1 /*
   2  * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "memory/allocation.inline.hpp"
  28 #include "runtime/os.hpp"
  29 #include "runtime/os_perf.hpp"
  30 #include "os_solaris.inline.hpp"
  31 #include "utilities/globalDefinitions.hpp"
  32 #include "utilities/macros.hpp"
  33 
  34 #include CPU_HEADER(vm_version_ext)
  35 
  36 #include <sys/types.h>
  37 #include <procfs.h>
  38 #include <dirent.h>
  39 #include <errno.h>
  40 #include <stdio.h>
  41 #include <stdlib.h>
  42 #include <strings.h>
  43 #include <unistd.h>
  44 #include <fcntl.h>
  45 #include <kstat.h>
  46 #include <unistd.h>
  47 #include <string.h>
  48 #include <sys/sysinfo.h>
  49 #include <sys/lwp.h>
  50 #include <pthread.h>
  51 #include <time.h>
  52 #include <utmpx.h>
  53 #include <dlfcn.h>
  54 #include <sys/loadavg.h>
  55 #include <limits.h>
  56 
  57 static const double NANOS_PER_SEC = 1000000000.0;
  58 
  59 struct CPUPerfTicks {
  60   kstat_t* kstat;
  61   uint64_t last_idle;
  62   uint64_t last_total;
  63   double   last_ratio;
  64 };
  65 
  66 struct CPUPerfCounters {
  67   int           nProcs;
  68   CPUPerfTicks* jvmTicks;
  69   kstat_ctl_t*  kstat_ctrl;
  70 };
  71 
  72 static int get_info(const char* path, void* info, size_t s, off_t o) {
  73   assert(path != NULL, "path is NULL!");
  74   assert(info != NULL, "info is NULL!");
  75 
  76   int fd = -1;
  77 
  78   if ((fd = os::open(path, O_RDONLY, 0)) < 0) {
  79     return OS_ERR;
  80   }
  81   if (pread(fd, info, s, o) != s) {
  82     close(fd);
  83     return OS_ERR;
  84   }
  85   close(fd);
  86   return OS_OK;
  87 }
  88 
  89 static int get_psinfo2(void* info, size_t s, off_t o) {
  90   return get_info("/proc/self/psinfo", info, s, o);
  91 }
  92 
  93 static int get_psinfo(psinfo_t* info) {
  94   return get_psinfo2(info, sizeof(*info), 0);
  95 }
  96 
  97 static int get_psinfo(char* file, psinfo_t* info) {
  98   assert(file != NULL, "file is NULL!");
  99   assert(info != NULL, "info is NULL!");
 100   return get_info(file, info, sizeof(*info), 0);
 101 }
 102 
 103 
 104 static int get_usage(prusage_t* usage) {
 105   assert(usage != NULL, "usage is NULL!");
 106   return get_info("/proc/self/usage", usage, sizeof(*usage), 0);
 107 }
 108 
 109 static int read_cpustat(kstat_ctl_t* kstat_ctrl, CPUPerfTicks* load, cpu_stat_t* cpu_stat) {
 110   assert(kstat_ctrl != NULL, "kstat_ctrl pointer is NULL!");
 111   assert(load != NULL, "load pointer is NULL!");
 112   assert(cpu_stat != NULL, "cpu_stat pointer is NULL!");
 113 
 114   if (load->kstat == NULL) {
 115     // no handle.
