5473   if (do_suspend(_thread->osthread())) {
5474     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5475     do_task(context);
5476     do_resume(_thread->osthread());
5477   }
5478 }
5479 
5480 ////////////////////////////////////////////////////////////////////////////////
5481 // debug support
5482 
5483 bool os::find(address addr, outputStream* st) {
5484   Dl_info dlinfo;
5485   memset(&dlinfo, 0, sizeof(dlinfo));
5486   if (dladdr(addr, &dlinfo) != 0) {
5487     st->print(PTR_FORMAT ": ", p2i(addr));
5488     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5489       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5490                 p2i(addr) - p2i(dlinfo.dli_saddr));
5491     } else if (dlinfo.dli_fbase != NULL) {
5492       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5493     } else {
5494       st->print("<absolute address>");
5495     }
5496     if (dlinfo.dli_fname != NULL) {
5497       st->print(" in %s", dlinfo.dli_fname);
5498     }
5499     if (dlinfo.dli_fbase != NULL) {
5500       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5501     }
5502     st->cr();
5503 
5504     if (Verbose) {
5505       // decode some bytes around the PC
5506       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5507       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5508       address       lowest = (address) dlinfo.dli_sname;
5509       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5510       if (begin < lowest)  begin = lowest;
5511       Dl_info dlinfo2;
5512       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5513           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5514         end = (address) dlinfo2.dli_saddr;
5515       }
5516       Disassembler::decode(begin, end, st);
5517     }
5518     return true;
5519   }
5520   return false;
5521 }
5522 
5523 ////////////////////////////////////////////////////////////////////////////////
5524 // misc
5525 
5526 // This does not do anything on Linux. This is basically a hook for being
5527 // able to use structured exception handling (thread-local exception filters)
5528 // on, e.g., Win32.
5529 void
5530 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5531                          JavaCallArguments* args, Thread* thread) {
5532   f(value, method, args, thread);
5533 }
5534 
5535 void os::print_statistics() {
5536 }
5537 
5538 bool os::message_box(const char* title, const char* message) {
5539   int i;
5540   fdStream err(defaultStream::error_fd());
5541   for (i = 0; i < 78; i++) err.print_raw("=");
5542   err.cr();
5543   err.print_raw_cr(title);
5544   for (i = 0; i < 78; i++) err.print_raw("-");
5545   err.cr();
5546   err.print_raw_cr(message);
5547   for (i = 0; i < 78; i++) err.print_raw("=");
5548   err.cr();
5549 
5550   char buf[16];
5551   // Prevent process from exiting upon "read error" without consuming all CPU
5552   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5553 
5554   return buf[0] == 'y' || buf[0] == 'Y';
5555 }
5556 
5557 // Is a (classpath) directory empty?
5558 bool os::dir_is_empty(const char* path) {
5559   DIR *dir = NULL;
5560   struct dirent *ptr;
5561 
5562   dir = opendir(path);
5563   if (dir == NULL) return true;
5564 
5565   // Scan the directory
5566   bool result = true;
5567   while (result && (ptr = readdir(dir)) != NULL) {
5568     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5569       result = false;
5570     }
5571   }
5572   closedir(dir);
5573   return result;
5574 }
5575 
5576 // This code originates from JDK's sysOpen and open64_w
5577 // from src/solaris/hpi/src/system_md.c
5578 
5579 int os::open(const char *path, int oflag, int mode) {
5580   if (strlen(path) > MAX_PATH - 1) {
5581     errno = ENAMETOOLONG;
5582     return -1;
5583   }
5584 
5585   // All file descriptors that are opened in the Java process and not
5586   // specifically destined for a subprocess should have the close-on-exec
5587   // flag set.  If we don't set it, then careless 3rd party native code
5588   // might fork and exec without closing all appropriate file descriptors
5589   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5590   // turn might:
5591   //
5592   // - cause end-of-file to fail to be detected on some file
5593   //   descriptors, resulting in mysterious hangs, or
5594   //
5595   // - might cause an fopen in the subprocess to fail on a system
5596   //   suffering from bug 1085341.
5597   //
5598   // (Yes, the default setting of the close-on-exec flag is a Unix
5599   // design flaw)
5600   //
5601   // See:
5602   // 1085341: 32-bit stdio routines should support file descriptors >255
5603   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5604   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5605   //
5606   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5607   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5608   // because it saves a system call and removes a small window where the flag
5609   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5610   // and we fall back to using FD_CLOEXEC (see below).
