1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "jvm.h"
  26 #include "logging/log.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "os_posix.inline.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "runtime/frame.inline.hpp"
  31 #include "runtime/interfaceSupport.inline.hpp"
  32 #include "services/memTracker.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/orderAccess.hpp"
  35 #include "utilities/align.hpp"
  36 #include "utilities/events.hpp"
  37 #include "utilities/formatBuffer.hpp"
  38 #include "utilities/macros.hpp"
  39 #include "utilities/vmError.hpp"
  40 
  41 #include <dirent.h>
  42 #include <dlfcn.h>
  43 #include <grp.h>
  44 #include <pwd.h>
  45 #include <pthread.h>
  46 #include <signal.h>
  47 #include <sys/mman.h>
  48 #include <sys/resource.h>
  49 #include <sys/utsname.h>
  50 #include <time.h>
  51 #include <unistd.h>
  52 #include <utmpx.h>
  53 
  54 // Todo: provide a os::get_max_process_id() or similar. Number of processes
  55 // may have been configured, can be read more accurately from proc fs etc.
  56 #ifndef MAX_PID
  57 #define MAX_PID INT_MAX
  58 #endif
  59 #define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
  60 
  61 #define ROOT_UID 0
  62 
  63 #ifndef MAP_ANONYMOUS
  64   #define MAP_ANONYMOUS MAP_ANON
  65 #endif
  66 
  67 #define check_with_errno(check_type, cond, msg)                             \
  68   do {                                                                      \
  69     int err = errno;                                                        \
  70     check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
  71                os::errno_name(err));                                        \
  72 } while (false)
  73 
  74 #define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
  75 #define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
  76 
  77 // Check core dump limit and report possible place where core can be found
  78 void os::check_dump_limit(char* buffer, size_t bufferSize) {
  79   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
  80     jio_snprintf(buffer, bufferSize, "CreateCoredumpOnCrash is disabled from command line");
  81     VMError::record_coredump_status(buffer, false);
  82     return;
  83   }
  84 
  85   int n;
  86   struct rlimit rlim;
  87   bool success;
  88 
  89   char core_path[PATH_MAX];
  90   n = get_core_path(core_path, PATH_MAX);
  91 
  92   if (n <= 0) {
  93     jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
  94     success = true;
  95 #ifdef LINUX
  96   } else if (core_path[0] == '"') { // redirect to user process
  97     jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
  98     success = true;
  99 #endif
 100   } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
 101     jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
 102     success = true;
 103   } else {
 104     switch(rlim.rlim_cur) {
 105       case RLIM_INFINITY:
 106         jio_snprintf(buffer, bufferSize, "%s", core_path);
 107         success = true;
 108         break;
 109       case 0:
 110         jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
 111         success = false;
 112         break;
 113       default:
 114         jio_snprintf(buffer, bufferSize, "%s (max size " UINT64_FORMAT " kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, uint64_t(rlim.rlim_cur) / 1024);
 115         success = true;
 116         break;
 117     }
 118   }
 119 
 120   VMError::record_coredump_status(buffer, success);
 121 }
 122 
 123 int os::get_native_stack(address* stack, int frames, int toSkip) {
 124   int frame_idx = 0;
 125   int num_of_frames;  // number of frames captured
 126   frame fr = os::current_frame();
 127   while (fr.pc() && frame_idx < frames) {
 128     if (toSkip > 0) {
 129       toSkip --;
 130     } else {
 131       stack[frame_idx ++] = fr.pc();
 132     }
 133     if (fr.fp() == NULL || fr.cb() != NULL ||
 134         fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
 135 
 136     if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
 137       fr = os::get_sender_for_C_frame(&fr);
 138     } else {
 139       break;
 140     }
 141   }
 142   num_of_frames = frame_idx;
 143   for (; frame_idx < frames; frame_idx ++) {
 144     stack[frame_idx] = NULL;
 145   }
 146 
 147   return num_of_frames;
 148 }
 149 
 150 
 151 bool os::unsetenv(const char* name) {
 152   assert(name != NULL, "Null pointer");
 153   return (::unsetenv(name) == 0);
 154 }
 155 
 156 int os::get_last_error() {
 157   return errno;
 158 }
 159 
 160 size_t os::lasterror(char *buf, size_t len) {
 161   if (errno == 0)  return 0;
 162 
 163   const char *s = os::strerror(errno);
 164   size_t n = ::strlen(s);
 165   if (n >= len) {
 166     n = len - 1;
 167   }
 168   ::strncpy(buf, s, n);
 169   buf[n] = '\0';
 170   return n;
 171 }
 172 
 173 void os::wait_for_keypress_at_exit(void) {
 174   // don't do anything on posix platforms
 175   return;
 176 }
 177 
 178 int os::create_file_for_heap(const char* dir) {
 179   int fd;
 180 
 181 #if defined(LINUX) && defined(O_TMPFILE)
 182   char* native_dir = os::strdup(dir);
 183   if (native_dir == NULL) {
 184     vm_exit_during_initialization(err_msg("strdup failed during creation of backing file for heap (%s)", os::strerror(errno)));
 185     return -1;
 186   }
 187   os::native_path(native_dir);
 188   fd = os::open(dir, O_TMPFILE | O_RDWR, S_IRUSR | S_IWUSR);
 189   os::free(native_dir);
 190 
 191   if (fd == -1)
 192 #endif
 193   {
 194     const char name_template[] = "/jvmheap.XXXXXX";
 195 
 196     size_t fullname_len = strlen(dir) + strlen(name_template);
 197     char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
 198     if (fullname == NULL) {
 199       vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
 200       return -1;
 201     }
 202     int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
 203     assert((size_t)n == fullname_len, "Unexpected number of characters in string");
 204 
 205     os::native_path(fullname);
 206 
 207     // create a new file.
 208     fd = mkstemp(fullname);
 209 
 210     if (fd < 0) {
 211       warning("Could not create file for heap with template %s", fullname);
 212       os::free(fullname);
 213       return -1;
 214     } else {
 215       // delete the name from the filesystem. When 'fd' is closed, the file (and space) will be deleted.
 216       int ret = unlink(fullname);
 217       assert_with_errno(ret == 0, "unlink returned error");
 218     }
 219 
 220     os::free(fullname);
 221   }
 222 
 223   return fd;
 224 }
 225 
 226 static char* reserve_mmapped_memory(size_t bytes, char* requested_addr) {
 227   char * addr;
 228   int flags = MAP_PRIVATE NOT_AIX( | MAP_NORESERVE ) | MAP_ANONYMOUS;
 229   if (requested_addr != NULL) {
 230     assert((uintptr_t)requested_addr % os::vm_page_size() == 0, "Requested address should be aligned to OS page size");
 231     flags |= MAP_FIXED;
 232   }
 233 
 234   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
 235   // touch an uncommitted page. Otherwise, the read/write might
 236   // succeed if we have enough swap space to back the physical page.
 237   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
 238                        flags, -1, 0);
 239 
 240   if (addr != MAP_FAILED) {
 241     MemTracker::record_virtual_memory_reserve((address)addr, bytes, CALLER_PC);
 242     return addr;
 243   }
 244   return NULL;
 245 }
 246 
 247 static int util_posix_fallocate(int fd, off_t offset, off_t len) {
 248 #ifdef __APPLE__
 249   fstore_t store = { F_ALLOCATECONTIG, F_PEOFPOSMODE, 0, len };
 250   // First we try to get a continuous chunk of disk space
 251   int ret = fcntl(fd, F_PREALLOCATE, &store);
 252   if (ret == -1) {
 253     // Maybe we are too fragmented, try to allocate non-continuous range
 254     store.fst_flags = F_ALLOCATEALL;
 255     ret = fcntl(fd, F_PREALLOCATE, &store);
 256   }
 257   if(ret != -1) {
 258     return ftruncate(fd, len);
 259   }
 260   return -1;
 261 #else
 262   return posix_fallocate(fd, offset, len);
 263 #endif
 264 }
 265 
 266 // Map the given address range to the provided file descriptor.
 267 char* os::map_memory_to_file(char* base, size_t size, int fd) {
 268   assert(fd != -1, "File descriptor is not valid");
 269 
 270   // allocate space for the file
 271   int ret = util_posix_fallocate(fd, 0, (off_t)size);
 272   if (ret != 0) {
 273     vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory. error(%d)", ret));
 274     return NULL;
 275   }
 276 
 277   int prot = PROT_READ | PROT_WRITE;
 278   int flags = MAP_SHARED;
 279   if (base != NULL) {
 280     flags |= MAP_FIXED;
 281   }
 282   char* addr = (char*)mmap(base, size, prot, flags, fd, 0);
 283 
 284   if (addr == MAP_FAILED) {
 285     warning("Failed mmap to file. (%s)", os::strerror(errno));
 286     return NULL;
 287   }
 288   if (base != NULL && addr != base) {
 289     if (!os::release_memory(addr, size)) {
 290       warning("Could not release memory on unsuccessful file mapping");
 291     }
 292     return NULL;
 293   }
 294   return addr;
 295 }
 296 
 297 char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
 298   assert(fd != -1, "File descriptor is not valid");
 299   assert(base != NULL, "Base cannot be NULL");
 300 
 301   return map_memory_to_file(base, size, fd);
 302 }
 303 
 304 // Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
 305 // so on posix, unmap the section at the start and at the end of the chunk that we mapped
 306 // rather than unmapping and remapping the whole chunk to get requested alignment.
 307 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
 308   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
 309       "Alignment must be a multiple of allocation granularity (page size)");
 310   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
 311 
 312   size_t extra_size = size + alignment;
 313   assert(extra_size >= size, "overflow, size is too large to allow alignment");
 314 
 315   char* extra_base;
 316   if (file_desc != -1) {
 317     // For file mapping, we do not call os:reserve_memory(extra_size, NULL, alignment, file_desc) because
 318     // we need to deal with shrinking of the file space later when we release extra memory after alignment.
 319     // We also cannot called os:reserve_memory() with file_desc set to -1 because on aix we might get SHM memory.
 320     // So here to call a helper function while reserve memory for us. After we have a aligned base,
 321     // we will replace anonymous mapping with file mapping.