 116     return OS_ERR;
 117   }
 118   if (kstat_read(kstat_ctrl, load->kstat, cpu_stat) == OS_ERR) {
 119     // disable handle for this CPU
 120      load->kstat = NULL;
 121      return OS_ERR;
 122   }
 123   return OS_OK;
 124 }
 125 
 126 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters) {
 127   assert(counters != NULL, "counters pointer is NULL!");
 128 
 129   cpu_stat_t  cpu_stat = {0};
 130 
 131   if (which_logical_cpu >= counters->nProcs) {
 132     return .0;
 133   }
 134 
 135   CPUPerfTicks load = counters->jvmTicks[which_logical_cpu];
 136   if (read_cpustat(counters->kstat_ctrl, &load, &cpu_stat) != OS_OK) {
 137     return .0;
 138   }
 139 
 140   uint_t* usage = cpu_stat.cpu_sysinfo.cpu;
 141   if (usage == NULL) {
 142     return .0;
 143   }
 144 
 145   uint64_t c_idle  = usage[CPU_IDLE];
 146   uint64_t c_total = 0;
 147 
 148   for (int i = 0; i < CPU_STATES; i++) {
 149     c_total += usage[i];
 150   }
 151 
 152   // Calculate diff against previous snapshot
 153   uint64_t d_idle  = c_idle - load.last_idle;
 154   uint64_t d_total = c_total - load.last_total;
 155 
 156   /** update if weve moved */
 157   if (d_total > 0) {
 158     // Save current values for next time around
 159     load.last_idle  = c_idle;
 160     load.last_total = c_total;
 161     load.last_ratio = (double) (d_total - d_idle) / d_total;
 162   }
 163 
 164   return load.last_ratio;
 165 }
 166 
 167 static int get_boot_time(uint64_t* time) {
 168   assert(time != NULL, "time pointer is NULL!");
 169   setutxent();
 170   for(;;) {
 171     struct utmpx* u;
 172     if ((u = getutxent()) == NULL) {
 173       break;
 174     }
 175     if (u->ut_type == BOOT_TIME) {
 176       *time = u->ut_xtime;
 177       endutxent();
 178       return OS_OK;
 179     }
 180   }
 181   endutxent();
 182   return OS_ERR;
 183 }
 184 
 185 static int get_noof_context_switches(CPUPerfCounters* counters, uint64_t* switches) {
 186   assert(switches != NULL, "switches pointer is NULL!");
 187   assert(counters != NULL, "counter pointer is NULL!");
 188   *switches = 0;
 189   uint64_t s = 0;
 190 
 191   // Collect data from all CPUs
 192   for (int i = 0; i < counters->nProcs; i++) {
 193     cpu_stat_t cpu_stat = {0};
 194     CPUPerfTicks load = counters->jvmTicks[i];
 195 
 196     if (read_cpustat(counters->kstat_ctrl, &load, &cpu_stat) == OS_OK) {
 197       s += cpu_stat.cpu_sysinfo.pswitch;
 198     } else {
 199       //fail fast...
 200       return OS_ERR;
 201     }
 202   }
 203   *switches = s;
 204   return OS_OK;
 205 }
 206 
 207 static int perf_context_switch_rate(CPUPerfCounters* counters, double* rate) {
 208   assert(counters != NULL, "counters is NULL!");
 209   assert(rate != NULL, "rate pointer is NULL!");
 210   static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
 211   static uint64_t lastTime = 0;
 212   static uint64_t lastSwitches = 0;
 213   static double   lastRate = 0.0;
 214 
 215   uint64_t lt = 0;
 216   int res = 0;
 217 
 218   if (lastTime == 0) {
 219     uint64_t tmp;
 220     if (get_boot_time(&tmp) < 0) {
 221       return OS_ERR;
 222     }
 223     lt = tmp * 1000;
 224   }
 225 
 226   res = OS_OK;
 227 
 228   pthread_mutex_lock(&contextSwitchLock);
 229   {
 230 
 231     uint64_t sw = 0;
 232     clock_t t, d;
 233 
 234     if (lastTime == 0) {
 235       lastTime = lt;
 236     }
 237 
 238     t = clock();
 239     d = t - lastTime;
 240 
 241     if (d == 0) {
 242       *rate = lastRate;
 243     } else if (get_noof_context_switches(counters, &sw)== OS_OK) {
 244       *rate      = ((double)(sw - lastSwitches) / d) * 1000;
 245       lastRate     = *rate;