5611 #ifdef O_CLOEXEC
5612   oflag |= O_CLOEXEC;
5613 #endif
5614 
5615   int fd = ::open64(path, oflag, mode);
5616   if (fd == -1) return -1;
5617 
5618   //If the open succeeded, the file might still be a directory
5619   {
5620     struct stat64 buf64;
5621     int ret = ::fstat64(fd, &buf64);
5622     int st_mode = buf64.st_mode;
5623 
5624     if (ret != -1) {
5625       if ((st_mode & S_IFMT) == S_IFDIR) {
5626         errno = EISDIR;
5627         ::close(fd);
5628         return -1;
5629       }
5630     } else {
5631       ::close(fd);
5632       return -1;
5633     }
5634   }
5635 
5636 #ifdef FD_CLOEXEC
5637   // Validate that the use of the O_CLOEXEC flag on open above worked.
5638   // With recent kernels, we will perform this check exactly once.
5639   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5640   if (!O_CLOEXEC_is_known_to_work) {
5641     int flags = ::fcntl(fd, F_GETFD);
5642     if (flags != -1) {
5643       if ((flags & FD_CLOEXEC) != 0)
5644         O_CLOEXEC_is_known_to_work = 1;
5645       else
5646         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5647     }
5648   }
5649 #endif
5650 
5651   return fd;
5652 }
5653 
5654 
5655 // create binary file, rewriting existing file if required
5656 int os::create_binary_file(const char* path, bool rewrite_existing) {
5657   int oflags = O_WRONLY | O_CREAT;
5658   if (!rewrite_existing) {
5659     oflags |= O_EXCL;
5660   }
5661   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5662 }
5663 
5664 // return current position of file pointer
5665 jlong os::current_file_offset(int fd) {
5666   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5667 }
5668 
5669 // move file pointer to the specified offset
5670 jlong os::seek_to_file_offset(int fd, jlong offset) {
5671   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5672 }
5673 
5674 // This code originates from JDK's sysAvailable
5675 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5676 
5677 int os::available(int fd, jlong *bytes) {
5678   jlong cur, end;
5679   int mode;
5680   struct stat64 buf64;
5681 
5682   if (::fstat64(fd, &buf64) >= 0) {
5683     mode = buf64.st_mode;
5684     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5685       int n;
5686       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5687         *bytes = n;
5688         return 1;
5689       }
5690     }
5691   }
5692   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5693     return 0;
5694   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5695     return 0;
5696   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5697     return 0;
5698   }
5699   *bytes = end - cur;
5700   return 1;
5701 }
5702 
5703 // Map a block of memory.
5704 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5705                         char *addr, size_t bytes, bool read_only,
5706                         bool allow_exec) {
5707   int prot;
5708   int flags = MAP_PRIVATE;
5709 
5710   if (read_only) {
5711     prot = PROT_READ;
5712   } else {
5713     prot = PROT_READ | PROT_WRITE;
5714   }
5715 
5716   if (allow_exec) {
5717     prot |= PROT_EXEC;
5718   }
5719 
5720   if (addr != NULL) {
5721     flags |= MAP_FIXED;
5722   }
5723 
5724   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5725                                      fd, file_offset);
5726   if (mapped_address == MAP_FAILED) {
5727     return NULL;
5728   }
5729   return mapped_address;
5730 }
5731 
5732 
5733 // Remap a block of memory.
5734 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5735                           char *addr, size_t bytes, bool read_only,
5736                           bool allow_exec) {
5737   // same as map_memory() on this OS
5738   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5739                         allow_exec);
5740 }
5741 
5742 
5743 // Unmap a block of memory.
5744 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5745   return munmap(addr, bytes) == 0;
5746 }
5747 
5748 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5749 
5750 static jlong fast_cpu_time(Thread *thread) {
5751     clockid_t clockid;
5752     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5753                                               &clockid);
5754     if (rc == 0) {
5755       return os::Linux::fast_thread_cpu_time(clockid);
5756     } else {
5757       // It's possible to encounter a terminated native thread that failed
5758       // to detach itself from the VM - which should result in ESRCH.
5759       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5760       return -1;
5761     }
5762 }
5763 
5764 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5765 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5766 // of a thread.