 322     extra_base = reserve_mmapped_memory(extra_size, NULL);
 323     if (extra_base != NULL) {
 324       MemTracker::record_virtual_memory_reserve((address)extra_base, extra_size, CALLER_PC);
 325     }
 326   } else {
 327     extra_base = os::reserve_memory(extra_size, NULL, alignment);
 328   }
 329 
 330   if (extra_base == NULL) {
 331     return NULL;
 332   }
 333 
 334   // Do manual alignment
 335   char* aligned_base = align_up(extra_base, alignment);
 336 
 337   // [  |                                       |  ]
 338   // ^ extra_base
 339   //    ^ extra_base + begin_offset == aligned_base
 340   //     extra_base + begin_offset + size       ^
 341   //                       extra_base + extra_size ^
 342   // |<>| == begin_offset
 343   //                              end_offset == |<>|
 344   size_t begin_offset = aligned_base - extra_base;
 345   size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
 346 
 347   if (begin_offset > 0) {
 348       os::release_memory(extra_base, begin_offset);
 349   }
 350 
 351   if (end_offset > 0) {
 352       os::release_memory(extra_base + begin_offset + size, end_offset);
 353   }
 354 
 355   if (file_desc != -1) {
 356     // After we have an aligned address, we can replace anonymous mapping with file mapping
 357     if (replace_existing_mapping_with_file_mapping(aligned_base, size, file_desc) == NULL) {
 358       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
 359     }
 360     MemTracker::record_virtual_memory_commit((address)aligned_base, size, CALLER_PC);
 361   }
 362   return aligned_base;
 363 }
 364 
 365 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
 366   // All supported POSIX platforms provide C99 semantics.
 367   int result = ::vsnprintf(buf, len, fmt, args);
 368   // If an encoding error occurred (result < 0) then it's not clear
 369   // whether the buffer is NUL terminated, so ensure it is.
 370   if ((result < 0) && (len > 0)) {
 371     buf[len - 1] = '\0';
 372   }
 373   return result;
 374 }
 375 
 376 int os::get_fileno(FILE* fp) {
 377   return NOT_AIX(::)fileno(fp);
 378 }
 379 
 380 struct tm* os::gmtime_pd(const time_t* clock, struct tm*  res) {
 381   return gmtime_r(clock, res);
 382 }
 383 
 384 void os::Posix::print_load_average(outputStream* st) {
 385   st->print("load average:");
 386   double loadavg[3];
 387   int res = os::loadavg(loadavg, 3);
 388   if (res != -1) {
 389     st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
 390   } else {
 391     st->print(" Unavailable");
 392   }
 393   st->cr();
 394 }
 395 
 396 // boot/uptime information;
 397 // unfortunately it does not work on macOS and Linux because the utx chain has no entry
 398 // for reboot at least on my test machines
 399 void os::Posix::print_uptime_info(outputStream* st) {
 400   int bootsec = -1;
 401   int currsec = time(NULL);
 402   struct utmpx* ent;
 403   setutxent();
 404   while ((ent = getutxent())) {
 405     if (!strcmp("system boot", ent->ut_line)) {
 406       bootsec = ent->ut_tv.tv_sec;
 407       break;
 408     }
 409   }
 410 
 411   if (bootsec != -1) {
 412     os::print_dhm(st, "OS uptime:", (long) (currsec-bootsec));
 413   }
 414 }
 415 
 416 static void print_rlimit(outputStream* st, const char* msg,
 417                          int resource, bool output_k = false) {
 418   struct rlimit rlim;
 419 
 420   st->print(" %s ", msg);
 421   int res = getrlimit(resource, &rlim);
 422   if (res == -1) {
 423     st->print("could not obtain value");
 424   } else {
 425     // soft limit
 426     if (rlim.rlim_cur == RLIM_INFINITY) { st->print("infinity"); }
 427     else {
 428       if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_cur) / 1024); }
 429       else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_cur)); }
 430     }
 431     // hard limit
 432     st->print("/");
 433     if (rlim.rlim_max == RLIM_INFINITY) { st->print("infinity"); }
 434     else {
 435       if (output_k) { st->print(UINT64_FORMAT "k", uint64_t(rlim.rlim_max) / 1024); }
 436       else { st->print(UINT64_FORMAT, uint64_t(rlim.rlim_max)); }
 437     }
 438   }
 439 }
 440 
 441 void os::Posix::print_rlimit_info(outputStream* st) {
 442   st->print("rlimit (soft/hard):");
 443   print_rlimit(st, "STACK", RLIMIT_STACK, true);
 444   print_rlimit(st, ", CORE", RLIMIT_CORE, true);
 445 
 446 #if defined(AIX)
 447   st->print(", NPROC ");
 448   st->print("%d", sysconf(_SC_CHILD_MAX));
 449 
 450   print_rlimit(st, ", THREADS", RLIMIT_THREADS);
 451 #elif !defined(SOLARIS)
 452   print_rlimit(st, ", NPROC", RLIMIT_NPROC);
 453 #endif
 454 
 455   print_rlimit(st, ", NOFILE", RLIMIT_NOFILE);
 456   print_rlimit(st, ", AS", RLIMIT_AS, true);
 457   print_rlimit(st, ", CPU", RLIMIT_CPU);
 458   print_rlimit(st, ", DATA", RLIMIT_DATA, true);
 459 
 460   // maximum size of files that the process may create
 461   print_rlimit(st, ", FSIZE", RLIMIT_FSIZE, true);
 462 
 463 #if defined(LINUX) || defined(__APPLE__)
 464   // maximum number of bytes of memory that may be locked into RAM
 465   // (rounded down to the nearest  multiple of system pagesize)
 466   print_rlimit(st, ", MEMLOCK", RLIMIT_MEMLOCK, true);
 467 #endif
 468 
 469 #if defined(SOLARIS)
 470   // maximum size of mapped address space of a process in bytes;
 471   // if the limit is exceeded, mmap and brk fail
 472   print_rlimit(st, ", VMEM", RLIMIT_VMEM, true);
 473 #endif
 474 
 475   // MacOS; The maximum size (in bytes) to which a process's resident set size may grow.
 476 #if defined(__APPLE__)
 477   print_rlimit(st, ", RSS", RLIMIT_RSS, true);
 478 #endif
 479 
 480   st->cr();
 481 }
 482 
 483 void os::Posix::print_uname_info(outputStream* st) {
 484   // kernel
 485   st->print("uname:");
 486   struct utsname name;
 487   uname(&name);
 488   st->print("%s ", name.sysname);
 489 #ifdef ASSERT
 490   st->print("%s ", name.nodename);
 491 #endif
 492   st->print("%s ", name.release);
 493   st->print("%s ", name.version);
 494   st->print("%s", name.machine);
 495   st->cr();
 496 }
 497 
 498 void os::Posix::print_umask(outputStream* st, mode_t umsk) {
 499   st->print((umsk & S_IRUSR) ? "r" : "-");
 500   st->print((umsk & S_IWUSR) ? "w" : "-");
 501   st->print((umsk & S_IXUSR) ? "x" : "-");
 502   st->print((umsk & S_IRGRP) ? "r" : "-");
 503   st->print((umsk & S_IWGRP) ? "w" : "-");
 504   st->print((umsk & S_IXGRP) ? "x" : "-");
 505   st->print((umsk & S_IROTH) ? "r" : "-");
 506   st->print((umsk & S_IWOTH) ? "w" : "-");
 507   st->print((umsk & S_IXOTH) ? "x" : "-");
 508 }
 509 
 510 void os::Posix::print_user_info(outputStream* st) {
 511   unsigned id = (unsigned) ::getuid();
 512   st->print("uid  : %u ", id);
 513   id = (unsigned) ::geteuid();
 514   st->print("euid : %u ", id);
 515   id = (unsigned) ::getgid();
 516   st->print("gid  : %u ", id);
 517   id = (unsigned) ::getegid();
 518   st->print_cr("egid : %u", id);
 519   st->cr();
 520 
 521   mode_t umsk = ::umask(0);
 522   ::umask(umsk);
 523   st->print("umask: %04o (", (unsigned) umsk);
 524   print_umask(st, umsk);
 525   st->print_cr(")");
 526   st->cr();
 527 }
 528 
 529 
 530 bool os::get_host_name(char* buf, size_t buflen) {
 531   struct utsname name;
 532   uname(&name);
 533   jio_snprintf(buf, buflen, "%s", name.nodename);
 534   return true;
 535 }
 536 
 537 bool os::has_allocatable_memory_limit(julong* limit) {
 538   struct rlimit rlim;
 539   int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
 540   // if there was an error when calling getrlimit, assume that there is no limitation
 541   // on virtual memory.
 542   bool result;
 543   if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
 544     result = false;
 545   } else {
 546     *limit = (julong)rlim.rlim_cur;
 547     result = true;
 548   }
 549 #ifdef _LP64
 550   return result;
 551 #else
 552   // arbitrary virtual space limit for 32 bit Unices found by testing. If
 553   // getrlimit above returned a limit, bound it with this limit. Otherwise
 554   // directly use it.
 555   const julong max_virtual_limit = (julong)3800*M;
 556   if (result) {
 557     *limit = MIN2(*limit, max_virtual_limit);
 558   } else {
 559     *limit = max_virtual_limit;
 560   }
 561 
 562   // bound by actually allocatable memory. The algorithm uses two bounds, an
 563   // upper and a lower limit. The upper limit is the current highest amount of
 564   // memory that could not be allocated, the lower limit is the current highest
 565   // amount of memory that could be allocated.
 566   // The algorithm iteratively refines the result by halving the difference
 567   // between these limits, updating either the upper limit (if that value could
 568   // not be allocated) or the lower limit (if the that value could be allocated)
 569   // until the difference between these limits is "small".
 570 
 571   // the minimum amount of memory we care about allocating.
 572   const julong min_allocation_size = M;
 573 
 574   julong upper_limit = *limit;
 575 
 576   // first check a few trivial cases
 577   if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
 578     *limit = upper_limit;
 579   } else if (!is_allocatable(min_allocation_size)) {
 580     // we found that not even min_allocation_size is allocatable. Return it
 581     // anyway. There is no point to search for a better value any more.
 582     *limit = min_allocation_size;
 583   } else {
 584     // perform the binary search.
 585     julong lower_limit = min_allocation_size;
 586     while ((upper_limit - lower_limit) > min_allocation_size) {
 587       julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
 588       temp_limit = align_down(temp_limit, min_allocation_size);
 589       if (is_allocatable(temp_limit)) {
 590         lower_limit = temp_limit;
 591       } else {
 592         upper_limit = temp_limit;
 593       }
 594     }
 595     *limit = lower_limit;
 596   }
 597   return true;
 598 #endif
 599 }
 600 
 601 const char* os::get_current_directory(char *buf, size_t buflen) {
 602   return getcwd(buf, buflen);
 603 }
 604 
 605 FILE* os::open(int fd, const char* mode) {
 606   return ::fdopen(fd, mode);
 607 }
 608 
 609 ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
 610   return ::pread(fd, buf, nBytes, offset);
 611 }
 612 
 613 void os::flockfile(FILE* fp) {
 614   ::flockfile(fp);
 615 }
 616 
 617 void os::funlockfile(FILE* fp) {
 618   ::funlockfile(fp);
 619 }
 620 
 621 DIR* os::opendir(const char* dirname) {
 622   assert(dirname != NULL, "just checking");
 623   return ::opendir(dirname);
 624 }
 625 
 626 struct dirent* os::readdir(DIR* dirp) {
 627   assert(dirp != NULL, "just checking");
 628   return ::readdir(dirp);
 629 }
 630 
 631 int os::closedir(DIR *dirp) {
 632   assert(dirp != NULL, "just checking");
 633   return ::closedir(dirp);
 634 }
 635 
 636 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
 637 // which is used to find statically linked in agents.