 246       lastSwitches = sw;
 247       lastTime     = t;
 248     } else {
 249       *rate = 0.0;
 250       res   = OS_ERR;
 251     }
 252     if (*rate < 0.0) {
 253       *rate = 0.0;
 254       lastRate = 0.0;
 255     }
 256   }
 257   pthread_mutex_unlock(&contextSwitchLock);
 258   return res;
 259  }
 260 
 261 
 262 
 263 class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
 264    friend class CPUPerformanceInterface;
 265  private:
 266   CPUPerfCounters _counters;
 267   int cpu_load(int which_logical_cpu, double* cpu_load);
 268   int context_switch_rate(double* rate);
 269   int cpu_load_total_process(double* cpu_load);
 270   int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
 271 
 272   CPUPerformance();
 273   ~CPUPerformance();
 274   bool initialize();
 275 };
 276 
 277 CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
 278   _counters.nProcs = 0;
 279   _counters.jvmTicks = NULL;
 280   _counters.kstat_ctrl = NULL;
 281 }
 282 
 283 bool CPUPerformanceInterface::CPUPerformance::initialize() {
 284   // initialize kstat control structure,
 285   _counters.kstat_ctrl = kstat_open();
 286   assert(_counters.kstat_ctrl != NULL, "error initializing kstat control structure!");
 287 
 288   if (NULL == _counters.kstat_ctrl) {
 289     return false;
 290   }
 291 
 292   // Get number of CPU(s)
 293   if ((_counters.nProcs = sysconf(_SC_NPROCESSORS_ONLN)) == OS_ERR) {
 294     // ignore error?
 295     _counters.nProcs = 1;
 296   }
 297 
 298   assert(_counters.nProcs > 0, "no CPUs detected in sysconf call!");
 299   if (_counters.nProcs == 0) {
 300     return false;
 301   }
 302 
 303   // Data structure(s) for saving CPU load (one per CPU)
 304   size_t array_entry_count = _counters.nProcs;
 305   _counters.jvmTicks = NEW_C_HEAP_ARRAY(CPUPerfTicks, array_entry_count, mtInternal);
 306   memset(_counters.jvmTicks, 0, array_entry_count * sizeof(*_counters.jvmTicks));
 307 
 308   // Get kstat cpu_stat counters for every CPU
 309   // loop over kstat to find our cpu_stat(s)
 310   int i = 0;
 311   for (kstat_t* kstat = _counters.kstat_ctrl->kc_chain; kstat != NULL; kstat = kstat->ks_next) {
 312     if (strncmp(kstat->ks_module, "cpu_stat", 8) == 0) {
 313       if (kstat_read(_counters.kstat_ctrl, kstat, NULL) == OS_ERR) {
 314         continue;
 315       }
 316       if (i == _counters.nProcs) {
 317         // more cpu_stats than reported CPUs
 318         break;
 319       }
 320       _counters.jvmTicks[i++].kstat = kstat;
 321     }
 322   }
 323   return true;
 324 }
 325 
 326 CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
 327   FREE_C_HEAP_ARRAY(char, _counters.jvmTicks);
 328   if (_counters.kstat_ctrl != NULL) {
 329     kstat_close(_counters.kstat_ctrl);
 330   }
 331 }
 332 
 333 int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
 334   assert(cpu_load != NULL, "cpu_load pointer is NULL!");
 335   double t = .0;
 336   if (-1 == which_logical_cpu) {
 337     for (int i = 0; i < _counters.nProcs; i++) {
 338       t += get_cpu_load(i, &_counters);
 339     }
 340     // Cap total systemload to 1.0
 341     t = MIN2<double>((t / _counters.nProcs), 1.0);
 342   } else {
 343     t = MIN2<double>(get_cpu_load(which_logical_cpu, &_counters), 1.0);
 344   }
 345 
 346   *cpu_load = t;
 347   return OS_OK;
 348 }
 349 
 350 int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
 351   assert(cpu_load != NULL, "cpu_load pointer is NULL!");
 352 
 353   psinfo_t info;
 354 
 355   // Get the percentage of "recent cpu usage" from all the lwp:s in the JVM:s
 356   // process. This is returned as a value between 0.0 and 1.0 multiplied by 0x8000.