5767 //
5768 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5769 // the fast estimate available on the platform.
5770 
5771 jlong os::current_thread_cpu_time() {
5772   if (os::Linux::supports_fast_thread_cpu_time()) {
5773     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5774   } else {
5775     // return user + sys since the cost is the same
5776     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5777   }
5778 }
5779 
5780 jlong os::thread_cpu_time(Thread* thread) {
5781   // consistent with what current_thread_cpu_time() returns
5782   if (os::Linux::supports_fast_thread_cpu_time()) {
5783     return fast_cpu_time(thread);
5784   } else {
5785     return slow_thread_cpu_time(thread, true /* user + sys */);
5786   }
5787 }
5788 
5789 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5790   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5791     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5792   } else {
5793     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5794   }
5795 }
5796 
5797 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5798   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5799     return fast_cpu_time(thread);
5800   } else {
5801     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5802   }
5803 }
5804 
5805 //  -1 on error.
5806 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5807   pid_t  tid = thread->osthread()->thread_id();
5808   char *s;
5809   char stat[2048];
5810   int statlen;
5811   char proc_name[64];
5812   int count;
5813   long sys_time, user_time;
5814   char cdummy;
5815   int idummy;
5816   long ldummy;
5817   FILE *fp;
5818 
5819   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5820   fp = fopen(proc_name, "r");
5821   if (fp == NULL) return -1;
5822   statlen = fread(stat, 1, 2047, fp);
5823   stat[statlen] = '\0';
5824   fclose(fp);
5825 
5826   // Skip pid and the command string. Note that we could be dealing with
5827   // weird command names, e.g. user could decide to rename java launcher
5828   // to "java 1.4.2 :)", then the stat file would look like
5829   //                1234 (java 1.4.2 :)) R ... ...
5830   // We don't really need to know the command string, just find the last
5831   // occurrence of ")" and then start parsing from there. See bug 4726580.
5832   s = strrchr(stat, ')');
5833   if (s == NULL) return -1;
5834 
5835   // Skip blank chars
5836   do { s++; } while (s && isspace(*s));
5837 
5838   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5839                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5840                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5841                  &user_time, &sys_time);
5842   if (count != 13) return -1;
5843   if (user_sys_cpu_time) {
5844     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5845   } else {
5846     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5847   }
5848 }
5849 
5850 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5851   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5852   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5853   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5854   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5855 }
5856 
5857 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5858   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5859   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5860   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5861   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5862 }
5863 
5864 bool os::is_thread_cpu_time_supported() {
5865   return true;
5866 }
5867 
5868 // System loadavg support.  Returns -1 if load average cannot be obtained.
5869 // Linux doesn't yet have a (official) notion of processor sets,
5870 // so just return the system wide load average.
5871 int os::loadavg(double loadavg[], int nelem) {
5872   return ::getloadavg(loadavg, nelem);
5873 }
5874 
5875 void os::pause() {
5876   char filename[MAX_PATH];
5877   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5878     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5879   } else {
5880     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5881   }
5882 
5883   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5884   if (fd != -1) {
5885     struct stat buf;
5886     ::close(fd);
5887     while (::stat(filename, &buf) == 0) {
5888       (void)::poll(NULL, 0, 100);
5889     }
5890   } else {
5891     jio_fprintf(stderr,
5892                 "Could not open pause file '%s', continuing immediately.\n", filename);
5893   }
5894 }
5895 
5896 extern char** environ;
5897 
5898 // Run the specified command in a separate process. Return its exit value,
5899 // or -1 on failure (e.g. can't fork a new process).
5900 // Unlike system(), this function can be called from signal handler. It
5901 // doesn't block SIGINT et al.
5902 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5903   const char * argv[4] = {"sh", "-c", cmd, NULL};
5904 
5905   pid_t pid ;
5906 
5907   if (use_vfork_if_available) {
5908     pid = vfork();
5909   } else {
5910     pid = fork();
5911   }
5912 
5913   if (pid < 0) {
5914     // fork failed
5915     return -1;
5916 
5917   } else if (pid == 0) {
5918     // child process
5919 
5920     execve("/bin/sh", (char* const*)argv, environ);
5921 
5922     // execve failed
5923     _exit(-1);
5924 
5925   } else  {
5926     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5927     // care about the actual exit code, for now.