 638 // Parameters:
 639 //            sym_name: Symbol in library we are looking for
 640 //            lib_name: Name of library to look in, NULL for shared libs.
 641 //            is_absolute_path == true if lib_name is absolute path to agent
 642 //                                     such as "/a/b/libL.so"
 643 //            == false if only the base name of the library is passed in
 644 //               such as "L"
 645 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
 646                                     bool is_absolute_path) {
 647   char *agent_entry_name;
 648   size_t len;
 649   size_t name_len;
 650   size_t prefix_len = strlen(JNI_LIB_PREFIX);
 651   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
 652   const char *start;
 653 
 654   if (lib_name != NULL) {
 655     name_len = strlen(lib_name);
 656     if (is_absolute_path) {
 657       // Need to strip path, prefix and suffix
 658       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
 659         lib_name = ++start;
 660       }
 661       if (strlen(lib_name) <= (prefix_len + suffix_len)) {
 662         return NULL;
 663       }
 664       lib_name += prefix_len;
 665       name_len = strlen(lib_name) - suffix_len;
 666     }
 667   }
 668   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
 669   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
 670   if (agent_entry_name == NULL) {
 671     return NULL;
 672   }
 673   strcpy(agent_entry_name, sym_name);
 674   if (lib_name != NULL) {
 675     strcat(agent_entry_name, "_");
 676     strncat(agent_entry_name, lib_name, name_len);
 677   }
 678   return agent_entry_name;
 679 }
 680 
 681 
 682 void os::naked_short_nanosleep(jlong ns) {
 683   struct timespec req;
 684   assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
 685   req.tv_sec = 0;
 686   req.tv_nsec = ns;
 687   ::nanosleep(&req, NULL);
 688   return;
 689 }
 690 
 691 void os::naked_short_sleep(jlong ms) {
 692   assert(ms < MILLIUNITS, "Un-interruptable sleep, short time use only");
 693   os::naked_short_nanosleep(millis_to_nanos(ms));
 694   return;
 695 }
 696 
 697 static const struct {
 698   int sig; const char* name;
 699 }
 700  g_signal_info[] =
 701   {
 702   {  SIGABRT,     "SIGABRT" },
 703 #ifdef SIGAIO
 704   {  SIGAIO,      "SIGAIO" },
 705 #endif
 706   {  SIGALRM,     "SIGALRM" },
 707 #ifdef SIGALRM1
 708   {  SIGALRM1,    "SIGALRM1" },
 709 #endif
 710   {  SIGBUS,      "SIGBUS" },
 711 #ifdef SIGCANCEL
 712   {  SIGCANCEL,   "SIGCANCEL" },
 713 #endif
 714   {  SIGCHLD,     "SIGCHLD" },
 715 #ifdef SIGCLD
 716   {  SIGCLD,      "SIGCLD" },
 717 #endif
 718   {  SIGCONT,     "SIGCONT" },
 719 #ifdef SIGCPUFAIL
 720   {  SIGCPUFAIL,  "SIGCPUFAIL" },
 721 #endif
 722 #ifdef SIGDANGER
 723   {  SIGDANGER,   "SIGDANGER" },
 724 #endif
 725 #ifdef SIGDIL
 726   {  SIGDIL,      "SIGDIL" },
 727 #endif
 728 #ifdef SIGEMT
 729   {  SIGEMT,      "SIGEMT" },
 730 #endif
 731   {  SIGFPE,      "SIGFPE" },
 732 #ifdef SIGFREEZE
 733   {  SIGFREEZE,   "SIGFREEZE" },
 734 #endif
 735 #ifdef SIGGFAULT
 736   {  SIGGFAULT,   "SIGGFAULT" },
 737 #endif
 738 #ifdef SIGGRANT
 739   {  SIGGRANT,    "SIGGRANT" },
 740 #endif
 741   {  SIGHUP,      "SIGHUP" },
 742   {  SIGILL,      "SIGILL" },
 743 #ifdef SIGINFO
 744   {  SIGINFO,     "SIGINFO" },
 745 #endif
 746   {  SIGINT,      "SIGINT" },
 747 #ifdef SIGIO
 748   {  SIGIO,       "SIGIO" },
 749 #endif
 750 #ifdef SIGIOINT
 751   {  SIGIOINT,    "SIGIOINT" },
 752 #endif
 753 #ifdef SIGIOT
 754 // SIGIOT is there for BSD compatibility, but on most Unices just a
 755 // synonym for SIGABRT. The result should be "SIGABRT", not
 756 // "SIGIOT".
 757 #if (SIGIOT != SIGABRT )
 758   {  SIGIOT,      "SIGIOT" },
 759 #endif
 760 #endif
 761 #ifdef SIGKAP
 762   {  SIGKAP,      "SIGKAP" },
 763 #endif
 764   {  SIGKILL,     "SIGKILL" },
 765 #ifdef SIGLOST
 766   {  SIGLOST,     "SIGLOST" },
 767 #endif
 768 #ifdef SIGLWP
 769   {  SIGLWP,      "SIGLWP" },
 770 #endif
 771 #ifdef SIGLWPTIMER
 772   {  SIGLWPTIMER, "SIGLWPTIMER" },
 773 #endif
 774 #ifdef SIGMIGRATE
 775   {  SIGMIGRATE,  "SIGMIGRATE" },
 776 #endif
 777 #ifdef SIGMSG
 778   {  SIGMSG,      "SIGMSG" },
 779 #endif
 780   {  SIGPIPE,     "SIGPIPE" },
 781 #ifdef SIGPOLL
 782   {  SIGPOLL,     "SIGPOLL" },
 783 #endif
 784 #ifdef SIGPRE
 785   {  SIGPRE,      "SIGPRE" },
 786 #endif
 787   {  SIGPROF,     "SIGPROF" },
 788 #ifdef SIGPTY
 789   {  SIGPTY,      "SIGPTY" },
 790 #endif
 791 #ifdef SIGPWR
 792   {  SIGPWR,      "SIGPWR" },
 793 #endif
 794   {  SIGQUIT,     "SIGQUIT" },
 795 #ifdef SIGRECONFIG
 796   {  SIGRECONFIG, "SIGRECONFIG" },
 797 #endif
 798 #ifdef SIGRECOVERY
 799   {  SIGRECOVERY, "SIGRECOVERY" },
 800 #endif
 801 #ifdef SIGRESERVE
 802   {  SIGRESERVE,  "SIGRESERVE" },
 803 #endif
 804 #ifdef SIGRETRACT
 805   {  SIGRETRACT,  "SIGRETRACT" },
 806 #endif
 807 #ifdef SIGSAK
 808   {  SIGSAK,      "SIGSAK" },
 809 #endif
 810   {  SIGSEGV,     "SIGSEGV" },
 811 #ifdef SIGSOUND
 812   {  SIGSOUND,    "SIGSOUND" },
 813 #endif
 814 #ifdef SIGSTKFLT
 815   {  SIGSTKFLT,    "SIGSTKFLT" },
 816 #endif
 817   {  SIGSTOP,     "SIGSTOP" },
 818   {  SIGSYS,      "SIGSYS" },
 819 #ifdef SIGSYSERROR
 820   {  SIGSYSERROR, "SIGSYSERROR" },
 821 #endif
 822 #ifdef SIGTALRM
 823   {  SIGTALRM,    "SIGTALRM" },
 824 #endif
 825   {  SIGTERM,     "SIGTERM" },
 826 #ifdef SIGTHAW
 827   {  SIGTHAW,     "SIGTHAW" },
 828 #endif
 829   {  SIGTRAP,     "SIGTRAP" },
 830 #ifdef SIGTSTP
 831   {  SIGTSTP,     "SIGTSTP" },
 832 #endif
 833   {  SIGTTIN,     "SIGTTIN" },
 834   {  SIGTTOU,     "SIGTTOU" },
 835 #ifdef SIGURG
 836   {  SIGURG,      "SIGURG" },
 837 #endif
 838   {  SIGUSR1,     "SIGUSR1" },
 839   {  SIGUSR2,     "SIGUSR2" },
 840 #ifdef SIGVIRT
 841   {  SIGVIRT,     "SIGVIRT" },
 842 #endif
 843   {  SIGVTALRM,   "SIGVTALRM" },
 844 #ifdef SIGWAITING
 845   {  SIGWAITING,  "SIGWAITING" },
 846 #endif
 847 #ifdef SIGWINCH
 848   {  SIGWINCH,    "SIGWINCH" },
 849 #endif
 850 #ifdef SIGWINDOW
 851   {  SIGWINDOW,   "SIGWINDOW" },
 852 #endif
 853   {  SIGXCPU,     "SIGXCPU" },
 854   {  SIGXFSZ,     "SIGXFSZ" },
 855 #ifdef SIGXRES
 856   {  SIGXRES,     "SIGXRES" },
 857 #endif
 858   { -1, NULL }
 859 };
 860 
 861 // Returned string is a constant. For unknown signals "UNKNOWN" is returned.
 862 const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
 863 
 864   const char* ret = NULL;
 865 
 866 #ifdef SIGRTMIN
 867   if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
 868     if (sig == SIGRTMIN) {
 869       ret = "SIGRTMIN";
 870     } else if (sig == SIGRTMAX) {
 871       ret = "SIGRTMAX";
 872     } else {
 873       jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
 874       return out;
 875     }
 876   }
 877 #endif
 878 
 879   if (sig > 0) {
 880     for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 881       if (g_signal_info[idx].sig == sig) {
 882         ret = g_signal_info[idx].name;
 883         break;
 884       }
 885     }
 886   }
 887 
 888   if (!ret) {
 889     if (!is_valid_signal(sig)) {
 890       ret = "INVALID";
 891     } else {
 892       ret = "UNKNOWN";
 893     }
 894   }
 895 
 896   if (out && outlen > 0) {
 897     strncpy(out, ret, outlen);
 898     out[outlen - 1] = '\0';
 899   }
 900   return out;
 901 }
 902 
 903 int os::Posix::get_signal_number(const char* signal_name) {
 904   char tmp[30];
 905   const char* s = signal_name;
 906   if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
 907     jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
 908     s = tmp;
 909   }
 910   for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 911     if (strcmp(g_signal_info[idx].name, s) == 0) {
 912       return g_signal_info[idx].sig;
 913     }
 914   }
 915   return -1;
 916 }
 917 
 918 int os::get_signal_number(const char* signal_name) {
 919   return os::Posix::get_signal_number(signal_name);
 920 }
 921 
 922 // Returns true if signal number is valid.