 357   if (get_psinfo2(&info.pr_pctcpu, sizeof(info.pr_pctcpu), offsetof(psinfo_t, pr_pctcpu)) != 0) {
 358     *cpu_load = 0.0;
 359     return OS_ERR;
 360   }
 361   *cpu_load = (double) info.pr_pctcpu / 0x8000;
 362   return OS_OK;
 363 }
 364 
 365 int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
 366   assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
 367   assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
 368   assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
 369 
 370   static uint64_t lastTime;
 371   static uint64_t lastUser, lastKernel;
 372   static double lastUserRes, lastKernelRes;
 373 
 374   pstatus_t pss;
 375   psinfo_t  info;
 376 
 377   *pjvmKernelLoad = *pjvmUserLoad = *psystemTotalLoad = 0;
 378   if (get_info("/proc/self/status", &pss.pr_utime, sizeof(timestruc_t)*2, offsetof(pstatus_t, pr_utime)) != 0) {
 379     return OS_ERR;
 380   }
 381 
 382   if (get_psinfo(&info) != 0) {
 383     return OS_ERR;
 384   }
 385 
 386   // get the total time in user, kernel and total time
 387   // check ratios for 'lately' and multiply the 'recent load'.
 388   uint64_t time   = (info.pr_time.tv_sec * NANOS_PER_SEC) + info.pr_time.tv_nsec;
 389   uint64_t user   = (pss.pr_utime.tv_sec * NANOS_PER_SEC) + pss.pr_utime.tv_nsec;
 390   uint64_t kernel = (pss.pr_stime.tv_sec * NANOS_PER_SEC) + pss.pr_stime.tv_nsec;
 391   uint64_t diff   = time - lastTime;
 392   double load     = (double) info.pr_pctcpu / 0x8000;
 393 
 394   if (diff > 0) {
 395     lastUserRes = (load * (user - lastUser)) / diff;
 396     lastKernelRes = (load * (kernel - lastKernel)) / diff;
 397 
 398     // BUG9182835 - patch for clamping these values to sane ones.
 399     lastUserRes   = MIN2<double>(1, lastUserRes);
 400     lastUserRes   = MAX2<double>(0, lastUserRes);
 401     lastKernelRes = MIN2<double>(1, lastKernelRes);
 402     lastKernelRes = MAX2<double>(0, lastKernelRes);
 403   }
 404 
 405   double t = .0;
 406   cpu_load(-1, &t);
 407   // clamp at user+system and 1.0
 408   if (lastUserRes + lastKernelRes > t) {
 409     t = MIN2<double>(lastUserRes + lastKernelRes, 1.0);
 410   }
 411 
 412   *pjvmUserLoad   = lastUserRes;
 413   *pjvmKernelLoad = lastKernelRes;
 414   *psystemTotalLoad = t;
 415 
 416   lastTime   = time;
 417   lastUser   = user;
 418   lastKernel = kernel;
 419 
 420   return OS_OK;
 421 }
 422 
 423 int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
 424   return perf_context_switch_rate(&_counters, rate);
 425 }
 426 
 427 CPUPerformanceInterface::CPUPerformanceInterface() {
 428   _impl = NULL;
 429 }
 430 
 431 bool CPUPerformanceInterface::initialize() {
 432   _impl = new CPUPerformanceInterface::CPUPerformance();
 433   return _impl->initialize();
 434 }
 435 
 436 CPUPerformanceInterface::~CPUPerformanceInterface(void) {
 437   if (_impl != NULL) {
 438     delete _impl;
 439   }
 440 }
 441 
 442 int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
 443   return _impl->cpu_load(which_logical_cpu, cpu_load);
 444 }
 445 
 446 int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
 447   return _impl->cpu_load_total_process(cpu_load);
 448 }
 449 
 450 int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
 451   return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
 452 }
 453 
 454 int CPUPerformanceInterface::context_switch_rate(double* rate) const {
 455   return _impl->context_switch_rate(rate);
 456 }
 457 
 458 class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
 459   friend class SystemProcessInterface;