5928 
5929     int status;
5930 
5931     // Wait for the child process to exit.  This returns immediately if
5932     // the child has already exited. */
5933     while (waitpid(pid, &status, 0) < 0) {
5934       switch (errno) {
5935       case ECHILD: return 0;
5936       case EINTR: break;
5937       default: return -1;
5938       }
5939     }
5940 
5941     if (WIFEXITED(status)) {
5942       // The child exited normally; get its exit code.
5943       return WEXITSTATUS(status);
5944     } else if (WIFSIGNALED(status)) {
5945       // The child exited because of a signal
5946       // The best value to return is 0x80 + signal number,
5947       // because that is what all Unix shells do, and because
5948       // it allows callers to distinguish between process exit and
5949       // process death by signal.
5950       return 0x80 + WTERMSIG(status);
5951     } else {
5952       // Unknown exit code; pass it through
5953       return status;
5954     }
5955   }
5956 }
5957 
5958 // Get the default path to the core file
5959 // Returns the length of the string
5960 int os::get_core_path(char* buffer, size_t bufferSize) {
5961   /*
5962    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5963    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5964    */
5965   const int core_pattern_len = 129;
5966   char core_pattern[core_pattern_len] = {0};
5967 
5968   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5969   if (core_pattern_file == -1) {
5970     return -1;
5971   }
5972 
5973   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5974   ::close(core_pattern_file);
5975   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5976     return -1;
5977   }
5978   if (core_pattern[ret-1] == '\n') {
5979     core_pattern[ret-1] = '\0';
5980   } else {
5981     core_pattern[ret] = '\0';
5982   }
5983 
5984   // Replace the %p in the core pattern with the process id. NOTE: we do this
5985   // only if the pattern doesn't start with "|", and we support only one %p in
5986   // the pattern.
5987   char *pid_pos = strstr(core_pattern, "%p");
5988   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5989   int written;
5990 
5991   if (core_pattern[0] == '/') {
5992     if (pid_pos != NULL) {
5993       *pid_pos = '\0';
5994       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5995                              current_process_id(), tail);
5996     } else {
5997       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5998     }
5999   } else {
6000     char cwd[PATH_MAX];
6001 
6002     const char* p = get_current_directory(cwd, PATH_MAX);
6003     if (p == NULL) {
6004       return -1;
6005     }
6006 
6007     if (core_pattern[0] == '|') {
6008       written = jio_snprintf(buffer, bufferSize,
6009                              "\"%s\" (or dumping to %s/core.%d)",
6010                              &core_pattern[1], p, current_process_id());
6011     } else if (pid_pos != NULL) {
6012       *pid_pos = '\0';
6013       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
6014                              current_process_id(), tail);
6015     } else {
6016       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6017     }
6018   }
6019 
6020   if (written < 0) {
6021     return -1;
6022   }
6023 
6024   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6025     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6026 
6027     if (core_uses_pid_file != -1) {
6028       char core_uses_pid = 0;
6029       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6030       ::close(core_uses_pid_file);
6031 
6032       if (core_uses_pid == '1') {
6033         jio_snprintf(buffer + written, bufferSize - written,
6034                                           ".%d", current_process_id());
6035       }
6036     }
6037   }
6038 
6039   return strlen(buffer);
6040 }
6041 
6042 bool os::start_debugging(char *buf, int buflen) {
6043   int len = (int)strlen(buf);
6044   char *p = &buf[len];
6045 
6046   jio_snprintf(p, buflen-len,
6047                "\n\n"
6048                "Do you want to debug the problem?\n\n"
6049                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6050                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6051                "Otherwise, press RETURN to abort...",
6052                os::current_process_id(), os::current_process_id(),
6053                os::current_thread_id(), os::current_thread_id());
6054 
6055   bool yes = os::message_box("Unexpected Error", buf);
6056 
6057   if (yes) {
6058     // yes, user asked VM to launch debugger
6059     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6060                  os::current_process_id(), os::current_process_id());
6061 
6062     os::fork_and_exec(buf);
6063     yes = false;
6064   }
6065   return yes;
6066 }
6067 
6068 
6069 // Java/Compiler thread:
6070 //
6071 //   Low memory addresses
6072 // P0 +------------------------+
6073 //    |                        |\  Java thread created by VM does not have glibc
6074 //    |    glibc guard page    | - guard page, attached Java thread usually has
6075 //    |                        |/  1 glibc guard page.