 923 bool os::Posix::is_valid_signal(int sig) {
 924   // MacOS not really POSIX compliant: sigaddset does not return
 925   // an error for invalid signal numbers. However, MacOS does not
 926   // support real time signals and simply seems to have just 33
 927   // signals with no holes in the signal range.
 928 #ifdef __APPLE__
 929   return sig >= 1 && sig < NSIG;
 930 #else
 931   // Use sigaddset to check for signal validity.
 932   sigset_t set;
 933   sigemptyset(&set);
 934   if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
 935     return false;
 936   }
 937   return true;
 938 #endif
 939 }
 940 
 941 bool os::Posix::is_sig_ignored(int sig) {
 942   struct sigaction oact;
 943   sigaction(sig, (struct sigaction*)NULL, &oact);
 944   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 945                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 946   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 947     return true;
 948   } else {
 949     return false;
 950   }
 951 }
 952 
 953 // Returns:
 954 // NULL for an invalid signal number
 955 // "SIG<num>" for a valid but unknown signal number
 956 // signal name otherwise.
 957 const char* os::exception_name(int sig, char* buf, size_t size) {
 958   if (!os::Posix::is_valid_signal(sig)) {
 959     return NULL;
 960   }
 961   const char* const name = os::Posix::get_signal_name(sig, buf, size);
 962   if (strcmp(name, "UNKNOWN") == 0) {
 963     jio_snprintf(buf, size, "SIG%d", sig);
 964   }
 965   return buf;
 966 }
 967 
 968 #define NUM_IMPORTANT_SIGS 32
 969 // Returns one-line short description of a signal set in a user provided buffer.
 970 const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
 971   assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
 972   // Note: for shortness, just print out the first 32. That should
 973   // cover most of the useful ones, apart from realtime signals.
 974   for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
 975     const int rc = sigismember(set, sig);
 976     if (rc == -1 && errno == EINVAL) {
 977       buffer[sig-1] = '?';
 978     } else {
 979       buffer[sig-1] = rc == 0 ? '0' : '1';
 980     }
 981   }
 982   buffer[NUM_IMPORTANT_SIGS] = 0;
 983   return buffer;
 984 }
 985 
 986 // Prints one-line description of a signal set.
 987 void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
 988   char buf[NUM_IMPORTANT_SIGS + 1];
 989   os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
 990   st->print("%s", buf);
 991 }
 992 
 993 // Writes one-line description of a combination of sigaction.sa_flags into a user
 994 // provided buffer. Returns that buffer.
 995 const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
 996   char* p = buffer;
 997   size_t remaining = size;
 998   bool first = true;
 999   int idx = 0;
1000 
1001   assert(buffer, "invalid argument");
1002 
1003   if (size == 0) {
1004     return buffer;
1005   }
1006 
1007   strncpy(buffer, "none", size);
1008 
1009   const struct {
1010     // NB: i is an unsigned int here because SA_RESETHAND is on some
1011     // systems 0x80000000, which is implicitly unsigned.  Assignining
1012     // it to an int field would be an overflow in unsigned-to-signed
1013     // conversion.
1014     unsigned int i;
1015     const char* s;
1016   } flaginfo [] = {
1017     { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
1018     { SA_ONSTACK,   "SA_ONSTACK"   },
1019     { SA_RESETHAND, "SA_RESETHAND" },
1020     { SA_RESTART,   "SA_RESTART"   },
1021     { SA_SIGINFO,   "SA_SIGINFO"   },
1022     { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
1023     { SA_NODEFER,   "SA_NODEFER"   },
1024 #ifdef AIX
1025     { SA_ONSTACK,   "SA_ONSTACK"   },
1026     { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
1027 #endif
1028     { 0, NULL }
1029   };
1030 
1031   for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
1032     if (flags & flaginfo[idx].i) {
1033       if (first) {
1034         jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
1035         first = false;
1036       } else {
1037         jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
1038       }
1039       const size_t len = strlen(p);
1040       p += len;
1041       remaining -= len;
1042     }
1043   }
1044 
1045   buffer[size - 1] = '\0';
1046 
1047   return buffer;
1048 }
1049 
1050 // Prints one-line description of a combination of sigaction.sa_flags.
1051 void os::Posix::print_sa_flags(outputStream* st, int flags) {
1052   char buffer[0x100];
1053   os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
1054   st->print("%s", buffer);
1055 }
1056 
1057 // Helper function for os::Posix::print_siginfo_...():
1058 // return a textual description for signal code.
1059 struct enum_sigcode_desc_t {
1060   const char* s_name;
1061   const char* s_desc;
1062 };
1063 
1064 static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
1065 
1066   const struct {
1067     int sig; int code; const char* s_code; const char* s_desc;
1068   } t1 [] = {
1069     { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
1070     { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
1071     { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
1072     { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
1073     { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
1074     { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
1075     { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
1076     { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
1077 #if defined(IA64) && defined(LINUX)
1078     { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
1079     { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
1080 #endif
1081     { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
1082     { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
1083     { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
1084     { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
1085     { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
1086     { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
1087     { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
1088     { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
1089     { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
1090     { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
1091 #ifdef AIX
1092     // no explanation found what keyerr would be
1093     { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
1094 #endif
1095 #if defined(IA64) && !defined(AIX)
1096     { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
1097 #endif
1098 #if defined(__sparc) && defined(SOLARIS)
1099 // define Solaris Sparc M7 ADI SEGV signals
1100 #if !defined(SEGV_ACCADI)
1101 #define SEGV_ACCADI 3
1102 #endif
1103     { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
1104 #if !defined(SEGV_ACCDERR)
1105 #define SEGV_ACCDERR 4
1106 #endif
1107     { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
1108 #if !defined(SEGV_ACCPERR)
1109 #define SEGV_ACCPERR 5
1110 #endif
1111     { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
1112 #endif // defined(__sparc) && defined(SOLARIS)
1113     { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
1114     { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
1115     { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
1116     { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
1117     { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
1118     { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
1119     { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
1120     { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
1121     { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
1122     { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
1123     { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
1124 #ifdef SIGPOLL
1125     { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
1126     { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
1127     { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
1128     { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
1129     { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
1130 #endif
1131     { -1, -1, NULL, NULL }
1132   };
1133 
1134   // Codes valid in any signal context.
1135   const struct {
1136     int code; const char* s_code; const char* s_desc;
1137   } t2 [] = {
1138     { SI_USER,      "SI_USER",     "Signal sent by kill()." },
1139     { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
1140     { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
1141     { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
1142     { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
1143     // Linux specific
1144 #ifdef SI_TKILL
1145     { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
1146 #endif
1147 #ifdef SI_DETHREAD
1148     { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
1149 #endif
1150 #ifdef SI_KERNEL
1151     { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
1152 #endif
1153 #ifdef SI_SIGIO
1154     { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
1155 #endif
1156 
1157 #ifdef AIX
1158     { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
1159     { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
1160 #endif
1161 
1162 #ifdef __sun
1163     { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
1164     { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
1165     { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
1166 #endif
1167 
1168     { -1, NULL, NULL }
1169   };
1170 
1171   const char* s_code = NULL;
1172   const char* s_desc = NULL;
1173 
1174   for (int i = 0; t1[i].sig != -1; i ++) {
1175     if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
1176       s_code = t1[i].s_code;
1177       s_desc = t1[i].s_desc;
1178       break;
1179     }
1180   }
1181 
1182   if (s_code == NULL) {
1183     for (int i = 0; t2[i].s_code != NULL; i ++) {
1184       if (t2[i].code == si->si_code) {
1185         s_code = t2[i].s_code;
1186         s_desc = t2[i].s_desc;
1187       }
1188     }
1189   }
1190 
1191   if (s_code == NULL) {
1192     out->s_name = "unknown";
1193     out->s_desc = "unknown";
1194     return false;
1195   }
1196 
1197   out->s_name = s_code;
1198   out->s_desc = s_desc;
1199 
1200   return true;
1201 }
1202 
1203 bool os::signal_sent_by_kill(const void* siginfo) {
1204   const siginfo_t* const si = (const siginfo_t*)siginfo;
1205   return si->si_code == SI_USER || si->si_code == SI_QUEUE
1206 #ifdef SI_TKILL
1207          || si->si_code == SI_TKILL
1208 #endif
1209   ;
1210 }
1211 
1212 void os::print_siginfo(outputStream* os, const void* si0) {
1213 
1214   const siginfo_t* const si = (const siginfo_t*) si0;
1215 
1216   char buf[20];
1217   os->print("siginfo:");
1218 
1219   if (!si) {
1220     os->print(" <null>");
1221     return;
1222   }
1223 
1224   const int sig = si->si_signo;
1225 
1226   os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1227 
1228   enum_sigcode_desc_t ed;
1229   get_signal_code_description(si, &ed);
1230   os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1231 
1232   if (si->si_errno) {
1233     os->print(", si_errno: %d", si->si_errno);
1234   }
1235 
1236   // Output additional information depending on the signal code.
1237 
1238   // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1239   // so it depends on the context which member to use. For synchronous error signals,
1240   // we print si_addr, unless the signal was sent by another process or thread, in
1241   // which case we print out pid or tid of the sender.
1242   if (signal_sent_by_kill(si)) {
1243     const pid_t pid = si->si_pid;
1244     os->print(", si_pid: %ld", (long) pid);
1245     if (IS_VALID_PID(pid)) {
1246       const pid_t me = getpid();
1247       if (me == pid) {
1248         os->print(" (current process)");
1249       }
1250     } else {
1251       os->print(" (invalid)");
1252     }
1253     os->print(", si_uid: %ld", (long) si->si_uid);
1254     if (sig == SIGCHLD) {
1255       os->print(", si_status: %d", si->si_status);
1256     }
1257   } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1258              sig == SIGTRAP || sig == SIGFPE) {
1259     os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1260 #ifdef SIGPOLL
1261   } else if (sig == SIGPOLL) {
1262     os->print(", si_band: %ld", si->si_band);
1263 #endif
1264   }
1265 
1266 }
1267 
1268 bool os::signal_thread(Thread* thread, int sig, const char* reason) {
1269   OSThread* osthread = thread->osthread();
1270   if (osthread) {
1271 #if defined (SOLARIS)
1272     // Note: we cannot use pthread_kill on Solaris - not because
1273     // its missing, but because we do not have the pthread_t id.