 460  private:
 461   class ProcessIterator : public CHeapObj<mtInternal> {
 462     friend class SystemProcessInterface::SystemProcesses;
 463    private:
 464     DIR*           _dir;
 465     struct dirent* _entry;
 466     bool           _valid;
 467 
 468     ProcessIterator();
 469     ~ProcessIterator();
 470     bool initialize();
 471 
 472     bool is_valid() const { return _valid; }
 473     bool is_valid_entry(struct dirent* const entry) const;
 474     bool is_dir(const char* const name) const;
 475     char* allocate_string(const char* const str) const;
 476     int current(SystemProcess* const process_info);
 477     int next_process();
 478   };
 479 
 480   ProcessIterator* _iterator;
 481   SystemProcesses();
 482   bool initialize();
 483   ~SystemProcesses();
 484 
 485   //information about system processes
 486   int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
 487 };
 488 
 489 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
 490   struct stat64 mystat;
 491   int ret_val = 0;
 492 
 493   ret_val = ::stat64(name, &mystat);
 494 
 495   if (ret_val < 0) {
 496     return false;
 497   }
 498   ret_val = S_ISDIR(mystat.st_mode);
 499   return ret_val > 0;
 500 }
 501 
 502 // if it has a numeric name, is a directory and has a 'psinfo' file in it
 503 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
 504   // ignore the "." and ".." directories
 505   if ((strcmp(entry->d_name, ".") == 0) ||
 506       (strcmp(entry->d_name, "..") == 0)) {
 507     return false;
 508   }
 509 
 510   char buffer[PATH_MAX] = {0};
 511   uint64_t size = 0;
 512   bool result = false;
 513   FILE *fp = NULL;
 514 
 515   if (atoi(entry->d_name) != 0) {
 516     jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
 517 
 518     if (is_dir(buffer)) {
 519       memset(buffer, 0, PATH_MAX);
 520       jio_snprintf(buffer, PATH_MAX, "/proc/%s/psinfo", entry->d_name);
 521       if ((fp = fopen(buffer, "r")) != NULL) {
 522         int nread = 0;
 523         psinfo_t psinfo_data;
 524         if ((nread = fread(&psinfo_data, 1, sizeof(psinfo_t), fp)) != -1) {
 525           // only considering system process owned by root
 526           if (psinfo_data.pr_uid == 0) {
 527             result = true;
 528           }
 529         }
 530       }
 531     }
 532   }
 533 
 534   if (fp != NULL) {
 535     fclose(fp);
 536   }
 537 
 538   return result;
 539 }
 540 
 541 char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
 542   if (str != NULL) {
 543     return os::strdup_check_oom(str, mtInternal);
 544   }
 545   return NULL;
 546 }
 547 
 548 int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
 549   if (!is_valid()) {
 550     return OS_ERR;
 551   }
 552 
 553   char psinfo_path[PATH_MAX] = {0};
 554   jio_snprintf(psinfo_path, PATH_MAX, "/proc/%s/psinfo", _entry->d_name);
 555 
 556   FILE *fp = NULL;
 557   if ((fp = fopen(psinfo_path, "r")) == NULL) {
 558     return OS_ERR;
 559   }
 560 
 561   int nread = 0;
 562   psinfo_t psinfo_data;
 563   if ((nread = fread(&psinfo_data, 1, sizeof(psinfo_t), fp)) == -1) {
 564     fclose(fp);
 565     return OS_ERR;
 566   }
 567 
 568   char *exe_path = NULL;
 569   if ((psinfo_data.pr_fname != NULL) &&
 570       (psinfo_data.pr_psargs != NULL)) {
 571     char *path_substring = strstr(psinfo_data.pr_psargs, psinfo_data.pr_fname);
 572     if (path_substring != NULL) {
 573       int len = path_substring - psinfo_data.pr_psargs;
 574       exe_path = NEW_C_HEAP_ARRAY(char, len+1, mtInternal);