6076 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6077 //    |                        |\
6078 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6079 //    |                        |/
6080 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6081 //    |                        |\
6082 //    |      Normal Stack      | -
6083 //    |                        |/
6084 // P2 +------------------------+ Thread::stack_base()
6085 //
6086 // Non-Java thread:
6087 //
6088 //   Low memory addresses
6089 // P0 +------------------------+
6090 //    |                        |\
6091 //    |  glibc guard page      | - usually 1 page
6092 //    |                        |/
6093 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6094 //    |                        |\
6095 //    |      Normal Stack      | -
6096 //    |                        |/
6097 // P2 +------------------------+ Thread::stack_base()
6098 //
6099 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6100 //    returned from pthread_attr_getstack().
6101 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6102 //    of the stack size given in pthread_attr. We work around this for
6103 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6104 //
6105 #ifndef ZERO
6106 static void current_stack_region(address * bottom, size_t * size) {
6107   if (os::is_primordial_thread()) {
6108     // primordial thread needs special handling because pthread_getattr_np()
6109     // may return bogus value.
6110     *bottom = os::Linux::initial_thread_stack_bottom();
6111     *size   = os::Linux::initial_thread_stack_size();
6112   } else {
6113     pthread_attr_t attr;
6114 
6115     int rslt = pthread_getattr_np(pthread_self(), &attr);
6116 
6117     // JVM needs to know exact stack location, abort if it fails
6118     if (rslt != 0) {
6119       if (rslt == ENOMEM) {
6120         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6121       } else {
6122         fatal("pthread_getattr_np failed with error = %d", rslt);
6123       }
6124     }
6125 
6126     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6127       fatal("Cannot locate current stack attributes!");
6128     }
6129 
6130     // Work around NPTL stack guard error.
6131     size_t guard_size = 0;
6132     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6133     if (rslt != 0) {
6134       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6135     }
6136     *bottom += guard_size;
6137     *size   -= guard_size;
6138 
6139     pthread_attr_destroy(&attr);
6140 
6141   }
6142   assert(os::current_stack_pointer() >= *bottom &&
6143          os::current_stack_pointer() < *bottom + *size, "just checking");
6144 }
6145 
6146 address os::current_stack_base() {
6147   address bottom;
6148   size_t size;
6149   current_stack_region(&bottom, &size);
6150   return (bottom + size);
6151 }
6152 
6153 size_t os::current_stack_size() {
6154   // This stack size includes the usable stack and HotSpot guard pages
6155   // (for the threads that have Hotspot guard pages).
6156   address bottom;
6157   size_t size;
6158   current_stack_region(&bottom, &size);
6159   return size;
6160 }
6161 #endif
6162 
6163 static inline struct timespec get_mtime(const char* filename) {
6164   struct stat st;
6165   int ret = os::stat(filename, &st);
6166   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6167   return st.st_mtim;
6168 }
6169 
6170 int os::compare_file_modified_times(const char* file1, const char* file2) {
6171   struct timespec filetime1 = get_mtime(file1);
6172   struct timespec filetime2 = get_mtime(file2);
6173   int diff = filetime1.tv_sec - filetime2.tv_sec;
6174   if (diff == 0) {
6175     return filetime1.tv_nsec - filetime2.tv_nsec;
6176   }
6177   return diff;
6178 }
6179 
6180 bool os::supports_map_sync() {
6181   return true;
6182 }
6183 
6184 /////////////// Unit tests ///////////////
6185 
6186 #ifndef PRODUCT
6187 
6188 class TestReserveMemorySpecial : AllStatic {
6189  public:
6190   static void small_page_write(void* addr, size_t size) {
6191     size_t page_size = os::vm_page_size();
6192 
6193     char* end = (char*)addr + size;
6194     for (char* p = (char*)addr; p < end; p += page_size) {
6195       *p = 1;
6196     }
6197   }
6198 
6199   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6200     if (!UseHugeTLBFS) {
6201       return;
6202     }
6203 
6204     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6205 
6206     if (addr != NULL) {
6207       small_page_write(addr, size);
6208 
6209       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6210     }
6211   }
6212 
6213   static void test_reserve_memory_special_huge_tlbfs_only() {
6214     if (!UseHugeTLBFS) {
6215       return;
6216     }
6217 
6218     size_t lp = os::large_page_size();
6219 
6220     for (size_t size = lp; size <= lp * 10; size += lp) {
6221       test_reserve_memory_special_huge_tlbfs_only(size);
6222     }
6223   }
6224 
6225   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6226     size_t lp = os::large_page_size();
6227     size_t ag = os::vm_allocation_granularity();
6228 
6229     // sizes to test
6230     const size_t sizes[] = {
6231       lp, lp + ag, lp + lp / 2, lp * 2,
6232       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6233       lp * 10, lp * 10 + lp / 2
6234     };
6235     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6236 
6237     // For each size/alignment combination, we test three scenarios:
6238     // 1) with req_addr == NULL
6239     // 2) with a non-null req_addr at which we expect to successfully allocate
6240     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6241     //    expect the allocation to either fail or to ignore req_addr
6242 
6243     // Pre-allocate two areas; they shall be as large as the largest allocation
6244     //  and aligned to the largest alignment we will be testing.