1274     int status = thr_kill(osthread->thread_id(), sig);
1275 #else
1276     int status = pthread_kill(osthread->pthread_id(), sig);
1277 #endif
1278     if (status == 0) {
1279       Events::log(Thread::current(), "sent signal %d to Thread " INTPTR_FORMAT " because %s.",
1280                   sig, p2i(thread), reason);
1281       return true;
1282     }
1283   }
1284   return false;
1285 }
1286 
1287 int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1288   return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1289 }
1290 
1291 address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1292 #if defined(AIX)
1293    return Aix::ucontext_get_pc(ctx);
1294 #elif defined(BSD)
1295    return Bsd::ucontext_get_pc(ctx);
1296 #elif defined(LINUX)
1297    return Linux::ucontext_get_pc(ctx);
1298 #elif defined(SOLARIS)
1299    return Solaris::ucontext_get_pc(ctx);
1300 #else
1301    VMError::report_and_die("unimplemented ucontext_get_pc");
1302 #endif
1303 }
1304 
1305 void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1306 #if defined(AIX)
1307    Aix::ucontext_set_pc(ctx, pc);
1308 #elif defined(BSD)
1309    Bsd::ucontext_set_pc(ctx, pc);
1310 #elif defined(LINUX)
1311    Linux::ucontext_set_pc(ctx, pc);
1312 #elif defined(SOLARIS)
1313    Solaris::ucontext_set_pc(ctx, pc);
1314 #else
1315    VMError::report_and_die("unimplemented ucontext_get_pc");
1316 #endif
1317 }
1318 
1319 char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
1320   size_t stack_size = 0;
1321   size_t guard_size = 0;
1322   int detachstate = 0;
1323   pthread_attr_getstacksize(attr, &stack_size);
1324   pthread_attr_getguardsize(attr, &guard_size);
1325   // Work around linux NPTL implementation error, see also os::create_thread() in os_linux.cpp.
1326   LINUX_ONLY(stack_size -= guard_size);
1327   pthread_attr_getdetachstate(attr, &detachstate);
1328   jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
1329     stack_size / 1024, guard_size / 1024,
1330     (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
1331   return buf;
1332 }
1333 
1334 char* os::Posix::realpath(const char* filename, char* outbuf, size_t outbuflen) {
1335 
1336   if (filename == NULL || outbuf == NULL || outbuflen < 1) {
1337     assert(false, "os::Posix::realpath: invalid arguments.");
1338     errno = EINVAL;
1339     return NULL;
1340   }
1341 
1342   char* result = NULL;
1343 
1344   // This assumes platform realpath() is implemented according to POSIX.1-2008.
1345   // POSIX.1-2008 allows to specify NULL for the output buffer, in which case
1346   // output buffer is dynamically allocated and must be ::free()'d by the caller.
1347   char* p = ::realpath(filename, NULL);
1348   if (p != NULL) {
1349     if (strlen(p) < outbuflen) {
1350       strcpy(outbuf, p);
1351       result = outbuf;
1352     } else {
1353       errno = ENAMETOOLONG;
1354     }
1355     ::free(p); // *not* os::free
1356   } else {
1357     // Fallback for platforms struggling with modern Posix standards (AIX 5.3, 6.1). If realpath
1358     // returns EINVAL, this may indicate that realpath is not POSIX.1-2008 compatible and
1359     // that it complains about the NULL we handed down as user buffer.
1360     // In this case, use the user provided buffer but at least check whether realpath caused
1361     // a memory overwrite.
1362     if (errno == EINVAL) {
1363       outbuf[outbuflen - 1] = '\0';
1364       p = ::realpath(filename, outbuf);
1365       if (p != NULL) {
1366         guarantee(outbuf[outbuflen - 1] == '\0', "realpath buffer overwrite detected.");
1367         result = p;
1368       }
1369     }
1370   }
1371   return result;
1372 
1373 }
1374 
1375 int os::stat(const char *path, struct stat *sbuf) {
1376   return ::stat(path, sbuf);
1377 }
1378 
1379 char * os::native_path(char *path) {
1380   return path;
1381 }
1382 
1383 bool os::same_files(const char* file1, const char* file2) {
1384   if (strcmp(file1, file2) == 0) {
1385     return true;
1386   }
1387 
1388   bool is_same = false;
1389   struct stat st1;
1390   struct stat st2;
1391 
1392   if (os::stat(file1, &st1) < 0) {
1393     return false;
1394   }
1395 
1396   if (os::stat(file2, &st2) < 0) {
1397     return false;
1398   }
1399 
1400   if (st1.st_dev == st2.st_dev && st1.st_ino == st2.st_ino) {
1401     // same files
1402     is_same = true;
1403   }
1404   return is_same;
1405 }
1406 
1407 // Check minimum allowable stack sizes for thread creation and to initialize
1408 // the java system classes, including StackOverflowError - depends on page
1409 // size.
1410 // The space needed for frames during startup is platform dependent. It
1411 // depends on word size, platform calling conventions, C frame layout and
1412 // interpreter/C1/C2 design decisions. Therefore this is given in a
1413 // platform (os/cpu) dependent constant.
1414 // To this, space for guard mechanisms is added, which depends on the
1415 // page size which again depends on the concrete system the VM is running
1416 // on. Space for libc guard pages is not included in this size.
1417 jint os::Posix::set_minimum_stack_sizes() {
1418   size_t os_min_stack_allowed = SOLARIS_ONLY(thr_min_stack()) NOT_SOLARIS(PTHREAD_STACK_MIN);
1419 
1420   _java_thread_min_stack_allowed = _java_thread_min_stack_allowed +
1421                                    JavaThread::stack_guard_zone_size() +
1422                                    JavaThread::stack_shadow_zone_size();
1423 
1424   _java_thread_min_stack_allowed = align_up(_java_thread_min_stack_allowed, vm_page_size());
1425   _java_thread_min_stack_allowed = MAX2(_java_thread_min_stack_allowed, os_min_stack_allowed);
1426 
1427   size_t stack_size_in_bytes = ThreadStackSize * K;
1428   if (stack_size_in_bytes != 0 &&
1429       stack_size_in_bytes < _java_thread_min_stack_allowed) {
1430     // The '-Xss' and '-XX:ThreadStackSize=N' options both set
1431     // ThreadStackSize so we go with "Java thread stack size" instead
1432     // of "ThreadStackSize" to be more friendly.
1433     tty->print_cr("\nThe Java thread stack size specified is too small. "
1434                   "Specify at least " SIZE_FORMAT "k",
1435                   _java_thread_min_stack_allowed / K);
1436     return JNI_ERR;
1437   }
1438 
1439   // Make the stack size a multiple of the page size so that
1440   // the yellow/red zones can be guarded.
1441   JavaThread::set_stack_size_at_create(align_up(stack_size_in_bytes, vm_page_size()));
1442 
1443   // Reminder: a compiler thread is a Java thread.
1444   _compiler_thread_min_stack_allowed = _compiler_thread_min_stack_allowed +
1445                                        JavaThread::stack_guard_zone_size() +
1446                                        JavaThread::stack_shadow_zone_size();
1447 
1448   _compiler_thread_min_stack_allowed = align_up(_compiler_thread_min_stack_allowed, vm_page_size());
1449   _compiler_thread_min_stack_allowed = MAX2(_compiler_thread_min_stack_allowed, os_min_stack_allowed);
1450 
1451   stack_size_in_bytes = CompilerThreadStackSize * K;
1452   if (stack_size_in_bytes != 0 &&
1453       stack_size_in_bytes < _compiler_thread_min_stack_allowed) {
1454     tty->print_cr("\nThe CompilerThreadStackSize specified is too small. "
1455                   "Specify at least " SIZE_FORMAT "k",
1456                   _compiler_thread_min_stack_allowed / K);
1457     return JNI_ERR;
1458   }
1459 
1460   _vm_internal_thread_min_stack_allowed = align_up(_vm_internal_thread_min_stack_allowed, vm_page_size());
1461   _vm_internal_thread_min_stack_allowed = MAX2(_vm_internal_thread_min_stack_allowed, os_min_stack_allowed);
1462 
1463   stack_size_in_bytes = VMThreadStackSize * K;
1464   if (stack_size_in_bytes != 0 &&
1465       stack_size_in_bytes < _vm_internal_thread_min_stack_allowed) {
1466     tty->print_cr("\nThe VMThreadStackSize specified is too small. "
1467                   "Specify at least " SIZE_FORMAT "k",
1468                   _vm_internal_thread_min_stack_allowed / K);
1469     return JNI_ERR;
1470   }
1471   return JNI_OK;
1472 }
1473 
1474 // Called when creating the thread.  The minimum stack sizes have already been calculated
1475 size_t os::Posix::get_initial_stack_size(ThreadType thr_type, size_t req_stack_size) {
1476   size_t stack_size;
1477   if (req_stack_size == 0) {
1478     stack_size = default_stack_size(thr_type);
1479   } else {
1480     stack_size = req_stack_size;
1481   }
1482 
1483   switch (thr_type) {
1484   case os::java_thread:
1485     // Java threads use ThreadStackSize which default value can be
1486     // changed with the flag -Xss
1487     if (req_stack_size == 0 && JavaThread::stack_size_at_create() > 0) {
1488       // no requested size and we have a more specific default value
1489       stack_size = JavaThread::stack_size_at_create();
1490     }
1491     stack_size = MAX2(stack_size,
1492                       _java_thread_min_stack_allowed);
1493     break;
1494   case os::compiler_thread:
1495     if (req_stack_size == 0 && CompilerThreadStackSize > 0) {
1496       // no requested size and we have a more specific default value
1497       stack_size = (size_t)(CompilerThreadStackSize * K);
1498     }
1499     stack_size = MAX2(stack_size,
1500                       _compiler_thread_min_stack_allowed);
1501     break;
1502   case os::vm_thread:
1503   case os::pgc_thread:
1504   case os::cgc_thread:
1505   case os::watcher_thread:
1506   default:  // presume the unknown thr_type is a VM internal
1507     if (req_stack_size == 0 && VMThreadStackSize > 0) {
1508       // no requested size and we have a more specific default value
1509       stack_size = (size_t)(VMThreadStackSize * K);
1510     }
1511 
1512     stack_size = MAX2(stack_size,
1513                       _vm_internal_thread_min_stack_allowed);
1514     break;
1515   }
1516 
1517   // pthread_attr_setstacksize() may require that the size be rounded up to the OS page size.
1518   // Be careful not to round up to 0. Align down in that case.
1519   if (stack_size <= SIZE_MAX - vm_page_size()) {
1520     stack_size = align_up(stack_size, vm_page_size());
1521   } else {
1522     stack_size = align_down(stack_size, vm_page_size());
1523   }
1524 
1525   return stack_size;
1526 }
1527 
1528 bool os::Posix::is_root(uid_t uid){
1529     return ROOT_UID == uid;
1530 }
1531 
1532 bool os::Posix::matches_effective_uid_or_root(uid_t uid) {
1533     return is_root(uid) || geteuid() == uid;
1534 }
1535 
1536 bool os::Posix::matches_effective_uid_and_gid_or_root(uid_t uid, gid_t gid) {
1537     return is_root(uid) || (geteuid() == uid && getegid() == gid);
1538 }
1539 
1540 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
1541 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
1542 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
1543 
1544 os::ThreadCrashProtection::ThreadCrashProtection() {
1545 }
1546 
1547 /*
1548  * See the caveats for this class in os_posix.hpp
1549  * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1550  * method and returns false. If none of the signals are raised, returns true.