 575       jio_snprintf(exe_path, len, "%s", psinfo_data.pr_psargs);
 576       exe_path[len] = '\0';
 577     }
 578   }
 579 
 580   process_info->set_pid(atoi(_entry->d_name));
 581   process_info->set_name(allocate_string(psinfo_data.pr_fname));
 582   process_info->set_path(allocate_string(exe_path));
 583   process_info->set_command_line(allocate_string(psinfo_data.pr_psargs));
 584 
 585   if (exe_path != NULL) {
 586     FREE_C_HEAP_ARRAY(char, exe_path);
 587   }
 588 
 589   if (fp != NULL) {
 590     fclose(fp);
 591   }
 592 
 593   return OS_OK;
 594 }
 595 
 596 int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
 597   if (!is_valid()) {
 598     return OS_ERR;
 599   }
 600 
 601   do {
 602     _entry = os::readdir(_dir);
 603     if (_entry == NULL) {
 604       // Error or reached end.  Could use errno to distinguish those cases.
 605       _valid = false;
 606       return OS_ERR;
 607     }
 608   } while(!is_valid_entry(_entry));
 609 
 610   _valid = true;
 611   return OS_OK;
 612 }
 613 
 614 SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
 615   _dir = NULL;
 616   _entry = NULL;
 617   _valid = false;
 618 }
 619 
 620 bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
 621   _dir = os::opendir("/proc");
 622   _entry = NULL;
 623   _valid = true;
 624   next_process();
 625 
 626   return true;
 627 }
 628 
 629 SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
 630   if (_dir != NULL) {
 631     os::closedir(_dir);
 632   }
 633 }
 634 
 635 SystemProcessInterface::SystemProcesses::SystemProcesses() {
 636   _iterator = NULL;
 637 }
 638 
 639 bool SystemProcessInterface::SystemProcesses::initialize() {
 640   _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
 641   return _iterator->initialize();
 642 }
 643 
 644 SystemProcessInterface::SystemProcesses::~SystemProcesses() {
 645   if (_iterator != NULL) {
 646     delete _iterator;
 647   }
 648 }
 649 
 650 int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
 651   assert(system_processes != NULL, "system_processes pointer is NULL!");
 652   assert(no_of_sys_processes != NULL, "system_processes counter pointer is NULL!");
 653   assert(_iterator != NULL, "iterator is NULL!");
 654 
 655   // initialize pointers
 656   *no_of_sys_processes = 0;
 657   *system_processes = NULL;
 658 
 659   while (_iterator->is_valid()) {
 660     SystemProcess* tmp = new SystemProcess();
 661     _iterator->current(tmp);
 662 
 663     //if already existing head
 664     if (*system_processes != NULL) {
 665       //move "first to second"
 666       tmp->set_next(*system_processes);
 667     }
 668     // new head
 669     *system_processes = tmp;
 670     // increment
 671     (*no_of_sys_processes)++;
 672     // step forward
 673     _iterator->next_process();
 674   }
 675   return OS_OK;
 676 }
 677 
 678 int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
 679   return _impl->system_processes(system_procs, no_of_sys_processes);
 680 }
 681 
 682 SystemProcessInterface::SystemProcessInterface() {
 683   _impl = NULL;
 684 }
 685 
 686 bool SystemProcessInterface::initialize() {
 687   _impl = new SystemProcessInterface::SystemProcesses();
 688   return _impl->initialize();
 689 
 690 }
 691 
 692 SystemProcessInterface::~SystemProcessInterface() {
 693   if (_impl != NULL) {
 694     delete _impl;
 695   }
 696 }
 697 
 698 CPUInformationInterface::CPUInformationInterface() {
 699   _cpu_info = NULL;
 700 }
 701 
 702 bool CPUInformationInterface::initialize() {
 703   _cpu_info = new CPUInformation();