6245     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6246     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6247       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6248       -1, 0);
6249     assert(mapping1 != MAP_FAILED, "should work");
6250 
6251     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6252       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6253       -1, 0);
6254     assert(mapping2 != MAP_FAILED, "should work");
6255 
6256     // Unmap the first mapping, but leave the second mapping intact: the first
6257     // mapping will serve as a value for a "good" req_addr (case 2). The second
6258     // mapping, still intact, as "bad" req_addr (case 3).
6259     ::munmap(mapping1, mapping_size);
6260 
6261     // Case 1
6262     for (int i = 0; i < num_sizes; i++) {
6263       const size_t size = sizes[i];
6264       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6265         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6266         if (p != NULL) {
6267           assert(is_aligned(p, alignment), "must be");
6268           small_page_write(p, size);
6269           os::Linux::release_memory_special_huge_tlbfs(p, size);
6270         }
6271       }
6272     }
6273 
6274     // Case 2
6275     for (int i = 0; i < num_sizes; i++) {
6276       const size_t size = sizes[i];
6277       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6278         char* const req_addr = align_up(mapping1, alignment);
6279         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6280         if (p != NULL) {
6281           assert(p == req_addr, "must be");
6282           small_page_write(p, size);
6283           os::Linux::release_memory_special_huge_tlbfs(p, size);
6284         }
6285       }
6286     }
6287 
6288     // Case 3
6289     for (int i = 0; i < num_sizes; i++) {
6290       const size_t size = sizes[i];
6291       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6292         char* const req_addr = align_up(mapping2, alignment);
6293         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6294         // as the area around req_addr contains already existing mappings, the API should always
6295         // return NULL (as per contract, it cannot return another address)
6296         assert(p == NULL, "must be");
6297       }
6298     }
6299 
6300     ::munmap(mapping2, mapping_size);
6301 
6302   }
6303 
6304   static void test_reserve_memory_special_huge_tlbfs() {
6305     if (!UseHugeTLBFS) {
6306       return;
6307     }
6308 
6309     test_reserve_memory_special_huge_tlbfs_only();
6310     test_reserve_memory_special_huge_tlbfs_mixed();
6311   }
6312 
6313   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6314     if (!UseSHM) {
6315       return;
6316     }
6317 
6318     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6319 
6320     if (addr != NULL) {
6321       assert(is_aligned(addr, alignment), "Check");
6322       assert(is_aligned(addr, os::large_page_size()), "Check");
6323 
6324       small_page_write(addr, size);
6325 
6326       os::Linux::release_memory_special_shm(addr, size);
6327     }
6328   }
6329 
6330   static void test_reserve_memory_special_shm() {
6331     size_t lp = os::large_page_size();
6332     size_t ag = os::vm_allocation_granularity();
6333 
6334     for (size_t size = ag; size < lp * 3; size += ag) {
6335       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6336         test_reserve_memory_special_shm(size, alignment);
6337       }
6338     }
6339   }
6340 
6341   static void test() {
6342     test_reserve_memory_special_huge_tlbfs();
6343     test_reserve_memory_special_shm();
6344   }
6345 };
6346 
6347 void TestReserveMemorySpecial_test() {
6348   TestReserveMemorySpecial::test();
6349 }
6350 
6351 #endif