1551  * The callback is supposed to provide the method that should be protected.
1552  */
1553 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1554   sigset_t saved_sig_mask;
1555 
1556   Thread::muxAcquire(&_crash_mux, "CrashProtection");
1557 
1558   _protected_thread = Thread::current_or_null();
1559   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
1560 
1561   // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1562   // since on at least some systems (OS X) siglongjmp will restore the mask
1563   // for the process, not the thread
1564   pthread_sigmask(0, NULL, &saved_sig_mask);
1565   if (sigsetjmp(_jmpbuf, 0) == 0) {
1566     // make sure we can see in the signal handler that we have crash protection
1567     // installed
1568     _crash_protection = this;
1569     cb.call();
1570     // and clear the crash protection
1571     _crash_protection = NULL;
1572     _protected_thread = NULL;
1573     Thread::muxRelease(&_crash_mux);
1574     return true;
1575   }
1576   // this happens when we siglongjmp() back
1577   pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1578   _crash_protection = NULL;
1579   _protected_thread = NULL;
1580   Thread::muxRelease(&_crash_mux);
1581   return false;
1582 }
1583 
1584 void os::ThreadCrashProtection::restore() {
1585   assert(_crash_protection != NULL, "must have crash protection");
1586   siglongjmp(_jmpbuf, 1);
1587 }
1588 
1589 void os::ThreadCrashProtection::check_crash_protection(int sig,
1590     Thread* thread) {
1591 
1592   if (thread != NULL &&
1593       thread == _protected_thread &&
1594       _crash_protection != NULL) {
1595 
1596     if (sig == SIGSEGV || sig == SIGBUS) {
1597       _crash_protection->restore();
1598     }
1599   }
1600 }
1601 
1602 // Shared clock/time and other supporting routines for pthread_mutex/cond
1603 // initialization. This is enabled on Solaris but only some of the clock/time
1604 // functionality is actually used there.
1605 
1606 // Shared condattr object for use with relative timed-waits. Will be associated
1607 // with CLOCK_MONOTONIC if available to avoid issues with time-of-day changes,
1608 // but otherwise whatever default is used by the platform - generally the
1609 // time-of-day clock.
1610 static pthread_condattr_t _condAttr[1];
1611 
1612 // Shared mutexattr to explicitly set the type to PTHREAD_MUTEX_NORMAL as not
1613 // all systems (e.g. FreeBSD) map the default to "normal".
1614 static pthread_mutexattr_t _mutexAttr[1];
1615 
1616 // common basic initialization that is always supported
1617 static void pthread_init_common(void) {
1618   int status;
1619   if ((status = pthread_condattr_init(_condAttr)) != 0) {
1620     fatal("pthread_condattr_init: %s", os::strerror(status));
1621   }
1622   if ((status = pthread_mutexattr_init(_mutexAttr)) != 0) {
1623     fatal("pthread_mutexattr_init: %s", os::strerror(status));
1624   }
1625   if ((status = pthread_mutexattr_settype(_mutexAttr, PTHREAD_MUTEX_NORMAL)) != 0) {
1626     fatal("pthread_mutexattr_settype: %s", os::strerror(status));
1627   }
1628   // Solaris has it's own PlatformMutex, distinct from the one for POSIX.
1629   NOT_SOLARIS(os::PlatformMutex::init();)
1630 }
1631 
1632 #ifndef SOLARIS
1633 sigset_t sigs;
1634 struct sigaction sigact[NSIG];
1635 
1636 struct sigaction* os::Posix::get_preinstalled_handler(int sig) {
1637   if (sigismember(&sigs, sig)) {
1638     return &sigact[sig];
1639   }
1640   return NULL;
1641 }
1642 
1643 void os::Posix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
1644   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
1645   sigact[sig] = oldAct;
1646   sigaddset(&sigs, sig);
1647 }
1648 #endif
1649 
1650 // Not all POSIX types and API's are available on all notionally "posix"
1651 // platforms. If we have build-time support then we will check for actual
1652 // runtime support via dlopen/dlsym lookup. This allows for running on an
1653 // older OS version compared to the build platform. But if there is no
1654 // build time support then there cannot be any runtime support as we do not
1655 // know what the runtime types would be (for example clockid_t might be an
1656 // int or int64_t).
1657 //
1658 #ifdef SUPPORTS_CLOCK_MONOTONIC
1659 
1660 // This means we have clockid_t, clock_gettime et al and CLOCK_MONOTONIC
1661 
1662 int (*os::Posix::_clock_gettime)(clockid_t, struct timespec *) = NULL;
1663 int (*os::Posix::_clock_getres)(clockid_t, struct timespec *) = NULL;
1664 
1665 static int (*_pthread_condattr_setclock)(pthread_condattr_t *, clockid_t) = NULL;
1666 
1667 static bool _use_clock_monotonic_condattr = false;
1668 
1669 // Determine what POSIX API's are present and do appropriate
1670 // configuration.
1671 void os::Posix::init(void) {
1672 
1673   // NOTE: no logging available when this is called. Put logging
1674   // statements in init_2().
1675 
1676   // 1. Check for CLOCK_MONOTONIC support.
1677 
1678   void* handle = NULL;
1679 
1680   // For linux we need librt, for other OS we can find
1681   // this function in regular libc.
1682 #ifdef NEEDS_LIBRT
1683   // We do dlopen's in this particular order due to bug in linux
1684   // dynamic loader (see 6348968) leading to crash on exit.
1685   handle = dlopen("librt.so.1", RTLD_LAZY);
1686   if (handle == NULL) {
1687     handle = dlopen("librt.so", RTLD_LAZY);
1688   }
1689 #endif
1690 
1691   if (handle == NULL) {
1692     handle = RTLD_DEFAULT;
1693   }
1694 
1695   int (*clock_getres_func)(clockid_t, struct timespec*) =
1696     (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1697   int (*clock_gettime_func)(clockid_t, struct timespec*) =
1698     (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1699   if (clock_getres_func != NULL && clock_gettime_func != NULL) {
1700     // We assume that if both clock_gettime and clock_getres support
1701     // CLOCK_MONOTONIC then the OS provides true high-res monotonic clock.
1702     struct timespec res;
1703     struct timespec tp;
1704     if (clock_getres_func(CLOCK_MONOTONIC, &res) == 0 &&
1705         clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
1706       // Yes, monotonic clock is supported.
1707       _clock_gettime = clock_gettime_func;
1708       _clock_getres = clock_getres_func;
1709     } else {
1710 #ifdef NEEDS_LIBRT
1711       // Close librt if there is no monotonic clock.
1712       if (handle != RTLD_DEFAULT) {
1713         dlclose(handle);
1714       }
1715 #endif
1716     }
1717   }
1718 
1719   // 2. Check for pthread_condattr_setclock support.
1720 
1721   // libpthread is already loaded.
1722   int (*condattr_setclock_func)(pthread_condattr_t*, clockid_t) =
1723     (int (*)(pthread_condattr_t*, clockid_t))dlsym(RTLD_DEFAULT,
1724                                                    "pthread_condattr_setclock");
1725   if (condattr_setclock_func != NULL) {
1726     _pthread_condattr_setclock = condattr_setclock_func;
1727   }
1728 
1729   // Now do general initialization.
1730 
1731   pthread_init_common();
1732 
1733 #ifndef SOLARIS
1734   int status;
1735   if (_pthread_condattr_setclock != NULL && _clock_gettime != NULL) {
1736     if ((status = _pthread_condattr_setclock(_condAttr, CLOCK_MONOTONIC)) != 0) {
1737       if (status == EINVAL) {
1738         _use_clock_monotonic_condattr = false;
1739         warning("Unable to use monotonic clock with relative timed-waits" \
1740                 " - changes to the time-of-day clock may have adverse affects");
1741       } else {
1742         fatal("pthread_condattr_setclock: %s", os::strerror(status));
1743       }
1744     } else {
1745       _use_clock_monotonic_condattr = true;
1746     }
1747   }
1748 #endif // !SOLARIS
1749 
1750 }
1751 
1752 void os::Posix::init_2(void) {
1753 #ifndef SOLARIS
1754   log_info(os)("Use of CLOCK_MONOTONIC is%s supported",
1755                (_clock_gettime != NULL ? "" : " not"));
1756   log_info(os)("Use of pthread_condattr_setclock is%s supported",
1757                (_pthread_condattr_setclock != NULL ? "" : " not"));
1758   log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with %s",
1759                _use_clock_monotonic_condattr ? "CLOCK_MONOTONIC" : "the default clock");
1760   sigemptyset(&sigs);
1761 #endif // !SOLARIS
1762 }
1763 
1764 #else // !SUPPORTS_CLOCK_MONOTONIC
1765 
1766 void os::Posix::init(void) {
1767   pthread_init_common();
1768 }
1769 
1770 void os::Posix::init_2(void) {
1771 #ifndef SOLARIS
1772   log_info(os)("Use of CLOCK_MONOTONIC is not supported");
1773   log_info(os)("Use of pthread_condattr_setclock is not supported");
1774   log_info(os)("Relative timed-wait using pthread_cond_timedwait is associated with the default clock");
1775   sigemptyset(&sigs);
1776 #endif // !SOLARIS
1777 }
1778 
1779 #endif // SUPPORTS_CLOCK_MONOTONIC
1780 
1781 // Utility to convert the given timeout to an absolute timespec
1782 // (based on the appropriate clock) to use with pthread_cond_timewait,
1783 // and sem_timedwait().
1784 // The clock queried here must be the clock used to manage the
1785 // timeout of the condition variable or semaphore.
1786 //
1787 // The passed in timeout value is either a relative time in nanoseconds
1788 // or an absolute time in milliseconds. A relative timeout will be
1789 // associated with CLOCK_MONOTONIC if available, unless the real-time clock
1790 // is explicitly requested; otherwise, or if absolute,
1791 // the default time-of-day clock will be used.
1792 
1793 // Given time is a 64-bit value and the time_t used in the timespec is
1794 // sometimes a signed-32-bit value we have to watch for overflow if times
1795 // way in the future are given. Further on Solaris versions
1796 // prior to 10 there is a restriction (see cond_timedwait) that the specified
1797 // number of seconds, in abstime, is less than current_time + 100000000.
1798 // As it will be over 20 years before "now + 100000000" will overflow we can
1799 // ignore overflow and just impose a hard-limit on seconds using the value
1800 // of "now + 100000000". This places a limit on the timeout of about 3.17
1801 // years from "now".
1802 //
1803 #define MAX_SECS 100000000
1804 
1805 // Calculate a new absolute time that is "timeout" nanoseconds from "now".
1806 // "unit" indicates the unit of "now_part_sec" (may be nanos or micros depending
1807 // on which clock API is being used).