 704   _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
 705   _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
 706   _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
 707   _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
 708   _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
 709   return true;
 710 }
 711 
 712 CPUInformationInterface::~CPUInformationInterface() {
 713   if (_cpu_info != NULL) {
 714     if (_cpu_info->cpu_name() != NULL) {
 715       const char* cpu_name = _cpu_info->cpu_name();
 716       FREE_C_HEAP_ARRAY(char, cpu_name);
 717       _cpu_info->set_cpu_name(NULL);
 718     }
 719     if (_cpu_info->cpu_description() != NULL) {
 720       const char* cpu_desc = _cpu_info->cpu_description();
 721       FREE_C_HEAP_ARRAY(char, cpu_desc);
 722       _cpu_info->set_cpu_description(NULL);
 723     }
 724     delete _cpu_info;
 725   }
 726 }
 727 
 728 int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
 729   if (_cpu_info == NULL) {
 730     return OS_ERR;
 731   }
 732 
 733   cpu_info = *_cpu_info; // shallow copy assignment
 734   return OS_OK;
 735 }
 736 
 737 class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
 738   friend class NetworkPerformanceInterface;
 739  private:
 740   NetworkPerformance();
 741   NONCOPYABLE(NetworkPerformance);
 742   bool initialize();
 743   ~NetworkPerformance();
 744   int network_utilization(NetworkInterface** network_interfaces) const;
 745 };
 746 
 747 NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
 748 
 749 }
 750 
 751 bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
 752   return true;
 753 }
 754 
 755 NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
 756 
 757 }
 758 
 759 int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
 760 {
 761   kstat_ctl_t* ctl = kstat_open();
 762   if (ctl == NULL) {
 763     return OS_ERR;
 764   }
 765 
 766   NetworkInterface* ret = NULL;
 767   for (kstat_t* k = ctl->kc_chain; k != NULL; k = k->ks_next) {
 768     if (strcmp(k->ks_class, "net") != 0) {
 769       continue;
 770     }
 771     if (strcmp(k->ks_module, "link") != 0) {
 772       continue;
 773     }
 774 
 775     if (kstat_read(ctl, k, NULL) == -1) {
 776       return OS_ERR;
 777     }
 778 
 779     uint64_t bytes_in = UINT64_MAX;
 780     uint64_t bytes_out = UINT64_MAX;
 781     for (int i = 0; i < k->ks_ndata; ++i) {
 782       kstat_named_t* data = &reinterpret_cast<kstat_named_t*>(k->ks_data)[i];
 783       if (strcmp(data->name, "rbytes64") == 0) {
 784         bytes_in = data->value.ui64;
 785       }
 786       else if (strcmp(data->name, "obytes64") == 0) {
 787         bytes_out = data->value.ui64;
 788       }
 789     }
 790 
 791     if ((bytes_in != UINT64_MAX) && (bytes_out != UINT64_MAX)) {
 792       NetworkInterface* cur = new NetworkInterface(k->ks_name, bytes_in, bytes_out, ret);
 793       ret = cur;
 794     }
 795   }
 796 
 797   kstat_close(ctl);
 798   *network_interfaces = ret;
 799 
 800   return OS_OK;
 801 }
 802 
 803 NetworkPerformanceInterface::NetworkPerformanceInterface() {
 804   _impl = NULL;
 805 }
 806 
 807 NetworkPerformanceInterface::~NetworkPerformanceInterface() {
 808   if (_impl != NULL) {
 809     delete _impl;
 810   }
 811 }
 812 
 813 bool NetworkPerformanceInterface::initialize() {
 814   _impl = new NetworkPerformanceInterface::NetworkPerformance();
 815   return _impl->initialize();
 816 }
 817 
 818 int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
 819   return _impl->network_utilization(network_interfaces);
 820 }