1808 static void calc_rel_time(timespec* abstime, jlong timeout, jlong now_sec,
1809                           jlong now_part_sec, jlong unit) {
1810   time_t max_secs = now_sec + MAX_SECS;
1811 
1812   jlong seconds = timeout / NANOUNITS;
1813   timeout %= NANOUNITS; // remaining nanos
1814 
1815   if (seconds >= MAX_SECS) {
1816     // More seconds than we can add, so pin to max_secs.
1817     abstime->tv_sec = max_secs;
1818     abstime->tv_nsec = 0;
1819   } else {
1820     abstime->tv_sec = now_sec  + seconds;
1821     long nanos = (now_part_sec * (NANOUNITS / unit)) + timeout;
1822     if (nanos >= NANOUNITS) { // overflow
1823       abstime->tv_sec += 1;
1824       nanos -= NANOUNITS;
1825     }
1826     abstime->tv_nsec = nanos;
1827   }
1828 }
1829 
1830 // Unpack the given deadline in milliseconds since the epoch, into the given timespec.
1831 // The current time in seconds is also passed in to enforce an upper bound as discussed above.
1832 // This is only used with gettimeofday, when clock_gettime is not available.
1833 static void unpack_abs_time(timespec* abstime, jlong deadline, jlong now_sec) {
1834   time_t max_secs = now_sec + MAX_SECS;
1835 
1836   jlong seconds = deadline / MILLIUNITS;
1837   jlong millis = deadline % MILLIUNITS;
1838 
1839   if (seconds >= max_secs) {
1840     // Absolute seconds exceeds allowed max, so pin to max_secs.
1841     abstime->tv_sec = max_secs;
1842     abstime->tv_nsec = 0;
1843   } else {
1844     abstime->tv_sec = seconds;
1845     abstime->tv_nsec = millis_to_nanos(millis);
1846   }
1847 }
1848 
1849 static jlong millis_to_nanos_bounded(jlong millis) {
1850   // We have to watch for overflow when converting millis to nanos,
1851   // but if millis is that large then we will end up limiting to
1852   // MAX_SECS anyway, so just do that here.
1853   if (millis / MILLIUNITS > MAX_SECS) {
1854     millis = jlong(MAX_SECS) * MILLIUNITS;
1855   }
1856   return millis_to_nanos(millis);
1857 }
1858 
1859 static void to_abstime(timespec* abstime, jlong timeout,
1860                        bool isAbsolute, bool isRealtime) {
1861   DEBUG_ONLY(int max_secs = MAX_SECS;)
1862 
1863   if (timeout < 0) {
1864     timeout = 0;
1865   }
1866 
1867 #ifdef SUPPORTS_CLOCK_MONOTONIC
1868 
1869   clockid_t clock = CLOCK_MONOTONIC;
1870   // need to ensure we have a runtime check for clock_gettime support
1871   if (!isAbsolute && os::Posix::supports_monotonic_clock()) {
1872     if (!_use_clock_monotonic_condattr || isRealtime) {
1873       clock = CLOCK_REALTIME;
1874     }
1875     struct timespec now;
1876     int status = os::Posix::clock_gettime(clock, &now);
1877     assert_status(status == 0, status, "clock_gettime");
1878     calc_rel_time(abstime, timeout, now.tv_sec, now.tv_nsec, NANOUNITS);
1879     DEBUG_ONLY(max_secs += now.tv_sec;)
1880   } else {
1881 
1882 #else
1883 
1884   { // Match the block scope.
1885 
1886 #endif // SUPPORTS_CLOCK_MONOTONIC
1887 
1888     // Time-of-day clock is all we can reliably use.
1889     struct timeval now;
1890     int status = gettimeofday(&now, NULL);
1891     assert_status(status == 0, errno, "gettimeofday");
1892     if (isAbsolute) {
1893       unpack_abs_time(abstime, timeout, now.tv_sec);
1894     } else {
1895       calc_rel_time(abstime, timeout, now.tv_sec, now.tv_usec, MICROUNITS);
1896     }
1897     DEBUG_ONLY(max_secs += now.tv_sec;)
1898   }
1899 
1900   assert(abstime->tv_sec >= 0, "tv_sec < 0");
1901   assert(abstime->tv_sec <= max_secs, "tv_sec > max_secs");
1902   assert(abstime->tv_nsec >= 0, "tv_nsec < 0");
1903   assert(abstime->tv_nsec < NANOUNITS, "tv_nsec >= NANOUNITS");
1904 }
1905 
1906 // Create an absolute time 'millis' milliseconds in the future, using the
1907 // real-time (time-of-day) clock. Used by PosixSemaphore.
1908 void os::Posix::to_RTC_abstime(timespec* abstime, int64_t millis) {
1909   to_abstime(abstime, millis_to_nanos_bounded(millis),
1910              false /* not absolute */,
1911              true  /* use real-time clock */);
1912 }
1913 
1914 // Shared pthread_mutex/cond based PlatformEvent implementation.
1915 // Not currently usable by Solaris.
1916 
1917 #ifndef SOLARIS
1918 
1919 // PlatformEvent
1920 //
1921 // Assumption:
1922 //    Only one parker can exist on an event, which is why we allocate
1923 //    them per-thread. Multiple unparkers can coexist.
1924 //
1925 // _event serves as a restricted-range semaphore.
1926 //   -1 : thread is blocked, i.e. there is a waiter
1927 //    0 : neutral: thread is running or ready,
1928 //        could have been signaled after a wait started
1929 //    1 : signaled - thread is running or ready
1930 //
1931 //    Having three states allows for some detection of bad usage - see
1932 //    comments on unpark().
1933 
1934 os::PlatformEvent::PlatformEvent() {
1935   int status = pthread_cond_init(_cond, _condAttr);
1936   assert_status(status == 0, status, "cond_init");
1937   status = pthread_mutex_init(_mutex, _mutexAttr);
1938   assert_status(status == 0, status, "mutex_init");
1939   _event   = 0;
1940   _nParked = 0;
1941 }
1942 
1943 void os::PlatformEvent::park() {       // AKA "down()"
1944   // Transitions for _event:
1945   //   -1 => -1 : illegal
1946   //    1 =>  0 : pass - return immediately
1947   //    0 => -1 : block; then set _event to 0 before returning
1948 
1949   // Invariant: Only the thread associated with the PlatformEvent
1950   // may call park().
1951   assert(_nParked == 0, "invariant");
1952 
1953   int v;
1954 
1955   // atomically decrement _event
1956   for (;;) {
1957     v = _event;
1958     if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
1959   }
1960   guarantee(v >= 0, "invariant");
1961 
1962   if (v == 0) { // Do this the hard way by blocking ...
1963     int status = pthread_mutex_lock(_mutex);
1964     assert_status(status == 0, status, "mutex_lock");
1965     guarantee(_nParked == 0, "invariant");
1966     ++_nParked;
1967     while (_event < 0) {
1968       // OS-level "spurious wakeups" are ignored
1969       status = pthread_cond_wait(_cond, _mutex);
1970       assert_status(status == 0, status, "cond_wait");
1971     }
1972     --_nParked;
1973 
1974     _event = 0;
1975     status = pthread_mutex_unlock(_mutex);
1976     assert_status(status == 0, status, "mutex_unlock");
1977     // Paranoia to ensure our locked and lock-free paths interact
1978     // correctly with each other.
1979     OrderAccess::fence();
1980   }
1981   guarantee(_event >= 0, "invariant");
1982 }
1983 
1984 int os::PlatformEvent::park(jlong millis) {
1985   // Transitions for _event:
1986   //   -1 => -1 : illegal
1987   //    1 =>  0 : pass - return immediately
1988   //    0 => -1 : block; then set _event to 0 before returning
1989 
1990   // Invariant: Only the thread associated with the Event/PlatformEvent
1991   // may call park().
1992   assert(_nParked == 0, "invariant");
1993 
1994   int v;
1995   // atomically decrement _event
1996   for (;;) {
1997     v = _event;
1998     if (Atomic::cmpxchg(&_event, v, v - 1) == v) break;
1999   }
2000   guarantee(v >= 0, "invariant");
2001 
2002   if (v == 0) { // Do this the hard way by blocking ...
2003     struct timespec abst;
2004     to_abstime(&abst, millis_to_nanos_bounded(millis), false, false);
2005 
2006     int ret = OS_TIMEOUT;
2007     int status = pthread_mutex_lock(_mutex);
2008     assert_status(status == 0, status, "mutex_lock");
2009     guarantee(_nParked == 0, "invariant");
2010     ++_nParked;
2011 
2012     while (_event < 0) {
2013       status = pthread_cond_timedwait(_cond, _mutex, &abst);
2014       assert_status(status == 0 || status == ETIMEDOUT,
2015                     status, "cond_timedwait");
2016       // OS-level "spurious wakeups" are ignored unless the archaic
2017       // FilterSpuriousWakeups is set false. That flag should be obsoleted.
2018       if (!FilterSpuriousWakeups) break;
2019       if (status == ETIMEDOUT) break;
2020     }
2021     --_nParked;
2022 
2023     if (_event >= 0) {
2024       ret = OS_OK;
2025     }
2026 
2027     _event = 0;
2028     status = pthread_mutex_unlock(_mutex);
2029     assert_status(status == 0, status, "mutex_unlock");
2030     // Paranoia to ensure our locked and lock-free paths interact
2031     // correctly with each other.
2032     OrderAccess::fence();
2033     return ret;
2034   }
2035   return OS_OK;
2036 }
2037 
2038 void os::PlatformEvent::unpark() {
2039   // Transitions for _event:
2040   //    0 => 1 : just return
2041   //    1 => 1 : just return
2042   //   -1 => either 0 or 1; must signal target thread
2043   //         That is, we can safely transition _event from -1 to either
2044   //         0 or 1.
2045   // See also: "Semaphores in Plan 9" by Mullender & Cox
2046   //
2047   // Note: Forcing a transition from "-1" to "1" on an unpark() means
2048   // that it will take two back-to-back park() calls for the owning
2049   // thread to block. This has the benefit of forcing a spurious return
2050   // from the first park() call after an unpark() call which will help
2051   // shake out uses of park() and unpark() without checking state conditions
2052   // properly. This spurious return doesn't manifest itself in any user code
2053   // but only in the correctly written condition checking loops of ObjectMonitor,
2054   // Mutex/Monitor, Thread::muxAcquire and JavaThread::sleep
2055 
2056   if (Atomic::xchg(&_event, 1) >= 0) return;
2057 
2058   int status = pthread_mutex_lock(_mutex);
2059   assert_status(status == 0, status, "mutex_lock");
2060   int anyWaiters = _nParked;
2061   assert(anyWaiters == 0 || anyWaiters == 1, "invariant");
2062   status = pthread_mutex_unlock(_mutex);
2063   assert_status(status == 0, status, "mutex_unlock");
2064 
2065   // Note that we signal() *after* dropping the lock for "immortal" Events.
2066   // This is safe and avoids a common class of futile wakeups.  In rare
2067   // circumstances this can cause a thread to return prematurely from
2068   // cond_{timed}wait() but the spurious wakeup is benign and the victim
2069   // will simply re-test the condition and re-park itself.
2070   // This provides particular benefit if the underlying platform does not
2071   // provide wait morphing.
2072 
2073   if (anyWaiters != 0) {
2074     status = pthread_cond_signal(_cond);
2075     assert_status(status == 0, status, "cond_signal");
2076   }
2077 }
2078 
2079 // JSR166 support
2080 
2081  os::PlatformParker::PlatformParker() {
2082   int status;
2083   status = pthread_cond_init(&_cond[REL_INDEX], _condAttr);
2084   assert_status(status == 0, status, "cond_init rel");
2085   status = pthread_cond_init(&_cond[ABS_INDEX], NULL);
2086   assert_status(status == 0, status, "cond_init abs");
2087   status = pthread_mutex_init(_mutex, _mutexAttr);
2088   assert_status(status == 0, status, "mutex_init");
2089   _cur_index = -1; // mark as unused
2090 }
2091 
2092 // Parker::park decrements count if > 0, else does a condvar wait.  Unpark
2093 // sets count to 1 and signals condvar.  Only one thread ever waits
2094 // on the condvar. Contention seen when trying to park implies that someone
2095 // is unparking you, so don't wait. And spurious returns are fine, so there
2096 // is no need to track notifications.
2097 
2098 void Parker::park(bool isAbsolute, jlong time) {
2099 
2100   // Optional fast-path check:
2101   // Return immediately if a permit is available.
2102   // We depend on Atomic::xchg() having full barrier semantics
2103   // since we are doing a lock-free update to _counter.
2104   if (Atomic::xchg(&_counter, 0) > 0) return;
2105 
2106   Thread* thread = Thread::current();
2107   assert(thread->is_Java_thread(), "Must be JavaThread");
2108   JavaThread *jt = (JavaThread *)thread;
2109 
2110   // Optional optimization -- avoid state transitions if there's
2111   // an interrupt pending.
2112   if (jt->is_interrupted(false)) {
2113     return;
2114   }
2115 
2116   // Next, demultiplex/decode time arguments
2117   struct timespec absTime;
2118   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
2119     return;
2120   }
2121   if (time > 0) {
2122     to_abstime(&absTime, time, isAbsolute, false);
2123   }
2124 
2125   // Enter safepoint region
2126   // Beware of deadlocks such as 6317397.
2127   // The per-thread Parker:: mutex is a classic leaf-lock.
2128   // In particular a thread must never block on the Threads_lock while
2129   // holding the Parker:: mutex.  If safepoints are pending both the
2130   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
2131   ThreadBlockInVM tbivm(jt);
2132 
2133   // Can't access interrupt state now that we are _thread_blocked. If we've
2134   // been interrupted since we checked above then _counter will be > 0.
2135 
2136   // Don't wait if cannot get lock since interference arises from
2137   // unparking.
2138   if (pthread_mutex_trylock(_mutex) != 0) {
2139     return;
2140   }
2141 
2142   int status;
2143   if (_counter > 0)  { // no wait needed
2144     _counter = 0;
2145     status = pthread_mutex_unlock(_mutex);
2146     assert_status(status == 0, status, "invariant");
2147     // Paranoia to ensure our locked and lock-free paths interact
2148     // correctly with each other and Java-level accesses.
2149     OrderAccess::fence();
2150     return;
2151   }
2152 
2153   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2154   jt->set_suspend_equivalent();
2155   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2156 
2157   assert(_cur_index == -1, "invariant");
2158   if (time == 0) {
2159     _cur_index = REL_INDEX; // arbitrary choice when not timed
2160     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
2161     assert_status(status == 0, status, "cond_timedwait");
2162   }
2163   else {
2164     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
2165     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
2166     assert_status(status == 0 || status == ETIMEDOUT,
2167                   status, "cond_timedwait");
2168   }
2169   _cur_index = -1;
2170 
2171   _counter = 0;
2172   status = pthread_mutex_unlock(_mutex);
2173   assert_status(status == 0, status, "invariant");
2174   // Paranoia to ensure our locked and lock-free paths interact
2175   // correctly with each other and Java-level accesses.
2176   OrderAccess::fence();
2177 
2178   // If externally suspended while waiting, re-suspend
2179   if (jt->handle_special_suspend_equivalent_condition()) {
2180     jt->java_suspend_self();
2181   }
2182 }
2183 
2184 void Parker::unpark() {
2185   int status = pthread_mutex_lock(_mutex);
2186   assert_status(status == 0, status, "invariant");
2187   const int s = _counter;
2188   _counter = 1;
2189   // must capture correct index before unlocking
2190   int index = _cur_index;
2191   status = pthread_mutex_unlock(_mutex);
2192   assert_status(status == 0, status, "invariant");
2193 
2194   // Note that we signal() *after* dropping the lock for "immortal" Events.
2195   // This is safe and avoids a common class of futile wakeups.  In rare
2196   // circumstances this can cause a thread to return prematurely from
2197   // cond_{timed}wait() but the spurious wakeup is benign and the victim
2198   // will simply re-test the condition and re-park itself.
2199   // This provides particular benefit if the underlying platform does not
2200   // provide wait morphing.
2201 
2202   if (s < 1 && index != -1) {
2203     // thread is definitely parked
2204     status = pthread_cond_signal(&_cond[index]);
2205     assert_status(status == 0, status, "invariant");
2206   }
2207 }
2208 
2209 // Platform Mutex/Monitor implementation
2210 
2211 #if PLATFORM_MONITOR_IMPL_INDIRECT
2212 
2213 os::PlatformMutex::Mutex::Mutex() : _next(NULL) {
2214   int status = pthread_mutex_init(&_mutex, _mutexAttr);
2215   assert_status(status == 0, status, "mutex_init");
2216 }
2217 
2218 os::PlatformMutex::Mutex::~Mutex() {
2219   int status = pthread_mutex_destroy(&_mutex);
2220   assert_status(status == 0, status, "mutex_destroy");
2221 }
2222 
2223 pthread_mutex_t os::PlatformMutex::_freelist_lock;
2224 os::PlatformMutex::Mutex* os::PlatformMutex::_mutex_freelist = NULL;
2225 
2226 void os::PlatformMutex::init() {
2227   int status = pthread_mutex_init(&_freelist_lock, _mutexAttr);
2228   assert_status(status == 0, status, "freelist lock init");
2229 }
2230 
2231 struct os::PlatformMutex::WithFreeListLocked : public StackObj {
2232   WithFreeListLocked() {
2233     int status = pthread_mutex_lock(&_freelist_lock);
2234     assert_status(status == 0, status, "freelist lock");
2235   }
2236 
2237   ~WithFreeListLocked() {
2238     int status = pthread_mutex_unlock(&_freelist_lock);
2239     assert_status(status == 0, status, "freelist unlock");
2240   }
2241 };
2242 
2243 os::PlatformMutex::PlatformMutex() {
2244   {
2245     WithFreeListLocked wfl;
2246     _impl = _mutex_freelist;
2247     if (_impl != NULL) {
2248       _mutex_freelist = _impl->_next;
2249       _impl->_next = NULL;
2250       return;
2251     }
2252   }
2253   _impl = new Mutex();
2254 }
2255 
2256 os::PlatformMutex::~PlatformMutex() {
2257   WithFreeListLocked wfl;
2258   assert(_impl->_next == NULL, "invariant");
2259   _impl->_next = _mutex_freelist;
2260   _mutex_freelist = _impl;
2261 }
2262 
2263 os::PlatformMonitor::Cond::Cond() : _next(NULL) {
2264   int status = pthread_cond_init(&_cond, _condAttr);
2265   assert_status(status == 0, status, "cond_init");
2266 }
2267 
2268 os::PlatformMonitor::Cond::~Cond() {
2269   int status = pthread_cond_destroy(&_cond);
2270   assert_status(status == 0, status, "cond_destroy");
2271 }
2272 
2273 os::PlatformMonitor::Cond* os::PlatformMonitor::_cond_freelist = NULL;
2274 
2275 os::PlatformMonitor::PlatformMonitor() {
2276   {
2277     WithFreeListLocked wfl;
2278     _impl = _cond_freelist;
2279     if (_impl != NULL) {
2280       _cond_freelist = _impl->_next;
2281       _impl->_next = NULL;
2282       return;
2283     }
2284   }
2285   _impl = new Cond();
2286 }
2287 
2288 os::PlatformMonitor::~PlatformMonitor() {
2289   WithFreeListLocked wfl;
2290   assert(_impl->_next == NULL, "invariant");
2291   _impl->_next = _cond_freelist;
2292   _cond_freelist = _impl;
2293 }
2294 
2295 #else
2296 
2297 os::PlatformMutex::PlatformMutex() {
2298   int status = pthread_mutex_init(&_mutex, _mutexAttr);
2299   assert_status(status == 0, status, "mutex_init");
2300 }
2301 
2302 os::PlatformMutex::~PlatformMutex() {
2303   int status = pthread_mutex_destroy(&_mutex);
2304   assert_status(status == 0, status, "mutex_destroy");
2305 }
2306 
2307 os::PlatformMonitor::PlatformMonitor() {
2308   int status = pthread_cond_init(&_cond, _condAttr);
2309   assert_status(status == 0, status, "cond_init");
2310 }
2311 
2312 os::PlatformMonitor::~PlatformMonitor() {
2313   int status = pthread_cond_destroy(&_cond);
2314   assert_status(status == 0, status, "cond_destroy");
2315 }
2316 
2317 #endif // PLATFORM_MONITOR_IMPL_INDIRECT
2318 
2319 // Must already be locked
2320 int os::PlatformMonitor::wait(jlong millis) {
2321   assert(millis >= 0, "negative timeout");
2322   if (millis > 0) {
2323     struct timespec abst;
2324     // We have to watch for overflow when converting millis to nanos,
2325     // but if millis is that large then we will end up limiting to
2326     // MAX_SECS anyway, so just do that here.
2327     if (millis / MILLIUNITS > MAX_SECS) {
2328       millis = jlong(MAX_SECS) * MILLIUNITS;
2329     }
2330     to_abstime(&abst, millis_to_nanos(millis), false, false);
2331 
2332     int ret = OS_TIMEOUT;
2333     int status = pthread_cond_timedwait(cond(), mutex(), &abst);
2334     assert_status(status == 0 || status == ETIMEDOUT,
2335                   status, "cond_timedwait");
2336     if (status == 0) {
2337       ret = OS_OK;
2338     }
2339     return ret;
2340   } else {
2341     int status = pthread_cond_wait(cond(), mutex());
2342     assert_status(status == 0, status, "cond_wait");
2343     return OS_OK;
2344   }
2345 }
2346 
2347 #endif // !SOLARIS